Science.gov

Sample records for od matrix based

  1. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  2. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  3. Microstructural Characterization of Co-Based ODS Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Qu, Xuanhui; He, Xinbo; Din, Rafi-ud; Liu, Hengsan; Qin, Mingli; Zhu, Hongmin

    2012-11-01

    Co-based ODS alloys, strengthened by nanosized oxide dispersion and γ' precipitates, are potential high-temperature structural materials. The characteristics of the mechanically alloyed powder and the microstructural evolution of the Co-based ODS alloys were investigated. The results revealed that mechanical alloying had induced the formation of supersaturated solid solution in immiscible Co-Al-W-based alloys, originating mainly from extensive grain boundary region, high dislocation density, and ample point defect. Chemical compositions of mechanically alloyed Co-Al-W-based ODS alloys easily deviate from the γ/γ' two-phase region, leading to the existence of Al x Co, Co3W, Co7W6, and W phases in addition to the γ and γ' phases. Nonuniform distribution of alloying elements brings about the differences in morphologies and sizes of γ' precipitates. Microstructural formation process is impelled by spinodal decomposition mode, and spinodal decomposition behavior has been accelerated in the fine-grained alloy because of the presence of short-circuited diffusion paths for atomic movement.

  4. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  5. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  6. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-01

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels. PMID:26051675

  7. Reactive gas atomization processing for Fe-based ODS alloys

    SciTech Connect

    Rieken, Joel R; Anderson, Iver E; Kramer, Matthew J; Odette, G R; Stergar, E; Haney, E

    2011-08-24

    Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe–Cr–Y–Hf). During this process a reactive atomization gas (i.e., Ar–O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 50 nm) metastable Cr-enriched oxide shell that was used as a vehicle to transport oxygen into the consolidated microstructure. Subsequent elevated temperature heat treatment promoted thermodynamically driven oxygen exchange reactions between trapped films of Cr-enriched oxide and internal (Y, Hf)-enriched intermetallic precipitates, resulting in highly stable nano-metric mixed oxide dispersoids (i.e., Y–Hf–O) that were identified with X-ray diffraction. Transmission electron microscopy and atom probe tomography results also revealed that the size and distribution of the dispersoids were found to depend strongly on the original rapidly solidified microstructure. To exploit this, several oxide dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal–mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

  8. Study of the reactive element effect in ODS iron-base alumina-formers

    SciTech Connect

    Pint, B.A.

    1996-05-01

    Iron aluminide (Fe{sub 3}Al) and FeCrAl compositions were dispersed with 15 different oxides in order to study the effect of oxygen- active dopants on high-temperature growth and adhesion of {alpha}- Al{sub 2}O{sub 3} scales. In these model-type, oxide dispersion strengthened (ODS) systems, the chemical effects of various cation dopants were compared to the baseline effect of an Al{sub 2}O{sub 3} oxide dispersion. By conducting isothermal and cyclic oxidation tests and by characterizing the oxidation product, effects on scale adhesion, growth rate and microstructure were evaluated. The dopants were categorized based on effectiveness in modifying the alumina scale. An Al{sub 2}O{sub 3} dispersion yielded some improvement in oxidation behavior apparently by strengthening the relatively weak substrate. However, the type of improvements in adhesion and change in growth mechanism associated with addition of reactive elements such as Y were not achieved. In general, due to the weaker substrate and the inherently faster interfacial void formation, the dispersions were less effective in ODS Fe{sub 3}Al than in ODS FeCrAl.

  9. Measurement matrix optimization method based on matrix orthogonal similarity transformation

    NASA Astrophysics Data System (ADS)

    Pan, Jinfeng

    2016-05-01

    Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.

  10. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; McKamey, C.G.; Pint, B.A.

    1995-07-01

    Since oxide dispersion-strengthened (ODS) FeCrAl-based alloys have sufficient creep strength and good oxidation resistance at the very high temperatures of interest for the primary heat exchanger in advanced, closed-cycle gas turbine systems, they constitute viable alternative candidates to ceramics. A major life-limiting factor of these alloys is the ability to continue to form a protective scale of aluminum oxide, a factor proportional to the total amount of aluminum contained in the alloy. Fe{sub 3}Al has oxidation resistance comparable to that of the FeCrAl-based alloys, and significantly superior sulfidation resistance. Also, because of its larger reservoir of aluminum, Fe{sub 3}Al would be expected to exhibit longer lifetimes at the temperatures of interest. Since the strengthening effects of ODS processing are expected to confer similar high-temperature creep properties to those found for the FeCrAl-based alloys, ODS-Fe{sub 3}Al is considered to have excellent potential for the very high-temperature heat exchanger application. The program effort on ODS Fe{sub 3}Al includes examination of the properties of available ODS-FeCrAl alloys; development of mechanical alloying parameters for ODS-Fe{sub 3}Al; determination of the effects of a dispersion of reactive element oxides on the high-temperature oxidation behavior of Fe{sub 3}Al; and evaluation of methods for joining them.

  11. PHASE SEPARATION IN PM 2000 FE-BASE ODS ALLOY: EXPERIMENTAL STUDY AT THE ATOMIC LEVEL

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Russell, Kaye F; Chao, J.; Gonzalez-Carrasco, J. L.

    2008-01-01

    The coarsening of the three-dimensional microstructure resulting from phase separation during ageing at 748 K of a Fe-based PM 2000{trademark} oxide dispersion strengthened (ODS) steel has been investigated by atom probe tomography and hardness measurements. Phase separation resulted in the formation of isolated particles of the chromium-enriched {alpha}{prime} phase. The aluminum and titanium were found to preferential partition to the iron-rich {alpha} phase. The partitioning of aluminum is consistent with theoretical calculations. The change in the scale of the chromium-enriched {alpha}{prime} phase was found to fit a power law with a time exponent of 0.32 in accordance with that predicted by the classical Lifshitz, Slyozov and Wagner (LSW) theory. The solute concentrations of the coexisting {alpha} and {alpha}{prime} phases were estimated from concentration frequency distributions with the Langer-Bar-on-Miller (LBM) method and proximity histograms. The hardness was linearly related to the chromium content of the {alpha}{prime} phase.

  12. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  13. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Ohriner, E.K.; Tortorelli, P.F.

    1996-08-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200{degrees}C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The program has two main thrusts: (a) alloy processing, which involves mechanical alloying and thermomechanical processing to achieve the desired size and distribution of the oxide dispersoid, and (b) optimization of the oxidation behavior to provide increased service life compared to ODS-FeCrAl alloys intended for the same applications. Control of the grain size and shape in the final alloy is very dependent on the homogeneity of the alloy powder, in terms of the size and distribution of the dispersed oxide particles, and on the level of strain and temperature applied in the recrystallization step. Studies of the effects of these variables are being made using mechanically-alloyed powder from two sources: a commercial powder metallurgy alloy vendor and an in-house, controlled environment high-energy mill. The effects of milling parameters on the microstructure and composition of the powder and consolidated alloy are described. Comparison of the oxidation kinetics of ODS-Fe{sub 3}Al alloys with commercial ODS-FeCrAl alloys in air at 1000-1300{degrees}C indicated that the best Fe{sub 3}Al-based alloys oxidized isothermally at the same rate as the ODS-FeCrAl alloys but, under thermal cycling conditions, the oxidation rate of ODS-Fe{sub 3}Al was faster. The main difference was that the ODS-Fe{sub 3}Al experienced significantly more scale spallation above 1000{degrees}C. The differences in oxidation behavior were translated into expected lifetimes which indicated that, for an alloy section thickness of 2.5 mm, the scale spallation of ODS-Fe{sub 3}Al leads to an expected service lifetime similar to that for the INCO alloy MA956 at 1100 to 1300{degrees}C.

  14. Influence of consolidation methods on the recrystallization kinetics of a Fe-14Cr based ODS steel

    NASA Astrophysics Data System (ADS)

    Dadé, M.; Malaplate, J.; Garnier, J.; De Geuser, F.; Lochet, N.; Deschamps, A.

    2016-04-01

    The recrystallization behavior during thermal annealing with or without prior cold work has been investigated in a 14%Cr ODS steel consolidated by two different methods, hot extrusion (HE) and hot isostatic pressing (HIP). We show that a 1400°C-1 h annealing induces an increase of the oxide nanoparticles radius from 1.3 to 3 nm, however the grain size remain stable despite a recovery of sub-grain boundaries for the hot extruded material. When pre-deformation is applied before annealing, almost full recrystallization can be achieved on the HE ODS steel. In this study, we show recrystallization after 40% cold deformation and annealing 30 min at 1450 °C together with coarsening of oxide particles. At lower temperature and higher pre-deformation (70%-1150 °C/30 min), we show that recrystallization can be achieved without change of the oxide size distribution. We show that due to a lower initial dislocation density, recrystallization is strongly delayed, by at least 250 °C, in the HIP material. Finally, we show that the evolution of the size of the oxide precipitates is controlled by the time and temperature of annealing and are independent on the pre-deformation and occurrence of recrystallization.

  15. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.

    1996-06-01

    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  16. Effect of Y2O3 content on the oxidation behavior of Fe-Cr-Al-based ODS alloys

    NASA Astrophysics Data System (ADS)

    Ul-Hamid, Anwar

    2003-02-01

    A study was conducted to investigate the cyclic oxidation behavior of two oxide dispersion strengthened (ODS) Fe-Cr-Al based alloys containing 0.17 wt.% and 0.7 wt.% Y2O3. The alloys were oxidized in air for 100 h at 1200°C based on a 24 h cycle period. X-ray diffraction (XRD) and analytical transmission electron microscopy (TEM) were used to characterize the structure, morphology, and composition of the oxide scales. Both alloys formed highly adherent and continuous layers of α-Al2O3 exhibiting a morphology indicative of inward scale growth. The role of Y2O3 was to promote adherence by segregating to the grain boundaries within the oxide. Concurrently, Y2O3 generated micro-porosity resulting in a scale of comparatively higher thickness in the alloy with 0.7 wt.% Y2O3.

  17. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; McKamey, C.G.; Pint, B.A.

    1995-06-01

    There has been a recent increase of interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system. In a program conducted as part of the European COST-501 Concerted Action Project, available alloys based on FeCrAl-Y{sub 2}O{sub 3} were evaluated for use in the main heat exchanger in a similar closed-cycle gas turbine application. One of the currently available ODS FeCrAl alloys was found to meet the strength requirements for this application, in which the working fluid at 0.9 MPa (131 psi) flowing at 5,889 kg/hr (12,955 lb/hr) was to be heated from 800 to 1100{degrees}C (1472 to 2012{degrees}F) over a tube length of 4 m (13 ft).

  18. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-06-01

    Iron aluminides containing greater than about 20-25 @ % Al have oxidation/sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. In addition to alloying modifications for improved creep resistance of wrought material, this strength limitation is being addressed by development of oxide-dispersion- strengthened (ODS) iron aluminides and by evaluation of Fe{sub 3}Al alloy compositions as coatings or claddings on higher-strength, less corrosion-resistant materials. As part of these efforts, the high-temperature corrosion behavior of iron-aluminide weld overlays and ODS alloys is being characterized and compared to previous results for ingot-processed material.

  19. Microstructure and mechanical properties of friction stir processed ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Kasada, Ryuta; Kimura, Akihiko; Park, Seung Hwan C.; Hirano, Satoshi

    2011-10-01

    Oxide dispersion strengthened (ODS) steels are considered to be one of the candidate structural materials for advanced blanket systems because of its excellent properties in fusion environments. For more applications of the ODS steels to fusion systems with a huge and complex structure, development of joining technologies is a key issue to be solved. To reserve nano-oxide particles in the matrix homogeneously, the friction stir welding (FSW) is a suitable way to get good welding characteristics as a solid-state processing technique. In this research, effects of friction stir processing (FSP) on microstructure and mechanical properties of a ODS steel were studied to apply FSW process to ODS steels. The microstructure of FSPed ODS steel consists of stirred zone (SZ) and base metal (BM), as reported for other ferritic steels. Although equiaxed grain coarsening occurred through dynamic recrystallization during FSP, the nano-oxide particles in SZ showed fewer change in the size distribution. This resulted that FSP is effective to suppress the anisotropy and minimize the change of nano-oxide particles dispersion morphologies of ODS steel.

  20. Residual ferrite formation in 12CrODS steels

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Kudo, Y.; Wu, X.; Oono, N.; Hayashi, S.; Ohtsuka, S.; Kaito, T.

    2014-12-01

    Increasing Cr content from 9 to 12 mass% leads to superior corrosion and high-temperature oxidation resistances, and usually changes microstructure from martensite to a ferrite. To make transformable martensitic type of 12CrODS steels that have superior processing capability by using α/γ phase transformation, alloy design was conducted through varying nickel content. The structure of 12CrODS steels was successfully modified from full ferrite to a transformable martensite-base matrix containing ferrite. This ferrite consists of both equilibrium ferrite and a metastable residual ferrite. It was shown that the fraction of the equilibrium ferrite is predictable by computed phase diagram and formation of the residual ferrite was successfully evaluated through pinning of α/γ interfacial boundaries by oxide particles.

  1. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    NASA Astrophysics Data System (ADS)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides

  2. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    NASA Astrophysics Data System (ADS)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-01

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ- ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  3. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    DOE PAGESBeta

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ– ground state of the OH+ and OD+ cations have been extractedmore » and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.« less

  4. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  5. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  6. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  7. Influence of the - phase separation on the tensile properties of Fe-base ODS PM 2000 alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Toda, I; Chao, J.

    2010-01-01

    The yield and ultimate tensile strengths of an ultrafine grained, oxide dispersion strengthened (ODS) PM 2000 alloy increased during aging at 475 C. Atom probe tomography and X-ray diffraction analysis revealed that the decrease in lattice parameter and the increases in the yield and ultimate tensile strengths were correlated with phase separation into Fe-rich {alpha} and Cr-enriched {alpha}{prime} phases. The lattice misfit between the emerging {alpha} and {alpha}{prime} domains and the resulting elastic strain, and the increment of the elastic modulus with aging time due to the corresponding decrease of lattice parameter during {alpha}-{alpha}{prime} phase separation, can be regarded as the main causes of hardening.

  8. Microstructure-mechanical property relationships in transient liquid phase bonded nickel-based superalloys and iron-based ODS alloys

    NASA Astrophysics Data System (ADS)

    Aluru, Sreenivasa Charan Rajeev

    The research work presented here discusses the microstructure-mechanical property relationships in wide gap transient liquid phase (TLP) bonds, between the single crystal nickel-base superalloy CMSX-4 and two polycrystalline superalloys, IN 738 and IN 939, using wide-gap style composite interlayers. Fabrication of complicated geometries and successful repair development of gas turbine engine components made of superalloys requires a high performance metallurgical joining technique and a complete understanding of microstructure-mechanical property relationships. A number of joining processes have been investigated, but all of them have significant disadvantages that limit their ability to produce sound joints. TLP bonding has proved to be a successful method and is the most preferred joining method for nickel-based superalloys, with microstructures and compositions of the joint similar to that of the bulk substrates resulting in mechanical properties close to that of the parent metal. The current joining process used two proprietary wide-gap style composite interlayers, Niflex-110 and Niflex-115, consisting of a nickel-based core with boron-rich surfaces, and a conventional rapidly solidified metallic glass foil interlayer BNi-3 was chosen for comparison. When composite interlayers were employed, competition between wetting of the faying surfaces and formation of the eutectic along the grain boundaries was observed to lead to non-bonded regions at the faying surfaces, unless a boron-rich interlayer was employed. Composite interlayers resulted in the suppression of bondline boride formation. With the exception of this competition, adequate wetting of the substrates occurred for all interlayers. Two factors dominated the room temperature mechanical properties of the wide-gap bonds. The first was the extent of gamma-prime formation at the bondline. Results from shear testing and fractography of the bonds indicated ductile shear failure at the bondline. This was due to

  9. On the spline-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.

  10. Versatile matrix for constructing enzyme-based biosensors.

    PubMed

    Wang, Zhaohao; Luo, Xi; Wan, Qijin; Wu, Kangbing; Yang, Nianjun

    2014-10-01

    A versatile matrix was fabricated and utilized as a universal interface for the construction of enzyme-based biosensors. This matrix was formed on the gold electrode via combining self-assembled monolayer of 2,3-dimercaptosuccinic acid with gold nanoparticles. Gold nanoparticles were electrochemically deposited. Electrochemistry of three redox enzymes (catalase, glucose oxidase, and horseradish peroxidase) was investigated on such a matrix. The electrocatalytic monitoring of hydrogen peroxide and glucose was conducted on this matrix after being coated with those enzymes. On them the monitoring of hydrogen peroxide and glucose shows rapid response times, wide linear working ranges, low detection limits, and high enzymatic affinities. This matrix is thus a versatile and suitable platform to develop highly sensitive enzyme-based biosensors. PMID:25208242

  11. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 °C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 °C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  12. Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate

    NASA Astrophysics Data System (ADS)

    Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi

    2015-09-01

    Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.

  13. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  14. Design of RF MEMS based switch matrix for space applications

    NASA Astrophysics Data System (ADS)

    Di Nardo, S.; Farinelli, P.; Kim, T.; Marcelli, R.; Margesin, B.; Paola, E.; Pochesci, D.; Vietzorreck, L.; Vitulli, F.

    2013-07-01

    RF MEMS based switch matrices have several advantages compared to the mechanical or solid-state switch based ones for space applications. They are compact, light and less lossy with a high linearity up to high frequency. In this work, a 12 × 12 switch matrix with RF MEMS and LTCC technologies is presented based on the planar Beneš network. The simulated performance of the 12 × 12 switch matrix is below -12 dB IL (Insertion Loss) up to C band and -15 dB RL (Return Loss) up to Ku band. Moreover, it has a good isolation better than -50 dB. A 4 × 4 switch matrix with the same design process and technologies is fabricated and measured to verify the 12 × 12 switch matrix design process. The measured performance agrees very well to the simulations.

  15. Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: Structure prediction

    NASA Astrophysics Data System (ADS)

    Belokoneva, E. L.; Topnikova, A. P.; Aksenov, S. M.

    2015-01-01

    A topology-symmetry analysis of the structures in the family of titanosilicate micas and related heterophyllosilicates based on the extended OD theory reveals their kinship with the family of rhodezite, delhayelite, and other minerals that had been analyzed earlier by distinguishing sheets common for all the structures. Like in the family studied earlier, the structural variety of a more complex titanosilicate family is determined by different local symmetries of sheets. Sheets consist of central O layers of edge-sharing octahedra and H layers formed by tetrahedra connected into diortho groups and Ti(Nb,Fe) semioctahedra (octahedra). Three patterns of connection of O and H layers correspond to sheet symmetry P2/ m, P21/ m, and . Various symmetry modes of sheet connection in the structures are analyzed. Hypothetical structures, including structures with a higher degree of disorder, which can be found in nature or obtained by crystal synthesis, are deduced. Factors responsible for structural variety, including the existence of two main sheet varieties (with P2/ m and P21/ m symmetry) are considered a consequence of the difference in the chemism of the mineral formation medium.

  16. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-08-01

    Iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. All the weld overlays showed good oxidation/sulfidation behavior under isothermal conditions, including a gas metal arc deposit with only 21 at.% Al. A rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initially grown scales spalled and the subsequent rate of reaction was not controlled by the formation of slowly growing aluminum oxides. Higher starting aluminum concentrations (>{approximately}25 at.%) are needed to assure adequate oxidation/sulfidation lifetimes of the weld overlays. A variety of stable oxides was added to a base Fe-28 at.% Al-2 % Cr alloy to assess the effect of these dopants on the oxidation behavior at 1200{degrees}C. A Y{sub 2}O{sub 3} dispersion improved the scale adhesion relative to a Zr alloy addition, but wasn`t as effective as it is in other alumina-forming alloys. Preliminary data for powder-processed Fe-28 at.% Al-2% Cr exposed to the H{sub 2}S-H{sub 2}-H{sub 2}O-Ar gas at 800{degrees}C showed that the oxidation/sulfidation rate was similar to that of many Fe{sub 3}Al alloys produced by ingot metallurgy routes.

  17. Analysis of amino acids network based on distance matrix

    NASA Astrophysics Data System (ADS)

    Ali, Tazid; Akhtar, Adil; Gohain, Nisha

    2016-06-01

    In this paper we have constructed a distance matrix of the amino acids. The distance is defined based on the relative evolutionary importance of the base position of the corresponding codons. From this distance matrix a network of the amino acids is obtained. We have argued that this network depicts the evolutionary pattern of the amino acids. To examine the relative importance of the amino acids with respect to this network we have discussed different measures of centrality. We have also investigated the correlation coefficients between different measures of centrality. Further we have explored clustering coefficient as well as degree of distribution.

  18. On the Daubechies-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a Daubechies-based wavelet basis is constructed and superconvergence is proven. That is, it will be proven that under the assumption of periodic boundary conditions that the differentiation matrix is accurate of order 2M, even though the approximation subspace can represent exactly only polynomials up to degree M-1, where M is the number of vanishing moments of the associated wavelet. It is illustrated that Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small-scale structure is present.

  19. Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control

    NASA Astrophysics Data System (ADS)

    Meyer, John Louis Lamb

    A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing intermetallic. Although Al is necessary for industrial superalloy production, the Ni-Cr base alloy system was selected as a simplified system more amenable to characterization. This was done in an effort to better study the effects of processing parameters. Consolidation and heat-treatment were performed to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nanometric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiment that found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloys, but the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was easier to characterize, and make observations on the effects of processing parameters, the Ti-containing system was used for experimental atomization trials. An internal oxidation model was used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed to investigate the effects of gas atomization pressure and reactive-gas concentration on the particle size distribution (PSD). Also, the effect on the rapidly solidified microstructure (as a function of powder size

  20. Matrix-based image reconstruction methods for tomography

    SciTech Connect

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures.

  1. A T Matrix Method Based upon Scalar Basis Functions

    NASA Technical Reports Server (NTRS)

    Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.

    2013-01-01

    A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.

  2. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2003-11-17

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes work regarding the manipulation of grain structures via deformation processing and further results gathered during powder separation trials involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-IV''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out except for some of that dependent on the acquisition of materials from other sources. However, wherever omissions from the ''Plan of Action'' detailed in the ''Statement of Work'' have occurred due to lack of suitable materials, other related experimental work has been devised to fill the gaps where possible. All work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  3. Medical image fusion based on non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Zhang, Daoming; Zhang, Xianda

    2009-10-01

    Medical image fusion is a process of obtaining a new composite image from two or more source images which are from different modalities. In this paper, we proposed a novel medical image fusion scheme based on the non-negative matrix factorization (NMF) algorithm, the only resulted basis image is just the fused image. Since the CT and MRI images have a lot of pixels which are zeros, the NMF algorithm can not be employed directly. To overcome this difficulty, we first add a positive bias to the original data matrix and remove the bias from the resulted fusion image after the NMF procedure. The experiment results show that the proposed approach outperforms the existing wavelet-based methods and Laplacian pyramid-based methods.

  4. Reduction in Defect Content in ODS Alloys

    SciTech Connect

    Jones, A.R.; Ritherdon, J.; Prior, D.J.

    2003-04-22

    In order to develop FeCrAl-based ODS alloy tubing with the coarse, high aspect ratio, appropriately oriented grain structures likely to deliver enhanced high temperature (11000C) hoop creep strength compared to conventionally formed ODS alloy tubing, flow forming techniques were explored in a European funded programme. The evolution of microstructure in PM2000 alloy tubing formed by warm flow forming techniques has been the subject of continuing investigation and more detailed study in the current work. The warm flow formed tubes investigated were produced by reverse flow forming using three, 1200 opposed rollers described around a tube preform supported on a driven mandrel. This produced a complex pattern of shape changing deformation, driven from the outer surface of the tube preforms. The grain size and shape together with the pattern of nucleation and growth of secondary recrystallization that developed through the thickness of the tube wall during the subsequent high temperature annealing (13800C) of these warm flow formed samples is described, as are the textures that formed. The unusual pattern and shape of secondary recrystallized grain structures that formed on the outer surfaces of the flow formed tubes closely follows the pattern and pitch of the flow forming rollers. The local texture, grain shape and pattern of misorientation in the surface of warm flow formed tubes that was associated with the development of these outer surface microstructures are described. Parallel studies have continued on the influence of microstructural inhomogeneities on the development of secondary recrystallized grain structures in ODS alloys. As part of this work, a separate variant of PM2000 alloy with additions of 1 wt.% ODS-free Fe powder have been manufactured as extruded bar by Plansee GmbH. The initial recrystallization behavior of the variant has been studied and cross-compared with the recrystallization behavior found in a prototype ODS-Fe3Al alloy, notably where the

  5. [Continuum, the continuing education platform based on a competency matrix].

    PubMed

    Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S

    2016-04-01

    Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum. PMID:26805400

  6. Peripheral nerve enhancement based on multi-scale Hessian matrix

    NASA Astrophysics Data System (ADS)

    Ma, Xiuli; Li, Hui; Zhou, Xueli; Wan, Wanggen

    2011-06-01

    To improve the precision of nerve segmentation in CT images, a new comparability function is proposed in this paper to enhance the contrast between nerve structure and other surrounding tissues. It is based on nerve's characteristic, i.e. dark tubular structure, and a thorough analysis of the multi-scale Hessian matrix. By comparability function, the gray range of interested nerve structure can be automatically determined, which combines the multi-scale Hessian matrix eigenvalues with intensity information of original nerve CT images. The experimental results show that the improved algorithm can not only enhance the continuous nerve of tubular structure, but also clearly reflect its bifurcations and crossovers. It is very important and significant to the computer-aided disease diagnosis of peripheral nervous system.

  7. Infections on Temporal Networks—A Matrix-Based Approach

    PubMed Central

    Koher, Andreas; Lentz, Hartmut H. K.; Hövel, Philipp; Sokolov, Igor M.

    2016-01-01

    We extend the concept of accessibility in temporal networks to model infections with a finite infectious period such as the susceptible-infected-recovered (SIR) model. This approach is entirely based on elementary matrix operations and unifies the disease and network dynamics within one algebraic framework. We demonstrate the potential of this formalism for three examples of networks with high temporal resolution: networks of social contacts, sexual contacts, and livestock-trade. Our investigations provide a new methodological framework that can be used, for instance, to estimate the epidemic threshold, a quantity that determines disease parameters, for which a large-scale outbreak can be expected. PMID:27035128

  8. Infections on Temporal Networks--A Matrix-Based Approach.

    PubMed

    Koher, Andreas; Lentz, Hartmut H K; Hövel, Philipp; Sokolov, Igor M

    2016-01-01

    We extend the concept of accessibility in temporal networks to model infections with a finite infectious period such as the susceptible-infected-recovered (SIR) model. This approach is entirely based on elementary matrix operations and unifies the disease and network dynamics within one algebraic framework. We demonstrate the potential of this formalism for three examples of networks with high temporal resolution: networks of social contacts, sexual contacts, and livestock-trade. Our investigations provide a new methodological framework that can be used, for instance, to estimate the epidemic threshold, a quantity that determines disease parameters, for which a large-scale outbreak can be expected. PMID:27035128

  9. Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation

    NASA Astrophysics Data System (ADS)

    Nino-Ruiz, Elias D.; Sandu, Adrian

    2015-11-01

    This paper develops efficient ensemble Kalman filter (EnKF) implementations based on shrinkage covariance estimation. The forecast ensemble members at each step are used to estimate the background error covariance matrix via the Rao-Blackwell Ledoit and Wolf estimator, which has been specifically developed to approximate high-dimensional covariance matrices using a small number of samples. Two implementations are considered: in the EnKF full-space (EnKF-FS) approach, the assimilation process is performed in the model space, while the EnKF reduce-space (EnKF-RS) formulation performs the analysis in the subspace spanned by the ensemble members. In the context of EnKF-RS, additional samples are taken from the normal distribution described by the background ensemble mean and the estimated background covariance matrix, in order to increase the size of the ensemble and reduce the sampling error of the filter. This increase in the size of the ensemble is obtained without running the forward model. After the assimilation step, the additional samples are discarded and only the model-based ensemble members are propagated further. Methodologies to reduce the impact of spurious correlations and under-estimation of sample variances in the context of the EnKF-FS and EnKF-RS implementations are discussed. An adjoint-free four-dimensional extension of EnKF-RS is also discussed. Numerical experiments carried out with the Lorenz-96 model and a quasi-geostrophic model show that the use of shrinkage covariance matrix estimation can mitigate the impact of spurious correlations during the assimilation process.

  10. Manifold Ranking-Based Matrix Factorization for Saliency Detection.

    PubMed

    Tao, Dapeng; Cheng, Jun; Song, Mingli; Lin, Xu

    2016-06-01

    Saliency detection is used to identify the most important and informative area in a scene, and it is widely used in various vision tasks, including image quality assessment, image matching, and object recognition. Manifold ranking (MR) has been used to great effect for the saliency detection, since it not only incorporates the local spatial information but also utilizes the labeling information from background queries. However, MR completely ignores the feature information extracted from each superpixel. In this paper, we propose an MR-based matrix factorization (MRMF) method to overcome this limitation. MRMF models the ranking problem in the matrix factorization framework and embeds query sample labels in the coefficients. By incorporating spatial information and embedding labels, MRMF enforces similar saliency values on neighboring superpixels and ranks superpixels according to the learned coefficients. We prove that the MRMF has good generalizability, and develops an efficient optimization algorithm based on the Nesterov method. Experiments using popular benchmark data sets illustrate the promise of MRMF compared with the other state-of-the-art saliency detection methods. PMID:26277008

  11. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  12. In-situ formation of nanoparticles within a silicon-based matrix

    DOEpatents

    Thoma, Steven G.; Wilcoxon, Jess P.; Abrams, Billie L.

    2008-06-10

    A method for encapsulating nanoparticles with an encapsulating matrix that minimizes aggregation and maintains favorable properties of the nanoparticles. The matrix comprises silicon-based network-forming compounds such as ormosils and polysiloxanes. The nanoparticles are synthesized from precursors directly within the silicon-based matrix.

  13. A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method

    PubMed Central

    Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang

    2016-01-01

    Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR. PMID:26781194

  14. A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method

    NASA Astrophysics Data System (ADS)

    Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang

    2016-01-01

    Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.

  15. A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method.

    PubMed

    Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang

    2016-01-01

    Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR. PMID:26781194

  16. Designing a Calibrated Full Matrix Capture Based Inspection

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Russell, J.; Lowe, M.

    2011-06-01

    Full Matrix Capture (FMC) technology is becoming increasingly attractive to industry. The development of FMC based inspection techniques is an active area of research, offering benefits in terms of defect detection and sizing and increased flexibility. However, before this technology can be fully transferred into industry there must be a method of reliably and robustly selecting the most appropriate inspection technique. A suitable calibration procedure must also be developed. A Huygens based array beam model has been developed and validated against the commercial software CIVA in a number of test cases. The model has been used as a tool to quickly allow visualisation of beams currently not supported by CIVA, or other available packages. A method of calibration is also presented that allows DAC curves to be extracted from a single scan of a calibration block for any beam type. The calibration algorithm is also used to set inspection sensitivity. This paper demonstrates through the use of a case study how a fully calibrated FMC based inspection can be designed, using the array beam model, to detect and accurately size a defect using multiple beam types.

  17. Analysis of Fundus Fluorescein Angiogram Based on the Hessian Matrix of Directional Curvelet Sub-bands and Distance Regularized Level Set Evolution.

    PubMed

    Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza

    2015-01-01

    This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction. PMID:26284170

  18. A Results-Oriented Approach to OD.

    ERIC Educational Resources Information Center

    Moravec, Milan

    1978-01-01

    Describes Bechtel Corporation's Organization Development (OD) system, which focuses on action/task identification, planning, operating decisions, and productivity. Presents eight-step process through which OD specialists help managers assess work-related problems (largely through interviews), action planning, implementation, and followup. Process…

  19. Wavelet Speech Enhancement Based on Nonnegative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wang, Syu-Siang; Chern, Alan; Tsao, Yu; Hung, Jeih-weih; Lu, Xugang; Lai, Ying-Hui; Su, Borching

    2016-08-01

    For most of the state-of-the-art speech enhancement techniques, a spectrogram is usually preferred than the respective time-domain raw data since it reveals more compact presentation together with conspicuous temporal information over a long time span. However, the short-time Fourier transform (STFT) that creates the spectrogram in general distorts the original signal and thereby limits the capability of the associated speech enhancement techniques. In this study, we propose a novel speech enhancement method that adopts the algorithms of discrete wavelet packet transform (DWPT) and nonnegative matrix factorization (NMF) in order to conquer the aforementioned limitation. In brief, the DWPT is first applied to split a time-domain speech signal into a series of subband signals without introducing any distortion. Then we exploit NMF to highlight the speech component for each subband. Finally, the enhanced subband signals are joined together via the inverse DWPT to reconstruct a noise-reduced signal in time domain. We evaluate the proposed DWPT-NMF based speech enhancement method on the MHINT task. Experimental results show that this new method behaves very well in prompting speech quality and intelligibility and it outperforms the convnenitional STFT-NMF based method.

  20. Evidence-Based Practice: A Matrix for Predicting Phonological Generalization

    ERIC Educational Resources Information Center

    Gierut, Judith A.; Hulse, Lauren E.

    2010-01-01

    This paper describes a matrix for clinical use in the selection of phonological treatment targets to induce generalization, and in the identification of probe sounds to monitor during the course of intervention. The matrix appeals to a set of factors that have been shown to promote phonological generalization in the research literature, including…

  1. An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2008-01-01

    Most model fit analyses in cognitive diagnosis assume that a Q matrix is correct after it has been constructed, without verifying its appropriateness. Consequently, any model misfit attributable to the Q matrix cannot be addressed and remedied. To address this concern, this paper proposes an empirically based method of validating a Q matrix used…

  2. Construction of the Dependence Matrix Based on the TRIZ Contradiction Matrix in OOD

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Quan; Wang, Yanling; Luo, Tao

    In the Object-Oriented software design (OOD), design of the class and object, definition of the classes’ interface and inheritance levels and determination of dependent relations have a serious impact on the reusability and flexibility of the system. According to the concrete problems of design, how to select the right solution from the hundreds of the design schemas which has become the focus of attention of designers. After analyzing lots of software design schemas in practice and Object-Oriented design patterns, this paper constructs the dependence matrix of Object-Oriented software design filed, referring to contradiction matrix of TRIZ (Theory of Inventive Problem Solving) proposed by the former Soviet Union innovation master Altshuller. As the practice indicates, it provides a intuitive, common and standardized method for designers to choose the right design schema. Make research and communication more effectively, and also improve the software development efficiency and software quality.

  3. Isothermal fatigue mechanisms in Ti-based metal matrix composites

    NASA Technical Reports Server (NTRS)

    Majumdar, Bhaskar S.; Newaz, Golam M.

    1993-01-01

    Stress-controlled isothermal fatigue experiments were performed at room temperature (RT) and 548 C (in argon) on (0)8 SCS6/Ti 15-3 metal matrix composites (MMC's) with 15 and 41 volume percent SCS6 (SiC) fibers. The primary objectives were to evaluate the mechanical responses, and to obtain a clear understanding of the damage mechanisms leading to failure of the MMC's. The mechanical data indicated that strain ranges attained fairly constant values in the stress-controlled experiments at both RT and 538 C, and remained so for more than 85 percent of life. The fatigue data for MMC's with different volume fraction fibers showed that MMC life was controlled by the imposed strain range rather than the stress range. At RT, and at low and intermediate strain ranges, the dominant fatigue mechanism was matrix fatigue, and this was confirmed metallurgically from fractographic evidence as well as from observations of channel type dislocation structures in the matrix of fatigued MMC specimens. Reaction-zone cracks acted as important crack initiating sites at RT, with their role being to facilitate slip band formation and consequent matrix crack initiation through classical fatigue mechanisms. MMC life agreed with matrix life at the lower strain ranges, but was smaller than matrix life at higher strain ranges. Unlike the case of monotonic deformation, debonding damage was another major damage mechanism during fatigue at RT, and it increased for higher strain ranges. At high strain ranges at RT, fractography and metallography showed an absence of matrix cracks, but long lengths of debonds in the outer layers of the SCS6 fibers. Such debonding and consequent rubbing during fatigue is believed to have caused fiber damage and their failure at high strain ranges. Thus, whereas life was matrix dominated at low and intermediate strain ranges, it was fiber dominated at high strain ranges. At 538 C, the mean stain constantly increased (ratchetting) with the number of cycles. At high

  4. The Performance Analysis Based on SAR Sample Covariance Matrix

    PubMed Central

    Erten, Esra

    2012-01-01

    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976

  5. A multithread based new sparse matrix method in bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Tian, Jie; Liu, Dan; Sun, Li; Yang, Xin; Han, Dong

    2010-03-01

    Among many molecular imaging modalities, bioluminescence tomography (BLT) stands out as an effective approach for in vivo imaging because of its noninvasive molecular and cellular level detection ability, high sensitivity and low cost in comparison with other imaging technologies. However, there exists the case that large scale problem with large number of points and elements in the structure of mesh standing for the small animal or phantom. And the large scale problem's system matrix generated by the diffuse approximation (DA) model using finite element method (FEM) is large. So there wouldn't be enough random access memory (RAM) for the program and the related inverse problem couldn't be solved. Considering the sparse property of the BLT system matrix, we've developed a new sparse matrix (ZSM) to overcome the problem. And the related algorithms have all been speeded up by multi-thread technologies. Then the inverse problem is solved by Tikhonov regularization method in adaptive finite element (AFE) framework. Finally, the performance of this method is tested on a heterogeneous phantom and the boundary data is obtained through Monte Carlo simulation. During the process of solving the forward model, the ZSM can save more processing time and memory space than the usual way, such as those not using sparse matrix and those using Triples or Cross Linked sparse matrix. Numerical experiments have shown when more CPU cores are used, the processing speed is increased. By incorporating ZSM, BLT can be applied to large scale problems with large system matrix.

  6. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading

    NASA Astrophysics Data System (ADS)

    Emelyanova, O. V.; Ganchenkova, M. G.; Malitskii, E.; Yagodzinskyy, Y. N.; Klimenkov, M.; Borodin, V. A.; Vladimirov, P. V.; Lindau, R.; Möslang, A.; Hänninen, H.

    2016-01-01

    The effect of hydrogen on the microstructure of mechanically tested ODS-EUROFER steel was investigated by means of transmission electron microscopy, thermal desorption spectroscopy, and atomistic simulations. The presence of yttrium oxide particles notably increases hydrogen uptake in ODS-EUROFER steel as compared to ODS-free EUROFER 97. Under tensile loading, hydrogen accumulation promotes the loss of cohesion at the oxide particle interfaces. First-principles molecular dynamics simulations indicate that hydrogen can be trapped at nanoparticle/matrix interface, creating OH-groups. The accumulation of hydrogen atoms at the oxide particle surface can be the reason for the observed hydrogen-induced oxide/matrix interface weakening and de-cohesion under the action of external tensile stress.

  7. Model of the Human Eye Based on ABCD Matrix

    NASA Astrophysics Data System (ADS)

    González, G. Díaz; Castillo, M. David Iturbe

    2008-04-01

    At the moment several models of the human eye exist, nevertheless the gradient index models of the human lens (crystalline) have received little attention in optometry and vision sciences, although they consider how the refractive index and the refracting power can change with the accommodation. On the other hand, in study fields like ophthalmology and optometry, exist cases where there is a lack of information about the factors that influence the change of refractive power and therefore the focal length of the eye. By such reason, in this paper we present a model of the human eye based on the ABCD matrix in order to describe the propagation of light rays, that can be understood by professional people in optics, ophthalmology and optometry, and the dispersions of the different ocular mediums are taken into account,. The aim of the model is to obtain data about the refractive power of the eye under different considerations, such as: changes in wavelength, radius of curvature and thicknesses of the ocular mediums. We present results of simulations in Matlab of our model, assuming that the object is punctual and is placed to a certain distance of the eye, and considering at the beginning to the crystalline like a medium with fixed refractive index, and after like a gradient lens. By means of graphs, we show the total refractive power of the eye and its form and type of dependence with respect to variations in radius of curvature and thicknesses of the cornea and crystalline, as well as variations in the thickness of the previous and later cameras.

  8. Suppression of Acid Diffusion in Chemical Amplification Resists by Molecular Control of Base Matrix Polymers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshiyuki; Shiraishi, Hiroshi; Okazaki, Shinji

    1995-12-01

    Suppression of acid diffusion during post-exposure baking (PEB) of chemical amplification resists is investigated from the standpoint of molecular control of base matrix polymers. Negative-type chemical amplification resists composed of cresol novolak-based matrix polymers, acid-catalyzed crosslinkers of melamine resins, and acid generators of onium salts are prepared. The molecular weight distributions of the base matrix polymers are controlled by means of a precipitation method. The resists are exposed with electron beams in isolated lines to evaluate the acid diffusion characteristics. Dependence of pattern sizes on the PEB time clearly shows that acid diffusion determines the resist pattern sizes based on Fick's law. The diffusion coefficients of resists with base matrix polymers with small polydispersities are smaller than those of resists with base matrix polymers with large polydispersities. Acid diffusion can still be suppressed by applying base matrix polymers with small weight-average molecular weights and small polydispersities. Diffusion coefficients can be further decreased by using base matrix polymers with more p-cresol components. A diffusion mechanism is proposed based on acid diffusion channels composed of active OH-groups and vacancies in the base matrix polymers.

  9. Physically Based Failure Criteria for Transverse Matrix Cracking

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are developed to determine the onset and direction of propagation for unstable crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in-situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.

  10. A Kernel Gabor-Based Weighted Region Covariance Matrix for Face Recognition

    PubMed Central

    Qin, Huafeng; Qin, Lan; Xue, Lian; Li, Yantao

    2012-01-01

    This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM). PMID:22969351

  11. A kernel Gabor-based weighted region covariance matrix for face recognition.

    PubMed

    Qin, Huafeng; Qin, Lan; Xue, Lian; Li, Yantao

    2012-01-01

    This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM). PMID:22969351

  12. On the differentiation matrix for Daubechies-based wavelets on an interval

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a Daubechies-based wavlet basis defined on an interval will be constructed. It will be shown that the differentiation matrix based on the currently available boundary constructions does not maintain the superconvergence encountered under periodic boundary conditions.

  13. Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

    ERIC Educational Resources Information Center

    Wolf, Michael Maclean

    2009-01-01

    Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…

  14. Sparse matrix methods based on orthogonality and conjugacy

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1973-01-01

    A matrix having a high percentage of zero elements is called spares. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices, significant saving of computer cost can be achieved by taking advantage of the sparsity. The conjugate gradient algorithm and a set of related algorithms are described.

  15. Estimating Origin-Destination Matrix of Bogor City Using Gravity Model

    NASA Astrophysics Data System (ADS)

    Ekowicaksono, I.; Bukhari, F.; Aman, A.

    2016-01-01

    Origin-Destination (O-D) Matrix describes people movement in a certain area. An O-D matrix is necessary for planning a good public transportation system. However, the exact values of O-D matrix are difficult to measure. There are several ways to estimate O-D matrix such as gravity model, gravity opportunity model, etc. In this study, gravity model was used to estimate the O-D matrix in Bogor city. The following assumptions were used to estimate the O-D matrix: (i) forces between two different zones are related to some existing parameters such as population, social-economic condition, etc. (ii) the people movements are influenced by accessibility from origin to destination, and the accessibility affected by distance, time, and/or cost.

  16. A micromechanics-based strength prediction methodology for notched metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1992-01-01

    An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  17. Rate constant calculations of the GeH4 + OH/OD → GeH3 + H2O/HOD reactions using an ab initio based full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, J; Rangel, C; Corchado, J C

    2016-06-22

    We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies. PMID:27292879

  18. Ni-based Metal Matrix Composite Functionally Graded Coatings

    NASA Astrophysics Data System (ADS)

    Amado, J. M.; Montero, J.; Tobar, M. J.; Yáñez, A.

    Functional graded materials (FGMs) are a class of composites that have a continuous variation of material properties. One of the aims of such variation is to relieve the stress concentrations that appear in laminated materials. Coating techniques using powder as filler material can be adapted for the manufacture of composition gradients by means of a mixing unit in a powder feed system which is the basis of the laser cladding technology. The aim of this paper is to get coats with layers of the highest possible ceramic concentration on a metal matrix composite (MMC) with the help of the FGM methodology.

  19. SEDS Tether M/OD Damage Analyses

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.; Hill, S. A.

    1997-01-01

    The Small Expendable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions. A series of hyper-velocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions; i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

  20. In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T.; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James F.; Yacout, Abdellatif M.

    2016-04-01

    Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergström's dislocation models.

  1. Advanced characterizations of austenitic oxide dispersion-strengthened (ODS) steels for high-temperature reactor applications

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin

    Future advanced nuclear systems involve higher operation temperatures, intenser neutron flux, and more aggressive coolants, calling for structural materials with excellent performances in multiple aspects. Embedded with densely and dispersedly distributed oxide nanoparticles that are capable of not only pinning dislocations but also trapping radiation-induced defects, oxide dispersion-strengthened (ODS) steels provide excellence in mechanical strength, creep resistance, and radiation tolerance. In order to develop ODS steels with qualifications required by advanced nuclear applications, it is important to understand the fundamental mechanisms of the enhancement of ODS steels in mechanical properties. In this dissertation, a series of austenitic ODS stainless steels were investigated by coordinated state-of-the-art techniques. A series of different precipitate phases, including multiple Y-Ti-O, Y-Al-O, and Y-Ti-Hf-O complex oxides, were observed to form during mechanical alloying. Small precipitates are likely to have coherent or cubic-on-cubic orientation relationships with the matrix, allowing the dislocation to shear through. The Orowan looping mechanism is the dominant particle-dislocation interaction mode as the temperature is low, whereas the shearing mechanism and the Hirsch mechanism are also observed. Interactions between the particles and the dislocations result in the load-partitioning phenomenon. Smaller particles were found to have the stronger loading-partitioning effect. More importantly, the load-partitioning of large size particles are marginal at elevated temperatures, while the small size particles remain sustaining higher load, explaining the excellent high temperature mechanical performance of ODS steels.

  2. Evaluation of roll compaction as a preparation method for hydroxypropyl cellulose-based matrix tablets

    PubMed Central

    Jeon, Imjak; Gilli, Tiziana; Betz, Gabriele

    2011-01-01

    Roll compaction was applied for the preparation of hydroxypropyl cellulose (HPC)-based sustained-release matrix tablets. Matrix tablets made via roll compaction exhibited higher dosage uniformity and faster drug release than direct-compacted tablets. HPC viscosity grade, roll pressure, and milling speed affected tablet properties significantly. Roll compaction seems to be an adequate granulation method for the preparation of HPC-based matrix tablets due to the simplicity of the process, less handling difficulty from HPC tackiness as well as easier particle size targeting. Selecting the optimum ratio of plastic excipients and the particle size of starting materials can however be critical issues in this method. PMID:21687348

  3. Evaluation of roll compaction as a preparation method for hydroxypropyl cellulose-based matrix tablets.

    PubMed

    Jeon, Imjak; Gilli, Tiziana; Betz, Gabriele

    2011-04-01

    Roll compaction was applied for the preparation of hydroxypropyl cellulose (HPC)-based sustained-release matrix tablets. Matrix tablets made via roll compaction exhibited higher dosage uniformity and faster drug release than direct-compacted tablets. HPC viscosity grade, roll pressure, and milling speed affected tablet properties significantly. Roll compaction seems to be an adequate granulation method for the preparation of HPC-based matrix tablets due to the simplicity of the process, less handling difficulty from HPC tackiness as well as easier particle size targeting. Selecting the optimum ratio of plastic excipients and the particle size of starting materials can however be critical issues in this method. PMID:21687348

  4. A cooperation index based on the Rényi entropy of correlation matrix spectrum

    NASA Astrophysics Data System (ADS)

    Righero, Marco

    2012-07-01

    We propose an index to measure cooperation among different time-series based on the Rényi entropy of the eigenvalues of the signal correlation matrix and an optimization step. The index could be considered as a generalization of a previously known index, based instead on the Shannon entropy. The extension to Rényi entropy and the optimization step allow a better use of the information conveyed by the correlation matrix, especially when dealing with a small number of signals.

  5. [Ecological groups of flatfishes of Peter the Great Bay (Japan sea) based on the analysis od species composition of myxosporidian parasites].

    PubMed

    Antonenko, D V; Aseeva, N L

    2010-01-01

    Comparison of myxosporidian species compositions in different flatfish species fro Peter the Great Bay showed that the flatfishes should be divided into three ecological groups--deep water (scaly-eyed plaice Acanthopsetta nadeshnyi, Korean flounder Glyptocephalus stelleri, flatheaded flounder Hippoglossoides dubius, and pinewood flounder Cleisthenes herzensteini), relatively coastal (yellow-finned sole Limanda aspera and brown sole Pseudopleuronectes herzensteini), and coastal (Japanese flounder Pseudopleuronectes yokohamae, long-snouted flounder Limanda punctatissimus, starry flounder Platichthys stellatus, and white-bellied flounder Lepidopsetta mochigarei). This division coincides in general with the previously proposed ecological classification based on the characteristics of bathymetric distribution and preference to water layers during summer period in the fishes. PMID:20536006

  6. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  7. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    PubMed

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. PMID:21130616

  8. Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration

    PubMed Central

    Petrauskaite, Odeta; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Juodzbalys, Gintaras; Maminskas, Julius

    2013-01-01

    The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i) cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii) the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii) the cellulose matrix was mixed with a calcium silicate solution in order to introduce silanol groups and to combine them with calcium ions. All the methods resulted in a mineralization of the cellulose surfaces after immersion in a simulated body fluid solution. Over a period of 14 days, the matrix was completely covered with hydroxyapatite crystals. Hydroxyapatite formation depended on functional groups on the matrix surface as well as on the precalcification method. The largest hydroxyapatite crystals were obtained on the carboxymethylated cellulose matrix treated with calcium hydroxide solution. The porous cellulose matrix was not cytotoxic, allowing the adhesion and proliferation of human osteoblastic cells. Comparatively, improved cell adhesion and growth rate were achieved on the mineralized cellulose matrices. PMID:24163816

  9. Irradiation creep and microstructural changes of ODS steels of different Cr-contents during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Henry, J.; de Carlan, Y.; Sauvage, T.; Duval, F.; Barthe, M. F.; Hoffelner, W.

    2013-06-01

    Irradiation creep and microstructural changes of two ferritic ODS steels with 12% and 14% Cr have been studied by homogeneously implantation with helium under uniaxial tensile stresses from 40 to 300 MPa. The maximum dose was about 1.2 dpa (5000 appm-He) with displacement damage rates of 1 × 10-5 dpa/s at a temperature of 300 °C. Irradiation creep compliances were measured to be 4.0 × 10-6 dpa-1 MPa-1 and 10 × 10-6 dpa-1 MPa-1 for 12 and 14Cr ODS, respectively. Subsequently, microstructural evolution was studied in detail by TEM observations, showing dislocation loops and bubbles distributed homogenously in the matrix. Some bubbles were attached to ODS particles. Finally, the effects of Cr content on irradiation creep and microstructural changes are discussed, including earlier results of a 19Cr ODS and a PM2000 ferritic steel. Irradiation creep rates of both 12Cr and 14Cr-ODS ferritic steels a temperature of 300 °C show linear stress dependence up to 300 MPa at. Irradiation creep rate per dose rate and stress at a temperature of 300 °C amounts to 4.0 × 10-6 dpa-1 MPa-1 and 10 × 10-6 dpa-1 MPa-1 for 12Cr- and 14Cr-ODS, respectively. Irradiation creep properties are remarkably insensitive to Cr content, grain size and dispersoid size. Dislocation loops and helium bubbles are distributed homogenously in the matrix. In the case of high density fine dispersoids, most bubbles are attached to ODS particles. This may suppress loop formation as well as growth of bubbles, thereby increasing the resistance of ODS ferritic steels against helium embrittlement.

  10. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  11. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    PubMed Central

    Saha, Krishnendu; Straus, Kenneth J.; Chen, Yu.; Glick, Stephen J.

    2014-01-01

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555

  12. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    PubMed

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555

  13. Geometric Correction of Airborne Linear Array Image Based on Bias Matrix

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, J.; Zhou, M.; Li, J. M.; Zhang, Z.

    2013-05-01

    As the linear array sensor has great potential in disaster monitoring, geological survey, the quality of the image geometric correction should be guaranteed. The primary focus of this paper is to present a new method correcting airbone linear image based on the bias matrix,which is bulit by describing and analysing the errors of airbone linear image included the misalignment. The bias matrix was considered as additional observations to the traditional geometric correction model in our method. And by using control points which have both image coordinate and object coordinate, the solving equation from geometric correction model can be established and the bias matrix can be calculated by adjustment strategy. To avoid the singularity problem in the calculating process, this paper uses quaternion to describe the image's attitude and rotation instead of traditional calculating method which is structured by the Euler angle. Finally, geometric correction of airborne linear array image with high accuracy based on bias matrix can be achieved.

  14. Characteristic Analysis on UAV-MIMO Channel Based on Normalized Correlation Matrix

    PubMed Central

    Xi jun, Gao; Zi li, Chen; Yong Jiang, Hu

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication. PMID:24977185

  15. Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.

    PubMed

    Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication. PMID:24977185

  16. Robust Adaptive Principal Component Analysis Based on Intergraph Matrix for Medical Image Registration

    PubMed Central

    Xiao, Jinjun; Li, Min; Zhang, Haipeng

    2015-01-01

    This paper proposes a novel robust adaptive principal component analysis (RAPCA) method based on intergraph matrix for image registration in order to improve robustness and real-time performance. The contributions can be divided into three parts. Firstly, a novel RAPCA method is developed to capture the common structure patterns based on intergraph matrix of the objects. Secondly, the robust similarity measure is proposed based on adaptive principal component. Finally, the robust registration algorithm is derived based on the RAPCA. The experimental results show that the proposed method is very effective in capturing the common structure patterns for image registration on real-world images. PMID:25960739

  17. An evidence-based review of dental matrix systems.

    PubMed

    Owens, Barry M; Phebus, Jeffrey G

    2016-01-01

    The restoration of proximal surface cavities, originating from Class II carious lesions, to "normal" anatomical specifications is a fundamental objective for the dental practitioner. Cognitive interpretation of tooth morphology attained from evidence-based resources, together with the necessary psychomotor skills for correct design and completion, are considered essential strategies for restoration success. Also, the visualization of the original tooth structure, if present, should substantially benefit the dentist in the creation of a clinically satisfactory restoration. The purpose of this evidence-based review is to define the cause and effect of decisions based on optimum treatment standards of care for the patient. The concepts of form and function, as related to the oral environment, and the consequences of unsatisfactory dental restorative care will be scrutinized. This article will identify and explain the different challenges and solutions for restoration of dental proximal lesions and provide an overview of past, present, and future procedures. PMID:27599285

  18. Annihilating Filter-Based Low-Rank Hankel Matrix Approach for Image Inpainting.

    PubMed

    Jin, Kyong Hwan; Ye, Jong Chul

    2015-11-01

    In this paper, we propose a patch-based image inpainting method using a low-rank Hankel structured matrix completion approach. The proposed method exploits the annihilation property between a shift-invariant filter and image data observed in many existing inpainting algorithms. In particular, by exploiting the commutative property of the convolution, the annihilation property results in a low-rank block Hankel structure data matrix, and the image inpainting problem becomes a low-rank structured matrix completion problem. The block Hankel structured matrices are obtained patch-by-patch to adapt to the local changes in the image statistics. To solve the structured low-rank matrix completion problem, we employ an alternating direction method of multipliers with factorization matrix initialization using the low-rank matrix fitting algorithm. As a side product of the matrix factorization, locally adaptive dictionaries can be also easily constructed. Despite the simplicity of the algorithm, the experimental results using irregularly subsampled images as well as various images with globally missing patterns showed that the proposed method outperforms existing state-of-the-art image inpainting methods. PMID:26087492

  19. 75 FR 9232 - Office of Dietary Supplements (ODS) 2010-2014 Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Knowledge and Understanding of Dietary Supplements. The strategic plan is available in pdf format on the ODS Web site: http://ods.od.nih.gov/pubs/strategicplan/StrategicPlan2010-2014.pdf . The ODS strategic...

  20. Uniformity Masks Design Method Based on the Shadow Matrix for Coating Materials with Different Condensation Characteristics

    PubMed Central

    2013-01-01

    An intuitionistic method is proposed to design shadow masks to achieve thickness profile control for evaporation coating processes. The proposed method is based on the concept of the shadow matrix, which is a matrix that contains coefficients that build quantitive relations between shape parameters of masks and shadow quantities of substrate directly. By using the shadow matrix, shape parameters of shadow masks could be derived simply by solving a matrix equation. Verification experiments were performed on a special case where coating materials have different condensation characteristics. By using the designed mask pair with complementary shapes, thickness uniformities of better than 98% are demonstrated for MgF2 (m = 1) and LaF3 (m = 0.5) simultaneously on a 280 mm diameter spherical substrate with the radius curvature of 200 mm. PMID:24227996

  1. Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging.

    PubMed

    Lim, Yiheng; Hong, Young-Joo; Duan, Lian; Yamanari, Masahiro; Yasuno, Yoshiaki

    2012-06-01

    We present a fiber based multifunctional Jones matrix swept source optical coherence tomography (SS-OCT) system for Doppler and polarization imaging. Jones matrix measurement without using active components such as electro-optic modulators is realized by incident polarization multiplexing based on independent delay of two orthogonal polarization states and polarization diversity detection. In addition to polarization sensitivity, this system measures Doppler flow without extra hardware for phase stabilized SS-OCT detection. An eighth-wave plate was measured to demonstrate the polarization detection accuracy. The optic nerve head of a retina was measured in vivo. Detailed vasculature and birefringent structures were investigated simultaneously. PMID:22660086

  2. Microstructure and oxidation properties of 16Cr-5Al-ODS steel prepared by sol-gel and spark plasma sintering methods

    NASA Astrophysics Data System (ADS)

    Xia, Y. P.; Wang, X. P.; Zhuang, Z.; Sun, Q. X.; Zhang, T.; Fang, Q. F.; Hao, T.; Liu, C. S.

    2013-01-01

    The 16Cr-5Al oxide dispersion strengthened (ODS) ferritic steel was fabricated by sol-gel method in combination with hydrogen reduction, mechanical alloying (MA) and spark plasma sintering (SPS) techniques. The phase characterization, microstructure and oxidation resistance of the 16Cr-5Al-ODS steel were investigated in comparison with the Al free 16Cr-ODS steel. X-ray diffraction (XRD) patterns showed that the Al free and Al added 16Cr-ODS steels exhibited typical ferritic characteristic structure. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) revealed that Y-Ti-O complexes with particle size of 10-30 nm were formed in the Al free matrix and Y-Al-O complexes with particle size of 20-100 nm were formed in the Al contained high-Cr ODS steel matrix. These complexes are homogeneously distributed in the matrices. The fabricated 16Cr-5Al-ODS steel exhibited superior oxidation resistance compared with the Al free 16Cr-ODS steel and the commercial 304 stainless steel owing to the formation of continuous and dense Al2O3 film on the surface.

  3. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect

    Y. Wu; L. Pan; K. Pruess

    2004-03-16

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  4. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect

    Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

    2004-03-15

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  5. Ceramic fiber ceramic matrix filter development

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.

    1994-09-01

    The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

  6. Microstructural characterizations of 14Cr ODS ferritic steels subjected to hot torsion

    NASA Astrophysics Data System (ADS)

    Karch, A.; Sornin, D.; Barcelo, F.; Bosonnet, S.; de Carlan, Y.; Logé, R.

    2015-04-01

    Oxide dispersion strengthened (ODS) steels are very promising materials for nuclear applications. In this paper, the hot working behavior of ODS ferritic steels, consolidated by hot extrusion, is studied through torsion tests. Three ODS steels are produced acting on both the quantity of Ti and Y2O3 added to the matrix (wt% Fe-14Cr-1W), and the density and size of the nanoparticles. A temperature range of 1000-1200 °C and strain rates from 5 ṡ 10-2 to 5 s-1 are considered. The microstructures of deformed samples are examined by Electron Back-Scatter Diffraction and X-ray diffraction techniques. It is observed that hot plastic strain leads to an early damage with nucleation and growth of cavities along grain boundaries. Except for the damage, very few microstructural and textural evolutions are noticed. The three tested ODS steels exhibit almost the same behavior under hot torsion straining, regardless of the precipitation state. Overall, the experimental results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains.

  7. Novel copyright information hiding method based on random phase matrix of Fresnel diffraction transforms

    NASA Astrophysics Data System (ADS)

    Cao, Chao; Chen, Ru-jun

    2009-10-01

    In this paper, we present a new copyright information hide method for digital images in Moiré fringe formats. The copyright information is embedded into the protected image and the detecting image based on Fresnel phase matrix. Firstly, using Fresnel diffraction transform, the random phase matrix of copyright information is generated. Then, according to Moiré fringe principle, the protected image and the detecting image are modulated respectively based on the random phase matrix, and the copyright information is embedded into them. When the protected image and the detecting image are overlapped, the copyright information can reappear. Experiment results show that our method has good concealment performance, and is a new way for copyright protection.

  8. MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong

    This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.

  9. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.

    PubMed

    Xie, Jiaquan; Huang, Qingxue; Yang, Xia

    2016-01-01

    In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent. PMID:27504247

  10. Clast-based kinematic vorticity gauges: The effects of slip at matrix/clast interfaces

    NASA Astrophysics Data System (ADS)

    Johnson, Scott E.; Lenferink, Hendrik J.; Price, Nancy A.; Marsh, Jeffrey H.; Koons, Peter O.; West, David P., Jr.; Beane, Rachel

    2009-11-01

    Clast-based methods for estimating the mean kinematic vorticity number Wm are compromised by strain localization at the clast margins. Localization increases with modal matrix mica content as determined with samples from the Sandhill Corner mylonite zone - a crustal-scale, high-strain, strike-slip shear zone in Maine. Using these samples, we estimate Wm with the oblique quartz shape-preferred orientation and rigid-clast rotation methods. The rigid-clast rotation method yields much lower values for Wm than the quartz method. To investigate whether or not slip at the matrix/clast interface can explain the discrepancy in calculated Wm, we conducted numerical modeling of rigid clasts enveloped by a low viscosity layer, both embedded within a shearing viscous matrix. Within this dynamic framework, we carried out numerical sensitivity analyses in which we varied the viscosity ratio between the lubricating layer and the surrounding matrix, the thickness of the lubricating layer, and the kinematic vorticity number of the bulk flow. Our data and numerical results succeed in explaining why Wm estimates from clast-based rotational methods are typically lower than estimates from other methods, and this has implications for testing hypotheses related, for example, to vorticity partitioning in oblique convergent settings, crustal-scale extrusion or channel flow, and exhumation of ultra-high pressure rocks, all of which rely on robust estimates of Wm. The relation between the shape preferred orientations of clasts and modal mica content lead to the hypothesis that mica is the cause of the lubrication at clast/matrix interfaces. If so, then we surmise that mica fish should be self-lubricating and would therefore form an end-member shape preferred orientation, regardless of matrix modal mica content. The unique role of mica allows us to speculate about the bounds on viscosity contrast between the matrix and lubricated clast interfaces.

  11. Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression

    PubMed Central

    Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong

    2016-01-01

    In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms. PMID:27525734

  12. Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.

    PubMed

    Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong

    2016-01-01

    In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms. PMID:27525734

  13. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.

    PubMed

    Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P

    2012-07-15

    An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers. PMID:22595545

  14. A search for good lattice rules based on the reciprocal lattice generator matrix

    SciTech Connect

    Lyness, J.N.; Newman, W.

    1989-01-01

    The search for cost-effective lattice rules is a time-consuming and difficult process. After a brief overview of some of the lattice theory relevant to these rules, a new approach to this search is suggested. This approach is based on a classification of lattice rules using the upper triangular lattice form'' of the reciprocal lattice generator matrix. 18 refs., 1 tab.

  15. School Television for Social Studies: A Competency-Based Matrix, Grade 5.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This matrix keys school films to the social studies competency-based curriculum cbjectives for grade 5. Three television series are included. Emphasis is placed on geography, people, and the economy, but the themes are also related to history and government. The first series, "Across Cultures," focuses on the people of North America, South…

  16. Matrix-based fertilizer: A new fertilizer formulation concept to reduce nutrient leaching

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared the efficacy of matrix based fertilizers (MBFs) formulated to reduce nitrate, ammonium, and total phosphorus (TP) leaching, with Osmocoate® 14-14-14, a conventional commercial slow release fertilizer (SRF), and with an unamended control in greenhouse column studies. The MBF formulations...

  17. High-pressure Raman studies on laurionite-type hydroxides Ba(OD)X (X = Cl, Br, I) and Sr(OD) 2

    NASA Astrophysics Data System (ADS)

    Jung, C.; Lutz, H. D.

    1996-07-01

    High-pressure Raman studies on Sr(OD) 2 and laurionite-type barium hydroxide halides Ba(OD)Cl, Ba(OD)Br, and Ba(OD)I were performed under hydrostatic compression up to 5 GPa using a diamond anvil cell. The pressure evolution of the OD stretching vibrations of the isostructural Ba(OD)X and Sr(OD) 2 is discussed with respect to the different behaviours of the respective hydrogen bond systems. The OD stretching modes slightly increase ( {dν OD}/{dp } = 4 cm-1 GPa -1) with increase in pressure if the respective ions are not involved in hydrogen bonds as in the case of Ba(OD)I and OD(2) of Sr(OD) 2 (lattice repulsion effect). The wavenumbers of OD stretching modes of ions involved in hydrogen bonds, as OD(1) of Sr(OD) 2, decrease due to a strengthening of the respective bonds with increasing pressure. A discontinuous decrease of νOD is observed for Ba(OD)Br indicating transition from a weakly hydrogen-bonded structure to a more strongly bonded one via reorientation of the OD - ions. In the case of Sr(OD) 2, it is confirmed that one of two crystallographically different hydroxide ions is involved in hydrogen bonding but the other is not.

  18. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  19. A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.

    1990-01-01

    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.

  20. Study on the key technology of spectral reflectance reconstruction based on the weighted measurement matrix

    NASA Astrophysics Data System (ADS)

    Leihong, Zhang; Bei, Li; Dong, Liang; Xiuhua, Ma

    2016-07-01

    In order to reconstruct the spectral reflectance accurately, a new method of spectral reflectance reconstruction based on the weighted measurement matrix is proposed in this paper. By optimizing the measurement matrix between spectral reflectance and the response of a camera, the method can improve the reconstruction accuracy. The new method is a combination of three kinds of common reflectance reconstruction methods, which are the pseudo inverse method, the Wiener estimation method and the principal component analysis method. The new measurement matrix can be achieved after weighting the measurement matrices of these three methods to reconstruct the spectral reflectance. What is more, the weights of the three methods can be obtained by minimizing the color difference. Results show that the CIE1976 color difference and RMSE value of the weighted reconstructed spectra are less than that of three common reconstruction methods. The spectral matching accuracy GFC of the method is higher than 0.99 and its reconstruction accuracy is high.

  1. A CD adaptive monitoring and compensation method based on the average of the autocorrelation matrix eigenvalue

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Lei, Jianming; Guo, Junhui; Zou, Xuecheng; Li, Bin; Lu, Li

    2014-02-01

    A new autocorrelation matrix eigenvalue based digital signal processing (DSP) chromatic dispersion (CD) adaptive monitoring and compensation method is proposed. It employs the average of the autocorrelation matrix eigenvalue instead of eigenvalue spread to be the metric of scanning. The average calculation has been effective in relieving the degradation of performance caused by the fluctuation of autocorrelation matrix eigenvalue. Compare with the eigenvalue spread scanning algorithm, this method reduces the monitoring errors to below 10 ps/nm from more than 200 ps/nm, while not increasing its computation complexity. Simulation results show that in 100 Gbit/s polarization division multiplexing (PDM) quadrature phase shift keying (QPSK) coherent optical transmission system, this method improves the bit error rate (BER) performance and the system robustness against the amplified-spontaneous-emission noise.

  2. Steganalysis for GIF images based on colors-gradient co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Wang, Hongxia

    2012-11-01

    A steganalysis algorithm based on colors-gradient co-occurrence matrix (CGCM) is proposed in this paper. CGCM is constructed with colors matrix and gradient matrix of the GIF image, and 27-dimensional statistical features of CGCM, which are sensitive to the color-correlation between adjacent pixels and the breaking of image texture, are extracted. Support vector machine (SVM) technique takes the 27-dimensional statistical features to detect hidden message in GIF images. Experimental results indicate that the proposed algorithm is more effective than Zhao's algorithm for several existing GIF steganographic algorithms and steganography tools, especially for multibit assignment (MBA) steganography and EzStego. Furthermore, the time efficiency of the proposed algorithm is much higher than Zhao's algorithm.

  3. A crack extraction algorithm based on improved median filter and Hessian matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Yafeng; Zhao, Qiancheng; He, Yongbiao; Lu, Guofeng

    2016-01-01

    Aiming at the problems of existing crack extraction algorithms which are difficult to achieve fast and accurate crack extraction of image, an algorithm of crack detection based on Median Filter and Hessian Matrix is proposed. Firstly, median filter of crack gray image in 4 directions, Level, 45 degree, vertical and -45 degree, is conducted, by which noises are removed and roughly extracted crack is obtained. Then according to the Hessian matrix feature of extracting image linear feature, convolution of Differential operation of the Hessian matrix is adopted, and crack is further extracted through eigenvalues response and changing standard deviation of Gaussian function. The proposed algorithm validity is verified by comparison with other crack extraction algorithm. The results show that this algorithm has obvious accuracy rate in crack extraction.

  4. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip

    NASA Astrophysics Data System (ADS)

    Cardoso, F. A.; Ferreira, H. A.; Conde, J. P.; Chu, V.; Freitas, P. P.; Vidal, D.; Germano, J.; Sousa, L.; Piedade, M. S.; Costa, B. A.; Lemos, J. M.

    2006-04-01

    Magnetoresistive biochips have been recently introduced for the detection of biomolecular recognition. In this work, the detection site incorporates a thin-film diode in series with a magnetic tunnel junction (MTJ), leading to a matrix-based biochip that can be easily scaled up to screen large numbers of different target analytes. The fabricated 16×16 cell matrix integrates hydrogenated amorphous silicon (a-Si:H) diodes with aluminum oxide barrier MTJ. Each detection site also includes a U-shaped current line for magnetically assisted target concentration at probe sites. The biochip is being integrated in a portable, credit card size electronics control platform. Detection of 250 nm diameter magnetic nanoparticles by one of the matrix cells is demonstrated.

  5. Image restoration via patch orientation-based low-rank matrix approximation and nonlocal means

    NASA Astrophysics Data System (ADS)

    Zhang, Di; He, Jiazhong; Du, Minghui

    2016-03-01

    Low-rank matrix approximation and nonlocal means (NLM) are two popular techniques for image restoration. Although the basic principle for applying these two techniques is the same, i.e., similar image patches are abundant in the image, previously published related algorithms use either low-rank matrix approximation or NLM because they manipulate the information of similar patches in different ways. We propose a method for image restoration by jointly using low-rank matrix approximation and NLM in a unified minimization framework. To improve the accuracy of determining similar patches, we also propose a patch similarity measurement based on curvelet transform. Extensive experiments on image deblurring and compressive sensing image recovery validate that the proposed method achieves better results than many state-of-the-art algorithms in terms of both quantitative measures and visual perception.

  6. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  7. Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel

    NASA Astrophysics Data System (ADS)

    Rogozhkin, S. V.; Aleev, A. A.; Zaluzhnyi, A. G.; Nikitin, A. A.; Iskandarov, N. A.; Vladimirov, P.; Lindau, R.; Möslang, A.

    2011-02-01

    Our previous investigations of unirradiated ODS Eurofer by tomographic atom probe (TAP) revealed numerous nano-scaled features (nanoclusters) enriched in vanadium, yttrium and oxygen. In this work the effect of neutron irradiation on nanostructure behaviour of ODS Eurofer (9%-CrWVTa) was investigated. The irradiation was performed in the research reactor BOR-60 (Dimitrovgrad, Russia) where materials were irradiated at 330 °С to 32 dpa. TAP studies were performed on the needles prepared from parts of broken Charpy specimens. For all specimens except one, which was tested at 500 °C, the Charpy tests were performed at temperatures not exceeding the irradiation temperature. A high number density 2-4 × 10 24 m -3 of ultra fine 1-3 nm diameter nanoclusters enriched in yttrium, oxygen, manganese and chromium was observed in the irradiated state. The composition of detected clusters differs from that for unirradiated ODS Eurofer. It was observed in this work that after neutron irradiation vanadium atoms had left the clusters, moving from the core into solid solution. The concentrations of yttrium and oxygen in the matrix, as it was detected, increase several times under irradiation. In the samples tested at 500 °C both the number density of clusters and the yttrium concentration in the matrix decrease by a factor of two.

  8. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  9. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    SciTech Connect

    Ren, Weiju; Feng, Zhili

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  10. A modular non-negative matrix factorization for parts-based object recognition using subspace representation

    NASA Astrophysics Data System (ADS)

    Bajla, Ivan; Soukup, Daniel

    2008-02-01

    Non-negative matrix factorization of an input data matrix into a matrix of basis vectors and a matrix of encoding coefficients is a subspace representation method that has attracted attention of researches in pattern recognition in the recent period. We have explored crucial aspects of NMF on massive recognition experiments with the ORL database of faces which include intuitively clear parts constituting the whole. Using a principal changing of the learning stage structure and by formulating NMF problems for each of a priori given parts separately, we developed a novel modular NMF algorithm. Although this algorithm provides uniquely separated basis vectors which code individual face parts in accordance with the parts-based principle of the NMF methodology applied to object recognition problems, any significant improvement of recognition rates for occluded parts, predicted in several papers, was not reached. We claim that using the parts-based concept in NMF as a basis for solving recognition problems with occluded objects has not been justified.

  11. The inversion method of Matrix mineral bulk modulus based on Gassmann equation

    NASA Astrophysics Data System (ADS)

    Kai, L.; He, X.; Zhang, Z. H.

    2015-12-01

    In recent years, seismic rock physics has played an important role in oil and gas exploration. The seismic rock physics model can quantitatively describe the reservoir characteristics, such as lithologic association, pore structure, geological processes and so on. But the classic rock physics models need to determine the background parameter, that is, matrix mineral bulk modulus. An inaccurate inputs greatly influence the prediction reliability. By introducing different rock physics parameters, Gassmann equation is used to derive a reasonable modification. Two forms of Matrix mineral bulk modulus inversion methods including the linear regression method and Self-adapting inversion method are proposed. They effectively solve the value issues of Matrix mineral bulk modulus in different complex parameters conditions. Based on laboratory tests data, compared with the conventional method, the linear regression method is more simple and accurate. Meanwhile Self-adapting inversion method also has higher precision in the known rich rock physics parameters. Consequently, the modulus value was applied to reservoir fluid substitution, porosity inversion and S-wave velocity prediction. The introduction of Matrix mineral modulus base on Gassmann equations can effectively improve the reliability of the fluid impact prediction, and computational efficiency.

  12. Nanostructure evolution in ODS Eurofer steel under irradiation up to 32 dpa

    NASA Astrophysics Data System (ADS)

    Rogozhkin, S. V.; Orlov, N. N.; Aleev, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kuibeda, R. P.; Kulevoy, T. V.; Nikitin, A. A.; Chalykh, B. B.; Lindau, R.; Möslang, A.; Vladimirov, P.

    2015-01-01

    The nanostructure of the ODS Eurofer steel (9% CrWVTa + 0.5% Y2O3) has been studied after irradiation by iron ions to a damaging dose of 32 dpa. This steel in the initial state is characterized by the presence of a significant amount (˜1024 m-3) of nanosized (2-4 nm) clusters containing atoms of V, Y, O, and N. An analysis of the distribution of various chemical elements in the tested volumes has revealed variations in the composition of the matrix and of the nanosized clusters during irradiation. The data obtained were compared with the results for the ODS Eurofer steel subjected to reactor irradiation to a dose of 32 dpa.

  13. R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors

    NASA Astrophysics Data System (ADS)

    Nikitina, A. A.; Ageev, V. S.; Chukanov, A. P.; Tsvelev, V. V.; Porezanov, N. P.; Kruglov, O. A.

    2012-09-01

    Present paper performs research results of structure and mechanical properties of the ODS steel on the base of steel EP450 (Fe-13Cr-2Mo-Nb-V-B-0,12C) on all stages of producing: from powders to thin-walled tubes. Also, the results of research on method of sealing thin-walled tubes from steel EP450 ODS by pressurized resistance welding are shown.

  14. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    NASA Astrophysics Data System (ADS)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  15. Spatial and thematic assessment of object-based forest stand delineation using an OFA-matrix

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Tiede, D.; Albrecht, F.; Lang, S.

    2012-10-01

    The delineation and classification of forest stands is a crucial aspect of forest management. Object-based image analysis (OBIA) can be used to produce detailed maps of forest stands from either orthophotos or very high resolution satellite imagery. However, measures are then required for evaluating and quantifying both the spatial and thematic accuracy of the OBIA output. In this paper we present an approach for delineating forest stands and a new Object Fate Analysis (OFA) matrix for accuracy assessment. A two-level object-based orthophoto analysis was first carried out to delineate stands on the Dehesa Boyal public land in central Spain (Avila Province). Two structural features were first created for use in class modelling, enabling good differentiation between stands: a relational tree cover cluster feature, and an arithmetic ratio shadow/tree feature. We then extended the OFA comparison approach with an OFA-matrix to enable concurrent validation of thematic and spatial accuracies. Its diagonal shows the proportion of spatial and thematic coincidence between a reference data and the corresponding classification. New parameters for Spatial Thematic Loyalty (STL), Spatial Thematic Loyalty Overall (STLOVERALL) and Maximal Interfering Object (MIO) are introduced to summarise the OFA-matrix accuracy assessment. A stands map generated by OBIA (classification data) was compared with a map of the same area produced from photo interpretation and field data (reference data). In our example the OFA-matrix results indicate good spatial and thematic accuracies (>65%) for all stand classes except for the shrub stands (31.8%), and a good STLOVERALL (69.8%). The OFA-matrix has therefore been shown to be a valid tool for OBIA accuracy assessment.

  16. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  17. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.

    PubMed

    Dijckmans, A; Vermeir, G

    2013-04-01

    In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures. PMID:23556585

  18. An electrically controlled drug delivery system based on conducting poly(3,4-ethylenedioxypyrrole) matrix.

    PubMed

    Krukiewicz, Katarzyna; Zawisza, Patrycja; Herman, Artur P; Turczyn, Roman; Boncel, Slawomir; Zak, Jerzy K

    2016-04-01

    As numerous therapeutic agents are not well tolerated when administrated systemically, localized and controlled delivery can help to decrease their toxicity by applying an optimized drug concentration at extended exposure time. Among different types of drug delivery systems, conjugated polymers are considered as promising materials due to their biocompatibility, electrical conductivity and ability to undergo controllable redox reactions. In this work poly(3,4-ethylenedioxypyrrole), PEDOP, matrix is described for the first time as a reservoir of a model drug, ibuprofen (IBU). Drug immobilization process is performed in situ, during the electrochemical polymerization of 10 mM EDOP in the presence of 5-50 mM IBU. The loading efficiency of polymer matrix is dependent on IBU concentration and reaches 25.0±1.3 μg/cm2. The analysis of PEDOP-IBU chemical structure based on Raman spectroscopy, energy dispersive spectroscopy and surface morphology data provided by scanning electron microscopy shows that IBU is accumulated in the structure of matrix and evidently influences its morphology. IBU is then released in a controlled way under the influence of applied potential (-0.7 V vs. Ag/AgCl). It is demonstrated that the judicious choice of the synthesis conditions leads to a tailored loading efficiency of PEDOP matrix and to a tunable drug release. PMID:26606716

  19. Cubic AlNi compound dispersed Mg-based amorphous matrix composites prepared by rapid solidification

    SciTech Connect

    Niikura, A.; Tsai, A.P.; Inoue, A.; Masumoto, T. . Inst. for Materials Research)

    1994-06-01

    Magnesium is known as the lightest metal which has been used as a construction material. Recently, a series of amorphous Al-and Mg-based alloys having high strength and a wider supercooled liquid region have been found in Mg (or Al)-Tm (transition metal)-Ln (lanthanide metal) system, with indications of becoming a high specific strength material. Moreover, it was found that the dispersion of ultrafine fcc or hcp particles in the amorphous matrix improved the mechanical strength. On the other hand, a metal matrix composite material is a promising approach to materials development from which one can realize the enhanced mechanical properties of rapidly quenched metals in widespread technical application. The melt-spinning method has been combined with some techniques to incorporate carbide, nitride, and oxide particles into the molten alloy, to prepare an amorphous metal matrix composite. In general, the composite was prepared by consolidation techniques at sufficiently high temperature, which could lead to the crystallization. Thus, the preparation of amorphous composite is rarely achieved of amorphous phase. Recently, the authors have fabricated magnesium amorphous matrix composites with cubic AlNi compound (c-AlNi) as dispersoid by melt-spinning without any extra process. In this communication, they report the fabrication, structure, and hardness of this special amorphous composite.

  20. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet.

    PubMed

    Srivastava, Rishabh; Kumar, Deepesh; Pathak, Kamla

    2012-05-10

    The work was aimed at developing calcium-pectinate matrix tablet for colon-targeted delivery of meloxicam (MLX) microsponges. Modified quassi-emulsion solvent diffusion method was used to formulate microsponges (MS), based on 3(2) full factorial design. The effects of volume of dichloromethane and EudragitRS100 content (independent variables) were determined on the particle size, entrapment efficiency and %cumulative drug release of MS1-MS9. The optimized formulation, MS5 (d(mean)=44.47 μm, %EE=98.73, %CDR=97.32 and followed zero order release) was developed into colon-targeted matrix tablet using calcium pectinate as the matrix. The optimized colon-targeted tablet (MS5T2) shielded MLX loaded microsponges in gastrointestinal region and selectively delivered them to colon, as vizualized by vivo fluoroscopy in rabbits. The pharmacokinetic evaluation of MS5T2 in rabbits, revealed appearance of drug appeared in plasma after a lag time of 7h; a t(max) of 30 h with Fr=61.047%, thus presenting a formulation suitable for targeted colonic delivery. CLSM studies provided an evidence for colonic luminal retentive ability of microsponges at the end of 8h upon oral administration of MS5T2. Thus calcium pectinate matrix tablet loaded with MLX microsponges was developed as a promising system for the colon-specific delivery that has potential for use as an adjuvant therapy for colorectal cancer. PMID:22306039

  1. Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.

    PubMed

    Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas

    2016-08-16

    Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment. PMID:27410200

  2. Joining Techniques for Ferritic ODS Alloys

    SciTech Connect

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  3. Design and in vitro evaluation of novel sustained- release matrix tablets for lornoxicam based on the combination of hydrophilic matrix formers and basic pH-modifiers.

    PubMed

    Hamza, Yassin El-Said; Aburahma, Mona Hassan

    2010-01-01

    The short half-life of lornoxicam, a potent non-steroidal anti-inflammatory drug, makes the development of sustained-release (SR) forms extremely advantageous. However, due to its weak acidic nature, its release from SR delivery systems is limited to the lower gastrointestinal tract which consequently leads to a delayed onset of its analgesic action. Accordingly, the aim of this study was to develop lornoxicam SR matrix tablets that provide complete drug release that starts in the stomach to rapidly alleviate the painful symptoms and continues in the intestine to maintain protracted analgesic effect as well as meets the reported SR specifications. The proposed strategy was based on preparing directly compressed hydroxypropylmethylcellulose matrix tablets to sustain lornoxicam release. Basic pH-modifiers, either sodium bicarbonate or magnesium oxide, were incorporated into these matrix tablets to create basic micro-environmental pH inside the tablets favorable to drug release in acidic conditions. All the prepared matrix tablets containing basic pH-modifiers showed acceptable physical properties before and after storage. Release studies, performed in simulated gastric and intestinal fluids used in sequence to mimic the GI transit, demonstrate the possibility of sustaining lornoxicam release by combining hydrophilic matrix formers and basic pH-Modifiers to prepare tablets that meet the reported sustained-release specifications. PMID:19895367

  4. A Practical Method ‘Discussion using Matrix Diagram’ , ConnectingHuman Base-Liberal-and Engineering Base-Professional-

    NASA Astrophysics Data System (ADS)

    Shimada, Wataru

    In order to bring up talented people, it is a most important subject how to awake ‘Emotional Human Power’ , which is the origin of Autonomy and Creativity. A Practical Method ‘Discussion using Matrix Diagram’ developed for improving ‘Emotional Human Power’ including ‘Communication Skill’ , is confirmed to be useful for connecting Human Base-Liberal-and Engineering Base-Professional-.

  5. The BGO Calorimeter of BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2015-02-01

    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.

  6. Photoabsorption cross section of OD at 115-180 nm

    NASA Technical Reports Server (NTRS)

    Nee, J. B.; Lee, L. C.

    1984-01-01

    The photoabsorption cross sections of OD in the 115-180 nm region were measured. The OD radicals were produced from a pulsed discharge in a mixture containing a trace of D2O in a few Torr of argon. Results are compared with the photoabsorption of OH previously measured.

  7. Elasticity analyses of size-based red and white abalone matrix models: management and conservation.

    PubMed

    Rogers-Bennett, Laura; Leaf, Robert T

    2006-02-01

    Prospective elasticity analyses have been used to aid in the management of fished species and the conservation of endangered species. Elasticities were examined for deterministic size-based matrix models of red abalone, Haliotis rufescens, and white abalone, H. sorenseni, to evaluate which size classes influenced population growth (lambda) the most. In the red abalone matrix, growth transitions were determined from a tag recapture study and grouped into nine size classes. In the white abalone matrix, abalone growth was determined from a laboratory study and grouped into five size classes. Survivorship was estimated from tag recapture data for red abalone using a Jolly-Seber model with size as a covariate and used for both red and white abalone. Reproduction estimates for both models used averages of the number of mature eggs produced by female red and white abalone in each size class from four-year reproduction studies. Population growth rate (lambda) was set to 1.0, and the first-year survival (larval survival through to the first size class) was estimated by iteration. Survival elasticities were higher than fecundity elasticities in both the red and white matrix models. The sizes classes with the greatest survival elasticities, and therefore the most influence on population growth in the model, were the sublegal red abalone (150-178 mm) and the largest white abalone size class (140-175 mm). For red abalone, the existing minimum legal size (178 mm) protects the size class the model suggests is critical to population growth. Implementation of education programs for novice divers coupled with renewed enforcement may serve to minimize incidental mortality of the critical size class. For white abalone, conservation efforts directed at restoring adults may have more of an impact on population growth than efforts focusing on juveniles. Our work is an example of how prospective elasticity analyses of size-structured matrix models can be used to quantitatively evaluate

  8. Microstructural development under irradiation in European ODS ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Ramar, A.; Baluc, N.; de Castro, V.; Monge, M. A.; Leguey, T.; Schmid, N.; Bonjour, C.

    2006-06-01

    Oxide dispersion strengthened steels based on the ferritic/martensitic steel EUROFER97 are promising candidates for a fusion reactor because of their improved high temperature mechanical properties and their potential higher radiation resistance relative to the base material. Several EUROFER97 based ODS F/M steels are investigated in this study. There are the Plansee ODS steels containing 0.3 wt% yttria, and the CRPP ODS steels, whose production route is described in detail. The reinforcing particles represent 0.3-0.5% weight and are composed of yttria. The effect of 0.3 wt% Ti addition is studied. ODS steel samples have been irradiated with 590 MeV protons to 0.3 and 1.0 dpa at room temperature and 350 °C. Microstructure is investigated by transmission electron microscopy and mechanical properties are assessed by tensile and Charpy tests. While the Plansee ODS presents a ferritic structure, the CRPP ODS material presents a tempered martensitic microstructure and a uniform distribution of the yttria particles. Both materials provide a yield stress higher than the base material, but with reduced elongation and brittle behaviour. Ti additions improve elongation at high temperatures. After irradiation, mechanical properties of the material are only slightly altered with an increase in the yield strength, but without significant decrease in the total elongation, relative to the base material. Samples irradiated at room temperature present radiation induced defects in the form of blacks dots with a size range from 2 to 3 nm, while after irradiation at 350 °C irradiation induced a0<1 0 0>{1 0 0} dislocation loops are clearly visible along with nanocavities. The dispersed yttria particles with an average size of 6-8 nm are found to be stable for all irradiation conditions. The density of the defects and the dispersoid are measured and found to be about 2.3 × 10 22 m -3 and 6.2 × 10 22 m -3, respectively. The weak impact of irradiation on mechanical properties of ODS F

  9. Development of novel graphene and carbon nanotubes based multifunctional polymer matrix composites

    SciTech Connect

    Leung, S. N. Khan, M. O. Naguib, H. E.

    2014-05-15

    This paper investigates strategies to alter the nano-and-microstructures of carbon-based filler-reinforced polymer matrix composites (PMCs). The matrix materials being studied in this work include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). A set of experiments were performed to investigate various strategies (i) to fabricate a morphological structure within the polymer matrix; (ii) to develop a thermally and electrically conductive network of nano-scaled fillers; and (iii) to produce a thermally conductive but electrically insulative network of hybrid fillers of nano-and-micro scales. The PMCs' structure-to-property relationships, including electrical and thermal properties, were revealed. In particular, the composites' effective thermal conductivities could be increased by as much as 10-folded over the neat polymers. By structuring the embedded electrically conductive pathways in the PMCs, their electrical conductivities could be tailored to levels that ranged from those of electrical insulators to those of semi-conductors. These multifunctional carbon-based filler-reinforced PMCs are envisioned to be potential solutions of various engineering problems. For example, light-weight thermally conductive PMCs with tailored electrical conductivities can serve as a new family of materials for electronic packaging or heat management applications.

  10. A New Scale Based 'Heterogeneity Matrix' for Improving Soil Moisture Spatial Scaling

    NASA Astrophysics Data System (ADS)

    Gaur, N.; Mohanty, B. P.

    2012-12-01

    Soil moisture is a dynamic state variable of interest to agronomists, hydrologists and climate modelers alike. But the spatial scales at which they require soil moisture data are very different from each other. Past studies have established that the spatial structure of soil moisture is dependent upon the heterogeneity in physical controls, namely, precipitation, soil, vegetation and topography of the region. However, the spatial structure of soil moisture has also been found to be severely affected by scale. In order to estimate the spatial structure of soil moisture at different scales, it is important to first identify an effective scale based representation of heterogeneity with respect to its effect on soil moisture spatial distribution. In this study, we are attempting to devise a 3x3 heterogeneity matrix to accurately represent the existing heterogeneity in a region at the field, watershed and regional scale. Heterogeneity in terms of soil, vegetation and topography is being investigated for 2 hydro-climates (humid and sub-humid). An exhaustive sensitivity analysis using the Community Land -Surface Model (CLM) is being conducted to determine the most appropriate scale based parameters (like NDVI, % sand, slope etc.) that can represent the different physical controls. The statistical entropy of each chosen parameter will be used to represent the heterogeneity magnitude of a particular physical control which will form the diagonal of the heterogeneity matrix. The remainder elements of the matrix will be estimated as the joint entropy and will represent the correlation between the different physical controls.

  11. Development of novel graphene and carbon nanotubes based multifunctional polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Leung, S. N.; Khan, M. O.; Naguib, H. E.

    2014-05-01

    This paper investigates strategies to alter the nano-and-microstructures of carbon-based filler-reinforced polymer matrix composites (PMCs). The matrix materials being studied in this work include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). A set of experiments were performed to investigate various strategies (i) to fabricate a morphological structure within the polymer matrix; (ii) to develop a thermally and electrically conductive network of nano-scaled fillers; and (iii) to produce a thermally conductive but electrically insulative network of hybrid fillers of nano-and-micro scales. The PMCs' structure-to-property relationships, including electrical and thermal properties, were revealed. In particular, the composites' effective thermal conductivities could be increased by as much as 10-folded over the neat polymers. By structuring the embedded electrically conductive pathways in the PMCs, their electrical conductivities could be tailored to levels that ranged from those of electrical insulators to those of semi-conductors. These multifunctional carbon-based filler-reinforced PMCs are envisioned to be potential solutions of various engineering problems. For example, light-weight thermally conductive PMCs with tailored electrical conductivities can serve as a new family of materials for electronic packaging or heat management applications.

  12. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  13. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b) a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.

  14. A Matrix-Based Proactive Data Relay Algorithm for Large Distributed Sensor Networks.

    PubMed

    Xu, Yang; Hu, Xuemei; Hu, Haixiao; Liu, Ming

    2016-01-01

    In large-scale distributed sensor networks, sensed data is required to be relayed around the network so that one or few sensors can gather adequate relative data to produce high quality information for decision-making. In regards to very high energy-constraint sensor nodes, data transmission should be extremely economical. However, traditional data delivery protocols are potentially inefficient relaying unpredictable sensor readings for data fusion in large distributed networks for either overwhelming query transmissions or unnecessary data coverage. By building sensors' local model from their previously transmitted data in three matrixes, we have developed a novel energy-saving data relay algorithm, which allows sensors to proactively make broadcast decisions by using a neat matrix computation to provide balance between transmission and energy-saving. In addition, we designed a heuristic maintenance algorithm to efficiently update these three matrices. This can easily be deployed to large-scale mobile networks in which decisions of sensors are based on their local matrix models no matter how large the network is, and the local models of these sensors are updated constantly. Compared with some traditional approaches based on our simulations, the efficiency of this approach is manifested in uncertain environment. The results show that our approach is scalable and can effectively balance aggregating data with minimizing energy consumption. PMID:27537891

  15. Matrix Factorization-Based Prediction of Novel Drug Indications by Integrating Genomic Space

    PubMed Central

    Dai, Wen; Liu, Xi; Gao, Yibo; Chen, Lin; Gao, Kuo; Jiang, Yongshi; Yang, Yiping; Chen, Jianxin

    2015-01-01

    There has been rising interest in the discovery of novel drug indications because of high costs in introducing new drugs. Many computational techniques have been proposed to detect potential drug-disease associations based on the creation of explicit profiles of drugs and diseases, while seldom research takes advantage of the immense accumulation of interaction data. In this work, we propose a matrix factorization model based on known drug-disease associations to predict novel drug indications. In addition, genomic space is also integrated into our framework. The introduction of genomic space, which includes drug-gene interactions, disease-gene interactions, and gene-gene interactions, is aimed at providing molecular biological information for prediction of drug-disease associations. The rationality lies in our belief that association between drug and disease has its evidence in the interactome network of genes. Experiments show that the integration of genomic space is indeed effective. Drugs, diseases, and genes are described with feature vectors of the same dimension, which are retrieved from the interaction data. Then a matrix factorization model is set up to quantify the association between drugs and diseases. Finally, we use the matrix factorization model to predict novel indications for drugs. PMID:26078775

  16. Prediction on the Inhibition Ratio of Pyrrolidine Derivatives on Matrix Metalloproteinase Based on Gene Expression Programming

    PubMed Central

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R2) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs. PMID:24971318

  17. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  18. Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

    PubMed

    Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M

    2004-02-01

    At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'. PMID:14743215

  19. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs. PMID:24971318

  20. Effects of Effective Dendrite Size on Dynamic Tensile Properties of Ti-Based Amorphous Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Park, Jaeyeong; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak

    2016-04-01

    In this study, dynamic tensile properties of dendrite-containing Ti-based amorphous matrix composites were examined, and effects of dendrite size on dynamic deformation were investigated. The composites contained 73 to 76 vol pct of dendrites whose effective sizes were varied from 63 to 103 μm. The dynamic tensile test results indicated that the ultimate tensile strength increased up to 1.25 GPa, whereas the elongation decreased to 1 pct, although the overall strength and elongation trends followed those of the quasi-static tensile test. According to the observation of dynamic tensile deformation behavior, very few deformation bands were observed beneath the fracture surface in the composite containing large dendrites. In the composite containing small dendrites, deformation bands initiated inside small dendrites propagated into adjacent dendrites through the amorphous matrix, and were crossly intersect perpendicularly in widely deformed areas, which beneficially worked for elongation as well as strength.

  1. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    SciTech Connect

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-27

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 {mu}A mM{sup -1} cm{sup -2} and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  2. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction

    PubMed Central

    Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2014-01-01

    Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888

  3. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  4. PID Controller Tuning Based on the Covariance Matrix Adaptation Evolution Strategy

    NASA Astrophysics Data System (ADS)

    Wakasa, Yuji; Kanagawa, Shinji; Tanaka, Kanya; Nishimura, Yuki

    The covariance matrix adaptation evolution strategy (CMA-ES) is a kind of stochastic optimization such as particle swarm optimization (PSO), and has been shown to have a good performance. However, there are few control applications of the CMA-ES except for only one paper. This paper deals with a PID control problem with constraints on sensitivity and complementary sensitivity functions, and proposes a PID controller tuning method based on the CMA-ES. Numerical examples are given to show the effectiveness of the proposed method in comparison with the recently proposed PSO-based method.

  5. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    PubMed

    Hong, Jeongmin; Stefanescu, Eugenia; Liang, Ping; Joshi, Nikhil; Xue, Song; Litvinov, Dmitri; Khizroev, Sakhrat

    2012-01-01

    This letter describes the use of vertically aligned carbon nanotubes (CNT)-based arrays with estimated 2-nm thick cobalt (Co) nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS). PMID:22808192

  6. Multi-ray-based system matrix generation for 3D PET reconstruction.

    PubMed

    Moehrs, Sascha; Defrise, Michel; Belcari, Nicola; Guerra, Alberto Del; Bartoli, Antonietta; Fabbri, Serena; Zanetti, Gianluigi

    2008-12-01

    Iterative image reconstruction algorithms for positron emission tomography (PET) require a sophisticated system matrix (model) of the scanner. Our aim is to set up such a model offline for the YAP-(S)PET II small animal imaging tomograph in order to use it subsequently with standard ML-EM (maximum-likelihood expectation maximization) and OSEM (ordered subset expectation maximization) for fully three-dimensional image reconstruction. In general, the system model can be obtained analytically, via measurements or via Monte Carlo simulations. In this paper, we present the multi-ray method, which can be considered as a hybrid method to set up the system model offline. It incorporates accurate analytical (geometric) considerations as well as crystal depth and crystal scatter effects. At the same time, it has the potential to model seamlessly other physical aspects such as the positron range. The proposed method is based on multiple rays which are traced from/to the detector crystals through the image volume. Such a ray-tracing approach itself is not new; however, we derive a novel mathematical formulation of the approach and investigate the positioning of the integration (ray-end) points. First, we study single system matrix entries and show that the positioning and weighting of the ray-end points according to Gaussian integration give better results compared to equally spaced integration points (trapezoidal integration), especially if only a small number of integration points (rays) are used. Additionally, we show that, for a given variance of the single matrix entries, the number of rays (events) required to calculate the whole matrix is a factor of 20 larger when using a pure Monte-Carlo-based method. Finally, we analyse the quality of the model by reconstructing phantom data from the YAP-(S)PET II scanner. PMID:19001696

  7. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability

    SciTech Connect

    Stanislavchuk, T. N.; Kang, T. D.; Rogers, P. D.; Standard, E. C.; Basistyy, R.; Nita, G.; Zhou, T.; Sirenko, A. A.; Kotelyanskii, A. M.; Carr, G. L.; Kotelyanskii, M.

    2013-02-15

    We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm{sup -1}. Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of {theta}-2{theta} angular rotation, {chi} tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 Multiplication-Sign 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability {mu}{ne} 1. A nonlinear regression of the rotating analyzer ellipsometry and/or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with {mu}{ne} 1 are illustrated with experimental results and simulations for TbMnO{sub 3} and Dy{sub 3}Fe{sub 5}O{sub 12} single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO{sub 3}.

  8. Mass Spectrometry–based Proteomic Analysis of the Matrix Microenvironment in Pluripotent Stem Cell Culture*

    PubMed Central

    Hughes, Chris; Radan, Lida; Chang, Wing Y.; Stanford, William L.; Betts, Dean H.; Postovit, Lynne-Marie; Lajoie, Gilles A.

    2012-01-01

    The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach. PMID:23023296

  9. The Development of Multicultural Counselling Competencies (MCC) Training Module Based on MCC Matrix Model by Sue et al. (1992)

    ERIC Educational Resources Information Center

    Anuar, Azad Athahiri; Rozubi, Norsayyidatina Che; Abdullah, Haslee Sharil

    2015-01-01

    The aims of this study were to develop and validate a MCC training module for trainee counselor based on MCC matrix model by Sue et al. (1992). This module encompassed five sub modules and 11 activities developed along the concepts and components of the MCC matrix model developed by Sue, Arredondo dan McDavis (1992). The design method used in this…

  10. Ethylcellulose-based matrix-type microspheres: influence of plasticizer RATIO as pore-forming agent.

    PubMed

    Sengel-Turk, C Tuba; Hascicek, Canan; Gonul, Nursin

    2011-12-01

    In this study, ethylcellulose (EC)-based microsphere formulations were prepared without and with triethyl citrate (TEC) content of 10% and 30% by water-in-oil emulsion-solvent evaporation technique. Diltiazem hydrochloride (DH) was chosen as a hydrophilic model drug and used at different drug/polymer ratios in the microspheres. The aim of the work was to evaluate the influence of plasticizer ratio on the drug release rate and physicochemical characteristics of EC-based matrix-type microspheres. The resulting microspheres were evaluated for encapsulation efficiency, particle size and size distribution, surface morphology, total pore volume, thermal characteristics, drug release rates, and release mechanism. Results indicated that the physicochemical properties of microspheres were strongly affected by the drug/polymer ratio investigated and the concentration of TEC used in the production technique. The surface morphology and pore volume of microspheres significantly varied based on the plasticizer content in the formulation. DH release rate from EC-based matrix-type microspheres can be controlled by varying the DH to polymer and plasticizer ratios. Glass transition temperature values tended to decrease in conjunction with increasing amounts of TEC. Consequently, the various characteristics of the EC microspheres could be modified based on the plasticized ratio of TEC. PMID:21887603

  11. In Situ Synchrotron Tensile Investigations on 14YWT, MA957 and 9-Cr ODS Alloys

    SciTech Connect

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James; Yacout, Abdellatif

    2016-01-01

    Nanostructured ferritic alloys (NFAs) provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of two NFAs including 14YWT and MA957, and a 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14 YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, respectively. This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstr m s dislocation models.

  12. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea.

    PubMed

    Bennett, Kristen; Sadler, Natalie C; Wright, Aaron T; Yeager, Chris; Hyman, Michael R

    2016-04-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2 (-)) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4 (+)-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  13. A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications.

    PubMed

    Tyagi, Manoj; Gowri, Venkataraman S; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Offmann, Bernard

    2006-10-01

    Analysis of protein structures based on backbone structural patterns known as structural alphabets have been shown to be very useful. Among them, a set of 16 pentapeptide structural motifs known as protein blocks (PBs) has been identified and upon which backbone model of most protein structures can be built. PBs allows simplification of 3D space onto 1D space in the form of sequence of PBs. Here, for the first time, substitution probabilities of PBs in a large number of aligned homologous protein structures have been studied and are expressed as a simplified 16 x 16 substitution matrix. The matrix was validated by benchmarking how well it can align sequences of PBs rather like amino acid alignment to identify structurally equivalent regions in closely or distantly related proteins using dynamic programming approach. The alignment results obtained are very comparable to well established structure comparison methods like DALI and STAMP. Other interesting applications of the matrix have been investigated. We first show that, in variable regions between two superimposed homologous proteins, one can distinguish between local conformational differences and rigid-body displacement of a conserved motif by comparing the PBs and their substitution scores. Second, we demonstrate, with the example of aspartic proteinases, that PBs can be efficiently used to detect the lobe/domain flexibility in the multidomain proteins. Lastly, using protein kinase as an example, we identify regions of conformational variations and rigid body movements in the enzyme as it is changed to the active state from an inactive state. PMID:16894618

  14. A method for investigating system matrix properties in optimization-based CT reconstruction

    NASA Astrophysics Data System (ADS)

    Rose, Sean D.; Sidky, Emil Y.; Pan, Xiaochuan

    2016-04-01

    Optimization-based iterative reconstruction methods have shown much promise for a variety of applications in X-ray computed tomography (CT). In these reconstruction methods, the X-ray measurement is modeled as a linear mapping from a finite-dimensional image space to a finite dimensional data-space. This mapping is dependent on a number of factors including the basis functions used for image representation1 and the method by which the matrix representing this mapping is generated.2 Understanding the properties of this linear mapping and how it depends on our choice of parameters is fundamental to optimization-based reconstruction. In this work, we confine our attention to a pixel basis and propose a method to investigate the effect of pixel size in optimization-based reconstruction. The proposed method provides insight into the tradeoff between higher resolution image representation and matrix conditioning. We demonstrate this method for a particular breast CT system geometry. We find that the images obtained from accurate solution of a least squares reconstruction optimization problem have high sensitivity to pixel size within certain regimes. We propose two methods by which this sensitivity can be reduced and demonstrate their efficacy. Our results indicate that the choice of pixel size in optimization-based reconstruction can have great impact on the quality of the reconstructed image, and that understanding the properties of the linear mapping modeling the X-ray measurement can help guide us with this choice.

  15. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-05-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  16. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-08-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  17. Direct Updating of an RNA Base-Pairing Probability Matrix with Marginal Probability Constraints

    PubMed Central

    2012-01-01

    Abstract A base-pairing probability matrix (BPPM) stores the probabilities for every possible base pair in an RNA sequence and has been used in many algorithms in RNA informatics (e.g., RNA secondary structure prediction and motif search). In this study, we propose a novel algorithm to perform iterative updates of a given BPPM, satisfying marginal probability constraints that are (approximately) given by recently developed biochemical experiments, such as SHAPE, PAR, and FragSeq. The method is easily implemented and is applicable to common models for RNA secondary structures, such as energy-based or machine-learning–based models. In this article, we focus mainly on the details of the algorithms, although preliminary computational experiments will also be presented. PMID:23210474

  18. Fixed-Structure H∞ Controller Synthesis Based on the Covariance Matrix Adaptation Evolution Strategy

    NASA Astrophysics Data System (ADS)

    Wakasa, Yuji; Kanagawa, Shinji; Tanaka, Kanya; Nishimura, Yuki

    This paper provides a design method of fixed-structure controllers satisfying multiple H∞ norm specifications by using the covariance matrix adaptation evolution strategy (CMA-ES). The CMA-ES is a kind of stochastic optimization such as particle swarm optimization (PSO), and has been shown to have a good performance for nonconvex optimization problems. However, there are few control applications of the CMA-ES, and therefore, its superiority is not clear in control problems. The effectiveness of the proposed method is demonstrated through numerical examples in comparison with the PSO-based method that has recently been proposed as a good approach.

  19. Clinical Documents Clustering Based on Medication/Symptom Names Using Multi-View Nonnegative Matrix Factorization.

    PubMed

    Ling, Yuan; Pan, Xuelian; Li, Guangrong; Hu, Xiaohua

    2015-07-01

    Clinical documents are rich free-text data sources containing valuable medication and symptom information, which have a great potential to improve health care. In this paper, we build an integrating system for extracting medication names and symptom names from clinical notes. Then we apply nonnegative matrix factorization (NMF) and multi-view NMF to cluster clinical notes into meaningful clusters based on sample-feature matrices. Our experimental results show that multi-view NMF is a preferable method for clinical document clustering. Moreover, we find that using extracted medication/symptom names to cluster clinical documents outperforms just using words. PMID:26011887

  20. Novel Control for Voltage Boosted Matrix Converter based Wind Energy Conversion System with Practicality

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Joshi, Raghuveer Raj; Yadav, Dinesh Kumar; Garg, Rahul Kumar

    2016-06-01

    This paper presents the implementation and investigation of novel voltage boosted matrix converter (MC) based permanent magnet wind energy conversion system (WECS). In this paper, on-line tuned adaptive fuzzy control algorithm cooperated with reversed MC is proposed to yield maximum energy. The control system is implemented on a dSPACE DS1104 real time board. Feasibility of the proposed system has been experimentally verified using a laboratory 1.2 kW prototype of WECS under steady-state and dynamic conditions.

  1. Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique

    NASA Astrophysics Data System (ADS)

    Choi, H. W.; Jeon, C. W.; Dawson, M. D.

    2004-08-01

    A novel method of etching which allows the direct interconnection of multiple GaN-based devices is introduced. The mesa structures of devices are etched using an isotropic recipe which produces tapered sidewalls. The extent of inclination can be readily controlled through various etching parameters, which include the ICP power, plate power and pressure, thus modifying the vertical and lateral etch components. This approach has been successfully adopted in the fabrication of interconnect and matrix-addressable micro-LEDs, which offer superior optical and electrical performance and a high degree of uniformity compared to similar devices fabricated using conventional processes.

  2. Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation

    PubMed Central

    Londono, Ricardo; Gorantla, Vijay S.; Badylak, Stephen F.

    2016-01-01

    Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation. PMID:26839554

  3. Al-based metal matrix composites reinforced with nanocrystalline Al-Ti-Ni particles

    NASA Astrophysics Data System (ADS)

    Scudino, S.; Ali, F.; Surreddi, K. B.; Prashanth, K. G.; Sakaliyska, M.; Eckert, J.

    2010-07-01

    Al-based metal matrix composites containing different volume fractions of nanocrystalline Al70Ti20Ni10 reinforcing particles have been produced by powder metallurgy and the effect of the volume fraction of reinforcement on the mechanical properties of the composites has been studied. Room temperature compression tests reveal a considerable improvement of the mechanical properties as compared to pure Aluminum. The compressive strength increases from 155 MPa for pure Al to about 200 and 240 MPa for the samples with 20 and 40 vol.% of reinforcement, respectively, while retaining appreciable plastic deformation with a fracture strain ranging between 43 and 28 %.

  4. Transfer matrix method-based approach to study the bi-gyrotropic magnetic materials

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hajesmaeili, Hamidreza Nezhad; Zandi, Mohammad Hossein

    2016-08-01

    Optical and magneto-optical (MO) responses in magnetic multilayer systems are calculated by transfer matrix method (TMM). In a bi-gyrotropic medium, electric permittivity (ε) and magnetic permeability (μ) coefficients are in the form of non-diagonal tensors, synchronously, which their non-diagonal elements refer to the existence of anisotropy in such medium. In the present study, in addition to present a TMM based-approach for bi-gyrotropic medium, numerical simulations for studying the amount of optical and MO parameters of the bi-gyrotropic Yttrium Iron Garnet (YIG) material, in both transmission and reflection configurations, have been done.

  5. Irradiation hardening of Fe-9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Bergner, F.; Hernández-Mayoral, M.; Kögler, R.; Müller, G.; Ulbricht, A.

    2016-03-01

    Single-beam, dual-beam and sequential iron- and/or helium-ion irradiations are widely accepted to emulate more application-relevant but hardly accessible irradiation conditions of generation-IV fission and fusion candidate materials for certain purposes such as material pre-selection, identification of basic mechanisms or model calibration. However, systematic investigations of sequence effects capable to critically question individual approaches are largely missing. In the present study, sequence effects of iron-ion irradiations at 300 °C up to 5 dpa and helium implantations up to 100 appm He are investigated by means of post-irradiation nanoindentation of an Fe9%Cr model alloy, ferritic/martensitic 9%Cr steels T91 and Eurofer97 and oxide dispersion strengthened (ODS) Eurofer. Different types of sequence effects, both synergistic and antagonistic, are identified and tentative interpretations are suggested. It is found that different accelerated irradiation approaches have a great impact on the mechanical hardening. This stresses the importance of experimental design in attempts to emulate in-reactor conditions.

  6. Formulation and in vitro release studies of pegylated mucin based matrix tablets.

    PubMed

    Eraga, Sylvester Okhuelegbe; Arhewoh, Matthew Ikhuoria; Iwuagwu, Magnus Amara; Ukponahiusi, Oyenmwen Enoma

    2015-01-01

    The effects of polymer concentration on the flow properties of granules and in-vitro release profiles from matrix tablets of three model drugs formulated from pegylated mucin base was investigated. Mucin was extracted from the African giant snail and in combination with PEG was used to produce a copolymer matrix base, which was mixed with the model drugs using wet granulation method. The granules and tablets were evaluated according to official and unofficial requirements. Results showed best flow with Acetylsalicylic acid (ASA) and Chloroquine Phosphate (CQ) granules with Hausner ratio of 1.04-1.2, Carr's index of 4.2-17.5% and angle of repose between 19°-26°. The tablets met B.P specifications with respect to tablet weights, friability and drug content. The release profiles showed faster release of the drug with high content of PEG and a slower release with high concentration of mucin. Pegylated mucin base will find useful application in the development of a wide range of formulations. PMID:25553689

  7. A 265-base DNA sequencing read by capillary electrophoresis with no separation matrix.

    PubMed

    Albrecht, Jennifer Coyne; Lin, Jennifer S; Barron, Annelise E

    2011-01-15

    Electrophoretic DNA sequencing without a polymer matrix is currently possible only with the use of some kind of "drag-tag" as a mobility modifier. In free-solution conjugate electrophoresis (FSCE), a drag-tag attached to each DNA fragment breaks linear charge-to-friction scaling, enabling size-based separation in aqueous buffer alone. Here we report a 265-base read for free-solution DNA sequencing by capillary electrophoresis using a random-coil protein drag-tag of unprecedented length and purity. We identified certain methods of protein expression and purification that allow the production of highly monodisperse drag-tags as long as 516 amino acids, which are almost charge neutral (+1 to +6) and yet highly water-soluble. Using a four-color LIF detector, 265 bases could be read in 30 min with a 267-amino acid drag-tag, on par with the average read of current next-gen sequencing systems. New types of multichannel systems that allow much higher throughput electrophoretic sequencing should be much more accessible in the absence of a requirement for viscous separation matrix. PMID:21182303

  8. Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method

    NASA Astrophysics Data System (ADS)

    Hu, Wenyan; Li, Hui; Wang, Chunyou; Gou, Shanmiao; Fu, Ling

    2012-02-01

    Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been taken into consideration for quantitative collagen analysis. Based on the conventional gray level co-occurrence matrix (GLCM) method, the authors proposed the orientation-dependent GLCM (OD-GLCM) method by estimating the dominant orientation of collagen fibers. The authors validated the utility of the OD-GLCM method on second harmonic generation (SHG) microscopic images of tendons from rats with different ages. Compared with conventional GLCM method, the authors' method has not only improved the discrimination between different tissues but also provided additional texture information of the orderliness of collagen fibers and the fiber size. The OD-GLCM method was further applied to the differentiation of the preliminary SHG images of normal and cancerous human pancreatic tissues. The combination of SHG microscopy and the OD-GLCM method might be helpful for the evaluation of diseases marked with abnormal collagen morphology.

  9. Clustering Algorithm for Unsupervised Monaural Musical Sound Separation Based on Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Park, Sang Ha; Lee, Seokjin; Sung, Koeng-Mo

    Non-negative matrix factorization (NMF) is widely used for monaural musical sound source separation because of its efficiency and good performance. However, an additional clustering process is required because the musical sound mixture is separated into more signals than the number of musical tracks during NMF separation. In the conventional method, manual clustering or training-based clustering is performed with an additional learning process. Recently, a clustering algorithm based on the mel-frequency cepstrum coefficient (MFCC) was proposed for unsupervised clustering. However, MFCC clustering supplies limited information for clustering. In this paper, we propose various timbre features for unsupervised clustering and a clustering algorithm with these features. Simulation experiments are carried out using various musical sound mixtures. The results indicate that the proposed method improves clustering performance, as compared to conventional MFCC-based clustering.

  10. Ovine-Based Collagen Matrix Dressing: Next-Generation Collagen Dressing for Wound Care

    PubMed Central

    Bohn, Gregory; Liden, Brock; Schultz, Gregory; Yang, Qingping; Gibson, Daniel J.

    2016-01-01

    Significance: Broad-spectrum metalloproteinase (MMP) reduction along with inherent aspects of an extracellular matrix (ECM) dressing can bring about improved wound healing outcomes and shorter treatment duration. Initial reports of clinical effectiveness of a new ovine-based collagen extracellular matrix (CECM) dressing demonstrate benefits in chronic wound healing. Recent Advances: CECM dressings are processed differently than oxidized regenerated cellulose/collagen dressings. CECM dressings consist primarily of collagens I and III arranged as native fibers that retain the three-dimensional architecture present in tissue ECM. As such, ovine-based ECM dressings represent a new generation of collagen dressings capable of impacting a broad spectrum of MMP excess known to be present in chronic wounds. Critical Issues: While MMPs are essential in normal healing, elevated presence of MMPs has been linked to wound failure. Collagen has been shown to reduce levels of MMPs, acting as a sacrificial substrate for excessive proteases in a chronic wound. Preserving collagen dressings in a more native state enhances bioactivity in terms of the ability to affect the chronic wound environment. Clinical observation and assessment may not be sufficient to identify a wound with elevated protease activity that can break down ECM, affect wound fibroblasts, and impair growth factor response. Future Directions: Collagen dressings that target broad-spectrum excessive MMP levels and can be applied early in the course of care may positively impact healing rates in difficult wounds. Next-generation collagen dressings offer broader MMP reduction capacity while providing a provisional dermal matrix or ECM. PMID:26858910

  11. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  12. Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks

    PubMed Central

    Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi

    2009-01-01

    In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705

  13. Modeling PCB dechlorination in aquatic sediments by principal component based factor analysis and positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Christensen, E. R.; Bzdusek, P. A.

    2003-04-01

    Anaerobic PCB dechlorination in aquatic sediments is a naturally occurring process that reduces the dioxin-like PCB toxicity. The PCB biphenyl structure is kept intact but the number of substituted chlorine atoms is reduced, primarily from the para and meta positions. Flanked para and meta chlorine dechlorination, as in process H/H', appears to be more common in-situ than flanked and unflanked para, and meta dechlorination as in process Q. Aroclors that are susceptible to these reactions include 1242, 1248, 1254, and 1260. These dechlorination reactions have recently been modeled by a least squares method for Ashtabula River, Ohio, and Fox River, Wisconsin sediments. Prior to modeling the dechlorination reactions for an ecosystem it is desirable to generate overall PCB source functions. One method to determine source functions is to use loading matrices of a factor analytical model. We have developed such models based both on a principal component approach including nonnegative oblique rotations, and positive matrix factorization (PMF). While the principal component method first requires an eigenvalue analysis of a covariance matrix, the PMF method is based on a direct least squares analysis considering simultaneously the loading and score matrices. Loading matrices obtained from the PMF method are somewhat sensitive to the initial guess of source functions. Preliminary work indicates that a hybrid approach considering first principal components and then PMF may offer an optimum solution. The relationship of PMF to conventional chemical mass balance modeling with or without some prior knowledge of source functions is also discussed.

  14. Optical simulation of photovoltaic modules with multiple textured interfaces using the matrix-based formalism OPTOS.

    PubMed

    Tucher, Nico; Eisenlohr, Johannes; Gebrewold, Habtamu; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2016-07-11

    The OPTOS formalism is a matrix-based approach to determine the optical properties of textured optical sheets. It is extended within this work to enable the modelling of systems with an arbitrary number of textured, plane-parallel interfaces. A matrix-based system description is derived that accounts for the optical reflection and transmission interaction between all textured interfaces. Using OPTOS, we calculate reflectance and absorptance of complete photovoltaic module stacks, which consist of encapsulated silicon solar cells featuring textures that operate in different optical regimes. As exemplary systems, solar cells with and without module encapsulation are shown to exhibit a considerable absorptance gain if the random pyramid front side texture is combined with a diffractive rear side grating. A variation of the sunlight's angle of incidence reveals that the grating gain is almost not affected for incoming polar angles up to 60°. Considering as well the good agreement with alternative simulation techniques, OPTOS is demonstrated to be a versatile and efficient method for the optical analysis of photovoltaic modules. PMID:27410896

  15. A Class-Information-Based Penalized Matrix Decomposition for Identifying Plants Core Genes Responding to Abiotic Stresses

    PubMed Central

    Liu, Jin-Xing; Liu, Jian; Gao, Ying-Lian; Mi, Jian-Xun; Ma, Chun-Xia; Wang, Dong

    2014-01-01

    In terms of making genes expression data more interpretable and comprehensible, there exists a significant superiority on sparse methods. Many sparse methods, such as penalized matrix decomposition (PMD) and sparse principal component analysis (SPCA), have been applied to extract plants core genes. Supervised algorithms, especially the support vector machine-recursive feature elimination (SVM-RFE) method, always have good performance in gene selection. In this paper, we draw into class information via the total scatter matrix and put forward a class-information-based penalized matrix decomposition (CIPMD) method to improve the gene identification performance of PMD-based method. Firstly, the total scatter matrix is obtained based on different samples of the gene expression data. Secondly, a new data matrix is constructed by decomposing the total scatter matrix. Thirdly, the new data matrix is decomposed by PMD to obtain the sparse eigensamples. Finally, the core genes are identified according to the nonzero entries in eigensamples. The results on simulation data show that CIPMD method can reach higher identification accuracies than the conventional gene identification methods. Moreover, the results on real gene expression data demonstrate that CIPMD method can identify more core genes closely related to the abiotic stresses than the other methods. PMID:25180509

  16. Newly Released Inmates Account for 1 in 10 Fatal ODs

    MedlinePlus

    ... fullstory_159858.html Newly Released Inmates Account for 1 in 10 Fatal ODs Many may not realize ... the general population," Persaud added. Not only did one in 10 overdose deaths involve a recently released ...

  17. Evaluating changes in matrix based, recovery-adjusted concentrations in paired data for pesticides in groundwater

    USGS Publications Warehouse

    Zimmerman, Tammy M.; Breen, Kevin J.

    2012-01-01

    Pesticide concentration data for waters from selected carbonate-rock aquifers in agricultural areas of Pennsylvania were collected in 1993–2009 for occurrence and distribution assessments. A set of 30 wells was visited once in 1993–1995 and again in 2008–2009 to assess concentration changes. The data include censored matched pairs (nondetections of a compound in one or both samples of a pair). A potentially improved approach for assessing concentration changes is presented where (i) concentrations are adjusted with models of matrix-spike recovery and (ii) area-wide temporal change is tested by use of the paired Prentice-Wilcoxon (PPW) statistical test. The PPW results for atrazine, simazine, metolachlor, prometon, and an atrazine degradate, deethylatrazine (DEA), are compared using recovery-adjusted and unadjusted concentrations. Results for adjusted compared with unadjusted concentrations in 2008–2009 compared with 1993–1995 were similar for atrazine and simazine (significant decrease; 95% confidence level) and metolachlor (no change) but differed for DEA (adjusted, decrease; unadjusted, increase) and prometon (adjusted, decrease; unadjusted, no change). The PPW results were different on recovery-adjusted compared with unadjusted concentrations. Not accounting for variability in recovery can mask a true change, misidentify a change when no true change exists, or assign a direction opposite of the true change in concentration that resulted from matrix influences on extraction and laboratory method performance. However, matrix-based models of recovery derived from a laboratory performance dataset from multiple studies for national assessment, as used herein, rather than time- and study-specific recoveries may introduce uncertainty in recovery adjustments for individual samples that should be considered in assessing change.

  18. Fabrication and microstructure characterization of inert matrix fuel based on yttria stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Hellwig, Ch.; Pouchon, M.; Restani, R.; Ingold, F.; Bart, G.

    2005-04-01

    The deployment of a suitable, Pu-bearing inert matrix fuel (IMF) could offer an attractive option as a single-recycling LWR strategy aimed at reducing the currently growing plutonium stockpiles. A development programme focusing on yttria stabilized zirconia (YSZ)-based IMF is conducted at PSI. YSZ-based IMF has so far been irradiated in two test reactors. The fabrication routes as well as the characterization of the irradiated material by ceramography, electronprobe microanalysis, and X-ray diffraction are presented. IMF fabrication by attrition milling of the oxide constituents is possible, but high sintering temperatures are required to achieve homogeneity. X-ray diffraction is a suitable tool to monitor the homogeneity. Extra efforts are needed to increase the density.

  19. Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites

    NASA Astrophysics Data System (ADS)

    Hilfi, H.; Brar, N. S.

    1996-05-01

    High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.

  20. Optical Properties of Composites Based on a Transparent Matrix and Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalenskii, A. V.; Zvekov, A. A.; Nikitin, A. P.; Gazenaur, N. V.

    2016-06-01

    Dependences of the transmittance, absorbance, and reflectance of the composite based on a transparent matrix and copper spherical nanoparticles on the sample thickness and the mass fraction of particles are calculated for radiation of the first and second harmonics of a neodymium laser using the Mie theory and the stationary radiation transfer equation. Distributions of the luminance gain are calculated at different distances from the sample surface. It is shown that the luminance gain increases with nanoparticle radius and radiation wavelength due to multiple scattering. In the limit of a small sample thickness, the luminance gain has a threshold value due to the effect of the total internal reflection. Results obtained are needed for optimization of an optical detonator capsule based on a transparent explosive material and copper nanoparticles.

  1. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    NASA Technical Reports Server (NTRS)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  2. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  3. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  4. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  5. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    -sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was

  6. Clinoptilolite-based mixed matrix membranes for the selective recovery of potassium and ammonium.

    PubMed

    Casadellà, A; Kuntke, P; Schaetzle, O; Loos, K

    2016-03-01

    A clinoptilolite-based mixed matrix membrane (MMM) was developed and studied for the selective recovery of ammonium and potassium. Adsorption of sodium (Na(+)), potassium (K(+)) and ammonium (NH4(+)) was investigated with single salt and equimolar salt solution under static and dynamic conditions. Furthermore, the adsorption capacity of clinoptilolite was investigated when embedded in the MMM and in clay form. Two conditioning methods were compared: HCl and NaCl. Conditioned clinoptilolite with NaCl gave higher static adsorption capacities than with HCl which alters the chemical structure of clinoptilolite. The adsorption of Na(+) was not detected in the static adsorption experiments and results showed that Na(+) adsorbed during the conditioning process it was exchanged by K(+) and NH4(+).The clinoptilolite embedded in MMM reduced the porosity of the MMM so the highest adsorption capacity was reached when the amount of polymer was the lowest: 30 wt% polymer and 70 wt% clinoptilolite. The application of MMM in a dead-end filtration cell (dynamic adsorption) resulted in higher adsorption capacities compared to static conditions and comparable results between synthetic solutions and diluted urine samples. This indicates that MMM is a suitable method for the recovery of K(+) and NH4(+) directly from a diluted urine matrix. The desorption (recovery) of K(+) and NH4(+) from MMM was higher using water at 60 °C than using an acidic treatment. PMID:26724440

  7. Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Singh, V. K.; Chauhan, Sakshi; Gope, P. C.; Chaudhary, A. K.

    2015-04-01

    Lately, materials research has shifted to composite materials from monolithic, adjusting to the global need for light weight, low cost, quality, and high performance in structural materials. Every effort aims to develop a material which can be appropriate for various industry and machinery purpose. In the present study, a modest attempt has been made to develop cast aluminum based silicon carbide (SiC) particulate metal matrix composite (MMC) and worked upon to raise the wettability factor between the matrix and dispersion phase. Magnesium (Mg) is used as wetting agent. It works by scavenging the oxygen from dispersoids surface and thinning the gas layer around dispersoids and this is done by forming MgO or MgAl2O4 or both according to concentration of Magnesium added. Mg2Si is the compound responsible for strengthening. The combination of aluminum and magnesium seems to have synergetic effect on wetting and give appropriate strength. All mechanical properties obtained are well correlated with microstructure obtained by Scanning electron micrograph. Differential thermal analysis (DTA) and thermo gravimetric analysis (TGA) also justified the results obtained in present investigations.

  8. A dynamic model of mobile concrete pump boom based on discrete time transfer matrix method

    NASA Astrophysics Data System (ADS)

    Ren, Wu; Wu, Yunxin; Zhang, Zhaowei

    2013-12-01

    Mobile concrete pump boom is typical multibody large-scale motion manipulator. Due to posture constantly change in working process, kinematic rule and dynamic characteristic are difficult to solve. A dynamics model of a mobile concrete pump boom is established based on discrete time transfer matrix method (DTTMM). The boom system is divided into sub-structure A and substructure B. Sub-structure A is composed by the 1st boom and hydraulic actuator as well as the support. And substructure B is consists of the other three booms and corresponding hydraulic actuators. In the model, the booms and links are regarded as rigid elements and the hydraulic cylinders are equivalent to spring-damper. The booms are driven by the controllable hydraulic actuators. The overall dynamic equation and transfer matrix of the model can be assembled by sub-structures A and B. To get a precise result, step size and integration parameters are studied then. Next the tip displacement is calculated and compared with the result of ADAMS software. The displacement and rotation angle curves of the proposed method fit well with the ADAMS model. Besides it is convenient in modeling and saves time. So it is suitable for mobile concrete pump boom real-time monitoring and dynamic analysis. All of these provide reference to boom optimize and engineering application of such mechanisms.

  9. Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, David

    2010-03-01

    Multibiometrics can obtain a higher accuracy than the single biometrics by simultaneously using multiple biometric traits of the subject. We note that biometric traits are usually in the form of images. Thus, how to properly fuse the information of multiple biometric images of the subject for authentication is crucial for multibiometrics. We propose a novel image-based linear discriminant analysis (IBLDA) approach to fuse two biometric traits (i.e., bimodal biometric images) of the same subject in the form of matrix at the feature level. IBLDA first integrates two biometric traits of one subject into a complex matrix and then directly extracts low-dimensional features for the integrated biometric traits. IBLDA also enables more information to be exploited than the matching score level fusion and the decision level fusion. Compared to linear discriminant analysis (LDA), IBLDA has the following advantages: First, it can overcome the small sample size problem that conventional LDA usually suffers from. Second, IBLDA solves the eigenequation at a low computational cost. Third, when storing the scatter matrices IBLDA will not bring as heavy a memory burden as conventional LDA. We also clearly show the theoretical foundation of the proposed method. The experiment result shows that the proposed method can obtain a high classification accuracy.

  10. Novel Method for Measuring Structure and Semantic Similarity of XML Documents Based on Extended Adjacency Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Liang; Yang, Ting; Fan, Bao-Quan; Wang, Xu; Wei, Jin-Mao

    Similarity measurement of XML documents is crucial to meet various needs of approximate searches and document classifications in XML-oriented applications. Some methods have been proposed for this purpose. Nevertheless, few methods can be elegantly exploited to depict structure and semantic information and hence to effectively measure the similarity of XML documents. In this paper, we present a new method of computing the structure and semantic similarity of XML documents based on extended adjacency matrix(EAM). Different from a general adjacency matrix, in an EAM, the structure information of not only the adjacent layers but also the ancestor-descendant layers can be stored. For measuring the similarity of two XML documents, the proposed method firstly stores the structure and semantic information in two extended adjacency matrices(M1, M2). Then it computes similarity of the two documents through cos(M1, M2) Experimental results on bench-mark data show that the method holds high efficiency and accuracy.

  11. Calibrationless Parallel Imaging Reconstruction Based on Structured Low-Rank Matrix Completion

    PubMed Central

    Shin, Peter J.; Larson, Peder E.Z.; Ohliger, Michael A.; Elad, Michael; Pauly, John M.; Vigneron, Daniel B.; Lustig, Michael

    2013-01-01

    Purpose A calibrationless parallel imaging reconstruction method, termed simultaneous auto-calibrating and k-space estimation (SAKE), is presented. It is a data-driven, coil-by-coil reconstruction method that does not require a separate calibration step for estimating coil sensitivity information. Methods In SAKE, an under-sampled multi-channel dataset is structured into a single data matrix. Then the reconstruction is formulated as a structured low-rank matrix completion problem. An iterative solution that implements a projection-onto-sets algorithm with singular value thresholding is described. Results Reconstruction results are demonstrated for retrospectively and prospectively under-sampled, multi-channel Cartesian data having no calibration signals. Additionally, non-Cartesian data reconstruction is presented. Finally, improved image quality is demonstrated by combining SAKE with wavelet-based compressed sensing. Conclusion As estimation of coil sensitivity information is not needed, the proposed method could potentially benefit MR applications where acquiring accurate calibration data is limiting or not possible at all. PMID:24248734

  12. Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Gong, Xinglong; Fan, Yanceng; Xuan, Shouhu

    2013-11-01

    To improve the mechanical properties of the natural rubber based magnetorheological elastomers (MREs), rosin glycerin ester was added into the carrier matrix to enhance wettability and dispersibility of CI particles. Dynamic performance, including shear modulus, loss factor and viscosity of non-vulcanized matrix was measured by rheometer. In comparison to the natural rubber based MREs, the MR effect of these hybrid matrix MREs were higher and they can reach to 112% when the mass fraction of CI particles is only 60%. The contact angle was tested by drop shape analysis system (DSA) and it was found that the compatibility between the iron particles and matrix was improved. In combination of the microstructure and mechanical property analysis, a possible mechanism was proposed. Finally, the loss factor and tensile strength were studied.

  13. Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of Indian mustard (Brassica juncea L.).

    PubMed

    Sharma, Vinod K; Singh, Rana P

    2011-09-01

    Field experiments were conducted to study the effect of organic matrix based slow release fertilizers (SRFs) on plant growth, nitrate assimilation and seed yield of Brassica juncea L. cv, pusa bold. The agro-waste materials like cow dung, clay soil, neem leaves and rice bran were mixed together in 2:2:1:1 ratio and used as organic matrix for the immobilization of chemical fertilizer nutrients with commercial grade saresh (Acacia gum, 15% solution) as binder. Different fertilizer treatments were organic matrix based slow release fertilizers, SRF-I (542.0 kg ha(-1)); SRF-II (736.5 kg ha(-1)) and chemical fertilizer combinations, boron (3 kg ha(-1))+sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1)) and boron (3 kg ha(-1)) + sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1))+phosphorus (15 kg ha(-1))+potassium (100 kg ha(-1)). Organic matrix based SRF-II released ammonium up to 50-d in wetsoil under laboratory conditions which showed maximum retention of the nutrients. Avery significant increase in plant growth, nitrate assimilation and seed yield was recorded in organic matrix based SRF-II applied plants. The maximum percent increase in biomass production was observed with organic matrix based SRF-II (increase of 65.8% in root fresh weight, 38.0% in root dry weight, 45.9% in leaf fresh weight plant(-1) and 27.5 % in leaf dry weight plant(-1) in 60-d old plants). It also increased the acquisition and assimilation of nitrate from the plant's rhizosphere which was evident by 45.6% increase in nitrate, 27.5% in nitrite and 11.7% in nitrate reductase activity (NRA) in leaves of 45-d old plants over control. The organic matrix based SRF-II significantly increased the seed yield by 28% in Indian mustard. Cost analysis revealed thatthis formulation is cost effective as it is based on agro waste materials. PMID:22319878

  14. In Situ Laser Synthesis of Fe-Based Amorphous Matrix Composite Coating on Structural Steel

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Hwang, Jun Y.; Paital, Sameer; Banerjee, Rajarshi; Vora, Hitesh; Dahotre, Narendra B.

    2012-12-01

    Iron-based amorphous materials, owing to their very high hardness, elastic modulus, wear resistance, and corrosion resistance, can be potential materials for surface modification and engineering of many structural alloys. The current study focuses on a novel functional coating, synthesized via laser cladding of an iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder, on AISI 4130 steel substrate, using a continuous-wave diode-pumped ytterbium laser. The coatings were characterized by different techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM studies indicated the presence of Fe-based nanocrystalline dendrites intermixed within an amorphous matrix. A three-dimensional thermal modeling approach based on COMSOL Multiphysics (COMSOL Inc., Burlington, MA) was used to approximately predict the temperature evolution and cooling rates achieved during laser processing. The mechanisms for the formation of crystalline phases and the morphological changes in the microstructure were studied based on the thermal model developed. Although the thermal model predicted substantially high cooling rates as compared to the critical cooling rate required for retaining an amorphous phase, the formation of crystalline phases is attributed to formation of yttrium oxide, reducing the glass-forming ability, and formation of different oxide phases that act as heterogeneous nucleation sites resulting in the composite microstructure.

  15. A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix

    NASA Astrophysics Data System (ADS)

    Zhong, Lanlan; Guo, Juchen; Mangolini, Lorenzo

    2015-01-01

    We propose a novel approach to the fabrication of silicon-containing anodes for lithium-ion batteries. Our approach is based on a liquid dispersion comprising of silicon quantum dots, carbon nanotubes and polyvinylpirrolidone (PVP) as a polymer additive. Coating of this dispersion onto copper foil followed by annealing in inert atmosphere allows the realization of a structure with good electrical conductivity, high specific surface area and with a carbon-based coating preventing the direct contact between the silicon particles and the electrolyte. This structure maintains a specific charge capacity of approximately 1000 mAh g-1 for 200 cycles and reaches a coulombic efficiency of 99.8%. The addition of PVP is a simple and scalable way of realizing, after annealing, a carbon-based matrix which surrounds the silicon particles and which greatly enhances the stability of the battery. The proposed process is based on commercially available carbon nanotubes, on silicon quantum dots which are produced using a scalable plasma-enhanced chemical vapour deposition technique, and is compatible with large area coating and processing techniques. The fabrication protocol described in this contribution represents a step towards the successful commercial utilization of silicon-based nanomaterials for energy storage applications.

  16. [Enantioseparation behavior of chiral stationary phases AD, AS and OD].

    PubMed

    Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang

    2016-01-01

    Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs. PMID:27319174

  17. Op-Ug TD Optimizer Tool Based on Matlab Code to Find Transition Depth From Open Pit to Block Caving / Narzędzie Optymalizacyjne Oparte O Kod Matlab Wykorzystane Do Określania Głębokości Przejściowej Od Wydobycia Odkrywkowego Do Wybierania Komorami

    NASA Astrophysics Data System (ADS)

    Bakhtavar, E.

    2015-09-01

    In this study, transition from open pit to block caving has been considered as a challenging problem. For this purpose, the linear integer programing code of Matlab was initially developed on the basis of the binary integer model proposed by Bakhtavar et al (2012). Then a program based on graphical user interface (GUI) was set up and named "Op-Ug TD Optimizer". It is a beneficial tool for simple application of the model in all situations where open pit is considered together with block caving method for mining an ore deposit. Finally, Op-Ug TD Optimizer has been explained step by step through solving the transition from open pit to block caving problem of a case ore deposit. W pracy tej rozważano skomplikowane zagadnienie przejścia od wybierania odkrywkowego do komorowego. W tym celu opracowano kod programowania liniowego w środowisku MATLAB w oparciu o model liczb binarnych zaproponowany przez Bakhtavara (2012). Następnie opracowano program z wykorzystujący graficzny interfejs użytkownika o nazwie Optymalizator Op-Ug TD. Jest to niezwykle cenne narzędzie umożliwiające stosowanie modelu dla wszystkich warunków w sytuacjach gdy rozważamy prowadzenie wydobycia metodą odkrywkową oraz wydobycie komorowe przy eksploatacji złóż rud żelaza. W końcowej części pracy podano szczegółową instrukcję stosowanie programu Optymalizator na przedstawionym przykładzie przejścia od wydobycia rud żelaza metodami odkrywkowymi poprzez wydobycie komorami.

  18. A transversal approach for patch-based label fusion via matrix completion.

    PubMed

    Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Thung, Kim-Han; Guo, Yanrong; Shen, Dinggang

    2015-08-01

    Recently, multi-atlas patch-based label fusion has received an increasing interest in the medical image segmentation field. After warping the anatomical labels from the atlas images to the target image by registration, label fusion is the key step to determine the latent label for each target image point. Two popular types of patch-based label fusion approaches are (1) reconstruction-based approaches that compute the target labels as a weighted average of atlas labels, where the weights are derived by reconstructing the target image patch using the atlas image patches; and (2) classification-based approaches that determine the target label as a mapping of the target image patch, where the mapping function is often learned using the atlas image patches and their corresponding labels. Both approaches have their advantages and limitations. In this paper, we propose a novel patch-based label fusion method to combine the above two types of approaches via matrix completion (and hence, we call it transversal). As we will show, our method overcomes the individual limitations of both reconstruction-based and classification-based approaches. Since the labeling confidences may vary across the target image points, we further propose a sequential labeling framework that first labels the highly confident points and then gradually labels more challenging points in an iterative manner, guided by the label information determined in the previous iterations. We demonstrate the performance of our novel label fusion method in segmenting the hippocampus in the ADNI dataset, subcortical and limbic structures in the LONI dataset, and mid-brain structures in the SATA dataset. We achieve more accurate segmentation results than both reconstruction-based and classification-based approaches. Our label fusion method is also ranked 1st in the online SATA Multi-Atlas Segmentation Challenge. PMID:26160394

  19. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-06-27

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  20. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-02-28

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  1. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well. PMID:23089779

  2. Separability Criterion for Arbitrary Multipartite Pure State Based on the Rank of Reduced Density Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu

    2016-09-01

    Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.

  3. Construction of Lyapunov Function for Power System based on Solving Linear Matrix Inequality

    NASA Astrophysics Data System (ADS)

    Ishigame, Atsushi; Sakaguchi, Hiromu; Takashima, Jun; Suzaki, Shirou

    This paper presents a constructing Lyapunov function for power system based on solving the Linear Matrix Inequality (LMI) derived from the Lyapunov stability theorem considering with dynamics of load characteristic and AVR control system. The proposed Lyapunov function is constructed as a quadratic form of state variables and an integral term which satisfies the curl equation and the sector condition. An induction machine and a synchronous machine are considered as load characteristics. One machine and one load infinite bus system is considered taking into account the flux decay effects and AVR with one time constant of the generator. To verify the proposed Lyapunov function, the transient stability assessment is shown. The critical clearing times given by the proposed Lyapunov function are compared with those obtained by the numerical integration method, and they are shown to be practical.

  4. Electronic Shore Power Station Based on Matrix-style Frequency Algorithm

    NASA Astrophysics Data System (ADS)

    Jia-sheng, Li; Lian-jun, Jiang; Biao, Qiu; Wu-mei, Yang

    The current port power supply to foreign ships, there are two ways power-type for owned diesel-powered and frequency conversion unit,In this paper,Proposed electronic shore power station, put forward electronic shore power station's concepts, and gives a whole building program of electronic shore power station based on matrix conversion algorithm, It will change 10 kV/50 Hz (35Kv/50 Hz) input voltage into 440 V/60 Hz low-voltage, not only eliminating intermediate links, but also simplify the hardware circuit and reduce the production cost and improve the competitiveness of enterprises. Simulation and experimental results show that this program has a built shore power station of high power factor, sinusoidal effective, low distortion, environmental pollution and the advantages,It will be very definite practical significance.

  5. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  6. Separability Criterion for Arbitrary Multipartite Pure State Based on the Rank of Reduced Density Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu

    2016-04-01

    Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.

  7. Color tunability in multilayer OLED based on DCM doped in a PVK matrix

    NASA Astrophysics Data System (ADS)

    Petrova, P. K.; Ivanov, P. I.; Tomova, R. L.

    2014-12-01

    In this work, we present our achievements in color tunability in novel multilayer organic light-emitting diodes (OLEDs) based on DCM (4-(Dicyanomethylene)-2-methyl-6-[p- (dimethylamino)styryl]-4H-pyran) as red emitter doped in a composite PVK:TPD holetransporting layer, DPVBi (4,4'-Bis(2,2-diphenylvinyl)-1,1'-biphenyl) as a separate blue emitting layer, BAlq (aluminum bis(2-methyl-8-quinolinate)-4-phenylphenolate) as holeblocking layer and blue emitter at the same time, and Zn(BTz)2 (zinc bis(2-(2-hydroxyphenyl) benzothiazole)) as yellow emitter and electron transporting layer. By modification of the OLED structure and changing the DCM doped concentration in the matrix (in the range of 0 up to 5 %) the color tunability of OLED structures has been obtained. The efficiencies, luminance and chromaticity coordinates of the fabricated OLED structures have been specified.

  8. Scattering matrix analysis for evaluating the photocurrent in hydrogenated-amorphous-silicon-based thin film solar cells.

    PubMed

    Shin, Myunghun; Lee, Seong Hyun; Lim, Jung Wook; Yun, Sun Jin

    2014-11-01

    A scattering matrix (S-matrix) analysis method was developed for evaluating hydrogenated amorphous silicon (a-Si:H)-based thin film solar cells. In this approach, light wave vectors A and B represent the incoming and outgoing behaviors of the incident solar light, respectively, in terms of coherent wave and incoherent intensity components. The S-matrix determines the relation between A and B according to optical effects such as reflection and transmission, as described by the Fresnel equations, scattering at the boundary surfaces, or scattering within the propagation medium, as described by the Beer-Lambert law and the change in the phase of the propagating light wave. This matrix can be used to evaluate the behavior of angle-incident coherent and incoherent light simultaneously, and takes into account not only the light scattering process at material boundaries (haze effects) but also nonlinear optical processes within the material. The optical parameters in the S-matrix were determined by modeling both a 2%-gallium-doped zinc oxide transparent conducting oxide and germanium-compounded a-Si:H (a-SiGe:H). Using the S-matrix equations, the photocurrent for an a-Si:H/a-SiGe:H tandem cell and the optical loss in semitransparent a-Si:H solar cells for use in building-integrated photovoltaic applications were analyzed. The developed S-matrix method can also be used as a general analysis tool for various thin film solar cells. PMID:25958519

  9. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.

    PubMed

    Cai, Binghuang; Jiang, Xia

    2014-04-01

    Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. PMID:24361387

  10. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering.

    PubMed

    Kim, Hwan D; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni; Hwang, Nathaniel S

    2015-02-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  11. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  12. Use of Myocardial Matrix in a Chitosan-Based Full-Thickness Heart Patch

    PubMed Central

    Pok, Seokwon; Benavides, Omar M.; Hallal, Patrick

    2014-01-01

    A novel cardiac scaffold comprised of decellularized porcine heart matrix was investigated for use as a biodegradable patch with a potential for surgical reconstruction of the right ventricular outflow tract. Powdered heart matrix solution was blended with chitosan and lyophilized to form three-dimensional scaffolds. For this investigation, we examined the influence of different blending ratios of heart matrix to chitosan on porosity and mechanical properties, then gene expression and electrophysiological function of invading neonatal rat ventricular myocytes (NRVM) compared to type-A gelatin/chitosan composite scaffolds. Heart matrix/chitosan-blended hydrogels (1.6 mg/mL heart matrix) had similar porosity (109±34 μm), and elastic modulus (13.2±4.0 kPa) as previously published gelatin/chitosan scaffolds. Heart matrix/chitosan hydrogels maintained>80% viability and had higher NRVM retention (∼1000 cells/mm2) than gelatin/chitosan scaffolds. There was a significant increase in α-myosin heavy chain and connexin-43 expression in NRVM cultured on heart matrix/chitosan scaffolds after 14 days compared with gelatin/chitosan scaffolds. Further, heart matrix/chitosan scaffolds had significantly higher conduction velocity (12.6±4.9 cm/s) and contractile stress (0.79±0.13 mN/mm2) than gelatin/chitosan scaffolds. In summary, NRVM cultured on heart matrix scaffold showed improvements in contractile and electrophysiological function. PMID:24433519

  13. Matrix based fertilizers reduce nitrogen and phosphorus leaching in three soils.

    PubMed

    Entry, James A; Sojka, R E

    2008-05-01

    We compared the efficacy of matrix based fertilizers (MBFs) formulated to reduce NO3-, NH4+, and total phosphorus (TP) leaching, with Osmocoate 14-14-14, a conventional commercial slow release fertilizer (SRF) and an unamended control in three different soil textures in a greenhouse column study. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF 1) to more moderately bound (MBF 2) and more tightly bound compounds (MBF 3) mixed with Al(SO4)3H2O and/or Fe2(SO4)3 and with high ionic exchange compounds starch, chitosan and lignin. When N and P are released, the chemicals containing these nutrients in the MBF bind N and P to a Al(SO4)3H2O and/or Fe2(SO4)3 starch-chitosan-lignin matrix. One milligram (8000 spores) of Glomus intradices was added to all formulations to enhance nutrient uptake. In all three soil textures the SRF leachate contained a higher amount of NH4+, NO3- and TP than leachate from all other fertilizers. In all three soils there were no consistent differences in the amount of NH4+, NO3- and TP in the MBF leachates compared to the control leachate. Plants growing in soils receiving SRF had greater shoot, root and total biomass than all MBFs regardless of Al(SO4)3H2O or Fe2(SO4)3 additions. Arbuscular mycorrhizal infection in plant roots did not consistently differ among plants growing in soil receiving SRF, MBFs and control treatments. Although the MBFs resulted in less plant growth in this experiment they may be applied to soils growing plants in areas that are at high risk for nutrient leaching to surface waters. PMID:17597286

  14. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    PubMed Central

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  15. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis.

    PubMed

    Stan, Miruna-Silvia; Sima, Cornelia; Cinteza, Ludmila Otilia; Dinischiotu, Anca

    2015-08-01

    Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression. PMID:26032556

  16. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    NASA Astrophysics Data System (ADS)

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-03-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  17. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    PubMed

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  18. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications. PMID:22242647

  19. Evaluating the Good Ontology Design Guideline (GoodOD) with the Ontology Quality Requirements and Evaluation Method and Metrics (OQuaRE)

    PubMed Central

    Duque-Ramos, Astrid; Boeker, Martin; Jansen, Ludger; Schulz, Stefan; Iniesta, Miguela; Fernández-Breis, Jesualdo Tomás

    2014-01-01

    Objective To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gold standard and competency questions based evaluation methods, respectively. Background In the last decades many methods for ontology construction and ontology evaluation have been proposed. However, none of them has become a standard and there is no empirical evidence of comparative evaluation of such methods. This paper brings together GoodOD and OQuaRE. GoodOD is a guideline for developing robust ontologies. It was previously evaluated in a randomized controlled trial employing metrics based on gold standard ontologies and competency questions as outcome parameters. OQuaRE is a method for ontology quality evaluation which adapts the SQuaRE standard for software product quality to ontologies and has been successfully used for evaluating the quality of ontologies. Methods In this paper, we evaluate the effect of training in ontology construction based on the GoodOD guideline within the OQuaRE quality evaluation framework and compare the results with those obtained for the previous studies based on the same data. Results Our results show a significant effect of the GoodOD training over developed ontologies by topics: (a) a highly significant effect was detected in three topics from the analysis of the ontologies of untrained and trained students; (b) both positive and negative training effects with respect to the gold standard were found for five topics. Conclusion The GoodOD guideline had a significant effect over the quality of the ontologies developed. Our results show that GoodOD ontologies can be effectively evaluated using OQuaRE and that OQuaRE is able to provide additional useful information about the quality of the GoodOD ontologies. PMID:25148262

  20. Anion photoelectron spectroscopy of acid-base systems, solvated molecules and MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Eustis, Soren Newman

    Gas phase, mass-selected, anion photoelectron spectroscopic studies were performed on a variety of molecular systems. These studies can be grouped into three main themes: acid-base interactions, solvation, and ions of analytical interest. Acid-base interactions represent some of the most fundamental processes in chemistry. The study of these processes elucidates elementary principles such as inner and outer sphere complexes, hard and soft ions, and salt formation---to name a few. Apart from their appeal from a pedagogical standpoint, the ubiquity of chemical reactions which involve acids, bases or the resulting salts makes the study of their fundamental interactions both necessary and fruitful. With this in mind, the neutral and anionic series (NH3···HX) (X= F, Cl, Br, I) were examined experimentally and theoretically. The relatively small size of these systems, combined with the advances in computational methods, allowed our experimental results to be compared with very high level ab initio theoretical results. The synergy between theory and experiment yielded an understanding of the nature of the complexes that could not be achieved with either method in isolation. The second theme present in this body or work is molecular solvation. Solvation is a phenomenon which is present in biology, chemistry and physics. Many biological molecules do not become 'active' until they are solvated by water. Thus, the study of biologically relevant species solvated by water is one step in a bottom up approach to studying the biochemical interactions in living organisms. Furthermore, the hydration of acidic molecules in the atmosphere is what drives the formation of 'free' protons or hydronium ions which are the key players in acid driven chemistry. Here are presented two unique solvation studies, Adenine(H2O)-n and C6F6(H2O)-n, these systems are very distinct, but show somewhat similar responses to hydration. The last theme presented in this work is the electronic properties

  1. Carbon fiber polymer-matrix structural composites for electrical-resistance-based sensing

    NASA Astrophysics Data System (ADS)

    Wang, Daojun

    This dissertation has advanced the science and technology of electrical-resistance-based sensing of strain/stress and damage using continuous carbon fiber epoxy-matrix composites, which are widely used for aircraft structures. In particular, it has extended the technology of self-sensing of carbon fiber polymer-matrix composites from uniaxial longitudinal loading and flexural loading to uniaxial through-thickness loading and has extended the technology from structural composite self-sensing to the use of the composite (specifically a one-lamina composite) as an attached sensor. Through-thickness compression is encountered in the joining of composite components by fastening. Uniaxial through-thickness compression results in strain-induced reversible decreases in the through-thickness and longitudinal volume resistivities, due to increase in the fiber-fiber contact in the through-thickness direction, and minor-damage-induced irreversible changes in these resistivities. The Poisson effect plays a minor role. The effects in the longitudinal resistivity are small compared to those in the through-thickness direction, but longitudinal resistance measurement is more amenable to practical implementation in structures than through-thickness resistance measurement. The irreversible effects are associated with an increase in the through-thickness resistivity and a decrease in the longitudinal resistivity. The through-thickness gage factor is up to 5.1 and decreases with increasing compressive strain above 0.2%. The reversible fractional change in through-thickness resistivity per through-thickness strain is up to 4.0 and decreases with increasing compressive strain. The irreversible fractional change in through-thickness resistivity per unit through-thickness strain is around -1.1 and is independent of the strain. The sensing is feasible by measuring the resistance away from the stressed region, though the effectiveness is less than that at the stressed region. A one

  2. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2009-05-01

    As the upper temperature for use of reduced activation ferritic/martensitic steels is presently limited by a drop in mechanical strength at about 550 °C, Europe, Japan and the US are actively researching steels with high strength at higher operating temperatures, mainly using stable oxide dispersion. In addition, the numerous interfaces between matrix and oxide particles are expected to act as sinks for the irradiation-induced defects. The main R&D activities aim at finding a compromise between good tensile and creep strength and sufficient ductility, especially in terms of fracture toughness. Oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels appear as promising materials for application in fusion power reactors up to about 750 °C. Six different ODS RAF steels, with compositions of Fe-(12-14)Cr-2W-(0.1-0.3-0.5)Ti-0.3Y2O3 (in wt%), were produced by powder metallurgy techniques, including mechanical alloying, canning and degassing of the milled powders and compaction of the powders by hot isostatic pressing, using various devices and conditions. The materials have been characterized in terms of microstructure and mechanical properties. The results have been analysed in terms of optimal chemical composition and manufacturing conditions. In particular, it was found that the composition of the materials should lie in the range Fe-14Cr-2W-(0.3-0.4)Ti-(0.25-0.3)Y2O3, as 14Cr ODS RAF steels exhibit higher tensile strength and better Charpy impact properties and are more stable than 12Cr materials (no risk of martensitic transformation), while materials with 0.5% Ti or more should not be further investigated, due to potential embrittlement by large TiO2 particles.

  3. Effects of heat treatment conditions on the microstructure and impact properties of EUROFER 97 ODS steel

    NASA Astrophysics Data System (ADS)

    Di Martino, S. F.; Faulkner, R. G.; Riddle, N. B.; Monge, M. A.; Munoz, A.

    2011-12-01

    Probably the most important range of materials to consider for the blanket material in the tokamak design for fusion reactors such as ITER and DEMO is the high alloy Fe9Cr oxide dispersion strengthened (ODS) ferritic steels. These steels possess exceptional thermal conductivity and low thermal expansion while being strongly resistant to void swelling. Their main drawback is the high ductile-to-brittle transition temperature (DBTT), particularly in the ODS versions of the material. This paper describes attempts that are being made to reduce this DBTT in as yet unirradiated materials by a novel heat treatment procedure. The principle behind this approach is that low DBTT in the unirradiated materials will lead to relatively low DBTT even in He-containing material that has been irradiated with fusion blanket-type irradiations. New batches of high alloy Fe9Cr ODS (EUROFER) ferritic steel have been produced by a powder metallurgical route, and relatively homogeneous material has been produced by a hot isostatic pressing procedure. Mini-Charpy test specimens were made from materials that had been subjected to a matrix of heat treatments designed to show up variations in solution treatment (ST) temperature, cooling rate from the ST temperature and tempering treatment. The initial DBTT was in the range 150-200 °C. Extremely interesting results have been obtained. DBTT downward shifts of up to 200 °C have been observed by using a high 1300 °C ST temperature and a low cooling rate. The paper goes on to describe the microstructure of this material, and discusses the possible microstructural factors needed to produce these very high DBTT downward shifts. Low dissolved carbon and higher proportions of low-angle grain boundaries seem to provide the key to the understanding of the alloy behaviour.

  4. Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets

    PubMed Central

    Parry, Christian S

    2008-01-01

    Background Eluted natural peptides from major histocompatibility molecules show patterns of conserved residues. Crystallographic structures show that the bound peptide in class II major histocompatibility complex adopts a near uniform polyproline II-like conformation. This way allele-specific favoured residues are able to anchor into pockets in the binding groove leaving other peptide side chains exposed for recognition by T cells. The anchor residues form a motif. This sequence pattern can be used to screen large sequences for potential epitopes. Quantitative matrices extend the motif idea to include the contribution of non-anchor peptide residues. This report examines two new matrices that extend the binding register to incorporate the polymorphic p10 pocket of human leukocyte antigen DR1. Their performance is quantified against experimental binding measurements and against the canonical nine-residue register matrix. Results One new matrix shows significant improvement over the base matrix; the other does not. The new matrices differ in the sequence of the peptide library. Conclusion One of the extended quantitative matrices showed significant improvement in prediction over the original nine residue matrix and over the other extended matrix. Proline in the sequence of the peptide library of the better performing matrix presumably stabilizes the peptide conformation through neighbour interactions. Such interactions may influence epitope prediction in this test of quantitative matrices. This calls into question the assumption of the independent contribution of individual binding pockets. PMID:18925947

  5. A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy

    NASA Astrophysics Data System (ADS)

    Osorio, Ivan; Lai, Ying-Cheng

    2011-09-01

    We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.

  6. Expert system training and control based on the fuzzy relation matrix

    NASA Technical Reports Server (NTRS)

    Ren, Jie; Sheridan, T. B.

    1991-01-01

    Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.

  7. Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent

    PubMed Central

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  8. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  9. Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Zhong, Wei; Tong, Shuiguang; Tang, Ning; Chen, Jin

    2015-05-01

    Rolling element bearings are at the heart of most rotating machines and they bear the function of connectivity between the rotor and stator. It is important to distinguish the incipient fault before the bearing step into serious failure. The Slip Matrix (SM) construction method based on Singular Value Decomposition (SVD) is proposed in this paper. The SM based fault feature extraction and impulses intelligent detection methods are introduced as the key steps for rolling bearing fault diagnosis. The numerical simulation of rolling bearing fault signal is adopted which shows that the proposed method is good at fault impulses detection in strong background noise environment. The rolling element bearing accelerated life test is performed for the acquisition of experimental data of rolling bearing fault. With the rolling bearing running from normal state to failure, the initial fault signal part can be picked out from the whole life vibration data of the rolling bearing. The vibration signal is close to the nature fault signal which is acquired from a rolling bearing applied in industrial field. The analysis result shows that the proposed method has an excellent performance in rolling bearing fault detection.

  10. A novel scatter-matrix eigenvalues-based total variation (SMETV) regularization for medical image restoration

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Zhang, Tianxu; Deng, Lihua; Fang, Hao; Li, Qian

    2015-12-01

    Total variation(TV) based on regularization has been proven as a popular and effective model for image restoration, because of its ability of edge preserved. However, as the TV favors a piece-wise constant solution, the processing results in the flat regions of the image are easily produced "staircase effects", and the amplitude of the edges will be underestimated; the underlying cause of the problem is that the regularization parameter can not be changeable with spatial local information of image. In this paper, we propose a novel Scatter-matrix eigenvalues-based TV(SMETV) regularization with image blind restoration algorithm for deblurring medical images. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish edges from flat areas. The proposed algorithm can effectively reduce the noise in flat regions as well as preserve the edge and detailed information. Moreover, it becomes more robust with the change of the regularization parameter. Extensive experiments demonstrate that the proposed approach produces results superior to most methods in both visual image quality and quantitative measures.

  11. UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization.

    PubMed

    Choo, Jaegul; Lee, Changhyun; Reddy, Chandan K; Park, Haesun

    2013-12-01

    Topic modeling has been widely used for analyzing text document collections. Recently, there have been significant advancements in various topic modeling techniques, particularly in the form of probabilistic graphical modeling. State-of-the-art techniques such as Latent Dirichlet Allocation (LDA) have been successfully applied in visual text analytics. However, most of the widely-used methods based on probabilistic modeling have drawbacks in terms of consistency from multiple runs and empirical convergence. Furthermore, due to the complicatedness in the formulation and the algorithm, LDA cannot easily incorporate various types of user feedback. To tackle this problem, we propose a reliable and flexible visual analytics system for topic modeling called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization). Centered around its semi-supervised formulation, UTOPIAN enables users to interact with the topic modeling method and steer the result in a user-driven manner. We demonstrate the capability of UTOPIAN via several usage scenarios with real-world document corpuses such as InfoVis/VAST paper data set and product review data sets. PMID:24051765

  12. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth

    PubMed Central

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-01-01

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. DOI: http://dx.doi.org/10.7554/eLife.05958.001 PMID:25992598

  13. New stimulation pattern design to improve P300-based matrix speller performance at high flash rate

    NASA Astrophysics Data System (ADS)

    Polprasert, Chantri; Kukieattikool, Pratana; Demeechai, Tanee; Ritcey, James A.; Siwamogsatham, Siwaruk

    2013-06-01

    Objective. We propose a new stimulation pattern design for the P300-based matrix speller aimed at increasing the minimum target-to-target interval (TTI). Approach. Inspired by the simplicity and strong performance of the conventional row-column (RC) stimulation, the proposed stimulation is obtained by modifying the RC stimulation through alternating row and column flashes which are selected based on the proposed design rules. The second flash of the double-flash components is then delayed for a number of flashing instants to increase the minimum TTI. The trade-off inherited in this approach is the reduced randomness within the stimulation pattern. Main results. We test the proposed stimulation pattern and compare its performance in terms of selection accuracy, raw and practical bit rates with the conventional RC flashing paradigm over several flash rates. By increasing the minimum TTI within the stimulation sequence, the proposed stimulation has more event-related potentials that can be identified compared to that of the conventional RC stimulations, as the flash rate increases. This leads to significant performance improvement in terms of the letter selection accuracy, the raw and practical bit rates over the conventional RC stimulation. Significance. These studies demonstrate that significant performance improvement over the RC stimulation is obtained without additional testing or training samples to compensate for low P300 amplitude at high flash rate. We show that our proposed stimulation is more robust to reduced signal strength due to the increased flash rate than the RC stimulation.

  14. The Okavango Dike Swarm (ODS) of Northern Botswana: Was it associated with a failed Rift System?

    NASA Astrophysics Data System (ADS)

    LePera, Alan; Atekwana, Estella; Abdelsalam, Mohamed

    2014-05-01

    Dikes and dike swarms often play a significant role in the initiation and extension of rift zones. The giant ODS in northern Botswana, Africa represents a Jurassic aged (~180Ma) thermo-tectonic event which developed during the initial lithospheric weakening phase of Gondwana. Detailed investigations of the mafic dike swarm over the last four decades have provided insights into its age, shape, orientation, and chemistry but have thus far been limited in addressing the crustal structure below the swarm. Historically, the ODS has been interpreted as a failed rift arm based on its association with the Bouvet Hotspot and geometric relationship with two other prominent dike swarms. More recent studies suggest instead that the ODS was emplaced along a preexisting Precambrian basement fabric. Accordingly, the origin of the swarm still remains a matter of debate. The objectives of this study were: (1) determine the role of crustal heterogeneities on the emplacement of the dikes, (2) determine variations in crustal thickness below the ODS and geographically related Okavango Rift Zone (ORZ), a zone of incipient rifting and (3) determine along-strike variations in Curie Point Depth (CPD) below the swarm. We used high resolution aeromagnetic data and applied mathematical filters to enhance structures associated with the swarm's oblique geometry. Crustal thicknesses were estimated using the radial average power spectrum method, applied to 1.2km spatial resolution gravity data. 3D inversions were used to map the magnetic basement and determine the depth to the base of the swarm. Our results showed: (1) There were no apparent basement structures with the same 110° orientation as the ODS. (2) Crustal thickness below the swarm ranges from 39 to 45km with an average of 42± 3km, comparable with thicknesses derived from the Southern African Seismic Experiment (SASE). In contrast, crustal thickness below the ORZ is 9 to 16km thinner than the surrounding blocks. (3) The magnetic

  15. [Evoked Potential Blind Extraction Based on Fractional Lower Order Spatial Time-Frequency Matrix].

    PubMed

    Long, Junbo; Wang, Haibin; Zha, Daifeng

    2015-04-01

    The impulsive electroencephalograph (EEG) noises in evoked potential (EP) signals is very strong, usually with a heavy tail and infinite variance characteristics like the acceleration noise impact, hypoxia and etc., as shown in other special tests. The noises can be described by a stable distribution model. In this paper, Wigner-Ville distribution (WVD) and pseudo Wigner-Ville distribution (PWVD) time-frequency distribution based on the fractional lower order moment are presented to be improved. We got fractional lower order WVD (FLO-WVD) and fractional lower order PWVD (FLO-PWVD) time-frequency distribution which could be suitable for a stable distribution process. We also proposed the fractional lower order spatial time-frequency distribution matrix (FLO-STFM) concept. Therefore, combining with time-frequency underdetermined blind source separation (TF-UBSS), we proposed a new fractional lower order spatial time-frequency underdetermined blind source separation (FLO-TF-UBSS) which can work in a stable distribution environment. We used the FLO-TF-UBSS algorithm to extract EPs. Simulations showed that the proposed method could effectively extract EPs in EEG noises, and the separated EPs and EEG signals based on FLO-TF-UBSS were almost the same as the original signal, but blind separation based on TF-UBSS had certain deviation. The correlation coefficient of the FLO-TF-UBSS algorithm was higher than the TF-UBSS algorithm when generalized signal-to-noise ratio (GSNR) changed from 10 dB to 30 dB and a varied from 1. 06 to 1. 94, and was approximately e- qual to 1. Hence, the proposed FLO-TF-UBSS method might be better than the TF-UBSS algorithm based on second order for extracting EP signal under an EEG noise environment. PMID:26211238

  16. The filler powders laser welding of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Liang, Shenyong; Lei, Yucheng; Zhu, Qiang

    2015-01-01

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y-M-O and TiC), submicron particles (Y-M-O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  17. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles. PMID:15582472

  18. The link between employee attitudes and employee effectiveness: Data matrix of meta-analytic estimates based on 1161 unique correlations.

    PubMed

    Mackay, Michael M

    2016-09-01

    This article offers a correlation matrix of meta-analytic estimates between various employee job attitudes (i.e., Employee engagement, job satisfaction, job involvement, and organizational commitment) and indicators of employee effectiveness (i.e., Focal performance, contextual performance, turnover intention, and absenteeism). The meta-analytic correlations in the matrix are based on over 1100 individual studies representing over 340,000 employees. Data was collected worldwide via employee self-report surveys. Structural path analyses based on the matrix, and the interpretation of the data, can be found in "Investigating the incremental validity of employee engagement in the prediction of employee effectiveness: a meta-analytic path analysis" (Mackay et al., 2016) [1]. PMID:27583347

  19. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    SciTech Connect

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  20. Optical Metrology for Directed Self-assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya J.

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization. Directed self-assembly (DSA) patterning process can be used to fabricate nanoscale line-space patterns and contact holes via thermodynamically driven micro-phase separation of block copolymer (BCP) films with boundary constraints from guiding templates. Its main advantages are high pattern resolution (~10 nm), high throughput, no requirement of a high-resolution mask, and compatibility with standard fab-equipment and processes. Although research into DSA patterning has demonstrated a high potential as a nanoscale patterning process, there are critical challenges that must be overcome before transferring DSA into high volume manufacturing, including achievement of low defect density and high process stability. For this, advances in critical dimension (CD) and overlay measurement as well as rapid defect characterization are required. Both scatterometry and critical dimension-scanning electron microscopy (CD-SEM) are routinely used for inline dimensional metrology. CD-SEM inspection is limited, as it does not easily provide detailed line-shape information, whereas scatterometry has the capability of measuring important feature dimensions including: line-width, line-shape, sidewall-angle, and thickness of the patterned samples quickly and non-destructively. The present work describes the application of Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry to optically characterize DSA patterned line- space grating and contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) at various integration steps of BCP DSA

  1. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    -sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was

  2. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  3. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.

    PubMed

    Alves da Silva, M L; Crawford, A; Mundy, J M; Correlo, V M; Sol, P; Bhattacharya, M; Hatton, P V; Reis, R L; Neves, N M

    2010-03-01

    Naturally derived polymers have been extensively used in scaffold production for cartilage tissue engineering. The present work aims to evaluate and characterize extracellular matrix (ECM) formation in two types of chitosan-based scaffolds, using bovine articular chondrocytes (BACs). The influence of these scaffolds' porosity, as well as pore size and geometry, on the formation of cartilagineous tissue was studied. The effect of stirred conditions on ECM formation was also assessed. Chitosan-poly(butylene succinate) (CPBS) scaffolds were produced by compression moulding and salt leaching, using a blend of 50% of each material. Different porosities and pore size structures were obtained. BACs were seeded onto CPBS scaffolds using spinner flasks. Constructs were then transferred to the incubator, where half were cultured under stirred conditions, and the other half under static conditions for 4 weeks. Constructs were characterized by scanning electron microscopy, histology procedures, immunolocalization of collagen type I and collagen type II, and dimethylmethylene blue assay for glycosaminoglycan (GAG) quantification. Both materials showed good affinity for cell attachment. Cells colonized the entire scaffolds and were able to produce ECM. Large pores with random geometry improved proteoglycans and collagen type II production. However, that structure has the opposite effect on GAG production. Stirred culture conditions indicate enhancement of GAG production in both types of scaffold. PMID:19788942

  4. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles

    PubMed Central

    Zhou, Mi; Ulijn, Rein V

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine–glycine–aspartic acid). Three-dimensionally cultured human dermal fibroblasts deposited dense ECM networks including fibronectin and collagen I within the hydrogels in a 14-day culture. The fibroblasts organized the fibrous ECM and contracted the gel without differentiating into myofibroblasts. The stiffness of the cell-gel constructs increased dramatically due to ECM formation and gel contraction. This created an economical biomimetic model-scaffold to further understand skin reconstruction in vitro and supplied a design pathway to create versatile cell-scaffolds with varied bioactivities and simplicity. PMID:24812581

  5. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles.

    PubMed

    Zhou, Mi; Ulijn, Rein V; Gough, Julie E

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartic acid). Three-dimensionally cultured human dermal fibroblasts deposited dense ECM networks including fibronectin and collagen I within the hydrogels in a 14-day culture. The fibroblasts organized the fibrous ECM and contracted the gel without differentiating into myofibroblasts. The stiffness of the cell-gel constructs increased dramatically due to ECM formation and gel contraction. This created an economical biomimetic model-scaffold to further understand skin reconstruction in vitro and supplied a design pathway to create versatile cell-scaffolds with varied bioactivities and simplicity. PMID:24812581

  6. Preparation and evaluation of an ispaghula based directly compressible matrixing agent for controlled release.

    PubMed

    Lalwani, Anita N; Parikh, Jolly R

    2008-09-01

    The objective of the present investigation was to prepare and evaluate an ispaghula husk based directly compressible (DC) adjuvant that can be used as matrixing agent using an agglomeration technique. Addition of hydroxypropyl methylcellulose was found necessary to improve cohesion. Lactose (X1), calcium hydrogen phosphate dihydrate (X2) and Avicel PH101 (X3), used along with ispaghula in preparation of agglomerates, were selected as three independent variables in a simplex lattice design affecting compressional and dissolution characteristics of the drug from the DC adjuvant. The agglomerates were evaluated for their flow properties. Tablets were prepared using 70% agglomerates and 30% acetaminophen, a poorly compressible drug, and were subjected to in vitro drug release study. Amounts of the drug released at the end of 60 min (Y60), 300 min (Y300) and 480 min (Y480) were selected as dependent variables in a simplex lattice design. Batch IH05 that contained lactose and calcium hydrogen phosphate dihydrate in a 1:2 ratio could control the release for 12 hours and thus form the basis for twice a-day-dosing. PMID:19103567

  7. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    PubMed

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-01-01

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination. PMID:27338390

  8. An algorithm for computing extrinsic camera parameters for far-range photogrammetry based on essential matrix

    NASA Astrophysics Data System (ADS)

    Cai, Huimin; Li, Kejie; Liu, Meilian

    2010-11-01

    Far-range photogrammetry is widely used in the location determination problem in some dangerous situation. In this paper we discussed the camera calibration problem which can be used in outdoors. Location determination based on stereo vision sensors requires the knowledge of the camera parameters, such as camera position, orientation, lens distortion, focal length etc. with high precision. Most of the existed method of camera calibration is placing many land markers whose position is known accurately. But due to large distance and other practical problems we can not place the land markers with high precision. This paper shows that if we don't know the position of the land marker, we also can get the extrinsic camera parameters with essential matrix. The real parameters of the camera and the computed parameters of the camera give rise to the geometric error. We develop and present theoretical analysis of the geometric error and how to get the extrinsic camera parameters with high precision in large scale measurement. Experimental results of the project which is used to measure the drop point of a high speed object testify the method we proposed with high precision compared with traditional methods.

  9. Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzheng; Topping, Troy D.; Yang, Hanry; Lavernia, Enrique J.; Schoenung, Julie M.; Nutt, Steven R.

    2015-03-01

    A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

  10. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe.

    PubMed

    Wang, Yu; Erpelding, Todd N; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans. PMID:22734738

  11. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  12. Analysis of dual-channel ICA-based blocking matrix for improved noise estimation

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanhang; Reindl, Klaus; Kellermann, Walter

    2014-12-01

    For speech enhancement or blind signal extraction (BSE), estimating interference and noise characteristics is decisive for its performance. For multichannel approaches using multiple microphone signals, a BSE scheme combining a blocking matrix (BM) and spectral enhancement filters was proposed in numerous publications. For such schemes, the BM provides a noise estimate by suppressing the target signal only. The estimated noise reference is then used to design spectral enhancement filters for the purpose of noise reduction. For designing the BM, `Directional Blind Source Separation (BSS)' was already proposed earlier. This method combines a generic BSS algorithm with a geometric constraint derived from prior information on the target source position to obtain an estimate for all interfering point sources and diffuse background noise. In this paper, we provide a theoretical analysis to show that Directional BSS converges to a relative transfer function (RTF)-based BM. The behavior of this informed signal separation scheme is analyzed and the blocking performance of Directional BSS under various acoustical conditions is evaluated. The robustness of Directional BSS regarding the localization error for the target source position is verified by experiments. Finally, a BSE scheme combining Directional BSS and Wiener-type spectral enhancement filters is described and evaluated.

  13. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination

    PubMed Central

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-01-01

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination. PMID:27338390

  14. 46 CFR 280.4 - Standards governing payment of ODS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing payment of ODS. 280.4 Section 280.4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING SUBSIDIZED VESSELS AND OPERATORS LIMITATIONS ON THE AWARD AND PAYMENT OF OPERATING-DIFFERENTIAL SUBSIDY FOR LINER OPERATORS §...

  15. 46 CFR 280.4 - Standards governing payment of ODS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Standards governing payment of ODS. 280.4 Section 280.4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING SUBSIDIZED VESSELS AND OPERATORS LIMITATIONS ON THE AWARD AND PAYMENT OF OPERATING-DIFFERENTIAL SUBSIDY FOR LINER OPERATORS §...

  16. Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition.

    PubMed

    Lai, Yin-Hung; Wang, Chia-Chen; Chen, Chiu Wen; Liu, Bo-Hong; Lin, Sheng Hsien; Lee, Yuan Tseh; Wang, Yi-Sheng

    2012-08-16

    This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions. PMID:22799495

  17. Optimum Co-Design for Spectrum Sharing between Matrix Completion Based MIMO Radars and a MIMO Communication System

    NASA Astrophysics Data System (ADS)

    Li, Bo; Petropulu, Athina P.; Trappe, Wade

    2016-09-01

    Recently proposed multiple input multiple output radars based on matrix completion (MIMO-MC) employ sparse sampling to reduce the amount of data that need to be forwarded to the radar fusion center, and as such enable savings in communication power and bandwidth. This paper proposes designs that optimize the sharing of spectrum between a MIMO-MC radar and a communication system, so that the latter interferes minimally with the former. First, the communication system transmit covariance matrix is designed to minimize the effective interference power (EIP) to the radar receiver, while maintaining certain average capacity and transmit power for the communication system. Two approaches are proposed, namely a noncooperative and a cooperative approach, with the latter being applicable when the radar sampling scheme is known at the communication system. Second, a joint design of the communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves even further EIP reduction.

  18. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Wang, Jianxin; Bai, Fuzhong; Ning, Yu; Li, Fei; Jiang, Wenhan

    2012-06-01

    Pyramid wavefront sensor (PWFS) is a kind of wavefront sensor with high spatial resolution and high energy utilization. In this paper an adaptive optics system with PWFS as wavefront sensor and liquid-crystal spatial light modulator (LC-SLM) as wavefront corrector is built in the laboratory. The wavefront response matrix is a key element in the close-loop operation. It can be obtained by measuring the real response to given aberrations, which is easily contaminated by noise and influenced by the inherent aberration in the optical system. A kind of analytic solution of response matrix is proposed, with which numerical simulation and experiment are also implemented to verify the performance of closed-loop correction of static aberration based on linear reconstruction theory. Results show that this AO system with the proposed matrix can work steadily in closed-loop operation.

  19. Drug release characteristics from chitosan-alginate matrix tablets based on the theory of self-assembled film.

    PubMed

    Li, Liang; Wang, Linlin; Shao, Yang; Ni, Rui; Zhang, Tingting; Mao, Shirui

    2013-06-25

    The aim of this study was to better understand the underlying drug release characteristics from chitosan-alginate matrix tablets containing different types of drugs. Theophylline, paracetamol, metformin hydrochloride and trimetazidine hydrochloride were used as model drugs exhibiting significantly different solubilities (12, 16, 346 and >1000 mg/ml at 37 °C in water). A novel concept raised was that drugs were released from chitosan-alginate matrix tablets based on the theory of a self-assembled film-controlled release system. The film was only formed on the surface of tablets in gastrointestinal environment and originated from chitosan-alginate polyelectrolyte complex, confirmed by differential scanning calorimetry characterization. The formed film could decrease the rate of polymer swelling to a degree, also greatly limit the erosion of tablets. Drugs were all released through diffusion in the hydrated matrix and polymer relaxation, irrespective of the drug solubility. The effects of polymer level and initial drug loading on release depended on drug properties. Drug release was influenced by the change of pH. In contrast, the impact of ionic strength of the release medium within the physiological range was negligible. Importantly, hydrodynamic conditions showed a key factor determining the superiority of the self-assembled film in controlling drug release compared with conventional matrix tablets. The new insight into chitosan-alginate matrix tablets can help to broaden the application of this type of dosage forms. PMID:23624081

  20. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-01-01

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well. PMID:24763252

  1. A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems.

    PubMed

    Li, K; Safavi-Naeini, M; Franklin, D R; Han, Z; Rosenfeld, A B; Hutton, B; Lerch, M L F

    2015-09-01

    A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring

  2. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties.

    PubMed

    González-Domínguez, Jose M; Martínez-Rubí, Yadienka; Díez-Pascual, Ana M; Ansón-Casaos, A; Gómez-Fatou, Marian; Simard, Benoit; Martínez, M Teresa

    2012-07-20

    Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40-60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ~10(-13) to ~10(-3) S cm(-1), which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements. PMID:22717574

  3. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    PubMed

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. PMID:24231133

  4. Involvement of specific matrix metalloproteinases during tumor necrosis factor/IFNgamma-based cancer therapy in mice.

    PubMed

    Van Roy, Maarten; Van Lint, Philippe; Van Laere, Ineke; Wielockx, Ben; Wilson, Carole; López-Otin, Carlos; Shapiro, Stephen; Libert, Claude

    2007-09-01

    The potent antitumor activity of tumor necrosis factor (TNF) in combination with IFN-gamma can only be applied in local regimens due to their strong proinflammatory properties. It has been shown that the broad-spectrum matrix metalloproteinase (MMP) inhibitor BB-94 protects against TNF/IFNgamma-induced toxicity without blocking the antitumor effect. Here, we tried to explain this protective role of BB-94 and sought to assign roles to specific MMPs in TNF/IFNgamma-induced toxicity. By studying the expression of MMP genes in different organs and in the tumor, we observed that the expression levels of MMP-7, MMP-8, MMP-9, and MMP-12 and tissue inhibitor of metalloproteinase-4 are clearly up-regulated in the liver during therapy. MMP-8 and MMP-9 are also up-regulated in the lung and kidney, respectively. In the tumor, most MMP genes are expressed, but only MMP-3 is up-regulated during TNF/IFNgamma treatment. Using MMP-deficient or double-deficient mice, we have shown a mediating role for MMP-3 during TNF/IFNgamma treatment in tumor-free and B16BL6 melanoma-bearing mice. By contrast, MMP-12 seemed to have some protective role in both models. However, because most phenotypes were not extremely outspoken, we have to conclude, based on the set of MMP-deficient mice we have studied, that inhibition of a single MMP will probably not increase the therapeutic value of TNF/IFNgamma, but that rather, broad-spectrum MMP inhibitors will be required. PMID:17876053

  5. Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Vesselinov, Velimir V.

    2014-09-01

    The identification of the physical sources causing spatial and temporal fluctuations of aquifer water levels is a challenging, yet a very important hydrogeological task. The fluctuations can be caused by variations in natural and anthropogenic sources such as pumping, recharge, barometric pressures, etc. The source identification can be crucial for conceptualization of the hydrogeological conditions and characterization of aquifer properties. We propose a new computational framework for model-free inverse analysis of pressure transients based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the subsurface flow medium. Our analysis only requires information about pressure transients at a number of observation points, m, where m≥r, and r is the number of unknown unique sources causing the observed fluctuations. We apply this new analysis on a data set from the Los Alamos National Laboratory site. We demonstrate that the sources identified by NMFk have real physical origins: barometric pressure and water-supply pumping effects. We also estimate the barometric pressure efficiency of the monitoring wells. The possible applications of the NMFk algorithm are not limited to hydrogeology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations.

  6. Effect of ascorbic acid deficiency on primary and reparative dentinogenesis in non-ascorbate-synthesizing ODS rats.

    PubMed

    Ogawara, M; Aoki, K; Okiji, T; Suda, H

    1997-01-01

    Ascorbic acid is essential to the biosynthesis of collagen, the major organic matrix component of dentine. The ODS rat is a mutant strain of Wistar rat characterized by hereditary lack of L-gulono-gamma-lactone oxidase and thus is unable to synthesize ascorbic acid. ODS rats were given an ascorbic acid-free diet to investigate how ascorbic acid deficiency affects dentine formation in vivo. Histomorphometric analysis on their growing molars and incisors showed a significant reduction in both size and mineral apposition rate of dentine, as revealed by contact microradiography and fluorescent time-marking, respectively. A similar reduction in bone formation was simultaneously demonstrated in the mandible, confirming the previously reported osteopathic effects of ascorbic acid deficiency. When pulp inflammation was induced in lower first molars by making unsealed pulp exposures, specimens from control animals showed continuous deposition of an osteodentine-like tissue in the radicular pulp chamber; this type of mineralized tissue formation was greatly reduced in ascorbic acid-deprived animals. These results indicate that ascorbic acid deficiency hampers dentine formation under both physiological and pathological conditions of the dentine/pulp complex. ODS rats could be useful in investigating in vivo effects of ascorbic acid deficiency on the formation of dentine and other dental mineralized tissues. PMID:9447259

  7. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  8. Design and development of polyethylene oxide based matrix tablets for verapamil hydrochloride.

    PubMed

    Vidyadhara, S; Sasidhar, R L C; Nagaraju, R

    2013-03-01

    In the present investigation an attempt has been made to increase therapeutic efficacy, reduced frequency of administration and improved patient compliance by developing controlled release matrix tablets of verapamil hydrochloride. Verapamil hydrochloride was formulated as oral controlled release matrix tablets by using the polyethylene oxides (Polyox WSR 303). The aim of this study was to investigate the influence of polymer level and type of fillers namely lactose (soluble filler), swellable filler (starch 1500), microcrystalline cellulose and dibasic calcium phosphate (insoluble fillers) on the release rate and mechanism of release for verapamil hydrochloride from matrix tablets prepared by direct compression process. Higher polymeric content in the matrix decreased the release rate of drug. On the other hand, replacement of lactose with anhydrous dibasic calcium phosphate and microcrystalline cellulose has significantly retarded the release rate of verapamil hydrochloride. Biopharmaceutical evaluation of satisfactory formulations were also carried out on New Zealand rabbits and parameters such as maximum plasma concentration, time to reach peak plasma concentration, area under the plasma concentration time curve(0-t) and area under first moment curve(0-t) were determined. In vivo pharmacokinetic study proves that the verapamil hydrochloride from matrix tablets showed prolonged release and were be able to sustain the therapeutic effect up to 24 h. PMID:24019567

  9. Expectation Matrix Based Quantum Dynamics of a Univariate System at the Zero Fluctuation Limit

    SciTech Connect

    Demiralp, Metin

    2007-12-26

    The variation of the expectation matrix of position and momentum operator in time can serve us to investigate the evolution of a quantum system in time. This brings the utilization of the ODEs instead of Schroedinger's equation at the expense of incapability for the calculation of the wave function. As long as we deal with the observables which can be expressed in terms of position and momentum operators this may be quite practical to know about the quantum dynamics of the system under consideration. Expectation matrix of an operator becomes a function of the expectation matrices of the position and momentum operator when the fluctuations diminish to zero. At this limit, the time-variant ODEs for the expectation matrices of the position and momentum operator can be handled by using the matrix algebraic tools even in the case of nonlinearities in the potential function. This work presents certain details about these points.

  10. Partitioning of Infiltration into Macropore and Soil-Matrix Flow: Predictive Model Based on Mesoscale Heterogeneity of Infiltrability

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.

    2014-12-01

    A condition that initiates macropore flow at the land surface is the application of water faster than it can infiltrate into the soil matrix material. Sometimes this is taken to require ponding, but accumulated evidence shows preferential flow to be commonplace when wetness is less than saturation and when macropores are not completely filled. Examples include water flowing into shrinkage cracks or funneled into macropores by hydrophobic surface material. A more inclusive criterion is that macropore flow is generated when the water application rate exceeds the infiltrability of a small area associated with a macropore. A new model based on this criterion considers the representative elementary area (REA), as would be appropriate for measurement of field-scale infiltrability, to be divided into a mosaic of functional sub-areas (FSA). A single value of matrix infiltrability characterizes each FSA. The REA as a mosaic of FSAs is hydraulically represented by a characteristic distribution of infiltrabilities. During rainfall or irrigation, each FSA absorbs water into its soil matrix material up to the rate of its matrix infiltrability. Water applied in excess of this infiltrability is assumed to flow into a macropore within or adjacent to the FSA, becoming preferential flow. Especially if crusted or hydrophobic, an FSA can generate preferential flow even during low-intensity rainfall when other FSAs are absorbing all incident water into the matrix. The total flux of preferential flow at given depth is the sum of contributions from all FSAs. In this way the characteristic distribution of FSA infiltrabilities controls the field-scale partitioning of matrix and macropore flow as an emergent phenomenon. Illustrative case studies use field-measured data concerning water application rate and preferential flux. Results show this model can quantitatively represent observations of preferential flow occurring in relatively dry soils or at modest rainfall intensities.

  11. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external

  12. Matrix measure based dissipativity analysis for inertial delayed uncertain neural networks.

    PubMed

    Tu, Zhengwen; Cao, Jinde; Hayat, Tasawar

    2016-03-01

    The present paper is devoted to investigating the global dissipativity for inertial neural networks with time-varying delays and parameter uncertainties. By virtue of a suitable substitution, the original system is transformed to the first order differential system. By means of matrix measure, generalized Halanay inequality, and matrix-norm inequality, several sufficient criteria for the global dissipativity of the addressed neural networks are proposed. Meanwhile, the specific estimations of positive invariant sets and globally attractive sets are obtained. Finally, two examples are provided to validate our theoretical results. PMID:26708738

  13. Genetic Algorithm and Graph Theory Based Matrix Factorization Method for Online Friend Recommendation

    PubMed Central

    Li, Qu; Yang, Jianhua; Xu, Ning

    2014-01-01

    Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy. PMID:24757410

  14. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  15. The thermal process diagram and equipment of the secondary coolant circuit of a nuclear power station unit based on the BREST-OD-300 reactor installation for subcritical steam conditions

    NASA Astrophysics Data System (ADS)

    Nesterov, Yu. V.; Lisyanskii, A. S.; Makarova, E. I.; Bal'Va, L. Ya.; Prikhod'Ko, P. Yu.

    2011-06-01

    The 300-MWe power unit based on an experimental-demonstration two-circuit 700-MWt reactor installation with lead coolant is briefly described. The thermal process diagram of the secondary coolant circuit for the subcritical steam conditions 17 MPa and 505°C at the outlet from steam generators is presented.

  16. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Lewandowska, M.; Kurzydlowski, K. J.; Baluc, N.

    2011-02-01

    An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y 2O 3 nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 °C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 °C or high speed hydrostatic extrusion (HSHE) at 900 °C, followed by heat treatment (HT). Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 μm and an average length of 75 μm, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 °C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 °C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.

  17. Recovery and recrystallisation in mechanically alloyed and annealed, legacy, FeCrAlY ODS alloy precursor powders

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Rao, A.; Tatlock, G. J.; Jones, A. R.

    2015-08-01

    This study presents findings related to the recrystallisation behaviour in Mechanically Alloyed (MA) and annealed powders of legacy commercial Oxide Dispersion Strengthened (ODS) FeCrAl alloys PM2000, MA956 and ODM751. Annealing of as-MA ODS alloy powders at temperatures ≥ 800 °C induced primary recrystallisation. The volume fraction (Vf) recrystallised increased with higher annealing temperatures in the range studied (∼800-1050 °C). However, low temperature (650 °C) recovery reduced the subsequent kinetics of recrystallisation in PM2000 alloy. Transmission Electron Microscopy (TEM) analysis of annealed PM2000 and MA956 alloy powders indicates that precipitation of nano-particulate Y-Al-O phases begins at temperatures as low as 650 °C and microstructural changes during annealing of ODS powders involved interactions between nano-particle formation and recovery/recrystallisation processes. High number densities (NV > 1023 m-3) of coherent nano-precipitates were identified in both recovered and recrystallised regions of powder particles. These formed over a range of temperatures used in the consolidation processing of ODS alloys. The orientation relationship between nano-particles and the matrix was identical in both recovered and recrystallised grains, indicating that particles were dissolved at recrystallising interfaces and subsequently reprecipitated. Examination and comparison of as-MA and annealed powder specimens suggests that nuances in the manufacturing of these three, nominally similar, alloys leads to differences in recovery/recrystallisation behaviour, which may influence microstructure and, ultimately, properties in the final product form.

  18. Fabrication of particle dispersed inert matrix fuel based on liquid phase sintered SiC

    NASA Astrophysics Data System (ADS)

    Pavlyuchkov, D.; Baney, R. H.; Tulenko, J. S.; Seifert, H. J.

    2011-08-01

    In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized α-SiC powder and oxide additives Al 2O 3, Y 2O 3 in the amount of 10 wt.% with the molar ratio 1Y 2O 3/1Al 2O 3. Powder mixtures were sintered using two sintering methods; namely conventional high temperature sintering and novel spark plasma sintering at different temperatures depending on the method applied in order to obtain dense samples. The phase reaction products were identified using X-ray diffraction (XRD) and microstructures were investigated using light microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) techniques. The influence of powder mixing methods, sintering temperatures, pressures applied and holding time on the density of the obtained pellets was investigated. The samples sintered by slow conventional sintering show lower relative density and more pronounced interaction between the fuel particles and matrix in comparison with those obtained with the fast spark plasma sintering method.

  19. TASK-BASED EXPOSURE MATRIX TOWARD EVALUATING AND IDENTIFYING OCCUPATIONAL EXPOSURE TO ENGINEERED CARBONACEOUS NANOMATERIALS

    EPA Science Inventory

    It is expected that the findings from this study will contribute to human exposure estimation during the product lifecycle analysis of carbon nanotubes and nanofibers. In addition, the task exposure matrix will provide important background information for the design of future ...

  20. A matrix based on germanium/ormosil system for all-optical applications

    NASA Astrophysics Data System (ADS)

    Gao, Tianxi; Que, Wenxiu; Wang, Yushu

    2016-05-01

    Germania/ormosil hybrid matrix with large third-order nonlinearity is prepared by a low-temperature sol-gel process. Z-scan measurements indicate that the film fabricated from the pure Germania/ormosil hybrid solution shows an excellent third-order nonlinearity at all measured wavelengths. In order to explore its potential to be a functional matrix, a well-investigated organic dopant disperse red 1 (DR1) azoaromatic chromophore is introduced into the Germania/ormosil system. As a comparison, the poly(methyl methacrylate) (PMMA) polymer is employed and doped with the same content of DR1 molecule. Results indicate that by employing Germania/ormosil matrix system, the figure of merit of DR1-doped material at 532 nm can be greatly improved as compared to that of the PMMA/DR1 polymer film and also other published reports. This improvement helps broaden the limited applications of DR1-doped material and make it acceptable for devices fabrication at 532 nm. Results demonstrate that the as-prepared hybrid matrix might be a promising candidate for all-optical applications.

  1. Development of a Matrix of Teaching Models Based on Instructional and Nurturant Effects

    ERIC Educational Resources Information Center

    Miller, Ava S.; Anderson, Stoerm E.

    2007-01-01

    The selection of appropriate teaching models with which to bring about meaningful learning is an important and fundamental concern of the professional educator. This paper describes the development of a matrix of models and effects that was a three step process involving the compilation of a list of effects; the development of effect categories by…

  2. ZnO-CuO composite matrix based reagentless biosensor for detection of total cholesterol.

    PubMed

    Batra, Neha; Tomar, Monika; Gupta, Vinay

    2015-05-15

    An efficient reagentless biosensor for determination of free cholesterol and total cholesterol has been realized using a ZnO-CuO composite matrix grown onto ITO coated corning glass substrates by pulsed laser deposition (PLD) technique. The inclusion of CuO in ZnO matrix successfully introduces redox property and provides enhanced electron communication features. The optimized ZnO-CuO composite matrix has been used for development of ChOx/(ZnO-CuO)/ITO/glass and (ChEt-ChOx)/(ZnO-CuO)/ITO/glass bioelectrodes used for selective detection of free and total cholesterol respectively in the range of 0.12-12.93 mM and 0.5-12 mM without using any external mediator. The fabricated biosensors exhibit high sensitivity of about 680 µA mM(-1) cm(-2) and 760 µA mM(-1) cm(-2) towards free cholesterol and total cholesterol respectively with response time of 5 s, along with high shelf life. The results are encouraging and show the promising application of the ZnO-CuO composite matrix for the realization of reagentless integrated implantable biosensor. PMID:25168284

  3. An improved mechanically durable electrophoresis gel matrix that is fully compatible with fluorescence-based protein detection technologies.

    PubMed

    Schulenberg, Birte; Arnold, Brad; Patton, Wayne F

    2003-07-01

    Unfortunately, conventional large-format polyacrylamide gels are mechanically fragile, often tearing during the subsequent manipulations required for visualization of the proteins. This problem is compounded when large-format two-dimensional gels are subjected to multiple staining procedures in order to detect different classes of proteins, such as total protein, phosphoproteins, and glycoproteins. A mechanically durable liquid polyacrylamide-based matrix has been developed that, upon polymerization, facilitates the handling of one-dimensional and two-dimensional gels. The matrix, referred to as Rhinohide liquid acrylamide, is stable as a refrigerated solution for up to one year, and forms a polymer-reinforced polyacrylamide gel suitable for electrophoresis, upon addition of catalysts. The matrix is superior to previously reported durable gel matrices in that it does not cause distortion of high-molecular-weight bands and does not suffer from other spot morphology artifacts, such as doubling of protein spots in the molecular weight dimension. The matrix is particularly valuable for the analysis of proteins applying multiple applications of fluorescent dyes, as required with serial staining of proteins for phosphorylation, glycosylation, and total protein expression, using Pro-Q Diamond phosphoprotein stain, Pro-Q Emerald glycoprotein stain and SYPRO Ruby protein gel stain, respectively. PMID:12872220

  4. Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration.

    PubMed

    Jha, Amit K; Tharp, Kevin M; Browne, Shane; Ye, Jianqin; Stahl, Andreas; Yeghiazarians, Yerem; Healy, Kevin E

    2016-05-01

    A critical design parameter for the function of synthetic extracellular matrices is to synchronize the gradual cell-mediated degradation of the matrix with the endogenous secretion of natural extracellular matrix (ECM) (e.g., creeping substitution). In hyaluronic acid (HyA)-based hydrogel matrices, we have investigated the effects of peptide crosslinkers with different matrix metalloproteinases (MMP) sensitivities on network degradation and neovascularization in vivo. The HyA hydrogel matrices consisted of cell adhesive peptides, heparin for both the presentation of exogenous and sequestration of endogenously synthesized growth factors, and MMP cleavable peptide linkages (i.e., QPQGLAK, GPLGMHGK, and GPLGLSLGK). Sca1(+)/CD45(-)/CD34(+)/CD44(+) cardiac progenitor cells (CPCs) cultured in the matrices with the slowly degradable QPQGLAK hydrogels supported the highest production of MMP-2, MMP-9, MMP-13, VEGF165, and a range of angiogenesis related proteins. Hydrogels with QPQGLAK crosslinks supported prolonged retention of these proteins via heparin within the matrix, stimulating rapid vascular development, and anastomosis with the host vasculature when implanted in the murine hindlimb. PMID:26967648

  5. Characterization of high performance austenitic and ODS alloys for SCWR conditions

    SciTech Connect

    Penttila, S.; Toivonen, A.; Auerkari, P.; Novotny, R.

    2012-07-01

    High temperature oxidation resistance is of critical importance for the in-reactor components of the European supercritical water reactor (SCWR) concept. To consider candidate materials for this purpose, selected austenitic steels, iron based ODS (Oxide Dispersion Strengthened) alloys and one Ni alloy have been tested by exposure to supercritical water at 650 deg. C/25 MPa up to 2000 h. Results of observed mass change, oxide thickness and composition after exposure are shown and discussed regarding implications for long term oxidation performance. (authors)

  6. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis

    PubMed Central

    Zhang, Xiao-Chao; Wei, Zhen-Wei; Gong, Xiao-Yun; Si, Xing-Yu; Zhao, Yao-Yao; Yang, Cheng-Dui; Zhang, Si-Chun; Zhang, Xin-Rong

    2016-01-01

    Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis. PMID:27126222

  7. Matrix Failure Modes and Effects Analysis as a Knowledge Base for a Real Time Automated Diagnosis Expert System

    NASA Technical Reports Server (NTRS)

    Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.

  8. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    SciTech Connect

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes contained tube portions with FBW

  9. Humidity sensing properties of CNT-OD-VETP nanocomposite films

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Karimov, Kh. S.; Karieva, Z. M.; Mateen, A.

    2010-11-01

    In this study, the blend of orange dye (OD), C 17H 17N 5O 2 (5 wt%), vinyl-ethynyl-trimethyl-piperidole (VETP), C 12H 19NO, (5 wt%) and carbon nanotube (CNT) powder (10 wt%) in a mixture of distilled water (80 wt%) and spirit were drop-casted on glass substrates with pre-deposited surface-type silver electrodes to fabricate CNT-OD-VETP nanocomposite thin films. In the process of thin films deposition, 2 V DC was applied to Ag electrodes. The thicknesses of the CNT-OD-VETP films were in the range of 10-15 μm. The I-V characteristics of the surface-type Ag/CNT-OD-VETP/Ag samples showed rectification behavior. The effect of humidity on the electrical properties of the nanocomposite films was investigated by measurement of the capacitance and dissipation of the samples at two different frequencies of the applied voltage: 120 Hz and 1 kHz. The resistance of the samples was determined from values of dissipation. It was observed that at 120 Hz and 1 kHz, under humidity of up to 90% RH, the capacitance of the cell increased by 7.4×10 3 and 740 times and resistance decreased by 2.3×10 4 and 3.8×10 4 times, accordingly, with respect to 40% RH conditions. The average response and recovery times of the films were obtained by capacitance-time measurements to evaluate the dynamics of the water vapor absorption and desorption processes. The experimental results have been supported by the simulation of the capacitance-humidity relationship. It is assumed that the humidity response of the cell is associated with diffusion of water vapors and doping of the semiconductor nanocomposite by water molecules.

  10. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases.

    PubMed

    Lesellier, E

    2012-03-01

    The chromatographic efficiency, in terms of plate number per second, was dramatically improved by the introduction of sub-two microns particles with ultra-high pressure liquid chromatography (UHPLC). On the other hand, the recent development of superficially porous particles, called core-shell or fused-core particles, appears to allow the achievement of the same efficiency performances at higher speed without high pressure drops. CO₂-based mobile phases exhibiting much lower viscosities than aqueous based mobile phases allow better theoretical efficiencies, even with 3-5 μm particles, but with relative low pressure drops. They also allow much higher flow rates or much longer columns while using conventional instruments capable to operate below 400 bar. Moreover, the use of superficially porous particles in SFC could enhance the chromatographic performances even more. The kinetic behavior of ODS phases bonded on these particles was studied, with varied flow rates, outlet (and obviously inlet) pressures, temperatures, by using a homologous series (alkylbenzenes) with 10% modifier (methanol or acetonitrile) in the carbon dioxide mobile phase. Results were also compared with classical fully porous particles, having different sizes, from 2.5 to 5 μm. Superior efficiency (N) and reduced h were obtained with these new ODS-bonded particles in regards to classical ones, showing their great interest for use in SFC. However, surprising behavior were noticed, i.e. the increase of the theoretical plate number vs. the increase of the chain length of the compounds. This behavior, opposite to the one classically reported vs. the retention factor, was not depending on the outlet pressure, but on the flow rate and the temperature changes. The lower radial trans-column diffusion on this particle types could explain these results. This diffusion reduction with these ODS-bonded superficially porous particles seems to decrease with the increase of the residence time of compounds

  11. DEVELOPMENT OF ODS HEAT EXCHANGER TUBING

    SciTech Connect

    Mark A. Harper, Ph.D.

    2003-04-01

    Due to extenuating circumstances Special Metals Corporation is terminating their role as prime contractor with this Vision 21 project. In response to this situation, a status report for the project as of this date, has been prepared and follows. Significant work has been accomplished on three major tasks of this project--increasing the circumferential strength of MA956 tubing, joining of the MA956 alloy, and determination of the high temperature corrosion limits of the MA956 alloy. With respect to increasing the circumferential strength of a MA956 tube, the first rod extrusion campaign has been completed with microstructure analysis providing valuable information on the strengthening mechanism of this alloy. Also, based on the results obtained thus far extrusions of tubes are in process and creep testing to determine the ''stress threshold'' curves for this alloy continues. Regarding joining of the MA956 alloy, welds have been produced using the friction, explosive, magnetic impulse, and diffusion bonding techniques. Complete elevated temperature mechanical testing has not been conducted on joints produced using these methods, however room temperature tensile and shear testing has shown promising results on friction and explosive welds. And finally, laboratory high temperature corrosion testing of the material continues in both fluid-side and fire-side simulated environments. Brief summary status statements from each of the subcontractors is appended to this report which additionally contains the expected funding needed to complete the project.

  12. Nanofiber-based hydrogels with extracellular matrix-based synthetic peptides for the prevention of capsular opacification.

    PubMed

    Nibourg, Lisanne M; Gelens, Edith; de Jong, Menno R; Kuijer, Roel; van Kooten, Theo G; Koopmans, Steven A

    2016-02-01

    Nanofiber-based hydrogels (nanogels) with different, covalently bound peptides were used as an extracellular environment for lens epithelial cells (LECs) in order to modulate the capsular opacification (CO) response after lens surgery in a porcine eye model. Lenses were divided into 15 groups (n = 4 per group), the lens content was removed and the empty capsules were refilled with nanogel without peptides and nanogels with 13 combinations of 5 different peptides: two laminin-derived, two fibronectin-derived, and one collagen IV-derived peptide representing cell adhesion motifs. A control group of 4 lenses was refilled with hyaluronan. After refilling, lenses were extracted from the porcine eye and cultured for three weeks. LECs were assessed for morphology and alpha smooth muscle actin (αSMA) expression using confocal laser scanning microscopy. Compared to hyaluronan controls, lenses filled with nanogel had less CO formation, indicated by a lower αSMA expression (P = 0.004). Microscopy showed differences in morphological cell response within the nanogel refilled groups. αSMA expression in these groups was highest in lenses refilled with nanogel without peptides (9.54 ± 11.29%). Overall, LEC transformation is reduced by the presence of nanogels and the response is improved even further by incorporation of extracellular matrix peptides representing adhesion motifs. Thus, nanomaterials targeting biological pathways, in our case interactions with integrin signaling, are a promising avenue toward reduction of CO. Further research is needed to optimize nanogel-peptide combinations that fully prevent CO. PMID:26474493

  13. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jiandong; Li, Liqun; Tao, Wang

    2016-08-01

    It is generally believed that cracks in metal matrix composites (MMC) parts manufacturing are crucial to the reliable material properties, especially for the reinforcement particles with high volume fraction. In this paper, WC particles (WCp) reinforced Fe-based metal matrix composites (WCp/Fe) were manufactured by laser melting deposition (LMD) technology to investigate the characteristics of cracks formation. The section morphology of composites were analyzed by optical microscope (OM), and microstructure of WCp, matrix and interface were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), in order to study the crack initiation and propagation behavior under different laser process conditions. The temperature of materials during the laser melting deposition was detected by the infrared thermometer. The results showed that the cracks often appeared after five layers laser deposition in this experiment. The cracks crossed through WC particles rather than the interface, so the strength of interface obtained by the LMD was relatively large. When the thermal stress induced by high temperature gradient during LMD and the coefficient of thermal expansion mismatch between WC and matrix was larger than yield strength of WC, the cracks would initiate inside WC particle. Cracks mostly propagated along the eutectic phases whose brittleness was very large. The obtained thin interface was beneficial to transmitting the stress from particle to matrix. The influence of volume fraction of particles, laser power and scanning speed on cracks were investigated. This paper investigated the influence of WC particles size on cracks systematically, and the smallest size of cracked WC in different laser processing parameters was also researched.

  14. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  15. New direction of arrival estimation of coherent signals based on reconstructing matrix under unknown mutual coupling

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Li, Weixing; Zhang, Yue; Chen, Zengping

    2016-01-01

    A direction of arrival (DOA) estimation algorithm for coherent signals in the presence of unknown mutual coupling is proposed. A group of auxiliary sensors in a uniform linear array are applied to eliminate the effects on the orthogonality of subspaces brought by mutual coupling. Then, a Toeplitz matrix, whose rank is independent of the coherency between impinging signals, is reconstructed to eliminate the rank loss of the spatial covariance matrix. Therefore, the signal and noise subspaces can be estimated properly. This method can estimate the DOAs of coherent signals under unknown mutual coupling accurately without any iteration and calibration sources. It has a low computational burden and high accuracy. Simulation results demonstrate the effectiveness of the algorithm.

  16. Association weight matrix: a network-based approach towards functional genome-wide association studies.

    PubMed

    Reverter, Antonio; Fortes, Marina R S

    2013-01-01

    In this chapter we describe the Association Weight Matrix (AWM), a novel procedure to exploit the results from genome-wide association studies (GWAS) and, in combination with network inference algorithms, generate gene networks with regulatory and functional significance. In simple terms, the AWM is a matrix with rows represented by genes and columns represented by phenotypes. Individual {i, j}th elements in the AWM correspond to the association of the SNP in the ith gene to the jth phenotype. While our main objective is to provide a recipe-like tutorial on how to build and use AWM, we also take the opportunity to briefly reason the logic behind each step in the process. To conclude, we discuss the impact on AWM of issues like the number of phenotypes under scrutiny, the density of the SNP chip and the choice of contrast upon which to infer the cause-effect regulatory interactions. PMID:23756904

  17. Controlled-surface-wettability-based fabrication of hydrogel substrates with matrix tethering density variations

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahmudur; Lee, Donghee; Bhagirath, Divya; Zhao, Xiangshan; Band, Vimla; Ryu, Sangjin

    2014-03-01

    It is widely accepted that cells behave differently responding to the stiffness of extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells actually sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate the hypothesis, we develop constant-stiffness hydrogel substrates with varying matrix tethering density (the number of anchoring sites between the gel and the ECM protein molecules). We fabricate polyacrylamide gel of static stiffness and conjugate ECM proteins to the gel using a cross-linker. When treating the gel with the cross-linker, we control positioning of cross-linker solutions with different concentrations using superhydrophobic barriers on glass, functionalize the gel by pressing it to the aligned cross-linker solutions, and conjugate an ECM protein of constant concentration to the gel. We expect that the gel will be functionalized to different degrees depending on the concentration distribution of the cross-linker and thus the gel will have variations of matrix tethering density even with constant ECM protein concentration. We acknowledge support from Bioengineering for Human Health grant of UNL-UNMC.

  18. SDP-based approximation of stabilising solutions for periodic matrix Riccati differential equations

    NASA Astrophysics Data System (ADS)

    Gusev, Sergei V.; Shiriaev, Anton S.; Freidovich, Leonid B.

    2016-07-01

    Numerically finding stabilising feedback control laws for linear systems of periodic differential equations is a nontrivial task with no known reliable solutions. The most successful method requires solving matrix differential Riccati equations with periodic coefficients. All previously proposed techniques for solving such equations involve numerical integration of unstable differential equations and consequently fail whenever the period is too large or the coefficients vary too much. Here, a new method for numerical computation of stabilising solutions for matrix differential Riccati equations with periodic coefficients is proposed. Our approach does not involve numerical solution of any differential equations. The approximation for a stabilising solution is found in the form of a trigonometric polynomial, matrix coefficients of which are found solving a specially constructed finite-dimensional semidefinite programming (SDP) problem. This problem is obtained using maximality property of the stabilising solution of the Riccati equation for the associated Riccati inequality and sampling technique. Our previously published numerical comparisons with other methods shows that for a class of problems only this technique provides a working solution. Asymptotic convergence of the computed approximations to the stabilising solution is proved below under the assumption that certain combinations of the key parameters are sufficiently large. Although the rate of convergence is not analysed, it appeared to be exponential in our numerical studies.

  19. Rapid Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gribble, Adam; Alali, Sanaz; Vitkin, Alex

    2016-03-01

    Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its composition, both structural and functional. For example, the polarimetry-derived metric of linear retardance (birefringence) is dependent on tissue structural organization (anisotropy) and can be used to diagnose myocardial infarct; circular birefringence (optical rotation) can measure glucose concentrations. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. To derive this 4x4 matrix it is necessary to observe how a tissue interacts with different polarizations. A well-suited approach for tissue polarimetry is to use photoelastic modulators (PEMs), which dynamically modulate the polarization of light. Previously, we have demonstrated a rapid time-gated Stokes imaging system that is capable of characterizing the state of polarized light (the Stokes vector) over a large field, after interacting with any turbid media. This was accomplished by synchronizing CCD camera acquisition times relative to two PEMs using a field-programmable gate array (FPGA). Here, we extend this technology to four PEMs, yielding a polarimetry system that is capable of rapidly measuring the complete sample Mueller matrix over a large field of view, with no moving parts and no beam steering. We describe the calibration procedure and evaluate the accuracy of the measurements. Results are shown for tissue-mimicking phantoms, as well as initial biological samples.

  20. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2005-11-23

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in crossrolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to

  1. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation.

    PubMed

    Rawat, Manoj K; Jain, Achint; Singh, Sanjay

    2011-06-01

    The purpose of present study is to examine effect of binary lipid matrix (combination of lipids) on the entrapment and storage stability of repaglinide (RG) loaded solid lipid nanoparticles (SLN). Solid lipid nanoparticles were prepared by modified solvent injection method for oral delivery to improve the bioavailability of RG, an antidiabetic drug. The stearic acid and tristearin were used to form lipid core materials, and Pluronic-F68 was used as a stabilizer. Nanoparticles were characterized by evaluating their particle size, zeta potential, entrapment efficiency, drug loading, solid-state studies (differential scanning calorimetry, X-ray diffraction), in vitro drug release, particle surface (transmission electron microscopy analysis with electron diffraction pattern), stability study in gastrointestinal fluids (GIFs) and storage stability at 30 °C/65% RH for 3 months. The characterization of SLN suggested that binary lipid matrix based nanoparticles had better drug entrapment and loading, desired release characteristics, stable in GIFs and significantly higher storage stability compared with single lipid formulations. Pharmacodynamic (blood glucose, blood cholesterol, blood triglyceride levels) and pharmacokinetic (AUC, T(max), peak plasma concentrations, K, t(1/2), mean residence time and relative bioavailabilities) studies were performed for the selected formulations. These studies indicate that the formulation based on binary lipid matrix significantly improves the oral bioavailability of RG. PMID:21491449

  2. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing.

    PubMed

    Kolb, Florian; Schmoltner, Kerstin; Huth, Michael; Hohenau, Andreas; Krenn, Joachim; Klug, Andreas; List, Emil J W; Plank, Harald

    2013-08-01

    The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept. PMID:23818049

  3. Effect of degree of esterification of pectin and calcium amount on drug release from pectin-based matrix tablets.

    PubMed

    Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit

    2004-02-12

    The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets. PMID:15198530

  4. Quantitative analysis of ultrasonic images of fibrotic liver using co-occurrence matrix based on multi-Rayleigh model

    NASA Astrophysics Data System (ADS)

    Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.

  5. Transmission of Real World Force Sensation by Micro/Macro Bilateral Control Based on Acceleration Control with Standardization Matrix

    NASA Astrophysics Data System (ADS)

    Shimono, Tomoyuki; Katsura, Seiichiro; Susa, Shigeru; Takei, Takayoshi; Ohnishi, Kouhei

    This paper proposes novel micro/macro bilateral control based on acceleration control with standardization matrix. In bilateral control, force control and position control should be realized simultaneously. However, they are not able to be realized in one real axis at the same time. Thus, force control and position control are realized in virtual mode space in this paper. Then, the proposed standardization matrix is able to harmonize the standard of macro master system with the standard of micro slave system in the virtual mode space. With the proposed method, the transmission of force sensation from the real micro environment is realized. The experimental results are shown to verify the viability of the proposed method.

  6. The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media

    NASA Astrophysics Data System (ADS)

    Tian, H. F.; Qiao, J. W.; Yang, H. J.; Wang, Y. S.; Liaw, P. K.; Lan, A. D.

    2016-02-01

    The corrosion behavior of Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 metallic glass matrix composites (MGMCs) in different corrosive media, including 1 M NaCl, 1 M HCl, 0.5 M H2SO4, and 1 M NaOH solutions, was studied. The electrochemical characteristics of the composites were investigated by potentiodynamic-polarization measurements. The results show that the corrosion resistance in NaOH solution is the poorest in terms of the corrosion potential (Ecorr) and corrosion current density (icorr). For comparison, the chemical immersion tests were conducted. The corroded surface morphologies after electrochemical and immersion measurements both show that the amorphous matrix and crystalline dendrites exhibit different corrosion behaviors. The possible interpretation of the observed morphology evolution was proposed. The effect of a very base metallic element of beryllium on the corrosion dynamic process has been emphasized.

  7. Optimization-based method for structural damage localization and quantification by means of static displacements computed by flexibility matrix

    NASA Astrophysics Data System (ADS)

    Zare Hosseinzadeh, Ali; Ghodrati Amiri, Gholamreza; Koo, Ki-Young

    2016-04-01

    This article presents an effective method for structural damage identification. The damage diagnosis problem is introduced as an optimization problem which is based on computing static displacements by the flexibility matrix. By utilizing this matrix, the complexity of the static displacement measurements in real cases can be overcome. The optimization problem is solved by a fast evolutionary optimization strategy, named the cuckoo optimization algorithm. The performance of the presented method was demonstrated by studying the benchmark problem provided by the IASC-ASCE Task Group on Structural Health Monitoring, and a numerical example of a frame. Moreover, the robustness of the presented approach was investigated in the presence of some prevalent modelling errors, and also when noisy and incomplete modal data are available. Finally, the efficiency of the proposed method was verified by an experimental study of a five-storey shear building structure. All the obtained results show the good performance of the presented method.

  8. A reduced-scaling density matrix-based method for the computation of the vibrational Hessian matrix at the self-consistent field level

    SciTech Connect

    Kussmann, Jörg; Luenser, Arne; Beer, Matthias; Ochsenfeld, Christian

    2015-03-07

    An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type two-electron integral contractions, we show that the effect of the perturbation on the electronic structure due to the displacement of nuclei decays at least as r{sup −2} instead of r{sup −1}. The perturbation is asymptotically local, and the computation of the Hessian matrix can, in principle, be performed with O(N) complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the underlying electronic structure.

  9. Latent tracks of swift heavy ions in Cr23C6 and Y-Ti-O nanoparticles in ODS alloys

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Sohatsky, A. S.; O'Connell, J. H.; Kornieieva, K.; Nikitina, A. A.; Uglov, V. V.; Neethling, J. H.; Ageev, V. S.

    2016-05-01

    The radiation stability of dielectric nanoparticles embedded into a metallic matrix is of considerable practical value due to the growing interest in oxide dispersion strengthened (ODS) steels as promising nuclear reactor materials. In this report the results of a TEM study of structural changes in Cr23C6 and Y-Ti-O nanoparticles in several ODS alloys irradiated with 1.2 MeV/amu Xe and 3.4 MeV/amu Bi ions is presented. It was found that swift heavy ion irradiation leads to the formation of amorphous latent tracks in both materials. The upper limit of the threshold electronic stopping power for track formation in carbides is estimated to be around 35 keV/nm. Multiple ion track overlapping leads to complete amorphization of carbide and Y-Ti oxide nanoparticles. Microstructural analysis have revealed a strong influence of the ferritic matrix on track morphology in Y2Ti2O7 nanoparticles in pre-thinned TEM targets after postradiation annealing and irradiation at elevated temperatures.

  10. Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer.

    PubMed

    Chernov, Andrei V; Baranovskaya, Svetlana; Golubkov, Vladislav S; Wakeman, Dustin R; Snyder, Evan Y; Williams, Roy; Strongin, Alex Y

    2010-06-18

    Epigenetic parameters (DNA methylation, histone modifications, and miRNAs) play a significant role in cancer. To identify the common epigenetic signatures of both the individual matrix metalloproteinases (MMPs) and the additional genes, the function of which is also linked to proteolysis, migration, and tumorigenesis, we performed epigenetic profiling of 486 selected genes in unrelated non-migratory MCF-7 breast carcinoma and highly migratory U251 glioma cells. Genome-wide transcriptional profiling, quantitative reverse transcription-PCR, and microRNA analyses were used to support the results of our epigenetic studies. Transcriptional silencing in both glioma and breast carcinoma cells predominantly involved the repressive histone H3 Lys-27 trimethylation (H3K27me3) mark. In turn, epigenetic stimulation was primarily performed through a gain in the histone H3 Lys-4 dimethylation (H3K4me2) and H3 hyperacetylation and by a global reduction of H3K27me3. Inactive pro-invasive genes in MCF-7 cells but not in U251 cells frequently exhibited a stem cell-like bivalent mark (enrichment in both H3K27me3 and H3K4me2), a characteristic of developmental genes. In contrast with other MMPs, MMP-8 was epigenetically silenced in both cell types, thus providing evidence for the strict epigenetic control of this anti-tumorigenic proteinase in cancer. Epigenetic stimulation of multiple collagen genes observed in cultured glioma cells was then directly confirmed using orthotopic xenografts and tumor specimens. We suggest that the epigenetic mechanisms allow gliomas to deposit an invasion-promoting collagen-enriched matrix and then to use this matrix to accomplish their rapid migration through the brain tissue. PMID:20404328

  11. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    NASA Astrophysics Data System (ADS)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  12. A feedforward artificial neural network based on quantum effect vector-matrix multipliers.

    PubMed

    Levy, H J; McGill, T C

    1993-01-01

    The vector-matrix multiplier is the engine of many artificial neural network implementations because it can simulate the way in which neurons collect weighted input signals from a dendritic arbor. A new technology for building analog weighting elements that is theoretically capable of densities and speeds far beyond anything that conventional VLSI in silicon could ever offer is presented. To illustrate the feasibility of such a technology, a small three-layer feedforward prototype network with five binary neurons and six tri-state synapses was built and used to perform all of the fundamental logic functions: XOR, AND, OR, and NOT. PMID:18267745

  13. Accuracy of an approximate static structural analysis technique based on stiffness matrix eigenmodes

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Hajela, P.

    1979-01-01

    Use of the stiffness matrix eigenmodes, instead of the vibration eigenmodes, as generalized coordinates is proposed for condensation of static load deflection equations in finite element stiffness method. The modes are selected by strain energy criteria and the resulting fast, approximate analysis technique is evaluated by applications to idealized built-up wings and a fuselage segment. The best results obtained are a two-order of magnitude reduction of the number of degrees of freedom in a high aspect ratio wing associated with less than one percent error in prediction of the largest displacement.

  14. Unidirectional fibers and polyurethane elastomer matrix based composites synthesis and properties. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chakar, A.

    1984-01-01

    A study of the properties and manufacturing techniques for long-fiber reinforced elastomeric composites for flexible and damping structural materials is presented. Attention is given to the usage of polyurethane in the matrix to obtain plastic elastomeric matrices and vitreous transition temperatures which vary from -80 C to 10 C, as well as assure good fiber adhesion. Various polyurethane formulations synthesized from diisocyanate prepolymers are examined in terms of mechanical and thermal properties. The principal reinforcing fiber selected is a unidirectional glass cloth.

  15. Synergization of silicone with developed crosslinking to soy-based polyurethane foam matrix

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2014-06-01

    Flexible polyurethane foam obtained from reaction of soybased polyol with TDI:MDI (80:20), and surfactant. The goal of this research is to determine the synergization effect of silicone with low molecular alcohols; methanol and ethylene glycol (EG) in soy-polyurethane formula on holding moisture of foams to density, foam solutions capacity, and cellular morphology. The optimized of polyol was achieved by ratio of epoxide/methanol 1:6 (mol/mol), and epoxide/EG 1:3 (mol/mol). It was found silicone surfactant can minimize solution absorbency in polyurethane foam matrix.

  16. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  17. Polymer-based metal nano-coated disposable target for matrix-assisted and matrix-free laser desorption/ionization mass spectrometry.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2016-07-15

    The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility. PMID:27038744

  18. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    PubMed

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. PMID:24947989

  19. Dry Sliding Wear Behaviour of Flyash Reinforced ZA-27 Alloy Based Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishna, M.; Bhattacharyya, D.

    In the present investigation, an attempt has been made to evaluate the wear rate of ZA-27 alloy composites reinforced with fly ash particles from 1 to 3 wt% in steps of 1 wt%. The compo-casting method has been used to fabricate the composites using Raichur fly ash of average size 3-5 microns. The wear specimens are tested under dry conditions using a pin-on-disc sliding wear testing machine with wear loads of 20-120 N in steps of 20 N, and the sliding distances in the range of 0.5 km to 2.5 km. The results indicate that the wear rate of the composites is less than that of the matrix alloy and it further decreases with the increase in fly ash content. However, the material loss in terms of wear rate and wear volume increases with the increase in load and sliding distance, both in the cases of composites and the matrix alloy. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle-cracking induced delamination wear. It is found that with the increase in fly ash content, the wear resistance increases monotonically. The observations have been explained using scanning electron microscope (SEM) analysis of the worn surfaces of the composites.

  20. A ceramic matrix composite based on polymerization and pyrolysis of ethynylated aromatics

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.

    1985-01-01

    A number of ethynylated aromatic monomers recently have been synthesized which thermally homopolymerize and copolymerize to produce rigid, highly cross-linked polymers with high thermal stability (Tg of about 450 C). On pyrolysis, these polymers lose few volatiles (more than 85 percent char yield) to yield carbon bodies of relatively low porosity. These properties render the ethynylated aromatics of significant interest as matrices for high temperature composites. Incorporation of a SiC particle filler in the matrix improves the rheology of the system and minimizes shrinkage during pyrolysis. Several unidirectional composites have been fabricated combining a graphite or boria-alumina-silica continuous reinforcement with an ethynylated aromatic polymer matrix and SiC filler. Thermogravimetric analysis of composite pyrolysis behavior was used to determine reaction kinetics and to establish a composite fabrication cycle. Composites retained 95 percent of their green weight on pyrolysis. Microstructure of the green and pyrolyzed composites is characterized for materials pyrolyzed at 600 C in vacuum and argon as well as for laminates heated at 1200 C in argon following pyrolysis.

  1. Larvae of the genus Eleodes (Coleoptera, Tenebrionidae): matrix-based descriptions, cladistic analysis, and key to late instars

    PubMed Central

    Smith, Aaron D.; Dornburg, Rebecca; Wheeler, Quentin D.

    2014-01-01

    Abstract Darkling beetle larvae (Coleoptera, Tenebrionidae) are collectively referred to as false wireworms. Larvae from several species in the genus Eleodes are considered to be agricultural pests, though relatively little work has been done to associate larvae with adults of the same species and only a handful of species have been characterized in their larval state. Morphological characters from late instar larvae were examined and coded to produce a matrix in the server-based content management system mx. The resulting morphology matrix was used to produce larval species descriptions, reconstruct a phylogeny, and build a key to the species included in the matrix. Larvae are described for the first time for the following 12 species: Eleodes anthracinus Blaisdell, Eleodes carbonarius (Say), Eleodes caudiferus LeConte, Eleodes extricatus (Say), Eleodes goryi Solier, Eleodes hispilabris (Say), Eleodes nigropilosus LeConte, Eleodes pilosus Horn, Eleodes subnitens LeConte, Eleodes tenuipes Casey, Eleodes tribulus Thomas, and Eleodes wheeleri Aalbu, Smith & Triplehorn. The larval stage of Eleodes armatus LeConte is redescribed with additional characters to differentiate it from the newly described congeneric larvae. PMID:25009429

  2. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    SciTech Connect

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  3. Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix

    PubMed Central

    Gao, H; Zhang, T; Wu, Y; Wu, Y; Jiang, L; Zhan, J; Li, J; Yang, R

    2014-01-01

    Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study (GWAS), principal component analysis (PCA) has been widely used to generate independent ‘super traits' from the original multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and meat quality traits in beef cattle. PMID:24984606

  4. A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections

    PubMed Central

    Jia, Pengfei; Huang, Tailai; Wang, Li; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) consisting of 14 metal oxide gas sensors and one electronic chemical gas sensor has been constructed to identify four different classes of wound infection. However, the classification results of the E-nose are not ideal if the original feature matrix containing the maximum steady-state response value of sensors is processed by the classifier directly, so a novel pre-processing technique based on supervised locality preserving projections (SLPP) is proposed in this paper to process the original feature matrix before it is put into the classifier to improve the performance of the E-nose. SLPP is good at finding and keeping the nonlinear structure of data; furthermore, it can provide an explicit mapping expression which is unreachable by the traditional manifold learning methods. Additionally, some effective optimization methods are found by us to optimize the parameters of SLPP and the classifier. Experimental results prove that the classification accuracy of support vector machine (SVM combined with the data pre-processed by SLPP outperforms other considered methods. All results make it clear that SLPP has a better performance in processing the original feature matrix of the E-nose. PMID:27376295

  5. Synthesis and investigation of the structure of nanocomposites based on nickel nanoparticles dispersed in a phthalocyanine matrix

    NASA Astrophysics Data System (ADS)

    Kolpacheva, N. A.; Avakyan, L. A.; Manukyan, A. S.; Mirzakhanyan, A. A.; Sharoyan, E. G.; Pryadchenko, V. V.; Zubavichus, Ya. V.; Trigub, A. L.; Fedorenko, A. G.; Bugaev, L. A.

    2016-05-01

    A method based on doping of pure nickel phthalocyanine (NiPc) with a polycrystalline potassium powder at relatively low temperatures (300°C) has been proposed for the synthesis of a magnetic nanocomposite containing nickel nanoparticles stabilized in the NiPc matrix. The structural analysis of the synthesized nanoparticles and changes in the NiPc initial matrix has been performed using X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. It has been found that, at the doping level used in this study, the synthesized samples of the K x NiPc nanocomposites contain from 9 to 18% Ni in the form of metallic magnetic nanoparticles with an average size of more than 40 nm. It has been shown that the formation of nanoparticles is accompanied by a relative misorientation of persistent NiPc molecules with the unchanged structure of each of these molecules. The stabilization of nickel nanoparticles by the phthalocyanine matrix leads to the fact that the synthesized nanocomposites acquire time-conserving magnetic properties.

  6. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3.

    PubMed Central

    Cowell, S; Knäuper, V; Stewart, M L; D'Ortho, M P; Stanton, H; Hembry, R M; López-Otín, C; Reynolds, J J; Murphy, G

    1998-01-01

    SW1353 chondrosarcoma cells cultured in the presence of interleukin-1, concanavalin A or PMA secreted procollagenase 3 (matrix metalloproteinase-13). The enzyme was detected in the culture medium by Western blotting using a specific polyclonal antibody raised against recombinant human procollagenase 3. Oncostatin M enhanced the interleukin-1-induced production of procollagenase 3, whereas interleukin-4 decreased procollagenase 3 synthesis. The enzyme was latent except when the cells had been treated with concanavalin A, when a processed form of 48 kDa, which corresponds to the active form, was found in the culture medium and collagenolytic activity was detected by degradation of 14C-labelled type I collagen. The concanavalin A-induced activation of procollagenase 3 coincided with the processing of progelatinase A (matrix metalloproteinase-2) by the cells, as measured by gelatin zymography. In addition, progelatinase B (matrix metalloproteinase-9) was activated when gelatinase A and collagenase 3 were in their active forms. Concanavalin A treatment of SW1353 cells increased the amount of membrane-type-1 matrix metalloproteinase protein in the cell membranes, suggesting that this membrane-bound enzyme participates in an activation cascade involving collagenase 3 and the gelatinases. This cascade was effectively inhibited by tissue inhibitors of metalloproteinases-2 and -3. Tissue inhibitor of metalloproteinases-1, which is a much weaker inhibitor of membrane-type 1 matrix metalloproteinase than tissue inhibitors of metalloproteinases-2 and -3 [Will, Atkinson, Butler, Smith and Murphy (1996) J. Biol. Chem. 271, 17119-17123], was a weaker inhibitor of the activation cascade. PMID:9531484

  7. Mechanical properties of oxide dispersion strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1998-03-01

    Oxide dispersion strengthened molybdenum, Mo-ODS, developed by a proprietary powder metallurgy process, exhibits a creep rupture life at 0.65T{sub m} (1,600 C) of three to five orders of magnitude greater than unalloyed molybdenum, while maintaining ductile fracture behavior at temperatures significantly below room temperature. In comparison, the creep rupture life of the Mo-50Re solid solution strengthened alloy at 1,600 C is only an order of magnitude greater than unalloyed molybdenum. The results of microstructural characterization and thermal stability and mechanical property testing are discussed.

  8. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage.

    PubMed

    Fan, Chao; Shi, Zhaomei; Pan, Yiting; Song, Zifeng; Zhang, Wanjun; Zhao, Xinyuan; Tian, Fang; Peng, Bo; Qin, Weijie; Cai, Yun; Qian, Xiaohong

    2014-02-01

    In an age of whole-genome analysis, the mass spectrometry-based bottom-up strategy is now considered to be the most powerful method for in-depth proteomics analysis. As part of this strategy, highly efficient and complete proteolytic digestion of proteins into peptides is crucial for successful proteome profiling with deep coverage. To achieve this goal, prolonged digestion time and the use of multiple proteases have been adopted. The long digestion time required and tedious sample treatment steps severely limit the sample processing throughput. Though utilization of immobilized protease greatly reduces the digestion time, highly efficient proteolysis of extremely complex proteomic samples remains a challenging task. Here, we propose a dual matrix-based complementary digestion method using two types of immobilized trypsin with opposite matrix hydrophobicity prepared by attaching trypsin on hydrophobic or hydrophilic polymer-brush-modified nanoparticles. The polymer brushes on the nanoparticles serve as three-dimensional supports for a large amount of trypsin immobilization and lead to ultrafast and highly efficient protein digestion. More importantly, the two types of immobilized trypsin show high complementarity in protein digestion with only ∼60% overlap in peptide identification for yeast and membrane protein of mouse liver. Complementary digestion by applying these two types of immobilized trypsin together leads to obviously enhanced protein and peptide identification. Furthermore, the dual matrix-based complementary digestion shows particular advantage in the digestion of membrane proteins, as twice the number of identified peptides is obtained compared with solution digestion using free proteases, demonstrating its potential as a promising alternative to promote proteomics analysis with higher protein sequence coverage. PMID:24447065

  9. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  10. Quantum non-Markovianity based on the Fisher-information matrix

    NASA Astrophysics Data System (ADS)

    Song, Hongting; Luo, Shunlong; Hong, Yan

    2015-04-01

    With the development of quantum-information theory, there has been a flurry of investigations of quantum non-Markovian dynamics, and several significant measures for such dynamics have been proposed from various perspectives, such as the breakdown of dynamical divisibility, increase in the distinguishability between quantum states, increase in correlations between the system and an arbitrary ancillary, and so on. Motivated by the idea of exploiting the information content of parameters encoded in initial states, we propose a conceptually simple and physically intuitive characterization for non-Markovianity with the help of a quantum-Fisher-information matrix. The basic features are illustrated through several examples, and relations with other approaches are elucidated. A hierarchial aspect of quantum non-Markovianity is revealed.

  11. A CRT monitor ICC profile based on matrix-look-up-table model

    NASA Astrophysics Data System (ADS)

    Shao, Yuba; Liao, Ningfang; Chai, Binghua; Yang, Weiping

    2006-01-01

    The goal of ICC (International color consortium) color management system (CMS) is to reproduce color fidelity regardless of the hardware or platform used to capture, view or print them. The accuracy of profiles decides the precision of color conversion; therefore, creating device profiles accurately is very essential for color management. In this paper, according to the ICC standard format, we used Matrix-LUT (look up table) model, which can increase the color conversion precision to create monitor profile. In laboratory environment, we used X-Rite DPT92 to calibrate the monitor, and then we made about 1000 color patches and measured the RGB and the corresponding XYZ of each patch. We adopted linear interpolation method to establish the LUT between RGB and XYZ. The experimental results are good, and then we finished the monitor profile by the ICC format, realized CRT monitor color management.

  12. Model of brittle matrix composite toughening based on discrete fiber reinforcement

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1992-01-01

    An analytical approach for the analysis of the effectiveness of fiber reinforcement in brittle matrix composites is presented. The analytical method allows consideration of discrete fiber distribution and examination of the development of crack growth parameters on microscale. The problem associated with the bridging zone development is addressed here; therefore, the bridging zone is considered to be smaller than the main preexisting crack, and the small scale approach is used. The mechanics of the reinforcement is accurately accounted for in the process zone of a growing crack. Closed form solutions characterizing the initial failure process are presented for linear and nonlinear force - fiber pullout displacement relationships. The implicit exact solution for the extended bridging zone is presented as well.

  13. Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane.

    PubMed

    Chen, Xiaohong; Hu, Yibai; Wilson, George S

    2002-12-01

    A procedure is described that provides co-immobilization of enzyme and bovine serum albumin (BSA) within an alumina sol-gel matrix and a polyphenol layer permselective for endogenous electroactive species. BSA has first been employed for the immobilization of glucose oxidase (GOx) on a Pt electrode in a sol-gel to produce a uniform, thin and compact film with enhanced enzyme activity. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)-trimethoxysilane was constructed by electrochemically-assisted crosslinking. This hybrid film outside the enzyme layer contributed both to the improved stability and to permselectivity. The resulting glucose sensor was characterized by a short response time (<10 s), high sensitivity (10.4 nA/mM mm(2)), low interference from endogenous electroactive species, and a working lifetime of at least 60 days. PMID:12392950

  14. Synthesis and characterization of biopolymer based mixed matrix membranes for pervaporative dehydration.

    PubMed

    Das, Paramita; Ray, Samit Kumar

    2014-03-15

    Several blend membranes were prepared from different weight ratios of polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) and these unfilled membranes were crosslinked with maleic acid. In a similar way mixed matrix blend membranes were also prepared by varying weight ratio of PVA and HEC with micro and nano bentonite filler in each of these blends. These membranes were used for pervaporative dehydration of 89 wt% tetrahydrofuran (THF). Three membranes designated as UF (unfilled), MF2 (containing 2 wt% micro filler) and NF2 (containing 2 wt% nano filler) showing the best results for flux and selectivity were identified. These membranes were characterized by FTIR, UV, XRD and DTA-TG and used for separation of 80-99 wt% THF from water by pervaporation. The NF2 membrane was found to show the best results in terms of flux and separation factor. PMID:24528730

  15. New quadrature approach based on operational matrix for solving a class of fractional variational problems

    NASA Astrophysics Data System (ADS)

    Ezz-Eldien, S. S.

    2016-07-01

    This manuscript presents a new numerical approach to approximate the solution of a class of fractional variational problems. The presented approach is consisting of using the shifted Legendre orthonormal polynomials as basis functions of the operational matrix of fractional derivatives (described in the Caputo sense) and that of fractional integrals (described in the sense of Riemann-Liouville) with the help of the Legendre-Gauss quadrature formula together with the Lagrange multipliers method for converting such fractional variational problems into easier problems that consist of solving an algebraic system in the unknown coefficients. The convergence of the proposed method is analyzed. Finally, in order to demonstrate the accuracy of the present method, some test problems are introduced with their approximate solutions and comparisons with other numerical approaches.

  16. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  17. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems.

    PubMed

    Luo, Zhongqiang; Zhu, Lidong

    2015-01-01

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low. PMID:26287209

  18. Sugar-Based Arylsulfonamide Carboxylates as Selective and Water-Soluble Matrix Metalloproteinase-12 Inhibitors.

    PubMed

    Nuti, Elisa; Cuffaro, Doretta; D'Andrea, Felicia; Rosalia, Lea; Tepshi, Livia; Fabbi, Marina; Carbotti, Grazia; Ferrini, Silvano; Santamaria, Salvatore; Camodeca, Caterina; Ciccone, Lidia; Orlandini, Elisabetta; Nencetti, Susanna; Stura, Enrico A; Dive, Vincent; Rossello, Armando

    2016-08-01

    Matrix metalloproteinase-12 (MMP-12) can be considered an attractive target to study selective inhibitors useful in the development of new therapies for lung and cardiovascular diseases. In this study, a new series of arylsulfonamide carboxylates, with increased hydrophilicity resulting from conjugation with a β-N-acetyl-d-glucosamine moiety, were designed and synthesized as MMP-12 selective inhibitors. Their inhibitory activity was evaluated on human MMPs by using the fluorimetric assay, and a crystallographic analysis was performed to characterize their binding mode. Among these glycoconjugates, a nanomolar MMP-12 inhibitor with improved water solubility, compound 3 [(R)-2-(N-(2-(3-(2-acetamido-2-deoxy-β-d-glucopyranosyl)thioureido)ethyl)biphenyl-4-ylsulfonamido)-3-methylbutanoic acid], was identified. PMID:27356908

  19. Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods

    SciTech Connect

    Avilov, V. I.; Ageev, O. A.; Kolomiitsev, A. S.; Konoplev, B. G. Smirnov, V. A.; Tsukanova, O. G.

    2014-12-15

    The results of investigation of a memristor-matrix model on the basis of titanium-oxide nanoscale structures (ONSs) fabricated by methods of focused ion beams and atomic-force microscopy (AFM) are presented. The effect of the intensity of interaction between the AFM probe and the sample surface on the memristor effect in the titanium ONS is shown. The memristor effect in the titanium ONS is investigated by an AFM in the mode of spreading-resistance map. The possibility of the recording and erasure of information in the submicron cells is shown on the basis of using the memristor effect in the titanium ONS, which is most promising for developing the technological processes of the formation of resistive operation memory cells.

  20. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems

    PubMed Central

    Luo, Zhongqiang; Zhu, Lidong

    2015-01-01

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low. PMID:26287209

  1. Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events.

    PubMed

    Fotia, Caterina; Messina, Grazia M L; Marletta, Giovanni; Baldini, Nicola; Ciapetti, Gabriela

    2013-01-01

    Cells are surrounded by a hyaluronan-rich coat called 'pericellular matrix' (PCM), mainly constituted by hyaluronan, a long-chain linear polysaccharide which is secreted and resorbed by the cell, depending on its activity. Cell attachment to a surface is mediated by PCM before integrins and focal adhesions are involved. As hyaluronan is known to bear a negative charge at physiological pH, the relevance of its electrical properties in driving the early cell adhesion steps has been studied, exploring how PCM mediates cell adhesion to charged surfaces, such as polyelectrolyte multilayer (PEM) films. Poly(ethylene imine) (PEI) and poly(sodium 4-styrene sulphonate) (PSS), assembled as PEI/PSS and PEI/PSS/PEI layers, were used. The nanoscale morphology of such layers was analysed by atomic force microscopy, and the detailed surface structure was analysed by X-ray photoemission spectroscopy. PCM-coated and PCM-depleted MG63 osteoblast-like cells were used, and cell density, morphology and adhesive structures were analysed during early steps of cell attachment to the PEM surfaces (1-6 h). The present study demonstrates that the pericellular matrix is involved in cell adhesion to material surfaces, and its arrangement depends on the cell interaction with the surface. Moreover, the PCM/surface interaction is not simply driven by electrostatic effects, as the cell response may be affected by specific chemical groups at the material surface. In the development of biomimetic surfaces promoting cell adhesion and function, the role of this unrecognised outer cell structure has to be taken into account. PMID:24052426

  2. A second-order learning algorithm for multilayer networks based on block Hessian matrix.

    PubMed

    Wang, Yi Jen; Lin, Chin Teng

    1998-12-01

    This article proposes a new second-order learning algorithm for training the multilayer perceptron (MLP) networks. The proposed algorithm is a revised Newton's method. A forward-backward propagation scheme is first proposed for network computation of the Hessian matrix, H, of the output error function of the MLP. A block Hessian matrix, H(b), is then defined to approximate and simplify H. Several lemmas and theorems are proved to uncover the important properties of H and H(b), and verify the good approximation of H(b) to H; H(b) preserves the major properties of H. The theoretic analysis leads to the development of an efficient way for computing the inverse of H(b) recursively. In the proposed second-order learning algorithm, the least squares estimation technique is adopted to further lessen the local minimum problems. The proposed algorithm overcomes not only the drawbacks of the standard backpropagation algorithm (i.e. slow asymptotic convergence rate, bad controllability of convergence accuracy, local minimum problems, and high sensitivity to learning constant), but also the shortcomings of normal Newton's method used on the MLP, such as the lack of network implementation of H, ill representability of the diagonal terms of H, the heavy computation load of the inverse of H, and the requirement of a good initial estimate of the solution (weights). Several example problems are used to demonstrate the efficiency of the proposed learning algorithm. Extensive performance (convergence rate and accuracy) comparisons of the proposed algorithm with other learning schemes (including the standard backpropagation algorithm) are also made. PMID:12662732

  3. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  4. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  5. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

    NASA Astrophysics Data System (ADS)

    Kolodziejska, Joanna A.; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L.; Flores, Katharine M.; Hofmann, Douglas C.

    2016-03-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error.

  6. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the

  7. Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix(DSM)

    NASA Astrophysics Data System (ADS)

    Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng

    2014-05-01

    The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.

  8. Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm

    SciTech Connect

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Kao, Shih-Chieh; Hadjerioua, Boualem; Wei, Yaxing; Smith, Brennan T

    2014-01-01

    Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

  9. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition

    NASA Astrophysics Data System (ADS)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  10. GenoMatrix: A Software Package for Pedigree-Based and Genomic Prediction Analyses on Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador Alejandro

    2016-07-01

    Genomic and pedigree-based best linear unbiased prediction methodologies (G-BLUP and P-BLUP) have proven themselves efficient for partitioning the phenotypic variance of complex traits into its components, estimating the individuals' genetic merits, and predicting unobserved (or yet-to-be observed) phenotypes in many species and fields of study. The GenoMatrix software, presented here, is a user-friendly package to facilitate the process of using genome-wide marker data and parentage information for G-BLUP and P-BLUP analyses on complex traits. It provides users with a collection of applications which help them on a set of tasks from performing quality control on data to constructing and manipulating the genomic and pedigree-based relationship matrices and obtaining their inverses. Such matrices will be then used in downstream analyses by other statistical packages. The package also enables users to obtain predicted values for unobserved individuals based on the genetic values of observed related individuals. GenoMatrix is available to the research community as a Windows 64bit executable and can be downloaded free of charge at: http://compbio.ufl.edu/software/genomatrix/. PMID:27025440

  11. Study on the dynamic performance of a novel buck-boost matrix converter based on double-loop control strategy

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Xiao-ping; Chen, Qi

    2011-12-01

    The dynamic performance of a novel Buck-Boost matrix converter (BBMC) based on double-loop control strategy is put forward in this paper. The fundamental principle of BBMC has been elaborated and the method of the double-loop control strategy has been built with Matlab, and then the dynamic performances of BBMC based on the double-loop control strategy are discussed. The results show that the output voltage and frequency can be almost constant with the BBMC and double-loop control strategy despite of the changeable input voltage and frequency. Moreover, a high-quality sine output wave with low harmonic distortion can be directly obtained without filtering. So it can be drawn that the BBMC based on the double-loop control strategy has perfectly dynamic performance and practical importance to the engineering.

  12. Iridium porphyrins in CD3OD: reduction of Ir(III), CD3-OD bond cleavage, Ir-D acid dissociation and alkene reactions.

    PubMed

    Bhagan, Salome; Imler, Gregory H; Wayland, Bradford B

    2013-04-15

    Methanol solutions of iridium(III) tetra(p-sulfonatophenyl)porphyrin [(TSPP)Ir(III)] form an equilibrium distribution of methanol and methoxide complexes ([(TSPP)Ir(III)(CD3OD)(2-n)(OCD3)n]((3+n)-)). Reaction of [(TSPP)Ir(III) with dihydrogen (D2) in methanol produces an iridium hydride [(TSPP)Ir(III)-D(CD3OD)](4-) in equilibrium with an iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)). The acid dissociation constant of the iridium hydride (Ir-D) in methanol at 298 K is 3.5 × 10(-12). The iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)) catalyzes reaction of [(TSPP)Ir(III)-D(CD3OD)](4-) with CD3-OD to produce an iridium methyl complex [(TSPP)Ir(III)-CD3(CD3OD)](4-) and D2O. Reactions of the iridium hydride with ethene and propene produce iridium alkyl complexes, but the Ir-D complex fails to give observable addition with acetaldehyde and carbon monoxide in methanol. Reaction of the iridium hydride with propene forms both the isopropyl and propyl complexes with free energy changes (ΔG° 298 K) of -1.3 and -0.4 kcal mol(-1) respectively. Equilibrium thermodynamics and reactivity studies are used in discussing relative Ir-D, Ir-OCD3 and Ir-CD2- bond energetics in methanol. PMID:23540797

  13. Analysis of Island Land Use Change Based on Transfer Matrix'a Case Study of Dongtou Island in Zhejiang Province

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Tao, Kunwang; Qian, Xinlin

    2015-04-01

    With the increasing developments of islands, the protection and management of island's natural resources are imperative. The core of islands' protection and management is to acquire the information of changes of the land use and land cover. What's more, the purpose of the islands' land use change information analysis is to plan the effective protection of land resource, achieve scientific management and sustainable utilization. Based on the improved calculation method of land use change and the computational model of change rate of the land use, an analysis of land use transfer matrix and transfer probability matrix is presented, and the method of land use change analysis based on the transfer matrix is proposed in this paper. And then the comparative analysis of all types of land use transfer is introduced. Taken the island of Dongtou in Zhejiang Province as the case, with the SPOT-5 satellite image in 2005 and the aerial image in 2011 as the data source, the current situation of land utilization of Dongtou Island and its land use change are analyzed. The experiment results show that, from 2005 to 2011, the greatest changes are the structures and water, followed by the forest land, grassland, cultivated land and others. The major change of structure and forest is the net change, while the major change of the water and grassland is the swap change. From the perspective of increment, the conversion from waters to structure has the most advantage, followed by water converted to grassland and road. To see from the loss, structures converted into roads and buildings have the most superiority transformation, followed by structures converted to grassland. The analysis of the case proves that the proposed process and method in this paper could achieve better results in the practical application. The experiment results also demonstrate that the proposed method could effectively obtain the dynamic change information of land use which is much helpful for land management and

  14. Effects of radiation and fission product incorporation in a yttria-stabilized zirconia based inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Sha

    This work has investigated the irradiation and incorporation effects of fission products in a yttria-stabilized zirconia (YSZ) based inert matrix fuel (IMF). The concept of inert matrix fuel is based on a new strategy for disposition of plutonium generated from the reprocessing of commercial nuclear fuel and the dismantling of nuclear weapons, i.e. using uranium-free oxides to "burn" plutonium and other actinides (Np, Cm, and Am) in reactors. This approach allows direct disposal, without reprocessing, after once-through burn-up. YSZ and MgAl2O4-YSZ composites are among the potential ceramics for IMF due to their high chemical durability and radiation resistance. The research involved investigating the production, nature, and accumulation of irradiation-induced defects, the behavior of the fission products in the ceramics, the structural stability and amorphization resistance of the YSZ during implantation. Ion implantations were conducted with 200--400 keV Cs+, Sr+, I+, Xe+ and Ti+ up to fluences of 1 x 1017/cm 2 at both room temperature and temperatures of 600--700°C. Thermal annealing was subsequently completed after room temperature ion implantations. In situ and ex situ transmission electron microscopy (TEM), optical absorption spectroscopy, photo-luminescence spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy were employed to characterize the irradiation induced defect evolution and analyze the defect structures. Various irradiation effects were observed and determined in the experiments, such as point defects (F type and V type color centers), defect clusters (dislocation loops), cavities (voids and bubbles), the crystalline-to-amorphous transition, and the phase transformation from fluorite to pyrochlore structure. The ion irradiation-induced amorphization mechanism, the retention ability of the fission products, and structural stability of YSZ are discussed in terms of ion incorporation effects, implanted ion radii, and the solubility

  15. ODS Characterization Progress Report 06/27/08

    SciTech Connect

    El-Dasher, B

    2008-11-25

    This progress report is intended to help keep track of the work that has been performed in characterizing ODS steels for the LIFE project. This specific report details the current status of the characterization of a 24% Cr, 1% Y{sub 2}O{sub 3} ODS steel obtained from Wayne King via Geoff Campbell. Since no pedigree of the material could be obtained, a baseline characterization was necessary prior to studying processing, welding, and corrosion behavior. This document details the results obtained from analysis performed using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS). At the time of writing, transmission electron microscopy (TEM) and microhardness measurements have not been completed, and will be included in a future report. The results are presented in two sections: microstructure, and phase identification. As the names suggest, the first section will report on the microstructure in the general sense and include details such as grain size and texture, and the second section will include the identification of the phases present in the baseline material.

  16. Precipitates and boundaries interaction in ferritic ODS steels

    NASA Astrophysics Data System (ADS)

    Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves

    2016-04-01

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.

  17. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-04-10

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested

  18. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (a) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (b) evaluated at ''in-service'' loads at service temperatures and environments. In this 12th quarter of performance, program activities are concluded for Task 2 and continuing for Tasks 3, 4 and

  19. TEM characterization of simultaneous triple ion implanted ODS Fe12Cr

    NASA Astrophysics Data System (ADS)

    de Castro, Vanessa; Briceno, Martha; Lozano-Perez, Sergio; Trocellier, Patrick; Roberts, Steve G.; Pareja, Ramiro

    2014-12-01

    Understanding the behavior of oxide dispersion strengthened (ODS) ferritic/martensitic steels under irradiation is vital in the design of advanced fusion reactors. In this work, a simultaneous triple ion implanted ODS Fe12Cr steel was investigated by transmission electron microscopy in order to determine the effect of irradiation on the grain and dislocation structures, oxide nanoparticles and other secondary phases present in the steel. The ODS steel was irradiated at RT with Fe8+, He+ and H+ at the JANNUS-Saclay facility to a damage of 4.4 dpa. Results show that ODS nanoparticles appear very stable under these irradiation conditions.

  20. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    PubMed

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt. PMID:24464723

  1. Evaluating the Effectiveness of Cryopreserved Acellular Dermal Matrix in Immediate Expander-Based Breast Reconstruction: A Comparison Study

    PubMed Central

    Kim, So-Young; Lim, So Young; Mun, Goo-Hyun; Bang, Sa-Ik; Oh, Kap Sung

    2015-01-01

    Background CGCryoDerm was first introduced in 2010 and offers a different matrix preservation processes for freezing without drying preparation. From a theoretical perspective, CGCryoDerm has a more preserved dermal structure and more abundant growth factors for angiogenesis and recellularization. In the current study, the authors performed a retrospective study to evaluate freezing- and freeze-drying-processed acellular dermal matrix (ADM) to determine whether any differences were present in an early complication profile. Methods Patients who underwent ADM-assisted tissue expander placement for two stage breast reconstruction between January of 2013 and March of 2014 were retrospectively reviewed and divided into two groups based on the types of ADM-assisted expander reconstruction (CGDerm vs. CGCryoDerm). Complications were divided into four main categories and recorded as follows: seroma, hematoma, infection, and mastectomy skin flap necrosis. Results In a total of 82 consecutive patients, the CGCryoDerm group had lower rates of seroma when compared to the CGDerm group without statistical significance (3.0% vs. 10.2%, P=0.221), respectively. Other complications were similar in both groups. Reconstructions with CGCryoDerm were found to have a significantly longer period of drainage when compared to reconstructions with CGDerm (11.91 days vs. 10.41 days, P=0.043). Conclusions Preliminary findings indicate no significant differences in early complications between implant/expander-based reconstructions using CGCryoderm and those using CGDerm. PMID:26015887

  2. UV-MALDI mass spectrometric quantitation of uracil based pesticides in fruit soft drinks along with matrix effects evaluation.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2014-02-01

    This study focused on the development of the accurate and precise quantitative method for the determination of pesticides bromacil (1), terbacil (2), lenacil (3), butafenacil (4) and flupropacil (5) in fruit based soft drinks. Three different types of drinks are bought from market; huddled orange fruit drink (100%) (I), red-oranges (II) and multivitamin drink containing strawberry, orange, banana and maracuja (III). Samples were analyzed "with" and "without" pulp utilizing LC-ESI (or APCI) MS/MS, HPLC-ESI-(or APCI)-MS/MS and UV-MALDI-Orbitrap-MS methods. The effect of high complexity of the food matrix on the analysis was discussed. Study focuses on the advantages of the UV-MALDI-Orbitrap-MS method compared to the traditionally involved GC alone or hybrid methods such as GC-MS and LC-MS/MS for quantification of pesticides in water and soft drinks. The developed method included the techniques performed for validation, calibration and standardization. The target pesticides are widely used for the treatment of citrus fruits and pineapples, but for soft drink products, there are still no clear regulations on pesticide residues limits. The matrix effects in the analysis of fruit drinks required implementation of the exact standard reference material corresponds to the variety of food matrices. This paper contributed to the broad analytical implementation of the UV-MALDI-Orbitrap-MS method in the quality control and assessment programs for monitoring of pesticide contamination in fruit based sodas. PMID:24018142

  3. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    SciTech Connect

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  4. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    PubMed

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles. PMID:27518908

  5. Computational Characterization of Type I collagen-based Extra-cellular Matrix

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher Allen Rucksack; Lin, Daniel; Jiao, Yang; Sun, Bo

    2015-03-01

    A model of extracellular matrix (ECM) of collagen fibers has been built, in which cells could communicate with distant partners via fiber-mediated long-range-transmitted stress states. The ECM is modeled as a spring-like fiber network derived from skeletonized confocal microscopy data. Different local and global perturbations have been performed on the network, each followed by an optimized global Monte-Carlo (MC) energy minimization leading to the deformed network in response to the perturbations. In the optimization, a highly efficient local energy update procedure is employed and force-directed MC moves are used, which results in a convergence to the energy minimum state 20 times faster than the commonly used random displacement trial moves in MC. Further analysis and visualization of the distribution and correlation of the resulting force network reveal that local perturbations can give rise to global impacts: the force chains formed with a linear extent much further than the characteristic length scale associated with the perturbation sites and average fiber length. This behavior provides a strong evidence for our hypothesis of fiber-mediated long-range force transmission in ECM networks and the resulting long-range cell-cell mechanical signaling. ASU Seed Grant.

  6. Brain Mapping-Based Model of Δ(9)-Tetrahydrocannabinol Effects on Connectivity in the Pain Matrix.

    PubMed

    Walter, Carmen; Oertel, Bruno G; Felden, Lisa; Kell, Christian A; Nöth, Ulrike; Vermehren, Johannes; Kaiser, Jochen; Deichmann, Ralf; Lötsch, Jörn

    2016-05-01

    Cannabinoids receive increasing interest as analgesic treatments. However, the clinical use of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) has progressed with justified caution, which also owes to the incomplete mechanistic understanding of its analgesic effects, in particular its interference with the processing of sensory or affective components of pain. The present placebo-controlled crossover study therefore focused on the effects of 20 mg oral THC on the connectivity between brain areas of the pain matrix following experimental stimulation of trigeminal nocisensors in 15 non-addicted healthy volunteers. A general linear model (GLM) analysis identified reduced activations in the hippocampus and the anterior insula following THC administration. However, assessment of psychophysiological interaction (PPI) revealed that the effects of THC first consisted in a weakening of the interaction between the thalamus and the secondary somatosensory cortex (S2). From there, dynamic causal modeling (DCM) was employed to infer that THC attenuated the connections to the hippocampus and to the anterior insula, suggesting that the reduced activations in these regions are secondary to a reduction of the connectivity from somatosensory regions by THC. These findings may have consequences for the way THC effects are currently interpreted: as cannabinoids are increasingly considered in pain treatment, present results provide relevant information about how THC interferes with the affective component of pain. Specifically, the present experiment suggests that THC does not selectively affect limbic regions, but rather interferes with sensory processing which in turn reduces sensory-limbic connectivity, leading to deactivation of affective regions. PMID:26514581

  7. Matrix Reorganization during Uniaxial Drawing of Polymer Single Crystal-Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Laird, Eric D.; Lenhart, Joseph L.; Strawhecker, Kenneth E.; Bain, Erich D.; Knorr, Daniel B.

    Ultra-high molecular weight polyethylene (UHMWPE) was nonisothermally recrystallized from dilute solution. In this way, the natively entangled UHMWPE powders could be disentangled in a suspension of polymer single crystal (PSC) lamellae. Nanofillers with one or more length scales on the order of the PSC thickness were then mixed in and cosedimented along with these PSCs. After drying out the consolidated wet crystal/filler mixture, the resulting composite could be described as an anisotropic PSC matrix with nanomaterials confined to the interlamellar galleries. Graphene nanoflakes, surface-modified silica nanoparticles, and poly(ethylene oxide) PSCs were all successfully incorporated into UHMWPE mats. It was found that, under certain conditions, the mats could be ultradrawn to draw ratios of 150 or higher, with increasing filler content leading to greater variability in the ultimate draw ratio. The draw behavior was found to be strongly influenced by network shear modulus. AFM modulus maps revealed how the filler materials influenced the organization of filaments in the ultradrawn tapes. These tapes showed excellent mechanical properties, with composites frequently outperforming their neat UHMWPE counterparts in several important categories.

  8. Controlled drug release from Gelucire-based matrix pellets: experiment and theory.

    PubMed

    Siepmann, F; Muschert, S; Flament, M P; Leterme, P; Gayot, A; Siepmann, J

    2006-07-24

    The aim of this work was to elucidate the underlying drug release mechanisms from lipidic matrix pellets, using theophylline and Gelucire 50/02 as model drug and carrier material, respectively. Pellets were prepared by two different techniques: melt-solidification and extrusion-spheronization. The effects of different formulations and processing parameters on the resulting drug release kinetics in 0.1N HCl and phosphate buffer pH 7.4 were studied and the obtained results analyzed using adequate mathematical models in order to get further insight into the underlying mass transport mechanisms. The type of preparation technique was found to strongly affect the underlying drug release mechanisms. Drug release from pellets prepared by the melt-solidification method was primarily controlled by pure diffusion, whereas drug release from pellets prepared by the extrusion-spheronization method was purely diffusion-controlled only at early time points. After approximately 2h, the pellets started to disintegrate, resulting in decreased diffusion pathway lengths and, thus, increased drug release rates. Furthermore, the curing conditions significantly affected the theophylline release kinetics, whereas varying the initial drug loading from 20 to 50% (w/w) resulted only in a slight increase in the relative drug release rate. Interestingly, the effects of the size of pellets prepared by the melt-solidification method on the resulting drug release kinetics could be quantitatively predicted using an analytical solution of Fick's second law of diffusion. These predictions could be verified by independent experiments. PMID:16621362

  9. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  10. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    PubMed

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. PMID:27542739

  11. Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph

    NASA Astrophysics Data System (ADS)

    Li, Jian-Qiang; Chen, Xiu-Bo; Yang, Yi-Xian

    2015-12-01

    In this paper the density matrices derived from combinatorial Laplacian matrix of graphs is considered. More specifically, the paper places emphasis on the star-relevant graph, which means adding certain edges on peripheral vertices of star graph. Initially, we provide the spectrum of the density matrices corresponding to star-like graph (i.e., adding an edge on star graph) and present that the Von Neumann entropy increases under the graph operation (adding an edge on star graph) and the graph operation cannot be simulated by local operation and classical communication (LOCC). Subsequently, we illustrate the spectrum of density matrices corresponding to star-alike graph (i.e., adding one edge on star-like graph) and exhibit that the Von Neumann entropy increases under the graph operation (adding an edge on star-like graph) and the graph operation cannot be simulated by LOCC. Finally, the spectrum of density matrices corresponding to star-mlike graph (i.e., adding m nonadjacent edges on the peripheral vertices of star graph) is demonstrated and the relation between the graph operation and Von Neumann entropy, LOCC is revealed in this paper.

  12. Hyaluronan based hydrogels provide an improved model to study megakaryocyte-matrix interactions.

    PubMed

    Currao, Manuela; Malara, Alessandro; Di Buduo, Christian A; Abbonante, Vittorio; Tozzi, Lorenzo; Balduini, Alessandra

    2016-08-01

    Hyaluronan (HA) is a glycosamminoglican involved in cell biology as well as a relevant polymer for tissue engineering and regenerative medicine. Megakaryocytes (Mks) are immersed in a mesh of extracellular matrix (ECM) components that regulate their maturation in the bone marrow (BM) and the release of platelets into the bloodstream. While fibrous ECMs such as collagens and fibronectin have been demonstrated to differently regulate Mk function and platelet release, the role of HA, that fills the majority of the BM extracellular interstitial space, has not been investigated so far. Here we demonstrated that, although human Mks express HA receptors, they are not affected by HA in terms of in vitro differentiation, maturation and platelet formation. Importantly, chemical properties of HA were exploited to generate hydrogels with entrapped ECMs that represent a useful model to more closely mimic the tridimensional characteristics of the BM environment for studying Mk function. In conclusion, in this work we demonstrated that HA is an ideal candidate for a 3D ex vivo model of human BM ECM component environment. PMID:26027944

  13. Singular spectrum-based matrix completion for time series recovery and prediction

    NASA Astrophysics Data System (ADS)

    Tsagkatakis, Grigorios; Beferull-Lozano, Baltasar; Tsakalides, Panagiotis

    2016-12-01

    Big data, characterized by huge volumes of continuously varying streams of information, present formidable challenges in terms of acquisition, processing, and transmission, especially when one considers novel technology platforms such as the Internet-of-Things and Wireless Sensor Networks. Either by design or by physical limitations, a large number of measurements never reach the central processing stations, making the task of data analytics even more problematic. In this work, we propose Singular Spectrum Matrix Completion (SS-MC), a novel approach for the simultaneous recovery of missing data and the prediction of future behavior in the absence of complete measurement sets. The goal is achieved via the solution of an efficient minimization problem which exploits the low rank representation of the associated trajectory matrices when expressed in terms of appropriately designed dictionaries obtained by leveraging the theory of Singular Spectrum Analysis. Experimental results in real datasets demonstrate that the proposed scheme is well suited for the recovery and prediction of multiple time series, achieving lower estimation error compared to state-of-the-art schemes.

  14. In vivo performance of a matrix-based quantitative ultrasound imaging device dedicated to calcaneus investigation.

    PubMed

    Gomez, M A; Defontaine, M; Giraudeau, B; Camus, E; Colin, L; Laugier, P; Patat, F

    2002-10-01

    We developed a prototype of an ultrasound (US) bone matrix densitometer, the BEAM scanner, in the context of a European Space Agency research program. This device, which is a contact imaging device, was designed to overcome the limitations of immersion devices in space. Broadband US attenuation (BUA) and speed of sound (SOS) parameters were calculated from the radiofrequency (RF) signal. The principle aim of this study was to evaluate in vivo performance in direct comparison with a currently available device (UBIS 3000, DMS, France). The short-term precision of the BEAM scanner for BUA was estimated at 2.8%, whereas it was 2.3% with UBIS 3000. The short-term precision for SOS was 0.3%, and this was the same as the coefficient of variation (CV) of the UBIS 3000. CVs of 3.4% and 0.6% for midterm precision were found for BUA and SOS, respectively, and UBIS 3000 scores were 3% and 0.4%, respectively. This preliminary study demonstrates the high performance of the BEAM scanner and its new concept offers a wide range of improvements and new applications. PMID:12467855

  15. Foetal phonocardiographic signal denoising based on non-negative matrix factorization.

    PubMed

    Chourasia, V S; Tiwari, A K; Gangopadhyay, R; Akant, K A

    2012-01-01

    Foetal phonocardiography (fPCG) is a non-invasive, cost-effective and simple technique for antenatal care. The fPCG signals contain vital information of diagnostic importance regarding the foetal health. However, the fPCG signal is usually contaminated by various noises and thus requires robust signal processing to denoise the signal. The main aim of this paper is to develop a methodology for removal of unwanted noise from the fPCG signal. The proposed methodology utilizes the non-negative matrix factorization (NMF) algorithm. The developed methodology is tested on both simulated and real-time fPCG signals. The performance of the developed methodology has been evaluated in terms of the gain in signal-to-noise ratio (SNR) achieved through the process of denoising. In particular, using the NMF algorithm, a substantial improvement in SNR of the fPCG signals in the range of 12-30 dB has been achieved, providing a high quality assessment of foetal well-being. PMID:22136609

  16. Poly(m-phenylenediamine)-based fluorescent nanoprobe for ultrasensitive detection of matrix metalloproteinase 2.

    PubMed

    Wang, Zhe; Li, Xiaohua; Feng, Duan; Li, Lihong; Shi, Wen; Ma, Huimin

    2014-08-01

    A novel fluorescence nanoprobe for the detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the fluorescein isothiocyanate-labeled peptide onto the surface of poly(m-phenylenediamine) (PMPD) nanoparticles through covalent linkage. The nanoprobe itself displays a low background signal due to the effective fluorescence quenching by electron-rich PMPD, but its reaction with MMP2 causes 11-fold fluorescence enhancement. Compared with similar fluorescence nanosystems for MMP2 assembled through physical adsorption, the as-prepared nanoprobe is significantly more stable and displays a strikingly higher signal-to-background ratio, which leads to a high sensitivity for MMP2 assay, with a detection limit of 32 pM. Most notably, the nanoprobe has been successfully applied to determine MMP2 in human serum samples, demonstrating that the MMP2 level in serum from colorectal cancer (CRC) patients is 2 times higher than that from healthy people. Moreover, the nanoprobe has also been used to monitor MMP2 secreted by CRC cells that were grown under normoxic and hypoxic conditions, respectively, and the results show that the cells under hypoxic conditions produce higher level of MMP2 than those under normoxic conditions. Our method is simple and can offer a highly sensitive detection of MMP2 in relevant clinical samples. PMID:25029076

  17. Nonlinear hyperspectral unmixing based on sparse non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaorun; Zhao, Liaoying

    2016-01-01

    Hyperspectral unmixing aims at extracting pure material spectra, accompanied by their corresponding proportions, from a mixed pixel. Owing to modeling more accurate distribution of real material, nonlinear mixing models (non-LMM) are usually considered to hold better performance than LMMs in complicated scenarios. In the past years, numerous nonlinear models have been successfully applied to hyperspectral unmixing. However, most non-LMMs only think of sum-to-one constraint or positivity constraint while the widespread sparsity among real materials mixing is the very factor that cannot be ignored. That is, for non-LMMs, a pixel is usually composed of a few spectral signatures of different materials from all the pure pixel set. Thus, in this paper, a smooth sparsity constraint is incorporated into the state-of-the-art Fan nonlinear model to exploit the sparsity feature in nonlinear model and use it to enhance the unmixing performance. This sparsity-constrained Fan model is solved with the non-negative matrix factorization. The algorithm was implemented on synthetic and real hyperspectral data and presented its advantage over those competing algorithms in the experiments.

  18. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix.

    PubMed

    Gupta, Vinod K; Jain, Ajay K; Maheshwari, Gaurav

    2007-06-15

    Al(3+) selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0x10(-7) to 1.0x10(-1)M of Al(3+) with a Nernstian slope of 19.7+/-0.1mV/decade of Al(3+) activity and a limit of detection 3.2x10(-7)M. The response time of the sensor is approximately 5s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al(3+) with EDTA and for its determination in zinc plating mud and red mud. PMID:19071785

  19. Color matrix display simulation based upon luminance and chromatic contrast sensitivity of early vision

    NASA Technical Reports Server (NTRS)

    Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.

    1992-01-01

    This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.

  20. Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation.

    PubMed

    Anjum, M Waqas; Vermoortele, Frederik; Khan, Asim Laeeq; Bueken, Bart; De Vos, Dirk E; Vankelecom, Ivo F J

    2015-11-18

    Mixed-matrix membranes (MMMs) composed of polyimide (PI) and metal-organic frameworks (MOFs) were synthesized using Matrimid as the polymer and zirconium terephthalate UiO-66 as the filler. The modulation approach, combined with the use of amine-functionalized linkers, was used for synthesis of the MOF fillers in order to enhance the intrinsic separation performance of the MOF and improve the particle-PI compatibility. The presence of amine groups on the MOF outer surface introduced either through the linker, through the modulator, or through both led to covalent linking between the fillers and Matrimid, which resulted in very stable membranes. In addition, the presence of amine groups inside the pores of the MOFs and the presence of linker vacancies inside the MOFs positively influenced CO2 transport. MMMs with 30 wt % loading showed excellent separation performance for CO2/CH4 mixtures. A significant increase in the mixed-gas selectivity (47.7) and permeability (19.4 barrer) compared to the unfilled Matrimid membrane (i.e., 50% more selective and 540% more permeable) was thus achieved for the MMM containing the MOF prepared from 2-aminoterephthalic acid and 4-aminobenzoic acid, respectively used as the linker and as the modulator. PMID:26458211

  1. Effects of ethylcellulose and 2-octyldodecanol additives on skin permeation and irritation with ethylene-vinyl acetate copolymer matrix patches containing formoterol fumarate.

    PubMed

    Kakubari, Ikuhiro; Sasaki, Hiroyuki; Takayasu, Toshiyuki; Yamauchi, Hitoshi; Takayama, Satoshi; Takayama, Kozo

    2006-08-01

    Skin permeation of formoterol fumarate (FF) and irritation with ethylene-vinyl acetate (EVA) copolymer matrix patches was investigated using rat and human skin in vitro and different species of experimental animal, respectively. Skin permeation of FF increased remarkably without addition of ethylcellulose (EC) and was remarkably enhanced by incorporation of 2-octyldodecanol (OD) instead of hydrogenated rosin glycerol ester (Ester Gum H). Effects on skin permeation of FF with EVA matrix patches were similar in rat and human skin, but rat skin was 1000 times more permeable than human skin after 24 h. The primary irritation indices for matrix patches without EC and with EC (OD-0), EC and 0.5 mg OD per square centimeter (OD-0.5), and EC and 1.0 mg OD per square centimeter (OD-1) were 1.46, 1.13,1.29 and 1.38. The results suggested that the irritation induced by these patches was rather mild, but significantly greater than the 0.21 observed with the control. No significant effects were noted for either EC or OD alone. Skin irritation intensity with EVA matrix patches was observed to be in the order of rabbits, guinea pigs, rats and miniature swine. PMID:16880631

  2. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    PubMed

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality. PMID:26191743

  3. PCR Inhibitor Levels in Concentrates of Biosolid Samples Predicted by a New Method Based on Excitation-Emission Matrix Spectroscopy▿

    PubMed Central

    Rock, Channah; Alum, Absar; Abbaszadegan, Morteza

    2010-01-01

    Biosolids contain a wide variety of organic contaminants that are known for their ability to inhibit PCR. During sample processing, these contaminants are coconcentrated with microorganisms. Elevated concentrations of these compounds in concentrates render samples unsuitable for molecular applications. Glycine-based elution and recovery methods have been shown to generate samples with fewer PCR inhibitory compounds than the current U.S. EPA-recommended method for pathogen recovery from biosolids. Even with glycine-based methods, PCR inhibitors still persist in concentrations that may interfere with nucleic acid amplification. This results in considerable loss of time and resources and increases the probability of false negatives. A method to estimate the degree of inhibition prior to application of molecular methods is desirable. Here we report fluorescence excitation-emission matrix (EEM) profiling as a tool for predicting levels of molecular inhibition in sample concentrates of biosolids. PMID:20971866

  4. Modeling of micro cat's eye retroreflectors using a matrix-based three-dimensional ray tracing technique.

    PubMed

    Yang, Bing-jun; Chao, Keng-hsing; Tsai, Jui-che

    2012-09-01

    In this paper we develop a three-dimensional (3D) ray tracing tool based on the ABCD ray transfer matrices. With symmetric optical components and under paraxial approximation, two sets of 2×2 ABCD matrices, each for a two-dimensional subspace, can be used to describe the 3D ray propagation completely. Compared to commercial ray-tracing software packages, our tool requires no tedious drawing, and the results for various conditions, such as different device dimensions and incident angles, can be easily obtained by simply changing the parameter values used for the calculation. We have employed this matrix-based 3D ray tracing tool to model cat's eye retroreflectors. The cat's eye performance, including the retroreflection efficiency, acceptance angle (i.e., field of view), and beam divergence and deviation, is fully studied. The application of this 3D ray tracing technique can be further extended to other optical components. PMID:22945148

  5. Effective Factors in Severity of Traffic Accident-Related Traumas; an Epidemiologic Study Based on the Haddon Matrix

    PubMed Central

    Masoumi, Kambiz; Forouzan, Arash; Barzegari, Hassan; Asgari Darian, Ali; Rahim, Fakher; Zohrevandi, Behzad; Nabi, Somayeh

    2016-01-01

    Introduction: Traffic accidents are the 8th cause of mortality in different countries and are expected to rise to the 3rd rank by 2020. Based on the Haddon matrix numerous factors such as environment, host, and agent can affect the severity of traffic-related traumas. Therefore, the present study aimed to evaluate the effective factors in severity of these traumas based on Haddon matrix. Methods: In the present 1-month cross-sectional study, all the patients injured in traffic accidents, who were referred to the ED of Imam Khomeini and Golestan Hospitals, Ahvaz, Iran, during March 2013 were evaluated. Based on the Haddon matrix, effective factors in accident occurrence were defined in 3 groups of host, agent, and environment. Demographic data of the patients and data regarding Haddon risk factors were extracted and analyzed using SPSS version 20. Results: 700 injured people with the mean age of 29.66 ± 12.64 years (3-82) were evaluated (92.4% male). Trauma mechanism was car-pedestrian in 308 (44%) of the cases and car-motorcycle in 175 (25%). 610 (87.1%) cases were traffic accidents and 371 (53%) occurred in the time between 2 pm and 8 pm. Violation of speed limit was the most common violation with 570 (81.4%) cases, followed by violation of right-of-way in 57 (8.1%) patients. 59.9% of the severe and critical injuries had occurred on road accidents, while 61.3% of the injuries caused by traffic accidents were mild to moderate (p < 0.001). The most common mechanisms of trauma for critical injuries were rollover (72.5%), motorcycle-pedestrian (23.8%), and car-motorcycle (13.14%) accidents (p < 0.001). Conclusion: Based on the results of the present study, the most important effective factors in severity of traffic accident-related traumas were age over 50, not using safety tools, and undertaking among host-related factors; insufficient environment safety, road accidents and time between 2 pm and 8 pm among environmental factors; and finally, rollover, car

  6. Matrix effects on a cell-based assay used for the detection of paralytic shellfish toxins in bivalve shellfish samples.

    PubMed

    Aballay-Gonzalez, Ambbar; Ulloa, Viviana; Rivera, Alejandra; Hernández, Víctor; Silva, Macarena; Caprile, Teresa; Delgado-Rivera, Lorena; Astuya, Allisson

    2016-05-01

    Detecting marine biotoxins such as paralytic shellfish toxins (PSTs) is essential to ensuring the safety of seafood. The mouse bioassay is the internationally accepted method for monitoring PSTs, but technical and ethical issues have led to a search for new detection methods. The mouse neuroblastoma cell-based assay (Neuro-2a CBA) using ouabain and veratridine (O/V) has proven useful for the detection of PSTs. However, CBAs are sensitive to shellfish-associated matrix interferences. As the extraction method highly influences matrix interferences, this study compared three extraction protocols: Association of Official Analytical Chemists (AOAC) 2005.06, AOAC 2011.02 and an alternative liquid-liquid method. These methods were used to assess the matrix effect of extracts from four commercially important bivalve species (Chilean mussel, Magellan mussel, clam and Pacific oyster) in Neuro-2a CBA. Extracts from all three protocols caused a toxic effect in Neuro-2a cells (without O/V) when tested at a concentration of 25 mg of tissue-equivalent (TE) ml(-1). The greatest toxicity was obtained through the AOAC 2011.02 protocol, especially for the Chilean mussel and Pacific oyster extracts. Similar toxicity levels (less than 15%) were observed in all extracts at 3.1 mg TE ml(-1). When assessed in Neuro-2a CBA, AOAC 2005.06 extracts presented the lowest matrix interferences, while the highest interferences were observed for AOAC 2011.02 in Magellan mussel and clam extracts. Finally, the AOAC 2005.06 and alternative protocols were compared using Chilean mussel samples fortified with 40 and 80 µg STX per 100 g meat. The AOAC 2005.06 method demonstrated better results. In conclusion, the AOAC 2005.06 extracts exhibited the fewest interferences in the Neuro-2a CBA. Therefore, this extraction method should be considered for the implementation of Neuro-2a CBA as a high-throughput screening methodology for PST detection. PMID:27002718

  7. Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application

    NASA Astrophysics Data System (ADS)

    Wang, Li; Song, Xiangju; Wang, Tao; Wang, Shuzheng; Wang, Zhining; Gao, Congjie

    2015-03-01

    Polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) were prepared by phase inversion method for nanofiltration (NF) application. Carboxylated CNTs with different diameter and concentration were incorporated into the polymer matrix to enhance the performances of the NF membranes. The prepared PES/CNTs membranes were characterized and evaluated in terms of membranes morphology, structure, surface properties, and separation performances. Two types of CNTs with different diameters (20 and 40 nm, marked as CNT1 and CNT2, respectively) were chosen to investigate the effect of CNT diameter on membrane performances. The effect of CNT concentrations (from 0.01 to 1 wt%) was also tested by introduction of CNT2 in the MMMs. As a result, the MMMs embedded with CNT1 achieved better NF performances. When CNT2 concentration reaches 0.1 wt%, the PES/CNT2 membranes obtained the highest water flux (38.91 L/m2 h) and Na2SO4 rejection (87.25%) at 4 bar. The solute rejection was in a sequence of R(Na2SO4) > R(MgSO4) > R(NaCl).

  8. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix.

    PubMed

    Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2015-12-01

    Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems. PMID:26250812

  9. Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2015-09-01

    Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.

  10. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future. PMID:27451778

  11. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies

    PubMed Central

    Lynch, Kevin; Pei, Ming

    2014-01-01

    A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. 1). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain “stemness” of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition. PMID:25482504

  12. Microstructural study of a mechanically alloyed ODS superalloy

    SciTech Connect

    Mujahid, M.; Gater, C.A.; Martin, J.W.

    1998-08-01

    Extruded bars of oxide-dispersion-strengthened (ODS) alloy MA-6000 have been annealed isothermally as well as in temperature gradients. The temperatures used for annealing produced secondary recrystallization in all the samples, although the final grain aspect ratio was different for each annealing process. Interrupted gradient anneal experiments showed a curved secondary recrystallization front, with the surface recrystallizing at a lower temperature than the interior. It is believed this is caused indirectly by the strain gradients arising during extrusion. Grain-orientation analysis of recrystallized material revealed that a <110> fiber texture is present. A progressive grain reorientation toward <110> has been measured behind the recrystallization front using microbeam electron diffraction. In addition, changes in the distribution, size, and morphology of different types of precipitates and particles occurring during various stages of annealing have also been studied. Grain-boundary pinning by the stable oxide particles plays an important role in determining the grain growth behavior at high temperatures.

  13. Mechanical behaviour of ferritic ODS steels - Temperature dependancy and anisotropy

    NASA Astrophysics Data System (ADS)

    Fournier, B.; Steckmeyer, A.; Rouffie, A.-L.; Malaplate, J.; Garnier, J.; Ratti, M.; Wident, P.; Ziolek, L.; Tournie, I.; Rabeau, V.; Gentzbittel, J. M.; Kruml, T.; Kubena, I.

    2012-11-01

    Ferritic 14%Cr and 18%Cr ODS steels produced at CEA in round bars or plates were tested mechanically. The present paper reports results obtained in tension, impact, fatigue, creep and toughness tests. These tests were carried out at various temperatures and in different directions. These materials show a pronounced anisotropy at all tested temperatures. No matter the loading, the transversal direction is always found to be far less resistant than the longitudinal one. This anisotropy is mainly observed in terms of damage mechanisms, with intergranular fracture preferentially occurring along the extrusion direction. This intergranular fracture mode leads to very low and anisotropic toughness values and to the absence of tertiairy creep stage, pointing out the unstable nature of fracture, even at high temperature. The unrealistically high values of the Norton exponent measured in creep suggests the existence of a threshold stress, which is consistent with the mainly kinematic nature of the stress as revealed by fatigue tests.

  14. 74 FR 51869 - ODS Nutrient Biomarkers Analytical Methodology: Vitamin D Workshop; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-10-08

    ... HUMAN SERVICES National Institutes of Health ODS Nutrient Biomarkers Analytical Methodology: Vitamin D... Supplements (ODS) Nutrient Biomarkers Analytical Methodology: Vitamin D Workshop to be held Wednesday.... Summary: Vitamin D is a fat-soluble vitamin that is naturally present in very few foods, added to...

  15. Few group collapsing of covariance matrix data based on a conservation principle

    SciTech Connect

    Hiruta,H.; Palmiotti, G.; Salvatores, M.; Arcilla, Jr., R.; Oblozinsky, P.; McKnight, R.D.

    2008-06-24

    A new algorithm for a rigorous collapsing of covariance data is proposed, derived, implemented, and tested. The method is based on a conservation principle that allows preserving at a broad energy group structure the uncertainty calculated in a fine group energy structure for a specific integral parameter, using as weights the associated sensitivity coefficients.

  16. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin

    NASA Astrophysics Data System (ADS)

    Gong, Sheng-Dong; Huang, Yun; Cao, Hai-Jun; Lin, Yuan-Hua; Li, Yang; Tang, Shui-Hua; Wang, Ming-Shan; Li, Xing

    2016-03-01

    In order to explore one truly green and environment-friendly gel polymer electrolyte (GPE), the natural biopolymer of lignin is firstly all over the world used as matrix to prepare GPE. The electrolyte membrane based on lignin can be easily fabricated just with lignin, liquid electrolyte and distilled water. Through comprehensive investigation of obtained GPE, it is found that the liquid electrolyte uptake reaches up to 230 wt.%; before 100 °C, GPE does not lose any weight and is thermal stable; at room temperature the ion conductivity is 3.73 mS cm-1; the amazing property of lithium ion transference number is high up to 0.85; GPE expresses complete electrochemical stability before 7.5 V and favorable compatibility with lithium anode; the outstanding cell performance of C-rate and cycle capacity. All these remarkably excellent performances endow lignin with application potential in GPE used in lithium ion batteries (LIBs) with higher performances.

  17. Melting behavior of MgO-based inert matrix fuels containing (Pu,Am)O 2-x

    NASA Astrophysics Data System (ADS)

    Miwa, Shuhei; Sato, Isamu; Tanaka, Kosuke; Hirosawa, Takashi; Osaka, Masahiko

    2010-05-01

    The melting behavior of MgO-based inert matrix fuels containing (Pu,Am)O 2-x ((Pu,Am)O 2-x-MgO fuels) was experimentally investigated. Heat-treatment tests were carried out at 2173 K, 2373 K and 2573 K each. The fuel melted at about 2573 K in the eutectic reaction of the Pu-Am-Mg-O system. The (Pu,Am)O 2-x grains, MgO grains and pores grew with increasing temperature. In addition, Am-rich oxide phases were formed in the (Pu,Am)O 2-x phase by heat-treatment at high temperatures. The melting behavior was compared with behaviors of PuO 2-x-MgO and AmO 2-x-MgO fuels.

  18. A one-tube multiplexed colorimetric strategy based on plasmonic nanoparticles combined with non-negative matrix factorization.

    PubMed

    Liu, Yizhen; Fang, Wei; Wu, Zitong; Zhou, Guohua; Yi, Wen; Zhou, Xiaodong; Shen, Aiguo; Hu, Jiming

    2014-10-01

    Herein, a one-tube colorimetric platform has been developed for the simultaneous determination of two analytes (DNA as model object) in one tube with picomolar sensitivity. SPR-active nanoparticles are used to encode reporter probes sensitive to oligonucleotides associated with hepatitis A virus Vall7 polyprotein gene (HVA) and hepatitis B virus surface-antigen gene (HVB) respectively and magnetic beads (MBs) serve as the removal tool. In this mixed nanoparticles based biosensor, the addition of target analytes could change the concentration of each nanoparticle, leading to different colors of the supernatant. The influence of spectral overlap has been eliminated by a non-negative matrix factorization (NMF). With the assistance of NMF, the limit of detection (LOD) can be determinated as pM level without amplification. On the whole, this nanosensor boasts the advantages of high sensitivity and low sample consumption. Simultaneous colorimetric detection and quantification of two molecules in one tube are demonstrated. PMID:25059165

  19. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    PubMed Central

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  20. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  1. A novel fabrication method for a 64 × 64 matrix-addressable GaN-based micro-LED array

    NASA Astrophysics Data System (ADS)

    Jeon, C.-W.; Choi, H. W.; Dawson, M. D.

    2003-11-01

    The fabrication and performance of GaN-based micro-light emitting diode (-LED) arrays with 64 × 64 elements is reported. The diameter of each element is 20 m and center-to-center spacing 30 m, giving an overall active area of the arrays of 80425 m2. Through a novel fabrication approach including a isotropic dry etching and a self-aligned isolation technique, we could easily obtain an interconnection for a matrix-addressable array device. The arrays emit >50 W per element at 3 mA drive current. Adopting a spreading metal as a p-contact, the turn-on voltage was lowered down to 3.4 V. (

  2. Dynamic laser-induced effects in nanocomposite systems based on the cadmium sulfide quantum dots in a silicate matrix.

    PubMed

    Voznesenskiy, S S; Sergeev, A A; Postnova, I V; Galkina, A N; Shchipunov, Yu A; Kulchin, Yu N

    2015-02-23

    In this paper we study the laser-induced modification of optical properties of nanocomposite based on cadmium sulphide quantum dots encapsulated into thiomalic acid shell which were embedded into a porous silica matrix. It was found that exposure to laser radiation at λ = 405.9 nm leads to modification of optical properties of nanocomposite. For this exposed area there is a significant amount of photodynamic changes under subsequent exposure to laser radiation at λ = 405.9 nm, namely photoabsorption and photorefraction which were studied at λ = 633 nm. The value of these effects dependent on the concentration of quantum dots and modifying radiation parameters. Moreover, it has dependence from polarization of exposure radiation. PMID:25836478

  3. Hybrid-particulate composites based on an epoxy matrix, a reactive rubber, and glass beads: Morphology, viscoelastic, and mechanical properties

    SciTech Connect

    Maazouz, A.; Sautereau, H.; Gerard, J.F. . Lab. des Materiaux Macromoleculaires)

    1993-10-20

    The deformation and fracture behaviors of hybrid-particulate epoxy composites have been examined. These materials were based on a DGEBA/DDA matrix with various volume fractions of glass beads and different rubber contents. Young's modulus, yield stress, dynamic mechanical spectra, and fracture energy have been determined at room temperature. The Kerner model fits well the Young's modulus for the hybrid complexes with various glass bead contents. The analysis of the relaxation peak recorded from viscoelastic measurements allow us to discuss the influence of the introduction of the glass beads on the mobility of macromolecular chains and the characteristics of the rubber-separated phase. The fracture energy displays a strong improvement and synergism effect due to the presence of both kinds of particles. The toughening mechanisms were discussed.

  4. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

    PubMed Central

    Kolodziejska, Joanna A; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L; Flores, Katharine M; Hofmann, Douglas C

    2016-01-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error. PMID:26932509

  5. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults

    NASA Astrophysics Data System (ADS)

    Golafshan, Reza; Yuce Sanliturk, Kenan

    2016-03-01

    Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.

  6. Joint Estimation of 2D-DOA and Frequency Based on Space-Time Matrix and Conformal Array

    PubMed Central

    Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi

    2013-01-01

    Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:24453856

  7. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  8. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites.

    PubMed

    Kolodziejska, Joanna A; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L; Flores, Katharine M; Hofmann, Douglas C

    2016-01-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error. PMID:26932509

  9. Automatic optic disc segmentation based on image brightness and contrast

    NASA Astrophysics Data System (ADS)

    Lu, Shijian; Liu, Jiang; Lim, Joo Hwee; Zhang, Zhuo; Tan, Ngan Meng; Wong, Wing Kee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness. As glaucoma often produces additional pathological cupping of the optic disc (OD), cupdisc- ratio is one measure that is widely used for glaucoma diagnosis. This paper presents an OD localization method that automatically segments the OD and so can be applied for the cup-disc-ratio based glaucoma diagnosis. The proposed OD segmentation method is based on the observations that the OD is normally much brighter and at the same time have a smoother texture characteristics compared with other regions within retinal images. Given a retinal image we first capture the ODs smooth texture characteristic by a contrast image that is constructed based on the local maximum and minimum pixel lightness within a small neighborhood window. The centre of the OD can then be determined according to the density of the candidate OD pixels that are detected by retinal image pixels of the lowest contrast. After that, an OD region is approximately determined by a pair of morphological operations and the OD boundary is finally determined by an ellipse that is fitted by the convex hull of the detected OD region. Experiments over 71 retinal images of different qualities show that the OD region overlapping reaches up to 90.37% according to the OD boundary ellipses determined by our proposed method and the one manually plotted by an ophthalmologist.

  10. Matrix removal in state of the art sample preparation methods for serum by charged aerosol detection and metabolomics-based LC-MS.

    PubMed

    Schimek, Denise; Francesconi, Kevin A; Mautner, Anton; Libiseller, Gunnar; Raml, Reingard; Magnes, Christoph

    2016-04-01

    Investigations into sample preparation procedures usually focus on analyte recovery with no information provided about the fate of other components of the sample (matrix). For many analyses, however, and particularly those using liquid chromatography-mass spectrometry (LC-MS), quantitative measurements are greatly influenced by sample matrix. Using the example of the drug amitriptyline and three of its metabolites in serum, we performed a comprehensive investigation of nine commonly used sample clean-up procedures in terms of their suitability for preparing serum samples. We were monitoring the undesired matrix compounds using a combination of charged aerosol detection (CAD), LC-CAD, and a metabolomics-based LC-MS/MS approach. In this way, we compared analyte recovery of protein precipitation-, liquid-liquid-, solid-phase- and hybrid solid-phase extraction methods. Although all methods provided acceptable recoveries, the highest recovery was obtained by protein precipitation with acetonitrile/formic acid (amitriptyline 113%, nortriptyline 92%, 10-hydroxyamitriptyline 89%, and amitriptyline N-oxide 96%). The quantification of matrix removal by LC-CAD showed that the solid phase extraction method (SPE) provided the lowest remaining matrix load (48-123 μg mL(-1)), which is a 10-40 fold better matrix clean-up than the precipitation- or hybrid solid phase extraction methods. The metabolomics profiles of eleven compound classes, comprising 70 matrix compounds showed the trends of compound class removal for each sample preparation strategy. The collective data set of analyte recovery, matrix removal and matrix compound profile was used to assess the effectiveness of each sample preparation method. The best performance in matrix clean-up and practical handling of small sample volumes was showed by the SPE techniques, particularly HLB SPE. CAD proved to be an effective tool for revealing the considerable differences between the sample preparation methods. This detector

  11. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    PubMed

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-01

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  12. Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Minghang; Tang, Baoping; Tan, Qian

    2015-08-01

    Time-frequency analysis is an effective tool to extract machinery health information contained in non-stationary vibration signals. Various time-frequency analysis methods have been proposed and successfully applied to machinery fault diagnosis. However, little research has been done on bearing fault diagnosis using texture features extracted from time-frequency representations (TFRs), although they may contain plenty of sensitive information highly related to fault pattern. Therefore, to make full use of the textural information contained in the TFRs, this paper proposes a novel fault diagnosis method based on S transform, gray level co-occurrence matrix (GLCM) and multi-class support vector machine (Multi-SVM). Firstly, S transform is chosen to generate the TFRs due to its advantages of providing frequency-dependent resolution while keeping a direct relationship with the Fourier spectrum. Secondly, the famous GLCM-based texture features are extracted for capturing fault pattern information. Finally, as a classifier which has good discrimination and generalization abilities, Multi-SVM is used for the classification. Experimental results indicate that the GLCM-based texture features extracted from TFRs can identify bearing fault patterns accurately, and provide higher accuracies than the traditional time-domain and frequency-domain features, wavelet packet node energy or two-direction 2D linear discriminant analysis based features of the same TFRs in most cases.

  13. Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization

    PubMed Central

    Cruz-Roa, Angel; Díaz, Gloria; Romero, Eduardo; González, Fabio A.

    2011-01-01

    Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. PMID:22811960

  14. SEC Based Method for Size Determination of Immune Complexes of Therapeutic Antibodies in Animal Matrix

    PubMed Central

    Boysen, Marta; Dreher, Ingeborg; Loebbert, Ralf

    2016-01-01

    Therapeutic monoclonal antibodies (mAbs) represent a milestone in pharmacological development. Their superiority is based on the combination of high specificity, low toxicity, and long half-life that characterizes biologics. If biologics have Achilles' heel, it is their potential immunogenicity. To better understand the impact of the size of immune complexes of mAbs on anti-drug antibody (ADA) dependent adverse reactions in Macaca fascicularis, we developed an efficient high-throughput size exclusion chromatography- (SEC-) based methodology that enables analysis of the size, size distribution, and ratio of free and ADA-complexed mAb in serum allowing for assessment of formation and clearance of circulating ADA-mAb immune complexes (CIC). PMID:27556050

  15. Formulation optimizations for variable DUV resist thickness applications based on the same polymer matrix

    NASA Astrophysics Data System (ADS)

    Schlicht, Karin R.; Maxwell, Brian; Ferri, John E.; Toukhy, Medhat A.

    2001-08-01

    We are investigating strategies of resist optimization for various target thicknesses based on the same polymer. The photo acid generator (PAG) and base levels are optimized for each application thickness. The polymer of choice, used in this work, contained sufficient tertiary-butyl ester groups to provide high dissolution rate after exposure (high Rmas) while its initial dissolution rate in the developer is very low (low Rmin). The polymer structure was also designed to provide a high ratio of carbon to hydrogen atoms to be adequately resistant to plasma etching. Other polymer properties, such as solubility in resist solvents, long shelf life stability, good coating properties, good adhesion to different substrates, low solution viscosity, low coating defects and good wettability are only a few examples of many required characteristics for good resist performance.

  16. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Jiang, Huiming; Chen, Jin; Dong, Guangming; Liu, Tao; Chen, Gang

    2015-02-01

    Based on the traditional theory of singular value decomposition (SVD), singular values (SVs) and ratios of neighboring singular values (NSVRs) are introduced to the feature extraction of vibration signals. The proposed feature extraction method is called SV-NSVR. Combined with selected SV-NSVR features, continuous hidden Markov model (CHMM) is used to realize the automatic classification. Then the SV-NSVR and CHMM based method is applied in fault diagnosis and performance assessment of rolling element bearings. The simulation and experimental results show that this method has a higher accuracy for the bearing fault diagnosis compared with those using other SVD features, and it is effective for the performance assessment of rolling element bearings.

  17. A multiplex, bead-based array for profiling plant-derived components in complex food matrixes.

    PubMed

    Ponzoni, Elena; Breviario, Diego; Mautino, Alessandro; Gianì, Silvia; Morello, Laura

    2013-12-01

    Authentication of processed food ingredients is becoming an important issue for customers, and some DNA-based analytical methods have been developed, especially for animal products. As food products typically contain several different ingredients, a current challenge is to increase the multiplexing capacity of DNA-based methods, to develop "all-in-one" assays. Oligonucleotide-coupled, bead-based suspension arrays are sensitive and reproducible multiplex analytical tools. We applied the Multi-Analyte Profile (xMAP™) technology to develop an assay able to concurrently detect five different plant components in mixed flours and in processed feed and food. Capture probes were targeted to species-specific DNA polymorphisms present within the first intron of plant β-tubulin genes, which can be amplified by the tubulin-based polymorphism-amplification method (TBP-PCR). The workflow is very simple and straightforward, consisting of a PCR amplification step with universal primers, followed by the direct hybridization assay. Results are highly reproducible. For each single plant species, the absolute detection limit was as low as one target DNA copy. In complex mixtures of flours derived from seeds or from commercial dry "pasta," relative limits of detection ranged, in weight, from 2% for soybean to less than 0.5% for wheat. The specificity of the capture probes and the high sensitivity of the method allowed the successful determination of the analytical composition of three feeds as well as eleven food samples, such as snacks, biscuits, and pasta. The multiplexing ability of the assay (up to 100 different analytes) provides scalability and flexibility, in response to specific needs. PMID:24190615

  18. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.

    PubMed

    Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro

    2016-01-01

    Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. PMID:26194176

  19. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  20. DFTB+, a sparse matrix-based implementation of the DFTB method.

    PubMed

    Aradi, B; Hourahine, B; Frauenheim, Th

    2007-07-01

    A new Fortran 95 implementation of the DFTB (density functional-based tight binding) method has been developed, where the sparsity of the DFTB system of equations has been exploited. Conventional dense algebra is used only to evaluate the eigenproblems of the system and long-range Coulombic terms, but drop-in O(N) or O(N2) modules are planned to replace the small code sections that these entail. The developed sparse storage structure is discussed in detail, and a short overview of other features of the new code is given. PMID:17567110

  1. Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods

    SciTech Connect

    Huang, Yongjiang E-mail: yjhuang@hit.edu.cn; Khong, J. C.; Mi, J. E-mail: yjhuang@hit.edu.cn; Connolley, Thomas

    2014-01-20

    The plasticity of a ZrTi-based bulk metallic glass composite consisting of glassy matrix and crystalline dendritic phase was studied in-situ under identical tensile loading conditions using scanning electron microscopy and synchrotron X-ray diffraction. A generic procedure was developed to separate the diffraction information of the crystalline phases away from that of the matrix and to precisely calculate the microscopic strains of the two phases at different macroscopic load steps. In this way, the time-evolved quantitative links between shear bands nucleation/propagation and the corresponding microscopic stress fields around them are established, providing more quantitative understanding on (1) how the shear bands are driven by the local stress field, and (2) the critical stresses required for the shear bands to nucleate in the crystalline phase, propagate through the crystalline/matrix interface, and finally into the matrix.

  2. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    NASA Astrophysics Data System (ADS)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  3. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed Central

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information.

  4. Dynamic Regulatory Network Reconstruction for Alzheimer's Disease Based on Matrix Decomposition Techniques

    PubMed Central

    Mou, Xiaoyang; Zhi, Xing; Zhang, Xin; Yang, Yang

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF) activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA) algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA), which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD. PMID:25024739

  5. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed

    Rose, Jessica F; Zafar, Sarosh N; Ellsworth Iv, Warren A

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information. PMID:27190645

  6. Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process.

    PubMed

    Karlovic, Elvira S; Dalmacija, Bozo D; Tamas, Zagorka S; Prica, Miljana Dj; Ranogajec, Jonjaua G

    2008-04-01

    This study attempts to determine the possibilities and limitations of the immobilization of galvanic wastes by their incorporation into clay-based materials. It focuses on the effects of several processing parameters such as the temperature of thermal treatment, the relative amount of sludge, and the physico-chemical aspects of the sample, on the fixing level of relevant metals (Zn, Ni, Fe, Mn, Pb, Cu, Cr) in thermally treated clay-based samples. The effectiveness of sludge inactivation was assessed by water-leaching test and conductivity measurements. In view of the potential use of the sludge stabilization products as construction materials, the linear shrinkage and bending strain of the fired samples was investigated. To characterize their morphology, mineralogy and composition, fired samples of clay and its mixtures with galvanic sludge were studied on a scanning electron microscope (SEM) coupled with an energy dispersive X-ray analyser (EDS) and X-ray diffractometer (XRD). It was found that the efficiency of metal immobilization is dependent on the clay composition and the temperature of the thermal treatment of the prepared mixtures. The thermal treatment of all samples at all temperatures resulted in the stabilization of all heavy metal ions (copper, nickel, iron, lead, manganese and zinc) with the exception of chromium. PMID:18324540

  7. Fundamental comparison of time-domain experimental modal analysis methods based on high- and first-order matrix models

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Yang, Wen-Long; Liu, Fu-Shun; Li, Hua-Jun

    2014-12-01

    All time-domain methods for experimental modal analysis (EMA) begin with a mathematical model. Based on either a high-order matrix polynomial model or a first-order state-space model, this paper emphasizes the comparison of numerical conditioning and stability, as well as the modal parameter estimation, among EMA methods. Numerical conditioning pertains to the perturbation behavior of a mathematical problem (model) itself and stability pertains to the perturbation behavior of an algorithm used to solve that problem on a computer. As various EMA methods are modeled differently with distinct solution algorithms, implementing these methods would have different conditioning and stability. In this paper, both deterministic and stochastic EMA methods are covered. Three different scenarios for the response signal are considered: (1) clean response from impulse loading, (2) noisy response from impulse loading, and (3) noisy response from ambient noise excitation. Comparing the numerical conditioning of various EMA methods, this paper theoretically illustrates that methods based on first-order state-space models are more likely to be well-conditioned (with a smaller conditioning number) than those based on high-order polynomial models. Furthermore, the numerical observation of a case study for a 6 degree-of-freedom system also suggests that first-order state-space model methods are more robust and accurate for the estimation of modal frequency and damping.

  8. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques.

    PubMed

    Bartczak, Dorota; Vincent, Phil; Goenaga-Infante, Heidi

    2015-06-01

    We propose for the first time methodology for the determination of a number-based concentration of silica (SiO2) nanoparticles (NP) in biological serum using nanoparticle tracking analysis (NTA) as the online detector for asymmetric flow field-flow fractionation (AF4). The degree of selectivity offered by AF4 was found necessary to determine reliably number-based concentration of the measured NP in the complex matrix with a relative measurement error of 5.1% (as relative standard deviation, n = 3) and without chemical sample pretreatment. The simultaneous online coupling to other size and concentration detectors, such as multiangle light scattering (MALS) and ICPMS, for the measurement of the same NP suspension, was used to confirm the particle size determined with NTA and the equivalent particle number determined by AF4/NTA, respectively. The size- and number-based concentration data obtained by independent techniques were in a good agreement. The developed methodology can easily be extended to other types of particles or particle suspensions and other complex matrices provided that the particle size is above the limit of detection for NTA. PMID:25970520

  9. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  10. Investigation of machinability of iron based metal matrix composite (MMC) powder metallurgy parts

    NASA Astrophysics Data System (ADS)

    Szalay, Tibor; Czampa, Miklós; Markos, Sándor; Farkas, Balázs

    2012-09-01

    One of the advantages of powder metallurgy technology is that we may produce the final geometry of the required part saving considerable time and cost. However there are several applications that require parts need additional machining for example when the product contains threads, cross bore or slots. In these cases cutting of the hard and porous material may causes difficulties in manufacturing. The aim of the introduced research is the experimental investigation of the machinability of the iron based MMC powder metallurgy parts, determining the favourable composition of the powder and advantageous process parameters regarding the properties of the machinability. The research try to answer to the challenge of the poorly defined expression: machinability, and after defining the features and methods of the evaluation we develop advises for the proper technology parameters.

  11. Creep and recovery behaviors of magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix

    NASA Astrophysics Data System (ADS)

    Qi, S.; Yu, M.; Fu, J.; Li, P. D.; Zhu, M.

    2016-01-01

    This paper mainly investigated the creep and recovery behaviors of magnetorheological elastomers (MRE) based on polyurethane/epoxy resin (EP) graft interpenetrating polymer networks (IPNs). The influences of constant stress level, content of EP, particle distribution, magnetic field and temperature on the creep and recovery behaviors were systematically investigated. As expected, results suggested that the presence of IPNs leads to a significant improvement of creep resistance of MRE, and creep and recovery behaviors of MRE were highly dependent on magnetic field and temperature. To further understand its deformation mechanism, several models (i.e., Findley’s power law model, Burgers model, and Weibull distribution equation) were used to fit the measured creep and recovery data. Results showed that the modeling of creep and recovery of samples was satisfactorily conducted by using these models. The influences of content of EP and magnetic field on fitting parameters were discussed, and relevant physical mechanism was proposed to explain it qualitatively.

  12. Kinetics of the development of a nonchromate conversion coating for magnesium alloys and magnesium-based metal matrix composites

    SciTech Connect

    Gonzalez-Nunez, M.A.; Skeldon, P.; Thompson, G.E.; Karimzadeh, H.

    1999-12-01

    Kinetics of the development of a conversion coating from a stannate bath on commercial purity magnesium (Mg{sup comm}), magnesium-based alloys ZC71 and WE43, and a metal matrix composite (MMC), comprising a ZC71 alloy matrix and 12 vol% silicon carbide (SiC) particles were studied using linear polarization resistance, potential-time, potentiodynamic polarization, x-ray diffraction, Rutherford backscattering spectroscopy, and microscopic examination. The coating, typically {approximately}3 {micro}m to 5 {micro}m thick, was composed largely of crystalline magnesium tin oxide (MgSnO{sub 3} {center{underscore}dot} 3H{sub 2}O), and developed by a nucleation and growth process through an initial corrosion film on the substrate. Nucleation probably occurred on regions where a critical concentration of magnesium ions was reached for coating crystals to form. Specific sites of nucleation, such as particles of eutectic phase and of reinforcement, were revealed in some cases, but frequently the precise sites of nucleation were not disclosed. A longer treatment time (at least 35 min) was suggested by polarization resistance data for improved coverage of the substrate than the previously recommended time of 20 min. The coating continuity on the substrates, after a particular time of treatment, depends upon ally composition increasing in order: Mg{sup comm}, 12% (SiC)p/ZC71 alloy MMC, ZC71 alloy, and WE43 alloy. Polarization resistance (R{sub p}) changed systematically with coating development, showing a decrease in R{sub p} in the early stages of the coating process, related to the initial corrosion.

  13. Construction of Uranyl Selective Electrode Based on Complex of Uranyl Ion with New Ligand Carboxybenzotriazole in PVC Matrix Membrane

    NASA Astrophysics Data System (ADS)

    Abu-Dalo, M. A.; Al-Rawashdeh, N. A. F.; Al-Mheidat, I. R.; Nassory, N. S.

    2015-10-01

    In the present study uranyl selective electrodes in polyvinyl chloride (PVC) matrix membrane were prepared based on a complex of uranyl ion (UO2) with carboxybenzotriazole (CBT) as ligand. The effect of the nature of plasticizer in PVC matrix were evaluated using three different plasticizers, these are dibutyl phthalate (DBP), dioctyl phthalate (DOP) and bis(2-ethylhexyl) sebacate (BHS). The results of this study indicated that the best plasticizer could be used is the DBP, which may be attributed to its lowest viscosity value compared to DOP and BHS. The electrodes with DBP as plasticizer exhibits a Nernstian response with a slope of 28.0 mV/ decade, over a wide range of concentration from 3.0×10-5-6.0×10-2 M and a detection limit of 4.0×10-6 M. It can be used in the pH range of 4.0-10.0 with a response time of less than 10 s for DBP and 25 s for both DOP and BHS. The effects of ions interferences on the electrode response were evaluated. The di- and tri-valent cations were found to interfere less than univalent cations, which was attributed to the high diffusion and the exchange rate between the univalent ions and the uranyl ion solution. The electrodes were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron microscopy (SEM). The results of the standard addition method were satisfactory with errors less than 7%. The developed electrode was found to be fast, sensitive and reliable indicated its potential use in measuring the uranly ion concentration in the field.

  14. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  15. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  16. Magnetorheological fluids based on a hyperbranched polycarbosilane matrix and iron microparticles

    NASA Astrophysics Data System (ADS)

    Vasiliev, V. G.; Sheremetyeva, N. A.; Buzin, M. I.; Turenko, D. V.; Papkov, V. S.; Klepikov, I. A.; Razumovskaya, I. V.; Muzafarov, A. M.; Kramarenko, E. Yu

    2016-05-01

    Magnetorheological fluids (MFs) based on hyperbranched polycarbosilanes as a carrier medium and micron-sized carbonyl iron particles as filler have been synthesized for the first time. Their magnetorheological (MR) behavior has been studied in steady-state flow regime and under dynamic torsion oscillations on a commercial rheometer. At zero magnetic field, in spite of a rather high molecular mass, the hyperbranched polymers as well as their magnetic compositions with up to 72 mass% of magnetic filler demonstrate Newtonian behavior, and their viscosity considerably increases with magnetic filler content. In magnetic fields MFs show a huge MR response. Namely, in steady-state flow experiments a five orders of magnitude increase in viscosity was observed accompanied by magnetic-field-induced well-pronounced non-Newtonian behavior and a non-zero yield stress. Dynamic experiments demonstrate the transition from liquid-like to solid-like behavior of MFs with a large increase in both the storage and loss moduli under application of a magnetic field. In magnetic fields, the rheological behavior of the obtained MF resembles that of soft MR elastomers being mainly determined by the magnetic particle network formed due to magnetic interactions. In particular, like MR elastomers the MFs exhibit the Payne effect, i.e. dependence of the dynamic modulus on the strain amplitude.

  17. Solving systems of linear equations by GPU-based matrix factorization in a Science Ground Segment

    NASA Astrophysics Data System (ADS)

    Legendre, Maxime; Schmidt, Albrecht; Moussaoui, Saïd; Lammers, Uwe

    2013-11-01

    Recently, Graphics Cards have been used to offload scientific computations from traditional CPUs for greater efficiency. This paper investigates the adaptation of a real-world linear system solver, which plays a central role in the data processing of the Science Ground Segment of ESA's astrometric Gaia mission. The paper quantifies the resource trade-offs between traditional CPU implementations and modern CUDA based GPU implementations. It also analyses the impact on the pipeline architecture and system development. The investigation starts from both a selected baseline algorithm with a reference implementation and a traditional linear system solver and then explores various modifications to control flow and data layout to achieve higher resource efficiency. It turns out that with the current state of the art, the modifications impact non-technical system attributes. For example, the control flow of the original modified Cholesky transform is modified so that locality of the code and verifiability deteriorate. The maintainability of the system is affected as well. On the system level, users will have to deal with more complex configuration control and testing procedures.

  18. Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix

    NASA Astrophysics Data System (ADS)

    Yu, M.; Qi, S.; Fu, J.; Yang, P. A.; Zhu, M.

    2015-04-01

    This paper proposes the preparation of a novel magnetorheological elastomer (MRE) with improved damping and mechanical properties. This MRE is based on polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer networks (IPNs). The tensile strengths, thermal stability, magnetorhelogical behavior, and damping properties of the MRE are studied systematically in terms of composition. The Fourier transform infrared (FTIR) spectra verifies the formation of IPN structures, and thermogravimetric analysis (TGA) revealed that the thermal decomposition temperature was raised by the addition of IPN structures. The test results from the materials test machine and the rheometer show that the presence of IPN can significantly improve the tensile strength and damping properties of the MRE. In addition, the mechanism for enhancing tensile strength and damping properties is proposed. The experiment results suggest that the damping performance of the MRE has a significant correlation with the magnetic strength, content of EP, and temperature. As the thermal endurance properties, tensile strength, and loss factor are improved by incorporating EP/PU IPN structure, it is expected that the PU/EP IPN MRE can be used as an intelligent structural damping material.

  19. Speed of synchronization in complex networks of neural oscillators: Analytic results based on Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Geisel, Theo; Wolf, Fred

    2006-03-01

    We analyze the dynamics of networks of spiking neural oscillators. First, we present an exact linear stability theory of the synchronous state for networks of arbitrary connectivity. For general neuron rise functions, stability is determined by multiple operators, for which standard analysis is not suitable. We describe a general nonstandard solution to the multioperator problem. Subsequently, we derive a class of neuronal rise functions for which all stability operators become degenerate and standard eigenvalue analysis becomes a suitable tool. Interestingly, this class is found to consist of networks of leaky integrate-and-fire neurons. For random networks of inhibitory integrate-and-fire neurons, we then develop an analytical approach, based on the theory of random matrices, to precisely determine the eigenvalue distributions of the stability operators. This yields the asymptotic relaxation time for perturbations to the synchronous state which provides the characteristic time scale on which neurons can coordinate their activity in such networks. For networks with finite in-degree, i.e., finite number of presynaptic inputs per neuron, we find a speed limit to coordinating spiking activity. Even with arbitrarily strong interaction strengths neurons cannot synchronize faster than at a certain maximal speed determined by the typical in-degree.

  20. Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method.

    PubMed

    Zirehpour, Alireza; Rahimpour, Ahmad; Jahanshahi, Mohsen; Peyravi, Majid

    2014-01-01

    Olive oil mill wastewater (OMW) is a concentrated effluent with a high organic load. It has high levels of organic chemical oxygen demand (COD) and phenolic compounds. This study presents a unique process to treat OMW. The process uses ultrafiltration (UF) membranes modified by a functionalized multi wall carbon nano-tube (F-MWCNT). The modified tube has an inner diameter of 15-30 nm and is added to the OMW treatment process to improve performance of the membrane. Tests were done to evaluate the following operating parameters of the UF system; pressure, pH and temperature; also evaluated parameters of permeate flux, flux decline, COD removal and total phenol rejection. The Taguchi robust design method was applied for an optimization evaluation of the experiments. Variance (ANOVA) analysis was used to determine the most significant parameters affecting permeate flux, flux decline, COD removal and total phenols rejection. Results demonstrated coagulation and pH as the most important factors affecting permeate flux of the UF. Moreover, pH and F-MWCNT UF had significant positive effects on flux decline, COD removal and total phenols rejection. Based on the optimum conditions determined by the Taguchi method, evaluations for permeate flux tests; flux decline, COD removal and total phenols rejection were about 21.2 (kg/m(2) h), 12.6%, 72.6% and 89.5%, respectively. These results were in good agreement with those predicted by the Taguchi method (i.e.; 22.8 (kg/m(2) h), 11.9%, 75.8 and 94.7%, respectively). Mechanical performance of the membrane and its application for high organic wastewater treatment were determined as strong. PMID:24291584

  1. A New Approach to Minimize Acellular Dermal Matrix Use in Prosthesis-based Breast Reconstruction

    PubMed Central

    Hadad, Ivan; Liu, Allen S.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) are often used to improve lower-pole contour, as well as allow for single-stage reconstruction, but numerous studies have shown an increased complication rate using ADM. As such, our group has developed a minimal-ADM-use technique to lower complications while effectively recreating lower-pole contour. Methods: A total of 380 postmastectomy prosthesis-based breast reconstructions were performed in 265 patients by a single surgeon. One hundred eight reconstructions were performed using the traditional ADM technique, with a large piece of ADM along the entire inferior and lateral borders. Two hundred twenty-five reconstructions were performed with the minimal-use technique, patching only the lateral area of the reconstruction. Thirty-five reconstructions were performed without the use of any ADM for high-risk reconstructions, most often in morbidly obese patients. Results: Comparing the traditional technique with the minimal-use technique, the seroma rate dropped from 3% to 0%. The rate of infection and reconstruction loss fell from 9% to 1%. Upon greatly reducing or eliminating the use of ADM use in obese patients, the seroma rate decreased from 15.4% to 5.7%, and the reconstruction loss rate decreased from 38% to 9%. Conclusions: This article describes a new surgical approach to minimize the amount of ADM necessary to create an aesthetically pleasing breast reconstruction. We believe that this approach helps avoid the complications of seroma, infection, and loss of the reconstruction. In certain obese patients, total avoidance of ADM may be the better choice. PMID:26301161

  2. A novel gastro-floating multiparticulate system for dipyridamole (DIP) based on a porous and low-density matrix core: in vitro and in vivo evaluation.

    PubMed

    Li, Zhao; Xu, Heming; Li, Shujuan; Li, Qijun; Zhang, Wenji; Ye, Tiantian; Yang, Xinggang; Pan, Weisan

    2014-01-30

    The study was aimed to develop a novel gastro-floating multiparticulate system based on a porous and low-density matrix core with excellent floatability. The gastro-floating pellets (GFP) were composed of a porous matrix core, a drug loaded layer (DIP and HPMC), a sub-coating layer (HPMC) and a retarding layer (Eudragit(®) NE 30D). The porous matrix cores were evaluated in specific. EC was chosen as the matrix membrane for its rigidity and minimal expansion to large extent. The porous matrix core was achieved by the complete release of the bulk water soluble excipient from the EC coated beads, and mannitol was selected as the optimal water soluble excipient. SEM photomicrographs confirmed the structure of porous matrix cores. The compositions of GFP were investigated and optimized by orthogonal array design. The optimized formulation could sustain the drug release for 12h and float on the dissolution medium for at least 12h without lag time to float. The pharmacokinetic study was conducted in beagle dogs, and the relative bioavailability of the test preparation was 193.11±3.43%. In conclusion, the novel gastro-floating pellets can be developed as a promising approach for the gastro-retentive drug delivery systems. PMID:24368104

  3. Correlated Spatio-Temporal Data Collection in Wireless Sensor Networks Based on Low Rank Matrix Approximation and Optimized Node Sampling

    PubMed Central

    Piao, Xinglin; Hu, Yongli; Sun, Yanfeng; Yin, Baocai; Gao, Junbin

    2014-01-01

    The emerging low rank matrix approximation (LRMA) method provides an energy efficient scheme for data collection in wireless sensor networks (WSNs) by randomly sampling a subset of sensor nodes for data sensing. However, the existing LRMA based methods generally underutilize the spatial or temporal correlation of the sensing data, resulting in uneven energy consumption and thus shortening the network lifetime. In this paper, we propose a correlated spatio-temporal data collection method for WSNs based on LRMA. In the proposed method, both the temporal consistence and the spatial correlation of the sensing data are simultaneously integrated under a new LRMA model. Moreover, the network energy consumption issue is considered in the node sampling procedure. We use Gini index to measure both the spatial distribution of the selected nodes and the evenness of the network energy status, then formulate and resolve an optimization problem to achieve optimized node sampling. The proposed method is evaluated on both the simulated and real wireless networks and compared with state-of-the-art methods. The experimental results show the proposed method efficiently reduces the energy consumption of network and prolongs the network lifetime with high data recovery accuracy and good stability. PMID:25490583

  4. Activity-based assay of matrix metalloproteinase on nonbiofouling surfaces using time-of-flight secondary ion mass spectrometry.

    PubMed

    Kim, Young-Pil; Lee, Bong Soo; Kim, Eunkyung; Choi, Insung S; Moon, Dae Won; Lee, Tae Geol; Kim, Hak-Sung

    2008-07-01

    A label-free, activity-based assay of matrix metalloproteinase (MMP) and its inhibition was demonstrated on peptide-conjugated gold nanoparticles (AuNPs) with nonbiofouling poly(oligo(ethylene glycol) methacrylate) (pOEGMA) films using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Following surface-initiated atom-transfer radical polymerization of OEGMA on a Si/SiO2 substrate, the MMP activity was determined by analyzing the cleaved peptide fragments using TOF-SIMS on the peptide-conjugated AuNPs. The use of nonbiofouling pOEGMA films in conjunction with AuNPs synergistically enhanced the sensitivity of assays for MMP activity and its inhibition in human serum. The detection sensitivity of MMP-7 in serum was as low as 20 ng mL(-1) (1 pmol mL(-1)), and the half-maximal inhibitory concentration (IC50) of minocycline, which is a MMP-7 inhibitor, was estimated to be 450 nM. It is anticipated that the developed system will be broadly useful for conducting activity-based assays of serum proteases, as well as for screening of their inhibitors, with high sensitivity in a high-throughput manner. PMID:18505270

  5. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. PMID:26197108

  6. Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines.

    PubMed

    You, Zhu-Hong; Li, Jianqiang; Gao, Xin; He, Zhou; Zhu, Lin; Lei, Ying-Ke; Ji, Zhiwei

    2015-01-01

    Proteins and their interactions lie at the heart of most underlying biological processes. Consequently, correct detection of protein-protein interactions (PPIs) is of fundamental importance to understand the molecular mechanisms in biological systems. Although the convenience brought by high-throughput experiment in technological advances makes it possible to detect a large amount of PPIs, the data generated through these methods is unreliable and may not be completely inclusive of all possible PPIs. Targeting at this problem, this study develops a novel computational approach to effectively detect the protein interactions. This approach is proposed based on a novel matrix-based representation of protein sequence combined with the algorithm of support vector machine (SVM), which fully considers the sequence order and dipeptide information of the protein primary sequence. When performed on yeast PPIs datasets, the proposed method can reach 90.06% prediction accuracy with 94.37% specificity at the sensitivity of 85.74%, indicating that this predictor is a useful tool to predict PPIs. Achieved results also demonstrate that our approach can be a helpful supplement for the interactions that have been detected experimentally. PMID:26000305

  7. Complete state-resolved non-adiabatic dynamics of the O((3)P) + D2 → OD(X(2)Π) + D reaction.

    PubMed

    Lahankar, Sridhar A; Zhang, Jianming; Minton, Timothy K; McKendrick, Kenneth G

    2014-09-01

    The first quantum-state-resolved distributions over the full range of available product levels are reported for any isotopic variant of the elementary reaction of O((3)P) with molecular hydrogen. A laser-detonation source was used to produce a hyperthermal oxygen-atom beam, which allowed for sufficient collision energy to surmount the reaction barrier. This beam was crossed by a supersonic beam of D2. The nascent OD products were detected by laser-induced fluorescence. OD rotational distributions in vibrational states v' = 0, 1, and 2 at a collision energy of 25 kcal mol(-1) are reported, together with distributions for the dominant product vibrational level, v'= 0, at lower collision energies of 20 and 15 kcal mol(-1). The OD product is highly rotationally excited, to a degree that declines as expected for the higher vibrational levels or for reductions in the collision energy. The measured rovibrational distributions at the highest collision energy are in excellent agreement with previous theoretical predictions based on quantum scattering calculations on the triplet potential energy surfaces developed by Rogers et al. (J. Phys. Chem. A 2000, 104, 2308-2325). However, no significant OD spin-orbit preference was observed, in contrast to the predictions of most existing theoretical models of the non-adiabatic dynamics based on the widely used reduced-dimensional four-state model of Hoffmann and Schatz (J. Chem. Phys. 2000, 113, 9456-9465). Furthermore, a clear observed preference for OD Π(A') Λ-doublet levels is not consistent with a simple extrapolation of the calculated relative reaction cross sections on intermediate surfaces of (3)A' and (3)A″ symmetry. PMID:25084139

  8. Tensile flow properties of Al-based matrix composites reinforced with a random planar network of continuous metallic fibers

    SciTech Connect

    Boland, F.; Salmon, C.; Delannay, F.; Colin, C.

    1998-11-20

    Squeeze casting was used for processing two new types of composites: pure Al matrix composites reinforced with fibers of Inconel 601, and AS13 (Al-12% Si) matrix composites reinforced with fibers of Inconel 601 or stainless steel 316L. The fibers are continuous with a diameter of 12 {micro}m and their volume fraction in the composites varied from 20 to 80%. The processing conditions were such that no trace of interfacial reaction compound or of matrix precipitate resulting from the dissolution of elements of the fibers could be detected. The quality of the process was attested by Young`s modulus and electrical conductivity measurements. Tensile tests were carried out from room temperature up to 300 C. The composites with the pure Al matrix present a remarkable tensile ductility. They thus constitute convenient materials for assessing continuum plasticity models for composites. Properties of composites with the AS13 matrix are much affected by interface adhesion strength.

  9. Behavior of Fe-ODS Alloys After Thermal Aging Treatments

    NASA Astrophysics Data System (ADS)

    Serrano Garcia, Marta; Hernández-Mayoral, Mercedes; Esparraguera, Elvira Oñorbe

    2016-03-01

    Oxide dispersion alloys are one of the candidates as cladding materials for Gen IV fast reactors, due to their high strength at high temperature, good creep properties, and swelling resistance. This good performance is mainly due to a fine dispersion of nano-oxide particles on the microstructure and to non-grained structure. The microstructural stability and the mechanical properties of a Fe-ODS alloy are studied after different thermal aging experiments at 973 K (700 °C), 5000 hours; 973 K (700 °C), 10,000 hours; and 1123 K (850 °C), 10,000 hours. SEM/EBSD and TEM together with tensile and impact tests on the as-received and thermally aged material have been carried out. In general, for all the tested conditions, a slight softening effect is observed attributed to the changes in the grain structure as well as to the changes in the amount and size of nano-oxide particles. In addition, the aged material shows a lower impact USE value while the DBTT is maintained.

  10. Behavior of Fe-ODS Alloys After Thermal Aging Treatments

    NASA Astrophysics Data System (ADS)

    Serrano Garcia, Marta; Hernández-Mayoral, Mercedes; Esparraguera, Elvira Oñorbe

    2016-06-01

    Oxide dispersion alloys are one of the candidates as cladding materials for Gen IV fast reactors, due to their high strength at high temperature, good creep properties, and swelling resistance. This good performance is mainly due to a fine dispersion of nano-oxide particles on the microstructure and to non-grained structure. The microstructural stability and the mechanical properties of a Fe-ODS alloy are studied after different thermal aging experiments at 973 K (700 °C), 5000 hours; 973 K (700 °C), 10,000 hours; and 1123 K (850 °C), 10,000 hours. SEM/EBSD and TEM together with tensile and impact tests on the as-received and thermally aged material have been carried out. In general, for all the tested conditions, a slight softening effect is observed attributed to the changes in the grain structure as well as to the changes in the amount and size of nano-oxide particles. In addition, the aged material shows a lower impact USE value while the DBTT is maintained.

  11. vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties

    NASA Astrophysics Data System (ADS)

    Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie

    2014-01-01

    In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes

  12. Radiation effects on the microstructure of a 9Cr-ODS alloy.

    SciTech Connect

    Gan, J.; Allen, T. R.; Birtcher, R. C.; Shutthanandan, S.; Thevothasan, S.; Materials Science Division; INL; Univ. of Wisconsin at Madison; PNNL

    2008-01-01

    Oxide dispersion strengthened (ODS) steels are prime candidates for high-temperature, high-dose cladding in advanced nuclear reactors. When a 9Cr-ODS alloy was irradiated with 5 MeV nickel ions at temperatures of 500-700 C to doses up to 150 dpa, there was no significant change in the dislocation arrangement. For oxide particles, there is a small shrinkage in size and increase in density with increasing irradiation dose. This work confirms that oxide particles and the microstructure of the 9Cr-ODS show minimal changes under irradiation at temperatures up to 700 C and doses up to 150 dpa.

  13. Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures.

    PubMed

    Simon, Karen A; Warren, Nicholas J; Mosadegh, Bobak; Mohammady, Marym R; Whitesides, George M; Armes, Steven P

    2015-12-14

    It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel). PMID:26509930

  14. Analysis of malachite green in aquatic products by carbon nanotube-based molecularly imprinted - matrix solid phase dispersion.

    PubMed

    Wang, Yu; Chen, Ligang

    2015-10-01

    A simple method based on matrix solid phase dispersion (MSPD) using molecularly imprinted polymers (MIPs) as sorbents for selective extraction of malachite green (MG) from aquatic products was developed. The MIPs were prepared by using carbon nanotube as support, MG as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as crosslinker and methylene chloride as solvent. The MIPs were characterized by Fourier transform infrared spectrometry and transmission electron microscopy. The isothermal adsorption, kinetics absorption and selective adsorption experiments were carried out. We optimized the extraction conditions as follows: the ratio of MIPs to sample was 2:3, the dispersion time was 15min, washing solvent was 4mL 50% aqueous methanol and elution solvent was 3mL methanol-acetic acid (98: 2, v/v). Once the MSPD process was completed, the MG extracted from aquatic products was determined by high performance liquid chromatography. The detection limit of MG was 0.7μgkg(-1). The relative standard deviations of intra-day and inter-day were obtained in the range of 0.9%-4.7% and 3.4%-9.8%, respectively. In order to evaluate the applicability and reliability of the proposed method, it was applied to determine MG in different aquatic products samples including fish, shrimp, squid and crabs. The satisfied recoveries were in the range of 89.2%-104.6%. The results showed that this method is faster, simpler and makes extraction and purification in the same system. PMID:26319302

  15. [Research on Properties of Light Scattering for Non-Spherical Suspended Particles in Water Based on T Matrix Model].

    PubMed

    Vo, Quang Sang; Feng, Peng; Mi, De-ling; Tang, Bin; Wei, Biao

    2015-10-01

    Scattering light properties of suspended particles in water is an important parameter which influences the accuracy of water quality measurement. In this paper, based on T matrix model, the authors study the UV-Visible light irradiation intensity of 3 kinds of non-spherical suspended. particles including ellipsoid, cylinder and generalized Chebyshev in water. The relationship between light scattering intensity and incident light wavelength, shape parameters of suspended particles, complex refractive index and rotation angle has been presented in detail. Simulation results show that when changing the particle size, adjusting the wavelength of incident light, all light scattering intensity of 3 kinds of non-spherical suspended particles show significant changes. In the wavelength range from 200-800 nm, the impact of geometric on the particles size decreases with increasing wavelength and the sattering properites mainly depends on complex refractive index. The scattering intensity becomes stronger and exhibits strong oscillations for ultraviolet and infrared light when the diameter of particles are less than 0.2 μm or approaching 1 μm. However, the scattering intensity is relatively stable and close to zero, shows small disturbances with the change of wavelength of incident light when the particles sizes are within 0.3 to 0.9 μm. PMID:26904801

  16. Matrix-algebra-based calculations of the time evolution of the binary spin-bath model for magnetization transfer

    NASA Astrophysics Data System (ADS)

    Müller, Dirk K.; Pampel, André; Möller, Harald E.

    2013-05-01

    Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data.

  17. Effect of tool velocity ratio on tensile properties of friction stir processed aluminum based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Vijayavel, P.; Balasubramanian, V.

    2016-08-01

    In friction stir processing (FSP), tool rotational speed (TRS) and tool traverse speed (TTS) are the two important parameters, known to produce significant changes in the properties of the processed material. Increasing the TRS and TTS beyond a certain level would produce undesirable results. The heat generation will increase with an increase in the TRS and decrease in TTS. Excessive heat generation results in the formation of coarse grains exhibiting poor mechanical properties. The heat generation will decrease with decrease in the TRS and increase in TTS. Low heat generation will lead to inadequate plasticization and improper material flow. Hence a perfect combination of TRS and TTS is required to attain desirable properties in FSPed material. In this investigation FSP was carried out on aluminum based metal matrix composite (LM25AA+5%SiCp) material using five different tool velocity ratios (TVR: TRS/TTS). The FSP was subjected to microstructural characterization and tensile properties, evaluation. The results revealed that the TVR of 2.6 yielded superior tensile properties compared to other conditions.

  18. Bilateral pulmonary emboli associated with intraoperative use of thrombin-based hemostatic matrix following lumbar spine interbody fusion.

    PubMed

    Wei, Zhikui; Elder, Benjamin D; Goodwin, C Rory; Witham, Timothy F

    2015-09-01

    Here we describe a patient with bilateral pulmonary emboli (PE) associated with thrombin-based hemostatic matrix (TBHM) use in the setting of a possible venous injury during transforaminal lumbar interbody fusion in the treatment of degenerative spondylolisthesis at L4-5. TBHM products are gelatin granules mixed with human or bovine thrombin. They have been used in a wide variety of surgical procedures to facilitate local hemostasis though their use is not without complications. This is the first reported patient, to our knowledge, with a TBHM-related PE following spinal fusion. As TBHM is a widely used intraoperative hemostatic agent, surgeons should be aware of the risk of TBHM-associated PE, particularly when there is the potential for intravascular injection or dissemination. While our experience indicates that common pharmacological prophylaxis such as subcutaneous heparin is likely ineffective in reducing occurrence of PE in the setting of TBHM use, the PE was successfully treated with standard systemic anticoagulation. The authors would also add that when iliac injury is encountered during discectomy or interbody fusion through a posterior approach, use of TBHM may be a life-saving technique. Postoperatively, vascular surgery consultation is recommended and consideration should be given to systemic anticoagulation. PMID:25943630

  19. A universal influenza A vaccine based on adenovirus expressing matrix-2 ectodomain and nucleoprotein protects mice from lethal challenge.

    PubMed

    Zhou, Dongming; Wu, Te-Lang; Lasaro, Marcio O; Latimer, Brian P; Parzych, Elizabeth M; Bian, Ang; Li, Yan; Li, Hua; Erikson, Jan; Xiang, Zhiquan; Ertl, Hildegund C J

    2010-12-01

    A universal influenza vaccine, designed to induce broadly cross-reactive immunity against current and future influenza A virus strains, is in critical demand to reduce the need for annual vaccinations with vaccines chosen upon predicting the predominant circulating viral strains, and to ameliorate the threat of cyclically occurring pandemics that have, in the past, killed tens of millions. Here, we describe a vaccine regimen based on sequential immunization with two serologically distinct chimpanzee-derived replication-defective adenovirus (Ad) vectors expressing the matrix-2 protein ectodomain (M2e) from three divergent strains of influenza A virus fused to the influenza virus nucleoprotein (NP) for induction of antibodies to M2e and virus-specific CD8(+) T cells to NP. In preclinical mouse models, the Ad vaccines expressing M2e and NP elicit robust NP-specific CD8(+) T-cell responses and moderate antibody responses to all three M2e sequences. Most importantly, vaccinated mice are protected against morbidity and mortality following challenge with high doses of different influenza virus strains. Protection requires both antibodies to M2e and cellular immune responses to NP. PMID:20877342

  20. A Divalent PAMAM-Based Matrix Metalloproteinase/Carbonic Anhydrase Inhibitor for the Treatment of Dry Eye Syndrome.

    PubMed

    Richichi, B; Baldoneschi, V; Burgalassi, S; Fragai, M; Vullo, D; Akdemir, A; Dragoni, E; Louka, A; Mamusa, M; Monti, D; Berti, D; Novellino, E; De Rosa, G; Supuran, C T; Nativi, C

    2016-01-26

    Synthetic sulfonamide derivatives are a class of potent matrix metalloproteinase inhibitors (MMPI) that have potential for the treatment of diseases related to uncontrolled expression of these enzymes. The lack of selectivity of the large majority of such inhibitors, leading to the inhibition of MMPs in tissues other than the targeted one, has dramatically reduced the therapeutic interest in MMPIs. The recent development of efficient drug delivery systems that allow the transportation of a selected drug to its site of action has opened the way to new perspectives in the use of MMPIs. Here, a PAMAM-based divalent dendron with two sulfonamidic residues was synthesized. This nanomolar inhibitor binds to the catalytic domain of two MMPs as well as to the transmembrane human carbonic anhydrases (hCAs) XII, which is present in the eye and considered an antiglaucoma target. In the animal model of an experimental dry eye, no occurrence of dotted staining in eyes treated with our inhibitor was observed, indicating no symptoms of corneal desiccation. PMID:26692423

  1. A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample.

    PubMed

    Song, Erqun; Cheng, Dan; Song, Yang; Jiang, Mingdong; Yu, Jifei; Wang, Yunyun

    2013-09-15

    Graphene oxide (GO) has been widely used to develop fluorescence resonance energy transfer (FRET) biosensors for tumor markers (e.g., matrix metalloproteinases, MMPs) due to its superior fluorescence quenching capacity and unique adsorption characteristics for biomolecules. In this study, fluorescein isothiocyanate-labeled peptide (Pep-FITC) was assembled onto the GO surface through covalent binding to construct a GO-Pep-FITC FRET sensor for sensitive, rapid, and accurate detection of MMP-2 in complex serum samples. Compared to similar GO-based FRET sensors fabricated through physical adsorption, the as prepared ones via covalent binding are significantly more stable under physiological conditions, enabling their detection of MMP-2 with high sensitivity (detection limit: 2.5ng/mL). More importantly, it allows for rapid MMP-2 detection (within 3h) even in complex biological samples with satisfactory accuracy and the relative standard deviation ≤7.03%. Our studies further suggest that such a platform developed here for sensitive, rapid, and accurate detection of biomarkers holds great promise for clinical diagnosis of protease-related diseases. PMID:23623988

  2. Amperometric biosensor based on Laccase immobilized onto a screen-printed electrode by Matrix Assisted Pulsed Laser Evaporation.

    PubMed

    Verrastro, Maria; Cicco, Nunzia; Crispo, Fabiana; Morone, Antonio; Dinescu, Maria; Dumitru, Marius; Favati, Fabio; Centonze, Diego

    2016-07-01

    A Laccase-based biosensor for the determination of phenolic compounds was developed by using Matrix Assisted Pulsed Laser Evaporation as an innovative enzyme immobilization technique. and the deriving biosensor was characterized and applied for the first time. Laccase was immobilized onto different substrates including screen printed carbon electrodes and spectroscopic, morphologic and electrochemical characterizations were carried out. A linear range from 1 to 60μM was achieved working at 5.5pH and -0.2V detection potential vs Ag pseudoreference. The limits of detection and quantification were found to be 1 and 5μM, respectively. A good fabrication reproducibility, stability of response and selectivity toward interferents were also found The potential of the developed biosensor was tested in the determination of total polyphenol content in real matrices (tea infusion, ethanolic extract from Muscari comosum bulbs and aqueous solution of a food supplement from black radish root and artichoke leaves) and the results were compared with those obtained by using the Folin-Ciocalteu method. PMID:27154697

  3. Effect of Micro- and Nano-SiC Particulate Reinforcements in Magnesium-Based Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Shen, Ming-Jie; Ying, Tao; Chen, Fu-Yu; Hou, Jun-Ming

    2016-06-01

    The effects of the volume ratios of micro and nano-SiC particles (SiCp) on the grain refinement, distribution of SiCp particle, and tensile properties of the as-cast AZ31B (Mg-3Al-1Zn-0.3Mn) magnesium-based metal matrix composites have been investigated. As the volume fraction of micron SiCp decreases to 9 vol.% and the nano-SiCp increases to 1 vol.%, excellent grain refinement effect is achieved. This is due to both the uniform distribution and refining effects of micro- and nano-SiCp. Moreover, the micron SiCp distribute along the grain boundaries, while nano-SiCp is mainly distributed around the micron SiCp. The room-temperature tensile results show that the optimal room-temperature yield and tensile strengths are achieved with a 9/1 ratio of micro to nano-SiCp, while the 9.5/0.5 ratio yielded the highest elongation.

  4. Predicting the required number of training samples. [for remotely sensed image data based on covariance matrix estimate quality criterion of normal distribution

    NASA Technical Reports Server (NTRS)

    Kalayeh, H. M.; Landgrebe, D. A.

    1983-01-01

    A criterion which measures the quality of the estimate of the covariance matrix of a multivariate normal distribution is developed. Based on this criterion, the necessary number of training samples is predicted. Experimental results which are used as a guide for determining the number of training samples are included. Previously announced in STAR as N82-28109

  5. Coherent nonlinear optical studies of elementary processes in biological complexes: diagrammatic techniques based on the wave function versus the density matrix

    PubMed Central

    Biggs, Jason D.; Voll, Judith A.; Mukamel, Shaul

    2012-01-01

    Two types of diagrammatic approaches for the design and simulation of nonlinear optical experiments (closed-time path loops based on the wave function and double-sided Feynman diagrams for the density matrix) are presented and compared. We give guidelines for the assignment of relevant pathways and provide rules for the interpretation of existing nonlinear experiments in carotenoids. PMID:22753822

  6. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  7. A novel matrix derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed immobilized-metal affinity chromatography.

    PubMed

    Qu, Jian-Bo; Huang, Yong-Dong; Jing, Guang-Lun; Liu, Jian-Guo; Zhou, Wei-Qing; Zhu, Hu; Lu, Jian-Ren

    2011-05-01

    Agarose coated gigaporous polystyrene microspheres were evaluated as a novel matrix for immobilized-metal affinity chromatography (IMAC). With four steps, nickel ions were successfully immobilized on the microspheres. The gigaporous structure and chromatographic properties of IMAC medium were characterized. A column packed with the matrix showed low column backpressure and high column efficiency at high flow velocity. Furthermore, this matrix was used for purifying superoxide dismutase (SOD), which was expressed in Escherichia coli (E. coli) in submerged fermentation, on an Äkta purifier 100 system under different flow velocities. The purity of the SOD from this one-step purification was 79% and the recovery yield was about 89.6% under the superficial flow velocity of 3251 cm/h. In conclusion, all the results suggested that the gigaporous matrix has considerable advantages for high-speed immobilized-metal affinity chromatography. PMID:21454141

  8. Impact of polymer matrix on the electromagnetic interference shielding performance for single-walled carbon nanotubes-based composites.

    PubMed

    Liang, Jiajie; Huang, Yi; Li, Ning; Bai, Gang; Liu, Zunfeng; Du, Feng; Li, Feifei; Ma, Yanfeng; Chen, Yongsheng

    2013-02-01

    Composites of acrylonitrile butadiene styrene (ABS), epoxy and soluble cross-linked polyurethane (SCPU) with various loadings of single-walled carbon nanotubes (SWCNTs) were prepared. Their electromagnetic interference (EMI) shielding effectiveness (SE) in the frequency range of 8.2-12.4 GHz (X band) was studied. Well-dispersed SWCNT composites were created in these three representative polymer matrixes. The choice of polymer matrix greatly affects the conductivity, percolation threshold, and EMI shielding properties of the SWCNT/polymer composites. Enhanced EMI SE performances were observed for the composites with better dispersed SWCNTs. Moreover, the EMI SE performances strongly correlated with SWCNT loading in the polymer matrix. The best SWCNT dispersion was achieved in the epoxy matrix: 20-30 dB EMI SE was obtained with 15 wt% SWCNTs. PMID:23646584

  9. Effect of the Green/Blue Flicker Matrix for P300-Based Brain–Computer Interface: An EEG–fMRI Study

    PubMed Central

    Ikegami, Shiro; Takano, Kouji; Wada, Makoto; Saeki, Naokatsu; Kansaku, Kenji

    2012-01-01

    The visual P300-brain–computer interface, a popular system for EEG-based BCI, utilizes the P300 event-related potential to select an icon arranged in a flicker matrix. In the conventional P300-BCI speller paradigm, white/gray luminance intensification of each row/column in the matrix is used. In an earlier study, we applied green/blue luminance and chromatic change in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray luminance flicker matrix. In this study, we used simultaneous EEG-functional magnetic resonance imaging (fMRI) recordings to identify brain areas that were more enhanced in the green/blue flicker matrix than in the white/gray flicker matrix, as these may highlight areas devoted to improved P300-BCI performance. The peak of the positive wave in the EEG data was detected under both conditions, and the peak amplitudes were larger at the parietal and occipital electrodes, particularly in the late components, under the green/blue condition than under the white/gray condition. fMRI data showed activation in the bilateral parietal and occipital cortices, and these areas, particularly those in the right hemisphere, were more activated under the green/blue condition than under the white/gray condition. The parietal and occipital regions more involved in the green/blue condition were part of the areas devoted to conventional P300s. These results suggest that the green/blue flicker matrix was useful for enhancing the so-called P300 responses. PMID:22798957

  10. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  11. The Effect of Nanosized Pb Liquid Phase on the Damping Behavior in Aluminum Matrix Composite Based on the 2024Al-BaPbO3 System

    NASA Astrophysics Data System (ADS)

    Fan, G. H.; Geng, L.; Wu, H.; Zheng, Z. Z.; Meng, Q. C.

    2016-03-01

    An aluminum matrix composite containing nanosized Pb particles was fabricated by a powder metallurgy technique based on the 2024Al-BaPbO3 system. The composite exhibited a high and broad damping peak at the melting temperature range of nanosized Pb particles. The increase in value and breadth of the damping peak was attributed to the dislocation damping of the interfacial matrix close to the nanosized Pb liquid phase. The damping peak is expected to be enhanced by further refining the Pb particle size.

  12. Sync Matrix

    Energy Science and Technology Software Center (ESTSC)

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  13. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  14. From the CKM matrix to the Maki-Nakagawa-Sakata matrix: A model based on supersymmetric SO(10)xU(2){sub F} symmetry

    SciTech Connect

    Chen, Mu-Chun; Mahanthappa, K. T.

    2000-12-01

    We construct a realistic model based on SUSY SO(10) with U(2) flavor symmetry. In contrast with the commonly used effective operator approach, 126-dimensional Higgs fields are used to construct the Yukawa sector. R-parity symmetry is thus preserved at low energies. The Dirac and right-handed Majorana mass matrices in our model have very small mixings and they combine with the seesaw mechanism resulting in large leptonic mixing. The symmetric mass textures arising from the left-right symmetry breaking chain of SO(10) give rise to very good predictions; 15 masses (including three right-handed Majorana neutrino masses) and six mixing angles are predicted by 11 parameters. Both the vacuum oscillation and LOW solutions are favored for the solar neutrino problem.

  15. A new approach to precise upward and downward continuation and gridding land-based gravity data based on Hessian matrix computation, applied for exploration studies

    NASA Astrophysics Data System (ADS)

    AllahTavakoli, Y.

    2012-04-01

    Precise (upward and downward) continuation and gridding of land-based gravity data require precise information about the all second derivatives of gravity potential field. Approximating Harmonic term of gravity potential and its derivatives and its (upward and downward) continuations in harmonic space can routinely be done by the solution of the involved GBVPs (Geodetic Boundary Value Problems) but it should not be disregarded that the potential has another non-Harmonic term which behavior is not as clear as Harmonic term. The non-Harmonic anomalies are usually ignored in geodetic studies after the topography corrections while they are so important in exploration studies and they have an essential role in detecting earth's mass-density anomalies of the geological structures. The precise continuations and gridding of the gravity data need precise approximating all terms of gravity potential. Hence, the paper presents a methodology for precise approximating complete Hessian Matrix of earth gravity potential (including all Harmonic and non-Harmonic terms). The paper shows that the Hessian matrix can connect the gravity data in each station with the gravity data in the other locations where the gravity data needs to be interpolated or upward continued to. Also, the paper performs an approximating method of all Hessian matrices in all gravity stations. This procedure is simultaneously done with the gridding and the continuations. Herein it is showed that this method can be implemented by least-squares collocation method. Least-squares collocation method needs knowledge about the correlation and cross-correlation matrices, so the Hessian Matrix can be employed to provide the correlation matrices. The author applied the methodology in a case study in coastal Fars of Iran for exploration studies. In the case study, it is required to detect geological salt structures by some land-based gravity data. For this purpose, the method is applied to downward continue the anomaly

  16. odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers.

    PubMed

    Silva, Fernando; Urbano, Paulo; Correia, Luís; Christensen, Anders Lyhne

    2015-01-01

    Online evolution gives robots the capacity to learn new tasks and to adapt to changing environmental conditions during task execution. Previous approaches to online evolution of neural controllers are typically limited to the optimisation of weights in networks with a prespecified, fixed topology. In this article, we propose a novel approach to online learning in groups of autonomous robots called odNEAT. odNEAT is a distributed and decentralised neuroevolution algorithm that evolves both weights and network topology. We demonstrate odNEAT in three multirobot tasks: aggregation, integrated navigation and obstacle avoidance, and phototaxis. Results show that odNEAT approximates the performance of rtNEAT, an efficient centralised method, and outperforms IM-(μ + 1), a decentralised neuroevolution algorithm. Compared with rtNEAT and IM-(μ + 1), odNEAT's evolutionary dynamics lead to the synthesis of less complex neural controllers with superior generalisation capabilities. We show that robots executing odNEAT can display a high degree of fault tolerance as they are able to adapt and learn new behaviours in the presence of faults. We conclude with a series of ablation studies to analyse the impact of each algorithmic component on performance. PMID:25478664

  17. Optical Depth Sensor (ODS) for the measurement of dust and clouds properties in the Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2014-04-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  18. Feasibility and safety study of a new device (Odón device) for assisted vaginal deliveries: study protocol

    PubMed Central

    2013-01-01

    Background Intrapartum complications are responsible for approximately half of all maternal deaths, and two million stillbirth and neonatal deaths per year. Prolonged second stage of labour is associated with potentially fatal maternal complications such as haemorrhage and infection and it is a major cause of stillbirth and newborn morbidity and mortality. Currently, the three main options for managing prolonged second stage of labour are forceps, vacuum extractor and caesarean section. All three clinical practices require relatively expensive equipment (e.g., a surgical theatre for caesarean section) and/or highly trained staff which are often not available in low resource settings. The specific aim of the proposed study is to test the safety and feasibility of a new device (Odón device) to effectively deliver the fetus during prolonged second stage of labour. The Odón device is a low-cost technological innovation to facilitate operative vaginal delivery and designed to minimize trauma to the mother and baby. These features combined make it a potentially revolutionary development in obstetrics, particularly for improving intrapartum care and reducing maternal and perinatal morbidity and mortality in low resource settings. Methods/design This will be a hospital-based, multicenter prospective phase 1 cohort study with no control group. Delivery with the Odón device will be attempted under normal labour and non-emergency conditions on all the women enrolled in the study. One-hundred and thirty pregnant women will be recruited in tertiary care facilities in Argentina. Safety will be assessed by examining maternal and infant outcomes until discharge. Feasibility will be evaluated by observing successful expulsion of the fetal head after one-time application of the device under standardized conditions (full cervical dilation, anterior presentation, +2 station, normal fetal heart rate). Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR

  19. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions.

    PubMed

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-28

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism. PMID:23635123

  20. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.