Sample records for octupole state coupling

  1. One-phonon octupole vibrational states in 211At, 212Rn, 213Fr and 214Ra with N = 126

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.

    2013-12-01

    Excited high spin states in 211At, 212Rn, 213Fr and 214Ra with N = 126 are reorganized and interpreted in terms of the stretched weak coupling of an octupole 3- phonon. Nearly identical sequences of levels with ΔI = 3 and the parity change are found, for the first time, up to 25- for 20 states of 214Ra, up to 35- for 36 states of 212Rn and up to 53/2+ for 16 states of 213Fr. The stretched weak coupling of an octupole phonon is extended up to the highest excitation energy of 11355 keV for 212Rn which has the largest experimental B( E3) value of 44.1(88) W.u. for the 11- → 8{2/+} transition. The stretched weak coupling of an octupole 3- phonon needs to be considered when single particle configurations are assigned to high spin states. Average octupole excitation energies of 657(51) keV for 211At, 1101(28) keV for 212Rn, 667(25) keV for 213Fr, and 709(25) keV for 214Ra are obtained. The calculated level enegies are in a good agreement with the experimental level energies within the error limit of 4.3%.

  2. Octupole deformations in high-K isomeric states of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Walker, P. M.

    2016-01-01

    We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS) pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  3. E1 transitions from octupole vibration states

    NASA Astrophysics Data System (ADS)

    Cottle, P. D.

    1993-04-01

    Electric dipole moments are extracted from data for E1 transitions deexciting octupole vibration states in nineteen nuclei. The moments are then compared to values calculated using the droplet model prescription of Dorso, Myers, and Swiatecki. It is found that the E1 moments in quadrupole deformed nuclei can be reproduced with the droplet model using the same model parameters that reproduce atomic masses and fission barriers. This result supports the suggestion of Butler and Nazarewicz that single particle effects are usually much smaller than macroscopic effects in E1 transitions associated with octupole vibrations in reflection symmetric deformed nuclei.

  4. Shape Phase Transition from Octupole Deformation to Octupole Vibrations: The Analytic Quadrupole Octupole Axially Symmetric Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    An analytic collective model in which the relative presence of the quadrupole and octupole deformations is determined by a parameter ({phi}0), while axial symmetry is obeyed, is developed. The model [to be called the Analytic Quadrupole Octupole Axially symmetric model (AQOA)] involves an infinite well potential, provides predictions for energy and B(EL) ratios which depend only on {phi}0, draws the border between the regions of octupole deformation and octupole vibrations in an essentially parameter-independent way, and in the actinide region describes well 226Th and 226Ra, for which experimental energy data are shown to suggest that they lie close to thismore » border. The similarity of the AQOA results with {phi}0 = 45 deg. for ground state band spectra and B(E2) transition rates to the predictions of the X(5) model is pointed out.« less

  5. SEARCH FOR TWO-PHONON OCTUPOLE VIBRATIONAL BANDS IN 88, 89, 92, 93, 94, 96Sr AND 95, 96, 97, 98Zr

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Brewer, N. T.; Wang, E. H.; Luo, Y. X.; Zhu, S. J.

    2012-09-01

    Several new gamma transitions were identified in 94Sr, 93Sr, 92Sr, 96Zr and 97Zr from the spontaneous fission of 252Cf. Excited states in 88, 89, 92, 94, 96Sr and 95, 96, 97, 98Zr were reanalyzed and reorganized to propose the new two-phonon octupole vibrational states and bands. The spin and parity of 6+ are assigned to a 4034.5 keV state in 94Sr and 3576.4 keV state in 98Zr. These states are proposed as the two-phonon octupole vibrational states along with the 6+ states at 3483.4 keV in 96Zr, at 3786.0 keV in 92Sr and 3604.2 keV in 96Sr. The positive parity bands in 88, 94, 96Sr and 96, 98Zr are the first two-phonon octupole vibrational bands based on a 6+ state assigned in spherical nuclei. It is thought that in 94, 96Sr and 96, 98Zr a 3- octupole vibrational phonon is weakly coupled to an one-phonon octupole vibrational band to make the two-phonon octupole vibrational band. Also, the high spin states of odd-A95Zr and 97Zr are interpreted to be generated by the neutron 2d5/2 hole and neutron 1g7/2 particle, respectively, weakly coupled to one- and two-phonon octupole vibrational bands of 96Zr. The high spin states of odd-A87Sr are interpreted to be caused by the neutron 1g9/2 hole weakly coupled to 3- and 5- states of 88Sr. New one- and two-POV bands in 95, 97Zr and 87, 89Sr are proposed, for the first time, in the present work.

  6. Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.

    1999-03-01

    Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.

  7. Quadrupole-octupole coupled states in 112Cd populated in the 111Cd(d ⃗,p ) reaction

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Bildstein, V.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2014-11-01

    States in 112Cd have been studied with the 111Cd(d ⃗,p ) 12Cd reaction using 22 MeV polarized deuterons. The protons from the reaction were momentum analyzed with a Q3D magnetic spectrograph, and spectra have been recorded with a position-sensitive detector located on the focal plane. Angular distributions of cross sections and analyzing powers have been constructed for the low-lying negative-parity states observed, including the 3-,4-, and 5- members of the previously assigned quadrupole-octupole quintuplet. The 5- member at 2373-keV possess the second largest spectroscopic strength observed, and is reassigned as having the s1/2⊗h11/2 two-quasineutron configuration as the dominate component of its wave function.

  8. Octupole deformation in odd-odd nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.

    1988-01-01

    Comparison of the experimental and theoretical ground-state spins of odd-odd nuclei in the region 220less than or equal toAless than or equal to228 generally shows agreement with a folded Yukawa octupole deformed model with epsilon/sub 3/ = 0.08 and some lack of agreement with the same model with epsilon/sub 3/ = 0. Thus in spite of limited spectroscopic information, the ground-state spins suggest the existence of octupole deformation in odd-odd nuclei in the region 220less than or equal toAless than or equal to228.

  9. Decay of quadrupole-octupole 1- states in 40Ca and 140Ce

    NASA Astrophysics Data System (ADS)

    Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.

    2016-03-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.

  10. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  11. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  12. Direct evidence of octupole deformation in neutron-rich 144Ba

    DOE PAGES

    Bucher, B.; Zhu, S.; Wu, C. Y.; ...

    2016-03-17

    Here, the neutron-rich nucleus 144Ba (t 1/2 = 11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV 144Ba beam on a 1.0–mg/cm 2 208Pb target. The measured value of the matrix element, < 3 1–∥M(E3)∥0 1 + >= 0.65( +17 –23) ebmore » 3/2, corresponds to a reduced B(E3) transition probability of 48( +25 –34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.« less

  13. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.

    2018-01-01

    Quasiclassical dynamics of trapped ions is characterized by applying the time dependent variational principle (TDVP) on coherent state orbits, in case of quadrupole and octupole combined (Paul and Penning) or radiofrequency (RF) traps. A dequantization algorithm is proposed, by which the classical Hamilton (energy) function associated to the system results as the expectation value of the quantum Hamiltonian on squeezed coherent states. We develop such method and particularize the quantum Hamiltonian for both combined and RF nonlinear traps, that exhibit axial symmetry. We also build the classical Hamiltonian functions for the particular traps we considered, and find the classical equations of motion.

  14. Design of Octupole Channel for Integrable Optics Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements onmore » maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.« less

  15. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.

    PubMed

    Boyarkin, Oleg V; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  16. Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional

    NASA Astrophysics Data System (ADS)

    Xu, Zhong; Li, Zhi-Pan

    2017-12-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains - Ra, Th, U, Pu, Cm, Cf, Fm, and No - are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations ⟨β 3⟩, and show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation. Supported by National Natural Science Foundation of China (11475140, 11575148)

  17. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyarkin, Oleg V., E-mail: oleg.boiarkin@epfl.ch; Kopysov, Vladimir

    2014-03-15

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ∼150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrastmore » to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion–He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.« less

  18. Investigation of 112Cd via the (d,p) Reaction and a Reassessment of the Quadrupole-Octupole Coupled Excitation

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    The single-particle neutron states in 112Cd have been probed with the 111Cd(d,p) reaction. Beams of up to 1.2 µA of polarized 22 MeV deuterons bombarded 111Cd targets. The reaction protons were momentum analyzed with a Q3D magnetic spectrograph, with spectra were recorded at 10 angles between 10 and 60° with a resolution of 6-7 keV FWHM. In addition to the (d,p) transfer data, (d,d) elastic-scattering data were also obtained and used to ascertain the proper optical model parameters. Cross sections and analyzing powers for all levels observed to be populated were fit to results of DWBA and ADWA calculations, and spectroscopic factors were determined. The 5- level at 2373 keV, previously assigned as a member on the quadrupole-octupole quintuplet set of states because of its enhanced B(E2;5 - to 31 - ) value, was observed to be one of the strongest peaks in the spectrum, and is reassigned as the s1/2 otimes h11/2 two-quasineutron configuration.

  19. Enhanced E3 Excitations in 144,146Ba and the Evolution of Octupole Collectivity

    NASA Astrophysics Data System (ADS)

    Bucher, B.; Zhu, S.; ANL, LLNL, LBNL, INL, UAM, Rochester, Maryland Collaboration

    2017-09-01

    Recent Coulomb excitation studies on 144,146Ba using the GRETINA-CHICO2 detection system with post-accelerated CARIBU beams have confirmed the existence of enhanced E3 transitions in these isotopes which are centered in a region that has long been predicted to exhibit stable octupole-deformed shapes. Furthermore, the widely-varying E1 strength observed between these isotopes is well-accounted for by models having octupole-deformed potentials, and the variation has been linked to increased occupancies of specific single-particle orbitals in the reflection-asymmetric potential. This talk will summarize the most recent experimental and theoretical results. In addition, data on octupole-related properties in the surrounding isotopes will be discussed in an attempt to better understand the origin and evolution of octupole collectivity in this mass region. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), DE-AC07-05ID14517 (INL), and MINECO (Spain).

  20. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  1. Octupole correlations in the 144Ba nucleus described with symmetry-conserving configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Bernard, Rémi N.; Robledo, Luis M.; Rodríguez, Tomás R.

    2016-06-01

    We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity, and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.

  2. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  3. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  4. Octupole Correlations in THORIUM-225

    NASA Astrophysics Data System (ADS)

    Hughes, John Rhys

    Available from UMI in association with The British Library. The nuclear structure of ^{225 }Th has been studied using the reaction ^{226}Ra(alpha,5n) ^{225}Th at a beam energy of 50 MeV. In-beam gamma-gamma , e^{-}-n, e ^{-}-e^{-} and e^{-}- gamma coincidences have been measured, using the TESSA3 array at the Daresbury NSF and the Double Orange spectrometer at the University of Bonn Cyclotron. gamma-ray and electron energies and intensities, gamma-ray angular distribution ratios and electron subshell ratios and conversion coefficients have been used to establish a decay scheme up to spin (39/2) hbar and excitation energy E _{z} ~ 2.5 MeV. The decay scheme is found to be characterised by two Delta J = 1 rotational bands, and these are classified in terms of the simplex quantum number, s, which is expected to be conserved for an octupole nucleus. No band crossings are observed up to a rotational frequency of hbaromega ~ 0.21 and 0.18 MeV in the s = -i and +i bands, respectively. Parity doublets have been observed, with enhanced E1 transitions linking states of opposite parity. gamma -branching ratios have been measured and an average value of | Q_1/Q_2| = (0.51 +/- 0.06) times 10^{-3} fm^{-1} has been deduced. The results are compared with various calculations incorporating odd multiple degrees of freedom in the description of the nuclear shape.

  5. Direct evidence for octupole deformation in Ba 146 and the origin of large E 1 moment variations in reflection-asymmetric nuclei

    DOE PAGES

    Bucher, B.; Zhu, S.; Wu, C. Y.; ...

    2017-04-12

    Despite the more than 1 order of magnitude difference between the measured dipole moments in 144Ba and 146Ba, the octupole correlations in 146Ba are found to be as strong as those in 144Ba with a similarly large value of B(E3;3 – → 0 +) determined as 48( +21 –29) W.u. Here, the new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopicmore » calculations.« less

  6. Examining the role of transfer coupling in sub-barrier fusion of Ti 46 , 50 + Sn 124

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, J. Felix; Allmond, J. M.; Gross, C. J.

    2016-08-24

    In this study, the presence of neutron transfer channels with positive Q values can enhance sub-barrier fusion cross sections. Recent measurements of the fusion excitation functions for 58Ni+ 132,124Sn found that the fusion enhancement due to the influence of neutron transfer is smaller than that in 40Ca + 132,124Sn although the Q values for multineutron transfer are comparable. The purpose of this study is to investigate the differences observed between the fusion of Sn + Ni and Sn + Ca. Methods: Fusion excitation functions for 46,50Ti + 124Sn have been measured at energies near the Coulomb barrier. As a result,more » a comparison of the barrier distributions for 46Ti+ 124Sn and 40Ca+ 124Sn shows that the 40Ca+ 124Sn system has a barrier strength resulting from the coupling to the very collective octupole state in 40Ca at an energy significantly lower than the uncoupled barrier. In conclusion, the large sub-barrier fusion enhancement in 40Ca induced reactions is attributed to both couplings to neutron transfer and inelastic excitation, with the octupole vibration of 40Ca playing a major role.« less

  7. Identification of the Jπ=1- state in 218Ra populated via α decay of 222Th

    NASA Astrophysics Data System (ADS)

    Parr, E.; Smith, J. F.; Greenlees, P. T.; Smolen, M.; Papadakis, P.; Auranen, K.; Chapman, R.; Cullen, D. M.; Grahn, T.; Grocutt, L.; HerzáÅ, A.; Herzberg, R.-D.; Hodge, D.; Jakobsson, U.; Julin, R.; Juutinen, S.; Konki, J.; Leino, M.; McPeake, C.; Mengoni, D.; Mistry, A. K.; Mulholland, K. F.; O'Neill, G. G.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scheck, M.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Uusitalo, J.

    2016-07-01

    The α decay of 222Th populating the low-lying Jπ=3- state, and also a proposed 1- state, in 218Ra has been observed. The observations suggest an excitation energy of 853 keV for the 1- state, which is 60 keV above the 3- state. The hindrance factors of these α decays give a possible boundary to the region of ground-state octupole deformation in the light-actinide nuclei. The relative positions of the Jπ=1- and 3- states suggest they are produced by an octupole-vibrational mechanism, as opposed to α clustering or rotations of a reflection-asymmetric octupole-deformed shape.

  8. Quadrupole deformed and octupole collective bands in 228Ra

    NASA Astrophysics Data System (ADS)

    Gulda, K.; Mach, H.; Aas, A. J.; Borge, M. J. G.; Burke, D. G.; Fogelberg, B.; Gietz, H.; Grant, I. S.; Hagebo, E.; Hill, P.; Hoff, P.; Kaffrell, N.; Kurcewicz, W.; Lindroth, A.; Løvhøiden, G.; Martinez, T.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rubio, B.; Sanchez-Vega, M.; Tain, J. L.; Taylor, R. B. E.; Tengblad, O.; Thorsteinsen, T. F.; Isolde Collaboration

    1998-06-01

    Spins and parities for collective states in 228Ra have been determined from conversion electron measurements with a mini-orange β spectrometer. The fast-timing βγγ( t) method has been used to measure lifetimes of T {1}/{2} = 550(20) ps and 181 (3) ps for the 2 1+ and 4 1+ aembers of the K = 0 + band, and T {1}/{2} ⩽ 7 ps and ⩽6 ps for the 1 1- and 3 1- members of the K = 0 - band, respectively The quadrupole moments, Q0 deduced from the B (E2; 2 1+ → 0 1+) and B (E2; 4 1+ → 2 1+) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of ⩾4 × 10 -4 e 2 fm 2, which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227Ra and reveal octupole correlations in 228Ra.

  9. GRID and Multiphonon States

    PubMed Central

    Robinson, S. J.

    2000-01-01

    The development of the GRID technique for determining nuclear level lifetimes of excited low-spin states populated in thermal neutron capture reactions has resulted in the ability to perform detailed studies of proposed multiphonon excitations for the first time. This paper discusses the experimental evidence for multiphonon excitations determined using the GRID technique. In deformed nuclei several good examples of γγKπ = 4+ excitations have been established, whereas the experimental evidence gathered on Kπ= 0+ bands is contradictory, and any interpretations will likely involve the mixing of several different configurations. In vibrational nuclei the GRID technique has helped to establish the existence of multiple quadrupole phonon excitations in 114Cd, and an almost complete set of quadrupole-octupole coupled states in 144Nd. PMID:27551594

  10. Collective properties of low-lying octupole excitations in 20882Pb126, 6020Ca40 and 288O20

    NASA Astrophysics Data System (ADS)

    Zhou, X. R.; Zhao, E. G.; Dong, B. G.; Zhang, X. Z.; Long, G. L.

    2003-08-01

    The octupole strengths of three nuclei: β-stable nucleus 20882Pb 126, neutron skin nucleus 6020Ca 40 and neutron drip line nucleus 288O 20 are studied by using the self-consistent Hartree-Fock calculation with the random phase approximation. The collective properties of low-lying excitations are analyzed by particle-vibration coupling. The results show that there is the coexistence of the collective excitations and the decoupled strong continuum strength near the threshold in the lowest isoscalar states in 6020Ca 40 and 288O 20. For these three nuclei, both the low-lying isoscalar states and giant isoscalar resonance carry isovector strength. The ratio B(IV)/ B(IS) is checked and it is found that, for 20882Pb 126, the ratio is equal to (( N- Z)/ A) 2 in good accuracy, while for 6020Ca 40 and 288O 20, the ratios are much larger than (( N- Z)/ A) 2. The study shows that the enhancement of the ratio is due to the excess neutrons that have small binding energies in 6020Ca 40 and 288O 20.

  11. Chimera states for coupled oscillators.

    PubMed

    Abrams, Daniel M; Strogatz, Steven H

    2004-10-22

    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.

  12. Chimera-type states induced by local coupling

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; García-Ñustes, M. A.; Rojas, R. G.

    2016-05-01

    Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation diagram.

  13. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  14. Chimera states: Effects of different coupling topologies

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  15. Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Fajans, J.; Zukor, A. F.

    2018-05-01

    The nature of the trajectories of antihydrogen atoms confined in an octupole minimum-B trap is of great importance for upcoming spectroscopy, cooling, and gravity experiments. Of particular interest is the mixing time between the axial and transverse energies for the antiatoms. Here, using computer simulations, we establish that almost all trajectories are chaotic, and then quantify the characteristic mixing time between the axial and transverse energies. We find that there are two classes of trajectories: for trajectories whose axial energy is higher than about 20% of the total energy, the axial energy substantially mixes within about 10 s, whereas for trajectories whose axial energy is lower than about 10% of the total energy, the axial energy remains nearly constant for 1000 s or longer.

  16. On magnetoelectric coupling at equilibrium in continua with microstructure

    NASA Astrophysics Data System (ADS)

    Romeo, Maurizio

    2017-10-01

    A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical and experimental results on magnetoelectric coupling.

  17. Chimera states in Gaussian coupled map lattices

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  18. Chimera states in two-dimensional networks of locally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  19. Chimera states in two-dimensional networks of locally coupled oscillators.

    PubMed

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  20. Distinct collective states due to trade-off between attractive and repulsive couplings

    NASA Astrophysics Data System (ADS)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  1. An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision

    NASA Astrophysics Data System (ADS)

    Yang, Dongzheng; Hu, Xixi; Zhang, Dong H.; Xie, Daiqian

    2018-02-01

    Solving the time-independent close coupling equations of a diatom-diatom inelastic collision system by using the rigorous close-coupling approach is numerically difficult because of its expensive matrix manipulation. The coupled-states approximation decouples the centrifugal matrix by neglecting the important Coriolis couplings completely. In this work, a new approximation method based on the coupled-states approximation is presented and applied to time-independent quantum dynamic calculations. This approach only considers the most important Coriolis coupling with the nearest neighbors and ignores weaker Coriolis couplings with farther K channels. As a result, it reduces the computational costs without a significant loss of accuracy. Numerical tests for para-H2+ortho-H2 and para-H2+HD inelastic collision were carried out and the results showed that the improved method dramatically reduces the errors due to the neglect of the Coriolis couplings in the coupled-states approximation. This strategy should be useful in quantum dynamics of other systems.

  2. Solitary states for coupled oscillators with inertia.

    PubMed

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  3. Solitary states for coupled oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  4. Basin stability measure of different steady states in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  5. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  6. Measurements of multipolarities in 227Ra as tests of evidence for stable octupole deformation

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.

    1987-03-01

    Multipolarities of ~30 transitions in 227Ra have been established by measuring conversion electrons following the β - decay of 227Fr. For this purpose a "mini-orange"-type electron spectrometer has been constructed. The 227Fr isotopes were produced by the ISOLDE on-line separator at the CERN Synchro-cyclotron. Internal conversion coefficients were obtained from singles spectra and also from simultaneous γe - and γγ coincidence measurements. The new results support the placement of levels and transitions in the earlier level scheme but require changes in the previously assigned parities for four of the levels. Also, one E0 transition was identified. The results are consistent with previous interpretations for most of the levels that have been used to argue in favour of a small permanent octupole deformation for 227Ra.

  7. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  8. Shape coexistence and collective low-spin states in Sn,114112 studied with the (p ,p'γ ) Doppler-shift attenuation coincidence technique

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Petkov, P.; Litvinova, E.; Müller-Gatermann, C.; Pickstone, S. G.; Prill, S.; Scholz, P.; Zilges, A.

    2018-05-01

    Background: The semimagic Sn (Z =50 ) isotopes have been subject to many nuclear-structure studies. Signatures of shape coexistence have been observed and attributed to two-proton-two-hole (2p-2h) excitations across the Z =50 shell closure. In addition, many low-lying nuclear-structure features have been observed which have effectively constrained theoretical models in the past. One example are so-called quadrupole-octupole coupled states (QOC) caused by the coupling of the collective quadrupole and octupole phonons. Purpose: Proton-scattering experiments followed by the coincident spectroscopy of γ rays have been performed at the Institute for Nuclear Physics of the University of Cologne to excite low-spin states in 112Sn and 114Sn to determine their lifetimes and extract reduced transition strengths B (Π L ) . Methods: The combined spectroscopy setup SONIC@HORUS has been used to detect the scattered protons and the emitted γ rays of excited states in coincidence. The novel (p ,p'γ ) Doppler-shift attenuation (DSA) coincidence technique was employed to measure sub-ps nuclear level lifetimes. Results: Seventy-four (74) level lifetimes τ of states with J =0 -6 were determined. In addition, branching ratios were deduced which allowed the investigation of the intruder configuration in both nuclei. Here, s d IBM-2 mixing calculations were added which support the coexistence of the two configurations. Furthermore, members of the expected QOC quintuplet are proposed in 114Sn for the first time. The 1- candidate in 114Sn fits perfectly into the systematics observed for the other stable Sn isotopes. Conclusions: The E 2 transition strengths observed for the low-spin members of the so-called intruder band support the existence of shape coexistence in Sn,114112. The collectivity in this configuration is comparable to the one observed in the Pd nuclei, i.e., the 0p-4h nuclei. Strong mixing between the 0+ states of the normal and intruder configuration might be observed

  9. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  10. Chimera states and the interplay between initial conditions and non-local coupling

    NASA Astrophysics Data System (ADS)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  11. Chimera states and the interplay between initial conditions and non-local coupling.

    PubMed

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  12. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  13. Interstate vibronic coupling constants between electronic excited states for complex molecules

    NASA Astrophysics Data System (ADS)

    Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne

    2018-03-01

    In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.

  14. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  15. Dipole, quadrupole, and octupole terms in the long-range hyperfine frequency shift for hydrogen in the presence of inert gases

    NASA Astrophysics Data System (ADS)

    Greenwood, W. G.; Tang, K. T.

    1987-03-01

    The R-6, R-8, and R-10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R-6 terms are based on the dipole oscillator strength sums. For helium, the R-8 and R-10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R-8 and R-10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R-8 and R-10 terms.

  16. Two-state semiconductor laser self-mixing velocimetry exploiting coupled quantum-dot emission-states: experiment, simulation and theory

    PubMed Central

    Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan

    2014-01-01

    We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robledo, L. M.; Baldo, M.; Schuck, P.

    We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP) energy density functionals for two sets of isotopes, those of radium and barium, in which it is believed that octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean field framework (Hartree-Fock-Bogoliubov approximation) by using the axially symmetric octupole moment as a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest-lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry spontaneously broken by the mean fieldmore » and also incorporate octupole fluctuations around the ground-state solution. For each isotope the energy of the lowest lying 1{sup -} state and the B(E1) and B(E3) transition probabilities have been computed and compared to both the experimental data and the results obtained in the same framework with the Gogny D1S interaction, which are used here as a well-established benchmark. Finally, the octupolarity of the configurations involved in the way down to fission of {sup 240}Pu, which is strongly connected to the asymmetric fragment mass distribution, is studied. We confirm with this thorough study the suitability of the BCP functionals to describe octupole-related phenomena.« less

  18. Chimera states in a multilayer network of coupled and uncoupled neurons

    NASA Astrophysics Data System (ADS)

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2017-07-01

    We study the emergence of chimera states in a multilayer neuronal network, where one layer is composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure, the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled layer share information in spite of the absence of physical connections among them. Neurons in the coupled layer are connected with electrical synapses, while across the two layers, neurons are connected through chemical synapses. In both layers, the dynamics of each neuron is described by the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different types of connecting synapses within and between the two layers, together with the multilayer network structure, plays a key role in the emergence of between-layer synchronous chimera states and patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor coupling within the coupled layer, we observe qualitatively identical between-layer chimera states. Moreover, we show that the role of information transmission delay between the two layers must not be neglected, and we obtain precise parameter bounds at which chimera states can be observed. The expansion of the chimera region and annihilation of cluster and fully coherent states in the parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated using effective range measurements. These results are discussed in the light of neuronal evolution, where the coexistence of coherent and incoherent dynamics during the developmental stage is particularly likely.

  19. Perturbative universal state-selective correction for state-specific multi-reference coupled cluster methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Banik, Subrata; Kowalski, Karol

    2016-10-28

    The implementation details of the universal state-selective (USS) multi-reference coupled cluster (MRCC) formalism with singles and doubles (USS(2)) are discussed on the example of several benchmark systems. We demonstrate that the USS(2) formalism is capable of improving accuracies of state specific multi-reference coupled-cluster (MRCC) methods based on the Brillouin-Wigner and Mukherjee’s sufficiency conditions. Additionally, it is shown that the USS(2) approach significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals. We also discuss the perturbative USS(2) formulations that significantly reduce numerical overhead of the full USS(2) method.

  20. Breathing multichimera states in nonlocally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  1. Accurate collision-induced line-coupling parameters for the fundamental band of CO in He - Close coupling and coupled states scattering calculations

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Boissoles, J.; Boulet, C.

    1988-01-01

    The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.

  2. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  3. Vibronic structure and coupling of higher excited electronic states in carotenoids

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław; Luchowski, Rafał

    2013-03-01

    Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.

  4. Solvable model for chimera states of coupled oscillators.

    PubMed

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  5. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  6. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  7. Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states

    NASA Astrophysics Data System (ADS)

    Picallo, Clara B.; Riecke, Hermann

    2011-03-01

    Motivated by recent observations in neuronal systems we investigate all-to-all networks of nonidentical oscillators with adaptive coupling. The adaptation models spike-timing-dependent plasticity in which the sum of the weights of all incoming links is conserved. We find multiple phase-locked states that fall into two classes: near-synchronized states and splay states. Among the near-synchronized states are states that oscillate with a frequency that depends only very weakly on the coupling strength and is essentially given by the frequency of one of the oscillators, which is, however, neither the fastest nor the slowest oscillator. In sufficiently large networks the adaptive coupling is found to develop effective network topologies dominated by one or two loops. This results in a multitude of stable splay states, which differ in their firing sequences. With increasing coupling strength their frequency increases linearly and the oscillators become less synchronized. The essential features of the two classes of states are captured analytically in perturbation analyses of the extended Kuramoto model used in the simulations.

  8. Quasi-steady-state analysis of coupled flashing ratchets.

    PubMed

    Levien, Ethan; Bressloff, Paul C

    2015-10-01

    We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.

  9. Scattering of 42 MeV alpha particles from copper-65

    NASA Technical Reports Server (NTRS)

    Stewart, W. M.; Seth, K. K.

    1973-01-01

    Beams of 42-MeV alpha particles were elastically and inelastically scattered from Cu-65 in an attempt to excite states which may be described in terms of an excited core model. Angular distributions were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have results from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For Cu-65 the coupling of the particle to the core is no larger weak as in the simpler model, and configuration mixing results.

  10. Spin Number Coherent States and the Problem of Two Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-07-01

    From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new set of operators which also close the su(2) Lie algebra, being the Perelomov number coherent states the new basis for its unitary irreducible representation. We apply our results to obtain the energy spectrum, the eigenstates and the partition function of two coupled oscillators. We show that the eigenstates of two coupled oscillators are the SU(2) Perelomov number coherent states of the two-dimensional harmonic oscillator with an appropriate choice of the coherent state parameters. Supported by SNI-México, COFAA-IPN, EDD-IPN, EDI-IPN, SIP-IPN Project No. 20150935

  11. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    NASA Astrophysics Data System (ADS)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  12. Creating a duet: The Couples Life Story Approach in the United States and Japan

    PubMed Central

    Ingersoll-Dayton, Berit; Spencer, Beth; Campbell, Ruth; Kurokowa, Yukiko; Ito, Mio

    2015-01-01

    There is a global need for interventions that help couples who are dealing with dementia. This paper describes the way in which interventionists from the United States and Japan participated in the development of an intervention for dyads in which one person is experiencing memory loss. The 5-week intervention, the Couples Life Story Approach, helps dyads to reminisce about their life together as a couple, to work on their patterns of communication, and to develop a Life Story Book. Based on an analysis of cases conducted in the United States (n = 20 couples) and Japan (n = 9 couples), this paper highlights the cross-fertilization process that has occurred as interventionists from the two countries have shared their experiences with one another. Using case illustrations, the discussion focuses on the clinical themes that have emerged for couples in the United States and Japan. PMID:24627456

  13. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    PubMed

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  14. Characteristic coupling time between axial and transverse energy modes for anti-hydrogen in magnetostatic traps

    NASA Astrophysics Data System (ADS)

    Zhong, Mike; Fajans, Joel

    2016-10-01

    For upcoming ALPHA collaboration laser spectroscopy and gravity experiments, the nature of the chaotic trajectories of individual antihydrogen atoms trapped in the octupole Ioffe magnetic trap is of importance. Of particular interest for experimental design is the coupling time between the axial and transverse modes of energy for the antihydrogen atoms. Using Monte Carlo simulations of semiclassical dynamics of antihydrogen trajectories, we quantify this characteristic coupling time between axial and transverse modes of energy. There appear to be two classes of trajectories: for orbits whose axial energy is higher than 10% of the total energy, the axial energy varies chaotically on the order of 1-10 seconds, whereas for orbits whose axial energy is around 10% of the total energy, the axial energy remains nearly constant on the order of 1000 seconds or longer. Furthermore, we search through parameter -space to find parameters of the magnetic trap that minimize and maximize this characteristic coupling time. This work was supported by the UC Berkeley Summer Undergraduate Research Fellowship, the Berkeley Research Computing program, the Department of Energy contract DE-FG02-06ER54904, and the National Science Foundation Grant 1500538-PHY.

  15. Temperature dependent dispersion and electron-phonon coupling surface states on Be(1010)

    NASA Astrophysics Data System (ADS)

    Tang, Shu-Jung; Ismail; Sprunger, Philip; Plummer, Ward

    2002-03-01

    Temperature dependent dispersion and electron-phonon coupling surface states on Be(10-10) S.-J Tang*, Ismail* , P.T . Sprunger#, E. W. Plummer* * Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996 , # Center for Advanced Microstructures and Devices (CAMD), Louisiana State University The surface states dispersing in a large band gap from -A to -Γ in Be(10-10) were studied with high-resolution, angle-resolved photoemission. Spectra reveal that the two zone-boundary surface states, S1 and S2, behave significantly different with respect to band dispersion, the temperature dependence of binding energies, and the electron-phonon coupling. The band dispersion of S1 is purely free-electron like with the maximum binding energy of 0.37+-0.05 eV at -A and effective mass m*/m =0835. However, the maximum binding energy 2.74+-0.05 eV of the S2 is located 0.2Åaway from -A and disperses into the bulk band edge at a binding energy of 1.75+-0.05 eV. Temperature dependent data reveal that the binding energies of S1 and S2 at -A shift in opposite directions at the rate of (-0.61+-0.3)+- 10E-4 eV/K and (1.71+-0.8)+-10E-4 eV/K, respectively. Moreover, from the temperature-dependent spectral widths of the surface states S1 and S2 at , the electron-phonon coupling parameters,λ, have been determined. Unusually different, the coupling strength λ for S1 and S2 are 0.67+-0.03 and 0.51+-0.04, respectively. The differences between the electron-phonon coupling, temperature dependent binding energies, and dispersions between these two zone-centered surface states will be discussed in light unique bonding at the surface and localization.

  16. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  17. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    NASA Astrophysics Data System (ADS)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  18. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2017-02-01

    We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.

  19. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  20. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  1. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  2. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  3. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    NASA Astrophysics Data System (ADS)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  4. State-level marriage equality and the health of same-sex couples.

    PubMed

    Kail, Ben Lennox; Acosta, Katie L; Wright, Eric R

    2015-06-01

    We assessed the association between the health of people in same-sex relationships and the degree and nature of the legal recognition of same-sex relationships offered in the states in which they resided. We conducted secondary data analyses on the 2010 to 2013 Current Population Survey and publicly available data from Freedom to Marry, Inc. We estimated ordered logistic regression models in a 4-level framework to assess the impact of states' legal stances toward same-sex marriage on self-assessed health. Our findings indicated, relative to states with antigay constitutional amendments, that same-sex couples living in states with legally sanctioned marriage reported higher levels of self-assessed health. Our findings suggested that full legal recognition of same-sex relationships through marriage might be an important legal and policy strategy for improving the health of same-sex couples.

  5. Symmetries and stability of chimera states in small, globally-coupled networks

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    It has recently been demonstrated that symmetries in a network's topology can help predict the patterns of synchronized clusters that can emerge in a network of coupled oscillators. This and related discoveries have led to increased interest in both network symmetries and cluster synchronization. In parallel with these discoveries, interest in chimera states-dynamical patterns in which a network separates into coherent and incoherent portions-has grown, and chimeras have now been observed in a variety of experimental systems. We present an opto-electronic experiment in which both chimera states and synchronized clusters are observed in a small, globally-coupled network. We show that the symmetries and sub-symmetries of the network permit the formation of the chimera and cluster states. A recently developed group theoretical approach enables us to predict the stability of the observed chimera and cluster states, and highlights the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization.

  6. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  7. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole

    NASA Astrophysics Data System (ADS)

    Li, Shaohong L.; Truhlar, Donald G.

    2017-02-01

    Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet excited states of thioanisole (C6H5SCH3) are constructed in a diabatic representation based on electronic structure calculations including dynamic correlation. They cover all 42 internal degrees of freedom and a wide range of geometries including the Franck-Condon region and the reaction valley along the breaking S-CH3 bond with the full ranges of the torsion angles. The parameters in the PESs and couplings are fitted to the results of smooth diabatic electronic structure calculations including dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation theory method for the adiabatic state energies followed by diabatization by the fourfold way. The fit is accomplished by the anchor points reactive potential method with two reactive coordinates and 40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally modified version of the QuickFF package. The PESs and couplings are suitable for study of the topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular dynamics simulations of the photodissociation of the S-CH3 bond.

  8. Equation-of-motion coupled-cluster method for ionised states with spin-orbit coupling using open-shell reference wavefunction

    NASA Astrophysics Data System (ADS)

    Wang, Zhifan; Wang, Fan

    2018-04-01

    The equation-of-motion coupled-cluster method for ionised states at the singles and doubles level (EOM-IP-CCSD) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) steps is extended to spatially non-degenerate open-shell systems such as high spin states of s1, p3, σ1 or π2 configuration in this work. Pseudopotentials are employed to treat relativistic effects and spin-unrestricted scalar relativistic HF determinant is adopted as reference in calculations. Symmetry is not exploited in the implementation since both time-reversal and spatial symmetry is broken due to SOC. IPs with the EOM-IP-CCSD approach are those from the 3Σ1- states for high spin state of π2 configuration, while the ground state is the 3Σ0- state. When removing an electron from the high spin state of p3 configuration, only the 3P2 state can be reached. The open-shell EOM-IP-CCSD approach with SOC was employed in calculating IPs of some open-shell atoms with s1 configuration, diatomic molecules with π2 configuration and SOC splitting of the ionised π1 state, as well as IPs of VA atoms with p3 configuration. Our results demonstrate that this approach can be applied to ionised states of spatially non-degenerate open-shell states containing heavy elements with reasonable accuracy.

  9. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    NASA Astrophysics Data System (ADS)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  10. State diagram of magnetostatic coupling phase-locked spin-torque oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengwei; Wang, Longze; Wei, Dan, E-mail: weidan@mail.tsinghua.edu.cn

    2015-05-07

    The state diagram of magnetostatic coupling phase-locked spin torque oscillator (STO) with perpendicular reference layer and planar field generation layer (FGL) is studied by the macrospin model and the micromagnetic model. The state diagrams of current densities are calculated under various external fields. The simulation shows that there are two phase-lock current density regions. In the phase-locked STOs in low current region I, the spin configuration of FGL is uniform; in high current region II, the spin configuration of FGL is highly nonuniform. In addition, the results with different STOs separation L{sub s} are compared, and the coupling between twomore » STOs is largely decreased when L{sub s} is increased from 40 nm to 60 nm.« less

  11. Reflection asymmetry in odd-A and odd-odd actinium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, I.

    1993-09-01

    Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of {sup 224}Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidencemore » for octupole correlations in these nuclides.« less

  12. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  13. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  14. Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    NASA Astrophysics Data System (ADS)

    Xia, S. Y.; Tao, H.; Lu, Y.; Li, Z. P.; Nikšić, T.; Vretenar, D.

    2017-11-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and transition rates in 14 isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ -interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and nonrelativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.

  15. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  16. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  17. Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers.

    PubMed

    Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja

    2014-05-01

    Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N → ∞ and t → ∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

  18. Globally coupled stochastic two-state oscillators: Fluctuations due to finite numbers

    NASA Astrophysics Data System (ADS)

    Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja

    2014-05-01

    Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N →∞ and t →∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

  19. Topological phononic states of underwater sound based on coupled ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Cheng; Li, Zheng; Ni, Xu

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracymore » is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.« less

  20. Synchronized state of coupled dynamics on time-varying networks.

    PubMed

    Amritkar, R E; Hu, Chin-Kun

    2006-03-01

    We consider synchronization properties of coupled dynamics on time-varying networks and the corresponding time-average network. We find that if the different Laplacians corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand for noncommuting Laplacians the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.

  1. State and Parameter Estimation for a Coupled Ocean--Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Kondrashov, D.; Sun, C.

    2006-12-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  2. Scheme for quantum state manipulation in coupled cavities

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Zhong

    By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.

  3. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  4. Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea

    NASA Astrophysics Data System (ADS)

    Koenraad, P. M.; Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Hamhuis, G. J.; Notzel, R.; Silov, A. Yu.

    2010-03-01

    Using voltage dependent photoluminescence spectroscopy we have studied the coupling between QD states and the continuum of states of a Fermi sea of electrons in the close proximity of a self-assembled InAs quantum dot embedded in GaAs. This coupling gives rise to new optical transitions, manifesting the formation of many-body exciton states. The lines in the photoluminescence spectra can be well explained within the Anderson and Mahan exciton models. The presence of Mahan excitons originates from the Coulomb interaction between electrons in the Fermi sea and the hole(s) in the QD whereas a the second type of many-body exciton is due to a hybridized exciton originating from the tunnel interaction between the continuum of states in the Fermi sea and the localized state in the QD. Our study demonstrates the possibility to investigate a variety of many-body states in QDs coupled to a Fermi sea and opens the way to investigate optically the Kondo effect and related spin phenomena in these systems.

  5. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  6. Selective protected state preparation of coupled dissipative quantum emitters

    PubMed Central

    Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.

    2015-01-01

    Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501

  7. State-Level Marriage Equality and the Health of Same-Sex Couples

    PubMed Central

    Acosta, Katie L.; Wright, Eric R.

    2015-01-01

    Objectives. We assessed the association between the health of people in same-sex relationships and the degree and nature of the legal recognition of same-sex relationships offered in the states in which they resided. Methods. We conducted secondary data analyses on the 2010 to 2013 Current Population Survey and publicly available data from Freedom to Marry, Inc. We estimated ordered logistic regression models in a 4-level framework to assess the impact of states’ legal stances toward same-sex marriage on self-assessed health. Results. Our findings indicated, relative to states with antigay constitutional amendments, that same-sex couples living in states with legally sanctioned marriage reported higher levels of self-assessed health. Conclusions. Our findings suggested that full legal recognition of same-sex relationships through marriage might be an important legal and policy strategy for improving the health of same-sex couples. PMID:25880959

  8. Inelastic proton scattering and particle-vibration coupling in /sup 115/Sn, /sup 117/Sn, and /sup 119/Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, D.G.; Becchetti, F.D.; Flynn, E.R.

    Inelastic proton scattering on the stable odd-A tin isotopes /sup 115/Sn, /sup 117/Sn, and /sup 119/Sn has been carried out at 18 MeV on isotope separated targets. Angular distributions were not obtained but, nevertheless, the individual spectra reveal a large number of strongly populated states in the energy region of the known octupole strength of the even-A nuclei, permitting several new (tentative) 5/2/sup -/,7/2/sup -/ spin assignments. General comparisons are made of the observed relative strengths with those obtained from other reactions populating the same final states, revealing a complex nuclear structure in the odd-A tins which is not understoodmore » theoretically.« less

  9. Analytical ground state for the Jaynes-Cummings model with ultrastrong coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yuanwei; Institute of Theoretical Physics, Shanxi University, Taiyuan 030006; Chen Gang

    2011-06-15

    We present a generalized variational method to analytically obtain the ground-state properties of the Jaynes-Cummings model with the ultrastrong coupling. An explicit expression for the ground-state energy, which agrees well with the numerical simulation in a wide range of the experimental parameters, is given. In particular, the introduced method can successfully solve this Jaynes-Cummings model with the positive detuning (the atomic resonant level is larger than the photon frequency), which cannot be treated in the adiabatical approximation and the generalized rotating-wave approximation. Finally, we also demonstrate analytically how to control the mean photon number by means of the current experimentalmore » parameters including the photon frequency, the coupling strength, and especially the atomic resonant level.« less

  10. Experimental observation of chimera and cluster states in a minimal globally coupled network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Joseph D.; Department of Physics, University of Maryland, College Park, Maryland 20742; Bansal, Kanika

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belongingmore » to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.« less

  11. Interaction of chimera states in a multilayered network of nonlocally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.

    2017-08-01

    The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.

  12. Finite-Momentum Dimer Bound State in Spin-Orbit Coupled Fermi Gas

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Jiang, Lei; Hu, Hui; Pu, Han

    2013-03-01

    We investigate the two-body properties of a spin-1/2 Fermi gas subject to a spin-orbit coupling induced by laser fields. When attractive s-wave interaction between unlike spins is present, the system may form a dimer bound state. Surprisingly, under proper conditions, the bound state obtains finite center-of-mass momentum, whereas under the same condition but in the absence of the two-body interaction, the system has zero total momentum. This unusual result can be regarded as a consequence of the broken Galilean invariance by the spin-orbit coupling. Such a finite-momentum bound state will have profound effects on the many-body properties of the system. HP is supported by the NSF, the Welch Foundation (Grant No. C-1669), and DARPA. HH is supported by the ARC Discovery Projects (Grant No. DP0984522) and the National Basic Research Program of China (NFRP-China, Grant No. 2011CB921502).

  13. Spiral wave chimera states in large populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  14. Fluctuation of the electronic coupling in DNA: Multistate versus two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2007-05-01

    The electronic coupling for hole transfer between guanine bases G in the DNA duplex (GT) 6GTG(TG) 6 is studied using a QM/MD approach. The coupling V is calculated for 10 thousand snapshots within the two- and multistate state Generalized Mulliken-Hush model. We find that the two-state scheme considerably underestimates the rate of the hole transfer within the π stack. Moreover, the probability distributions computed with the two- and multistate schemes are quite different. It has been found that large fluctuations of V2, which are at least an order of magnitude larger than its average value, occur roughly every 1 ps.

  15. Noise enhanced stability of a metastable state containing coupled Brownian particles

    NASA Astrophysics Data System (ADS)

    Singh, R. K.

    2017-05-01

    Dynamics of coupled Brownian particles with color correlated additive Gaussian colored noises in a metastable state is analyzed to study the phenomenon of noise enhanced stability. The lifetime of such a metastable state is found to depend on the noise correlations and initial conditions. Dynamics of the slow variable is analyzed using the method of adiabatic elimination in the weak color limit.

  16. Abnormal resting-state cortical coupling in chronic tinnitus

    PubMed Central

    Schlee, Winfried; Hartmann, Thomas; Langguth, Berthold; Weisz, Nathan

    2009-01-01

    Background Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks. Results The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1) For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz) band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2) For both groups: an inverse relationship (r = -.71) of the alpha and gamma network coupling. 3) A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4) An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions. Conclusion In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial Magnetic Stimulation

  17. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    PubMed

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  18. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    PubMed

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  19. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    NASA Astrophysics Data System (ADS)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  20. Beta-gamma spectroscopy of the neutron-rich 150Ba

    NASA Astrophysics Data System (ADS)

    Yokoyama, R.; Ideguchi, E.; Simpson, G. S.; Tanaka, Mn; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Aoi, N.; Baba, H.; Bello Garrote, F. L.; Benzoni, G.; Browne, F.; Daido, R.; Fang, Y.; Fukuda, N.; Gottardo, A.; Gey, G.; Go, S.; Inabe, N.; Isobe, T.; Kameda, D.; Kobayashi, K.; Kobayashi, M.; Kojouharov, I.; Komatsubara, T.; Kubo, T.; Kurz, N.; Kuti, I.; Li, Z.; Matsushita, M.; Michimasa, S.; Moon, C. B.; Nishibata, H.; Nishizuka, I.; Odahara, A.; Patel, Z.; Rice, S.; Sahin, E.; Sakurai, H.; Schaffner, H.; Sinclair, L.; Suzuki, H.; Takeda, H.; Taprogge, J.; Vajta, Zs; Watanabe, H.; Yagi, A.; Inakura, T.

    2018-04-01

    Excited states in the neutron-rich nucleus ^{150}Ba have been observed via β-γ spectroscopy at the Radioactive Isotope Beam Factory, RIKEN Nishina Center. The ^{150}Ba ions were produced by the in-flight fission of a ^{238}U beam with an energy of 345 MeV/nucleon. The E(2+) energy of ^{150}Ba was identified at 100 keV, which is the lowest known in the neutron-rich Ba isotopes. A γ-ray peak was also observed at 597 keV. A mean-field calculation with a fully 3D real space was performed and a static octupole deformation was obtained for the Ba isotopes. K^{π}=0- and 1- excited states with significant octupole collectivity were newly predicted at around or lower than 1 MeV on the ground state of ^{150}Ba by a random-phase approximation calculation. The 597 keV γ ray can be interpreted as a negative-parity state, showing that ^{150}Ba may possess octupole collectivity.

  1. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata

    2013-12-01

    We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.

  2. Systematics on the low-lying spectra in N = 78 ~ 80 isotones

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhang, S. Q.; Li, X. Q.; Hua, H.; Xu, C.; Li, Z. H.; Zhao, P. W.; Meng, J.; Sun, J. J.; Bai, Z. J.; Xu, F. R.; Ye, Y. L.; Jiang, D. X.; Wang, E. H.; He, C.; Han, R.; Wu, X. G.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Hu, S. P.; Yao, S. H.; Yu, B. B.; Cao, X. P.; Wang, J. L.

    2014-07-01

    Combining the new spectroscopy results of 144Tb and previous spectroscopy studies of neighboring nuclei, a systematic investigation on the low-lying spectra in N = 78 80 isotones is performed. Good systematics have been found for the coupling patterns which couple the odd nucleon(s), such as πh11/2, ν h-111/2, π h11/22, ν h-211/2, π h11/2ν h-111/2, to the 2+, 4+, 6+ and 3- core excitations. It is found that the relative excitation energies of the states formed by coupling h11/2 proton(s) to the 2+, 4+ core excitations are pushed up, in contrast with those formed by coupling h11/2 neutron hole(s) to the 2+, 4+ core excitations, which are pulled down. According to the systematics, the interpretation that the 17/2+ states observed in 141Sm and 143Gd are the fully aligned member of coupling the odd h11/2 neutron hole to the octupole 3- core excitation, is explored to the isotones 145Dy, 142Eu, and 144Tb.

  3. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  4. Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system.

    PubMed

    Han, Xue; Hu, Shi; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-08-05

    We propose effective fusion schemes for stationary electronic W state and flying photonic W state, respectively, by using the quantum-dot-microcavity coupled system. The present schemes can fuse a n-qubit W state and a m-qubit W state to a (m + n - 1)-qubit W state, that is, these schemes can be used to not only create large W state with small ones, but also to prepare 3-qubit W states with Bell states. The schemes are based on the optical selection rules and the transmission and reflection rules of the cavity and can be achieved with high probability. We evaluate the effect of experimental imperfections and the feasibility of the schemes, which shows that the present schemes can be realized with high fidelity in both the weak coupling and the strong coupling regimes. These schemes may be meaningful for the large-scale solid-state-based quantum computation and the photon-qubit-based quantum communication.

  5. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  6. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    NASA Astrophysics Data System (ADS)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  7. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    NASA Astrophysics Data System (ADS)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  8. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  9. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model.

    PubMed

    Voityuk, Alexander A

    2006-02-14

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of V(da) because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a pi stack, where donor and acceptor are separated by a bridging unit, can be obtained as V(da) = (E(2)-E(1))mu(12)R(da) + (2E(3)-E(1)-E(2))2mu(13)mu(23)R(da) (2), where E(1), E(2), and E(3) are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, mu(ij) is the transition dipole moments between the states i and j, and R(da) is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  10. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    NASA Astrophysics Data System (ADS)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  11. Appearance of the octupole ordered phase IV in CexLa1 -x B6

    NASA Astrophysics Data System (ADS)

    Sera, M.; Kunimori, K.; Matsumura, T.; Kondo, A.; Tanida, H.; Tou, H.; Iga, F.

    2018-05-01

    We investigated the physical properties of CexLa1 -xB6 at x ˜0.8 , below which the Tβ-type antiferro-octupole (AFO) ordered phase IV appears as a result of the larger suppression rate of TQ than TN by La doping. The most important result is that while the peak of the specific heat at TQ is rapidly suppressed and broadened by La doping, that at TIV is sharp and large. This indicates that although the Tβ-AFO order in the phase IV is robust against the local lattice distortion induced by La doping, the Ox y-type antiferroquadrupole (AFQ) ordered phase II is very weak. The Tx y z-AFO interaction is robust against La doping from the observation of the pronounced enhancement of TQ even in a small x region. Based on these La-doping effect of the multipole interactions, we carried out the mean-field calculation for the four-sublattice model to reproduce the magnetic phase diagrams of CexLa1 -xB6 . Based on the calculated results, we propose that the small splitting of the quartet is induced by La doping in phase I to explain the magnetic phase diagram for x <0.65 . We could obtain the calculated results roughly consistent with the experimental results, although there appear new problems. We classified the mechanisms of the four different types of the competition among the four interactions with roughly the same magnitude, which induce the interesting and complicated properties in CexLa1 -xB6 .

  12. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  13. Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system

    NASA Astrophysics Data System (ADS)

    Guo, Yao-Wu; Chen, Yan

    2018-04-01

    The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number ( C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.

  14. Ferroionic states: coupling between surface electrochemical and bulk ferroelectric functionalities on the nanoscale.

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei

    Ferroelectricity on the nanoscale has remained a subject of much fascination in condensed matter physics for the last several decades. It is well-recognized that stability of the ferroelectric state necessitates effective polarization screening, and hence screening mechanism and screening charge dynamics become strongly coupled to ferroelectric phase stability and domain behavior. Previously, the role of the screening charge in macroscopic ferroelectrics was observed in phenomena such as potential retention above Curie temperature, back switching of ferroelectric domains, and chaos and intermittency during domain switching. In the last several years, multiple reports claiming ferroelectricity in ultrathin ferroelectrics based on formation of remanent polarization states, local hysteresis loops, and pressure induced switching were made. However, similar phenomena were reported for traditionally non-ferroelectric materials, creating significant level of uncertainty in the field. We pose that in the nanoscale systems, the ferroelectric state is fundamentally inseparable from electrochemical state of the surface, leading to emergence of coupled electrochemical-ferroelectric states. I will present the results of experimental and theoretical work exploring the basic mechanisms of emergence of these coupled states including the basic theory and phase-field formulation for domain evolution. I further discuss the thermodynamics and thickness evolution of this state, and demonstrate the experimental pathway to establish its presence based on spectroscopic version of piezoresponse force microscopy. Finally, the role of chemical screening on domain dynamics is explored using phase-field modelling. This analysis reconciles multiple prior studies, and set forward the predictive pathways for new generations of ferroelectric devices and applications. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE, and was conducted at the Center for

  15. Ground state transitions in vertically coupled N-layer single electron quantum dots

    NASA Astrophysics Data System (ADS)

    Xie, Wenfang; Wang, Anmei

    2003-12-01

    A method is proposed to exactly diagonalize the Hamiltonian of a N-layer quantum dot containing a single electron in each dot in arbitrary magnetic fields. For N=4, the energy spectra of the dot are calculated as a function of the applied magnetic field. We find discontinuous ground-state energy transitions induced by an external magnetic field in the case of strong coupling. However, in the case of weak coupling, such a transition does not occur and the angular momentum remains zero.

  16. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators.

    PubMed

    Ghoshal, Gourab; Muñuzuri, Alberto P; Pérez-Mercader, Juan

    2016-01-12

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  17. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  18. Simple and complex chimera states in a nonlinearly coupled oscillatory medium

    NASA Astrophysics Data System (ADS)

    Bolotov, Maxim; Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady

    2018-04-01

    We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras.

  19. For better or worse? Coregulation of couples' cortisol levels and mood states.

    PubMed

    Saxbe, Darby; Repetti, Rena L

    2010-01-01

    Although a majority of adults live with a close relationship partner, little is known about whether and how partners' momentary affect and physiology covary, or "coregulate." This study used a dyadic multilevel modeling approach to explore the coregulation of spouses' mood states and cortisol levels in 30 married couples who sampled saliva and reported on mood states 4 times per day for 3 days. For both husbands and wives, own cortisol level was positively associated with partner's cortisol level, even after sampling time was controlled. For wives, marital satisfaction weakened the strength of this effect. Partner's negative mood was positively associated with own negative mood for both husbands and wives. Marital satisfaction fully moderated this effect, reducing the strength of the association between one's own and one's partner's negative mood states. Spouses' positive moods were not correlated. As expected, within-couple coregulation coefficients were stronger when mood and cortisol were sampled in the early morning and evening, when spouses were together at home, than during the workday. The results suggest that spouses' fluctuations in negative mood and cortisol levels are linked over several days and that marital satisfaction may buffer spouses from their partners' negative mood or stress state.

  20. Coupled Leidenfrost states as a monodisperse granular clock

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  1. Dual-earner couples' weekend recovery support, state of recovery, and work engagement: Work-linked relationship as a moderator.

    PubMed

    Park, YoungAh; Haun, Verena C

    2017-10-01

    Despite growing recovery research, little is known about couple-dyadic processes of recovery from work. Given that dual-earner couples experience most of their recovery opportunities during nonwork times when they are together, partners in a couple relationship may substantially affect recovery and work engagement. In this study, we propose a couple-dyadic model in which weekend partner recovery support (reported by the recipient partner) is positively related to the recipient partner's state of recovery after the weekend which, in turn, increases the recipient's work engagement the following week (actor-actor mediation effect). We also test the effect of one's state of recovery on the partner's subsequent work engagement (partner effect). Additionally, work-linked relationship status is tested as a moderator of the partner effect. Actor-partner interdependence mediation modeling is used to analyze the data from 167 dual-earner couples who answered surveys on 4 measurement occasions. The results support the indirect effect of partner recovery support on work engagement through the postweekend state of recovery. Multigroup analysis results reveal that the partner effect of state of recovery on work engagement is significant for work-linked couples only and is absent for non-work-linked couples. Theoretical and practical implications, limitations, and future research directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  3. Adiabatic and coupled channels calculations for near barrier fusion of 16O +238U using realistic nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Botros, M. M.

    2016-04-01

    We investigate the fusion cross-section and the fusion barrier distribution of 16O +238U at near- and sub-barrier energies. We use an interaction potential generated by the semi-microscopic double folding model-based on density dependent (DD) form of the realistic Michigan-three-Yukawa (M3Y) Reid nucleon-nucleon (NN) interaction. We studied the role of both the static and dynamic deformations of the target nucleus on the fusion process. Rotational and vibrational degrees of freedom of 238U-nucleus are considered. We found that the deformation and the octupole vibrations in 238U enhance its sub-barrier fusion cross-section. The signature of the the octupole vibrational modes of 238U appears clearly in its fusion barrier distribution profile.

  4. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  5. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    NASA Astrophysics Data System (ADS)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  6. Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides

    DOE PAGES

    Taylor, A. E.; Calder, S.; Morrow, R.; ...

    2017-05-16

    Spin-orbit entanglement in 5d-based transition metal oxides (TMOs) has been identified as a route to a host of unconventional physical states including quantum spin liquids, Weyl semimetals, and axion insulators. Yet despite intense interest, no clear rules have emerged for the treatment of spin-orbit coupling (SOC) in 5d TMOs outside of idealised LS or jj coupling paradigms. This is exemplified in 5d 3 oxides in which an orbitally-quenched singlet ground state is anticipated, yet SOC is manifest in the observed magnetic properties. Here we solve this long-outstanding puzzle by revealing that the electronic ground state of Os5+ 5d 3 ionsmore » is an unquenched J = 3/2 state. Resonant inelastic x-ray scattering (RIXS) in Ca3LiOsO6 and Ba 2YOsO 6 exposes a SOC-controlled splitting of the t 2g manifold. The results are successfully described using an intermediate-coupling framework in which oxygen hybridisation promotes the breakdown of the orbital singlet. This framework opens the door to realistic treatment of SOC across a range of 5d TMOs beyond the 5d 3 case.« less

  7. Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. E.; Calder, S.; Morrow, R.

    Spin-orbit entanglement in 5d-based transition metal oxides (TMOs) has been identified as a route to a host of unconventional physical states including quantum spin liquids, Weyl semimetals, and axion insulators. Yet despite intense interest, no clear rules have emerged for the treatment of spin-orbit coupling (SOC) in 5d TMOs outside of idealised LS or jj coupling paradigms. This is exemplified in 5d 3 oxides in which an orbitally-quenched singlet ground state is anticipated, yet SOC is manifest in the observed magnetic properties. Here we solve this long-outstanding puzzle by revealing that the electronic ground state of Os5+ 5d 3 ionsmore » is an unquenched J = 3/2 state. Resonant inelastic x-ray scattering (RIXS) in Ca3LiOsO6 and Ba 2YOsO 6 exposes a SOC-controlled splitting of the t 2g manifold. The results are successfully described using an intermediate-coupling framework in which oxygen hybridisation promotes the breakdown of the orbital singlet. This framework opens the door to realistic treatment of SOC across a range of 5d TMOs beyond the 5d 3 case.« less

  8. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    NASA Astrophysics Data System (ADS)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  9. Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling.

    PubMed

    Peters, William K; Couch, David E; Mignolet, Benoit; Shi, Xuetao; Nguyen, Quynh L; Fortenberry, Ryan C; Schlegel, H Bernhard; Remacle, Françoise; Kapteyn, Henry C; Murnane, Margaret M; Li, Wen

    2017-12-26

    Highly excited electronic states are challenging to explore experimentally and theoretically-due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron-ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules-in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.

  10. Protecting solid-state spins from a strongly coupled environment

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Calvin Sun, Won Kyu; Saha, Kasturi; Jaskula, Jean-Christophe; Cappellaro, Paola

    2018-06-01

    Quantum memories are critical for solid-state quantum computing devices and a good quantum memory requires both long storage time and fast read/write operations. A promising system is the nitrogen-vacancy (NV) center in diamond, where the NV electronic spin serves as the computing qubit and a nearby nuclear spin as the memory qubit. Previous works used remote, weakly coupled 13C nuclear spins, trading read/write speed for long storage time. Here we focus instead on the intrinsic strongly coupled 14N nuclear spin. We first quantitatively understand its decoherence mechanism, identifying as its source the electronic spin that acts as a quantum fluctuator. We then propose a scheme to protect the quantum memory from the fluctuating noise by applying dynamical decoupling on the environment itself. We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle experiment, showing the potential for a quantum memory that combines fast operation with long coherence time.

  11. Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.

    PubMed

    Zhao, Ling; Cheng, Haiyan; Wang, Tao

    2018-02-01

    A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Emotional Intelligence and the Conflict Resolution Repertoire of Couples in Tertiary Institutions in Imo State

    ERIC Educational Resources Information Center

    Nnodum, B. I.; Ugwuegbulam, C. N.; Agbaenyi, I. G.

    2016-01-01

    This study is a descriptive survey that investigated the relationship between emotional intelligence and conflict resolution repertoire of couples in tertiary institutions. A sample of 250 married people were drawn from the population of couples in tertiary institutions in Imo State. Two researcher made and validated instruments were used in…

  13. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo

    2017-11-01

    We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.

  14. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    NASA Astrophysics Data System (ADS)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  15. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study.

    PubMed

    Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian

    2016-02-01

    Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain

  16. Majorana edge States in atomic wires coupled by pair hopping.

    PubMed

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  17. Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea

    NASA Astrophysics Data System (ADS)

    Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.

    2010-07-01

    Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.

  18. Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort.

    PubMed

    Hughes, Charmayne M L; Haddad, Jeffrey M; Franz, Elizabeth A; Zelaznik, Howard N; Ryu, Joong Hyun

    2011-06-01

    People often grasp objects with an awkward grip to ensure a comfortable hand posture at the end of the movement. This end-state comfort effect is a predominant constraint during unimanual movements. However, during bimanual movements the tendency for both hands to satisfy end-state comfort is affected by factors such as end-orientation congruency and task context. Although bimanual end-state comfort has been examined when the hands manipulate two independent objects, no research has examined end-state comfort when the hands are required to manipulate two physically-coupled objects. In the present experiment, kinematics and grasp behavior during a unimanual and bimanual reaching and placing tasks were examined, when the hands manipulate two physically-connected objects. Forty-five participants were assigned to one of three groups; unimanual, bimanual no-spring (the objects were not physically connected), and bimanual spring (the objects were connected by a spring), and instructed to grasp and place objects in various end-orientations, depending on condition. Physically connecting the objects did not affect end-state comfort prevalence. However, it resulted in decreased interlimb coupling. This finding supports the notion of a flexible constraint hierarchy, in which action goals guide the selection of lower level action features (i.e., hand grip used for grasping), and the particular movements used to accomplish that goal (i.e., interlimb coupling) are controlled throughout the movement.

  19. Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. E.; Calder, S.; Morrow, R.

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3LiOsO6 and Ba2YOsO6, which reveals a dramatic spitting of the t2g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5dmore » systems and introduces a new arena in the search for spin-orbit controlled phases of matter.« less

  20. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  1. Coupled assimilation for an intermediated coupled ENSO prediction model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  2. Bridging single and multireference coupled cluster theories with universal state selective formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2013-05-28

    The universal state selective (USS) multireference approach is used to construct new energy functionals which offers a unique possibility of bridging single and multireference coupled cluster theories (SR/MRCC). These functionals, which can be used to develop iterative and non-iterative approaches, utilize a special form of the trial wavefunctions, which assure additive separability (or size-consistency) of the USS energies in the non-interacting subsystem limit. When the USS formalism is combined with approximate SRCC theories, the resulting formalism can be viewed as a size-consistent version of the method of moments of coupled cluster equations (MMCC) employing a MRCC trial wavefunction. Special casesmore » of the USS formulations, which utilize single reference state specific CC (V.V. Ivanov, D.I. Lyakh, L. Adamowicz, Phys. Chem. Chem. Phys. 11, 2355 (2009)) and tailored CC (T. Kinoshita, O. Hino, R.J. Bartlett, J. Chem. Phys. 123, 074106 (2005)) expansions are also discussed.« less

  3. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    NASA Astrophysics Data System (ADS)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  4. Coupling-induced bipartite pointer states in arrays of electron billiards: quantum Darwinism in action?

    PubMed

    Brunner, R; Akis, R; Ferry, D K; Kuchar, F; Meisels, R

    2008-07-11

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create "offspring" indicates that quantum Darwinism is in action.

  5. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    NASA Astrophysics Data System (ADS)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  6. Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, I.; Portolan, S.; Auffeves, A.

    2011-12-15

    We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters' inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Under certain conditions the coupling to the cavity protects the polaritonic states from inhomogeneous broadening, resulting in a longer storage time for a quantum memory based on emitter ensembles. When two different ensembles of emitters are coupled to the resonator, they support a peculiar collectivemore » dark state, which is also very attractive for the storage of quantum information.« less

  7. Coupled channel effects on resonance states of positronic alkali atom

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuma; Kino, Yasushi

    2018-01-01

    S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.

  8. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  9. Macroscopic Entangled State Generation with Optomechanical Coupling of Two Mechanical Modes

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew; Luna, Fernando; Buters, Frank; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk

    Mechanical resonators with a large quantum position uncertainty are an excellent test system for proposed decoherence mechanisms in massive systems. We present a scheme to optomechanically entangle two mechanical resonators with large frequency separation via two tone driving and single photon projection measurements. The quantum position uncertainty can be tuned with a variable optical pulse displacement operation, and independent single photon readout of the two resonators provides robust verification of the quantum states of the system. This scheme is currently experimentally feasible in a number of high mass opto- and electro-mechanical systems. We demonstrate one such system with two spatially and frequency separated Si3N4 trampoline resonators. We also show how the resonators can be coupled with two tone driving and the single photon optomechanical coupling rates can be tuned.

  10. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kozberg, Mariel G; Kim, Sharon H; Portes, Jacob P; Timerman, Dmitriy; Hillman, Elizabeth M C

    2016-12-27

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI.

  11. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  12. MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Dibak, Manuel; del Razo, Mauricio J.; De Sancho, David; Schütte, Christof; Noé, Frank

    2018-06-01

    Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.

  13. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia.

    PubMed

    Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui

    2017-10-21

    Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  14. Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry

    DOE PAGES

    Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.; ...

    2017-01-01

    An experiment populating low/medium-spin states in 156Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148Nd( 12C,4 n) reaction and the Gammasphere array was utilized to detect the emitted rays. B(E 2) /B(E1) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whether these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. Additionally,more » several other negative-parity structures were observed to higher spin and two new sequences were established« less

  15. Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.

    2017-01-01

    An experiment populating low/medium-spin states in 156 Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148 Nd ( 12 C , 4 n ) reaction and the Gammasphere array was utilized to detect the emitted γ rays. B ( E 2 ) / B ( E 1 ) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whethermore » these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. In addition, several other negative-parity structures were observed to higher spin and two new sequences were established.« less

  16. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  17. Stationary states of fermions in a sign potential with a mixed vector–scalar coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilho, W.M., E-mail: castilho.w@gmail.com; Castro, A.S. de, E-mail: castro@pq.cnpq.br

    2014-01-15

    The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. --more » Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.« less

  18. Analyzing the power coupled between partially coherent waveguide fields in different states of coherence.

    PubMed

    Withington, Stafford; Yassin, Ghassan

    2002-07-01

    A procedure is described for calculating the power coupled between partially coherent waveguide fields that are in different states of coherence. The method becomes important when it is necessary to calculate the power transferred from a distributed source S to a distributed load L through a length of multimode metallic, or dielectric, waveguide. It is shown that if the correlations between the transverse components of the electric and magnetic fields of S and L are described by coherence matrices M and M', respectively, then the normalized average power coupled between them is (eta) = Tr[MM']/Tr[M]Tr[M'], where Tr denotes the trace. When the modal impedances are equal, this expression for the coupled power reduces to an equation derived in a previous paper [J. Opt. Soc. Am. A 18, 3061 (2001)], by use of thermodynamic arguments, for the power coupled between partially coherent free-space beams.

  19. Influence of phonon-phonon coupling on superconducting state in honeycomb-type crystal lattice

    NASA Astrophysics Data System (ADS)

    Drzazga, E. A.; Szczȩśniak, R.; Domagalska, I. A.

    2018-01-01

    We have taken into account the superconducting state inducing in the crystal lattice of the honeycomb-type. In the framework of the Eliashberg theory, we have determined the thermodynamic properties of the system. The phonon spectral function, which is the input parameter in the Eliashberg equations, has been calculated by using the thermodynamic Green functions. We have considered the model of the coupled Einstein oscillators with frequency ω0 = 100 meV. We have shown that the increasing inter-phonon coupling constant (f) causes the rapid growth of the critical temperature ([TC]max = 36.2 K) just below the maximum value of f equal to 0.25ω0. Simultaneously, the order parameter and the thermodynamic critical field take the values increasingly distant from the predictions of the BCS theory, which results from the strong-coupling and the retardation effects.

  20. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  1. Critical temperature for shape transition in hot nuclei within covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Niu, Y. F.

    2018-05-01

    Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.

  2. Formation of a uniform ion beam using octupole magnets for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Amin, T.; Barlow, R.; Ghithan, S.; Roy, G.; Schuh, S.

    2018-04-01

    The possibility to transform the Low Energy Ion Ring (LEIR) accelerator at CERN into a multidisciplinary, biomedical research facility (BioLEIR) was investigated based on a request from the biomedical community. BioLEIR aims to provide a unique facility with a range of fully stripped ion beams (e.g. He, Li, Be, B, C, N, O) and energies suitable for multidisciplinary biomedical, clinically-oriented research. Two horizontal and one vertical beam transport lines have been designed for transporting the extracted beam from LEIR to three experimental end-stations. The vertical beamline was designed for a maximum energy of 75 MeV/u, while the two horizontal beamlines shall deliver up to a maximum energy of 440 MeV/u. A pencil beam of 4.3 mm FWHM (Full Width Half Maximum) as well as a homogeneous broad beam of 40 × 40 mm2, with a beam homogeneity better than ±4%, are available at the first horizontal (H1) irradiation point, while only a pencil beam is available at the second horizontal (H2) and vertical (V) irradiation points. The H1 irradiation point shall be used to conduct systematic studies of the radiation effect from different ion species on cell-lines. The H1 beamline was designed to utilize two octupole magnets which transform the Gaussian beam distribution at the target location into an approximately uniformly distributed rectangular beam. In this paper, we report on the multi-particle tracking calculations performed using MAD-X software suite for the H1 beam optics to arrive at a homogeneous broad beam on target using nonlinear focusing techniques, and on those to create a Gaussian pencil beam on target by adjusting quadrupoles strengths and positions.

  3. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  4. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states.

    PubMed

    García-Morales, Vladimir; Manzanares, José A; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  5. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.

    PubMed

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8×10 5 V/A, and the input current noise of less than 4.7 pA/Hz. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  6. Gay and lesbian couples in Italy: comparisons with heterosexual couples.

    PubMed

    Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina

    2014-12-01

    Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States. © 2014 Family Process Institute.

  7. Stationary states and rotational properties of spin-orbit-coupled Bose-Einstein condensates held under a toroidal trap

    NASA Astrophysics Data System (ADS)

    He, Zhang-Ming; Zhang, Xiao-Fei; Kato, Masaya; Han, Wei; Saito, Hiroki

    2018-06-01

    We consider a pseudospin-1/2 Bose-Einstein condensate with Rashba spin-orbit coupling in a two-dimensional toroidal trap. By solving the damped Gross-Pitaevskii equations for this system, we show that the system exhibits a rich variety of stationary states, such as vehicle wheel and flower-petal stripe patterns. These stationary states are stable against perturbation with thermal energy and can survive for a long time. In the presence of rotation, our results show that the rotating systems have exotic vortex configurations. These phenomenon originates from the interplay among spin-orbit coupling, trap geometry, and rotation.

  8. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster

    NASA Astrophysics Data System (ADS)

    Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony

    2017-04-01

    A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.

  9. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.

    PubMed

    Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro

    2015-04-10

    Heavy-fermion superconductors are prime candidates for novel electron-pairing states due to the spin-orbital coupled degrees of freedom and electron correlations. Superconductivity in CeCu_{2}Si_{2} discovered in 1979, which is a prototype of unconventional (non-BCS) superconductors in strongly correlated electron systems, still remains unsolved. Here we provide the first report of superconductivity based on the advanced first-principles theoretical approach. We find that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d-wave state. The dominant pairing glue is magnetic but high-rank octupole fluctuations. This system shares the importance of multiorbital degrees of freedom with the iron-based superconductors. Our findings reveal not only the long-standing puzzle in this material, but also urge us to reconsider the pairing states and mechanisms in all heavy-fermion superconductors.

  10. Low-noise, transformer-coupled resonant photodetector for squeezed state generation

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8 ×1 05 V/A, and the input current noise of less than 4.7 pA/√{Hz }. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  11. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  12. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  13. Competing magnetic ground states and their coupling to the crystal lattice in CuFe 2Ge 2

    DOE PAGES

    May, Andrew F.; Calder, Stuart; Parker, David S.; ...

    2016-10-14

    Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe 2Ge 2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. The temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below T N ≈ 175 K, and an incommensuratemore » spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe 2Ge 2. Furthermore, the neutron diffraction data reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. Our results demonstrate that the ground state in CuFe 2Ge 2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.« less

  14. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    DTIC Science & Technology

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical

  15. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  16. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully’s fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronicmore » wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.« less

  17. Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling

    NASA Astrophysics Data System (ADS)

    Perez, Camilo; Faust, Belinda; Mehdipour, Ahmad Reza; Francesconi, Kevin A.; Forrest, Lucy R.; Ziegler, Christine

    2014-07-01

    The Na+-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.

  18. Holographic Floquet states I: a strongly coupled Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi

    2017-05-01

    Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.

  19. Mean-Field Approach to Superdeformed High-Spin States in 40CA and Neutron-Rich 50S Regions

    NASA Astrophysics Data System (ADS)

    Inakura, T.; Yamagami, M.; Matsuyanagi, K.; Mizutori, S.

    2003-12-01

    With the use of the symmetry-unrestricted cranked SHF method in the 3D coordinate-mesh representation, a systematic search for the SD and HD rotational bands in the N=Z nuclei from 32S to 48Cr has been done, and SD and HD solutions have been found in 32S, 36Ar, 40Ca, 44Ti, and in 36Ar, 40Ca, 44Ti, 48Cr, respectively. The SD band in 40Ca is found to be extremely soft against both the axially symmetric (Y30) and asymmetric (Y31) octupole deformations. Possible presense of SD states in neutron-rich sulfur isotopes from 46S to 52S has also been investigated, and deformation properties of neutron skins both in the ground and SD states are discussed.

  20. Detecting coupling of Majorana bound states with an Aharonov-Bohm interferometer

    NASA Astrophysics Data System (ADS)

    Ramos-Andrade, J. P.; Orellana, P. A.; Ulloa, S. E.

    2018-01-01

    We study the transport properties of an interferometer composed by a quantum dot (QD) coupled with two normal leads and two one-dimensional topological superconductor nanowires (TNWs) hosting Majorana bound states (MBS) at their ends. The geometry considered is such that one TNW has both ends connected with the QD, forming an Aharonov-Bohm (AB) interferometer threaded by an external magnetic flux, while the other TNW is placed near the interferometer TNW. This geometry can alternatively be seen as a long wire contacted across a local defect, with possible coupling between independent-MBS. We use the Green’s function formalism to calculate the conductance across normal current leads on the QD. We find that the conductance exhibits a half-quantum value regardless of the AB phase and location of the dot energy level, whenever the interferometer configuration interacts with the neighboring TNW. These findings suggest that such a geometry could be used for a sensitive detection of MBS interactions across TNWs, exploiting the high sensitivity of conductance to the AB phase in the interferometer.

  1. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  2. Spin-orbit coupling controlled ground state in Sr 2 ScOsO 6

    DOE PAGES

    Taylor, A. E.; Morrow, R.; Fishman, R. S.; ...

    2016-06-27

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr 2ScOsO 6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d 3Os 5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective propertiesmore » of 4d 3 and 5d 3 systems and that theoretical treatments must include spin-orbit coupling.« less

  3. Spin-orbit coupling controlled ground state in Sr 2 ScOsO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. E.; Morrow, R.; Fishman, R. S.

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr 2ScOsO 6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d 3Os 5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective propertiesmore » of 4d 3 and 5d 3 systems and that theoretical treatments must include spin-orbit coupling.« less

  4. The charger transfer electronic coupling in diabatic perspective: A multi-state density functional theory study

    NASA Astrophysics Data System (ADS)

    Guo, Xinwei; Qu, Zexing; Gao, Jiali

    2018-01-01

    The multi-state density functional theory (MSDFT) provides a convenient way to estimate electronic coupling of charge transfer processes based on a diabatic representation. Its performance has been benchmarked against the HAB11 database with a mean unsigned error (MUE) of 17 meV between MSDFT and ab initio methods. The small difference may be attributed to different representations, diabatic from MSDFT and adiabatic from ab initio calculations. In this discussion, we conclude that MSDFT provides a general and efficient way to estimate the electronic coupling for charge-transfer rate calculations based on the Marcus-Hush model.

  5. Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI

    PubMed Central

    Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob C. W.; Grooms, Joshua K.; Shakil, Sadia; Jaeger, Dieter; Keilholz, Shella D.

    2014-01-01

    Resting state functional magnetic resonance imaging (fMRI) can identify network alterations that occur in complex psychiatric diseases and behaviors, but its interpretation is difficult because the neural basis of the infraslow BOLD fluctuations is poorly understood. Previous results link dynamic activity during the resting state to both infraslow frequencies in local field potentials (LFP) (<1 Hz) and band-limited power in higher frequency LFP (>1 Hz). To investigate the relationship between these frequencies, LFPs were recorded from rats under two anesthetics: isoflurane and dexmedetomidine. Signal phases were calculated from low-frequency LFP and compared to signal amplitudes from high-frequency LFP to determine if modulation existed between the two frequency bands (phase-amplitude coupling). Isoflurane showed significant, consistent phase-amplitude coupling at nearly all pairs of frequencies, likely due to the burst-suppression pattern of activity that it induces. However, no consistent phase-amplitude coupling was observed in rats that were anesthetized with dexmedetomidine. fMRI-LFP correlations under isoflurane using high frequency LFP were reduced when the low frequency LFP's influence was accounted for, but not vice-versa, or in any condition under dexmedetomidine. The lack of consistent phase-amplitude coupling under dexmedetomidine and lack of shared variance between high frequency and low frequency LFP as it relates to fMRI suggests that high and low frequency neural electrical signals may contribute differently, possibly even independently, to resting state fMRI. This finding suggests that researchers take care in interpreting the neural basis of resting state fMRI, as multiple dynamic factors in the underlying electrophysiology could be driving any particular observation. PMID:24904325

  6. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  7. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    NASA Astrophysics Data System (ADS)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  8. Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weijun; Wang, Aifeng; Graf, D.

    We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less

  9. Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling

    DOE PAGES

    Ren, Weijun; Wang, Aifeng; Graf, D.; ...

    2018-01-22

    We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less

  10. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    NASA Astrophysics Data System (ADS)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  11. Model for the dynamics of two interacting axisymmetric spherical bubbles undergoing small shape oscillations

    PubMed Central

    Kurihara, Eru; Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2011-01-01

    Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009

  12. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    NASA Astrophysics Data System (ADS)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  13. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    NASA Astrophysics Data System (ADS)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  14. Agreement on Reporting of Physical, Psychological, and Sexual Violence among White, Black, and Hispanic Couples in the United States

    ERIC Educational Resources Information Center

    Caetano, Raul; Field, Craig; Ramisetty-Mikler, Suhasini; Lipsky, Sherry

    2009-01-01

    This article examines agreement on reports of male-to-female and female-to-male psychological, physical, and sexual violence among White, Black, and Hispanic couples in the United States. Using a probability sample, separate face-to-face interviews were conducted in respondents' homes with both members of 1,025 intact couples living in the 48…

  15. The equation-of-motion coupled cluster method for triple electron attached states

    NASA Astrophysics Data System (ADS)

    Musiał, Monika; Olszówka, Marta; Lyakh, Dmitry I.; Bartlett, Rodney J.

    2012-11-01

    The initial implementation of the triple electron attachment (TEA) equation-of-motion (EOM) coupled cluster (CC) method is presented, aiming at the description of electronic states with three open shell electrons outside a suitably chosen closed shell vacuum. In particular, such an approach can be used for describing dissociation of chemical bonds predominantly formed by three valence electrons, for example, in LiC and NaC molecules. Both ground and excited states are considered while rigorously maintaining the correct spin value. The preliminary results show a correct asymptotic behavior of the dissociation curves. At the same time, we emphasize that a chemically accurate description will require an extension of the minimal TEA-EOM-CC model introduced here, analogous to those already used in the double ionization potential and double electron attachment methods.

  16. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  17. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  18. Job Burnout and Couple Burnout in Dual-Earner Couples in the Sandwiched Generation

    ERIC Educational Resources Information Center

    Pines, Ayala Malach; Neal, Margaret B.; Hammer, Leslie B.; Icekson, Tamar

    2011-01-01

    We use existential theory as a framework to explore the levels of and relationship between job and couple burnout reported by dual-earner couples in the "sandwich generation" (i.e., couples caring both for children and aging parents) in a sample of such couples in Israel and the United States. This comparison enables an examination of…

  19. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  20. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  1. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less

  2. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  3. Multipolar Kondo effect in a S10-P32 mixture of 173Yb atoms

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong

    2018-02-01

    Whereas in the familiar Kondo effect the exchange interaction is dipolar, there are systems in which the exchange interaction is multipolar, as has been realized in a recent experiment. Here, we study multipolar Kondo effect in a Fermi gas of cold 173Yb atoms. Making use of different ac polarizabilities of the electronic ground state Yb (S10 ) and the long-lived metastable state Yb*(P32 ), it is suggested that the latter atoms can be localized and serve as a dilute concentration of magnetic impurities while the former ones remain itinerant. The exchange mechanism between the itinerant Yb and the localized Yb* atoms is analyzed and shown to be antiferromagnetic. The quadrupole and octupole interactions act to enhance the Kondo temperature TK that is found to be experimentally accessible. The bare exchange Hamiltonian needs to be decomposed into dipole (d), quadrupole (q), and octupole (o) interactions in order to retain its form under renormalization group (RG) analysis, in which the corresponding exchange constants (λd,λq, and λo) flow independently. Numerical solution of the RG scaling equations reveals a few finite fixed points. Arguments are presented that the Fermi-liquid fixed point at low temperature is unstable, indicating that the impurity is overscreened, which suggests a non-Fermi-liquid phase. The impurity contributions to the specific heat, entropy, and the magnetic susceptibility are calculated in the weak coupling regime (T ≫TK ), and are compared with the analogous results obtained for the standard case of dipolar exchange interaction (the s -d Hamiltonian).

  4. LHCSR3 affects de-coupling and re-coupling of LHCII to PSII during state transitions in Chlamydomonas reinhardtii

    PubMed Central

    Roach, Thomas; Na, Chae Sun

    2017-01-01

    Photosynthetic organisms have to tolerate rapid changes in light intensity, which is facilitated by non-photochemical quenching (NPQ) and involves modification of energy transfer from light-harvesting complexes (LHC) to the photosystem reaction centres. NPQ includes dissipating excess light energy to heat (qE) and the reversible coupling of LHCII to photosystems (state transitions/qT), which are considered separate NPQ mechanisms. In the model alga Chlamydomonas reinhardtii the LHCSR3 protein has a well characterised role in qE. Here, it is shown in the npq4 mutant, deficient in LHCSR3, that energy coupling to photosystem II (PSII) more akin to qT is also disrupted, but no major differences in LHC phosphorylation or LHC compositions were found in comparison to wild-type cells. The qT of wild-type cells possessed two kinetically distinguishable phases, with LHCSR3 participating in the more rapid (<2 min) phase. This LHCSR3-mediated qT was sensitive to physiological levels of H2O2, which accelerated qE induction, revealing a way that may help C. reinhardtii tolerate a sudden increase in light intensity. Overall, a clear mechanistic overlap between qE and qT is shown. PMID:28233792

  5. Sub-Nanosecond Lifetime Measurement Using the Recoil-Distance Method

    PubMed Central

    Wu, Ching-Yen

    2000-01-01

    The electromagnetic properties of low-lying nuclear states are a sensitive probe of both collective and single-particle degrees of freedom in nuclear structure. The recoil-distance technique provides a very reliable, direct and precise method for measuring lifetimes of nuclear states with lifetimes ranging from less than one to several hundred picoseconds. This method complements the powerful, but complicated, heavy-ion induced Coulomb excitation technique for measuring electromagnetic properties. The recoil distance technique has been combined with heavy-ion induced Coulomb excitation to study a variety of problems. Examples discussed are: study of the two-phonon triplet in 110Pd, coupling of the β and γ degrees of freedom in 182,184W, highly deformed γ bands in 165Ho, octupole collectivity in 96Zr, and opposite parity states in 153Eu. Consistency between the Coulomb excitation results and the lifetime measurements confirms the reliability of the complex analysis often encountered in heavy-ion induced Coulomb excitation work. PMID:27551588

  6. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  7. Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults

    PubMed Central

    Vytal, Katherine E.; Overstreet, Cassie; Charney, Danielle R.; Robinson, Oliver J.; Grillon, Christian

    2014-01-01

    Background Neuroimaging research has traditionally explored fear and anxiety in response to discrete threat cues (e.g., during fear conditioning). However, anxiety is a sustained aversive state that can persist in the absence of discrete threats. Little is known about mechanisms that maintain anxiety states over a prolonged period. Here, we used a robust translational paradigm (threat of shock) to induce sustained anxiety. Recent translational work has implicated an amygdala–prefrontal cortex (PFC) circuit in the maintenance of anxiety in rodents. To explore the functional homologues of this circuitry in humans, we used a novel paradigm to examine the impact of sustained anticipatory anxiety on amygdala–PFC intrinsic connectivity. Methods Task-independent fMRI data were collected in healthy participants during long-duration periods of shock anticipation and safety. We examined intrinsic functional connectivity. Results Our study involved 20 healthy participants. During sustained anxiety, amygdala activity was positively coupled with dorsomedial PFC (DMPFC) activity. High trait anxiety was associated with increased amygdala–DMPFC coupling. In addition, induced anxiety was associated with positive coupling between regions involved in defensive responding, and decreased coupling between regions involved in emotional control and the default mode network. Limitations Inferences regarding anxious pathology should be made with caution because this study was conducted in healthy participants. Conclusion Findings suggest that anticipatory anxiety increases intrinsic amygdala–DMPFC coupling and that the DMPFC may serve as a functional homologue for the rodent prefrontal regions by sustaining anxiety. Future research may use this defensive neural context to identify bio-markers of risk for anxious pathology and target these circuits for therapeutic intervention. PMID:24886788

  8. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less

  9. Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Maleki, Yusef; Zheltikov, Aleksei M.

    2018-01-01

    An ensemble of nitrogen-vacancy (NV) centers coupled to a circuit QED device is shown to enable an efficient, high-fidelity generation of high-N00N states. Instead of first creating entanglement and then increasing the number of entangled particles N , our source of high-N00N states first prepares a high-N Fock state in one of the NV ensembles and then entangles it to the rest of the system. With such a strategy, high-N N00N states can be generated in just a few operational steps with an extraordinary fidelity. Once prepared, such a state can be stored over a longer period of time due to the remarkably long coherence time of NV centers.

  10. Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Xue, Yang; Zhou, Tong; Yang, Zhongqin

    2018-03-01

    We investigate topological states of two-dimensional (2D) triangular lattices with multiorbitals. Tight-binding model calculations of a 2D triangular lattice based on px and py orbitals exhibit very interesting doubly degenerate energy points at different positions (Γ and K /K' ) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the "destructive interference effect" between the topological states at the Γ and K /K' points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of the 2D triangular lattice metal-organic framework of Co(C21N3H15) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.

  11. Experiences Using Pre-Exposure Prophylaxis for Safer Conception Among HIV Serodiscordant Heterosexual Couples in the United States.

    PubMed

    Bazzi, Angela R; Leech, Ashley A; Biancarelli, Dea L; Sullivan, Meg; Drainoni, Mari-Lynn

    2017-08-01

    Antiretroviral pre-exposure prophylaxis (PrEP) is a promising HIV prevention strategy for HIV serodiscordant couples (HIV-infected male, uninfected female) seeking safer conception. However, most research on PrEP for safer conception has focused on couples in sub-Saharan Africa; little is known about the perspectives or experiences of heterosexual couples in the United States. We conducted qualitative interviews with six couples (six women and five of their male partners) receiving PrEP for conception services at an urban safety net hospital in the US Northeast. In-depth interview guides explored couple relationships and contextual factors and attitudes, perceptions, and decision-making processes surrounding PrEP for safer conception. Thematic analyses focused on identifying the following emergent themes. We found that couple relationships were situated within broader social and cultural contexts of immigration, family, and community that shaped their experiences with HIV and serodiscordant relationship status. Despite strong partner support within relationships, HIV stigma and disapproval of serodiscordant relationships contributed to couples' feelings of social isolation and subsequent aspirations to have "normal" families. By enabling "natural" conception through condomless sex, PrEP for safer conception provided a sense of enhanced relationship intimacy. Couples called for increasing public awareness of PrEP through positive messaging as a way to combat HIV stigma. Findings suggest that relationship dynamics and broader social contexts appear to shape HIV serodiscordant couples' fertility desires and motivations to use PrEP. However, increased public awareness of PrEP for safer conception may be needed to combat HIV stigma at the community level.

  12. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  13. Mean state dependence of ENSO diversity resulting from an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu

    2016-04-01

    ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.

  14. Spectral Analysis of Two Coupled Diatomic Rotor Molecules

    PubMed Central

    Crogman, Horace T.; Harter, William G.

    2014-01-01

    In a previous article the theory of frame transformation relation between Body Oriented Angular (BOA) states and Lab Weakly Coupled states (LWC) was developed to investigate simple rotor–rotor interactions. By analyzing the quantum spectrum for two coupled diatomic molecules and comparing it with spectrum and probability distribution of simple models, evidence was found that, as we move from a LWC state to a strongly coupled state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was quadratic which indicates the degree of floppiness in the rotor–rotor system. However in the high coupling behavior it was found that the spectrum was linear which corresponds to a rotor deep in a well. PMID:25353181

  15. Strong Coupling Corrections in Quantum Thermodynamics

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.

    2018-03-01

    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

  16. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.

    PubMed

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K

    2018-06-13

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.

  17. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    PubMed

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  18. Neutron detection with plastic scintillators coupled to solid state photomultiplier detectors

    NASA Astrophysics Data System (ADS)

    Christian, James F.; Johnson, Erik B.; Fernandez, Daniel E.; Vogel, Samuel; Frank, Rebecca; Stoddard, Graham; Stapels, Christopher; Pereira, Jorge; Zegers, Remco

    2017-09-01

    The recent reduction of dark current in Silicon Solid-state photomultipliers (SiSSPMs) makes them an attractive alternative to conventional photomultiplier tubes (PMTs) for scintillation detection applications. Nuclear Physics experiments often require large detector volumes made using scintillation materials, which require sensitive photodetectors, such as a PMTs. PMTs add to the size, fragility, and high-voltage requirements as well as distance requirements for experiments using magnetic fields. This work compares RMD's latest detector modules, denoted as the "year 2 prototype", of plastic scintillators that discriminate gamma and high-energy particle events from neutron events using pulse shape discrimination (PSD) coupled to a SiSSPM to the following two detector modules: a similar "year 1 prototype" and a scintillator coupled to a PMT module. It characterizes the noise floor, relative signal-to-noise ratio (SNR), the timing performance, the PSD figure-of-merit (FOM) and the neutron detection efficiency of RMD's detectors. This work also evaluates the scaling of SiSSPM detector modules to accommodate the volumes needed for many Nuclear Physics experiments. The Si SSPM detector module provides a clear advantage in Nuclear Physics experiments that require the following attributes: discrimination of neutron and gamma-ray events, operation in or near strong magnetic fields, and segmentation of the detector.

  19. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Seizure Dynamics of Coupled Oscillators with Epileptor Field Model

    NASA Astrophysics Data System (ADS)

    Zhang, Honghui; Xiao, Pengcheng

    The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.

  1. Quasi-solid state electrolytes for low-grade thermal energy harvesting using a cobalt redox couple.

    PubMed

    Taheri, Abuzar; MacFarlane, Douglas; Pozo-Gonzalo, Cristina; Pringle, Jennifer M

    2018-06-06

    Thermoelectrochemical cells, also known as thermocells, are electrochemical devices for the conversion of thermal energy directly to electricity. They are a promising method for harvesting low-grade waste heat from a variety of different natural and man-made sources. The development of solid or quasi-solid state electrolytes for thermocells could address the possible leakage problems of liquid electrolytes and make this technology more applicable for wearable devices. Here we report the gelation of an organic solvent-based electrolyte system containing a redox couple, for application in thermocell technologies. The effect of gelation of the liquid electrolyte, comprising a cobalt bipyridyl redox couple dissolved in 3-methoxypropionitrile (MPN), on the performance of thermocells was investigated. Polyvinylidene difluoride (PVDF) and poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) were used for gelation of the electrolyte, and the influence of the different polymers on the mechanical properties was studied. The Seebeck coefficient and diffusivity of the cobalt redox couple were measured in both liquid and gelled electrolytes and the effect of gelation on the thermocell performance is reported. Finally, the cell performance was further improved by optimising the redox couple concentration and the separation between the hot and cold electrode, and the stability of the device over 25 hours of operation is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  3. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE PAGES

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...

    2018-05-21

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  4. Interlayer coupling through a dimensionality-induced magnetic state

    PubMed Central

    Gibert, M.; Viret, M.; Zubko, P.; Jaouen, N.; Tonnerre, J.-M.; Torres-Pardo, A.; Catalano, S.; Gloter, A.; Stéphan, O.; Triscone, J.-M.

    2016-01-01

    Dimensionality is known to play an important role in many compounds for which ultrathin layers can behave very differently from the bulk. This is especially true for the paramagnetic metal LaNiO3, which can become insulating and magnetic when only a few monolayers thick. We show here that an induced antiferromagnetic order can be stabilized in the [111] direction by interfacial coupling to the insulating ferromagnet LaMnO3, and used to generate interlayer magnetic coupling of a nature that depends on the exact number of LaNiO3 monolayers. For 7-monolayer-thick LaNiO3/LaMnO3 superlattices, negative and positive exchange bias, as well as antiferromagnetic interlayer coupling are observed in different temperature windows. All three behaviours are explained based on the emergence of a (¼,¼,¼)-wavevector antiferromagnetic structure in LaNiO3 and the presence of interface asymmetry with LaMnO3. This dimensionality-induced magnetic order can be used to tailor a broad range of magnetic properties in well-designed superlattice-based devices. PMID:27079668

  5. Anthropometry and socioeconomics among couples: evidence in the United States.

    PubMed

    Oreffice, Sonia; Quintana-Domeque, Climent

    2010-12-01

    We analyze the marriage-market aspects of weight and height in the United States using data from the Panel Study of Income Dynamics on anthropometric characteristics of both spouses. We find evidence of positive sorting in spouses' body mass index (BMI), weight, and height. Within couples, gender-asymmetric trade-offs arise not only between physical and socioeconomic attributes, but also between anthropometric attributes, with significant penalties for fatter women and shorter men. A wife's obesity (BMI or weight) measures are negatively correlated with her husband's income, education, and height, controlling for his weight and her height, along with spouses' demographic and socioeconomic characteristics. Conversely, heavier husbands are not penalized by matching with poorer or less educated wives, but only with shorter ones. Height is valued mainly for men, with shorter men matched with heavier and less educated wives. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. How to Calculate Spin-Spin Coupling and Spin-Rotation Coupling Strengths and Their Uncertainties from Spectroscopic Data: Application to the c(1^3Σ_g^+) State of Diatomic Lithium

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Li, Xuan

    2013-06-01

    Recent high-resolution (± 0.00002 cm^{-1}) photo-association spectroscopy (PAS) data of seven previously unexplored vibrational levels of the 1^3Σ_g^+ state of Li_2 have allowed for the first ever experimental determination of the spin-spin (λ_v) and spin-rotation (γ_v) coupling constants in a diatomic lithium system. For triplet states of diatomic molecules such as the 1^3Σ_g^+ state of Li_2, the three spin-spin/spin-rotation resolved energies associated with a ro-vibrational state |v,N> were expressed explicity in terms of B_v, λ_v, and γ_v in 1929 by Kramer's first-order formulas and then in 1937 by Schlapp's more refined formulas. Given spectroscopic data, while it has never been difficult to extract λ_v and γ_v from Schlapp's formulas, it has been a challenge to reliably predict how accurate these extracted values are. This is for two reasons: (1) the lack of a rigorous method to estimate the uncertainty in B_v, (2) the non-linearity of Schlapp's coupled equations has meant that traditionally they have had to be solved numerically by Newton iterations which makes error propagation difficult. The former challenge has been this year solved by Le Roy with a modification of Hutson's perturbation theory of, and the latter problem has now been solved by symbolic computing software that solves Schlapp's coupled non-linear equations analytically for the first time since their introduction in 1937. M. Semczuk, X. Li, W. Gunton, M. Haw, N. Dattani, J. Witz, A. Mills, D. Jones, K. Madison, Physical Review A {87}, XX (2013) H. Kramers, Zeitschrift fur Physik {53}, 422 (1929) R. Schlapp, Physical Review {51}, 342 (1937) J. Hutson, J. Phys. B, {14}, 851 (1981)

  7. Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM.

    NASA Astrophysics Data System (ADS)

    Codron, Francis; Vintzileos, Augustin; Sadourny, Robert

    2001-03-01

    This study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this warming over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken.This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer ENSO period. The structure of the ENSO cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of ENSO spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies.These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in ENSO characteristics due to decadal variability or climate change.

  8. Spatial and thickness dependence of coupling interaction of surface states and influence on transport and optical properties of few-layer Bi2Se3

    NASA Astrophysics Data System (ADS)

    Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong

    2018-02-01

    Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.

  9. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakib, Farnaz A.; Hanna, Gabriel, E-mail: gabriel.hanna@ualberta.ca

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET modelmore » via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The

  10. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation.

    PubMed

    Ndome, Hameth; Eisfeld, Wolfgang

    2012-08-14

    A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)] that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.

  11. Phase modulation in dipolar-coupled A 2 spin systems: effect of maximum state mixing in 1H NMR in vivo

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.

  12. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  13. Chiral dynamics of the p wave in K-p and coupled states

    NASA Astrophysics Data System (ADS)

    Jido, D.; Oset, E.; Ramos, A.

    2002-11-01

    We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness S=-1 sector starting from the lowest order chiral Lagrangians and introducing explicitly the Σ* field with couplings to the meson-baryon states obtained using SU(6) symmetry. The N/D method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cutoff. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the width and partial decay widths of the Σ*(1385).

  14. Microcavities coupled to multilevel atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Sandra Isabelle; Evers, Jörg

    2011-11-01

    A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.

  15. Ground-state entropy of the potts antiferromagnet with next-nearest-neighbor spin-spin couplings on strips of the square lattice

    PubMed

    Chang; Shrock

    2000-10-01

    We present exact calculations of the zero-temperature partition function (chromatic polynomial) and W(q), the exponent of the ground-state entropy, for the q-state Potts antiferromagnet with next-nearest-neighbor spin-spin couplings on square lattice strips, of width L(y)=3 and L(y)=4 vertices and arbitrarily great length Lx vertices, with both free and periodic boundary conditions. The resultant values of W for a range of physical q values are compared with each other and with the values for the full two-dimensional lattice. These results give insight into the effect of such nonnearest-neighbor couplings on the ground-state entropy. We show that the q=2 (Ising) and q=4 Potts antiferromagnets have zero-temperature critical points on the Lx-->infinity limits of the strips that we study. With the generalization of q from Z+ to C, we determine the analytic structure of W(q) in the q plane for the various cases.

  16. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  17. First-Principle Characterization for Singlet Fission Couplings.

    PubMed

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  18. Complex Dynamics of Delay-Coupled Neural Networks

    NASA Astrophysics Data System (ADS)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  19. Brain-state dependent astrocytic Ca2+ signals are coupled to both positive and negative BOLD-fMRI signals.

    PubMed

    Wang, Maosen; He, Yi; Sejnowski, Terrence J; Yu, Xin

    2018-02-13

    Astrocytic Ca 2+ -mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca 2+ optical fiber recordings revealed distinct evoked astrocytic Ca 2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca 2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca 2+ waves in spreading depolarization/depression, the intrinsic Ca 2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca 2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca 2+ and BOLD fMRI signals.

  20. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.

    2017-06-01

    We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.

  1. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  2. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations

    PubMed Central

    Florin, Esther; Baillet, Sylvain

    2015-01-01

    Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519

  3. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-05

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  4. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    PubMed

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  5. Optical signatures of coupled quantum dots.

    PubMed

    Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D

    2006-02-03

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  6. Optical Signatures of Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  7. Direct observation of methyl rotor and vib-rotor states of S0 toluene: a revised torsional barrier due to torsion-vibration coupling.

    PubMed

    Gascooke, Jason R; Virgo, Edwina A; Lawrance, Warren D

    2015-01-14

    We report a two dimensional, laser induced fluorescence study of the lowest 345 cm(-1) region of S0 toluene. Methyl rotor levels of 00 up to m = 6 and of 201 up to m = 4 are observed. The rotor levels of 00 and 201 have quite different energy spacings that are well fit by a model that includes strong torsion-vibration coupling between them. The model requires that the rotor barrier height be revised from -4.84 cm(-1) (methyl hydrogens in a staggered conformation) to +1.57 cm(-1) (eclipsed conformation). However, the 3a2″ state lies below the 3a1″ state as expected for a staggered conformation due to energy shifts associated with the torsion-vibration coupling. It is shown that the rotor wave-functions exhibit little localization at the torsional energy minima. The variation in the m = 0 wavefunction probability distribution with torsional angle is shown to be very similar for the previously accepted negative V6 value and the torsion-vibration coupling model as this coupling shifts the phase of the wavefunction by 30° compared with its phase for V6 alone. The presence of a strong Δυ = ± 1 torsion-vibration coupling involving the lowest frequency vibrational mode provides a potential pathway for rapid intramolecular vibrational energy redistribution at higher energies.

  8. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  9. Crystal Structure of Oligomeric β1-Adrenergic G Protein- Coupled Receptors in Ligand-Free Basal State

    PubMed Central

    Huang, Jianyun; Chen, Shuai; Zhang, J. Jillian; Huang, Xin-Yun

    2013-01-01

    G protein-coupled receptors (GPCRs) mediate transmembrane signaling. Before ligand binding, GPCRs exist in a basal state. Crystal structures of several GPCRs bound with antagonists or agonists have been solved. However, the crystal structure of the ligand-free basal state of a GPCR, the starting point of GPCR activation and function, has not been determined. Here we report the X-ray crystal structure of the first ligand-free basal state of a GPCR in a lipid membrane-like environment. Oligomeric turkey β1-adrenergic receptors display two alternating dimer interfaces. One interface involves the transmembrane domain (TM) 1, TM2, the C-terminal H8, and the extracellular loop 1. The other interface engages residues from TM4, TM5, the intracellular loop 2 and the extracellular loop 2. Structural comparisons show that this ligand-free state is in an inactive conformation. This provides the structural information regarding GPCR dimerization and oligomerization. PMID:23435379

  10. Equation-of-motion coupled cluster method for the description of the high spin excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.

    2016-04-21

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5more » diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.« less

  11. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  12. Transitions to Synchrony in Coupled Bursting Neurons

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  13. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2011-02-04

    We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.

  14. The role of ligands on the equilibria between functional states of a G protein-coupled receptor.

    PubMed

    Kim, Tae Hun; Chung, Ka Young; Manglik, Aashish; Hansen, Alexandar L; Dror, Ron O; Mildorf, Thomas J; Shaw, David E; Kobilka, Brian K; Prosser, R Scott

    2013-06-26

    G protein-coupled receptors exhibit a wide variety of signaling behaviors in response to different ligands. When a small label was incorporated on the cytosolic interface of transmembrane helix 6 (Cys-265), (19)F NMR spectra of the β2 adrenergic receptor (β2AR) reconstituted in maltose/neopentyl glycol detergent micelles revealed two distinct inactive states, an activation intermediate state en route to activation, and, in the presence of a G protein mimic, a predominant active state. Analysis of the spectra as a function of temperature revealed that for all ligands, the activation intermediate is entropically favored and enthalpically disfavored. β2AR enthalpy changes toward activation are notably lower than those observed with rhodopsin, a likely consequence of basal activity and the fact that the ionic lock and other interactions stabilizing the inactive state of β2AR are weaker. Positive entropy changes toward activation likely reflect greater mobility (configurational entropy) in the cytoplasmic domain, as confirmed through an order parameter analysis. Ligands greatly influence the overall changes in enthalpy and entropy of the system and the corresponding changes in population and amplitude of motion of given states, suggesting a complex landscape of states and substates.

  15. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  16. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, K. J.; Crump, O. B.

    1994-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  17. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    PubMed

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2018-04-06

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  19. Coherent States for the Two-Dimensional Dirac-Moshinsky Oscillator Coupled to an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-03-01

    We show that the (2+1)-dimensional Dirac-Moshinsky oscillator coupled to an external magnetic field can be treated algebraically with the SU(1,1) group theory and its group basis. We use the su(1,1) irreducible representation theory to find the energy spectrum and the eigenfunctions. Also, with the su(1,1) group basis we construct the relativistic coherent states in a closed form for this problem. Supported by SNI-México, COFAA-IPN, EDI-IPN, EDD-IPN, SIP-IPN project number 20140598

  20. Computational studies of steady-state sound field and reverberant sound decay in a system of two coupled rooms

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2007-09-01

    The acoustical properties of an irregularly shaped room consisting of two connected rectangular subrooms were studied. An eigenmode method supported by a numerical implementation has been used to predict acoustic characteristics of the coupled system, such as the distribution of the sound pressure in steady-state and the reverberation time. In the theoretical model a low-frequency limit was considered. In this case the eigenmodes are lightly damped, thusthey were approximated by normal acoustic modes of a hard-walled room. The eigenfunctions and eigenfrequencies were computed numerically via application of a forced oscillator method with a finite difference algorithm. The influence of coupling between subrooms on acoustic parameters of the enclosure was demonstrated in numerical simulations where different distributions of absorbing materials on the walls of the subrooms and various positions of the sound source were assumed. Calculation results have shown that for large differences in the absorption coefficient in the subrooms the effect of modal localization contributes to peaks of RMS pressure in steady-state and a large increase in the reverberation time.

  1. Modulation of electromagnetic local density of states by coupling of surface phonon-polariton

    NASA Astrophysics Data System (ADS)

    Li, Yao; Zhang, Chao-Jie; Wang, Tong-Biao; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua

    2017-02-01

    We studied the electromagnetic local density of state (EM-LDOS) near the surface of a one-dimensional multilayer structure (1DMS) alternately stacked by SiC and Si. EM-LDOS of a semi-infinite bulk appears two intrinsic peaks due to the resonance of surface phonon-polariton (SPhP) in SiC. In contrast with that of SiC bulk, SPhP can exist at the interface of SiC and Si for the 1DMS. The SPhPs from different interfaces can couple together, which can lead to a significant modulation of EM-LDOS. When the component widths of 1DMS are large, the spectrum of EM-LDOS exhibits oscillation behavior in the frequency regime larger than the resonance frequency of SPhP. While the component widths are small, due to the strong coupling of SPhPs, another peak appears in the EM-LDOS spectrum besides the two intrinsic ones. And the position of the new peak move toward high frequency when the width ratio of SiC and Si increases. The influences of distance from the surfaces and period of 1DMS on EM-LDOS have also been studied in detail. The results are helpful in studying the near-field radiative heat transfer and spontaneous emission.

  2. A state-specific approach to multireference coupled electron-pair approximation like methods: Development and applications

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudip; Pahari, Dola; Mukherjee, Debashis; Mahapatra, Uttam Sinha

    2004-04-01

    The traditional multireference (MR) coupled-cluster (CC) methods based on the effective Hamiltonian are often beset by the problem of intruder states, and are not suitable for studying potential energy surface (PES) involving real or avoided curve crossing. State-specific MR-based approaches obviate this limitation. The state-specific MRCC (SS-MRCC) method developed some years ago [Mahapatra et al., J. Chem. Phys. 110, 6171 (1999)] can handle quasidegeneracy of varying degrees over a wide range of PES, including regions of real or avoided curve-crossing. Motivated by its success, we have suggested and explored in this paper a suite of physically motivated coupled electron-pair approximations (SS-MRCEPA) like methods, which are designed to capture the essential strength of the parent SS-MRCC method without significant sacrificing its accuracy. These SS-MRCEPA theories, like their CC counterparts, are based on complete active space, treat all the reference functions on the same footing and provide a description of potentially uniform precision of PES of states with varying MR character. The combining coefficients of the reference functions are self-consistently determined along with the cluster amplitudes themselves. The newly developed SS-MRCEPA methods are size-extensive, and are also size-consistent with localized orbitals. Among the various versions, there are two which are invariant with respect to the restricted rotations among doubly occupied and active orbitals separately. Similarity of performance of this latter and the noninvariant versions at the crossing points of the degenerate orbitals imply that the all the methods presented are rather robust with respect to the rotations among degenerate orbitals. Illustrative numerical applications are presented for PES of the ground state of a number of difficult test cases such as the model H4, H8 problems, the insertion of Be into H2, and Li2, where intruders exist and for a state of a molecule such as CH2, with

  3. Ferromagnetic spin coupling in the chromium dimer cation: Measurements by photodissociation spectroscopy combined with coupled-cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egashira, Kazuhiro, E-mail: egashira@clusterlab.jp; Yamada, Yurika; Kita, Yukiumi

    2015-02-07

    The magnetic coupling of the chromium dimer cation, Cr{sub 2}{sup +}, has been an outstanding problem for decades. An optical absorption spectrum of Cr{sub 2}{sup +} has been obtained by photodissociation spectroscopy in the photon-energy range from 2.0 to 5.0 eV. Besides, calculations have been performed by the equation-of-motion coupled-cluster singles and doubles method for vertical excitation of the species. Their coincidence supports our assignment that the ground electronic state exhibits a ferromagnetic spin coupling, which is contrary to those of neutral and negatively charged dimers, Cr{sub 2} and Cr{sub 2}{sup −}, in their lowest spin states.

  4. Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes

    NASA Astrophysics Data System (ADS)

    Sirimanne, P. M.; Senevirathna, M. K. I.; Premalal, E. V. A.; Pitigala, P. K. D. D. P.

    2006-06-01

    The electronic coupling of a natural pigment extracted from pomegranate fruits (rich with cyanin and exist as flavylium at natural PH) with an organic dye mercurochrome enhanced the performance of solid-state TiO2|dye|CuI-type photovoltaic cells sensitized from pomegranate pigments or mercurochrome individually.

  5. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  6. Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2013-08-01

    In biology the interplay between multiple light-absorbers gives rise to complex quantum effects such as superposition states that are of extreme importance for life, both for harvesting solar energy and likely protecting nucleic acids from radiation damage. Still the characteristics of these states and their quantum dynamics are a much debated issue. While the electronic properties of single bases are fairly well understood, the situation for strands is complicated by the fact that stacked bases electronically couple when photoexcited. These newly arising states are denoted as exciton states and are simply linear combinations of localised wavefunctions that involve N - 1 ground-state bases and one base in its excited state (cf. the Frenkel exciton model). There is disagreement over the number of bases, N, that coherently couple, i.e., the spatial extent of the exciton, and how electronic deexcitation back to the ground state occurs. The importance of dark charge-transfer states has been inferred both from time-resolved fluorescence and transient absorption experiments. These states were suggested to be responsible for long deexcitation times but it is unclear whether 'long' is tens of picoseconds or nanoseconds. In this review paper, we focus on the bright states initially populated and discuss their nature based on information obtained from systematic absorption and circular dichroism experiments on single strands of different lengths. Our results from the last five years are compared with those from other groups, and are discussed in the context of successive deexcitation schemes. Pieces to the puzzle have come from different experiments and theory but a complete description has yet to emerge. As such the story about DNA/RNA photophysical decay mechanisms resembles the tale about the blind men and the elephant where all see the beast in different, correct but incomplete ways.

  7. Ultrafast dynamics of multi-exciton state coupled to coherent vibration in zinc chlorin aggregates for artificial photosynthesis.

    PubMed

    Shi, Tongchao; Liu, Zhengzheng; Miyatake, Tomohiro; Tamiaki, Hitoshi; Kobayashi, Takayoshi; Zhang, Zeyu; Du, Juan; Leng, Yuxin

    2017-11-27

    Ultrafast vibronic dynamics induced by the interaction of the Frenkel exciton with the coherent molecular vibrations in a layer-structured zinc chlorin aggregates prepared for artificial photosynthesis have been studied by 7.1 fs real-time vibrational spectroscopy with multi-spectrum detection. The fast decay of 100 ± 5fs is ascribed to the relaxation from the higher multi-exciton state (MES) to the one-exciton state, and the slow one of 863 ± 70fs is assigned to the relaxation from Q-exciton state to the dark nonfluorescent charge-transfer (CT) state, respectively. In addition, the wavelength dependences of the exciton-vibration coupling strength are found to follow the zeroth derivative of the transient absorption spectra of the exciton. It could be explained in term of the transition dipole moment modulated by dynamic intensity borrowing between the B transition and the Q transition through the vibronic interactions.

  8. Rashba spin-orbit coupling for neutral atoms

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel; Juzeliūnas, Gediminas; Spielman, Ian

    2011-05-01

    We theoretically describe a new class of atom-laser coupling schemes which lead to effective spin-orbit coupled Hamiltonians for ultra-cold neutral atoms. By properly setting the optical phases, a pair of degenerate spin states emerge as the lowest energy states in the spectrum, and are thus immune to collisionally induced decay. These schemes use N cyclically coupled ground or metastable internal states but we will specialize to the four-level case for this talk. Time permitting, we will describe a possible implementation of this scheme for 87Rb that adds a controllable Dresselhaus component to the effective Hamiltonian in a natural way. NSF through PFC at JQI, ARO with funds from Atomtronics MURI and DARPA OLE, STREP NAMEQUAM.

  9. Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings.

    PubMed

    Sathiyadevi, K; Karthiga, S; Chandrasekar, V K; Senthilkumar, D V; Lakshmanan, M

    2017-04-01

    Spontaneous symmetry breaking is an important phenomenon observed in various fields including physics and biology. In this connection, we here show that the trade-off between attractive and repulsive couplings can induce spontaneous symmetry breaking in a homogeneous system of coupled oscillators. With a simple model of a system of two coupled Stuart-Landau oscillators, we demonstrate how the tendency of attractive coupling in inducing in-phase synchronized (IPS) oscillations and the tendency of repulsive coupling in inducing out-of-phase synchronized oscillations compete with each other and give rise to symmetry breaking oscillatory states and interesting multistabilities. Further, we provide explicit expressions for synchronized and antisynchronized oscillatory states as well as the so called oscillation death (OD) state and study their stability. If the Hopf bifurcation parameter (λ) is greater than the natural frequency (ω) of the system, the attractive coupling favors the emergence of an antisymmetric OD state via a Hopf bifurcation whereas the repulsive coupling favors the emergence of a similar state through a saddle-node bifurcation. We show that an increase in the repulsive coupling not only destabilizes the IPS state but also facilitates the reentrance of the IPS state.

  10. Effect of electron-phonon coupling on energy and density of states renormalizations of dynamically screened graphene

    NASA Astrophysics Data System (ADS)

    Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.

    2012-02-01

    Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)

  11. Nominalizations in Couple Counseling.

    ERIC Educational Resources Information Center

    Green, David B.

    1979-01-01

    Presents a discussion of the linguistic mechansim of nominalization. In identifying and challenging nominalizations, the counselor can help a couple clarify the present state of their relationship, where they are hurting, the desired state of their relationship, and the feeling and behavioral changes they want in their relationship. (Author)

  12. Committee Opinion No. 574: Marriage equality for same-sex couples.

    PubMed

    2013-09-01

    Same-sex couples encounter barriers to health care that include concerns about confidentiality and disclosure, stigma and discriminatory attitudes and treatment, limited access to health care and health insurance, and often a limited understanding of their health risks. Same-sex couples and their families are adversely affected by the lack of legal recognition of their relationships, a problem with major implications for the health of same-sex couples and their families. Tangible harm has come from the lack of financial and health care protections granted to legal spouses, and children are harmed by the lack of protections afforded to families in which partners are married. However, the recent Supreme Court ruling, The United States v Windsor, which afforded equal treatment for legally married same-sex couples will provide many important health and financial benefits. Evidence suggests that marriage confers health benefits to individuals and families, yet a sizable proportion of individuals do not experience these health benefits because of their sexual orientation. Additional data suggest that same-sex couples who live in states with bans on same-sex unions experience adverse health outcomes. Civil marriage is currently available to same-sex couples in only thirteen states and the District of Columbia and honored by one state. The American College of Obstetricians and Gynecologists endorses marriage equality for same-sex couples and equal treatment for these couples and their families and applauds the Supreme Court's decision as an important step in improving access to benefits received by legally married same-sex couples. However, additional efforts are necessary to ensure that same-sex couples in every state can receive these same benefits.

  13. Dynamics of Coupled Electron-Boson Systems with the Multiple Davydov D1 Ansatz and the Generalized Coherent State.

    PubMed

    Chen, Lipeng; Borrelli, Raffaele; Zhao, Yang

    2017-11-22

    The dynamics of a coupled electron-boson system is investigated by employing a multitude of the Davydov D 1 trial states, also known as the multi-D 1 Ansatz, and a second trial state based on a superposition of the time-dependent generalized coherent state (GCS Ansatz). The two Ansätze are applied to study population dynamics in the spin-boson model and the Holstein molecular crystal model, and a detailed comparison with numerically exact results obtained by the (multilayer) multiconfiguration time-dependent Hartree method and the hierarchy equations of motion approach is drawn. It is found that the two methodologies proposed here have significantly improved over that with the single D 1 Ansatz, yielding quantitatively accurate results even in the critical cases of large energy biases and large transfer integrals. The two methodologies provide new effective tools for accurate, efficient simulation of many-body quantum dynamics thanks to a relatively small number of parameters which characterize the electron-nuclear wave functions. The wave-function-based approaches are capable of tracking explicitly detailed bosonic dynamics, which is absent by construct in approaches based on the reduced density matrix. The efficiency and flexibility of our methods are also advantages as compared with numerically exact approaches such as QUAPI and HEOM, especially at low temperatures and in the strong coupling regime.

  14. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  15. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  16. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  17. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions,

  18. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions.

  19. Symbolic joint entropy reveals the coupling of various brain regions

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofei; Huang, Xiaolin; Du, Sidan; Liu, Hongxing; Ning, Xinbao

    2018-01-01

    The convergence and divergence of oscillatory behavior of different brain regions are very important for the procedure of information processing. Measurements of coupling or correlation are very useful to study the difference of brain activities. In this study, EEG signals were collected from ten subjects under two conditions, i.e. eyes closed state and idle with eyes open. We propose a nonlinear algorithm, symbolic joint entropy, to compare the coupling strength among the frontal, temporal, parietal and occipital lobes and between two different states. Instead of decomposing the EEG into different frequency bands (theta, alpha, beta, gamma etc.), the novel algorithm is to investigate the coupling from the entire spectrum of brain wave activities above 4Hz. The coupling coefficients in two states with different time delay steps are compared and the group statistics are presented as well. We find that the coupling coefficient of eyes open state with delay consistently lower than that of eyes close state across the group except for one subject, whereas the results without delay are not consistent. The differences between two brain states with non-zero delay can reveal the intrinsic inter-region coupling better. We also use the well-known Hénon map data to validate the algorithm proposed in this paper. The result shows that the method is robust and has a great potential for other physiologic time series.

  20. Temperature Effects of Electric Field on the First Excited State of Strong Coupling Polaron in a CsI Quantum Pseudodot

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    2017-03-01

    Employing variational method of Pekar type (VMPT), this paper investigates the first-excited state energy (FESE), excitation energy and transition frequency of the strongly-coupled polaron in the CsI quantum pseudodot (QPD) with electric field. The temperature effects on the strong-coupling polaron in electric field are calculated by using the quantum statistical theory (QST). The results from the present investigation show that the FESE, excitation energy and transition frequency increase (decrease) firstly and then at lower (higher) temperature regions. They are decreasing functions of the electric field strength. Supported by the National Natural Science Foundation of China under Grant No. 11464033

  1. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  2. Structure Calculation and Reconstruction of Discrete-State Dynamics from Residual Dipolar Couplings.

    PubMed

    Cole, Casey A; Mukhopadhyay, Rishi; Omar, Hanin; Hennig, Mirko; Valafar, Homayoun

    2016-04-12

    Residual dipolar couplings (RDCs) acquired by nuclear magnetic resonance (NMR) spectroscopy are an indispensable source of information in investigation of molecular structures and dynamics. Here, we present a comprehensive strategy for structure calculation and reconstruction of discrete-state dynamics from RDC data that is based on the singular value decomposition (SVD) method of order tensor estimation. In addition to structure determination, we provide a mechanism of producing an ensemble of conformations for the dynamical regions of a protein from RDC data. The developed methodology has been tested on simulated RDC data with ±1 Hz of error from an 83 residue α protein (PDB ID 1A1Z ) and a 213 residue α/β protein DGCR8 (PDB ID 2YT4 ). In nearly all instances, our method reproduced the structure of the protein including the conformational ensemble to within less than 2 Å. On the basis of our investigations, arc motions with more than 30° of rotation are identified as internal dynamics and are reconstructed with sufficient accuracy. Furthermore, states with relative occupancies above 20% are consistently recognized and reconstructed successfully. Arc motions with a magnitude of 15° or relative occupancy of less than 10% are consistently unrecognizable as dynamical regions within the context of ±1 Hz of error.

  3. Jahn-Teller effect versus Hund's rule coupling in C60N-

    NASA Astrophysics Data System (ADS)

    Wehrli, S.; Sigrist, M.

    2007-09-01

    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1,…,5) . The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation which yields the linear t1u⊗Hg Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund’s rule coupling for N=2,3,4 . The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund’s rule coupling, which determines the spin state for N=2,3,4 . We calculate the low-spin-high-spin gap for N=2,3,4 as a function of the Hund’s rule coupling constant J . We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV . Using a finite value for J , we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund’s rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal.

  4. Resting-state EEG coupling analysis of amnestic mild cognitive impairment with type 2 diabetes mellitus by using permutation conditional mutual information.

    PubMed

    Wen, Dong; Bian, Zhijie; Li, Qiuli; Wang, Lei; Lu, Chengbiao; Li, Xiaoli

    2016-01-01

    This study was meant to explore whether the coupling strength and direction of resting-state electroencephalogram (rsEEG) could be used as an indicator to distinguish the patients of type 2 diabetes mellitus (T2DM) with or without amnestic mild cognitive impairment (aMCI). Permutation conditional mutual information (PCMI) was used to calculate the coupling strength and direction of rsEEG signals between different brain areas of 19 aMCI and 20 normal control (NC) with T2DM on 7 frequency bands: Delta, Theta, Alpha1, Alpha2, Beta1, Beta2 and Gamma. The difference in coupling strength or direction of rsEEG between two groups was calculated. The correlation between coupling strength or direction of rsEEG and score of different neuropsychology scales were also calculated. We have demonstrated that PCMI can calculate effectively the coupling strength and directionality of EEG signals between different brain regions. The significant difference in coupling strength and directionality of EEG signals was found between the patients of aMCI and NC with T2DM on different brain regions. There also existed significant correlation between sex or age and coupling strength or coupling directionality of EEG signals between a few different brain regions from all subjects. The coupling strength or directionality of EEG signals calculated by PCMI are significantly different between aMCI and NC with T2DM. These results showed that the coupling strength or directionality of EEG signals calculated by PCMI might be used as a biomarker in distinguishing the aMCI from NC with T2DM. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Rescue of endemic states in interconnected networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-07-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  6. Rescue of endemic states in interconnected networks with adaptive coupling

    PubMed Central

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime. PMID:27380771

  7. Degenerate quantum gases with spin-orbit coupling: a review.

    PubMed

    Zhai, Hui

    2015-02-01

    This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.

  8. Deterministic multi-step rotation of magnetic single-domain state in Nickel nanodisks using multiferroic magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Sohn, Hyunmin; Liang, Cheng-yen; Nowakowski, Mark E.; Hwang, Yongha; Han, Seungoh; Bokor, Jeffrey; Carman, Gregory P.; Candler, Robert N.

    2017-10-01

    We demonstrate deterministic multi-step rotation of a magnetic single-domain (SD) state in Nickel nanodisks using the multiferroic magnetoelastic effect. Ferromagnetic Nickel nanodisks are fabricated on a piezoelectric Lead Zirconate Titanate (PZT) substrate, surrounded by patterned electrodes. With the application of a voltage between opposing electrode pairs, we generate anisotropic in-plane strains that reshape the magnetic energy landscape of the Nickel disks, reorienting magnetization toward a new easy axis. By applying a series of voltages sequentially to adjacent electrode pairs, circulating in-plane anisotropic strains are applied to the Nickel disks, deterministically rotating a SD state in the Nickel disks by increments of 45°. The rotation of the SD state is numerically predicted by a fully-coupled micromagnetic/elastodynamic finite element analysis (FEA) model, and the predictions are experimentally verified with magnetic force microscopy (MFM). This experimental result will provide a new pathway to develop energy efficient magnetic manipulation techniques at the nanoscale.

  9. Expanding Couples-Based HIV Testing and Counseling in the United States: Findings from a Nationwide, Online Survey of Partnered Adults.

    PubMed

    Lee, Ji-Young; Mitchell, Jason W

    2018-04-23

    Couples-based HIV testing and counseling (CHTC) is currently available only for gay male couples in the United States, but other types of couples could benefit from this service. Our cross-sectional, online study collected data from 536 partnered adults to assess interest in using CHTC and associated factors. Adjusted odds ratios were calculated with ordinal logistic regression to analyze factors associated with greater interest in using CHTC. Most participants were female, White, non-Hispanic, and/or students who were dating exclusively and sexually active. Participant interest in using CHTC varied. Greater interest was associated with identifying as bisexual or questioning (adjusted odds ratio [aOR] 2.53, p < .05); having a sexual agreement (aOR 6.82, p < .001); and inconsistent or no condom use for anal sex (aOR 0.31, p < .05). These findings lend support for additional research about how best to extend and offer CHTC to a wider variety of couples. Copyright © 2018 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  10. How to induce multiple delays in coupled chaotic oscillators?

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.

    2013-12-01

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  11. Universal Stabilization of a Parametrically Coupled Qubit

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Chakram, S.; Leung, N.; Earnest, N.; Naik, R. K.; Huang, Ziwen; Groszkowski, Peter; Kapit, Eliot; Koch, Jens; Schuster, David I.

    2017-10-01

    We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved with a tunable coupling design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasistatic tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single-photon exchange in 6 ns. Qubit coherence times exceeding 20 μ s are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon nonconserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80%.

  12. Dark forces coupled to nonconserved currents

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim

    2017-10-01

    New light vectors with dimension-4 couplings to Standard Model states have (energy/vectormass)2-enhanced production rates unless the current they couple to is conserved. These processes allow us to derive new constraints on the couplings of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial couplings to quarks and vectors coupled to currents (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.

  13. The influence of further-neighbor spin-spin interaction on a ground state of 2D coupled spin-electron model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália

    2018-05-01

    An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.

  14. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  15. Same-Sex and Different-Sex Cohabiting Couple Relationship Stability

    PubMed Central

    Manning, Wendy; Brown, Susan; Stykes, Bart

    2016-01-01

    Relationship stability is a key indicator of well-being, but most U.S.-based research has been limited to different-sex couples. The 2008 panel of the Survey of Income and Program Participation (SIPP) provides an untapped data resource to analyze relationship stability of same-sex cohabiting, different-sex cohabiting, and different-sex married couples (n = 5,701). The advantages of the SIPP data include the recent, nationally representative, and longitudinal data collection; a large sample of same-sex cohabitors; respondent and partner socioeconomic characteristics; and identification of a state-level indicator of a policy stating that marriage is between one man and one woman (i.e., DOMA). We tested competing hypotheses about the stability of same-sex versus different-sex cohabiting couples that were guided by incomplete institutionalization, minority stress, relationship investments, and couple homogamy perspectives (predicting that same-sex couples would be less stable) as well as economic resources (predicting that same-sex couples would be more stable). In fact, neither expectation was supported: results indicated that same-sex cohabiting couples typically experience levels of stability that are similar to those of different-sex cohabiting couples. We also found evidence of contextual effects: living in a state with a constitutional ban against same-sex marriage was significantly associated with higher levels of instability for same- and different-sex cohabiting couples. The level of stability in both same-sex and different-sex cohabiting couples is not on par with that of different-sex married couples. The findings contribute to a growing literature on health and well-being of same-sex couples and provide a broader understanding of family life. PMID:27383844

  16. Same-Sex and Different-Sex Cohabiting Couple Relationship Stability.

    PubMed

    Manning, Wendy D; Brown, Susan L; Stykes, J Bart

    2016-08-01

    Relationship stability is a key indicator of well-being, but most U.S.-based research has been limited to different-sex couples. The 2008 panel of the Survey of Income and Program Participation (SIPP) provides an untapped data resource to analyze relationship stability of same-sex cohabiting, different-sex cohabiting, and different-sex married couples (n = 5,701). The advantages of the SIPP data include the recent, nationally representative, and longitudinal data collection; a large sample of same-sex cohabitors; respondent and partner socioeconomic characteristics; and identification of a state-level indicator of a policy stating that marriage is between one man and one woman (i.e., DOMA). We tested competing hypotheses about the stability of same-sex versus different-sex cohabiting couples that were guided by incomplete institutionalization, minority stress, relationship investments, and couple homogamy perspectives (predicting that same-sex couples would be less stable) as well as economic resources (predicting that same-sex couples would be more stable). In fact, neither expectation was supported: results indicated that same-sex cohabiting couples typically experience levels of stability that are similar to those of different-sex cohabiting couples. We also found evidence of contextual effects: living in a state with a constitutional ban against same-sex marriage was significantly associated with higher levels of instability for same- and different-sex cohabiting couples. The level of stability in both same-sex and different-sex cohabiting couples is not on par with that of different-sex married couples. The findings contribute to a growing literature on health and well-being of same-sex couples and provide a broader understanding of family life.

  17. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  18. Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine

    NASA Astrophysics Data System (ADS)

    Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian

    2017-08-01

    With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.

  19. Magnetic exchange coupling through superconductors : a trilayer study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa de Melo, C. A. R.; Materials Science Division

    1997-09-08

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less

  20. Magnetic exchange coupling through superconductors: A trilayer study

    NASA Astrophysics Data System (ADS)

    Sá de Melo, C. A.

    2000-11-01

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.

  1. Synchronization of coupled metronomes on two layers

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  2. Non-Fermi-liquid and topological states with strong spin-orbit coupling.

    PubMed

    Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon

    2013-11-15

    We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.

  3. Parity doublet structures in doubly-odd 216Fr

    NASA Astrophysics Data System (ADS)

    Pragati, Â.; Deo, A. Y.; Tandel, S. K.; Bhattacharjee, S. S.; Chakraborty, S.; Rai, S.; Wahid, S. G.; Kumar, S.; Muralithar, S.; Singh, R. P.; Bala, Indu; Garg, Ritika; Jain, A. K.

    2018-04-01

    Parity doublet structures are established in 216Fr, which lies at the lower boundary of enhanced octupole collectivity in the trans-lead region. The newly identified levels are established as the simplex partner of a previously reported band leading to parity doublets with small (˜55 keV) average energy splitting, a feature typical of nuclei with near-static octupole deformation. The observed levels do not follow a regular pattern of rotational bands, indicating low quadrupole collectivity. However, enhanced octupole correlations are evident from the small energy splitting and large B(E1)/B(E2) values. Staggering in E1 transition energies and B(E1)/B(E2) ratios is noted. The enhancement of octupole correlations in 216Fr is attributed to the availability of a neutron orbital with a K = 3/2 component.

  4. Progress in neutron electromagnetic couplings

    NASA Astrophysics Data System (ADS)

    Strakovsky, Igor; Briscoe, William; Kudryavtsev, Alexander; Kulikov, Viacheslav; Martemianov, Maxim; Tarasov, Vladimir; Workman, Ron

    2016-05-01

    An overview of the GW SAID and ITEP groups' effort to analyze pion photoproduction on the neutron-target will be given. The disentangling of the isoscalar and isovector EM couplings of N* and Δ* resonances does require compatible data on both proton and neutron targets. The final-state interactions play a critical role in the state-of-the-art analysis in extraction of the γn → πN data from the deuteron target experiments. Then resonance couplings determined by the SAID PWA technique are compared to previous findings. The neutron program is an important component of the current JLab, MAMI-C, SPring-8, ELSA, and ELPH studies.

  5. Impact of symmetry breaking in networks of globally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-05-01

    We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera, amplitude cluster, frequency chimera, and frequency cluster states. In addition we also find disparate transition routes to recently observed chimera death states in the presence of symmetry breaking even with global coupling. We also analytically verify the chimera death region, which corroborates the numerical results. These results are compared with that of the symmetry-preserving case as well.

  6. The Quantum Phase-Dynamical Properties of the Squeezed Vacuum State Intensity-Couple Interacting with the Atom

    NASA Technical Reports Server (NTRS)

    Fan, An-Fu; Sun, Nian-Chun; Zhou, Xin

    1996-01-01

    The Phase-dynamical properties of the squeezed vacuum state intensity-couple interacting with the two-level atom in an ideal cavity are studied using the Hermitian phase operator formalism. Exact general expressions for the phase distribution and the associated expectation value and variance of the phase operator have been derived. we have also obtained the analytic results of the phase variance for two special cases-weakly and strongly squeezed vacuum. The results calculated numerically show that squeezing has a significant effect on the phase properties of squeezed vacuum.

  7. Oral Pre-Exposure Prophylaxis (PrEP) for Prevention of HIV in Serodiscordant Heterosexual Couples in the United States: Opportunities and Challenges

    PubMed Central

    Myers, Julie E.; Kurth, Ann E.; Cohen, Stephanie E.; Mannheimer, Sharon B.; Simmons, Janie; Pouget, Enrique R.; Trabold, Nicole; Haberer, Jessica E.

    2014-01-01

    Abstract Oral HIV pre-exposure prophylaxis (PrEP) is a promising new biomedical prevention approach in which HIV-negative individuals are provided with daily oral antiretroviral medication for the primary prevention of HIV-1. Several clinical trials have demonstrated efficacy of oral PrEP for HIV prevention among groups at high risk for HIV, with adherence closely associated with level of risk reduction. In the United States (US), three groups have been prioritized for initial implementation of PrEP—injection drug users, men who have sex with men at substantial risk for HIV, and HIV-negative partners within serodiscordant heterosexual couples. Numerous demonstration projects involving PrEP implementation among MSM are underway, but relatively little research has been devoted to study PrEP implementation in HIV-serodiscordant heterosexual couples in the US. Such couples face a unique set of challenges to PrEP implementation at the individual, couple, and provider level with regard to PrEP uptake and maintenance, adherence, safety and toxicity, clinical monitoring, and sexual risk behavior. Oral PrEP also provides new opportunities for serodiscordant couples and healthcare providers for primary prevention and reproductive health. This article provides a review of the critical issues, challenges, and opportunities involved in the implementation of oral PrEP among HIV-serodiscordant heterosexual couples in the US. PMID:25045996

  8. Semiconductor ring lasers coupled by a single waveguide

    NASA Astrophysics Data System (ADS)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  9. Analysis of the Rotational Structure of ˜{B}^2A' ← ˜{X}^2A' Transition of Isopropoxy Radical: Isolated State vs. Coupled States Model

    NASA Astrophysics Data System (ADS)

    Melnik, Dmitry G.; Miller, Terry A.; Liu, Jinjun

    2013-06-01

    Isopropoxy radicals are reactive intermediates in atmospheric and combustion chemistry. From the theoretical point of view, they represent an extreme case of ``isotopically'' substituted methoxy radicals with two methyl groups playing the role of heavy hydrogen isotopes. Previously the rotationally resolved spectra of ˜{B}^2A' ← ˜{X}^2A' electronic transition were successfully analyzed using a simple effective rotational Hamiltonian of the isolated ˜{X} and ˜{B} states. However, a number of the experimentally determined parameters appeared dramatically inconsistent with the quantum chemistry calculations and theoretical predictions based on the symmetry arguments. Recently, we analyzed these spectra using a coupled two state model, which explicitly includes interactions between the ground ˜{X}^2A' state and low-lying excited ˜{A}^2A^'' state. In this presentation we will discuss the results of this analysis and compare the parameters of both models and their physical significance. D. G. Melnik, T. A. Miller and J. Liu, TI15, 67^{th Molecular Spectroscopy Symposium}, Columbus, 2012

  10. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  11. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  12. Sex and Intimacy among Infertile Couples.

    ERIC Educational Resources Information Center

    Greil, Arthur; And Others

    Infertility is a widespread health problem in the United States, affecting anywhere from 10 to 15 percent and perhaps even a greater percentage of U.S. couples. Infertility can have far-reaching effects on life satisfaction, well-being, and psychological adjustment. This paper presents an analysis of sex and intimacy among infertile couples based…

  13. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    NASA Astrophysics Data System (ADS)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  14. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  15. Dynamic properties in the four-state haploid coupled discrete-time mutation-selection model with an infinite population limit

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Sang; Gill, Wonpyong

    2017-11-01

    The dynamic properties, such as the crossing time and time-dependence of the relative density of the four-state haploid coupled discrete-time mutation-selection model, were calculated with the assumption that μ ij = μ ji , where μ ij denotes the mutation rate between the sequence elements, i and j. The crossing time for s = 0 and r 23 = r 42 = 1 in the four-state model became saturated at a large fitness parameter when r 12 > 1, was scaled as a power law in the fitness parameter when r 12 = 1, and diverged when the fitness parameter approached the critical fitness parameter when r 12 < 1, where r ij = μ ij / μ 14.

  16. Nonequilibrium and nonperturbative dynamics of ultrastrong coupling in open lines.

    PubMed

    Peropadre, B; Zueco, D; Porras, D; García-Ripoll, J J

    2013-12-13

    The time and space resolved dynamics of a qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime. A nonperturbative study based on matrix product states shows the following results, (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalization [A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987)]. Finally, nonperturbative ab initio calculations show that this physics can be studied using a flux qubit galvanically coupled to a superconducting transmission line.

  17. Strong electron-hole exchange in coherently coupled quantum dots.

    PubMed

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-14

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  18. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  19. Systematic continuum-discretized coupled-channels calculations of total fusion for 6Li with targets 28Si, 59Co, 96Zr, 198Pt, and 209Bi: Effect of resonance states

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Wang, Bing; Zhang, H. Q.

    2018-05-01

    Continuum discretized coupled-channel (CDCC) calculations of total fusion cross sections for reactions induced by the weakly bound nucleus 6Li with targets 28Si, 59Co, 96Zr, 198Pt, and 209Bi at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α +d , short-range absorption potentials are considered for the interactions between the α and d fragments with the targets. The effect of resonance (l =2 , Jπ=3+,2+,1+ ) and nonresonance states of 6Li on fusion is studied by using two approaches: (1) by omitting the resonance states from the full discretized CDCC breakup space and (2) by considering only the resonance subspace. A systematic analysis of the effect on fusion from resonance breakup couplings is carried out from light to heavy mass targets. Among other things, it is found that resonance breakup states produce strong repulsive polarization potentials that lead to fusion suppression. Couplings from nonresonance states give place to weak repulsive potentials at high energies; however, these become attractive for the heavier targets at low energies.

  20. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    NASA Astrophysics Data System (ADS)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  1. Covariance Matrix for Helicity Couplings

    DOE PAGES

    Sadasivan, D.; Doring, M.

    2018-04-06

    In this paper, the helicity couplings at Q 2 = 0 for excited baryonic states have been determined in the past, but no information is available regarding their correlations that are relevant for comparison to theory. We present here our calculation of such correlations between the helicity couplings. Finally, they contain information for quantitative comparisons with theoretical values, they can be used to quantify the impact of polarization observables, and can help design new experiments.

  2. The Effects of a Couples-Based Health Behavior Intervention During Pregnancy on Latino Couples' Dyadic Satisfaction Postpartum.

    PubMed

    Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I

    2018-03-30

    Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.

  3. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.

    PubMed

    Kowalski, Karol

    2009-05-21

    In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.

  4. Measurement of the E1/E3 phase in 226Ra

    NASA Astrophysics Data System (ADS)

    Amzal, N.; Butler, P. A.; Hawcroft, D.; Hammond, N. J.; Herzberg, R.-D.; Jones, G. D.; Scholey, C.; Stezowski, O.; Czosnyka, T.; Iwanicki, J.; Napiorkowski, P. J.; Julin, R.; Mach, H.; Cerderka¨Ll, J.; Fraile, L. M.; Fynbo, H. O. U.; Isolde Collaboration

    2004-04-01

    We report experimental attempts to determine the sign of the electric dipole moment (relative to the electric octupole moment) in the octupole deformed nucleus 226Ra. Sensitivity to this quantity is observed in the measured yields of γ-ray transitions following very low energy Coulomb excitation.

  5. Coherent coupling of molecular resonators with a microcavity mode

    NASA Astrophysics Data System (ADS)

    Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T. W.

    2015-01-01

    The optical hybridization of the electronic states in strongly coupled molecule-cavity systems have revealed unique properties, such as lasing, room temperature polariton condensation and the modification of excited electronic landscapes involved in molecular isomerization. Here we show that molecular vibrational modes of the electronic ground state can also be coherently coupled with a microcavity mode at room temperature, given the low vibrational thermal occupation factors associated with molecular vibrations, and the collective coupling of a large ensemble of molecules immersed within the cavity-mode volume. This enables the enhancement of the collective Rabi-exchange rate with respect to the single-oscillator coupling strength. The possibility of inducing large shifts in the vibrational frequency of selected molecular bonds should have immediate consequences for chemistry.

  6. Ultrafast switching of the magnetic ground state in d1 titanates though nonlinear phononic coupling

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    LaTiO3 and YTiO3 are isostructure d1 titanates, which exhibit distinct magnetic and orbital properties: The former is a G-type antiferromagnet with a 150 K Neel temperature whereas the latter is a rare ferromagnetic (FM) insulator with a 30 K Curie temperature. With first-principles density functional theory calculations, we identify the local structural origin of the magnetic order difference in these orthorhombic perovskites. By increasing the tilt and rotation angles in LaTiO3, respectively, LaTiO3 is predicted to undergo a magnetic phase transition to an FM state. Similarly, decreasing the tilt and rotation angles in YTiO3 leads to a FM-to-AFM phase transition. The underlying physics is attributed to the change in the superexchange coupling between Ti-sites. Last, we propose a route to switch the magnetism in the titanates by controlling the octahedral distortions through dynamical nonlinear phononic coupling. The proposed experiment requires the use of static strain to position the crystal structure in proximity to the structural transition combined with readily achievable fluencies in an ultrafast optical pump-probe geometry The theory work is supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012375.

  7. Exciton coupling in molecular crystals

    NASA Technical Reports Server (NTRS)

    Ake, R. L.

    1976-01-01

    The implications of perfect exciton coupling and molecular vibrations were investigated, as well as the effect they have on the lifetime of singlet and triplet excitons coupled in a limiting geometry. Crystalline bibenzyl, Cl4Hl4, provided a situation in which these mechanisms involving exciton coupling can be studied in the limit of perfect coupling between units due to the crystal's geometry. This geometry leads to a coupling between the two halves of the molecule resulting in a splitting of the molecular excited states. The study reported involves an experimental spectroscopic approach and begins with the purification of the bibenzyl. The principal experimental apparatus was an emission spectrometer. A closed cycle cryogenic system was used to vary the temperature of the sample between 20 K and 300 K. The desired results are the temperature-dependent emission spectra of the bibenzyl; in addition, the lifetimes and quantum yields measured at each temperature reveal the effect of competing radiationless processes.

  8. Synchronization of strange non-chaotic attractors via unidirectional coupling of quasiperiodically-forced systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Daniel Sweetlin, M.; Arulgnanam, A.

    2016-07-01

    In this paper, we present a numerical investigation on the robust synchronization phenomenon observed in a unidirectionally-coupled quasiperiodically-forced simple nonlinear electronic circuit system exhibiting strange non-chaotic attractors (SNAs) in its dynamics. The SNA obtained in the simple quasiperiodic system is characterized for its SNA behavior. Then, we studied the nature of the synchronized state in unidirectionally coupled SNAs by using the Master-Slave approach. The stability of the synchronized state is studied through the master stability functions (MSF) obtained for coupling different state variables of the drive and response system. The property of robust synchronization is analyzed for one type of coupling of the state variables through phase portraits, conditional lyapunov exponents and the Kaplan-Yorke dimension. The phenomenon of complete synchronization of SNAs via a unidirectional coupling scheme is reported for the first time.

  9. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  10. [The primiparae couple's experience of childbirth: quantitative study].

    PubMed

    Moreau, A; Kopff-Landas, A; Séjourné, N; Chabrol, H

    2009-03-01

    The aim of this research was to study childbirth experience for the primiparae couple and their emotional state in early post-partum. Thirty-three couples were interviewed 2 days after the birth. A questionnaire on childbirth experience and the EPDS were carried out. According to the results, mothers feel less satisfied, less calm, more useful and suffer more than fathers. Moreover, they consider father's participation more active and more supportive than themselves assess it. Experience of childbirth is linked with parent's emotional state in early postpartum. These results stress the importance to take into account the woman, the men and the couple as three separate and singular units and to create space for dialogue before and after childbirth.

  11. Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois

    2017-04-01

    Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.

  12. Ground-state phase diagram of the repulsive fermionic t -t' Hubbard model on the square lattice from weak coupling

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Liu, Xuan-Wen; Deng, Youjin; Kozik, Evgeny

    2016-08-01

    We obtain a complete and numerically exact in the weak-coupling limit (U →0 ) ground-state phase diagram of the repulsive fermionic Hubbard model on the square lattice for filling factors 0 states with a high—higher than that of the fundamental mode of the corresponding irreducible representation—number of nodes. The effective coupling strength in the Cooper channel λ , which determines the critical temperature Tc of the superfluid transition, is calculated in the whole parameter space and regions with high values of λ are identified. It is shown that besides the expected increase of λ near the Van Hove singularity line, joining the ferromagnetic and antiferromagnetic points, another region with high values of λ can be found at quarter filling and t'=0.5 due to the presence of a line of nesting at t'≥0.5 . The results can serve as benchmarks for controlled nonperturbative methods and guide the ongoing search for high-Tc superconductivity in the Hubbard model.

  13. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  14. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  15. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  16. Simulation of the Indirect Radiative Forcing of Climate Due to Aerosols by the Two-Way Coupled WRF-CMAQ over the Eastern United States

    EPA Science Inventory

    In this study, the shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF) are estimated with the newly developed two-way coupled WRF-CMAQ over the eastern United States. Preliminary indirect aerosol forcing has been successfully implemented in WRF-CMAQ. The comparisons...

  17. Title: Chimeras in small, globally coupled networks: Experiments and stability analysis

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    Since the initial observation of chimera states, there has been much discussion of the conditions under which these states emerge. The emphasis thus far has mainly been to analyze large networks of coupled oscillators; however, recent studies have begun to focus on the opposite limit: what is the smallest system of coupled oscillators in which chimeras can exist? We experimentally observe chimeras and other partially synchronous patterns in a network of four globally-coupled chaotic opto-electronic oscillators. By examining the equations of motion, we demonstrate that symmetries in the network topology allow a variety of synchronous states to exist, including cluster synchronous states and a chimera state. Using the group theoretical approach recently developed for analyzing cluster synchronization, we show how to derive the variational equations for these synchronous patterns and calculate their linear stability. The stability analysis gives good agreement with our experimental results. Both experiments and simulations suggest that these chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  18. Chimera patterns in two-dimensional networks of coupled neurons.

    PubMed

    Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2017-03-01

    We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.

  19. Chimera patterns in two-dimensional networks of coupled neurons

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2017-03-01

    We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.

  20. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  1. Controllability in tunable chains of coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Mølmer, K.; Petrosyan, D.

    2018-04-01

    We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.

  2. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    PubMed Central

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the

  3. Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    de Melo, C. A. R. Sa

    2001-03-01

    The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).

  4. Periodically modulated dark states

    NASA Astrophysics Data System (ADS)

    Han, Yingying; Zhang, Jun; Zhang, Wenxian

    2018-04-01

    Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.

  5. Spin-orbit-coupled fermions in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.

    2017-02-01

    Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

  6. FAST TRACK COMMUNICATION Unexpected systematic degeneracy in a system of two coupled Gaudin models with homogeneous couplings

    NASA Astrophysics Data System (ADS)

    Erbe, B.; Schliemann, J.

    2010-12-01

    We report an unexpected systematic degeneracy between different multiplets in an inversion symmetric system of two coupled Gaudin models with homogeneous couplings, as occurring for example in the context of solid state quantum information processing. We construct the full degenerate subspace (being of macroscopic dimension), which turns out to lie in the kernel of the commutator between the two Gaudin models and the coupling term. Finally we investigate to what extent the degeneracy is related to the inversion symmetry of the system and find that indeed there is a large class of systems showing the same type of degeneracy.

  7. Chimera States in Neural Oscillators

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  8. Alpha decay hindrance factors and reflection asymmetry in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.; Bossinga, B.B.

    1991-07-01

    All available hindrance factors of alpha transitions to low-lying negative-parity states in doubly even nuclei, to odd-{ital A} parity doublets and to doubly odd parity doublet bands, are used to study the systematics of reflection asymmetry in the {ital A}{similar to}218--230 region. Special attention is given to the polarization effect of the odd particle in increasing reflection asymmetry and therefore decreasing hindrance factors to the opposite parity states of octupole bands.

  9. Actor-Partner Interdependence Model Analysis of Sexual Communication and Relationship/Family Planning Factors Among Immigrant Latino Couples in the United States.

    PubMed

    Matsuda, Yui

    2017-05-01

    The Latino population in the United States is quickly growing, and its unintended pregnancy rate is increasing. To decrease unintended pregnancies, couples must mutually agree on family planning. Communication between partners is one key factor identified in successful family planning for couples. Therefore, the purpose of this study was to examine sexual communication and its associations with sexual relationship power, general communication, and views on family planning. The Actor-Partner Interdependence Model was used to analyze dyadic influences of the chosen variables. Forty immigrant Latino couples were recruited from prenatal care clinics. The study results were grouped according to the three types of power structures: exhibition of men's traditional machismo values, exhibition of women's increased power in their relationships, and exhibition of men's and women's own empowerment with sexual communication. There was a negative association between men's views on family planning and women's sexual communication (exhibition of machismo values); a negative association between women's sexual relationship power and their partners' sexual communication (exhibition of women's increased power); and positive associations between men's and women's general communication and sexual communication (exhibition of men's and women's own empowerment). Dyadic influences of sexual communication and associated variables need to be incorporated into interventions to facilitate family planning for couples.

  10. Coupling a single electron spin to a microwave resonator: Part I: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Lachance-Quirion, Dany; Beaudoin, Félix; Camirand Lemyre, Julien; Coish, William A.; Pioro-Ladrière, Michel

    Novel quantum technologies can be combined within hybrid systems to benefit from the complementary capabilities of individual components. For example, microwave-frequency superconducting resonators are ideally suited to perform qubit readout and to mediate two-qubit gates, while spin qubits offer long coherence times and high-fidelity single-qubit gates. In this talk, we consider strong coupling between a microwave resonator and an electron-spin qubit in a double quantum dot due to an inhomogeneous magnetic field generated by a nearby nanomagnet.. Considering realistic parameters, we estimate spin-resonator couplings of order 1 MHz. Further, we show that the position of the double dot relative to the nanomagnet allows us to select between purely longitudinal and transverse couplings. While the transverse coupling may be used for quantum state transfer between the spin qubit and the resonator, the longitudinal coupling could be used in a new qubit readout scheme recently introduced for superconducting qubits.

  11. Cross-Over Between Different Symmetries

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2014-09-01

    The yrast states of even even vibrational and transitional nuclei are interpreted as a rotating condensate of interacting d-bosons. The corresponding semi-classical tidal wave concept is used for microscopic calculations of energies and E2 transition probabilities. The strong octupole correlations in the light rare earth and actinide nuclides are interpreted as rotation-induced condensation of interacting f-bosons.

  12. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  13. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  14. Spectroscopic Factors from the Single Neutron Transfer Reaction 111Cd(d,p)112Cd

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Svensson, C. E.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2013-03-01

    The cadmium isotopes have been cited as excellent examples of vibrational nuclei for decades, with multi-phonon quadrupole, quadrupole-octupole, and mixed-symmetry states proposed. From a variety of experimental studies, a large amount of spectroscopic data has been obtained, recently focused on γ-ray studies. In the present work, the single-particle structure of 112Cd has been investigated using the 111Cd(ěcd, p)112Cd reaction. The investigation was carried out using a 22 MeV beam of polarized deuterons obtained from the Maier-Leibnitz Laboratory at Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 115 levels have been identified up to 4.2 MeV of excitation energy. Spin-parity has been assigned to each analyzed level, and angular distributions for the reaction cross sections and analyzing powers were obtained. Many additional levels have been observed compared with the previous (d,p) study performed with 8 MeV deuterons,1 including strongly populated 5- and 6- states. The former was previously assigned as a member of the quadrupole-octupole quintuplet, based on a strongly enhanced B(E2) value to the 3- state, but is now re-assigned as being predominately s1/2 ⊗ h11/2 configuration.

  15. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region.

    PubMed

    Xia, Yuan; Du, LiFang; Cheng, XueWu; Li, FaQuan; Wang, JiHong; Wang, ZeLong; Yang, Yong; Lin, Xin; Xun, YuChang; Gong, ShunSheng; Yang, GuoTao

    2017-03-06

    A solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) aiming to simultaneous wind and temperature measurement of mesopause region was reported. The 589 nm pulse laser was produced by two injection seeded 1064 nm and 1319 nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. A fiber amplifier is implemented to boost the seed power at 1064 nm, enabling a robust, all-fiber-coupled design for seeding laser unit, absolute laser frequency locking, and cyclic three-frequency switching necessary for simultaneous temperature and wind measurements. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation. A preliminary observational result obtained with this solid-state sodium Doppler lidar was also reported in this paper.

  16. Exciton broadening and band renormalization due to Dexter-like intervalley coupling

    NASA Astrophysics Data System (ADS)

    Bernal-Villamil, Ivan; Berghäuser, Gunnar; Selig, Malte; Niehues, Iris; Schmidt, Robert; Schneider, Robert; Tonndorf, Philipp; Erhart, Paul; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; Knorr, Andreas; Malic, Ermin

    2018-04-01

    A remarkable property of atomically thin transition metal dichalcogenides (TMDs) is the possibility to selectively address single valleys by circularly polarized light. In the context of technological applications, it is very important to understand possible intervalley coupling mechanisms. Here, we show how the Dexter-like intervalley coupling mixes A and B states from opposite valleys leading to a significant broadening γB_{1s} of the B1s exciton. The effect is much more pronounced in tungsten-based TMDs, where the coupling excitonic states are quasi-resonant. We calculate a ratio γB_{1s}/γA_{1s}≈ 4.0 , which is in good agreement with the experimentally measured value of 3.9+/-0.7 . In addition to the broadening effect, the Dexter-like intervalley coupling also leads to a considerable energy renormalization resulting in an increased energetic distance between A1s and B1s states.

  17. Vibronic coupling in the excited-states of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S 2to the optically dark state S 1.

  18. Vibronic coupling in the excited-states of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S 2to the optically dark state S 1.

  19. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.

  20. Mode coupling in vortex beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2018-05-01

    We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.

  1. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors

    NASA Astrophysics Data System (ADS)

    Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2017-09-01

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  2. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors.

    PubMed

    Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G

    2017-09-07

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  3. A simple crunching of the AGS 'bare' machine ORM data - February 2007 - to extract some aspects of AGS transverse coupling at injection and extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, L.

    2010-11-01

    The objective of this note is to (once again) explore the AGS 'ORM' (orbit response matrix) data taken (by Operations) early during the 2007 run with an AGS bare machine and gold beam. Indeed the present motivation is to extract as much information about the AGS inherent transverse coupling as possible - from general arguments and the copious ORM data. And taking this one step further, (though not accomplished yet) the goal really should be to tell the model how to describe this coupling. 'Bare' as used here means the AGS with no quadrupole, sextupole or octupole magnets powered. Onlymore » the main (combined-function) magnet string and dipole bumps necessary to optimize beam survival are powered. 'ORM data' means the systematic recording of the equilibrium orbit beam position monitor response to powering individual dipole corrector magnets. The 'matrix' results from looking at the effect of each of the (12 superperiods X 4 dipoles per superperiod) 'kicks' on each of the (12 X 6) pick up electrodes (pues) in each transverse plane. So then we have two (48 X 72) matrices of numbers from the ORM data. (Though 'pue' usually refers to the hardware in the vacuum chamber and 'bpm' to the beam position monitoring system, the two labels will be used casually here.) The exercise is carried out at two magnet rigidities, injection (AGS field {approx}434 Gauss) and extraction to RHIC ({approx}9730 Gauss), - a ratio of rigidities of about 22.4. Since we stick with a bare machine, we are also stuck with the bare tunes which means the tunes are rather close together and near 8.75. Injection: (h,v) {approx} (8.73, 8.76).« less

  4. Quantification of causal couplings via dynamical effects: A unifying perspective

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.

    2014-12-01

    Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."

  5. Decay properties of Bk24397 and Bk24497

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Kondev, F. G.; Greene, J. P.; Zhu, S.

    2018-01-01

    Electron capture decays of 243Bk and 244Bk have been studied by measuring the γ -ray spectra of mass-separated sources and level structures of 243Cm and 244Cm have been deduced. In 243Cm, the electron capture population to the ground state, 1 /2+[631 ] , and 1 /2+[620 ] Nilsson states have been observed. The octupole Kπ=2- band was identified in 244Cm at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them.

  6. Decay properties of Bk 97 243 and Bk 97 244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, I.; Kondev, F. G.; Greene, J. P.

    2018-01-01

    Electron capture decays of Bk-243 and Bk-244 have been studied by measuring the gamma-ray spectra of mass-separated sources and level structures of Cm-243 and Cm-244 have been deduced. In Cm-243, the electron capture population to the ground state, 1/2(+)[631], and 1/2(+)[620] Nilsson states have been observed. The octupole K-pi = 2(-) band was identified in Cm-244 at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them

  7. Actor–Partner Interdependence Model Analysis of Sexual Communication and Relationship/Family Planning Factors Among Immigrant Latino Couples in the United States

    PubMed Central

    Matsuda, Yui

    2017-01-01

    The Latino population in the United States is quickly growing, and its unintended pregnancy rate is increasing. To decrease unintended pregnancies, couples must mutually agree on family planning. Communication between partners is one key factor identified in successful family planning for couples. Therefore, the purpose of this study was to examine sexual communication and its associations with sexual relationship power, general communication, and views on family planning. The Actor–Partner Interdependence Model was used to analyze dyadic influences of the chosen variables. Forty immigrant Latino couples were recruited from prenatal care clinics. The study results were grouped according to the three types of power structures: exhibition of men’s traditional machismo values, exhibition of women’s increased power in their relationships, and exhibition of men’s and women’s own empowerment with sexual communication. There was a negative association between men’s views on family planning and women’s sexual communication (exhibition of machismo values); a negative association between women’s sexual relationship power and their partners’ sexual communication (exhibition of women’s increased power); and positive associations between men’s and women’s general communication and sexual communication (exhibition of men’s and women’s own empowerment). Dyadic influences of sexual communication and associated variables need to be incorporated into interventions to facilitate family planning for couples. PMID:27367797

  8. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, R. K.; Das, S.; Panda, A. K.

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip inmore » mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.« less

  9. High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Richter, J.; Zinke, R.; Bishop, R. F.

    2009-04-01

    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. Néel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J 1- J 2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J 2/ J 1=0.5. The dimerized phase is stable over a range of values for J 2/ J 1 around 0.5, and results for the ground-state energies are in good agreement with the results of exact diagonalizations of finite-length chains in this regime. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J 2/ J 1. A radical change is also observed in the behavior of the CCM sublattice magnetization as we enter the dimerized phase. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the Néel and the dimerized phases. Once again, very good results for the ground-state energies are obtained. We find CCM critical points of the bra-state equations that are in agreement with the known phase transition point for this model. The results for the sublattice magnetization remain near to the "true" value of zero over much of the dimerized regime, although they diverge exactly at the critical point. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4O9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, Néel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are

  10. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  11. Sex-dependent alterations in resting-state cerebral blood flow, amplitude of low-frequency fluctuations and their coupling relationship in schizophrenia.

    PubMed

    Ma, Xiaomei; Wang, Di; Zhou, Yujing; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Yu, Chunshui

    2016-04-01

    We aimed to investigate sex-dependent alterations in resting-state relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling in patients with schizophrenia. Resting-state functional magnetic resonance imaging and three-dimensional pseudo-continuous arterial spin labeling imaging were performed to obtain resting-state amplitude of low-frequency fluctuations and relative cerebral blood flow in 95 schizophrenia patients and 99 healthy controls. Sex differences in relative cerebral blood flow and amplitude of low-frequency fluctuations were compared in both groups. Diagnostic group differences in relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling were compared in male and female subjects, respectively. In both healthy controls and schizophrenia patients, the males had higher relative cerebral blood flow in anterior brain regions and lower relative cerebral blood flow in posterior brain regions than did the females. Compared with multiple regions exhibiting sex differences in relative cerebral blood flow, only the left middle frontal gyrus had a significant sex difference in amplitude of low-frequency fluctuations. In the females, schizophrenia patients exhibited increased relative cerebral blood flow and amplitude of low-frequency fluctuations in the basal ganglia, thalamus and hippocampus and reduced relative cerebral blood flow and amplitude of low-frequency fluctuations in the frontal, parietal and occipital regions compared with those of healthy controls. However, there were fewer brain regions with diagnostic group differences in the males than in the females. Brain regions with diagnostic group differences in relative cerebral blood flow and amplitude of low-frequency fluctuations only partially overlapped. Only the female patients exhibited increased relative cerebral

  12. AdS/CFT duality at strong coupling

    NASA Astrophysics Data System (ADS)

    Beccaria, M.; Ortix, C.

    2007-08-01

    We study the strong-coupling limit of the AdS/CFT correspondence in the framework of a recently proposed fermionic formulation of the Bethe ansatz equations governing the gauge theory anomalous dimensions. We give examples of states that do not follow the Gubser-Klebanov-Polyakov law at a large ’t Hooft coupling λ, in contrast to recent results on the quantum string Bethe equations that are valid in that regime. This result indicates that the fermionic construction cannot be trusted at large λ, although it remains an efficient tool for computing the weak-coupling expansion of anomalous dimensions.

  13. Two-phase charge-coupled device

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.

  14. Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.

    PubMed

    Myhre, Rolf H; Coriani, Sonia; Koch, Henrik

    2016-06-14

    Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.

  15. Coupled channels description of the α-decay fine structure

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  16. Intimate Partner Violence and Alcohol Problems in Interethnic and Intraethnic Couples

    ERIC Educational Resources Information Center

    Chartier, Karen G.; Caetano, Raul

    2012-01-01

    Despite the growing number of interethnic marriages in the United States, few studies have examined intimate partner violence (IPV) in interethnic couples. This article examined past-year occurrences of IPV across interethnic and intraethnic couples and tested correlates of IPV specifically in interethnic couples. Data were from a national survey…

  17. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  18. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  19. The effect of movement and load on the dynamic coupling of abdominal electromyography.

    PubMed

    King, Adam C

    2018-05-14

    This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Universal state-selective corrections to multireference coupled-cluster theories with single and double excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; van Dam, Hubertus JJ; Pittner, Jiri

    2012-03-28

    The recently proposed Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate Multi-Reference Coupled Cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential Ansatz. In this letter we report on the performance of a simple USS correction to the Brillouin-Wigner MRCC (BW-MRCC) formalism employing single and double excitations (BW-MRCCSD). It is shown that the resulting formalism (USS-BW-MRCCSD), which uses the manifold of single and double excitations to construct the correction, can be related to a posteriorimore » corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the results of the USS-BW-MRCCSD method with results of the BW-MRCCSD approach employing a posteriori corrections and with results obtained with the Full Configuration Interaction (FCI) method.« less

  1. Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory

    NASA Astrophysics Data System (ADS)

    Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter

    2000-09-01

    For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.

  2. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions.

    PubMed

    Veis, Libor; Antalík, Andrej; Brabec, Jiří; Neese, Frank; Legeza, Örs; Pittner, Jiří

    2016-10-03

    In the past decade, the quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as the method of choice for calculations of strongly correlated molecular systems. Despite its favorable scaling, it is in practice not suitable for computations of dynamic correlation. We present a novel method for accurate "post-DMRG" treatment of dynamic correlation based on the tailored coupled cluster (CC) theory in which the DMRG method is responsible for the proper description of nondynamic correlation, whereas dynamic correlation is incorporated through the framework of the CC theory. We illustrate the potential of this method on prominent multireference systems, in particular, N 2 and Cr 2 molecules and also oxo-Mn(Salen), for which we have performed the first post-DMRG computations in order to shed light on the energy ordering of the lowest spin states.

  3. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    PubMed

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  4. Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

    DOE PAGES

    Foote, Ryan H.; Ward, Daniel R.; Prance, J. R.; ...

    2015-09-11

    Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here in this paper, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Finally, our results aremore » consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.« less

  5. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  6. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

    PubMed

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  7. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze themore » main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.« less

  8. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGES

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; ...

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  9. Temperature Effect of Hydrogen-Like Impurity on the Ground State Energy of Strong Coupling Polaron in a RbCl Quantum Pseudodot

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-Lin

    2016-11-01

    We study the ground state energy and the mean number of LO phonons of the strong-coupling polaron in a RbCl quantum pseudodot (QPD) with hydrogen-like impurity at the center. The variations of the ground state energy and the mean number of LO phonons with the temperature and the strength of the Coulombic impurity potential are obtained by employing the variational method of Pekar type and the quantum statistical theory (VMPTQST). Our numerical results have displayed that [InlineMediaObject not available: see fulltext.] the absolute value of the ground state energy increases (decreases) when the temperature increases at lower (higher) temperature regime, [InlineMediaObject not available: see fulltext.] the mean number of the LO phonons increases with increasing temperature, [InlineMediaObject not available: see fulltext.] the absolute value of ground state energy and the mean number of LO phonons are increasing functions of the strength of the Coulombic impurity potential.

  10. New limits on coupled dark energy model after Planck 2015

    NASA Astrophysics Data System (ADS)

    Li, Hang; Yang, Weiqiang; Wu, Yabo; Jiang, Ying

    2018-06-01

    We used the Planck 2015 cosmic microwave background anisotropy, baryon acoustic oscillation, type-Ia supernovae, redshift-space distortions, and weak gravitational lensing to test the model parameter space of coupled dark energy. We assumed the constant and time-varying equation of state parameter for dark energy, and treated dark matter and dark energy as the fluids whose energy transfer was proportional to the combined term of the energy densities and equation of state, such as Q = 3 Hξ(1 +wx) ρx and Q = 3 Hξ [ 1 +w0 +w1(1 - a) ] ρx, the full space of equation of state could be measured when we considered the term (1 +wx) in the energy exchange. According to the joint observational constraint, the results showed that wx = - 1.006-0.027+0.047 and ξ = 0.098-0.098>+0.026 for coupled dark energy with a constant equation of state, w0 = -1.076-0.076+0.085, w1 = - 0.069-0.319+0.361, and ξ = 0.210-0.210+0.048 for a variable equation of state. We did not get any clear evidence for the coupling in the dark fluids at 1 σ region.

  11. Effects of temperature on the ground state of a strongly-coupling magnetic polaron and mean phonon number in RbCl quantum pseudodot

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    2016-07-01

    On the condition of strong electron-LO phonon coupling in a RbCl quantum pseudodot (QPD), the ground state energy and the mean number of phonons are calculated by using the Pekar variational method and quantum statistical theory. The variations of the ground state energy and the mean number with respect to the temperature and the cyclotron frequency of the magnetic field are studied in detail. We find that the absolute value of the ground state energy increases (decreases) with increasing temperature when the temperature is in the lower (higher) temperature region, and that the mean number increases with increasing temperature. The absolute value of the ground state energy is a decreasing function of the cyclotron frequency of the magnetic field whereas the mean number is an increasing function of it. We find two ways to tune the ground state energy and the mean number: controlling the temperature and controlling the cyclotron frequency of the magnetic field.

  12. Proton transfer mediated by the vibronic coupling in oxygen core ionized states of glyoxalmonoxime studied by infrared-X-ray pump-probe spectroscopy.

    PubMed

    Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H

    2006-11-30

    The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.

  13. A novel experimental setup for energy loss and charge state measurements in dense moderately coupled plasma using laser-heated hohlraum targets

    NASA Astrophysics Data System (ADS)

    Ortner, A.; Schumacher, D.; Cayzac, W.; Frank, A.; Basko, M. M.; Bedacht, S.; Blazevic, A.; Faik, S.; Kraus, D.; Rienecker, T.; Schaumann, G.; Tauschwitz, An.; Wagner, F.; Roth, M.

    2016-03-01

    We report on a new experimental setup for ion energy loss measurements in dense moderately coupled plasma which has recently been developed and tested at GSI Darmstadt. A partially ionized, moderately coupled carbon plasma (ne ≤ 0.8• 1022 cm-3, Te = 15 eV, z = 2.5, Γ = 0.5) is generated by volumetrical heating of two thin carbon foils with soft X-rays. This plasma is then probed by a bunched heavy ion beam. For that purpose, a special double gold hohlraum target of sub-millimeter size has been developed which efficiently converts intense laser light into thermal radiation and guarantees a gold-free interaction path for the ion beam traversing the carbon plasma. This setup allows to do precise energy loss measurements in non-ideal plasma at the level of 10 percent solid-state density.

  14. Time Delay in the Kuramoto Model of Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, M. K. Stephen; Strogatz, Steven H.

    1999-01-01

    We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.

  15. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  16. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  17. Gene regulation and noise reduction by coupling of stochastic processes.

    PubMed

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  18. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence

    PubMed Central

    Etherington, Marc K.; Gibson, Jamie; Higginbotham, Heather F.; Penfold, Thomas J.; Monkman, Andrew P.

    2016-01-01

    Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor–acceptor charge transfer molecules, where spin–orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation. PMID:27901046

  19. Exchange interaction and the tunneling induced transparency in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Borges, Halyne; Alcalde, Augusto; Ulloa, Sergio

    2014-03-01

    Stacked semiconductor quantum dots coupled by tunneling are unique ``quantum molecule'' where it is possible to create a multilevel structure of excitonic states. This structure allows the investigation of quantum interference processes and their control via electric external fields. In this work, we investigate the optical response of a quantum molecule coherently driven by a polarized laser, considering the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. In our model we consider interdot transitions mediated by the the hole tunneling between states with the same total spin and, between bright and dark exciton states. Using realistic experimental parameters, we demonstrate that the excitonic states coupled by tunneling exhibit an enriched and controllable optical response. Our results show that through the appropriate control of the external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra, whenever states of appropriate symmetry are mixed by the hole tunneling. We explore the relevant parameters space that would allows with the experiments. CAPES, INCT-IQ and MWN/CIAM-NSF.

  20. Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Etherington, Marc K.; Gibson, Jamie; Higginbotham, Heather F.; Penfold, Thomas J.; Monkman, Andrew P.

    2016-11-01

    Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor-acceptor charge transfer molecules, where spin-orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation.

  1. Charge transport in strongly coupled quantum dot solids

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie R.; Murray, Christopher B.

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  2. Charge transport in strongly coupled quantum dot solids.

    PubMed

    Kagan, Cherie R; Murray, Christopher B

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  3. Development and application of soil coupled heat pump

    NASA Astrophysics Data System (ADS)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  4. The Consequences of Spin-Orbit Coupling on the 5d3 Electronic Configuration

    NASA Astrophysics Data System (ADS)

    Christianson, A. D.

    The impact of spin-orbit coupling on collective properties of matter is of considerable interest. The most intensively investigated materials in this regard are Iridium-based transition metal oxides which exhibit a host of interesting ground states that originate from a 5d5 Jeff = 1/2 electronic configuration. Moving beyond the Jeff = 1/2 paradigm to other electronic configurations where spin-orbit coupling plays a prominent role is a key objective of ongoing research. Here we focus on several Osmium-based transition metal oxides such as NaOsO3, Cd2Os2O7, Ca3LiOsO6, Sr2ScOsO6, Ba2YOsO6, and Sr2FeOsO6, which are nominally in the 5d3 electronic configuration. Within the LS coupling picture and a strong octahedral crystal field, the 5d3 configuration is expected to be an orbital singlet and spin-orbit effects should be minimal. Nevertheless, our neutron and x-ray scattering investigations of these materials as well as investigations by other groups show dramatic effects of spin-orbit coupling including reduced moment magnetic order, enhanced spin-phonon coupling, and large spin gaps. In particular, the anisotropy induced by spin-orbit coupling tips the balance of the frustrated interactions and drives the selection of particular magnetic ground states. To understand the mechanism driving the spin-orbit effects, we have explored the ground state t2g manifold with resonant inelastic x-ray scattering and observe a spectrum inexplicable by an LS coupling picture. On the other hand, an intermediate coupling approach reveals that the ground state wave function is a J =3/2 configuration which answers the question of how strong spin-orbit coupling effects arise in 5d3 systems.

  5. Search for anomalous top-quark couplings with the D0 detector.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blekman, F; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dutt, S; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; Meijer, M M; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-03-06

    Anomalous Wtb couplings modify the angular correlations of the top-quark decay products and change the single top-quark production cross section. We present limits on anomalous top-quark couplings by combining information from W boson helicity measurements in top-quark decays and anomalous coupling searches in the single top-quark final state. We set limits on right-handed vector couplings as well as left-handed and right-handed tensor couplings based on about 1 fb(-1) of data collected by the D0 experiment.

  6. Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Liu, Bocheng; Hu, Hanping; Miao, Suoxia

    A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.

  7. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-06-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  8. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  9. Cluster dynamics of pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin; Strogatz, Steven; Krapivsky, Paul

    2015-03-01

    We study the dynamics of networks of pulse coupled oscillators. Much attention has been devoted to the ultimate fate of the system: which conditions lead to a steady state in which all the oscillators are firing synchronously. But little is known about how synchrony builds up from an initially incoherent state. The current work addresses this question. Oscillators start to synchronize by forming clusters of different sizes that fire in unison. First pairs of oscillators, then triplets and so on. These clusters progressively grow by coalescing with others, eventually resulting in the fully synchronized state. We study the mean field model in which the coupling between oscillators is all to all. We use probabilistic arguments to derive a recursive set of evolution equations for these clusters. Using a generating function formalism, we derive simple equations for the moments of these clusters. Our results are in good agreement simulation. We then numerically explore the effects of non-trivial connectivity. Our results have potential application to ultra-low power ``impulse radio'' & sensor networks.

  10. Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds.

    PubMed

    Cunningham, Paul D; Kim, Young C; Díaz, Sebastián A; Buckhout-White, Susan; Mathur, Divita; Medintz, Igor L; Melinger, Joseph S

    2018-05-17

    We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm -1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.

  11. Multi-channels coupling-induced pattern transition in a tri-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Wu, Fuqiang; Wang, Ya; Ma, Jun; Jin, Wuyin; Hobiny, Aatef

    2018-03-01

    Neurons in nerve system show complex electrical behaviors due to complex connection types and diversity in excitability. A tri-layer network is constructed to investigate the signal propagation and pattern formation by selecting different coupling channels between layers. Each layer is set as different states, and the local kinetics is described by Hindmarsh-Rose neuron model. By changing the number of coupling channels between layers and the state of the first layer, the collective behaviors of each layer and synchronization pattern of network are investigated. A statistical factor of synchronization on each layer is calculated. It is found that quiescent state in the second layer can be excited and disordered state in the third layer is suppressed when the first layer is controlled by a pacemaker, and the developed state is dependent on the number of coupling channels. Furthermore, the collapse in the first layer can cause breakdown of other layers in the network, and the mechanism is that disordered state in the third layer is enhanced when sampled signals from the collapsed layer can impose continuous disturbance on the next layer.

  12. Towards a realistic simulation of boreal summer tropical rainfall climatology in state-of-the-art coupled models: role of the background snow-free land albedo

    NASA Astrophysics Data System (ADS)

    Terray, P.; Sooraj, K. P.; Masson, S.; Krishna, R. P. M.; Samson, G.; Prajeesh, A. G.

    2017-07-01

    State-of-the-art global coupled models used in seasonal prediction systems and climate projections still have important deficiencies in representing the boreal summer tropical rainfall climatology. These errors include prominently a severe dry bias over all the Northern Hemisphere monsoon regions, excessive rainfall over the ocean and an unrealistic double inter-tropical convergence zone (ITCZ) structure in the tropical Pacific. While these systematic errors can be partly reduced by increasing the horizontal atmospheric resolution of the models, they also illustrate our incomplete understanding of the key mechanisms controlling the position of the ITCZ during boreal summer. Using a large collection of coupled models and dedicated coupled experiments, we show that these tropical rainfall errors are partly associated with insufficient surface thermal forcing and incorrect representation of the surface albedo over the Northern Hemisphere continents. Improving the parameterization of the land albedo in two global coupled models leads to a large reduction of these systematic errors and further demonstrates that the Northern Hemisphere subtropical deserts play a seminal role in these improvements through a heat low mechanism.

  13. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.

    PubMed

    Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B

    2018-05-31

    Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.

  14. Influences of Quantum Mechanically Mixed Electronic and Vibrational Pigment States in 2D Electronic Spectra of Photosynthetic Systems: Strong Electronic Coupling Cases

    DOE PAGES

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-09-07

    In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures.more » However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum

  15. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  16. Optophononics with Coupled Quantum Dots

    DTIC Science & Technology

    2014-02-18

    polarons’ applicability as an amplifier of the visibility of weakest tunnel coupling channels. This observation via destructive interference proves the...exhibit weak electric field dependence . The |iXnS states exhibit much larger electric field dependence owing to the greater spatial separation of the...gate voltage, Dph¼pr0t2 is the phonon-assisted tunnelling broadening, r0 is the phonon density of states, qFano ¼ niXt=ðnDphÞ is the Fano factor; oph,0

  17. Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    PubMed

    Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M

    2015-03-27

    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.

  18. Collective behavior of coupled nonuniform stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2012-02-01

    Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≤α‧<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.

  19. The first-principle coupled calculations using TMCC and CFX for the pin-wise simulation of LWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Wang, K.

    2012-07-01

    The coupling of neutronics and thermal-hydraulics plays an important role in the reactor safety, core design and operation of nuclear power facilities. This paper introduces the research on the coupling of Monte Carlo method and CFD method, specifically using TMCC and CFX. The methods of the coupling including the coupling approach, data transfer, mesh mapping and transient coupling scheme are studied firstly. The coupling of TMCC and CFX for the steady state calculations is studied and described for the single rod model and the 3 x 3 Rod Bundle model. The calculation results prove that the coupling method is feasiblemore » and the coupled calculation can be used for steady state calculations. However, the oscillation which occurs during the coupled calculation indicates that this method still needs to be improved for the accuracy. Then the coupling for the transient calculations is also studied and tested by two cases of the steady state and the lost of heat sink. The preliminary results of the transient coupled calculations indicates that the transient coupling with TMCC and CFX is able to simulate the transients but instabilities are occurring. It is also concluded that the transient coupling of TMCC and CFX needs to be improved due to the limitation of computational resource and the difference of time scales. (authors)« less

  20. Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Begzjav, Tuguldur

    2016-04-01

    Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.

  1. Electronic coupling in long-range electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, M.D.

    1996-12-31

    One of the quantities crucial in controlling electron transfer (et) kinetics is the donor/acceptor electronic coupling integral (HDA). Recent theoretical models for HDA will be presented, and the results of ab initio computational implementation will be reported and analyzed for several metal-to-metal ligand charge transfer processes in complex molecular aggregates. New procedures for defining diabatic states, including a generalization of the Mulliken-Hush model, allow applications to optical and excited state as well as ground state et in a many-state framework.

  2. Generalized synchronization between chimera states

    NASA Astrophysics Data System (ADS)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  3. Mobile Phones Coupled with Remote Sensors for Surveillance

    DTIC Science & Technology

    2012-03-01

    AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Mobile Phones Coupled with Remote Sensors for Surveillance 5. FUNDING NUMBERS 6. AUTHOR(S...release; distribution is unlimited MOBILE PHONES COUPLED WITH REMOTE SENSORS FOR SURVEILLANCE Bradley J. Williford Lieutenant, United States...data flow from the sensors to the Smartphone. The sensor control board and phone settings to allow wireless communication are also described. The

  4. Tachyon field non-minimally coupled to massive neutrino matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Safia; Myrzakulov, Nurgissa; Myrzakulov, R., E-mail: safia@ctp-jamia.res.in, E-mail: nmyrzakulov@gmail.com, E-mail: rmyrzakulov@gmail.com

    2016-07-01

    In this paper, we consider rolling tachyon, with steep run-away type of potentials non-minimally coupled to massive neutrino matter. The coupling dynamically builds up at late times as neutrino matter turns non-relativistic. In case of scaling and string inspired potentials, we have shown that non-minimal coupling leads to minimum in the field potential. Given a suitable choice of model parameters, it is shown to give rise to late-time acceleration with the desired equation of state.

  5. Ab initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken-Hush with configuration-interaction singles.

    PubMed

    Chen, Hung-Cheng; Hsu, Chao-Ping

    2005-12-29

    To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.

  6. FIBER OPTICS: Nonclassical states of light in tunnel-coupled optical fibers and possibilities for experimental realization in the beams of low-power high-coherence cw lasers

    NASA Astrophysics Data System (ADS)

    Alodzhants, A. P.; Dzheĭranyan, G. A.; Gevorkyan, L. P.; Arakelyan, S. M.

    1993-08-01

    The creation of nonclassical states of light in tunnel-coupled optical fibers is analyzed. It is possible to achieve a 40% suppression of quantum (vacuum) fluctuations in one quadrature of the field of a standard cw He-Ne laser with an intensity as low as 1 kW/cm2 (i.e., a power of ~ 1 mW). The possibility of experimental implementation of this scheme for generating squeezed quantum states is discussed.

  7. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE PAGES

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    2016-09-29

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  8. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  9. Fourier-transform spectroscopy and deperturbation analysis of the spin-orbit coupled A{sup 1}Σ{sup +} and b{sup 3}Π states of KRb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alps, K.; Kruzins, A.; Tamanis, M.

    Fourier-transform A{sup 1}Σ{sup +} − b{sup 3}Π → X{sup 1}Σ{sup +} laser-induced fluorescence spectra were recorded for the natural mixture of {sup 39,41}K{sup 85,87}Rb isotopologues produced in a heatpipe oven. Overall 4200 rovibronic term values of the spin-orbit coupled A{sup 1}Σ{sup +} and b{sup 3}Π states were determined with an uncertainty of about 0.01 cm{sup −1} in the energy range [10 850, 14 200] cm{sup −1} covering rotational quantum numbers J′ ∈ [3, 280]. Direct deperturbation analysis of the A ∼ b complex performed within the framework of the A{sup 1}Σ{sup +} ∼ b{sup 3}Π{sub Ω=0,1,2} coupled-channel approach reproduced experimental data withmore » a standard deviation of 0.004 cm{sup −1}. Initial parameters of the internuclear potentials and spin-orbit coupling functions along with the relevant transition dipole moments were obtained by performing the quasi-relativistic electronic structure calculations. The mass-invariant molecular parameters obtained from the fit were used to predict energy and radiative properties of the A ∼ b complex for low J levels of {sup 39}K{sup 85}Rb as well as for {sup 41}K{sup 87}Rb isotopologues, allowing us to identify the most reasonable candidates for the stimulated Raman transitions between the initial uppermost vibrational levels of the a{sup 3}Σ{sup +} and X{sup 1}Σ{sup +} states, the intermediate levels of the A ∼ b complex, and the lowest absolute ground X{sup 1}Σ{sup +}(v = 0, J = 0) state.« less

  10. Investigating Uranium Concentrations in Groundwaters in the State of Idaho Using Kinetic Phosphorescence Analysis and Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Tkavadze, Levan; Dunker, Roy E; Brey, Richard R; Dudgeon, John

    2016-11-01

    The determination of uranium concentrations in natural water samples is of great interest due to the environmental consequences of this radionuclide. In this study, 380 groundwater samples from various locations within the state of Idaho were analyzed using two different techniques. The first method was Kinetic Phosphorescence Analysis (KPA), which gives the total uranium concentrations in water samples. The second analysis method was inductively coupled plasma mass spectrometry (ICP- MS). This method determines the total uranium concentration as well as the separate isotope concentrations of uranium. The U/U isotopic ratio was also measured for each sample to confirm that there was no depleted or enriched uranium present. The results were compared and mapped separately from each other. The study also found that in some areas of the state, natural uranium concentrations are relatively high.

  11. The Effects of Hydrogen-Like Impurity and Temperature on State Energies and Transition Frequency of Strong-Coupling Bound Polaron in an Asymmetric Gaussian Potential Quantum Well

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-lin

    2018-02-01

    In the present work, we study the ground state energy, the first excited state energy and the transition frequency (TF) between the two states of the strong-coupling impurity bound polaron in an asymmetric Gaussian potential quantum well (AGPQW) by using the variational method of the Pekar type. By employing quantum statistics theory, the temperature effect on the state energies (SEs) and the TF are also calculated with a hydrogen-like impurity at the coordinate origin of the AGPQW. According to the obtained results, we found that the SEs and the TF are increasing functions of the temperature, whereas they are decreasing ones of the Coulombic impurity potential.

  12. Coupled skinny baker's maps and the Kaplan-Yorke conjecture

    NASA Astrophysics Data System (ADS)

    Gröger, Maik; Hunt, Brian R.

    2013-09-01

    The Kaplan-Yorke conjecture states that for ‘typical’ dynamical systems with a physical measure, the information dimension and the Lyapunov dimension coincide. We explore this conjecture in a neighborhood of a system for which the two dimensions do not coincide because the system consists of two uncoupled subsystems. We are interested in whether coupling ‘typically’ restores the equality of the dimensions. The particular subsystems we consider are skinny baker's maps, and we consider uni-directional coupling. For coupling in one of the possible directions, we prove that the dimensions coincide for a prevalent set of coupling functions, but for coupling in the other direction we show that the dimensions remain unequal for all coupling functions. We conjecture that the dimensions prevalently coincide for bi-directional coupling. On the other hand, we conjecture that the phenomenon we observe for a particular class of systems with uni-directional coupling, where the information and Lyapunov dimensions differ robustly, occurs more generally for many classes of uni-directionally coupled systems (also called skew-product systems) in higher dimensions.

  13. Fano-like resonance in symmetry-broken gold nanotube dimer.

    PubMed

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2012-11-19

    The influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum. The Fano dip shows a red-shift and becomes deep with the increase of the offset-value. In the strong coupling model of the SBGNT dimer, the coupling between two SBGNTs induces giant electric field enhancement at the gap of the dimer, which is much larger than that in the symmetry gold nanotube dimer. The SBGNT with larger offset-value exhibits stronger near-field at the "hot spot".

  14. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken{endash}Hush and block diagonalization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, R.J.; Newton, M.D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (H{sub ab}) for electron transfer reactions using {ital ab initio} electronic structure theory. The first is based on the generalized Mulliken{endash}Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn{sub 2}OH{sub 2}{sup +} and (b) the low-lying states of the benzene{endash}Cl atom complex andmore » its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn{sub 2}OH{sub 2}{sup +}. Both methods also yield a natural definition of the effective distance (r{sub DA}) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of r{sub DA}, generally based on molecular structure data. {copyright} {ital 1997 American Institute of Physics.}« less

  15. Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2015-12-21

    Constrained density functional theory with configuration interaction (CDFT-CI) is a useful, low-cost tool for the computational prediction of electronic couplings between pseudo-diabatic constrained electronic states. Such couplings are of paramount importance in electron transfer theory and transition state theory, among other areas of chemistry. Unfortunately, CDFT-CI occasionally fails significantly, predicting a coupling that does not decay exponentially with distance and/or overestimating the expected coupling by an order of magnitude or more. In this communication, we show that the eigenvalues of the difference density matrix between the two constrained states can be used as an a priori metric to determine whenmore » CDFT-CI are likely to be reliable: when the eigenvalues are near 0 or ±1, transfer of a whole electron is occurring, and CDFT-CI can be trusted. We demonstrate the utility of this metric with several illustrative examples.« less

  16. Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer

    NASA Astrophysics Data System (ADS)

    Mavros, Michael G.; Van Voorhis, Troy

    2015-12-01

    Constrained density functional theory with configuration interaction (CDFT-CI) is a useful, low-cost tool for the computational prediction of electronic couplings between pseudo-diabatic constrained electronic states. Such couplings are of paramount importance in electron transfer theory and transition state theory, among other areas of chemistry. Unfortunately, CDFT-CI occasionally fails significantly, predicting a coupling that does not decay exponentially with distance and/or overestimating the expected coupling by an order of magnitude or more. In this communication, we show that the eigenvalues of the difference density matrix between the two constrained states can be used as an a priori metric to determine when CDFT-CI are likely to be reliable: when the eigenvalues are near 0 or ±1, transfer of a whole electron is occurring, and CDFT-CI can be trusted. We demonstrate the utility of this metric with several illustrative examples.

  17. A picture for the coupling of unemployment and inflation

    NASA Astrophysics Data System (ADS)

    Safdari, H.; Hosseiny, A.; Vasheghani Farahani, S.; Jafari, G. R.

    2016-02-01

    The aim of this article is to illustrate the scaling features of two well heard characters in the media; unemployment and inflation. We carry out a scaling analysis on the coupling between unemployment and inflation. This work is based on the wavelet analysis as well as the detrended fluctuation analysis (DFA). Through our analysis we state that while unemployment is time scale invariant, inflation is bi-scale. We show that inflation possess a five year time scale where it experiences different behaviours before and after this scale period. This behaviour of inflation provides basis for the coupling to inherit the stated time interval. Although inflation is bi-scale, it is unemployment that shows a strong multifractality feature. Owing to the cross wavelet analysis we provide a picture that illustrates the dynamics of coupling between unemployment and inflation regarding intensity, direction, and scale. The fact of the matter is that the coupling between inflation and unemployment is not equal in one way compared to the opposite. Regarding the scaling; coupling exhibits different features in various scales. In a sense that although in one scale its correlation behaves in a positive/negative manner, at the same time it can be negative/positive for another scale.

  18. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  19. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  20. Gendered power in cultural contexts: Part I. Immigrant couples.

    PubMed

    Maciel, Jose A; Van Putten, Zanetta; Knudson-Martin, Carmen

    2009-03-01

    Immigration is a world-wide phenomenon and practitioners are increasingly called on to work with issues related to it. The authors examine the experience of couples who are immigrants to the United States in regard to gender and power issues. Although the study limited participation to one religious group in order to hold that aspect of culture and gender attitudes constant, the experiences of these couples help to make visible the link between microlevel couple interaction and larger social processes. The results show how the couples manage a delicate balance between the push for gender change and avoiding too much conflict as male power is challenged.

  1. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  2. Duality between a dark state and a quasi-dark state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirokawa, Masao, E-mail: hirokawa@amath.hiroshima-u.ac.jp

    We study a physical system coupled with two one-mode Bose fields. The physical system is a two-level system or a harmonic oscillator. We prove that each dark and quasi-dark state appears under a proper condition, and then, we derive a duality between the dark state and the quasi-dark state. This duality induces the switch between the dark state and the quasi-dark state.

  3. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  4. Nuclear structure studies in highly neutron-deficient (114,116)Xe

    NASA Astrophysics Data System (ADS)

    Degraaf, James Hendrick

    Lifetimes of nuclear states in 114Xe and 116Xe were measured for the first time; these nuclei represent the most neutron-deficient isotopes of xenon for which lifetimes have now been measured. The fusion-evaporation reactions 58Ni(60Ni, 2p)116Xe at 223 MeV beam energy and 58Ni(58Ni, 2p)114Xe at 215 MeV beam energy were used. Lifetimes were measured using the Recoil Distance Method (RDM) with the 8π gamma-ray spectrometer at Chalk River Laboratories. The new measurements of the B(E2;2+/to 0+) strength in these nuclei, coupled with the recent measurements for heavier xenon isotopes, are well described within the framework of the O(6) symmetry limit of the Interacting Boson Approximation. The octupole nature of the negative parity side-band was also studied, and the lifetime measurements indicate a change from a K/approx 3 structure in heavier xenon isotopes to a K/approx 0,/ 1 structure in 114Xe.

  5. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.

    PubMed

    Zhang, Fan; Ren, Juanjuan; Duan, Xueke; Zhao, Chen; Gong, Qihuang; Gu, Ying

    2018-06-13

    Scalable integrated quantum information networks calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum. Through varying the amplitude of evanescent field, the concurrence of steady-state entanglement can be modified from 0 to 0.75. Because the interaction between emitters and the nanowire is much weaker than that inside the coupled system, the range of modulation for two-qubit entanglement is insensitive to their distance. The evanescent field controlled entangled state engineering provides the possibility to avoid optical crosstalk for on-chip steady-state entanglement. © 2018 IOP Publishing Ltd.

  6. Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-03-01

    We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.

  7. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE PAGES

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    2017-07-25

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  8. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  9. Mobility-induced persistent chimera states

    NASA Astrophysics Data System (ADS)

    Petrungaro, Gabriela; Uriu, Koichiro; Morelli, Luis G.

    2017-12-01

    We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states in which coherent in-phase and antiphase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.

  10. New insights on the matter-gravity coupling paradigm.

    PubMed

    Delsate, Térence; Steinhoff, Jan

    2012-07-13

    The coupling between matter and gravity in general relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, general relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter, we address the implications of consistent nonlinear gravity-matter coupling. The Eddington-inspired Born-Infeld theory recently introduced by Bañados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to general relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of general relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.

  11. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  12. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  13. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  14. Joint weak value for all order coupling using continuous variable and qubit probe

    NASA Astrophysics Data System (ADS)

    Kumari, Asmita; Pan, Alok Kumar; Panigrahi, Prasanta K.

    2017-11-01

    The notion of weak measurement in quantum mechanics has gained a significant and wide interest in realizing apparently counterintuitive quantum effects. In recent times, several theoretical and experimental works have been reported for demonstrating the joint weak value of two observables where the coupling strength is restricted to the second order. In this paper, we extend such a formulation by providing a complete treatment of joint weak measurement scenario for all-order-coupling for the observable satisfying A 2 = 𝕀 and A 2 = A, which allows us to reveal several hitherto unexplored features. By considering the probe state to be discrete as well as continuous variable, we demonstrate how the joint weak value can be inferred for any given strength of the coupling. A particularly interesting result we pointed out that even if the initial pointer state is uncorrelated, the single pointer displacement can provide the information about the joint weak value, if at least third order of the coupling is taken into account. As an application of our scheme, we provide an all-order-coupling treatment of the well-known Hardy paradox by considering the continuous as well as discrete meter states and show how the negative joint weak probabilities emerge in the quantum paradoxes at the weak coupling limit.

  15. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  16. "Coherence-incoherence" transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors

    NASA Astrophysics Data System (ADS)

    Semenova, Nadezhda I.; Rybalova, Elena V.; Strelkova, Galina I.; Anishchenko, Vadim S.

    2017-03-01

    We consider in detail similarities and differences of the "coherence-incoherence" transition in ensembles of nonlocally coupled chaotic discrete-time systems with nonhyperbolic and hyperbolic attractors. As basic models we employ the Hénon map and the Lozi map. We show that phase and amplitude chimera states appear in a ring of coupled Hénon maps, while no chimeras are observed in an ensemble of coupled Lozi maps. In the latter, the transition to spatio-temporal chaos occurs via solitary states. We present numerical results for the coupling function which describes the impact of neighboring oscillators on each partial element of an ensemble with nonlocal coupling. Varying the coupling strength we analyze the evolution of the coupling function and discuss in detail its role in the "coherence-incoherence" transition in the ensembles of Hénon and Lozi maps.

  17. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization

  18. Extracting Effective Higgs Couplings in the Golden Channel

    DOE PAGES

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  19. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  20. Ultrastrong exciton-photon coupling in single and coupled organic microcavities

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Bramante, Rosemary; Valle, Brent; Singer, Kenneth; Khattab, Tawfik; Williams, Jarrod; Twieg, Robert

    2015-03-01

    We have demonstrated ultrastrong light-matter coupling in organic planar microcavities composed of a neat glassy organic dye film between two metallic (aluminum) mirrors in a half-cavity configuration. Such cavities are characterized by Q factors around 10. Tuning the thickness of the organic layer enables the observation of the ultrastrong coupling regime. Via reflectivity measurements, we observe a very large Rabi splitting around 1.227 eV between upper and lower polariton branches at room temperature, and we detect polariton emission from the lower polariton branch via photoluminescence measurements. The large splitting is due to the large oscillator strength of the neat dye glass, and to the match of the low-Q cavity spectral width to the broad absorption width of the dye film material. We also study the interaction between excitonic states of neat glassy organic dye and cavity modes within coupled microcavity structures. The high-reflectivity mirrors are formed from distributed Bragg reflectors (DBR), which are multilayer films fabricated using the coextrusion process, containing alternating layers of high (SAN25, n =1.57) and low (Dyneon THV 220G, n =1.37) refractive index dielectric polymers. Nonlinear optical measurements will be discussed. This research was supported by the National Science Foundation Center for Layered Polymer Systems (CLiPS) under Grant Number DMR-0423914.

  1. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Longkun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Wu, Xiaoqun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Lu, Jun-an, E-mail: jalu@whu.edu.cn

    2015-03-15

    Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) Themore » coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay.« less

  2. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.

    PubMed

    Morrison, Adrian F; Herbert, John M

    2017-06-14

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  3. Sustained currents in coupled diffusive systems

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Sanders, David P.

    2014-08-01

    Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation.

  4. Ab initio theory of spin-orbit coupling for quantum bits in diamond exhibiting dynamic Jahn-Teller effect

    NASA Astrophysics Data System (ADS)

    Gali, Adam; Thiering, Gergő

    Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).

  5. Magnetosphere-Regolith/Exosphere Coupling: Differences and Similarities to the Earth Magnetosphere-Ionosphere Coupling

    NASA Technical Reports Server (NTRS)

    Gjerleov, J. W.; Slavin, J. A.

    2001-01-01

    Of the three Mercury passes made by Mariner 10, the first and third went through the Mercury magnetosphere. The third encounter which occurred during northward IMF (interplanetary magnetic field) showed quiet time magnetic fields. In contrast the third encounter observed clear substorm signatures including dipolarization, field-aligned currents (FACs) and injection of energetic electrons at geosynchronous orbit. However, the determined cross-tail potential drop and the assumed height integrated conductance indicate that the FAC should be 2-50 times weaker than observed. We address this inconsistency and the fundamental problem of FAC closure whether this takes place in the regolith or in the exosphere. The current state of knowledge of the magnetosphere-exosphere/regolith coupling is addressed and similarities and differences to the Earth magnetosphere-ionosphere coupling are discussed.

  6. Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiao; Ye, Dong; Sun, Zhaowei; Liu, Chuang

    2018-02-01

    This paper presents a robust adaptive controller integrated with an extended state observer (ESO) to solve coupled spacecraft tracking maneuver in the presence of model uncertainties, external disturbances, actuator uncertainties including magnitude deviation and misalignment, and even actuator saturation. More specifically, employing the exponential coordinates on the Lie group SE(3) to describe configuration tracking errors, the coupled six-degrees-of-freedom (6-DOF) dynamics are developed for spacecraft relative motion, in which a generic fully actuated thruster distribution is considered and the lumped disturbances are reconstructed by using anti-windup technique. Then, a novel ESO, developed via second order sliding mode (SOSM) technique and adding linear correction terms to improve the performance, is designed firstly to estimate the disturbances in finite time. Based on the estimated information, an adaptive fast terminal sliding mode (AFTSM) controller is developed to guarantee the almost global asymptotic stability of the resulting closed-loop system such that the trajectory can be tracked with all the aforementioned drawbacks addressed simultaneously. Finally, the effectiveness of the controller is illustrated through numerical examples.

  7. Same-Sex Couples: Legal Complexities

    ERIC Educational Resources Information Center

    Oswald, Ramona Faith; Kuvalanka, Katherine A.

    2008-01-01

    In this article, the authors present a typology for organizing our current knowledge regarding same-sex couples in the United States who have and have not established legal ties between partners. This framework is complemented by a discussion of key rulings that define what is legally possible as well as the introduction of "legal consciousness,"…

  8. Recent advances in spin-free state-specific and state-universal multi-reference coupled cluster formalisms: A unitary group adapted approach

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-06-01

    We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.

  9. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  10. Competing magnetic ground states and their coupling to the crystal lattice in CuFe2Ge2

    NASA Astrophysics Data System (ADS)

    May, Andrew; Calder, Stuart; Parker, David; Sales, Brian; McGuire, Michael

    CuFe2Ge2 has been identified as a system with competing magnetic ground states that are strongly coupled to the crystal lattice and easily manipulated by temperature or applied magnetic field. Powder neutron diffraction data reveal the emergence of antiferromagnetic (AFM) order near TN = 175 K, as well as a transition into an incommensurate AFM spin structure below approximately 125 K. Together with refined moments of approximately 1 Bohr magneton per iron, the incommensurate structure supports an itinerant picture of magnetism in CuFe2Ge2, which is consistent with theoretical calculations. Bulk magnetization measurements suggest that the spin structures are easily manipulated with an applied field, which further demonstrates the near-degeneracy of different magnetic configurations. Interestingly, the thermal expansion is found to be very anisotropic, and the c lattice parameter has anomalous temperature dependence near TN. These results show that the ground state of CuFe2Ge2 is easily manipulated by external forces, making it a potential parent compound for a rich phase diagram of emergent phenomena. Research supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and Scientific User Facilities Division.

  11. Predicting synchrony in heterogeneous pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    Talathi, Sachin S.; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R.; Ditto, William L.

    2009-08-01

    Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.

  12. Estimates of electronic coupling for excess electron transfer in DNA

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2005-07-01

    Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.

  13. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that willmore » exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.« less

  14. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  15. Spin-exchange-induced spin-orbit coupling in a superfluid mixture

    NASA Astrophysics Data System (ADS)

    Chen, Li; Zhu, Chuanzhou; Zhang, Yunbo; Pu, Han

    2018-03-01

    We investigate the ground-state properties of a dual-species spin-1/2 Bose-Einstein condensate. One of the species is subjected to a pair of Raman laser beams that induces spin-orbit (SO) coupling, whereas the other species is not coupled to the Raman laser. In certain limits, analytical results can be obtained. It is clearly shown that, through the interspecies spin-exchange interaction, the second species also exhibits SO coupling. This mixture system displays a very rich phase diagram, with many of the phases not present in an SO-coupled single-species condensate. Our work provides a way of creating SO coupling in atomic quantum gases, and opens up an avenue of research in SO-coupled superfluid mixtures. From a practical point of view, the spin-exchange-induced SO coupling may overcome the heating issue for certain atomic species when subjected to Raman beams.

  16. Coupled Kardar-Parisi-Zhang Equations in One Dimension

    NASA Astrophysics Data System (ADS)

    Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert

    2013-11-01

    Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.

  17. Optimizing phonon space in the phonon-coupling model

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2017-08-01

    We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.

  18. Axionic landscape for Higgs coupling near-criticality

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Espinosa, José R.

    2018-02-01

    The measured value of the Higgs quartic coupling λ is peculiarly close to the critical value above which the Higgs potential becomes unstable, when extrapolated to high scales by renormalization group running. It is tempting to speculate that there is an anthropic reason behind this near-criticality. We show how an axionic field can provide a landscape of vacuum states in which λ scans. These states are populated during inflation to create a multiverse with different quartic couplings, with a probability distribution P that can be computed. If P is peaked in the anthropically forbidden region of Higgs instability, then the most probable universe compatible with observers would be close to the boundary, as observed. We discuss three scenarios depending on the Higgs vacuum selection mechanism: decay by quantum tunneling, by thermal fluctuations, or by inflationary fluctuations.

  19. Cooperative bi-exponential decay of dye emission coupled via plasmons.

    PubMed

    Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P

    2018-06-22

    Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.

  20. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.