Sample records for odd gravity harmonics

  1. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    PubMed

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  2. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.; Hirt, C.

    2015-10-01

    A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.

  3. When gluons go odd: how classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovchegov, Yuri V.; Skokov, Vladimir V.

    We show that, in the saturation/Color Glass Condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. Here, we evaluate the obtained expression both analytically and numerically, confirming that themore » odd-harmonics contribution to the two-gluon production in the saturation framework is non-zero.« less

  4. When gluons go odd: how classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions

    DOE PAGES

    Kovchegov, Yuri V.; Skokov, Vladimir V.

    2018-04-30

    We show that, in the saturation/Color Glass Condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. Here, we evaluate the obtained expression both analytically and numerically, confirming that themore » odd-harmonics contribution to the two-gluon production in the saturation framework is non-zero.« less

  5. Measurement of Jupiter’s asymmetric gravity field

    NASA Astrophysics Data System (ADS)

    Iess, L.; Folkner, W. M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W. B.; Stevenson, D. J.; Anderson, J. D.; Buccino, D. R.; Casajus, L. Gomez; Milani, A.; Park, R.; Racioppa, P.; Serra, D.; Tortora, P.; Zannoni, M.; Cao, H.; Helled, R.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Wahl, S.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.

    2018-03-01

    The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.

  6. Truncation of Spherical Harmonic Series and its Influence on Gravity Field Modelling

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Gruber, T.; Rummel, R.

    2009-04-01

    Least-squares adjustment is a very common and effective tool for the calculation of global gravity field models in terms of spherical harmonic series. However, since the gravity field is a continuous field function its optimal representation by a finite series of spherical harmonics is connected with a set of fundamental problems. Particularly worth mentioning here are cut off errors and aliasing effects. These problems stem from the truncation of the spherical harmonic series and from the fact that the spherical harmonic coefficients cannot be determined independently of each other within the adjustment process in case of discrete observations. The latter is shown by the non-diagonal variance-covariance matrices of gravity field solutions. Sneeuw described in 1994 that the off-diagonal matrix elements - at least if data are equally weighted - are the result of a loss of orthogonality of Legendre polynomials on regular grids. The poster addresses questions arising from the truncation of spherical harmonic series in spherical harmonic analysis and synthesis. Such questions are: (1) How does the high frequency data content (outside the parameter space) affect the estimated spherical harmonic coefficients; (2) Where to truncate the spherical harmonic series in the adjustment process in order to avoid high frequency leakage?; (3) Given a set of spherical harmonic coefficients resulting from an adjustment, what is the effect of using only a truncated version of it?

  7. A harmonic analysis of lunar gravity

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ferrari, A. J.

    1980-01-01

    An improved model of lunar global gravity has been obtained by fitting a sixteenth-degree harmonic series to a combination of Doppler tracking data from Apollo missions 8, 12, 15, and 16, and Lunar Orbiters 1, 2, 3, 4, and 5, and laser ranging data to the lunar surface. To compensate for the irregular selenographic distribution of these data, the solution algorithm has also incorporated a semi-empirical a priori covariance function. Maps of the free-air gravity disturbance and its formal error are presented, as are free-air anomaly and Bouguer anomaly maps. The lunar gravitational variance spectrum has the form V(G; n) = O(n to the -4th power), as do the corresponding terrestrial and martian spectra. The variance spectra of the Bouguer corrections (topography converted to equivalent gravity) for these bodies have the same basic form as the observed gravity; and, in fact, the spectral ratios are nearly constant throughout the observed spectral range for each body. Despite this spectral compatibility, the correlation between gravity and topography is generally quite poor on a global scale.

  8. How classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Skokov, Vladimir V.

    2018-05-01

    We show that, in the saturation/color glass condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. We evaluate the obtained expression both analytically and numerically, confirming that the odd-harmonics contribution to the two-gluon production in the saturation framework is nonzero.

  9. Harmonic analysis of the DTU10 global gravity anomalies

    NASA Astrophysics Data System (ADS)

    Abrykosov, O.; Förste, Ch.; Gruber, Ch.; Shako, R.; Barthelmes, F.

    2012-04-01

    We have computed the Earth's gravity models to degree/order 5400 and 10800 (in terms of the ellipsoidal and spherical harmonics) from a rigorous integration of the 2'x2' and 1'x1' global grids of gravity anomalies provided by the Danish Technical University (DTU). The gravity signal recovered from the DTU10 data shows 1) a strong dependency on the truncation of the EGM2008 gravity model which were used to fill-in land areas in the DTU10 grids and 2) an irregular behaviour at frequencies behind the resolution of the EGM2008. We discuss the gravity signal and its accuracy estimation computed from the complete DTU10 grids as well as separately from the data over land and ocean areas.

  10. The Gravity field of Comet 67 P/Churyumov-Gerasimenko Expressed in Bispherical Harmonics

    NASA Astrophysics Data System (ADS)

    Andert, T.; Barriot, J. P.; Paetzold, M.; Sichoix, L.; Tellmann, S.; Häusler, B.

    2015-12-01

    On 6 August 2014, after a ten years cruise, the ESA-Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. At that time the spacecraft was commanded to drift along with the comet at distances between 100 km and 50 km, the distance was then successfully lowered to 30 km in September 2014 and to 10 km in November 2014 and bound orbits could be achieved. Based on Doppler tracking data the Rosetta radio science experiment (RSI) was able to determine the mass of the nucleus and its gravity field in spherical harmonics series in order to constrain density and the internal structure of the nucleus. The shape of the comet is complex, a representation of the gravity field as belonging to one single body in either spherical or ellipsoidal harmonics series will give the shape of the body more preference than its internal structure. The observed shape of the nucleus, however, offers the opportunity to interpret it as consisting of two different bodies, namely the "head" and the "feet" sections of 67P/Churyumov-Gerasimenko, both having a nearly ellipsoidal shape. In this new approach, the bispherical harmonics expansion, the comet nucleus has been approximated by two independent lobes, each lobe represented by its own spherical harmonics expansion. As a result of the bispherical harmonics representation, it is anticipated that the gravity field will gain higher accuracy and will be less dominated by the complex shape of the comet. We have derived the analytical expressions of the gravity potential and its derivatives of a body in bispherical coordinates and applied this concept to the comet Churyumov-Gerasimenko. The paper will present the bispherical harmonics representation of the gravity field and first results derived from this new concept.

  11. Venus spherical harmonic gravity model to degree and order 60

    NASA Technical Reports Server (NTRS)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  12. Spatial properties of odd and even low order harmonics generated in gas.

    PubMed

    Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph

    2015-01-14

    High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.

  13. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    PubMed

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  14. Prediction for the Flow-induced Gravity Field of Saturn: Implications for Cassini’s Grand Finale

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Kaspi, Yohai

    2017-07-01

    The Cassini measurements of Saturn’s gravity field during its Grand Finale might shed light on a long-standing question regarding the flow on Saturn. While the cloud-level winds are well known, little is known about whether these winds are confined to the outer layers of the planet or penetrate deep into the interior. An additional complexity is added by the uncertainty in the exact rotation period of Saturn, a key factor in determining the cloud-level winds, with an effect on the north-south symmetric part of the winds. Using Saturn’s cloud-level winds we relate the flow to the gravity harmonics. We give a prediction for the odd harmonics {J}3,{J}5,{J}7,{and} {J}9 as a function of the flow depth, identifying three ranges of depths. Since the odd harmonics depend solely on the flow, and are not influenced by Saturn’s shape and static density distribution, any measured value of the odd harmonics by Cassini can be used to uniquely determine the depth of the flow. We also discuss the flow-induced even harmonics {{Δ }}{J}2,{{Δ }}{J}4,\\ldots ,{{Δ }}{J}12 that are affected by Saturn’s rotation period. While the high-degree even harmonics might also be used to determine the flow depth, the lower-degree even harmonics serve as uncertainties for analysis of the planet’s interior structure and composition. Thus, the gravity harmonics measured during the Cassini Grand Finale may be used to get a first-order estimate of the flow structure and to better constrain the planet’s density structure and composition.

  15. A new method for gravity field recovery based on frequency analysis of spherical harmonics

    NASA Astrophysics Data System (ADS)

    Cai, Lin; Zhou, Zebing

    2017-04-01

    All existing methods for gravity field recovery are mostly based on the space-wise and time-wise approach, whose core processes are constructing the observation equations and solving them by the least square method. It's should be pointed that the least square method means the approximation. On the other hand, we can directly and precisely obtain the coefficients of harmonics by computing the Fast Fourier Transform (FFT) when we do 1-D data (time series) analysis. So the question whether we directly and precisely obtain the coefficients of spherical harmonic by computing 2-D FFT of measurements of satellite gravity mission is of great significance, since this may guide us to a new understanding of the signal components of gravity field and make us determine it quickly by taking advantage of FFT. Like the 1-D data analysis, the 2-D FFT of measurements of satellite can be computed rapidly. If we can determine the relationship between spherical harmonics and 2-D Fourier frequencies and the transfer function from measurements to spherical coefficients, the question mentioned above can be solved. So the objective of this research project is to establish a new method based on frequency analysis of spherical harmonic, which directly compute the confidents of spherical harmonic of gravity field, which is differ from recovery by least squares. There is a one to one correspondence between frequency spectrum and the time series in 1-D FFT. The 2-D FFT has a similar relationship to 1-D FFT. Owing to the fact that any degree or order (higher than one) of spherical function has multi frequencies and these frequencies may be aliased. Fortunately, the elements and ratio of these frequencies of spherical function can be determined, and we can compute the coefficients of spherical function from 2-D FFT. This relationship can be written as equations and equivalent to a matrix, which is solid and can be derived in advance. Until now the relationship has be determined. Some preliminary

  16. Adjoint Sensitivity Analysis of Orbital Mechanics: Application to Computations of Observables' Partials with Respect to Harmonics of the Planetary Gravity Fields

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.; Sunseri, Richard F.

    2005-01-01

    An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.

  17. Use of videos for students to see the effect of changing gravity on harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Worley, Alan; Davis, Shirley; Smith, Linda; Gell, Amber

    2010-03-01

    In introductory physics classes, students are introduced to harmonic oscillators such as masses on springs and the simple pendulum. In derivation of the equations describing these systems, the term ``g'' for the acceleration due to gravity cancels in the equation for the period of a mass oscillating on a spring, but it remains in the equation for the period of a pendulum. Frequently there is a homework problem asking how the system described would behave on the Moon, Mars, etc. Students have to have faith in the equations. In January, 2009, a team of community college faculty flew an experiment aboard an aircraft in conjunction with NASA's Microgravity University program. The experiment flown was a study in harmonic oscillator and pendulum behavior under various gravity situations. The aircraft simulated zero gravity, Martian, Lunar, and hypergravity conditions. The experiments were video recorded for students to study the behavior of the systems in varying gravity conditions. These videos are now available on the internet for anyone to use in introductory physics classes.

  18. Analysis of harmonic spline gravity models for Venus and Mars

    NASA Technical Reports Server (NTRS)

    Bowin, Carl

    1986-01-01

    Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.

  19. Attosecond control of orbital parity mix interferences and the relative phase of even and odd harmonics in an attosecond pulse train.

    PubMed

    Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L

    2012-08-24

    We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.

  20. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  1. Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k(sub 2) Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k(sub 2) solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k(sub 2) of 0.1697 +/- 0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C(sub 30) and, for the first time, C 50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C(sub 30) for approximately 1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60-80) than previous solutions.

  2. Multi-loop control of UPS inverter with a plug-in odd-harmonic repetitive controller.

    PubMed

    Razi, Reza; Karbasforooshan, Mohammad-Sadegh; Monfared, Mohammad

    2017-03-01

    This paper proposes an improved multi-loop control scheme for the single-phase uninterruptible power supply (UPS) inverter by using a plug-in odd-harmonic repetitive controller to regulate the output voltage. In the suggested control method, the output voltage and the filter capacitor current are used as the outer and inner loop feedback signals, respectively and the instantaneous value of the reference voltage feedforwarded to the output of the controller. Instead of conventional linear (proportional-integral/-resonant) and conventional repetitive controllers, a plug-in odd-harmonic repetitive controller is employed in the outer loop to regulate the output voltage, which occupies less memory space and offers faster tracking performance compared to the conventional one. Also, a simple proportional controller is used in the inner loop for active damping of possible resonances and improving the transient performance. The feedforward of the converter reference voltage enhances the robust performance of the system and simplifies the system modelling and the controller design. A step-by-step design procedure is presented for the proposed controller, which guarantees stability of the system under worst-case scenarios. Simulation and experimental results validate the excellent steady-state and transient performance of the proposed control scheme and provide the exact comparison of the proposed method with the conventional multi-loop control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Odd Harmonics in Exoplanet Photometry: Weather or Artifact?

    NASA Astrophysics Data System (ADS)

    Chayes, Victoria; Cowan, Nicholas; Bouffard, Élie; Haggard, Hal

    2017-01-01

    In the Fourier decomposition of light curves of exoplanets observed by the Kepler mission, one expects to see power in the first mode, from the planet orbiting the star, and the second mode, from ellipsoidal variations. Observations of power in the third mode of planets such as HAT-P-7b and Kepler-13Ab are as of yet unexplained. Using a spherical harmonic basis we analyze planet maps to find their corresponding light curves and show that no planet observed edge-on can produce these third harmonics with either reflected light or thermal emissions. Further numerical and analytic calculations put upper bounds on the power in the third mode that can be produced by planets not transiting perfectly edge-on, or with time-variable maps. We find the expected order of magnitude of these contributions to be at most two orders of magnitude below the first harmonic. The North-South asymmetric features or time-variable maps that could produce such harmonics would suggest exoplanetary weather if observed. However, more careful analysis of tidal effects on the stars of HAT-P-7b and Kepler-13Ab suggest that these particular harmonics are stellar in origin. Élie Bouffard was supported by an iREx summer internship. We thank the International Space Science Institute in Bern, Switzerland, for hosting the Exo-Cartography workshop series.

  4. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  5. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  6. Harmonic multiplication using resonant tunneling

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Correa, C. A.

    1988-01-01

    This paper demonstrates the use of resonant-tunneling diodes as varistors for harmonic multiplication. It is shown that efficient odd-harmonic conversion is possible and that even harmonics do not appear because of the antisymmetry of the current-voltage (I-V) curve. It is also shown that, with the proper choice of resonant-tunneling structure and pump amplitude, most of the harmonic output power can be confined to a single odd-harmonic frequency. Fifth-harmonic multiplication was demonstrated with an output at 21.75 GHz and a power conversion efficiency of 0.5 percent, and a fifth-harmonic efficiency of 2.7 percent was achieved in a circuit simulation using an improved I-V curve.

  7. Normal Gravity Fields and Equipotential Ellipsoids of Small Objects in the Solar System: A Closed-form Solution in Ellipsoidal Harmonics up to the Second Degree

    NASA Astrophysics Data System (ADS)

    Hu, Xuanyu

    2017-11-01

    We propose a definition for the normal gravity fields and normal figures of small objects in the solar system, such as asteroids, cometary nuclei, and planetary moons. Their gravity fields are represented as series of ellipsoidal harmonics, ensuring more robust field evaluation in the proximity of an arbitrary, convex shape than using spherical harmonics. The normal gravity field, approximate to the actual field, can be described by a finite series of three terms, that is, degree zero, and the zonal and sectoral harmonics of degree two. The normal gravity is that of an equipotential ellipsoid, defined as the normal ellipsoid of the body. The normal ellipsoid may be distinct from the actual figure. We present a rationale for specifying and a numerical method for determining the parameters of the normal ellipsoid. The definition presented here generalizes the convention of the normal spheroid of a large, hydrostatically equilibrated planet, such as Earth. Modeling the normal gravity and the normal ellipsoid is relevant to studying the formation of the “rubble pile” objects, which may have been accreted, or reorganized after disruption, under self-gravitation. While the proposed methodology applies to convex, approximately ellipsoidal objects, those bi-lobed objects can be treated as contact binaries comprising individual convex subunits. We study an exemplary case of the nearly ellipsoidal Martian moon, Phobos, subject to strong tidal influence in its present orbit around Mars. The results allude to the formation of Phobos via gravitational accretion at some further distance from Mars.

  8. The relationship between mean anomaly block sizes and spherical harmonic representations. [of earth gravity

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1977-01-01

    The frequently used rule specifying the relationship between a mean gravity anomaly in a block whose side length is theta degrees and a spherical harmonic representation of these data to degree l-bar is examined in light of the smoothing parameter used by Pellinen (1966). It is found that if the smoothing parameter is not considered, mean anomalies computed from potential coefficients can be in error by about 30% of the rms anomaly value. It is suggested that the above mentioned rule should be considered only a crude approximation.

  9. Polarization-Resolved Study of High Harmonics from Bulk Semiconductors

    NASA Astrophysics Data System (ADS)

    Kaneshima, Keisuke; Shinohara, Yasushi; Takeuchi, Kengo; Ishii, Nobuhisa; Imasaka, Kotaro; Kaji, Tomohiro; Ashihara, Satoshi; Ishikawa, Kenichi L.; Itatani, Jiro

    2018-06-01

    The polarization property of high harmonics from gallium selenide is investigated using linearly polarized midinfrared laser pulses. With a high electric field, the perpendicular polarization component of the odd harmonics emerges, which is not present with a low electric field and cannot be explained by the perturbative nonlinear optics. A two-dimensional single-band model is developed to show that the anisotropic curvature of an energy band of solids, which is pronounced in an outer part of the Brillouin zone, induces the generation of the perpendicular odd harmonics. This model is validated by three-dimensional quantum mechanical simulations, which reproduce the orientation dependence of the odd-order harmonics. The quantum mechanical simulations also reveal that the odd- and even-order harmonics are produced predominantly by the intraband current and interband polarization, respectively. These experimental and theoretical demonstrations clearly show a strong link between the band structure of a solid and the polarization property of the odd-order harmonics.

  10. Non-Newtonian gravity or gravity anomalies?

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.; Chao, B. Fong; Schatten, Kenneth H.; Sager, William W.

    1988-01-01

    Geophysical measurements of G differ from laboratory values, indicating that gravity may be non-Newtonian. A spherical harmonic formulation is presented for the variation of (Newtonian) gravity inside the Earth. Using the GEM-10B Earth Gravitational Field Model, it is shown that long-wavelength gravity anomalies, if not corrected, may masquerade as non-Newtonian gravity by providing significant influences on experimental observation of delta g/delta r and G. An apparent contradiction in other studies is also resolved: i.e., local densities appear in equations when average densities of layers seem to be called for.

  11. Utilizing the Upcoming Gravity Measurements from Cassini's Proximal Orbits for Studying the Atmospheric Dynamics of Saturn - How Deep Do the Winds Penetrate?

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Galanti, E.

    2014-12-01

    At the end of the Cassini mission, the spacecraft will descend into close-by proximal orbits around Saturn. During those proximal orbits, Cassini will obtain high precision gravity measurements of the planet. In this talk, we will discuss how this data can be used to estimate the depth of the observed flows on the planet. This can be done in several ways: 1. measurements of the high order even harmonics which beyond J10 are dominated by the dynamics; 2. measurements of odd gravity harmonics which have no contribution from a static planet, and therefore are a pure signature of dynamics; 3. upper limits on the depth can be obtained by comparing low order even harmonics from dynamical models to the difference between the measured low order even harmonics and the largest possible values of a static planet; 4. direct latitudinally varying measurements of the gravity field exerted on the spacecraft. We will discuss how these methods may be applied and show that given the expected sensitivity of Cassini the odd harmonics J3 and J5 will have the best sensitivity to deep dynamics, allowing detection of winds reaching only O(100km) deep, if those exist on Saturn. We use a hierarchy of dynamical models ranging from full 3D dynamical circulation models to simplified dynamical models where the sensitivity of the gravity field to the dynamics can be explored. In order to invert the gravity field to be measured by Cassini into the depth dependent circulation, an adjoint inverse model is constructed for the dynamical models, thus allowing backward integration of the dynamical model. This tool can be used for examination of various scenarios, including cases in which the depth of the wind depends on latitudinal position. In summary, we expect that the very end of Cassini's tour holds an opportunity for gravity measurements that may finally allow answering one of the long-lasting puzzles in planetary science regarding the depth of the zonal jets on the gas giants. In fact, as Juno

  12. High-frequency analysis of Earth gravity field models based on terrestrial gravity and GPS/levelling data: a case study in Greece

    NASA Astrophysics Data System (ADS)

    Papanikolaou, T. D.; Papadopoulos, N.

    2015-06-01

    The present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.

  13. Teaching from a Microgravity Environment: Harmonic Oscillator and Pendulum

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Davis, Shirley; Worley, Alan; Smith, Linda; Gell, Amber

    2009-04-01

    This presentation reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms.

  14. Generation of higher odd harmonics in a defective photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanujam, N. R., E-mail: wilsonpra@yahoo.co.in; Wilson, K. S. Joseph

    2015-06-24

    A photonic crystal (AB){sup 2}(DB)(AB){sup 2} with high refractive index medium as silicon and low refractive medium as air is considered. Using the transfer matrix method, the transmission properties as a function of wavelength with photonic band gaps has been obtained. We are able to demonstrate the generation of third, fifth, seventh and ninth harmonics in the present work. We show that if the air medium is removed in the defect, the defect modes are generated but not harmonics. It can be designed to have a frequency conversion, and have a potential for becoming the basis for the next generationmore » of optical devices.« less

  15. Quasi-phase-matching of only even-order high harmonics.

    PubMed

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  16. Venus - Global gravity and topography

    NASA Technical Reports Server (NTRS)

    Mcnamee, J. B.; Borderies, N. J.; Sjogren, W. L.

    1993-01-01

    A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisonsbetween this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.

  17. The Dawn Gravity Investigation at Vesta and Ceres

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Asmar, S.W.; Bills, B. G.; Mastrodemos, N.; Park, R. S.; Raymond, C. A.; Smith, D. E.; Zuber, M. T.

    2011-01-01

    The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn's framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.

  18. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.

  19. A harmonic analysis of lunar topography

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ferrari, A. J.

    1977-01-01

    A global lunar topographic map has been derived from existing earth-based and orbital observations supplemented in areas without data by a linear autocovariance predictor. Of 2592 bins, each 5 deg square, 1380 (64.7% by area) contain at least one measurement. A spherical harmonic analysis to degree 12 yields a mean radius of 1737.53 plus or minus 0.03 km (formal standard error) and an offset of the center of figure of 1.98 plus or minus 0.06 km toward (19 plus or minus 2) deg S, (194 plus or minus 1) deg E. A Bouguer gravity map, derived from a 12-degree free-air gravity model and the present topography data, is presented for an elevation of 100 km above the mean surface. It is confirmed that the low-degree gravity harmonics are determined primarily by surface height variations and only secondarily by lateral density variations.

  20. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  1. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    PubMed

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  2. Harmonic Series Meets Fibonacci Sequence

    ERIC Educational Resources Information Center

    Chen, Hongwei; Kennedy, Chris

    2012-01-01

    The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?

  3. Venus gravity and topography: 60th degree and order model

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.

    1993-01-01

    We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.

  4. Teaching Physics from a Reduced Gravity Environment

    NASA Astrophysics Data System (ADS)

    Benge, Raymond D.; Young, C.; Davis, S.; Worley, A.; Smith, L.; Gell, A.

    2010-01-01

    This poster reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. Typical homework problems for introductory physics classes ask questions such as "What would be the period of oscillation if this experiment were performed on the Moon or Mars?” This gives students a chance to actually see the effects predicted by the equations. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms in both college and high school physics classes.

  5. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  6. Spectral analysis of the gravity and topography of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  7. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai

    2017-07-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  8. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galanti, Eli; Kaspi, Yohai; Durante, Daniele

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulatedmore » Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.« less

  9. Fast calculation of low altitude disturbing gravity for ballistics

    NASA Astrophysics Data System (ADS)

    Wang, Jianqiang; Wang, Fanghao; Tian, Shasha

    2018-03-01

    Fast calculation of disturbing gravity is a key technology in ballistics while spherical cap harmonic(SCH) theory can be used to solve this problem. By using adjusted spherical cap harmonic(ASCH) methods, the spherical cap coordinates are projected into a global coordinates, then the non-integer associated Legendre functions(ALF) of SCH are replaced by integer ALF of spherical harmonics(SH). This new method is called virtual spherical harmonics(VSH) and some numerical experiment were done to test the effect of VSH. The results of earth's gravity model were set as the theoretical observation, and the model of regional gravity field was constructed by the new method. Simulation results show that the approximated errors are less than 5mGal in the low altitude range of the central region. In addition, numerical experiments were conducted to compare the calculation speed of SH model, SCH model and VSH model, and the results show that the calculation speed of the VSH model is raised one order magnitude in a small scope.

  10. Can even-order laser harmonics exhibited by Bohmian trajectories in symmetric potentials be observed?

    PubMed

    Peatross, J; Johansen, J

    2014-01-13

    Strong-field laser-atom interactions provide extreme conditions that may be useful for investigating the de Broglie-Bohm quantum interpretation. Bohmian trajectories representing bound electrons in individual atoms exhibit both even and odd harmonic motion when subjected to a strong external laser field. The phases of the even harmonics depend on the random initial positions of the trajectories within the wave function, making the even harmonics incoherent. In contrast, the phases of odd harmonics remain for the most part coherent regardless of initial position. Under the conjecture that a Bohmian point particle plays the role of emitter, this suggests an experiment to determine whether both even and odd harmonics are produced at the atomic level. Estimates suggest that incoherent emission of even harmonics may be detectable out the side of an intense laser focus interacting with a large number of atoms.

  11. Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1985-01-01

    A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.

  12. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.

    2012-07-01

    The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical

  13. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  14. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  15. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš

    2016-11-01

    We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.

  16. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  17. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data

    USGS Publications Warehouse

    Han, S.-C.; Sauber, J.; Luthcke, S.B.; Ji, C.; Pollitz., F. F.

    2008-01-01

    We report Gravity Recovery and Climate Experiment (GRACE) satellite observations of coseismic displacements and postseismic transients from the great Sumatra-Andaman Islands (thrust event; Mw ???9.2) earthquake in December 2004. Instead of using global spherical harmonic solutions of monthly gravity fields, we estimated the gravity changes directly using intersatellite range-rate data with regionally concentrated spherical Slepian basis functions every 15-day interval. We found significant step-like (coseismic) and exponential-like (postseismic) behavior in the time series of estimated coefficients (from May 2003 to April 2007) for the spherical Slepian function's. After deriving coseismic slip estimates from seismic and geodetic data that spanned different time intervals, we estimated and evaluated postseismic relaxation mechanisms with alternate asthenosphere viscosity models. The large spatial coverage and uniform accuracy of our GRACE solution enabled us to clearly delineate a postseismic transient signal in the first 2 years of postearthquake GRACE data. Our preferred interpretation of the long-wavelength components of the postseismic avity change is biviscous viscoelastic flow. We estimated a transient viscosity of 5 ??17 Pa s and a steady state viscosity of 5 ?? 1018 - 1019 Pa s. Additional years of the GRACE observations should provide improved steady state viscosity estimates. In contrast to our interpretation of coseismic gravity change, the prominent postearthquake positive gravity change around the Nicobar Islands is accounted for by seafloor uplift with less postseismic perturbation in intrinsic density in the region surrounding the earthquake. Copyright 2008 by the American Geophysical Union.

  18. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  19. Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

    PubMed

    Murase, Kenya; Konishi, Takashi; Takeuchi, Yuki; Takata, Hiroshige; Saito, Shigeyoshi

    2013-07-01

    Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.

  20. Spherical harmonic analysis of a harmonic function given on a spheroid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-07-01

    A new analytical method for the computation of a truncated series of solid spherical harmonic coefficients (HCs) from data on a spheroid (i.e. an oblate ellipsoid of revolution) is derived, using a transformation between surface and solid spherical HCs. A two-step procedure is derived to extend this transformation beyond degree and order (d/o) 520. The method is compared to the Hotine-Jekeli transformation in a numerical study based on the EGM2008 global gravity model. Both methods are shown to achieve submicrometre precision in terms of height anomalies for a model to d/o 2239. However, both methods result in spherical harmonic models that are different by up to 7.6 mm in height anomalies and 2.5 mGal in gravity disturbances due to the different coordinate system used. While the Hotine-Jekeli transformation requires the use of an ellipsoidal coordinate system, the new method uses only spherical polar coordinates. The Hotine-Jekeli transformation is numerically more efficient, but the new method can more easily be extended to cases where (a linear combination of) normal derivatives of the function under consideration are given on the surface of the spheroid. It therefore provides a solution to many types of ellipsoidal boundary-value problems in the spectral domain.

  1. Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-04-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri

  2. The ITSG-Grace2014 Gravity Field Model

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate

    2015-04-01

    The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.

  3. High-harmonic generation from an atomically thin semiconductor [Observation of high harmonics from an atomically thin semiconductor

    DOE PAGES

    Liu, Hanzhe; Li, Yilei; You, Yong Sing; ...

    2016-11-14

    High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process, including different symmetries, access to individual valleys and enhanced many-body interactions. Here we demonstrate non-perturbative HHG from a monolayer MoS 2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatiblemore » with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. In conclusion, the combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.« less

  4. Comparing T-odd and T-even spin sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O.V.

    2015-04-10

    Sum rules for T-even and T-odd structure functions and parton distributions are considered. The case of spin-dependent distributions related to energy-momentum tensor (EMT) is specifically addressed. The Burkardt sum rule for T-odd Sivers functions may be related to EMT provided the imaginary prescription for gluonic pole correlator is incorporated. The momentum sum rule for deuteron tensor spin structure function allows one to probe indirectly the gravity couplings to quarks and gluons.

  5. Annual, Seasonal, and Secular Changes in Time-Variable Gravity from GRACE

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Luthcke, S. B.; Klosko, S. M.; Rowlands, D. D.; Chinn, D. S.; McCarthy, J. J.; Ray, R. D.; Boy, J.

    2007-12-01

    The NASA/DLR GRACE mission, launched in 2002, has now operated for more than five years, producing monthly and ten-day snapshots of the variations of the gravity field of the Earth. The available solutions, either from spherical harmonics or from mascons, allow us new insights into the variations of surface gravity on the Earth at annual, inter-annual, and secular time scales. Our baseline time series, based on GGM02C, NCEP Atmospheric Gravity with IB, and GOT00 tides now is extended to July 2007, spanning four+ years, and we analyze both mascon and spherical harmonic solutions from this time series with respect to global hydrology variations. Our 4degx4deg mascon solutions are extended to cover all continental regions of the globe. Comparisons with hydrology (land-surface) models can offer insights into how these models might be improved. We compare our baseline time series, with new time series that include an updated Goddard Ocean Tide (GOT) model, ECMWF- 3hr atmosphere de-aliasing data, and the MOG-2D ocean dealiasing product. Finally, we intercompare the spherical harmonic solutions at low degree from GRACE from the various product centers (e.g., GFZ, CSR, GRGS), and look for secular signals in both the GSFC mascon and spherical harmonic solutions, taking care to compare the results for secular gravity field change with independent solutions developed over 25 years of independent tracking to geodetic satellites by Satellite Laser Ranging (SLR) and DORIS.

  6. One-impulse targeting strategy for longitudinal drift control of geosynchronous spacecraft subject to tesseral harmonics and luni-solar gravity perturbations

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.

    1984-01-01

    Kamel's (1973) East-West Stationkeeping Analysis is extended and an algorithm is presented that targets the geosynchronous spacecraft to the ideal initial conditions starting from any given relative longitude deviation within a given tolerance deadband in order to repeat the ideal longitudinal drift cycle that results in the longest possible period of time between maneuvers. The motion description takes into account the perturbations introduced by earth's tesseral harmonics and by the luni-solar gravity, assuming a near-circular orbit that requires only the control of orbital energy to repeat the ideal drift cycle via a single impulsive velocity change. The location of the maneuver along the orbit is such that the post-Delta-V eccentricity is always minimized.

  7. Venus Gravity: 180th Degree and Order Model

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Banerdt, W. B.; Sjogren, W. L.

    1998-01-01

    The Megallan Doppler radiometric tracking data provides unprecedented precision for spacecraft based gravity measurements with the maximum resolution approaching spherical harmonic degree and order 180 in selected equatorial regions.

  8. Thermally and electrically controllable multiple high harmonics generation by harmonically driven quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Maglevanny, I. I.; Smolar, V. A.; Karyakina, T. I.

    2018-06-01

    In this paper, we consider the activation processes in nonlinear meta-stable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and high harmonic forcing from the viewpoint of catastrophe theory and show the possibility of generation of third and higher odd harmonics in output signal that lead to distortion of its wave front. A higher harmonics detection strategy is further proposed and explained in detail by exploring the influences of system parameters on the response output of the system that are discussed through numerical simulations.

  9. Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients

    NASA Astrophysics Data System (ADS)

    Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin

    2016-08-01

    In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.

  10. Tunneling ionization and harmonic generation in two-color fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.

    1996-02-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam ({omega}) and its harmonics (2{omega},3{omega}), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between {omega} and 3{omega} pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the {omega}{endash}2{omega} field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and withmore » the quantum theory for harmonic generation. {copyright} {ital 1996 Optical Society of America.}« less

  11. Gravity research at Cottrell observatory

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.; Anderson, J. D.; Lau, E. L.

    1977-01-01

    The Cottrell gravity research observatory and work in progress are described. Equipment in place and equipment to be installed, the cryogenic gravity meter (CGM), concrete pads to support the vertical seismometer, CGM, and guest experiments, techniques of data analysis, and improvements needed in the CGM are discussed. Harmonic earth eigenvibrations with multipole moments are examined and their compatibility with a fictitious black hole binary system (of which the primary central mass is assigned a value one million solar masses) located 400 light-years away is shown by calculations.

  12. A high resolution gravity model for Venus - GVM-1

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  13. Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity anomalies and potential coefficients

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1979-01-01

    Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.

  14. Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.

    2015-12-01

    Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.

  15. Gravity Field of Venus and Comparison with Earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1985-01-01

    The acceleration (gravity) anomaly estimates by spacecraft tracking, determined from Doppler residuals, are components of the gravity field directed along the spacecraft Earth line of sight (LOS). These data constitute a set of vector components of a planet's gravity field, the specific component depending upon where the Earth happened to be at the time of each measurement, and they are at varying altitudes above the planet surface. From this data set the gravity field vector components were derived using the method of harmonic splines which imposes a smoothness criterion to select a gravity model compatible with the LOS data. Given the piecewise model it is now possible to upward and downward continue the field quantities desired with a few parameters unlike some other methods which must return to the full dataset for each desired calculation.

  16. Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields

    NASA Astrophysics Data System (ADS)

    Hubbard, William B.

    2014-11-01

    Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).

  17. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  18. Selection rules for harmonic generation in solids

    NASA Astrophysics Data System (ADS)

    Moiseyev, Nimrod

    2015-05-01

    High-order harmonic generation (HHG) in a bulk crystal was first observed in 2011 [S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011), 10.1038/nphys1847]. Only odd-order harmonics were observed as expected on the basis of the selection rules in solids, which were derived when only the interband currents were taken into consideration. Here we study HHG in solids when the intraband currents are taken into consideration as well. We show that the dynamical selection rules are broken in solids and the possibility of generation of even-order harmonics cannot be excluded on the basis of the dynamical symmetry analysis. However, a simple analysis of the expression we obtained for the amplitude of the emitted high-order harmonics shows, without the need to carry out numerical calculations, that the even-order harmonics are suppressed due to the localization of the field-free one-electron density probability on the atoms in the solids.

  19. Geometrical Theory of Spherical Harmonics for Geosciences

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen

    2010-05-01

    Spherical harmonics play a central role in the modelling of spatial and temporal processes in the system Earth. The gravity field of the Earth and its temporal variations, sea surface topography, geomagnetic field, ionosphere etc., are just a few examples where spherical harmonics are used to represent processes in the system Earth. We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, e.g. up to degree and order 106 and beyond. The algorithm is based on the trigonometric reduction of Legendre polynomials and the geometric rotation in hyperspace. It is shown that Legendre polynomials can be computed using trigonometric series by pre-computing amplitudes and translation terms for all angular arguments. It is shown that they can be treated as vectors in the Hilbert hyperspace leading to unitary hermitian rotation matrices with geometric properties. Thus, rotation of spherical harmonics about e.g. a polar or an equatorial axis can be represented in the similar way. This novel method allows stable calculation of spherical harmonics up to an arbitrary degree and order, i.e. up to degree and order 106 and beyond.

  20. Natural motion around the Martian moon Phobos: the dynamical substitutes of the Libration Point Orbits in an elliptic three-body problem with gravity harmonics

    NASA Astrophysics Data System (ADS)

    Zamaro, M.; Biggs, J. D.

    2015-07-01

    The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.

  1. Mars topography harmonics and geophysical implications

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ferrari, A. J.

    1978-01-01

    The paper describes an improved model of Martian global topography which has been obtained by fitting a sixteenth-degree harmonic series to occultation, radar, spectral, and photogrammetric measurements. Empirical elevation data based on photographic data are used to supplement the observations in areas without data. Values for the mean radius, the mean density, and the displacement of the center of the figure from the center of mass are presented. The reported geometric flattening is too great and the reported dynamic flattening is too small for Mars to be homogeneous and hydrostatic. Maps of the data distribution, global topography, and Bouguer gravity anomaly are interpreted in terms of a crustal thickness map which is consistent with gravity, topography, and recent preliminary Viking seismic results.

  2. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  3. On the Retrieval of Geocenter Motion from Gravity Data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Mémin, A.; Boy, J. P.; Rogister, Y. J. G.

    2017-12-01

    The center of mass of the whole Earth, the so-called geocenter, is moving with respect to the Center of Mass of the solid Earth because of the loading exerted by the Earth's fluid layers on the solid crust. Space geodetic techniques tying satellites and ground stations (e.g. GNSS, SLR and DORIS) have been widely employed to estimate the geocenter motion. Harmonic degree-1 variations of the gravity field are associated to the geocenter displacement. We show that ground records of time-varying gravity from Superconducting Gravimeters (SGs) can be used to constrain the geocenter motion. Two major difficulties have to be tackled: (1) the sensitivity of surface gravimetric measurements to local mass changes, and in particular hydrological and atmospheric variabilities; (2) the spatial aliasing (spectral leakage) of spherical harmonic degrees higher than 1 induced by the under-sampling of station distribution. The largest gravity variations can be removed from the SG data by subtracting solid and oceanic tides as well as atmospheric and hydrologic effects using global models. However some hydrological signal may still remain. Since surface water content is well-modelled using GRACE observations, we investigate how the spatial aliasing in SG data can be reduced by employing GRACE solutions when retrieving geocenter motion. We show synthetic simulations using complete surface loading models together with GRACE solutions computed at SG stations. In order to retrieve the degree-one gravity variations that are associated with the geocenter motion, we use a multi-station stacking method that performs better than a classical spherical harmonic stacking when the station distribution is inhomogeneous. We also test the influence of the network configuration on the estimate of the geocenter motion. An inversion using SG and GRACE observations is finally presented and the results are compared with previous geocenter estimates.

  4. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    NASA Astrophysics Data System (ADS)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  5. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    NASA Technical Reports Server (NTRS)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  6. Evaluation of GOCE-based global gravity field models over Japan after the full mission using free-air gravity anomalies and geoid undulations

    NASA Astrophysics Data System (ADS)

    Odera, Patroba Achola; Fukuda, Yoichi

    2017-09-01

    The performance of Gravity field and steady-state Ocean Circulation Explorer (GOCE) global gravity field models (GGMs), at the end of GOCE mission covering 42 months, is evaluated using geoid undulations and free-air gravity anomalies over Japan, including six sub-regions (Hokkaido, north Honshu, central Honshu, west Honshu, Shikoku and Kyushu). Seventeen GOCE-based GGMs are evaluated and compared with EGM2008. The evaluations are carried out at 150, 180, 210, 240 and 270 spherical harmonics degrees. Results show that EGM2008 performs better than GOCE and related GGMs in Japan and three sub-regions (Hokkaido, central Honshu and Kyushu). However, GOCE and related GGMs perform better than EGM2008 in north Honshu, west Honshu and Shikoku up to degree 240. This means that GOCE data can improve geoid model over half of Japan. The improvement is only evident between degrees 150 and 240 beyond which EGM2008 performs better than GOCE GGMs in all the six regions. In general, the latest GOCE GGMs (releases 4 and 5) perform better than the earlier GOCE GGMs (releases 1, 2 and 3), indicating the contribution of data collected by GOCE in the last months before the mission ended on 11 November 2013. The results indicate that a more accurate geoid model over Japan is achievable, based on a combination of GOCE, EGM2008 and terrestrial gravity data sets. [Figure not available: see fulltext. Caption: Standard deviations of the differences between observed and GGMs implied ( a) free-air gravity anomalies over Japan, ( b) geoid undulations over Japan. n represents the spherical harmonic degrees

  7. Gravity field of Venus at constant altitude and comparison with earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.; Abers, G.; Shure, L.

    1985-01-01

    The gravity field of Venus is characterized in gravity-anomaly and geoid-undulation maps produced by applying the harmonic-spline technique (Shure et al., 1982 and 1983; Parker and Shure, 1982) to Pioneer Venus Orbiter line-of-sight data. A positive correlation between Venusian topographic features and gravity anomalies is observed, in contrast to the noncorrelation seen on earth, and attributed to the thicker crust of Venus (70-80 vs 5-40 km for earth), crustal loading by recent volcanism, and possible regional elevation due to deep heating and thermal expansion.

  8. Spherical harmonic expansion of the Levitus Sea surface topography

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.

  9. Global Gravity Field Determination by Combination of terrestrial and Satellite Gravity Data

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Pail, R.; Gruber, T.

    2011-12-01

    A multitude of impressive results document the success of the satellite gravity field mission GOCE with a wide field of applications in geodesy, geophysics and oceanography. The high performance of GOCE gravity field models can be further improved by combination with GRACE data, which is contributing the long wavelength signal content of the gravity field with very high accuracy. An example for such a consistent combination of satellite gravity data are the satellite-only models GOCO01S and GOCO02S. However, only the further combination with terrestrial and altimetric gravity data enables to expand gravity field models up to very high spherical harmonic degrees and thus to achieve a spatial resolution down to 20-30 km. First numerical studies for high-resolution global gravity field models combining GOCE, GRACE and terrestrial/altimetric data on basis of the DTU10 model have already been presented. Computations up to degree/order 600 based on full normal equations systems to preserve the full variance-covariance information, which results mainly from different weights of individual terrestrial/altimetric data sets, have been successfully performed. We could show that such large normal equations systems (degree/order 600 corresponds to a memory demand of almost 1TByte), representing an immense computational challenge as computation time and memory requirements put high demand on computational resources, can be handled. The DTU10 model includes gravity anomalies computed from the global model EGM08 in continental areas. Therefore, the main focus of this presentation lies on the computation of high-resolution combined gravity field models based on real terrestrial gravity anomaly data sets. This is a challenge due to the inconsistency of these data sets, including also systematic error components, but a further step to a real independent gravity field model. This contribution will present our recent developments and progress by using independent data sets at certain

  10. Propagation effects in the generation process of high-order vortex harmonics.

    PubMed

    Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu

    2017-09-04

    We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.

  11. The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.

    1999-01-01

    Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.

  12. Downward continuation of the free-air gravity anomalies to the ellipsoid using the gradient solution and terrain correction: An attempt of global numerical computations

    NASA Technical Reports Server (NTRS)

    Wang, Y. M.

    1989-01-01

    The formulas for the determination of the coefficients of the spherical harmonic expansion of the disturbing potential of the earth are defined for data given on a sphere. In order to determine the spherical harmonic coefficients, the gravity anomalies have to be analytically downward continued from the earth's surface to a sphere-at least to the ellipsoid. The goal is to continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent elevation models. The basic method for the downward continuation is the gradient solution (the g sub 1 term). The terrain correction was also computed because of the role it can play as a correction term when calculating harmonic coefficients from surface gravity data. The fast Fourier transformation was applied to the computations.

  13. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  14. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  15. Earth System Data Records of Mass Transport from Time-Variable Gravity Data

    NASA Astrophysics Data System (ADS)

    Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.

    2014-12-01

    Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.

  16. Status of the geopotential. [earth gravity measurement

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1983-01-01

    Satellite laser ranging, satellite altimetry, and improved measurements of surface gravitational anomalies have broadened the data base on intermediate and short wavelength regions of the earth gravity field. The global data set served to develop new geopotential models with a resolution in spherical harmonics out to degree 180. The resolution was made possible using Seasat altimetry data containing 56,761 values of 1 x 1 deg gravity anomalies. Satellite-to-satellite tracking techniques involving the Geos-3 and Apollo spacecraft data for the sea surface temperature have yielded accurate intermediate wavelength gravity variations which correlate well with residual depth anomalies. Oceanic gravity anomalies have been computed directly from satellite altimetry or through statistical estimation using oceanic geoid heights. The data sets for gravimetric geoids have been compared with altimetric surfaces to identify areas which were of interest for geophysical investigation. Future data sets could become available from a proposed satellite-to-satellite Doppler tracking system (Gravsat) launched by NASA.

  17. Lunar gravity derived from long-period satellite motion, a proposed method

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1971-01-01

    A method was devised to determine the spherical harmonic coefficients of the lunar gravity field. The method consists of a two-step data reduction and estimation process. Pseudo-Doppler data were generated simulating two different lunar orbits. The analysis included the perturbing effects of the L1 lunar gravity field, the earth, the sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements were obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of the experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.

  18. ARISTOTELES: A European approach for an Earth gravity field recovery mission

    NASA Technical Reports Server (NTRS)

    Benz, R.; Faulks, H.; Langemann, M.

    1989-01-01

    Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.

  19. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  20. Europe's Preparation For GOCE Gravity Field Recovery

    NASA Astrophysics Data System (ADS)

    Suenkel, H.; Suenkel, H.

    2001-12-01

    The European Space Agency ESA is preparing for its first dedicated gravity field mission GOCE (Gravity Field and Steady-state Ocean Circulation Explorer) with a proposed launch in fall 2005. The mission's goal is the mapping of the Earth's static gravity field with very high resolution and utmost accuracy on a global scale. GOCE is a drag-free mission, flown in a circular and sun-synchronous orbit at an altitude between 240 and 250 km. Each of the two operational phases will last for 6 months. GOCE is based on a sensor fusion concept combining high-low satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG). The transformation of the GOCE sensor data into a scientific product of utmost quality and reliability requires a well-coordinated effort of experts in satellite geodesy, applied mathematics and computer science. Several research groups in Europe do have this expertise and decided to form the "European GOCE Gravity Consortium (EGG-C)". The EGG-C activities are subdivided into tasks such as standard and product definition, data base and data dissemination, precise orbit determination, global gravity field model solutions and regional solutions, solution validation, communication and documentation, and the interfacing to level 3 product scientific users. The central issue of GOCE data processing is, of course, the determination of the global gravity field model using three independent mathematical-numerical techniques which had been designed and pre-developed in the course of several scientific preparatory studies of ESA: 1. The direct solution which is a least squares adjustment technique based on a pre-conditioned conjugated gradient method (PCGM). The method is capable of efficiently transforming the calibrated and validated SST and SGG observations directly or via lumped coefficients into harmonic coefficients of the gravitational potential. 2. The time-wise approach considers both SST and SGG data as a time series. For an idealized

  1. The evens and odds of CMB anomalies

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    2018-06-01

    The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.

  2. Theoretical analysis of high-order harmonic generation from a coherent superposition of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milosevic, Dejan B.; Max-Born-Institut, Max-Born-Strasse 2a, Berlin, 12489

    2006-02-15

    A quantum theory of high-order harmonic generation by a strong laser field in the presence of more bound states is formulated. The obtained numerical and analytical results for a two-state hydrogenlike atom model show that the harmonic spectrum consists of two parts: a usual single-state harmonic spectrum of odd harmonics having the energies (2k+1){omega} and a resonant part with the peaks around the excitation energy {delta}{omega}. The energy of the harmonics in the resonant part of the spectrum is equal to {delta}{omega}{+-}{omega}, {delta}{omega}{+-}3{omega}, .... For energies higher than the excitation energy, the resonant part forms a plateau, followed by amore » cutoff. The emission rate of the harmonics in this resonant plateau is many orders of magnitude higher than that of the harmonics generated in the presence of the ground state alone. The influence of the depletion of the initial states, as well as of the pulse shape and intensity, is analyzed.« less

  3. Geometric phase of cosmological scalar and tensor perturbations in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Balajany, Hamideh; Mehrafarin, Mohammad

    2018-05-01

    By using the conformal equivalence of f(R) gravity in vacuum and the usual Einstein theory with scalar-field matter, we derive the Hamiltonian of the linear cosmological scalar and tensor perturbations in f(R) gravity in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic Berry phase for sub-horizon modes as a Lewis-Riesenfeld phase.

  4. Enhancement of high harmonics from plasmas using two-color pump and chirp variation of 1 kHz Ti:sapphire laser pulses.

    PubMed

    Ganeev, R A; Hutchison, C; Zaïr, A; Witting, T; Frank, F; Okell, W A; Tisch, J W G; Marangos, J P

    2012-01-02

    We have investigated resonance effects in high-order harmonic generation (HHG) within laser-produced plasmas. We demonstrate a significantly improved harmonic yield by using two-color pump-induced enhancement and a 1 kHz pulse repetition rate. Together with an increased HHG output, the even harmonics in the cutoff region were enhanced with respect to odd harmonics. We report the observation of a resonance-induced growth in intensity of 20th harmonic in silver plasma (2×), 26th harmonic in vanadium plasma (4×), and 28th harmonic in chromium plasma (5×).

  5. High order harmonic generation in rare gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, Kimberly Susan

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10 13-10 14 W/cm 2) is focused into a dense (~10 17 particles/cm 3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as wellmore » as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.« less

  6. Low-degree gravity change from GPS data of COSMIC and GRACE satellite missions

    NASA Astrophysics Data System (ADS)

    Lin, Tingjung; Hwang, Cheinway; Tseng, Tzu-Pang; Chao, B. F.

    2012-01-01

    This paper demonstrates estimation of time-varying gravity harmonic coefficients from GPS data of COSMIC and GRACE satellite missions. The kinematic orbits of COSMIC and GRACE are determined to the cm-level accuracy. The NASA Goddard's GEODYN II software is used to model the orbit dynamics of COSMIC and GRACE, including the effect of a static gravity field. The surface forces are estimated per one orbital period. Residual orbits generated from kinematic and reference orbits serve as observables to determine the harmonic coefficients in the weighted-constraint least-squares. The monthly COSMIC and GRACE GPS data from September 2006 to December 2007 (16 months) are processed to estimate harmonic coefficients to degree 5. The geoid variations from the GPS and CSR RL04 (GRACE) solutions show consistent patterns over space and time, especially in regions of active hydrological changes. The monthly GPS-derived second zonal coefficient closely resembles the SLR-derived and CSR RL04 values, and third and fourth zonal coefficients resemble the CSR RL04 values.

  7. Octupole deformation in odd-odd nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.

    1988-01-01

    Comparison of the experimental and theoretical ground-state spins of odd-odd nuclei in the region 220less than or equal toAless than or equal to228 generally shows agreement with a folded Yukawa octupole deformed model with epsilon/sub 3/ = 0.08 and some lack of agreement with the same model with epsilon/sub 3/ = 0. Thus in spite of limited spectroscopic information, the ground-state spins suggest the existence of octupole deformation in odd-odd nuclei in the region 220less than or equal toAless than or equal to228.

  8. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models.

  9. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  10. Multi-Frequency Harmonics Technique for HIFU Tissue Treatment

    NASA Astrophysics Data System (ADS)

    Rybyanets, Andrey N.; Lugovaya, Maria A.; Rybyanets, Anastasia A.

    2010-03-01

    New technique for enhancing of tissue lysis and enlarging treatment volume during one HIFU sonification is proposed. The technique consists in simultaneous or alternative (at optimal repetition frequency) excitation of single element HIFU transducer on a frequencies corresponding to odd natural harmonics of piezoceramic element at ultrasound energy levels sufficient for producing cavitational, thermal or mechanical damage of fat cells at each of aforementioned frequencies. Calculation and FEM modeling of transducer vibrations and acoustic field patterns for different frequencies sets were performed. Acoustic pressure in focal plane was measured in water using calibrated hydrophone and 3D acoustic scanning system. In vitro experiments on different tissues and phantoms confirming the advantages of multifrequency harmonic method were performed.

  11. Gravity field and shape of Ceres from Dawn

    NASA Astrophysics Data System (ADS)

    Park, Ryan; Konopliv, Alexander; Vaughan, Andrew; Bills, Bruce; Castillo-Rogez, Julie; Ermakov, Anton; Fu, Roger; Raymond, Carol; Russell, Chris; Zuber, Maria

    2017-04-01

    The Dawn gravity science investigation utilizes the DSN radio tracking of the spacecraft and on-board framing camera images to determine the gravity field and global shape of Ceres. The gravity science data collected during Approach, Survey, High-Altitude Mapping Orbit, and Low-Altitude Mapping Orbit phases were processed. The final gravity science solution yielded a degree and order 18 gravity field, called CERES18C, which is globally accurate to degree and order 14. Also, the final Ceres shape using the stereo-photoclinometry method is available with the height uncertainty better than 30 meters. The degree-2 gravity harmonics show that the rotation of Ceres is very nearly about a principal axis. Combining the gravity field and topography gives the bulk density of 2162.6±2.0 kg/m3. The estimated spin pole vector yields RA=(291.42744±0.00022)° and Dec=(66.76065±0.00022)° with the prime meridian and rotation rate of (170.374±0.012)° and (952.1532638±0.0000019)°/day, respectively. The low Bouguer gravity at high topographic areas, and vice versa, indicates that the topography of Ceres is compensated, which can be explained by a low-viscosity layer at depth. Further studies on Ceres interior show that low gravity-topography admittances are consistent with Airy isostasy and finite-element modeling require a decrease of viscosity with depth.

  12. Gravity field of Jupiter’s moon Amalthea and the implication on a spacecraft trajectory

    NASA Astrophysics Data System (ADS)

    Weinwurm, Gudrun

    2006-01-01

    Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements of a three-axial ellipsoid in elliptic coordinates. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. The harmonic coefficients of Amalthea's gravity field have been derived up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers the impact on the trajectory of GALILEO was calculated and compared to existing Doppler data. Furthermore, predictions for future spacecraft flybys were derived. No two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise. Nevertheless, the generated gravity field models reflect the most likely interior structure of the moon and can be a basis for further exploration of the Jovian system.

  13. Gravity fields of the solar system

    NASA Technical Reports Server (NTRS)

    Zendell, A.; Brown, R. D.; Vincent, S.

    1975-01-01

    The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.

  14. Exploring correlations in the CGC wave function: Odd azimuthal anisotropy

    DOE PAGES

    Kovner, Alex; Lublinsky, Michael; Skokov, Vladimir

    2017-07-17

    In this paper, we extend the color glass condensate (CGC) approach to a calculation of the double inclusive gluon production by including the high density effect in the CGC wave function of the projectile (proton). Our main result is that these effects lead to the appearance of odd harmonics in the two particle correlation C(k,p). We find that in the high momentum limit, |k|, |p| >> Q s, this results in a positive c 1{2}. Additionally when the magnitudes of the two momenta are approximately equal, |k|/|p| ≈ 1, the density effects also generate a positive third harmonic c 3{2},more » which translates into a nonvanishing v 3 when the momenta of the trigger and an associated particle are in the same momentum bin. Finally, the sign of c 3{2} becomes negative when |k|/|p| > 1.1 suggesting an interesting experimental signature.« less

  15. Solution of the Quantum Harmonic Oscillator Plus a Delta-Function Potential at the Origin: The "Oddness" of Its Even-Parity Solutions

    ERIC Educational Resources Information Center

    Viana-Gomes, J.; Peres, N. M. R.

    2011-01-01

    We derive the energy levels associated with the even-parity wavefunctions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the…

  16. High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: data fusion by spectral combination

    NASA Astrophysics Data System (ADS)

    Shih, Hsuan-Chang; Hwang, Cheinway; Barriot, Jean-Pierre; Mouyen, Maxime; Corréia, Pascal; Lequeux, Didier; Sichoix, Lydie

    2015-08-01

    For the first time, we carry out an airborne gravity survey and we collect new land gravity data over the islands of Tahiti and Moorea in French Polynesia located in the South Pacific Ocean. The new land gravity data are registered with GPS-derived coordinates, network-adjusted and outlier-edited, resulting in a mean standard error of 17 μGal. A crossover analysis of the airborne gravity data indicates a mean gravity accuracy of 1.7 mGal. New marine gravity around the two islands is derived from Geosat/GM, ERS-1/GM, Jason-1/GM, and Cryosat-2 altimeter data. A new 1-s digital topography model is constructed and is used to compute the topographic gravitational effects. To use EGM08 over Tahiti and Moorea, the optimal degree of spherical harmonic expansion is 1500. The fusion of the gravity datasets is made by the band-limited least-squares collocation, which best integrates datasets of different accuracies and spatial resolutions. The new high-resolution gravity and geoid grids are constructed on a 9-s grid. Assessments of the grids by measurements of ground gravity and geometric geoidal height result in RMS differences of 0.9 mGal and 0.4 cm, respectively. The geoid model allows 1-cm orthometric height determination by GPS and Lidar and yields a consistent height datum for Tahiti and Moorea. The new Bouguer anomalies show gravity highs and lows in the centers and land-sea zones of the two islands, allowing further studies of the density structure and volcanism in the region.

  17. Gravity model improvement using GEOS-3 (GEM 9 and 10)

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.

    1977-01-01

    The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.

  18. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  19. Interannual Variations in Earth's Low-Degree Gravity Field and the Connections With Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.

  20. Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Kuhn, Michael

    2017-08-01

    Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 ( 61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.

  1. Development and analysis of a twelfth degree and order gravity model for Mars

    NASA Technical Reports Server (NTRS)

    Christensen, E. J.; Balmino, G.

    1979-01-01

    Satellite geodesy techniques previously applied to artificial earth satellites have been extended to obtain a high-resolution gravity field for Mars. Two-way Doppler data collected by 10 Deep Space Network (DSN) stations during Mariner 9 and Viking 1 and 2 missions have been processed to obtain a twelfth degree and order spherical harmonic model for the martian gravitational potential. The quality of this model was evaluated by examining the rms residuals within the fit and the ability of the model to predict the spacecraft state beyond the fit. Both indicators show that more data and higher degree and order harmonics will be required to further refine our knowledge of the martian gravity field. The model presented shows much promise, since it resolves local gravity features which correlate highly with the martian topography. An isostatic analysis based on this model, as well as an error analysis, shows rather complete compensation on a global (long wavelength) scale. Though further model refinements are necessary to be certain, local (short wavelength) features such as the shield volcanos in Tharsis appear to be uncompensated. These are interpreted to place some bounds on the internal structure of Mars.

  2. Zonal and tesseral harmonic coefficients for the geopotential function, from zero to 18th order

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. C.

    1976-01-01

    Zonal and tesseral harmonic coefficients for the geopotential function are usually tabulated in normalized form to provide immediate information as to the relative significance of the coefficients in the gravity model. The normalized form of the geopotential coefficients cannot be used for computational purposes unless the gravity model has been modified to receive them. This modification is usually not done because the absolute or unnormalized form of the coefficients can be obtained from the simple mathematical relationship that relates the two forms. This computation can be quite tedious for hand calculation, especially for the higher order terms, and can be costly in terms of storage and execution time for machine computation. In this report, zonal and tesseral harmonic coefficients for the geopotential function are tabulated in absolute or unnormalized form. The report is designed to be used as a ready reference for both hand and machine calculation to save the user time and effort.

  3. Reflection asymmetry in odd-A and odd-odd actinium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, I.

    1993-09-01

    Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of {sup 224}Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidencemore » for octupole correlations in these nuclides.« less

  4. First independent lunar gravity field solution in the framework of project GRAZIL

    NASA Astrophysics Data System (ADS)

    Wirnsberger, Harald; Krauss, Sandro; Klinger, Beate; Mayer-Gürr, Torsten

    2017-04-01

    The twin satellite mission Gravity Recovery and Interior Laboratory (GRAIL) aims to recovering the lunar gravity field by means of intersatellite Ka-band ranging (KBR) observations. In order to exploit the potential of KBR data, absolute position information of the two probes is required. Hitherto, the Graz lunar gravity field models (GrazLGM) relies on the official orbit products provided by NASA. In this contribution, we present for the first time a completely independent Graz lunar gravity field model to spherical harmonic degree and order 420. The reduced dynamic orbits of the two probes are determined using variational equations following a batch least squares differential adjustment process. These orbits are based on S-band radiometric tracking data collected by the Deep Space Network and are used for the independent GRAIL gravity field recovery. To reveal a highly accurate lunar gravity field, an integral equation approach using short orbital arcs is adopted to process the KBR data. A comparison to state-of-the-art lunar gravity models computed at NASA-GSFC, NASA-JPL and AIUB demonstrate the progress of Graz lunar gravity field models derived within the project GRAZIL.

  5. Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2003-01-01

    Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to date. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. In addition, although less precise than GRACE, the GPS/Meteorology constellation mission COSMIC, with 6 mini-satellites to be launched in late 2005, is expected to provide continued and complementary time-variable gravity observations. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.

  6. The shift of harmonics with different initial vibrational states in the H{}_{2}^{+} molecular ion

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Pan, Xue-Fei; Xu, Tong-Tong; Liu, Xue-Shen

    2017-05-01

    Molecular high-order harmonic generation of H{}2+ and its isotopes is investigated by numerical simulations of the non-Born-Oppenheimer time-dependent Schrödinger equations. The general characteristic of the typical high-order harmonic generation (HHG) spectra for the H{}2+ molecule indicates that only the odd harmonics can be generated. Here we show that how the initial vibrational states and nuclear dynamics break down this standard characteristic, i.e. a redshift or blueshift of the harmonics appears. We investigate the effect of the initial vibrational states on the redshift or blueshift of the HHG spectrum under trapezoidal laser pulses. The ionization probability and time-frequency analysis are used to illustrate the physical mechanism of the shift of the harmonics. We also show the HHG spectra from the different isotopes of H2+ molecule with different initial vibrational states.

  7. A new approach for estimating the Jupiter and Saturn gravity fields using Juno and Cassini measurements, trajectory estimation analysis, and a dynamical wind model optimization

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Durante, Daniele; Iess, Luciano; Kaspi, Yohai

    2017-04-01

    The ongoing Juno spacecraft measurements are improving our knowledge of Jupiter's gravity field. Similarly, the Cassini Grand Finale will improve the gravity estimate of Saturn. The analysis of the Juno and Cassini Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity fields of Jupiter and Saturn, additional information needs to be incorporated into the analysis, especially with regards to the planets' wind structures. In this work we propose a new iterative approach for the estimation of Jupiter and Saturn gravity fields, using simulated measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model is used to obtain the gravitational moments. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an optimization method, the likely penetration depth of the winds is computed, and its uncertainty is evaluated. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an estimate of their uncertainties, to be used as a priori for a new calculation of the gravity field. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that by using this method some of the gravitational moments are fitted better to the `observed' ones, mainly due to the added information from the dynamical model which includes the wind structure and its depth. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity moments estimated from the Juno and Cassini radio science experiments.

  8. Phase-matched second- and third-harmonic generation in plasmas with density ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, Deepak; Sajal, Vivek; Sharma, A. K.

    The generation of second and third harmonics by the interaction of an ultrashort laser pulse with underdense plasma having a density ripple is studied at intensities I{lambda}{sup 2}=10{sup 16}-10{sup 19} W cm{sup -2} {mu}m{sup 2} using fully relativistic two-dimensional particle-in-cell simulations with high spectral resolution. A theoretical model is developed for second- and third-harmonic conversion efficiencies. When the laser is plane polarized in the simulation plane even and odd harmonics are excited in the same polarization as the laser polarization. The highest efficiency of generation of a specific harmonic occurs when the ripple wave vector value k{sub q} satisfies phase-matchingmore » conditions. The efficiency of phase-matched harmonic generation is an order of magnitude higher than the one without phase matching. The efficiency increases rapidly in weak and moderate relativistic regime and tends to saturate in strong relativistic regime. At moderately relativistic intensities and low plasma densities, the simulation and recent experimental results are fairly reproduced by an analytical theory.« less

  9. Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2003-01-01

    Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth s dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease - until around 1998, when it switched quite suddenly to an increase trend which has continued to date. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this 52 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution @e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.

  10. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan

    2014-02-01

    The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on

  11. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  12. Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design.

    PubMed

    Marx-Glowna, Berit; Schulze, Kai S; Uschmann, Ingo; Kämpfer, Tino; Weber, Günter; Hahn, Christoph; Wille, Hans Christian; Schlage, Kai; Röhlsberger, Ralf; Förster, Eckhart; Stöhlker, Thomas; Paulus, Gerhard G

    2015-09-01

    The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.

  13. Three-dimensional simulation of free-electron laser harmonics with FRED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, W.M.; Scharlemann, E.T.; Fawley, W.M.

    1989-11-20

    FRED3D, a single-mode three-dimensional version of the FEL simulation code FRED, has been modified to follow the growth of signal components at the fundamental frequency and at even and odd harmonics. The Wiggle-averaged particle and field equations for this multi-mode formulation are derived here, and their implementation in FRED3D is discussed. 12 refs.

  14. The orbits of the uranian satellites and rings, the gravity field of the uranian system, and the orientation of the pole of Uranus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, R. A., E-mail: robert.jacobson@jpl.nasa.gov

    2014-11-01

    French et al. determined the orbits of the Uranian rings, the orientation of the pole of Uranus, and the gravity harmonics of Uranus from Earth-based and Voyager ring occultations. Jacobson et al. determined the orbits of the Uranian satellites and the masses of Uranus and its satellites from Earth-based astrometry and observations acquired with the Voyager 2 spacecraft; they used the gravity harmonics and pole from French et al. Jacobson and Rush reconstructed the Voyager 2 trajectory and redetermined the Uranian system gravity parameters, satellite orbits, and ring orbits in a combined analysis of the data used previously augmented withmore » additional Earth-based astrometry. Here we report on an extension of that work that incorporates additional astrometry and ring occultations together with improved data processing techniques.« less

  15. An Online Gravity Modeling Method Applied for High Precision Free-INS

    PubMed Central

    Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao

    2016-01-01

    For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS. PMID:27669261

  16. An Online Gravity Modeling Method Applied for High Precision Free-INS.

    PubMed

    Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao

    2016-09-23

    For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS.

  17. Systematization of α-decaying nuclei based on shell structures: The case of odd-even and odd-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, Ozan; Kholmetskii, Alexander; Arık, Metin

    In previous studies, we provided a novel systematization of α-decaying even-even and even-odd nuclei starting with the classically adopted mechanism [T. Yarman et al., Eur. Phys. J. A 52 (2016) 140; Eur. Phys. J. A 53 (2017) 4]. Knowing beforehand the measured decay half-life, we had taken as a parameter the probability of the α-particle as being first born in a unit period of time, within the parent nucleus before it is emitted out. We thence developed a scaffold based on shell properties of families composed of “alike nuclei”. Along the same line, we now present a systematization of odd-even (OE) as well as odd-odd (OO) nuclei. We apply our approach further to the investigation of the effect of pairing (e.g., the effect when the number of nucleons is increased by one neutron), and that of unpairing (e.g., the effect when the number of nucleons is decreased by one neutron); thus it becomes an even number for the case of odd-even nuclei (Case OE), and an odd number in the case of odd-odd nuclei (Case OO). For the first case (OE), we pick the exemplar set 161Re, 217Fr, 243Bk, 263Db; where we delineate by, respectively, Re, Fr, Bk, and Db all of the odd-even or odd-odd isotopes that neighbor the four mentioned odd-even isotopes on the proposed scaffold. We proceed in the same way for the second case (OO). Thus, we choose the exemplar set of odd-odd nuclei 172Ir, 218Ac, 244Es. We then gather all of the Ir, Ac, and Es odd-odd and odd-even isotopes that neighbor the three mentioned odd-odd isotopes on the proposed scaffold. We show that, in the former case, pairing, as expected, generally increases stability of the given nucleus; and in the latter case, unpairing works in just the opposite direction — i.e., it generally increases instability. We disclose “stability peaks” versus Z for both sets of nuclei, we tackle here. Furthermore, we present a study to highlight an outlook of “odd-A nuclei” at hand. Contrary to the general expectation, we unveil no

  18. Harmonic lasing in x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2012-08-01

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in

  19. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  20. Sustainable Odds

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2016-12-01

    While probability forecasting has many philosophical and mathematical attractions, it is something of a dishonest nonsense if acting on such forecasts is expected to lead to rapid ruin. Model-based probabilities, when interpreted as actionable, are shown to lead to the rapid ruin of a cooperative entity offering odds interpreting the probability forecasts at face value. Arguably, these odds would not be considered "fair", but inasmuch as some definitions of "fair odds" include this case, this presentation will focus on "sustainable odds": Odds which are not expected to lead to the rapid ruin of the cooperative under the assumption that those placing bets have no information beyond that available to the forecast system. It is argued that sustainable odds will not correspond to probabilities outside the Perfect Model Scenario, that the "implied probabilities" determined from sustainable odds will always sum to more than one, and that the excess of this sum over one reflects the skill of the forecast system, being a quantitative measure of structural model error.

  1. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...

    2016-12-09

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less

  2. Canonical Gravity, Non-Inertial Frames, Relativistic Metrology and Dark Matter

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca

    Clock synchronization leads to the definition of instantaneous 3-spaces (to be used as Cauchy surfaces) in non-inertial frames, the only ones allowed by the equivalence principle. ADM canonical tetrad gravity in asymptotically Minkowskian space-times can be described in this framework. This allows to find the York canonical basis in which the inertial (gauge) and tidal (physical) degrees of freedom of the gravitational field can be identified. A Post-Minkowskian linearization with respect to the asymptotic Minkowski metric (asymptotic background) allows to solve the Dirac constraints in non-harmonic 3-orthogonal gauges and to find non-harmonic TT gravitational waves. The inertial gauge variable York time (the trace of the extrinsic curvature of the 3-space) describes the general relativistic freedom in clock synchronization. After a digression on the gauge problem in general relativity and its connection with relativistic metrology, it is shown that dark matter, whose experimental signatures are the rotation curves and the mass of galaxies, may be described (at least partially) as an inertial relativistic effect (absent in Newtonian gravity) connected with the York time, namely with the non-Euclidean nature of 3-spaces as 3-sub-manifolds of space-time.

  3. Localized Gravity/Topography Correlation and Admittance Spectra one the Moon

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Araki, H.; Noda, H.; Sasaki, S.; Iwata, T.; Hanada, H.

    2009-04-01

    Lunar surface and structure can be separate into two parts. The lunar near side crust and far side crust differ remarkably in thickness. This difference probably caused by difference of thermal evolution and state (elastic thickness) and catering history on both side. The correlations and admittance between the topography and gravity anomalies provide important information on the level of isostatic compensation of the lithosphere at the geological timescale, and reflect its thermo-mechanical state. Therefore, localized correlation and admittance analysis is one of the most important studies of selenodesy. A global correlation between topography and gravity of the Moon obtained by Clementine and Lunar Prospector missions, respectively, reveals high value at long wavelength and low value at short wavelength. Such characteristics are distinguished from those of the Earth and other terrestrial planets, whose global correlation between topography and gravity is low at long wavelength. The distinct correlation between topography and gravity of the Moon may indicate that the lunar topography is supported by multiple compensation mechanism. Further, an incomplete coverage of Doppler tracking data prior to Kaguya (SELENE) gravity experiment probably contributed to the correlation. Because the Moon is synchronously rotating with its revolution around the Earth, a spacecraft orbiting over the far side is not visible from ground stations. In either case, it is significant to decompose local correlation from global ones in order to investigate internal structure of the Moon from spherical harmonic model of gravity (LP75G [1]) and topography (GLTM-2 [2]). Japanese lunar exploration Kaguya (SELENE) has two kinds of selenodesical experiments. One is RSAT/VRAD (gravity mapping with direct tracking over far-side) experiment and another is Laser ALTimeter (LALT; topography mapping) experiment. These two experiments enable us to conduct localized analysis for the Moon. Therefore we

  4. The Space-Wise Global Gravity Model from GOCE Nominal Mission Data

    NASA Astrophysics Data System (ADS)

    Gatti, A.; Migliaccio, F.; Reguzzoni, M.; Sampietro, D.; Sanso, F.

    2011-12-01

    In the framework of the GOCE data analysis, the space-wise approach implements a multi-step collocation solution for the estimation of a global geopotential model in terms of spherical harmonic coefficients and their error covariance matrix. The main idea is to use the collocation technique to exploit the spatial correlation of the gravity field in the GOCE data reduction. In particular the method consists of an along-track Wiener filter, a collocation gridding at satellite altitude and a spherical harmonic analysis by integration. All these steps are iterated, also to account for the rotation between local orbital and gradiometer reference frame. Error covariances are computed by Montecarlo simulations. The first release of the space-wise approach was presented at the ESA Living Planet Symposium in July 2010. This model was based on only two months of GOCE data and partially contained a priori information coming from other existing gravity models, especially at low degrees and low orders. A second release was distributed after the 4th International GOCE User Workshop in May 2011. In this solution, based on eight months of GOCE data, all the dependencies from external gravity information were removed thus giving rise to a GOCE-only space-wise model. However this model showed an over-regularization at the highest degrees of the spherical harmonic expansion due to the combination technique of intermediate solutions (based on about two months of data). In this work a new space-wise solution is presented. It is based on all nominal mission data from November 2009 to mid April 2011, and its main novelty is that the intermediate solutions are now computed in such a way to avoid over-regularization in the final solution. Beyond the spherical harmonic coefficients of the global model and their error covariance matrix, the space-wise approach is able to deliver as by-products a set of spherical grids of potential and of its second derivatives at mean satellite altitude

  5. Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Boy, John-Paul

    2003-01-01

    Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to 2001 before sharply turning back to the value which it is "supposed to be"!. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.

  6. Couplings of gravitational currents with Chern-Simons gravities

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit; Açık, Özgür

    2013-02-01

    The coupling of conserved p-brane currents with non-Abelian gauge theories is done consistently by using Chern-Simons forms. Conserved currents localized on p-branes that have a gravitational origin can be constructed from Killing-Yano forms of the underlying spacetime. We propose a generalization of the coupling procedure with Chern-Simons gravities to the case of gravitational conserved currents. In odd dimensions, the field equations of coupled Chern-Simons gravities that describe the local curvature on p-branes are obtained. In special cases of three and five dimensions, the field equations are investigated in detail.

  7. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Wang, Yan Ming; Pavlis, Nikolaos K.

    1991-01-01

    The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort.

  8. Wave equations in conformal gravity

    NASA Astrophysics Data System (ADS)

    Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng

    2018-05-01

    We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.

  9. Generalized uncertainty principle and quantum gravity phenomenology

    NASA Astrophysics Data System (ADS)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  10. Novel symmetries in Weyl-invariant gravity with massive gauge field

    NASA Astrophysics Data System (ADS)

    Abhinav, K.; Shukla, A.; Panigrahi, P. K.

    2016-11-01

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stückelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stückelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity.

  11. Seismic tremor and gravity measurements at Inferno Crater Lake, Waimangu Geothermal Field, New Zealand

    NASA Astrophysics Data System (ADS)

    O'Brien, J. F.; Jolly, A. D.; Fournier, N.; Cole-Baker, J.; Hurst, T.; Roman, D. C.

    2011-12-01

    Volcanic crater lakes are often associated with active hydrothermal systems that induce cyclic behavior in the lake's level, temperature, and chemistry. Inferno Crater Lake, located in the Waimangu geothermal field within the Taupo Volcanic Zone (TVZ) on the North Island of New Zealand exhibits lake level fluctuations of >7m, and temperature fluctuations >40°C with a highly variable periodicity. Seismic and gravity monitoring of Inferno Lake was carried out from December, 2009 - March, 2010 and captured a full cycle of lake fluctuation. Results indicate that this cycle consisted of ~5 smaller fluctuations of ~3m in lake level followed by a larger fluctuation of ~7m. A broadband seismometer recorded strong seismic tremor in the hours leading up to each of the minor and major high stands in lake level. Spectral analysis of the tremor shows dominant frequencies in the range of ~10Hz and a fundamental harmonic frequency located in the 1Hz range. The 1Hz frequency band exhibits gliding spectral lines which increase in frequency at the end of each tremor period. Particle motion analysis of harmonic tremor waveforms indicate a ~100m upward migration of the source location from the onset of tremor until it ceases at the peak of each lake level high stand. Particle motions also indicate an azimuthal migration of the source by ~30° from the overflow outlet region of the lake toward the central vent location during the course of the tremor and lake level increase. Lake water temperature has a direct relationship with lake level and ranges between ~40°C - ~80°C. Gravity fluctuations were also continuously monitored using a Micro-g-LaCoste gPhone relative gravity meter with a 1Hz sampling rate and precision of 1 microgal. These data indicate a direct relationship between lake level and gravity showing a net increase of ~100 microgals between lake level low and high stands. A piezometer located beside the lake indicates an inflow of ground water into the subsoil during

  12. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.

    PubMed

    Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning

    2013-02-08

    Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.

  13. Pure Lovelock gravity and Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Durka, R.; Inostroza, C.; Merino, N.; Rodríguez, E. K.

    2016-07-01

    We explore the possibility of finding pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive in detail this relation at the level of the action in five and seven dimensions. We provide a general result for higher dimensions and discuss some issues arising from the obtained dynamics.

  14. Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing

    2016-04-01

    Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.

  15. Low- and high-order harmonic generation in the extended plasmas produced by laser ablation of zinc and manganese targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Physical Department, Voronezh State University, Voronezh 394006; Baba, M.

    The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11th–19th harmonics generated in the Zn plasma was ∼5 × 10{sup −5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extendedmore » plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (≤0.5 mm) plasma plumes showed the advanced properties of extended media.« less

  16. Flexural isostasy: Constraints from gravity and topography power spectra

    NASA Astrophysics Data System (ADS)

    Watts, Tony; Moore, James

    2017-04-01

    We have used the spherical harmonic coefficients that describe the EGM2008 gravity and topography model (Pavlis et al. 2010) to quantify the role of flexural isostasy in contributing to Earth's gravity and topography. Power spectra show that the gravity effect of the topography and its flexural compensation contributes significantly to the observed free-air gravity anomaly field for degree 33-180, which corresponds approximately to wavelengths of 220-1200 km. The best fit is for an elastic thickness of the lithosphere, Te, of 34.0±4.0 km. Smaller values of Te, under-predict while high values of Te, over-predict the observed gravity spectra. The best fit value is a global average and so it is reasonable to speculate that regions exist where Te is both lower and higher. This is confirmed in studies of selected regions such as the Hawaiian-Emperor seamount chain and the Ganges-Himalaya foreland fold and thrust belt where we show that flexural isostatic anomalies are near zero in regions where Te approaches 34 km (e.g. Hawaiian ridge) and of large amplitude in regions of lower (e.g. Emperor) and higher Te (e.g. Ganges-Himalaya). Plate flexure may be significant at higher (180-441) and lower (12-33) degrees, but topography appears either uncompensated or fully compensated at these degrees, irrespective of the actual Te. Nevertheless, all isostatic models under-predict the observed gravity spectra at degree <12 and so we interpret the low order Earth's gravity field as caused by non-isostatic processes due to dynamic motions such as those associated with mantle convection.

  17. High-resolution gravity field modeling using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.

  18. Generations of even-order harmonics from vibrating H2+ and T2+ in the rising and falling parts of the laser field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Kapteyn, Henry J.; Feng, April Y.

    2018-04-01

    The generations of the even-order harmonics from H2+ and one of its isotope T2+ have been theoretically investigated beyond the Born-Oppenheimer approximation. Normally, the high-order harmonic generation (HHG) only contains odd-order harmonics for the orbital symmetry along the direction of laser polarization. Here, we showed that due to asymmetric harmonic emission (asymmetric half-wave profile), the even-order harmonics can be generated in the rising and the falling part of the laser field. In detail, in the lower initial vibrational state, the even-order harmonics main come from the falling part of the laser field; while as the initial vibrational state increases, the identified even-order harmonics in the falling part of the laser field are decreased; while some other even-order harmonics coming from the rising part of the laser field can be produced. The interesting phenomena have been proved through studying the spatial distributions and the time profiles of the HHG.

  19. Azimuthal dependence in the gravity field induced by recent and past cryospheric forcings

    NASA Technical Reports Server (NTRS)

    Yuen, David A.; Gasperini, Paolo; Sabadini, Roberto; Boschi, Enzo

    1987-01-01

    Present-day glacial activities and the current variability of the Antarctic ice volume can cause variations in the long-wavelength gravity field as a consequence of transient viscoelastic responses in the mantle. The azimuthal dependence of the secular variations of the gravitational potential are studied and it is found that the nonaxisymmetric contributions are more important for recent glacial retreats than for Pleistocene deglaciation. Changes in land-based ice covering Antarctica can be detected by monitoring satellite orbits and their sensitivity to variations in gravitational harmonic for degree l greater than 3. Resonances in satellite orbits may be useful for detecting these azimuthally-dependent gravity signals.

  20. Evidence for active hotspots on Venus from analysis of Magellan gravity data

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.

    1994-01-01

    The 500-Myr average crater retention age for Venus has raised questions about the present-day level of tectonic activity. In this study we examine the relationship between the gravity and topography of four large volcanic swells, Beta, Atla, Bell, and Western Eistla Regiones, for clues about their stage evolution. The Magellan line-of-sight gravity data are inverted using a point mass model of the anomalous mass to solve for the local vertical gravity field. Spectral admittance calculated from both the local gravity inversions and a spherical harmonic model is compared to three models of compensation: local compensation, a 'flexural' model with local and regional compensation of surface and subsurface loads, and a 'hotspot' model of compensation that includes top loading by volcanoes and subsurface loading due to a deep, low density mass anomaly. The coherence is also calculated in each region, but yields an elastic thickness estimate only at Bell Regio. In all models, the long wavelengths are compensated locally. Our results may indicate a relatively old, possibly inactive plume.

  1. Harmonic statistics

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-05-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.

  2. A Method for Harmonic Sources Detection based on Harmonic Distortion Power Rate

    NASA Astrophysics Data System (ADS)

    Lin, Ruixing; Xu, Lin; Zheng, Xian

    2018-03-01

    Harmonic sources detection at the point of common coupling is an essential step for harmonic contribution determination and harmonic mitigation. The harmonic distortion power rate index is proposed for harmonic source location based on IEEE Std 1459-2010 in the paper. The method only based on harmonic distortion power is not suitable when the background harmonic is large. To solve this problem, a threshold is determined by the prior information, when the harmonic distortion power is larger than the threshold, the customer side is considered as the main harmonic source, otherwise, the utility side is. A simple model of public power system was built in MATLAB/Simulink and field test results of typical harmonic loads verified the effectiveness of proposed method.

  3. Time-Variable Gravity from Satellite Laser-Ranging: The Low-Degree Components and Their Connections with Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Satellite laser-ranging (SLR) has been observing the tiny variations in Earth s global gravity for over 2 decades. The oblateness of the Earth's gravity field, J2, has been observed to undergo a secular decrease of J2 due mainly to the post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again towards normal. This anomaly signifies a large interannual change in global mass distribution. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. In fact, a strong correlation has been found between the J2 variability and the Pacific decadal oscillation. It is relatively more difficult to solve for corresponding signals in the shorter wavelength harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal harmonic components have significant interannual signal that appears to be related to mass transport related to climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a monthly time sequence of low-degree component map of the time-variable gravity complete through degree 4, and examine possible geophysical/climatic causes.

  4. GOCE gravity field simulation based on actual mission scenario

    NASA Astrophysics Data System (ADS)

    Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.

    2009-04-01

    In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.

  5. A critical analysis of the numerical and analytical methods used in the construction of the lunar gravity potential model.

    NASA Astrophysics Data System (ADS)

    Tuckness, D. G.; Jost, B.

    1995-08-01

    Current knowledge of the lunar gravity field is presented. The various methods used in determining these gravity fields are investigated and analyzed. It will be shown that weaknesses exist in the current models of the lunar gravity field. The dominant part of this weakness is caused by the lack of lunar tracking data information (farside, polar areas), which makes modeling the total lunar potential difficult. Comparisons of the various lunar models reveal an agreement in the low-order coefficients of the Legendre polynomials expansions. However, substantial differences in the models can exist in the higher-order harmonics. The main purpose of this study is to assess today's lunar gravity field models for use in tomorrow's lunar mission designs and operations.

  6. Effects of electron relaxation on multiple harmonic generation from metal surfaces with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karatzas, N. E.; Georges, A. T.

    2006-11-01

    Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm 2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 10 11 W/cm 2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10 -9, while for the 5th-harmonic it is 10 -10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ˜30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.

  7. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; hide

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  8. Relation of squeezed states between damped harmonic and simple harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Um, Chung-In; Yeon, Kyu-Hwang; George, Thomas F.; Pandey, Lakshmi N.

    1993-01-01

    The minimum uncertainty and other relations are evaluated in the framework of the coherent states of the damped harmonic oscillator. It is shown that the coherent states of the damped harmonic oscillator are the squeezed coherent states of the simple harmonic oscillator. The unitary operator is also constructed, and this connects coherent states with damped harmonic and simple harmonic oscillators.

  9. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  10. Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.

    PubMed

    Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil

    2017-06-02

    We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.

  11. Quantum collapse of dust shells in 2 + 1 gravity

    NASA Astrophysics Data System (ADS)

    Ortíz, L.; Ryan, M. P.

    2007-08-01

    This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.

  12. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  13. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE PAGES

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...

    2017-03-16

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  14. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

    PubMed Central

    Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo

    2016-01-01

    Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374

  15. Venus gravity: Summary and coming events

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.

    1992-01-01

    The first significant dataset to provide local measures of venusian gravity field variations was that acquired from the Pioneer Venus Orbiter (PVO) during the 1979-1981 period. These observations were S-band Doppler radio signals from the orbiting spacecraft received at Earth-based tracking stations. Early reductions of these data were performed using two quite different techniques. Estimates of the classical spherical harmonics were made to various degrees and orders up to 10. At that time, solutions of much higher degree and order were very difficult due to computer limitations. These reductions, because of low degree and order, revealed only the most prominent features with poor spatial resolution and very reduced peak amplitudes.

  16. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  17. Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofinas, Georgios; Olea, Rodrigo

    2006-10-15

    A finite action principle for Einstein-Gauss-Bonnet anti-de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, andmore » to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti-de Sitter spacetime in all odd dimensions.« less

  18. The harmonic development of the Earth tide generating potential due to the direct effect of the planets

    NASA Astrophysics Data System (ADS)

    Hartmann, Torsten; Wenzel, Hans-Georg

    1994-09-01

    The time-harmonic development of the Earth tide generating potential due to the direct effect of the planets Venus, Jupiter, Mars, Mercury and Saturn has been computed. The catalog of the fully normalized potential coefficients contains 1483 waves. It is based on the DE102 numerical ephemeris of the planets between years 1900 and 2200. Gravity tides due to the planets computed from the catalog at the surface of the Earth have an accuracy of about 0.027 pm/sq s (1 pm/sq s = 10(exp -12) m/sq s = 0.1 ngal) rms and 0.160 / 0.008 pm/sq s at maximum in time / frequency domain using the new benchmark tidal gravity series (Wenzel 1994).

  19. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  20. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  1. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Paik, H. J.; Zagarola, M.; Shirron, P. J.; Griggs, C. E.; Moody, M. V.; Han, S.-C.

    2016-01-01

    Measurement of a planet's gravity field provides fundamental information about the planet's mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planet's geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESA's GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  2. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Shirron, P. J.; Paik, H. J.; Griggs, C. E.; Moody, M. V.; Han, S. C.; Zagarola, M.

    2016-01-01

    Measurement of a planets gravity field provides fundamental information about the planets mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planets geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESAs GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  3. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu

    ideal square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half

  4. Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)

    NASA Technical Reports Server (NTRS)

    Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.

    2006-01-01

    Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.

  5. Power laws for gravity and topography of Solar System bodies

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  6. Study of Even-Even/Odd-Even/Odd-Odd Nuclei in Zn-Ga-Ge Region in the Proton-Neutron IBM/IBFM/IBFFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, N.; Brant, S.; Zuffi, L.

    We study the even-even, odd-even and odd-odd nuclei in the region including Zn-Ga-Ge in the proton-neutron IBM and the models derived from it: IBM2, IBFM2, IBFFM2. We describe {sup 67}Ga, {sup 65}Zn, and {sup 68}Ga by coupling odd particles to a boson core {sup 66}Zn. We also calculate the beta{sup +}-decay rates among {sup 68}Ge, {sup 68}Ga and {sup 68}Zn.

  7. Oppositional Defiant Disorder (ODD)

    MedlinePlus

    ... child with ODD. Doctors, mental health professionals and child development experts can help. Behavioral treatment of ODD involves ... exhibit oppositional behavior at certain stages of a child's development. Signs of ODD generally begin during preschool years. ...

  8. Estimation of the Earth's gravity field by combining normal equation matrices from GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Haberkorn, Christoph; Bloßfeld, Mathis; Bouman, Johannes

    2014-05-01

    Since 2002, GRACE observes the Earth's gravity field with a spatial resolution up to 150 km. The main goal of this mission is the determination of temporal variations in the Earth's gravity field to detect mass displacements. The GRACE mission consists of two identical satellites, which observe the range along the line of sight of both satellites. GRACE observations can be linked with the Earth's gravitational potential, which is expressed in terms of spherical harmonics for global solutions. However, the estimation of low degree coefficients is difficult with GRACE. In contrast to gravity field missions, which observe the gravity field with high spectral resolution, SLR data allow to estimate the lower degree coefficients. Therefore, the coefficient C20 is often replaced by a value derived from Satellite Laser Ranging (SLR). Instead of replacing C20, it can be determined consistently by a combined estimation using GRACE and SLR data. We compute monthly normal equation (NEQ) matrices for GRACE and SLR. Coefficients from monthly GRACE gravity field models of different institutions (Center for Space Research (CSR), USA, Geoforschungszentrum Potsdam (GFZ), Germany and Jet Propulsion Laboratory (JPL), USA) and coefficients from monthly gravity field models of our SLR processing are then combined using the NEQ matrices from both techniques. We will evaluate several test scenarios with gravity field models from different institutions and with different set ups for the SLR NEQ matrices. The effect of the combination on the estimated gravity field will be analysed and presented.

  9. Normal gravity field in relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    intrinsically connected to the existence of the residual gauge freedom, and derive the post-Newtonian normal gravity field of the rotating spheroid both inside and outside of the rotating fluid body. The normal gravity field is given, similarly to the Newtonian gravity, in a closed form by a finite number of the ellipsoidal harmonics. We employ transformation from the ellipsoidal to spherical coordinates to deduce a more conventional post-Newtonian multipolar expansion of scalar and vector gravitational potentials of the rotating spheroid. We compare these expansions with that of the normal gravity field generated by the Kerr metric and demonstrate that the Kerr metric has a fairly limited application in relativistic geodesy as it does not match the normal gravity field of the Maclaurin ellipsoid already in the Newtonian limit. We derive the post-Newtonian generalization of the Somigliana formula for the normal gravity field measured on the surface of the rotating spheroid and employed in practical work for measuring Earth's gravitational field anomalies. Finally, we discuss the possible choice of the gauge-dependent parameters of the normal gravity field model for practical applications and compare it with the existing EGM2008 model of a gravitational field.

  10. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    PubMed Central

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-01-01

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351

  11. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  12. Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft

    NASA Astrophysics Data System (ADS)

    Ermakov, A. I.; Fu, R. R.; Castillo-Rogez, J. C.; Raymond, C. A.; Park, R. S.; Preusker, F.; Russell, C. T.; Smith, D. E.; Zuber, M. T.

    2017-11-01

    Ceres is the largest body in the asteroid belt with a radius of approximately 470 km. In part due to its large mass, Ceres more closely approaches hydrostatic equilibrium than major asteroids. Pre-Dawn mission shape observations of Ceres revealed a shape consistent with a hydrostatic ellipsoid of revolution. The Dawn spacecraft Framing Camera has been imaging Ceres since March 2015, which has led to high-resolution shape models of the dwarf planet, while the gravity field has been globally determined to a spherical harmonic degree 14 (equivalent to a spatial wavelength of 211 km) and locally to 18 (a wavelength of 164 km). We use these shape and gravity models to constrain Ceres' internal structure. We find a negative correlation and admittance between topography and gravity at degree 2 and order 2. Low admittances between spherical harmonic degrees 3 and 16 are well explained by Airy isostatic compensation mechanism. Different models of isostasy give crustal densities between 1,200 and 1,400 kg/m3 with our preferred model giving a crustal density of 1,287+70-87 kg/m3. The mantle density is constrained to be 2,434+5-8 kg/m3. We compute isostatic gravity anomaly and find evidence for mascon-like structures in the two biggest basins. The topographic power spectrum of Ceres and its latitude dependence suggest that viscous relaxation occurred at the long wavelengths (>246 km). Our density constraints combined with finite element modeling of viscous relaxation suggests that the rheology and density of the shallow surface are most consistent with a rock, ice, salt and clathrate mixture.

  13. Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters

    NASA Astrophysics Data System (ADS)

    Vasumathi, B.; Moorthi, S.

    2011-11-01

    In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.

  14. Three-Gorge Reservoir: A 'Controlled Experiment' for Calibration/Validation of Time-Variable Gravity Signals Detected from Space

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Boy, J. P.

    2003-01-01

    -wavelength spherical harmonics, the induced geoid height variations are very close to the accuracy of GRACE- recoverable gravity field, while the low-degree (2 to 5) harmonics should be detectable. With a large regional time-variable gravity signal, the Three-Gorge experiment can serve as a useful calibration/verification for GRACE (including the elastic loading effects), and future gravity missions (especially for visco-elastic yielding as well as underground water variations).

  15. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to

  16. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data

    PubMed Central

    Lemoine, Frank G; Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Mazarico, Erwan; Rowlands, David D; Loomis, Bryant D; Chinn, Douglas S; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 ×10−4/ℓ2 was applied only for degree ℓ greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of ≥ 0.98 through degree 638. The model's degree strength varies from a minimum of 575–675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 μm/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2–10 km fit at 0.98 μm/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900. PMID:26074638

  17. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data.

    PubMed

    Lemoine, Frank G; Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Mazarico, Erwan; Rowlands, David D; Loomis, Bryant D; Chinn, Douglas S; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 ×10 -4 / ℓ 2 was applied only for degree ℓ greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of ≥ 0.98 through degree 638. The model's degree strength varies from a minimum of 575-675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 μm/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2-10 km fit at 0.98 μm/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.

  18. GRGM900C: A Degree 900 Lunar Gravity Model from GRAIL Primary and Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Bryant, D. Loomis; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; hide

    2014-01-01

    We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 × 10(exp -4)/l(exp 2) was applied only for degree l greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of greater than or equal to 0.98 through degree 638. The model's degree strength varies from a minimum of 575-675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 micrometers/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2-10 km fit at 0.98 micrometers/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.

  19. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  20. Signature inversion / chiral-twin bands in odd-odd Pr nuclei?

    NASA Astrophysics Data System (ADS)

    Fetea, Mirela; Thompson, Sarah

    2001-10-01

    Over the past few years, sufficient data have been accumulated to enable a meaningful study of the systematic trends of the signature inversion (inversion point shift in spin with increasing proton and neutron numbers in a chain of isotones / isotopes as well as the magnitude of odd-even staggering). Our aim is to understand these systematic features within the framework of particle rotor model including both a residual pn interaction and a γ deformation. Signature inversion is present in the bands of odd-odd nuclei , ^120-130Cs, ^124-132La, ^126-134Pr and ^132-136Pm and having an yrast structure built on π h_11/2ν h_11/2 orbitals. Pr isotopes seem to indicate an inversion decreasing for smaller neutron numbers, trend that is opposite for the Cs nuclei(J.F. Smith et al., Phys. Lett B 406, 7 (1997)). Why? A question that remains to be answered is if there is any relation of signature inversion to chiral twin bands (two ''look alike positive parity'' bands proposed for as in ). The lower band has signature inversion all the way up. Could these effects be related to triaxiality? Can one trust an apparent conclusion suggested by L.L. Riedinger( L.L. Riedinger, talk presented at High) Spin Physics 2001, Warsaw, Poland, February, 2001, to be published in Acta Phys. Pol.: ''signature inversion in an odd-odd band of two quasiparticles pointed along different axes is always associated with the formation of chiral twin bands''?

  1. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    NASA Astrophysics Data System (ADS)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 < Z < 114, 111 < N < 174. This probability was calculated using the energy-dependent formula derived from the formulation of clusterisation states representation (CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  2. Mixed higher-order flow harmonics and nonlinear response coefficients in PbPb collisions at 2.76 and 5.02 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Tuo, Shengquan; CMS Collaboration

    2017-11-01

    The mixed higher-order flow harmonics and nonlinear response coefficients of charged particles are presented as a function of pT and centrality in PbPb collisions at √{sNN} = 2.76 TeV and 5.02 TeV with the CMS detector. The results are obtained using the scalar product method, and cover a pT range from 0.3 GeV/c to 8.0 GeV/c, pseudorapidity | η | < 2.4, and a centrality range of 0-60%. The mixed harmonic results at 5.02 TeV are compared to the matching higher-order flow harmonics from two-particle correlations, which measure vn values with respect to the n-th order event plane. It is observed that the nonlinear response coefficients of the odd harmonics are larger than the even harmonics ones. The results are compared with hydrodynamic predictions using different shear viscosity to entropy density ratios and different initial conditions.

  3. Correcting sample drift using Fourier harmonics.

    PubMed

    Bárcena-González, G; Guerrero-Lebrero, M P; Guerrero, E; Reyes, D F; Braza, V; Yañez, A; Nuñez-Moraleda, B; González, D; Galindo, P L

    2018-07-01

    During image acquisition of crystalline materials by high-resolution scanning transmission electron microscopy, the sample drift could lead to distortions and shears that hinder their quantitative analysis and characterization. In order to measure and correct this effect, several authors have proposed different methodologies making use of series of images. In this work, we introduce a methodology to determine the drift angle via Fourier analysis by using a single image based on the measurements between the angles of the second Fourier harmonics in different quadrants. Two different approaches, that are independent of the angle of acquisition of the image, are evaluated. In addition, our results demonstrate that the determination of the drift angle is more accurate by using the measurements of non-consecutive quadrants when the angle of acquisition is an odd multiple of 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Modeling and estimation of a low degree geopotential model from terrestrial gravity data

    NASA Technical Reports Server (NTRS)

    Pavlis, Nikolaos K.

    1988-01-01

    The development of appropriate modeling and adjustment procedures for the estimation of harmonic coefficients of the geopotential, from surface gravity data was studied, in order to provide an optimum way of utilizing the terrestrial gravity information in combination solutions currently developed at NASA/Goddard Space Flight Center, for use in the TOPEX/POSEIDON mission. The mathematical modeling was based on the fundamental boundary condition of the linearized Molodensky boundary value problem. Atmospheric and ellipsoidal corrections were applied to the surface anomalies. Terrestrial gravity solutions were found to be in good agreement with the satellite ones over areas which are well surveyed (gravimetrically), such as North America or Australia. However, systematic differences between the terrestrial only models and GEMT1, over extended regions in Africa, the Soviet Union, and China were found. In Africa, gravity anomaly differences on the order of 20 mgals and undulation differences on the order of 15 meters, over regions extending 2000 km in diameter, occur. Comparisons of the GEMT1 implied undulations with 32 well distributed Doppler derived undulations gave an RMS difference of 2.6 m, while corresponding comparison with undulations implied by the terrestrial solution gave RMS difference on the order of 15 m, which implies that the terrestrial data in that region are substantially in error.

  5. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  6. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  7. Optical harmonic generator

    DOEpatents

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  8. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    PubMed

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  9. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-01-01

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983

  10. Impact of Tidal-Stream Turbines on the Generation of the Higher Tidal Harmonics

    NASA Astrophysics Data System (ADS)

    Potter, Daniel; Ilic, Suzana; Folkard, Andrew

    2016-04-01

    The higher tidal harmonics result from the interaction of the astronomic tides with both themselves and each other through non-linear processes. In shallower waters such as those near the coast these non-linear processes become more significant and thus, so too do the higher tidal harmonics become more significant. The interaction of the tide with tidal-stream turbines (TSTs), through thrust and drag processes will be non-linear and as such will contribute to the generation of higher tidal harmonics, thus changing the nature of the tide downstream of the turbines. The change to the tide may potentially impact on the downstream energy resource (Robins et al. 2015) and sediment transport processes (Pingree & Griffiths 1979). This paper will present analytical results, which suggest that TSTs will impact on the generation of all higher harmonics but with odd overtides being impacted more than even overtides, the most important examples of which are the M6 and M4 tides respectively, which are the first odd and even overtides of the M2 tide. Change in phase and amplitude of the M6 tide by TSTs will distort the tide but will not cause an asymmetry between the flood and ebb of the tide. Change in the phase and amplitude of the M4 can not only distort the tide but also cause asymmetry. Hence any change to the M4 tide by the turbines is more significant, despite the magnitude of change to the M6 being greater. In order to gain a fuller understanding of the way in which TSTs change the tide downstream and the significance of any change for transport processes or energy resource, a numerical modelling study will be carried out, which will be presented in a future paper. Robins, P.E., Neill, S.P., Lewis, M. & Ward, S.L., 2015. Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147: 510-522. Pingree, R.D. & Griffiths, D.K., 1979. Sand transport paths around the British Isles resulting

  11. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  12. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  13. Two quasiparticles plus rotor model calculation for odd-odd nuclei in the A=160 region

    NASA Astrophysics Data System (ADS)

    Renrong, Zheng; Shunquan, Zhu; Yunwei, Pu

    1997-07-01

    The axially symmetric rotor plus quasiparticle model for an odd nucleus is generalized to the odd-odd nucleus and special attention is paid to the model basis accounting for γ vibration perturbation around axial symmetry. The method presented in this paper is used for a number of realistic nuclei in the A=160 mass region. Two slightly different calculation schemes are put into practice. The first calculation gives results in qualitative agreement with experiments and the second calculation provides remarkable improvements to the first. A possible explanation of the mechanism for signature inversion of odd-odd nuclei is discussed.

  14. Gravity model for the North Atlantic ocean mantle: results, uncertainties and links to regional geodynamics

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.; Artemieva, I. M.; Thybo, H.

    2015-12-01

    We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and

  15. Systematics of signature inversion in odd-odd nuclei in the mass regions A=80 and A=160

    NASA Astrophysics Data System (ADS)

    Zheng, Renrong; Zhu, Shunquan; Cheng, Nanpu; Wen, Jiayan

    2001-07-01

    Based on an axially symmetric rotor plus quasiparticles model, the study of the signature inversion (SI) in odd-odd nuclei in the mass region A=160 is extended to include the region A=80. In spite of many differences between the two mass regions, the calculation results show that the possible SI mechanism, which has been confirmed by the calculation of odd-odd nuclei in the A=160 region (i.e., the competition between the n-p interaction and the Coriolis force in low-K space) is also appropriate for odd-odd nuclei in the A=80 region. This seems to indicate that there may be a universal mechanism of SI in odd-odd nuclei for different mass regions.

  16. Flyby Characterization of Lower-Degree Spherical Harmonics Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Takahashi, Yu; Broschart, Stephen; Lantoine, Gregory

    2014-01-01

    Interest in studying small bodies has grown significantly in the last two decades, and there are a number of past, present, and future missions. These small body missions challenge navigators with significantly different kinds of problems than the planets and moons do. The small bodies' shape is often irregular and their gravitational field significantly weak, which make the designing of a stable orbit a complex dynamical problem. In the initial phase of spacecraft rendezvous with a small body, the determination of the gravitational parameter and lower-degree spherical harmonics are of crucial importance for safe navigation purposes. This motivates studying how well one can determine the total mass and lower-degree spherical harmonics in a relatively short time in the initial phase of the spacecraft rendezvous via flybys. A quick turnaround for the gravity data is of high value since it will facilitate the subsequent mission design of the main scientific observation campaign. We will present how one can approach the problem to determine a desirable flyby geometry for a general small body. We will work in the non-dimensional formulation since it will generalize our results across different size/mass bodies and the rotation rate for a specific combination of gravitational coefficients.

  17. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    NASA Astrophysics Data System (ADS)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  18. High-resolution combined global gravity field modelling: Solving large kite systems using distributed computational algorithms

    NASA Astrophysics Data System (ADS)

    Zingerle, Philipp; Fecher, Thomas; Pail, Roland; Gruber, Thomas

    2016-04-01

    One of the major obstacles in modern global gravity field modelling is the seamless combination of lower degree inhomogeneous gravity field observations (e.g. data from satellite missions) with (very) high degree homogeneous information (e.g. gridded and reduced gravity anomalies, beyond d/o 1000). Actual approaches mostly combine such data only on the basis of the coefficients, meaning that previously for both observation classes (resp. models) a spherical harmonic analysis is done independently, solving dense normal equations (NEQ) for the inhomogeneous model and block-diagonal NEQs for the homogeneous. Obviously those methods are unable to identify or eliminate effects as spectral leakage due to band limitations of the models and non-orthogonality of the spherical harmonic base functions. To antagonize such problems a combination of both models on NEQ-basis is desirable. Theoretically this can be achieved using NEQ-stacking. Because of the higher maximum degree of the homogeneous model a reordering of the coefficient is needed which leads inevitably to the destruction of the block diagonal structure of the appropriate NEQ-matrix and therefore also to the destruction of simple sparsity. Hence, a special coefficient ordering is needed to create some new favorable sparsity pattern leading to a later efficient computational solving method. Such pattern can be found in the so called kite-structure (Bosch, 1993), achieving when applying the kite-ordering to the stacked NEQ-matrix. In a first step it is shown what is needed to attain the kite-(NEQ)system, how to solve it efficiently and also how to calculate the appropriate variance information from it. Further, because of the massive computational workload when operating on large kite-systems (theoretically possible up to about max. d/o 100.000), the main emphasis is put on to the presentation of special distributed algorithms which may solve those systems parallel on an indeterminate number of processes and are

  19. Leptogenesis from gravity waves in models of inflation.

    PubMed

    Alexander, Stephon H S; Peskin, Michael E; Sheikh-Jabbari, M M

    2006-03-03

    We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarized gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. The amount of matter asymmetry generated in our model can be of realistic size for the parameters within the range of some inflationary scenarios and grand unified theories.

  20. A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Rexer, Moritz; Scheinert, Mirko; Pail, Roland; Claessens, Sten; Holmes, Simon

    2016-02-01

    The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ˜ 10 km spatial scales over most parts of the of Earth's surface. However, a notable exception is continental Antarctica, where the gravity information in these and other recent models is based on satellite gravimetry observations only, and thus limited to about ˜ 80-120 km spatial scales. Here, we present a new degree-2190 global gravity model (GGM) that for the first time improves the spatial resolution of the gravity field over the whole of continental Antarctica to ˜ 10 km spatial scales. The new model called SatGravRET2014 is a combination of recent Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite gravimetry with gravitational signals derived from the 2013 Bedmap2 topography/ice thickness/bedrock model with gravity forward modelling in ellipsoidal approximation. Bedmap2 is a significantly improved description of the topographic mass distribution over the Antarctic region based on a multitude of topographic surveys, and a well-suited source for modelling short-scale gravity signals as we show in our study. We describe the development of SatGravRET2014 which entirely relies on spherical harmonic modelling techniques. Details are provided on the least-squares combination procedures and on the conversion of topography to implied gravitational potential. The main outcome of our work is the SatGravRET2014 spherical harmonic series expansion to degree 2190, and derived high-resolution grids of 3D-synthesized gravity and quasigeoid effects over the whole of Antarctica. For validation, six data sets from the IAG Subcommission 2.4f "Gravity and Geoid in Antarctica" (AntGG) database were used comprising a total of 1,092,981 airborne gravimetric observations. All subsets consistently show that the Bedmap2-based short-scale gravity modelling improves the agreement over satellite

  1. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  2. Gravity and gravity gradient changes caused by a point dislocation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Liang; Li, Hui; Li, Rui-Hao

    1995-02-01

    In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.

  3. Studying the Representation Accuracy of the Earth's Gravity Field in the Polar Regions Based on the Global Geopotential Models

    NASA Astrophysics Data System (ADS)

    Koneshov, V. N.; Nepoklonov, V. B.

    2018-05-01

    The development of studies on estimating the accuracy of the Earth's modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.

  4. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    NASA Astrophysics Data System (ADS)

    Palit, R.; Sheikh, J. A.; Sun, Y.; Jain, H. C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A˜70 80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74Rb, using the concept of spontaneous symmetry breaking is also presented.

  5. Lorentz drift compensation in high harmonic generation in the soft and hard X-ray regions of the spectrum

    DOE PAGES

    Galloway, Benjamin R.; Popmintchev, Dimitar; Pisanty, Emilio; ...

    2016-09-09

    Here, we present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 10 15 W/cm 2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling whichmore » acts in addition to the dominant high harmonic flux scaling of λ -(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.« less

  6. Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity

    NASA Technical Reports Server (NTRS)

    Chao, Ben F.; Cox, C. M.

    2005-01-01

    Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.

  7. Comparative Analysis of Models of the Earth's Gravity: 3. Accuracy of Predicting EAS Motion

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. D.; Berland, V. E.; Wiebe, Yu. S.; Glamazda, D. V.; Kajzer, G. T.; Kolesnikov, V. I.; Khremli, G. P.

    2002-05-01

    This paper continues a comparative analysis of modern satellite models of the Earth's gravity which we started in [6, 7]. In the cited works, the uniform norms of spherical functions were compared with their gradients for individual harmonics of the geopotential expansion [6] and the potential differences were compared with the gravitational accelerations obtained in various models of the Earth's gravity [7]. In practice, it is important to know how consistently the EAS motion is represented by various geopotential models. Unless otherwise stated, a model version in which the equations of motion are written using the classical Encke scheme and integrated together with the variation equations by the implicit one-step Everhart's algorithm [1] was used. When calculating coordinates and velocities on the integration step (at given instants of time), the approximate Everhart formula was employed.

  8. Fluid/gravity correspondence for massive gravity

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Jian; Huang, Yong-Chang

    2016-11-01

    In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.

  9. Possible role of cochlear nonlinearity in the detection of mistuning of a harmonic component in a harmonic complex

    NASA Astrophysics Data System (ADS)

    Stoelinga, Christophe; Heo, Inseok; Long, Glenis; Lee, Jungmee; Lutfi, Robert; Chang, An-Chieh

    2015-12-01

    The human auditory system has a remarkable ability to "hear out" a wanted sound (target) in the background of unwanted sounds. One important property of sound which helps us hear-out the target is inharmonicity. When a single harmonic component of a harmonic complex is slightly mistuned, that component is heard to separate from the rest. At high harmonic numbers, where components are unresolved, the harmonic segregation effect is thought to result from detection of modulation of the time envelope (roughness cue) resulting from the mistuning. Neurophysiological research provides evidence that such envelope modulations are represented early in the auditory system, at the level of the auditory nerve. When the mistuned harmonic is a low harmonic, where components are resolved, the harmonic segregation is attributed to more centrally-located auditory processes, leading harmonic components to form a perceptual group heard separately from the mistuned component. Here we consider an alternative explanation that attributes the harmonic segregation to detection of modulation when both high and low harmonic numbers are mistuned. Specifically, we evaluate the possibility that distortion products in the cochlea generated by the mistuned component introduce detectable beating patterns for both high and low harmonic numbers. Distortion product otoacoustic emissions (DPOAEs) were measured using 3, 7, or 12-tone harmonic complexes with a fundamental frequency (F0) of 200 or 400 Hz. One of two harmonic components was mistuned at each F0: one when harmonics are expected to be resulted and the other from unresolved harmonics. Many non-harmonic DPOAEs are present whenever a harmonic component is mistuned. These non-harmonic DPOAEs are often separated by the amount of the mistuning (ΔF). This small frequency difference will generate a slow beating pattern at ΔF, because this beating is only present when a harmonic component is mistuned, it could provide a cue for behavioral detection

  10. GTOOLS: an Interactive Computer Program to Process Gravity Data for High-Resolution Applications

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Poland, M. P.; Kauahikaua, J. P.

    2012-12-01

    An interactive computer program, GTOOLS, has been developed to process gravity data acquired by the Scintrex CG-5 and LaCoste & Romberg EG, G and D gravity meters. The aim of GTOOLS is to provide a validated methodology for computing relative gravity values in a consistent way accounting for as many environmental factors as possible (e.g., tides, ocean loading, solar constraints, etc.), as well as instrument drift. The program has a modular architecture. Each processing step is implemented in a tool (function) that can be either run independently or within an automated task. The tools allow the user to (a) read the gravity data acquired during field surveys completed using different types of gravity meters; (b) compute Earth tides using an improved version of Longman's (1959) model; (c) compute ocean loading using the HARDISP code by Petit and Luzum (2010) and ocean loading harmonics from the TPXO7.2 ocean tide model; (d) estimate the instrument drift using linear functions as appropriate; and (e) compute the weighted least-square-adjusted gravity values and their errors. The corrections are performed up to microGal ( μGal) precision, in accordance with the specifications of high-resolution surveys. The program has the ability to incorporate calibration factors that allow for surveys done using different gravimeters to be compared. Two additional tools (functions) allow the user to (1) estimate the instrument calibration factor by processing data collected by a gravimeter on a calibration range; (2) plot gravity time-series at a chosen benchmark. The interactive procedures and the program output (jpeg plots and text files) have been designed to ease data handling and archiving, to provide useful information for future data interpretation or modeling, and facilitate comparison of gravity surveys conducted at different times. All formulas have been checked for typographical errors in the original reference. GTOOLS, developed using Matlab, is open source and machine

  11. Effect of the Earth's inner structure on the gravity in definitions of height systems

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified

  12. Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Weerawarne, Darshana L.

    Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.

  13. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  14. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  15. Weekly Solutions of Time-Variable Gravity from 1993 to 2010

    NASA Technical Reports Server (NTRS)

    Lemoine, F.; Chinn, D.; Le Bail, K.; Zelensky, N.; Melachroinos, S.; Beall, J.

    2011-01-01

    The GRACE mission has been highly successful in determining the time-variable gravity field of the Earth, producing monthly or even more frequent solutions (cf. 10-day) solutions using both spherical harmonics and mascons. However the GRACE time series only commences in 2002 - 2003 and a gap of several years may occur in the series before a GRACE follow-on satellite is launched. Satellites tracked by SLR and DORIS have also been used to study time variations in the Earth's gravitational field. These include (most recently) the solutions of Cox and Chao (2002), Cheng et al. (2004, 2007) and Lemoine et al. (2007). In this paper we discuss the development of a new time series of low degree spherical harmonic fields based on the available SLR, DORIS and GPS data. We develop simultaneous solutions for both the geocenter and the low degree harmonics up to 5x5. The solutions integrate data from SLR geodetic satellites (e.g., Lageos1, Lageos2, Starlette, Stella, Ajisai, Larets, Westpac), altimetry satellites (TOPEX/Poseidon, Envisat, Jason-1, Jason-2), and satellites tracked solely by DORIS (e.g. SPOT2-5). We discuss some pertinent aspects of the satellite-specific modeling. We include altimeter crossovers in the weekly solutions where feasible and time permits. The resulting geocenter time series is compared with geophysical model predictions and other independently-derived solutions. Over the GRACE time period the fidelity and consistency with the GRACE solutions are presented.

  16. Effect of Time Varying Gravity on DORIS processing for ITRF2013

    NASA Astrophysics Data System (ADS)

    Zelensky, N. P.; Lemoine, F. G.; Chinn, D. S.; Beall, J. W.; Melachroinos, S. A.; Beckley, B. D.; Pavlis, D.; Wimert, J.

    2013-12-01

    Computations are under way to develop a new time series of DORIS SINEX solutions to contribute to the development of the new realization of the terrestrial reference frame (c.f. ITRF2013). One of the improvements that are envisaged is the application of improved models of time-variable gravity in the background orbit modeling. At GSFC we have developed a time series of spherical harmonics to degree and order 5 (using the GOC02S model as a base), based on the processing of SLR and DORIS data to 14 satellites from 1993 to 2013. This is compared with the standard approach used in ITRF2008, based on the static model EIGEN-GL04S1 which included secular variations in only a few select coefficients. Previous work on altimeter satellite POD (c.f. TOPEX/Poseidon, Jason-1, Jason-2) has shown that the standard model is not adequate and orbit improvements are observed with application of more detailed models of time-variable gravity. In this study, we quantify the impact of TVG modeling on DORIS satellite POD, and ascertain the impact on DORIS station positions estimated weekly from 1993 to 2013. The numerous recent improvements to SLR and DORIS processing at GSFC include a more complete compliance to IERS2010 standards, improvements to SLR/DORIS measurement modeling, and improved non-conservative force modeling to DORIS satellites. These improvements will affect gravity coefficient estimates, POD, and the station solutions. Tests evaluate the impact of time varying gravity on tracking data residuals, station consistency, and the geocenter and scale reference frame parameters.

  17. Mascons, GRACE, and Time-variable Gravity

    NASA Technical Reports Server (NTRS)

    Lemoine, F.; Lutchke, S.; Rowlands, D.; Klosko, S.; Chinn, D.; Boy, J. P.

    2006-01-01

    The GRACE mission has been in orbit now for three years and now regularly produces snapshots of the Earth s gravity field on a monthly basis. The convenient standard approach has been to perform global solutions in spherical harmonics. Alternative local representations of mass variations using mascons show great promise and offer advantages in terms of computational efficiency, minimization of problems due to aliasing, and increased temporal resolution. In this paper, we discuss the results of processing the GRACE KBRR data from March 2003 through August 2005 to produce solutions for GRACE mass variations over mid-latitude and equatorial regions, such as South America, India and the United States, and over the polar regions (Antarctica and Greenland), with a focus on the methodology. We describe in particular mascon solutions developed on regular 4 degree x 4 degree grids, and those tailored specifically to drainage basins over these regions.

  18. Harmonic vibro-acoustography.

    PubMed

    Chen, Shigao; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa

    2007-07-01

    Vibro-acoustography is an imaging method that uses the radiation force of two interfering ultrasound beams of slightly different frequency to probe an object. An image is made using the acoustic emission resulted from the object vibration at the difference frequency. In this paper, the feasibility of imaging objects at twice the difference frequency (harmonic acoustic emission) is studied. Several possible origins of harmonic acoustic emission are explored. As an example, it is shown that microbubbles close to resonance can produce significant harmonic acoustic emission due to its high nonlinearity. Experiments demonstrate that, compared to the fundamental acoustic emission, harmonic acoustic emission greatly improves the contrast between microbubbles and other objects in vibro-acoustography (an improvement of 17-23 dB in these experiments). Applications of this technique include imaging the nonlinearity of the object and selective detection of microbubbles for perfusion imaging. The impact of microbubble destruction during the imaging process also is discussed.

  19. ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.

    1994-01-01

    The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.

  20. Harmonic Scalpel versus Electrocautery Dissection in Modified Radical Mastectomy for Breast Cancer: A Meta-Analysis.

    PubMed

    Huang, Jinbo; Yu, Yinghua; Wei, Changyuan; Qin, Qinghong; Mo, Qinguo; Yang, Weiping

    2015-01-01

    Despite the common use of conventional electrocautery in modified radical mastectomy for breast cancer, the harmonic scalpel is recently emerging as a dominant surgical instrument for dissection and haemostasis, which is thought to reduce the morbidity, such as seroma and blood loss. But the results of published trials are inconsistent. So we made the meta-analysis to assess the intraoperative and postoperative endpoints among women undergoing modified radical mastectomy with harmonic scalpel or electrocautery. A comprehensive literature search of case-control studies from PubMed, MEDLINE, EMBASE and Cochrane Library databases involving modified radical mastectomy with harmonic scalpel or electrocautery was performed. We carried out a meta-analysis of primary endpoints including postoperative drainage, seroma development, intraoperative blood loss and secondly endpoints including operative time and wound complications. We used odds ratios (ORs) with 95% confidence intervals (CIs) to evaluate the effect size for categorical outcomes and standardised mean differences (SMDs) for continuous outcomes. A total of 11 studies with 702 patients were included for this meta-analysis. There was significant difference in total postoperative drainage (SMD: -0.74 [95%CI: -1.31, -0.16]; P< 0.01), seroma development[OR: 0.49 (0.34, 0.70); P < 0.01], intraoperative blood loss(SMD: -1.14 [95%CI: -1.81,-0.47]; P < 0.01) and wound complications [OR: 0.38 (0.24, 0.59); P < 0.01] between harmonic scalpel dissection and standard electrocautery in modified radical mastectomy for breast cancer. No difference was found as for operative time between harmonic scalpel dissection and standard electrocautery (SMD: 0.04 [95%CI: -0.41, 0.50]; P = 0.85). Compared to standard electrocautery, harmonic scalpel dissection presents significant advantages in decreasing postoperative drainage, seroma development, intraoperative blood loss and wound complications in modified radical mastectomy for breast

  1. Harmonic Scalpel versus Electrocautery Dissection in Modified Radical Mastectomy for Breast Cancer: A Meta-Analysis

    PubMed Central

    Huang, Jinbo; Yu, Yinghua; Wei, Changyuan; Qin, Qinghong; Mo, Qinguo; Yang, Weiping

    2015-01-01

    Background Despite the common use of conventional electrocautery in modified radical mastectomy for breast cancer, the harmonic scalpel is recently emerging as a dominant surgical instrument for dissection and haemostasis, which is thought to reduce the morbidity, such as seroma and blood loss. But the results of published trials are inconsistent. So we made the meta-analysis to assess the intraoperative and postoperative endpoints among women undergoing modified radical mastectomy with harmonic scalpel or electrocautery. Methods A comprehensive literature search of case-control studies from PubMed, MEDLINE, EMBASE and Cochrane Library databases involving modified radical mastectomy with harmonic scalpel or electrocautery was performed. We carried out a meta-analysis of primary endpoints including postoperative drainage, seroma development, intraoperative blood loss and secondly endpoints including operative time and wound complications. We used odds ratios (ORs) with 95% confidence intervals (CIs) to evaluate the effect size for categorical outcomes and standardised mean differences (SMDs) for continuous outcomes. Results A total of 11 studies with 702 patients were included for this meta-analysis. There was significant difference in total postoperative drainage (SMD: -0.74 [95%CI: -1.31, -0.16]; P< 0.01), seroma development[OR: 0.49 (0.34, 0.70); P < 0.01], intraoperative blood loss(SMD: -1.14 [95%CI: -1.81,-0.47]; P < 0.01) and wound complications [OR: 0.38 (0.24, 0.59); P < 0.01] between harmonic scalpel dissection and standard electrocautery in modified radical mastectomy for breast cancer. No difference was found as for operative time between harmonic scalpel dissection and standard electrocautery (SMD: 0.04 [95%CI: -0.41, 0.50]; P = 0.85). Conclusion Compared to standard electrocautery, harmonic scalpel dissection presents significant advantages in decreasing postoperative drainage, seroma development, intraoperative blood loss and wound complications in

  2. GLGM-3: A Degree-ISO Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters

    NASA Technical Reports Server (NTRS)

    Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

    2010-01-01

    In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(exp -4)/sq l) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of approx.0.2 and approx. 1-2 mm/s in the nominal and extended phases, respectiVely). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

  3. Source Parameter Inversion for Recent Great Earthquakes from a Decade-long Observation of Global Gravity Fields

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile

    2013-01-01

    We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.

  4. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  5. Imaging with Second-Harmonic Generation Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Lung

    Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and

  6. Properties of thermospheric gravity waves on earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Pesnell, W. D.

    1992-01-01

    A spectral model with spherical harmonics and Fourier components that can simulate atmospheric perturbations in the global geometry of a multiconstituent atmosphere is presented. The boundaries are the planetary surface where the transport velocities vanish and the exobase where molecular heat conduction and viscosity dominate. The time consuming integration of the conservation equations is reduced to computing the transfer function (TF) which describes the dynamic properties of the medium divorced from the complexities in the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source distribution is then obtained in short order. Theoretical studies are presented to illuminate some properties of gravity waves on earth, Venus and Mars.

  7. Relativistic satellite orbits: central body with higher zonal harmonics

    NASA Astrophysics Data System (ADS)

    Schanner, Maximilian; Soffel, Michael

    2018-06-01

    Satellite orbits around a central body with arbitrary zonal harmonics are considered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics based upon the first post-Newtonian approximation to Einstein's theory of gravity as it has been formulated by Damour et al. (Phys Rev D 43:3273-3307, 1991; 45:1017-1044, 1992; 47:3124-3135, 1993; 49:618-635, 1994). Since effects of order (GM/c^2R) × J_k with k ≥ 2 for the Earth are very small (of order 7 × 10^{-10} × J_k) we consider an axially symmetric body with arbitrary zonal harmonics and a static external gravitational field. In such a field the explicit J_k/c^2-terms (direct terms) in the equations of motion for the coordinate acceleration of a satellite are treated first with first-order perturbation theory. The derived perturbation theoretical results of first order have been checked by purely numerical integrations of the equations of motion. Additional terms of the same order result from the interaction of the Newtonian J_k-terms with the post-Newtonian Schwarzschild terms (relativistic terms related to the mass of the central body). These `mixed terms' are treated by means of second-order perturbation theory based on the Lie-series method (Hori-Deprit method). Here we concentrate on the secular drifts of the ascending node <{\\dot{Ω }}> and argument of the pericenter <{\\dot{ω }}>. Finally orders of magnitude are given and discussed.

  8. Downward continuation of gravity information from satellite to satellite tracking or satellite gradiometry in local areas

    NASA Technical Reports Server (NTRS)

    Rummel, R.

    1975-01-01

    Integral formulas in the parameter domain are used instead of a representation by spherical harmonics. The neglected regions will cause a truncation error. The application of the discrete form of the integral equations connecting the satellite observations with surface gravity anomalies is discussed in comparison with the least squares prediction method. One critical point of downward continuation is the proper choice of the boundary surface. Practical feasibilities are in conflict with theoretical considerations. The properties of different approaches for this question are analyzed.

  9. Tuvan throat singing and harmonics

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Wilken, David

    2018-05-01

    Tuvan throat singing, also called overtone singing, provides for an exotic demonstration of the physics of harmonics as well as introducing an Asian musical aesthetic. A low fundamental is sung and the singer skillfully alters the resonances of the vocal system to enhance an overtone (harmonic above the fundamental). The result is that the listener hears two pitches simultaneously. Harmonics such as H8, H9, H10, and H12 form part of a pentatonic scale and are commonly selected for melody tones by Tuvan singers. A real-time spectrogram is provided in a video (Ruiz M J 2018 Video: Tuvan Throat Singing and Harmonics http://mjtruiz.com/ped/tuva/) so that Tuvan harmonics can be visualized as they are heard.

  10. Tailored semiconductors for high-harmonic optoelectronics

    NASA Astrophysics Data System (ADS)

    Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu.; Villeneuve, D. M.; Ropers, Claus; Corkum, P. B.

    2017-07-01

    The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.

  11. The Trend Odds Model for Ordinal Data‡

    PubMed Central

    Capuano, Ana W.; Dawson, Jeffrey D.

    2013-01-01

    Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values (Peterson and Harrell, 1990). We consider a trend odds version of this constrained model, where the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc Nlmixed, and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical dataset is used to illustrate the interpretation of the trend odds model, and we apply this model to a Swine Influenza example where the proportional odds assumption appears to be violated. PMID:23225520

  12. The trend odds model for ordinal data.

    PubMed

    Capuano, Ana W; Dawson, Jeffrey D

    2013-06-15

    Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values. We consider a trend odds version of this constrained model, wherein the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc NLMIXED and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical data set is used to illustrate the interpretation of the trend odds model, and we apply this model to a swine influenza example wherein the proportional odds assumption appears to be violated. Copyright © 2012 John Wiley & Sons, Ltd.

  13. New insights into ocean tide loading corrections on tidal gravity data in Canary Islands

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.

    2009-04-01

    The Canary Islands are an interesting area to investigate ocean tides loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean tide loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity tide measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and tide gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity tide observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity tide observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean tide loading corrections, based on the five global ocean tide models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body tide model (Dehant et al., 1999). The lowest values are found for inelastic model in the

  14. Water mass changes inferred by gravity field variations with GRACE

    NASA Astrophysics Data System (ADS)

    Fagiolini, Elisa; Gruber, Christian; Apel, Heiko; Viet Dung, Nguyen; Güntner, Andreas

    2013-04-01

    Since 2002 the Gravity Recovery And Climate Experiment (GRACE) mission has been measuring temporal variations of Earth's gravity field depicting with extreme accuracy how mass is distributed and varies around the globe. Advanced signal separation techniques enable to isolate different sources of mass such as atmospheric and oceanic circulation or land hydrology. Nowadays thanks to GRACE, floods, droughts, and water resources monitoring are possible on a global scale. At GFZ Potsdam scientists have been involved since 2000 in the initiation and launch of the GRACE precursor CHAMP satellite mission, since 2002 in the GRACE Science Data System and since 2009 in the frame of ESÁs GOCE High Processing Facility as well as projected GRACE FOLLOW-ON for the continuation of time variable gravity field determination. Recently GFZ has reprocessed the complete GRACE time-series of monthly gravity field spherical harmonic solutions with improved standards and background models. This new release (RL05) already shows significantly less noise and spurious artifacts. In order to monitor water mass re-distribution and fast moving water, we still need to reach a higher resolution in both time and space. Moreover, in view of disaster management applications we need to act with a shorter latency (current latency standard is 2 months). For this purpose, we developed a regional method based on radial base functions that is capable to compute models in regional and global representation. This new method localizes the gravity observation to the closest regions and omits spatial correlations with farther regions. Additionally, we succeeded to increase the temporal resolution to sub-monthly time scales. Innovative concepts such as Kalman filtering and regularization, along with sophisticated regional modeling have shifted temporal and spatial resolution towards new frontiers. We expect global hydrological models as WHGM to profit from such accurate outcomes. First results comparing the mass

  15. Gravity results from Pioneer 10 Doppler data. [during Jupiter encounter

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Null, G. W.; Wong, S. K.

    1974-01-01

    Two-way Doppler data received from Pioneer 10 during its encounter with Jupiter have been analyzed, and preliminary results have been obtained on the mass and the gravity field of Jupiter and on the masses of the four Galilean satellites. The ratios of the masses of the satellites to the mass of Jupiter are approximately 0.00004696 for Io, 0.00002565 for Europa, 0.00007845 for Ganymede, and 0.00005603 for Callisto (all error estimates presented in this paper are standard errors; those for Pioneer 10 represent our evaluation of the real errors as distinguished from formal errors). The ratio of the mass of the sun to the mass of the Jupiter system is about 1047.342, which is in good agreement with recent determinations from the motions of asteroids. The second- and fourth-degree zonal harmonic coefficients in the gravity field of Jupiter are 0.014720 and -0.00065, respectively, based on an equatorial planetary radius of 71,400 km, and the derived dynamical oblateness is 0.0647 at the same radius. The Pioneer 10 data are consistent with the assumption that Jupiter is in hydrostatic equilibrium at all levels.

  16. Gravity Acceleration and Gravity Paradox

    NASA Astrophysics Data System (ADS)

    Hanyongquan, Han; Yuteng, Tang

    2017-10-01

    The magnitude of the gravitational acceleration of the earth is derived from low of universal gravitation. If the size and mass of the gravitational force are proportional to any situation, then the celestial surface gravity is greater than the celestial center near the gravity, and objective facts do not match. Specific derivation method, F = GMm / R2 = mg, g = GM/R2 . c / Ú, G is the gravitational constant, M is the mass of the earth, and finally the g = 9.8 m/s 2 is obtained. We assume that the earth is a standard positive sphere, the earth's volume V = 4 ΠR3/3, assuming that the earth's density is ρ, then M = ρ 4 ΠR3/3 .. c / Ú, the c / Ú into c / Ú get: g = G ρ4 ΠR / 3 .. c / Û, the density of the earth is constant. Careful analysis of the formula c / Û The result of this calculation, we can reach conclusion the gravity acceleration g and the radius of the earth is proportional. In addition to the radius of the Earth c / U the right is constant, That is, the Earth's Gravity acceleration of the outer layer of the earth is greater than the Earth's Gravity acceleration of Inner layer. We are in High School, Huairou District, Beijing, China Author: hanyongquan tangyuteng TEL: 15611860790, 15810953809.

  17. AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.

    2016-05-01

    The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).

  18. An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1971-01-01

    A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.

  19. Tailored semiconductors for high-harmonic optoelectronics.

    PubMed

    Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu; Villeneuve, D M; Ropers, Claus; Corkum, P B

    2017-07-21

    The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  1. Combination of monthly gravity field solutions from different processing centers

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2015-04-01

    Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the

  2. Mars Gravity Field and Upper Atmosphere from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, A.; Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The NASA orbital missions Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) have been exploring and monitoring the planet Mars since 1997. MGS executed its mapping mission between 1999 and 2006 in a frozen sun-synchronous, near-circular, polar orbit with the periapsis altitude at ~370 km and the dayside equatorial crossing at 2 pm Local Solar Time (LST). The spacecraft was equipped with onboard instrumentation to acquire radio science data and to measure spacecraft ranges to the Martian surface (Mars Orbiter Laser Altimeter). These measurements resulted in static and time-varying gravity field and high-resolution global topography of the planet. ODY and MRO are still orbiting about Mars in two different sun-synchronous orbits, providing radio tracking data that indirectly measure both the static and time-varying gravity field and the atmospheric density. The orbit of ODY has its periapsis at ~390 km altitude and descending node at 4-5 pm LST. However, the spacecraft also collected measurements at lower altitudes (~220 km) in 2002 prior to the mapping phase. Since November 2006, MRO is in a low-altitude orbit with a periapsis altitude of 255 km and descending node at 3 pm LST. Radio data from MRO help improve the resolution of the static gravity field and measure the mass distribution of the polar caps, but the atmospheric drag at those altitudes may limit the benefits of these radio tracking observations. We present a combined solution of the Martian gravity field to degree and order 110 and atmospheric density profiles with radio tracking data from MGS, ODY and MRO. The gravity field solution is combined with the MOLA topography yielding an updated map of Mars crustal thickness. We also show our solution of the Love number k2 and time-variable gravity zonal harmonics (C20 and C30, in particular). The recovered atmospheric density profiles may be used in atmospheric models to constrain the long-term variability of the

  3. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  4. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10 -23 Hz -1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  5. Time-Variable Gravity Signal due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Boy, J. -P.; Cox, C. M.; Au, A. Y.

    2003-01-01

    Using the satellite-laser-ranging (SLR) data, Cox and Chao [2002] reported the detection of a large post-1998 anomaly (in the form of a positive jump) in the time series of Earth s lowest-degree gravity harmonic 52, or the dynamic oblateness. Among several groups now examining the mass redistribution in the global geophysical fluids in search of the cause(s), we report here a temporally coinciding anomalies found in the extratropic north + south Pacific basins. Clearly seen in the leading EOFPC mode for extratropic Pacific, these anomalies occurred in sea-surface height, sea-surface temperature, and temperature- and salinity-depth profiles. We based our analysis on two different data sources: TOPEX/Poseidon altimetry, and the ECCO ocean general circulation model output assimilating T/P data. The magnitude of these changes, when converted to equivalent J2 change, appears to be a few times too small to explain the observed J2 directly. These findings, and the fact that the anomalies occurred following the strong 1997-98 El Nino, suggest strong geophysical connection of the interannual-to-decadal variation of 52 with the Pacific Decadal Oscillation (PDO) and the ultimate global-change processes that cause PDO. More work is underway, and additional independent data sources are examined, paying close attention to the fact that the J2 anomaly has been reversing back to normal since 2001. These include: (1) cryospheric contributions (melting of glaciers and ice sheets); (2) land hydrological contributions; (3) polar sea influences ( e g , via deep flow); (4) fluid flow in Earth's core; (5) time-variable gravity signals from SLR in higher harmonic degree/order, including J3,J4, (2,1), and (2,2) coefficients, considering their lower signal-to-noise ratios; (6) Earth rotation data in terms of length-of-day and polar motion.

  6. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  7. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  8. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

  9. Terrestrial gravity data analysis for interim gravity model improvement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  10. The effects of patch-potentials on the gravity probe B gyroscopes.

    PubMed

    Buchman, S; Turneaure, J P

    2011-07-01

    Gravity probe B (GP-B) was designed to measure the geodetic and frame dragging precessions of gyroscopes in the near field of the Earth using a drag-free satellite in a 642 km polar orbit. Four electrostatically suspended cryogenic gyroscopes were designed to measure the precession of the local inertial frame of reference with a disturbance drift of about 0.1 marc sec/yr-0.2 marc sec/yr. A number of unexpected gyro disturbance effects were observed during the mission: spin-speed and polhode damping, misalignment and roll-polhode resonance torques, forces acting on the gyroscopes, and anomalies in the measurement of the gyro potentials. We show that all these effects except possibly polhode damping can be accounted for by electrostatic patch potentials on both the gyro rotors and the gyro housing suspension and ground-plane electrodes. We express the rotor and housing patch potentials as expansions in spherical harmonics Y(l,m)(θ,φ). Our analysis demonstrates that these disturbance effects are approximated by a power spectrum for the coefficients of the spherical harmonics of the form V(0)(2)/l(r) with V(0) ≈ 100 mV and r ≈ 1.7.

  11. Quartetting in even-even and odd-odd N=Z nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2018-02-01

    We report on a microscopic description of even-even N = Z nuclei in a formalism of quartets. Quartets are four-body correlated structures characterized by isospin T and angular momentum J. We show that the ground state correlations induced by a realistic shell model interaction can be well accounted for in terms of a restricted set of T = 0 low-J quartets, the J = 0 one playing by far a leading role among them. A conceptually similar description of odd-odd self-conjugate nuclei is given in terms of two distinct families of building blocks, one formed by the same T = 0 quartets employed for the even-even systems and the other by collective pairs with either T = 0 or T = 1. Some applications of this formalism are discussed for nuclei in the sd shell.

  12. The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements.

    PubMed

    De Sá Teixeira, Nuno Alexandre

    2016-09-01

    The memory for the final position of a moving object which suddenly disappears has been found to be displaced forward, in the direction of motion, and downwards, in the direction of gravity. These phenomena were coined, respectively, Representational Momentum and Representational Gravity. Although both these and similar effects have been systematically linked with the functioning of internal representations of physical variables (e.g. momentum and gravity), serious doubts have been raised for a cognitively based interpretation, favouring instead a major role of oculomotor and perceptual factors which, more often than not, were left uncontrolled and even ignored. The present work aims to determine the degree to which Representational Momentum and Representational Gravity are epiphenomenal to smooth pursuit eye movements. Observers were required to indicate the offset locations of targets moving along systematically varied directions after a variable imposed retention interval. Each participant completed the task twice, varying the eye movements' instructions: gaze was either constrained or left free to track the targets. A Fourier decomposition analysis of the localization responses was used to disentangle both phenomena. The results show unambiguously that constraining eye movements significantly eliminates the harmonic components which index Representational Momentum, but have no effect on Representational Gravity or its time course. The found outcomes offer promising prospects for the study of the visual representation of gravity and its neurological substrates.

  13. A neural network model of harmonic detection

    NASA Astrophysics Data System (ADS)

    Lewis, Clifford F.

    2003-04-01

    Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.

  14. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  15. Nonsingular expansions of the gravity potential and its derivatives at satellite altitudes in the ellipsoidal coordinate system

    NASA Astrophysics Data System (ADS)

    Vershkov, A. N.; Petrovskaya, M. S.

    2016-11-01

    The series in ellipsoidal harmonics for derivatives of the Earth's gravity potential are used only on the reference ellipsoid enveloping the Earth due to their very complex mathematical structure. In the current study, the series in ellipsoidal harmonics are constructed for first- and second-order derivatives of the potential at satellite altitudes; their structure is similar to the series on the reference ellipsoid. The point P is chosen at a random satellite altitude; then, the ellipsoid of revolution is described, which passes through this point and is confocal to the reference ellipsoid. An object-centered coordinate system with the origin at the point P is considered. Using a sequence of transformations, the nonsingular series in ellipsoidal harmonics is constructed for first and second derivatives of the potential in the object-centered coordinate system. These series can be applied to develop a model of the Earth's potential, based on combined use of surface gravitational force measurements, data on the satellite orbital position, its acceleration, or measurements of the gravitational force gradients of the first and second order. The technique is applicable to any other planet of the Solar System.

  16. Symmetry-controlled time structure of high-harmonic carrier fields from a solid

    PubMed Central

    Langer, F.; Hohenleutner, M.; Huttner, U.; Koch, S. W.; Kira, M.; Huber, R.

    2017-01-01

    High-harmonic (HH) generation in crystalline solids1–6 marks an exciting development, with potential applications in high-efficiency attosecond sources7, all-optical bandstructure reconstruction8,9, and quasiparticle collisions10,11. Although the spectral1–4 and temporal shape5 of the HH intensity has been described microscopically1–6,12, the properties of the underlying HH carrier wave have remained elusive. Here we analyse the train of HH waveforms generated in a crystalline solid by consecutive half cycles of the same driving pulse. Extending the concept of frequency combs13–15 to optical clock rates, we show how the polarization and carrier-envelope phase (CEP) of HH pulses can be controlled by crystal symmetry. For some crystal directions, we can separate two orthogonally polarized HH combs mutually offset by the driving frequency to form a comb of even and odd harmonic orders. The corresponding CEP of successive pulses is constant or offset by π, depending on the polarization. In the context of a quantum description of solids, we identify novel capabilities for polarization- and phase-shaping of HH waveforms that cannot be accessed with gaseous sources. PMID:28572835

  17. Local Lunar Gravity Field Analysis over the South Pole-aitken Basin from SELENE Farside Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho

    2012-01-01

    We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater

  18. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less

  19. Dualities and emergent gravity: Gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  20. A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation

    NASA Astrophysics Data System (ADS)

    Rieser, Daniel; Mayer-Guerr, Torsten

    2014-05-01

    The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.

  1. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  2. Nonlocal Gravity

    NASA Astrophysics Data System (ADS)

    Mashhoon, Bahram

    2017-05-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality 1R 2i1nr-in the sense of history dependence-is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes weaker as the universe expands. The implications of nonlocal gravity are explored in this book for gravitational lensing, gravitational radiation, the gravitational physics of the Solar System and the internal dynamics of nearby galaxies, as well as clusters of galaxies. This approach is extended to nonlocal Newtonian cosmology, where the attraction of gravity fades with the expansion of the universe. Thus far, scientists have only compared some of the consequences of nonlocal gravity with astronomical observations.

  3. The harmonic organization of auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  4. The harmonic organization of auditory cortex.

    PubMed

    Wang, Xiaoqin

    2013-12-17

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  5. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  6. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  7. Semiclassical unified description of wobbling motion in even-even and even-odd nuclei

    NASA Astrophysics Data System (ADS)

    Raduta, A. A.; Poenaru, R.; Ixaru, L. Gr.

    2017-11-01

    A unitary description for wobbling motion in even-even and even-odd nuclei is presented. In both cases compact formulas for wobbling frequencies are derived. The accuracy of the harmonic approximation is studied for the yrast as well as for the excited bands in the even-even case. Important results for the structure of the wave function and its behavior inside the two wells of the potential energy function corresponding to the Bargmann representation are pointed out. Applications to 158Er and 163Lu reveal a very good agreement with available data. Indeed, the yrast energy levels in the even-even case and the first four triaxial superdeformed bands, TSD1, TSD2, TSD3, and TSD4, are realistically described. Also, the results agree with the data for the E 2 and M 1 intra- as well as interband transitions. Perspectives for the formalism development and an extensive application to several nuclei from various regions of the nuclides chart are presented.

  8. High-degree Gravity Models from GRAIL Primary Mission Data

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; hide

    2013-01-01

    We have analyzed Ka?band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance?component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root?mean?square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre?GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter?derived topography are larger than 0.985 between l = 120 and 330. The free?air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre?GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit?track?related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S?band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 micrometers/s for GRGM420A and from 0.03 to 0.06 micrometers/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615+/-0.0000914, k21=0.023915+/-0.0000132, and k22=0.024852+/-0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734+/-0.0015, where the Love number error sigmas are those obtained with VCE.

  9. High-frequency harmonic imaging of the eye.

    PubMed

    Silverman, Ronald H; Coleman, D Jackson; Ketterling, Jeffrey A; Lizzi, Frederic L

    2005-01-01

    PURPOSE: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. METHODS: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. RESULTS: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. CONCLUSION: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  10. High-frequency harmonic imaging of the eye

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  11. Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Lai, Li; Peng, Hao; Tu, Zhe; Zhong, Suchuan

    2018-01-01

    The dynamics of many soft condensed matter and biological systems is affected by space limitations, which produce some peculiar effects on the systems' stochastic resonance (SR) behavior. In this study, we propose a model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal driving force and is under the influence of a multiplicative white noise. The output response of the system is a periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of these confined systems and could constitute an important tool for controlling their basic properties.

  12. Crossover between few and many fermions in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Grining, Tomasz; Tomza, Michał; Lesiuk, Michał; Przybytek, Michał; Musiał, Monika; Moszynski, Robert; Lewenstein, Maciej; Massignan, Pietro

    2015-12-01

    The properties of a balanced two-component Fermi gas in a one-dimensional harmonic trap are studied by means of the coupled-cluster method. For few fermions we recover the results of exact diagonalization, yet with this method we are able to study much larger systems. We compute the energy, the chemical potential, the pairing gap, and the density profile of the trapped clouds, smoothly mapping the crossover between the few-body and many-body limits. The energy is found to converge surprisingly rapidly to the many-body result for every value of the interaction strength. Many more particles are instead needed to give rise to the nonanalytic behavior of the pairing gap, and to smoothen the pronounced even-odd oscillations of the chemical potential induced by the shell structure of the trap.

  13. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  14. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  15. High order harmonics anomaly of jet screech

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wu, Jiu Hui; Ren, A.-Dan; Chen, Xin

    2018-05-01

    Imperfectly expanded supersonic jets under strong screech could generate both fundamental screech tones and multiple tones at the harmonics of the fundamental frequency. The paper compares the fundamental frequency of jets from both AR = 3 (Aspect Ratio) and AR = 4 rectangular nozzles, and conducts analysis of harmonics on Sound Pressure Level (SPL) spectrums of jet noise. The research suggests that the fundamental frequency of the first two- or three-order harmonics increases when the Nozzle Pressure Ratio (NPR) decreases, whereas the highest order harmonic decreases when the NPR decreases. Besides, the paper also observes the differences between the highest order harmonics and other harmonics that have never been reported before. Further analysis on flow field schlieren of AR = 3 nozzle indicates that the highest order harmonic is the outcome of interaction between second shock-cell and nonlinear instable wave. The revolution of these high order harmonics can provide guidance for the prevention of small-scale structure fatigue damage. Moreover, the distribution test of the noises is also carried out to verify the high order harmonics anomaly, and indicate that the jet noise spreads mainly towards downstream while screech towards upstream. In addition, the broadband shock-associated noise spreads vertical to the jet flow and exhibits the feature of directivity.

  16. Lovelock gravities from Born-Infeld gravity theory

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  17. Three-dimensional fractional-spin gravity

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2014-02-01

    Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.

  18. Topological regularization and self-duality in four-dimensional anti-de Sitter gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2009-06-15

    It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as T{sub j}{sup i}={+-}(l{sup 2}/8{pi}G)C{sub j}{sup i}, which has been observed in recent literature in solitonicmore » solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.« less

  19. Expansion into lattice harmonics in cubic symmetries

    NASA Astrophysics Data System (ADS)

    Kontrym-Sznajd, G.

    2018-05-01

    On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics. These studies led to the following questions: (1) In the case that for a given l there are several independent harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be ordered: according to l or, after writing them in terms of (x4 + y4 + z4)n (x2y2z2)m, according to their degree q = n + m? To enable practical applications of such harmonics, they are constructed in terms of the associated Legendre polynomials up to l = 26. It is shown that electron momentum densities, reconstructed from experimental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.

  20. Evaluation of ames Multistix-SG for urine specific gravity versus refractometer specific gravity.

    PubMed

    Adams, L J

    1983-12-01

    A comparison of urine specific gravity by a commercially available multiple reagent strip (Multistix-SG; Ames Division, Miles Laboratory) versus refractometer specific gravity (TS Meter; American Optical Corporation) was performed on 214 routine urine specimens. Agreement to +/- 0.005 was found in 72% of the specimens (r = 0.80). Urine specific gravity by the Multistix-SG showed a significant positive bias at urine pHs less than or equal to 6.0 and a negative bias at urine pHs greater than 7.0 in comparison to refractometer specific gravity. At concentrated (specific gravity greater than or equal to 1.020) specific gravities, up to 25% of urine specimens were misclassified as not concentrated by Multistix-SG specific gravity in comparison to refractometer specific gravity. The additional cost of the specific gravity reagent to a multiple reagent test strip in addition to the poor performance relative to refractometer specific gravity leads to the conclusion that including this specific gravity methodology on a multiple reagent strip is neither cost effective nor clinically useful.

  1. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  2. Explaining the harmonic sequence paradox.

    PubMed

    Schmidt, Ulrich; Zimper, Alexander

    2012-05-01

    According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced. ©2011 The British Psychological Society.

  3. Dynamics and control of instrumented harmonic drives

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  4. Gravity dependence of subjective visual vertical variability.

    PubMed

    Tarnutzer, A A; Bockisch, C; Straumann, D; Olasagasti, I

    2009-09-01

    The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindividual SVV variability increases with head roll, which suggests that the effectiveness of the otolith signal is roll-angle dependent. We asked whether SVV variability reflects the spatial distribution of the otolithic sensors and the otolith-derived acceleration estimate. Subjects were placed in different roll orientations (0-360 degrees, 15 degrees steps) and asked to align an arrow with perceived vertical. Variability was minimal in upright, increased with head-roll peaking around 120-135 degrees, and decreased to intermediate values at 180 degrees. Otolith-dependent variability was modeled by taking into consideration the nonuniform distribution of the otolith afferents and their nonlinear firing rate. The otolith-derived estimate was combined with an internal bias shifting the estimated gravity-vector toward the body-longitudinal. Assuming an efficient otolith estimator at all roll angles, peak variability of the model matched our data; however, modeled variability in upside-down and upright positions was very similar, which is at odds with our findings. By decreasing the effectiveness of the otolith estimator with increasing roll, simulated variability matched our experimental findings better. We suggest that modulations of SVV precision in the roll plane are related to the properties of the otolith sensors and to central computational mechanisms that are not optimally tuned for roll-angles distant from upright.

  5. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  6. A masking level difference due to harmonicity.

    PubMed

    Treurniet, W C; Boucher, D R

    2001-01-01

    The role of harmonicity in masking was studied by comparing the effect of harmonic and inharmonic maskers on the masked thresholds of noise probes using a three-alternative, forced-choice method. Harmonic maskers were created by selecting sets of partials from a harmonic series with an 88-Hz fundamental and 45 consecutive partials. Inharmonic maskers differed in that the partial frequencies were perturbed to nearby values that were not integer multiples of the fundamental frequency. Average simultaneous-masked thresholds were as much as 10 dB lower with the harmonic masker than with the inharmonic masker, and this difference was unaffected by masker level. It was reduced or eliminated when the harmonic partials were separated by more than 176 Hz, suggesting that the effect is related to the extent to which the harmonics are resolved by auditory filters. The threshold difference was not observed in a forward-masking experiment. Finally, an across-channel mechanism was implicated when the threshold difference was found between a harmonic masker flanked by harmonic bands and a harmonic masker flanked by inharmonic bands. A model developed to explain the observed difference recognizes that an auditory filter output envelope is modulated when the filter passes two or more sinusoids, and that the modulation rate depends on the differences among the input frequencies. For a harmonic masker, the frequency differences of adjacent partials are identical, and all auditory filters have the same dominant modulation rate. For an inharmonic masker, however, the frequency differences are not constant and the envelope modulation rate varies across filters. The model proposes that a lower variability facilitates detection of a probe-induced change in the variability, thus accounting for the masked threshold difference. The model was supported by significantly improved predictions of observed thresholds when the predictor variables included envelope modulation rate variance measured

  7. Gravity field, shape, and moment of inertia of Titan.

    PubMed

    Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W

    2010-03-12

    Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.

  8. Gravity wave momentum flux estimation from CRISTA satellite data

    NASA Astrophysics Data System (ADS)

    Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.

    2003-04-01

    Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.

  9. Improved linearity using harmonic error rejection in a full-field range imaging system

    NASA Astrophysics Data System (ADS)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2008-02-01

    Full field range imaging cameras are used to simultaneously measure the distance for every pixel in a given scene using an intensity modulated illumination source and a gain modulated receiver array. The light is reflected from an object in the scene, and the modulation envelope experiences a phase shift proportional to the target distance. Ideally the waveforms are sinusoidal, allowing the phase, and hence object range, to be determined from four measurements using an arctangent function. In practice these waveforms are often not perfectly sinusoidal, and in some cases square waveforms are instead used to simplify the electronic drive requirements. The waveforms therefore commonly contain odd harmonics which contribute a nonlinear error to the phase determination, and therefore an error in the range measurement. We have developed a unique sampling method to cancel the effect of these harmonics, with the results showing an order of magnitude improvement in the measurement linearity without the need for calibration or lookup tables, while the acquisition time remains unchanged. The technique can be applied to existing range imaging systems without having to change or modify the complex illumination or sensor systems, instead only requiring a change to the signal generation and timing electronics.

  10. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  11. Improvements in GRACE Gravity Field Determination through Stochastic Observation Modeling

    NASA Astrophysics Data System (ADS)

    McCullough, C.; Bettadpur, S. V.

    2016-12-01

    Current unconstrained Release 05 GRACE gravity field solutions from the Center for Space Research (CSR RL05) assume random observation errors following an independent multivariate Gaussian distribution. This modeling of observations, a simplifying assumption, fails to account for long period, correlated errors arising from inadequacies in the background force models. Fully modeling the errors inherent in the observation equations, through the use of a full observation covariance (modeling colored noise), enables optimal combination of GPS and inter-satellite range-rate data and obviates the need for estimating kinematic empirical parameters during the solution process. Most importantly, fully modeling the observation errors drastically improves formal error estimates of the spherical harmonic coefficients, potentially enabling improved uncertainty quantification of scientific results derived from GRACE and optimizing combinations of GRACE with independent data sets and a priori constraints.

  12. EDITORIAL: Focus section on quantum gravity - 25 years of quantum gravity Focus section on quantum gravity - 25 years of quantum gravity

    NASA Astrophysics Data System (ADS)

    Samuel, Joseph

    2011-08-01

    The problem of quantum gravity has been with us for over 80 years. After quantum theory was established in the 1920s, it was successfully applied to the electromagnetic field. Over the years there have been many attempts to bring gravity into the fold. There has been work on the Hamiltonian formulation of general relativity, perturbative approaches to quantum gravity and more. Much intellectual effort went into understanding conceptual and technical problems stemming from the general covariance of the theory. However, in earlier decades, the subject of quantum gravity was relatively on the fringes of theoretical physics research, pursued by a small and diverse community of people. In the mid 1980s the situation changed dramatically. The subject of quantum gravity came to the forefront of fundamental physics research, no longer a backwater but the mainstream. Quantum gravity was widely acknowledged as the last frontier of fundamental physics and attracted the brightest young people. Unlike in previous decades, workers in this area were no longer isolated groups or individuals ploughing lonely furrows, but organised into coherent `programmes' for a concerted attack on the problem. The main programmes coincidentally were all formulated in the mid 1980s. The two `programmes' covered in this section are string theory and loop quantum gravity. String theory was born an offshoot of Hadronic models in particle physics and reflects the particle physicists view that gravity is just one more interaction to be encompassed by a unified theory. Loop quantum gravity reflects the general relativist's conviction that gravity is different and should not be treated as a perturbation about Minkowski spacetime. Each of these approaches has its proponents, adherents and critics. It is now about a quarter of a century since these programmes started. It is perhaps a good time to take stock and assess where we are now and where each of these programmes is headed. The idea in this focus

  13. Harmonic engine

    DOEpatents

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  14. The interior structure of Enceladus from Cassini gravity measurements

    NASA Astrophysics Data System (ADS)

    Iess, Luciano

    2015-04-01

    The Cassini spacecraft flew by the small Saturnian moon Enceladus in three close flybys (April 28, 2010, November 30, 2010 and May 2, 2012, to carry out measurements of the satellite's gravity field [1]. One of the main motivations was the search for a hemispherical asymmetry in the gravity field, the gravitational counterpart of the striking North-South asymmetry shown by optical imaging and other Cassini instruments in the geological features of the moon. The estimation of Enceladus' gravity field by Cassini was especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction (only a few minutes) and the small, nearly impulsive, neutral particles drag occurring when the spacecraft crossed the south polar plume during the first and the third flyby. Including the non-gravitational acceleration due to the plume in the dynamical model was crucial to obtain a reliable solution for the gravity field. In order to maximize the sensitivity to the hemispherical asymmetry, controlled by the spherical harmonic coefficient J3, the closest approaches occurred at the low altitudes (respectively 100, 48 and 70 km), and at high latitudes in both hemispheres (89°S, 62°N, and 72°S). Enceladus' gravity field is dominated by large quadrupole terms not far from those expected for a body in a relaxed shape. Although the deviations from the hydrostaticity are weak (J2/C22=3.55±0.05), the straightforward application of the Radau-Darwin approximation yields a value of the moment of inertia factor (MOIF=C/MR2) that is incompatible (0.34) with the differentiated interior structure suggested by cryovolcanism and the large heat flow. The other remarkable feature of the gravity field is the small but still statistically significant value of J3 (106 x J3 = -115.3±22.9). A differentiated interior structure (corresponding to a smaller MOIF) may be reconciled with the gravity measurement by assuming that the rocky core has retained some

  15. Mars Gravity Field Model Development from Mars Global Surveyor Tracking Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zuber, M. T.

    1999-01-01

    Since Feb. 99 the MGS spacecraft has been in a near circular orbit at about 400 km altitude. The MGS has been regularly tracked by the Deep Space Network (DSN) at X-band and for a 3 week period in February was tracked almost continuously for an intensive gravity modeling activity that would form the basis of the orbital computations for the rest of the mission. The data collected during this calibration period and the earlier SPO and Hiatus periods have now been used to develop a new gravity field model for Mars that is showing considerable new detail in both the northern and southern hemispheres. Until February no data at 400 km altitude or lower had been acquired on any previous mission south of about 35S and all the previous data were of significantly lower quality. Low altitude data (-170 km) were obtained over the higher latitudes of the northern hemisphere during the SPO periods but because of the high eccentricity of the orbit nothing of similar quality was obtainable for the southern hemisphere. The new models are of spherical harmonic degree and order 70 or higher and are suggesting large anomalies are often associated with the large impact features. Gravity data have also been obtained over both the northern and southern polar ice caps. The MGS orbit quality resulting from the use of these newer models is better than any previous Mars missions and is approaching the ten's of meter level that had been hoped would be eventually realizable.

  16. Mercury's gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Margot, J. L.

    2015-12-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.

  17. Use of Massive Parallel Computing Libraries in the Context of Global Gravity Field Determination from Satellite Data

    NASA Astrophysics Data System (ADS)

    Brockmann, J. M.; Schuh, W.-D.

    2011-07-01

    The estimation of the global Earth's gravity field parametrized as a finite spherical harmonic series is computationally demanding. The computational effort depends on the one hand on the maximal resolution of the spherical harmonic expansion (i.e. the number of parameters to be estimated) and on the other hand on the number of observations (which are several millions for e.g. observations from the GOCE satellite missions). To circumvent these restrictions, a massive parallel software based on high-performance computing (HPC) libraries as ScaLAPACK, PBLAS and BLACS was designed in the context of GOCE HPF WP6000 and the GOCO consortium. A prerequisite for the use of these libraries is that all matrices are block-cyclic distributed on a processor grid comprised by a large number of (distributed memory) computers. Using this set of standard HPC libraries has the benefit that once the matrices are distributed across the computer cluster, a huge set of efficient and highly scalable linear algebra operations can be used.

  18. The harmonic impact of electric vehicle battery charging

    NASA Astrophysics Data System (ADS)

    Staats, Preston Trent

    The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and

  19. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation

    DOE PAGES

    Li, Peng -Cheng; Sheu, Yae -Lin; Jooya, Hossein Z.; ...

    2016-09-06

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories aremore » dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. As a result, it also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.« less

  20. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation

    PubMed Central

    Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z.; Zhou, Xiao-Xin; Chu, Shih-I

    2016-01-01

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse. PMID:27596056

  1. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation.

    PubMed

    Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z; Zhou, Xiao-Xin; Chu, Shih-I

    2016-09-06

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.

  2. Harmonized Medical Device Regulation: Need, Challenges, and Risks of not Harmonizing the Regulation in Asia

    PubMed Central

    Kaushik, A; Saini, KS; Anil, B; Rambabu, S

    2010-01-01

    Medical device sector is one of the most complex and challenging business segments of the healthcare industry with close collaboration between science and engineering. Despite the fact that Asia has 60% of the world population providing large market potential, Asian healthcare expenditure constitutes only 15% of the global healthcare expenditure. The accelerated ageing population and increasing prevalence of chronic disease are the key drivers that contribute toward the increase in the total healthcare expenditure on medical devices in the region. Several policies clearly showed the eagerness of the government to provide better healthcare infrastructure with better medical devices and facilities. The fundamental objective of the regulatory harmonization is to improve the efficiency of national economies and their ability to adopt to change and remain competitive. After the era of liberalization and globalization, the desires of developing economies is to ensure safety and performance of the product brought to their markets and for this harmonized regulation is an important tool for strengthening the same. If we talk about the industry need, then this approach will eliminate redundant requirements that do not contribute to safety and effectiveness. In addition, Asia is diverse in many respects and with it come the various challenges to harmonizing the regulation which includes diversity in culture, politics, economy, historical issues, etc. If, by any reason, the regulation of medical devices is not harmonized and consequently, the harmonized regulation is not adopted, then it leads to serious concerns like delayed or absent access to innovative technology, continued rise in the cost of medical therapies, etc. So this issue is written to attract all stakeholders to move toward the concept of harmonization, keeping in mind their need, challenges, and risks of not harmonizing the regulation as well. PMID:21331201

  3. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  4. Determination of Enceladus' gravity field from Cassini radio science data

    NASA Astrophysics Data System (ADS)

    Parisi, Marzia; Iess, Luciano; Ducci, Marco

    2014-05-01

    In May 2012 the Cassini spacecraft completed its last gravity flyby of Saturn's moon Enceladus (identified as E19 in the sequence), following E9 in April 2010 and E12 in November 2010. The multiarc analysis of the gravity data collected during these low-altitude encounters has produced a stable solution for the gravity field of Enceladus, leading to compelling inferences and implications on the interior structure, but also raising new questions on the evolution of this small but yet fascinating icy body. The gravitational signature of the satellite was detected by means of precise Doppler tracking of the Cassini spacecraft around closest approach (±3h) of the three flybys. Cassini tracking system exploits both X/X and X/Ka links, with accuracies that range between 0.02 - 0.09 mm/s at 60 s integration time. Range-rate measurements were processed into a multi-arc least square filter so as to attain a solution for the quadrupole field of Enceladus and its degree-3 zonal harmonic J3, the most important indication of hemispherical asymmetries. In addition to these crucial parameters, corrections to the estimated orbits of Cassini and Enceladus were applied. The inclusion in the dynamical model of the neutral particle drag exerted by Enceladus south polar plumes (1) is essential for a satisfactory orbital fit. The results of the analysis show that Enceladus is indeed characterized by a predominant quadrupole term, with its J2/C22 ratio being that of a body not in hydrostatic equilibrium. The estimate of tesseral degree-2 coefficients (C21, S21 and C22), being statistically close to 0 (at a 3-σ level), imply that the adopted rotational model for the satellite is consistent with the observed gravity field. Furthermore, the estimated value for J3 turned out to be statistically significant (although only about 1/50 of J2) and pointing at a significant hemispherical asymmetry that is consistent with the presence of a regional sea at depth. References (1) C.C. Porco et al

  5. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  6. Harmonic Frequency Lowering

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122

  7. The role of topography in geodetic gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, R.; Sideris, M. G.

    1989-01-01

    Masses associated with the topography, bathymetry, and its isostatic compensation are a dominant source of gravity field variations, especially at shorter wavelengths. On global scales the topographic/isostatic effects are also significant, except for the lowest harmonics. In practice, though, global effects need not be taken into account as such effects are included in the coefficients of the geopotential reference fields. On local scales, the short-wavelength gravity variations due to the topography may, in rugged terrain, be an order of magnitude larger than other effects. In such cases, explicit or implicit terrain reduction procedures are mandatory in order to obtain good prediction results. Such effects may be computed by space-domain integration or by fast Fourier transformation (FFT) methods. Numerical examples are given for areas of the Canadian Rockies. In principle, good knowledge of the topographic densities is required to produce the smoothest residual field. Densities may be determined from sample measurements or by gravimetric means, but both are somewhat troublesome methods in practice. The use of a standard density, e.g., 2.67 g/cu cm, may often yield satisfactory results and may be put within a consistent theoretical framework. The independence of density assumptions is the key point of the classical Molodensky approach to the geodetic boundary value problem. The Molodensky solutions take into account that land gravity field observations are done on a non-level surface. Molodensky's problem may be solved by integral expansions or more effective FFT methods, but the solution should not be intermixed with the use of terrain reductions. The methods are actually complimentary and may both be required in order to obtain the smoothest possible signal, least prone to aliasing and other effects coming from sparse data coverage, typical of rugged topography.

  8. MODEL HARMONIZATION POTENTIAL AND BENEFITS

    EPA Science Inventory

    The IPCS Harmonization Project, which is currently ongoing under the auspices of the WHO, in the context of chemical risk assessment or exposure modeling, does not imply global standardization. Instead, harmonization is thought of as an effort to strive for consistency among appr...

  9. Young children's harmonic perception.

    PubMed

    Costa-Giomi, Eugenia

    2003-11-01

    Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.

  10. Harmonic field in knotted space

    NASA Astrophysics Data System (ADS)

    Duan, Xiuqing; Yao, Zhenwei

    2018-04-01

    Knotted fields enrich a variety of physical phenomena, ranging from fluid flows, electromagnetic fields, to textures of ordered media. Maxwell's electrostatic equations, whose vacuum solution is mathematically known as a harmonic field, provide an ideal setting to explore the role of domain topology in determining physical fields in confined space. In this work, we show the uniqueness of a harmonic field in knotted tubes, and reduce the construction of a harmonic field to a Neumann boundary value problem. By analyzing the harmonic field in typical knotted tubes, we identify the torsion driven transition from bipolar to vortex patterns. We also analogously extend our discussion to the organization of liquid crystal textures in knotted tubes. These results further our understanding about the general role of topology in shaping a physical field in confined space, and may find applications in the control of physical fields by manipulation of surface topology.

  11. Application of harmonic detection technology in methane telemetry

    NASA Astrophysics Data System (ADS)

    Huo, Yuehua; Fan, Weiqiang

    2017-08-01

    Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.

  12. The ODD protocol: A review and first update

    USGS Publications Warehouse

    Grimm, Volker; Berger, Uta; DeAngelis, Donald L.; Polhill, J. Gary; Giske, Jarl; Railsback, Steve F.

    2010-01-01

    The 'ODD' (Overview, Design concepts, and Details) protocol was published in 2006 to standardize the published descriptions of individual-based and agent-based models (ABMs). The primary objectives of ODD are to make model descriptions more understandable and complete, thereby making ABMs less subject to criticism for being irreproducible. We have systematically evaluated existing uses of the ODD protocol and identified, as expected, parts of ODD needing improvement and clarification. Accordingly, we revise the definition of ODD to clarify aspects of the original version and thereby facilitate future standardization of ABM descriptions. We discuss frequently raised critiques in ODD but also two emerging, and unanticipated, benefits: ODD improves the rigorous formulation of models and helps make the theoretical foundations of large models more visible. Although the protocol was designed for ABMs, it can help with documenting any large, complex model, alleviating some general objections against such models.

  13. High-harmonic generation in amorphous solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Yin, Yanchun; Wu, Yi

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  14. Understanding fifth-harmonic generation in CLBO

    NASA Astrophysics Data System (ADS)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  15. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  16. Coherence-domain imaging with harmonic holography

    NASA Astrophysics Data System (ADS)

    Pu, Ye; Psaltis, Demetri

    2017-08-01

    Observing the fast dynamics of specific molecules or targets in three-dimensional (3D) space and time inside a crowded and complex environment, such as living cells or tissues, remain one of the grand open challenges in modern science. Harmonic holography tackle this challenge by combining the 3D imaging capability of holography with the ultrafast, coherent optical contrast offered by second-harmonic radiating imaging probes (SHRIMPs). Similar to fluorescence, the second-harmonic signal emitted from SHRIMPs provides a color contrast against the uninterested background scattering, which can be efficiently suppressed by an optical filter. We review the latest developments in SHRIMPs and harmonic holography and discuss their further applications in fluidics and biofluidics.

  17. Odd-frequency pairing in superconducting heterostructures .

    NASA Astrophysics Data System (ADS)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  18. Reducing errors in the GRACE gravity solutions using regularization

    NASA Astrophysics Data System (ADS)

    Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.

    2012-09-01

    The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4

  19. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  20. The gravity field and interior structure of Enceladus.

    PubMed

    Iess, L; Stevenson, D J; Parisi, M; Hemingway, D; Jacobson, R A; Lunine, J I; Nimmo, F; Armstrong, J W; Asmar, S W; Ducci, M; Tortora, P

    2014-04-04

    The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50°. The estimated values for the largest quadrupole harmonic coefficients (10(6)J2 = 5435.2 ± 34.9, 10(6)C22 = 1549.8 ± 15.6, 1σ) and their ratio (J2/C22 = 3.51 ± 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR(2), where M is the mass and R is the radius, suggesting a differentiated body with a low-density core.

  1. Mars' gravity field and upper atmosphere with MGS, Mars Odyssey, and MRO radio science data

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Goossens, Sander J.; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-04-01

    The Mars exploration program conducted by NASA during the last decade has enabled continuous observations of the planet from orbit with three different missions: the Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). These spacecraft were equipped with on board instrumentation dedicated to collect radio tracking data in the X-band. The analysis of these data has provided a high-resolution gravity field model of Mars. MGS and ODY were inserted into two separate frozen sun-synchronous, near-circular, polar orbits with different local times, with their periapsis altitude at ~370 km and ~390 km, respectively. MGS was in orbit around Mars between 1999 and 2006, whereas ODY has been orbiting the planet since January 2002. Using the radio science data of these two spacecraft, gravity models with a maximum resolution of degree and order 95 in spherical harmonics (spatial resolution of 112 km) have been determined. MRO has been orbiting Mars since August 2006 in a frozen sun-synchronous orbit with a periapsis at 255 km altitude. Therefore, its radio data helped significantly improve Mars' gravity field model, up to degree and order 110 (spatial resolution of 96 km). However, mismodeling of the atmospheric drag, which is the strongest non-conservative force acting on the spacecraft at MRO's low altitude, compromises the estimation of the temporal variations of the gravity field zonal harmonics that provide crucial information on the seasonal mass of carbon dioxide in the polar caps. For this reason, we implemented the Drag Temperature Model (DTM)-Mars model (Bruinsma and Lemoine 2002) into our Precise Orbit Determination (POD) program GEODYN-II. We estimated key model parameters to adequately reproduce variations in temperatures and (partial) density along the spacecraft trajectories. Our new model allows us to directly estimate the long-term periodicity of the major constituents at MGS, ODY, and MRO altitudes (~255-450 km). In this

  2. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  3. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  4. Macromolecular Origins of Harmonics Higher than the Third in Large-Amplitude Oscillatory Shear Flow

    NASA Astrophysics Data System (ADS)

    Giacomin, Alan; Jbara, Layal; Gilbert, Peter; Chemical Engineering Department Team

    2016-11-01

    In 1935, Andrew Gemant conceived of the complex viscosity, a rheological material function measured by "jiggling" an elastic liquid in oscillatory shear. This test reveals information about both the viscous and elastic properties of the liquid, and about how these properties depend on frequency. The test gained popularity with chemists when John Ferry perfected instruments for measuring both the real and imaginary parts of the complex viscosity. In 1958, Cox and Merz discovered that the steady shear viscosity curve was easily deduced from the magnitude of the complex viscosity, and today oscillatory shear is the single most popular rheological property measurement. With oscillatory shear, we can control two things: the frequency (Deborah number) and the shear rate amplitude (Weissenberg number). When the Weissenberg number is large, the elastic liquids respond with a shear stress over a series of odd-multiples of the test frequency. In this lecture we will explore recent attempts to deepen our understand of the physics of these higher harmonics, including especially harmonics higher than the third. Canada Research Chairs program of the Government of Canada for the Natural Sciences and Engineering Research Council of Canada (NSERC) Tier 1 Canada Research Chair in Rheology.

  5. Harmonic Phase Response of Nonlinear Radar Targets

    DTIC Science & Technology

    2015-10-01

    while allowing its harmonics to pass through. The weak harmonic responses are then amplified to allow for easier detection and measurement . 4...where the phase of the 2nd and 3rd harmonic of the received electromagnetic wave from nonlinear targets was measured and plotted against the frequency

  6. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  7. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  8. Cutoff for extensions of massive gravity and bi-gravity

    NASA Astrophysics Data System (ADS)

    Matas, Andrew

    2016-04-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.

  9. Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Meyer, Ulrich; Jäggi, Adrian; Beutler, Gerhard

    2012-09-01

    The main objective of the Gravity Recovery And Climate Experiment (GRACE) satellite mission consists of determining the temporal variations of the Earth's gravity field. These variations are captured by time series of gravity field models of limited resolution at, e.g., monthly intervals. We present a new time series of monthly models, which was computed with the so-called Celestial Mechanics Approach (CMA), developed at the Astronomical Institute of the University of Bern (AIUB). The secular and seasonal variations in the monthly models are tested for statistical significance. Calibrated errors are derived from inter-annual variations. The time-variable signal can be extracted at least up to degree 60, but the gravity field coefficients of orders above 45 are heavily contaminated by noise. This is why a series of monthly models is computed up to a maximum degree of 60, but only a maximum order of 45. Spectral analysis of the residual time-variable signal shows a distinctive peak at a period of 160 days, which shows up in particular in the C20 spherical harmonic coefficient. Basic filter- and scaling-techniques are introduced to evaluate the monthly models. For this purpose, the variability over the oceans is investigated, which serves as a measure for the noisiness of the models. The models in selected regions show the expected seasonal and secular variations, which are in good agreement with the monthly models of the Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ). The results also reveal a few small outliers, illustrating the necessity for improved data screening. Our monthly models are available at the web page of the International Centre for Global Earth Models (ICGEM).

  10. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  11. Gravity-gradient measurements down to approximately 100-km height by means of long-tethered satellites

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Gaposchkin, E. M.; Grossi, M. D.; Weiffenbach, G. C.

    1976-01-01

    Long-tethered satellite systems for Shuttle flights would make measurements of the earth's gravitational field possible to a spatial resolution approaching 100 km. For instance, a subsatellite carrying a gravity gradiometer could be made to orbit at a height of 110 km by means of a 110-km tether tied to the Shuttle in a 220-km orbit. Even with an overall instrument sensitivity as poor as 1 Eotvos unit (e.u.), it would be possible to measure spatial wavelengths of approximately 600 to 700 km (i.e., harmonics of 80th to 70th degree). Also, a system of two satellites (one of which could be the Shuttle orbiter or one of its payloads) connected by a tether a few tens of kilometers long could provide a simple and sensitive means of detecting gravity anomalies characterized by wavelengths of a few hundred kilometers. In this system, the observable would be the mechanical tension on the tether, and a sensitivity up to 0.01 e.u. could be attained, provided the two satellites are tracked from the ground with sufficient accuracy.

  12. Meeting report for "OddPols" 2014: the odds invite an even.

    PubMed

    Roy-Engel, Astrid M

    2015-02-01

    The Ninth International Biennial Conference on RNA Polymerases I and III (the "OddPols") was held on June 19-21, 2014 at the University of Michigan, Ann Arbor, USA. Sponsored by New England Biolabs, the Cayman Chemical Company, the Rackham Graduate School and the University of Michigan Health System, and organized by David Engelke, Craig Pikaard, Lawrence Rothblum, Andrzej Wierzbicki and Astrid Engel. This year at the conference, the "odds" were increased by expanding the usual topics on the advances in RNA polymerases I and III research to include presentations on RNA polymerase IV and V. The keynote speaker, Craig Pikaard, opened the meeting with his presentation entitled "Five nuclear multisubunit RNA polymerases". The meeting drew attendees from fourteen countries that shared their research discoveries through oral and poster presentations. The talks were organized into 11 sessions covering seven distinct topics. Here we present some of the highlights from the meeting using summaries provided by the participants. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Generalized quasitopological gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; KubizÅák, David; Mann, Robert B.

    2017-05-01

    We construct the most general, to cubic order in curvature, theory of gravity whose (most general) static spherically symmetric vacuum solutions are fully described by a single field equation. The theory possesses the following remarkable properties: (i) It has a well-defined Einstein gravity limit, (ii) it admits "Schwarzschild-like" solutions characterized by a single metric function, (iii) on maximally symmetric backgrounds it propagates the same degrees of freedom as Einstein's gravity, and (iv) Lovelock and quasitopological gravities, as well as the recently developed Einsteinian cubic gravity [Bueno and Cano Phys. Rev. D 94, 104005 (2016)., 10.1103/PhysRevD.94.104005] in four dimensions, are recovered as special cases. We perform a brief analysis of asymptotically flat black holes in this theory and study their thermodynamics.

  14. Perturbing laser field dependent high harmonic phase modulations

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.

    2018-06-01

    A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.

  15. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    ERIC Educational Resources Information Center

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  16. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    NASA Astrophysics Data System (ADS)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  17. Ellipsoidal Harmonic Vertical Deflections. Global and Regional Modeling of The Horizontal Derivative of The Terrestrial Garvity Field

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Ardalan, A.; Finn, G.

    In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)

  18. Speed harmonization

    DOT National Transportation Integrated Search

    2015-01-01

    Speed harmonization is a method to reduce congestion and improve traffic performance. This method is applied at points where lanes merge and form bottlenecks, the greatest cause of congestion nationwide. The strategy involves gradually lowering speed...

  19. Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Lerch, F. J.; Marshall, J. A.; Pavlis, E. C.; Putney, B. H.; Tapley, B. D.; Eanes, R. J.; Ries, J. C.; Schutz, B. E.; Shum, C. K.

    1994-01-01

    The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.

  20. Linking high harmonics from gases and solids.

    PubMed

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  1. Artificial gravity - The evolution of variable gravity research

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  2. Degree of dispersion monitoring by ultrasonic transmission technique and excitation of the transducer's harmonics

    NASA Astrophysics Data System (ADS)

    Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.

  3. Harmonic generation in magnetized quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Punit; Singh, Abhisek Kumar; Singh, Shiv

    2016-05-06

    A study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first.

  4. Gravity

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Will, Clifford M.

    2014-05-01

    Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.

  5. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  6. Construct validity of ADHD/ODD rating scales: recommendations for the evaluation of forthcoming DSM-V ADHD/ODD scales.

    PubMed

    Burns, G Leonard; Walsh, James A; Servera, Mateu; Lorenzo-Seva, Urbano; Cardo, Esther; Rodríguez-Fornells, Antoni

    2013-01-01

    Exploratory structural equation modeling (SEM) was applied to a multiple indicator (26 individual symptom ratings) by multitrait (ADHD-IN, ADHD-HI and ODD factors) by multiple source (mothers, fathers and teachers) model to test the invariance, convergent and discriminant validity of the Child and Adolescent Disruptive Behavior Inventory with 872 Thai adolescents and the ADHD Rating Scale-IV and ODD scale of the Disruptive Behavior Inventory with 1,749 Spanish children. Most of the individual ADHD/ODD symptoms showed convergent and discriminant validity with the loadings and thresholds being invariant over mothers, fathers and teachers in both samples (the three latent factor means were higher for parents than teachers). The ADHD-IN, ADHD-HI and ODD latent factors demonstrated convergent and discriminant validity between mothers and fathers within the two samples. Convergent and discriminant validity between parents and teachers for the three factors was either absent (Thai sample) or only partial (Spanish sample). The application of exploratory SEM to a multiple indicator by multitrait by multisource model should prove useful for the evaluation of the construct validity of the forthcoming DSM-V ADHD/ODD rating scales.

  7. Tuvan Throat Singing and Harmonics

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Wilken, David

    2018-01-01

    Tuvan throat singing, also called overtone singing, provides for an exotic demonstration of the physics of harmonics as well as introducing an Asian musical aesthetic. A low fundamental is sung and the singer skillfully alters the resonances of the vocal system to enhance an overtone (harmonic above the fundamental). The result is that the…

  8. Odd Shape Out

    ERIC Educational Resources Information Center

    Cady, Jo Ann; Wells, Pamela

    2016-01-01

    The Odd Shape Out task was an open-ended problem that engaged students in comparing shapes based on their properties. Four teachers submitted the work of 116 students from across the country. This article compares various student's responses to the task. The problem allowed for differentiation, as shown by the many different ways that students…

  9. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Tenzer, Robert

    2017-07-01

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  10. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  11. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    PubMed

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Development of Gravity-Sensing Organs in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1996-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in micro-g on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high gravity Newt larvae launched before any of the otoconia were formed and reared for 15 days in micro-gravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in micro-gravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in micro-gravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  13. Low-gravity fluid flows

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1982-01-01

    The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.

  14. Crustal structure of Mars from gravity and topography

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.; Wieczorek, M. A.; McGovern, P. J.; Lemoine, F. G.; Smith, D. E.

    2004-01-01

    Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrostatic flattening of the core. A nonlinear inversion for Moho relief yields a crustal thickness model that obeys a plausible power law and resolves features as small as 300 km wavelength. On the basis of petrological and geophysical constraints, we invoke a mantle density contrast of 600 kg m-3; with this assumption, the Isidis and Hellas gravity anomalies constrain the global mean crustal thickness to be >45 km. The crust is characterized by a degree 1 structure that is several times larger than any higher degree harmonic component, representing the geophysical manifestation of the planet's hemispheric dichotomy. It corresponds to a distinction between modal crustal thicknesses of 32 km and 58 km in the northern and southern hemispheres, respectively. The Tharsis rise and Hellas annulus represent the strongest components in the degree 2 crustal thickness structure. A uniform highland crustal thickness suggests a single mechanism for its formation, with subsequent modification by the Hellas impact, erosion, and the volcanic construction of Tharsis. The largest surviving lowland impact, Utopia, post-dated formation of the crustal dichotomy. Its crustal structure is preserved, making it unlikely that the northern crust was subsequently thinned by internal processes.

  15. Measurement and Interpretation of Temporal Variations of the Earths Gravity Field Using GPS and SLR Data

    NASA Technical Reports Server (NTRS)

    Nerem, R. Steven; Leuliette, Eric; Russell, Gary

    2003-01-01

    This investigation has had four main thrusts: 1) The analysis of seasonal variations of the Earth's gravitational field using Lageos 1 and 2 SLR data and comparisons to geophysical models. We have estimated the annual variation of the gravity field via a spherical harmonic expansion complete to degree and order 4. We have also constructed a similar model using models of the annual variation in the gravity field due to atmospheric, hydrologic, and ocean mass redistribution. These three models, when combined together, are in excellent agreement with the variations observed by satellite laser ranging. An article on these results was published in the journal Geophysical Research Letters. 2) The second thrust of our investigation has been to analyze the output of a Global Climate Model (GCM) to determine if the GRACE gravity mission can be expected to detect climate change signals. Working with Gary Russell at the Goddard Institute for Space Studies (GISS), we have determined that there are several large secular signals that GRACE might be able to detect, including secular changes in snow cover, sea ice, polar ice, ocean mass, and other variables. It is possible that some of these signals could be detected with 5 years of GRACE measurements - its hard to judge this because the interannual variability in the GCM, which could mask the climate signals, is unreliable. Certainly a follow-on GRACE mission could detect these signals when compared to the data from the initial GRACE mission.). An article on these results will be published in the journal Journal of Geophysical Research. 3) In the last year of the investigation, we developed a new technique for analyzing temporal gravity variations using "geophysical fingerprints", which was successfully demonstrated on 20 years of satellite laser ranging data [Nerem et al., 20031. 4]. We also participated in a workshop on future satellite gravity measurements, which resulted in paper on measuring ocean mass variations using GRACE

  16. An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Bills, Bruce G.; Nerem, R. Steven

    1996-01-01

    Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary

  17. First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS)

    NASA Astrophysics Data System (ADS)

    Carey-De La Torre, Olivia; Ewoldt, Randy H.

    2018-02-01

    We use first-harmonic MAOS nonlinearities from G 1' and G 1″ to test a predictive structure-rheology model for a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [ e 3] and [ v 3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.

  18. [Harmonization of TSH Measurements.

    PubMed

    Takeoka, Keiko; Hidaka, Yoh; Hishinuma, Akira; Ikeda, Katsuyoshi; Okubo, Shigeo; Tsuchiya, Tatsuyuki; Hashiguchi, Teruto; Furuta, Koh; Hotta, Taeko; Matsushita, Kazuyuki; Matsumoto, Hiroyuki; Murakami, Masami; Maekawa, Masato

    2016-05-01

    The measured concentration of thyroid stimulating hormone (TSH) differs depending on the reagents used. Harmonization of TSH is crucial because the decision limits are described in current clinical practice guide- lines as absolute values, e.g. 2.5 mIU/L in early pregnancy. In this study, we tried to harmonize the report- ed concentrations of TSH using the all-procedure trimmed mean. TSH was measured in 146 serum samples, with values ranging from 0.01 to 18.8 mIU/L, using 4 immunoassays. The concentration of TSH was highest with E test TOSOH and lowest with LUMIPULSE. The concentrations with each reagent were recalculated with the following formulas: E test TOSOH 0.855x-0.014; ECLusys 0.993x+0.079; ARCHITECT 1.041x- 0.010; and LUMIPULSE 1.096x-0.015. Recalculation eliminated the between-assay discrepancy. These formulas may be used until harmonization of TSH is achieved by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).

  19. Constraints on Ceres internal strcuture from the Dawn gravity and shape data

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Zuber, M. T.; Smith, D. E.; Fu, R. R.; Raymond, C. A.; Russell, C. T.; Park, R. S.

    2015-12-01

    Ceres is the largest body in the asteroid belt with a radius of approximately 470 km. It is large enough to attain a shape much closer to hydrostatic equilibrium than major asteroids. Pre-Dawn shape models of Ceres (e.g. Thomas et al., 2005; Carry et al., 2008) revealed that its shape is consistent with a hydrostatic ellipsoid. After the arrival of the Dawn spacecraft in Ceres orbit in March 2015, Framing Camera images were used to construct shape models of Ceres. Meanwhile, radio-tracking data are being used to develop gravity models. We use the Dawn-derived shape and gravity models to constrain Ceres' internal structure. These data for the first time allow estimation of the degree to which Ceres is hydrostatic. Observed non-hydrostatic effects include a 2.1 km triaxiality (difference between the two equatorial axes) as well as an 660-m center-of-mass - center-of-figure offset. The Dawn gravity data from the Survey orbit shows that Ceres has a central density concentration. Second-degree sectorial gravity coefficients are negatively correlated with topography indicating a peculiar interior structure. We compute the relative crustal thickness based on the observed Bouguer anomaly. Hydrostatic models show that Ceres appears more differentiated based on its gravity than on its shape. We expand the Ceres shape in spherical harmonics, observing that the power spectrum of topography deviates from the power law at low degrees (Fig. 1). We interpret the decrease of power at low degrees to be due to viscous relaxation. We suggest that relaxation happens on Ceres but, unlike modeled in Bland (2013), it is important only at the lowest degrees that correspond to scales of several hundreds of km. There are only a few features on Ceres of that size and at least one of them (an impact basin provisionally named Kerwan) appears relaxed. The simplest explanation is that Ceres's outer shell is not pure ice or pure rock but an ice-rock mixture that allows some relaxation at the

  20. Odd nitrogen production by meteoroids

    NASA Technical Reports Server (NTRS)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  1. Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  2. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  3. Dynamical spacetimes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Zhang, Yi; Li, Xin-Zhou

    2017-08-01

    The conformal gravity remarkably boosts our prehension of gravity theories. We find a series of dynamical solutions in the W2-conformal gravity, including generalized Schwarzschild-Friedmann-Robertson-Walker (GSFRW), charged generalized Schwarzschild-Friedmann-Robertson-Walker (CGSFRW), especially rotating Friedmann-Robertson-Walker (RFRW), charged rotating Friedmann-Robertson-Walker (CRFRW), and a dynamical cylindrically symmetric solutions. The RFRW, CRFRW and the dynamical cylindrically symmetric solutions are never found in the Einstein gravity and modified gravities. The GSFRW and CGSFRW solutions take different forms from the corresponding solutions in the Einstein gravity.

  4. Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves

    NASA Astrophysics Data System (ADS)

    Nina, A.; Čadež, V. M.

    2013-09-01

    We present a new method to study harmonic waves in the low ionosphere (60 - 90 km) by detecting their effects on reflection of very low frequency (VLF) radio waves. Our procedure is based on amplitude analysis of reflected VLF radio waves recorded in real time, which yields an insight into the dynamics of the ionosphere at heights where VLF radio waves are being reflected. The method was applied to perturbations induced by the solar terminator motions at sunrises and sunsets. The obtained results show that typical perturbation frequencies found to exist in higher regions of the atmosphere are also present in the lower ionosphere, which indicates a global nature of the considered oscillations. In our model atmosphere, they turn out to be the acoustic and gravity waves with comparatively short and long periods, respectively.

  5. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation.

    PubMed

    Wang, Hubiao; Wu, Lin; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-08-10

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°-145° E, 0°-40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China's Western Pacific area is ~1.0-4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy.

  6. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation

    PubMed Central

    Wang, Hubiao; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-01-01

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. PMID:28796158

  7. Maelstrom Research guidelines for rigorous retrospective data harmonization

    PubMed Central

    Fortier, Isabel; Raina, Parminder; Van den Heuvel, Edwin R; Griffith, Lauren E; Craig, Camille; Saliba, Matilda; Doiron, Dany; Stolk, Ronald P; Knoppers, Bartha M; Ferretti, Vincent; Granda, Peter; Burton, Paul

    2017-01-01

    Abstract Background: It is widely accepted and acknowledged that data harmonization is crucial: in its absence, the co-analysis of major tranches of high quality extant data is liable to inefficiency or error. However, despite its widespread practice, no formalized/systematic guidelines exist to ensure high quality retrospective data harmonization. Methods: To better understand real-world harmonization practices and facilitate development of formal guidelines, three interrelated initiatives were undertaken between 2006 and 2015. They included a phone survey with 34 major international research initiatives, a series of workshops with experts, and case studies applying the proposed guidelines. Results: A wide range of projects use retrospective harmonization to support their research activities but even when appropriate approaches are used, the terminologies, procedures, technologies and methods adopted vary markedly. The generic guidelines outlined in this article delineate the essentials required and describe an interdependent step-by-step approach to harmonization: 0) define the research question, objectives and protocol; 1) assemble pre-existing knowledge and select studies; 2) define targeted variables and evaluate harmonization potential; 3) process data; 4) estimate quality of the harmonized dataset(s) generated; and 5) disseminate and preserve final harmonization products. Conclusions: This manuscript provides guidelines aiming to encourage rigorous and effective approaches to harmonization which are comprehensively and transparently documented and straightforward to interpret and implement. This can be seen as a key step towards implementing guiding principles analogous to those that are well recognised as being essential in securing the foundational underpinning of systematic reviews and the meta-analysis of clinical trials. PMID:27272186

  8. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  9. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  10. GRAIL Spots Gravity Anomaly

    NASA Image and Video Library

    2012-12-05

    A 300-mile-long linear gravity anomaly on the far side of the moon has been revealed by gravity gradients measured by NASA GRAIL mission. GRAIL data are shown on the left, with red and blue corresponding to stronger gravity gradients.

  11. Against All Odds

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2005-01-01

    More than a decade ago, no one held out much hope for the poor, immigrant children at Kennedy Middle School. Nobody thinks that now. This article presents how Kennedy Middle School transformed and beat all the odds to be a "school to watch." In many ways, Kennedy Middle School has become a model of middle-grades improvement. Test scores,…

  12. Crustal thickness inversions from recent Mars Reconnaissance Orbiter gravity solutions

    NASA Astrophysics Data System (ADS)

    Neumann, Gregory; Zuber, Maria T.; Lemoine, Frank; Neumann, Gregory A.; Smith, David E.

    Recent Mars Reconnaissance Orbiter gravity solutions from low-altitude tracking of MRO, together with previous spacecraft, have dramatically improved correlation with MOLA topography at spherical harmonic degrees up to 95. We present several updated models of crustal thickness. These models are calculated to fit the Bouguer potential anomaly following the assumptions in Neumann et al. 2004, with much weaker a priori constraints applied to the topographic corrections and the downward continuation to the martian mantle. These models are available via anonymous ftp to "ftp://lepftp.gsfc.nasa.gov/pub/exports/tharsis/marscrust3". The higher-resolution models improve on those we produced in 2004-2005. They are appropriate for modeling impacts as small as 300 km diameter, and for processes related to the hemispheric dichotomy boundary. We discuss in particular the assumption of quasi-uniform crustal density and its likely failure in volcanic regions.

  13. High-harmonic generation by quantum-dot nanorings

    NASA Astrophysics Data System (ADS)

    Bâldea, Ioan; Gupta, Ashish K.; Cederbaum, Lorenz S.; Moiseyev, Nimrod

    2004-06-01

    Exact numerical results are obtained within the extended Hubbard Hamiltonian for nanorings consisting of Ag quantum dots (QD’s) with C6v symmetry which interact with a circularly polarized light. The results show that the high-harmonic generation (HHG) spectra obtained from such artificial “molecules” are more pronounced than the HHG spectra obtained from a real molecule such as benzene. Our studies show that the HHG spectra obtained from the QD nanorings consist of two plateaus while only one plateau appears for benzene. The role of electron correlations in the generation of the high-order harmonics is studied, and it is shown that it can increase the intensity of the high-order harmonics. Mainly affected are the harmonics which are located in the second plateau. Selection rules for the produced high harmonics and a new “synergetic” selection rule for the symmetry of the states contributing to the HHG spectrum, a combined effect of spatial and charge conjugation symmetries, are discussed.

  14. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  15. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America

  16. On the Variation of Zonal Gravity Coefficients of a Giant Planet Caused by Its Deep Zonal Flows

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2012-04-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients \\bar{J}_{2n}, n=1,2,3, \\dots, without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, \\Delta {J}_{2n}={J}_{2n}-\\bar{J}_{2n}, n=1,2,3, \\dots, caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4. It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., \\Delta {J}_{2n} \\,{\\ge}\\, \\bar{J}_{2n} for n >= 5.

  17. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model?

    NASA Astrophysics Data System (ADS)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-03-01

    The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.

  18. Anomalies and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.

  19. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  20. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  1. Selected Gravity Models in Terms of the fit to the GOCE Kinematic Orbit in the Dynamic Orbit Determination Process

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia

    2017-04-01

    The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.

  2. General Criterion for Harmonicity

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian

    2017-10-01

    Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

  3. Harmonic magneto-electric response in GaFeO3

    NASA Astrophysics Data System (ADS)

    Naiya, Amit Kumar; Awasthi, A. M.

    2018-04-01

    GaFeO3 is a well-known multiferroic material. Like optical second harmonic generation, it also generates radio frequency (RF) second harmonic due to its non-centrosymmetric orthorhombic structure. The harmonic RF response also features a magneto-electric character comparable in prominence to that of the fundamental response. We measured complex parts of the fundamental and the second harmonic over 80 K to 300 K. The second harmonic permittivity and its phase angle change sign at the spin glass transition temperature Tg = 200 K and becomes dispersive above ˜280 K.

  4. Twenty-four tuba harmonics using a single pipe length

    NASA Astrophysics Data System (ADS)

    Holmes, Bud; Ruiz, Michael J.

    2017-03-01

    Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 YouTube: Tuba Harmonics (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the harmonics, measured with the free software program Audacity, fall excellently on a linear fit using a spreadsheet. The skillful musical production of so many harmonics with a fixed pipe length is an extraordinary illustration of physics.

  5. Quantum gravity from noncommutative spacetime

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Yang, Hyun Seok

    2014-12-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative ★-algebra) of quantum gravity.

  6. Time Changes of the European Gravity Field from GRACE: A Comparison with Ground Measurements from Superconducting Gravimeters and with Hydrology Model Predictions

    NASA Technical Reports Server (NTRS)

    Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.

    2004-01-01

    We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  7. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  8. Determination of rotor harmonic blade loads from acoustic measurements

    NASA Technical Reports Server (NTRS)

    Kasper, P. K.

    1975-01-01

    The magnitude of discrete frequency sound radiated by a rotating blade is strongly influenced by the presence of a nonuniform distribution of aerodynamic forces over the rotor disk. An analytical development and experimental results are provided for a technique by which harmonic blade loads are derived from acoustic measurements. The technique relates, on a one-to-one basis, the discrete frequency sound harmonic amplitudes measured at a point on the axis of rotation to the blade-load harmonic amplitudes. This technique was applied to acoustic data from two helicopter types and from a series of test results using the NASA-Langley Research Center rotor test facility. The inferred blade-load harmonics for the cases considered tended to follow an inverse power law relationship with harmonic blade-load number. Empirical curve fits to the data showed the harmonic fall-off rate to be in the range of 6 to 9 db per octave of harmonic order. These empirical relationships were subsequently used as input data in a compatible far field rotational noise prediction model. A comparison between predicted and measured off-axis sound harmonic levels is provided for the experimental cases considered.

  9. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  10. Unimodular F ( R ) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp, E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com

    2016-05-01

    We extend the formalism of the Einstein-Hilbert unimodular gravity in the context of modified F ( R ) gravity. After appropriately modifying the Friedmann-Robertson-Walker metric in a way that it becomes compatible to the unimodular condition of having a constant metric determinant, we derive the equations of motion of the unimodular F ( R ) gravity by using the metric formalism of modified gravity with Lagrange multiplier constraint. The resulting equations are studied in frames of reconstruction method, which enables us to realize various cosmological scenarios, which was impossible to realize in the standard Einstein-Hilbert unimodular gravity. Several unimodular Fmore » ( R ) inflationary scenarios are presented, and in some cases, concordance with Planck and BICEP2 observational data can be achieved.« less

  11. Practical Tools to Foster Harmonic Understanding

    ERIC Educational Resources Information Center

    Johnson, Erik

    2013-01-01

    Among the elements required to develop a comprehensive understanding of music is students' ability to perceive, recognize, and label the harmonies they hear. Harmonic dictation is among the strategies that teachers have traditionally chosen to help students develop harmonic awareness. However, the highly idiosyncratic ways that students approach…

  12. A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.

  13. Attenuation of harmonic noise in vibroseis data using Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Tildy, Peter; Iranpour, Kambiz; Scholtz, Peter

    2009-04-01

    Processing of high productivity vibroseis seismic data (such as slip-sweep acquisition records) suffers from the well known disadvantage of harmonic distortion. Harmonic distortions are observed after cross-correlation of the recorded seismic signal with the pilot sweep and affect the signals in negative time (before the actual strong reflection event). Weak reflection events of the earlier sweeps falling in the negative time window of the cross-correlation sequence are being masked by harmonic distortions. Though the amplitude of the harmonic distortion is small (up to 10-20 %) compared to the fundamental amplitude of the reflection events, but it is significant enough to mask weak reflected signals. Elimination of harmonic noise due to source signal distortion from the cross-correlated seismic trace is a challenging task since the application of vibratory sources started and it still needs improvement. An approach has been worked out that minimizes the level of harmonic distortion by designing the signal similar to the harmonic distortion. An arbitrary length filter is optimized using the Simulated Annealing global optimization approach to design a harmonic signal. The approach deals with the convolution of a ratio trace (ratio of the harmonics with respect to the fundamental sweep) with the correlated "positive time" recorded signal and an arbitrary filter. Synthetic data study has revealed that this procedure of designing a signal similar to the desired harmonics using convolution of a suitable filter with theoretical ratio of harmonics with fundamental sweep helps in reducing the problem of harmonic distortion. Once we generate a similar signal for a vibroseis source using an optimized filter, then, this filter could be used to generate harmonics, which can be subtracted from the main cross-correlated trace to get the better, undistorted image of the subsurface. Designing the predicted harmonics to reduce the energy in the trace by considering weak reflection

  14. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  15. Gravity quantized: Loop quantum gravity with a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational fieldmore » because no symmetry reduction has been performed at the classical level.« less

  16. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  17. Gravity signatures of terrane accretion

    NASA Astrophysics Data System (ADS)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  18. Solid-state harmonics beyond the atomic limit.

    PubMed

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  19. Determination of nonlinear resistance voltage-current relationships by measuring harmonics

    NASA Technical Reports Server (NTRS)

    Stafford, J. M.

    1971-01-01

    Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.

  20. Directional gravity sensing in gravitropism.

    PubMed

    Morita, Miyo Terao

    2010-01-01

    Plants can reorient their growth direction by sensing organ tilt relative to the direction of gravity. With respect to gravity sensing in gravitropism, the classic starch statolith hypothesis, i.e., that starch-accumulating amyloplast movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Several lines of experimental evidence have demonstrated that starch is important but not essential for gravity sensing and have suggested that it is reasonable to regard plastids (containers of starch) as statoliths. Although the word statolith means sedimented stone, actual amyloplasts are not static but instead possess dynamic movement. Recent studies combining genetic and cell biological approaches, using Arabidopsis thaliana, have demonstrated that amyloplast movement is an intricate process involving vacuolar membrane structures and the actin cytoskeleton. This review covers current knowledge regarding gravity sensing, particularly gravity susception, and the factors modulating the function of amyloplasts for sensing the directional change of gravity. Specific emphasis is made on the remarkable differences in the cytological properties, developmental origins, tissue locations, and response of statocytes between root and shoot systems. Such an approach reveals a common theme in directional gravity-sensing mechanisms in these two disparate organs.

  1. BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo

    2012-09-01

    The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament

  2. Multi-Orbital contributions in High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Guehr, Markus

    2009-05-01

    The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)

  3. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  4. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor

    NASA Astrophysics Data System (ADS)

    Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui

    2017-11-01

    Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a

  5. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija

    2015-04-01

    We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as

  6. Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu

    2007-01-01

    The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.

  7. Multisite EPR oximetry from multiple quadrature harmonics.

    PubMed

    Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C

    2012-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. High-Precision Simulation of the Gravity Field of Rapidly-Rotating Barotropes in Hydrostatic Equilibrium

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.

    2013-12-01

    increasing N. One can insert a higher density of CMSs toward the surface of an interior model in order to more accurately model high-order gravitational moments. The magnitude of high-order moments predicted by TOF declines geometrically with order number, and falls below the magnitude of expected non-hydrostatic terms produced by interior dynamics at ~ order 10 and above. Juno's sensitivity is enough to detect tidal gravity signals from Galilean satellites. The CMS method can be generalized to predict tidal zonal and tesseral terms consistent with an interior model fitted to measured zonal harmonics. For this purpose, two-dimensional Gaussian quadrature is necessary at each CMS interface. However, once the model is relaxed to equilibrium, one need not refit the model to the average zonal harmonics because of the smallness of the tidal terms. I will describe how the CMS method has been validated through comparisons with standard TOF models for which fully or partially analytic solutions exist, as well as through consistency checks. At this stage in software development in preparation for Jupiter orbit, we are focused on increasing the speed of the code in order to more efficiently search the parameter space of acceptable Jupiter interior models, as well as to interface it with advanced hydrogen-helium equations of state.

  9. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  10. [Practical skills of harmonic scalpel in laparoscopic gastrointestinal surgery].

    PubMed

    Li, Guo-xin

    2013-10-01

    Harmonic scalpel, one of the most commonly used energy tools, have been recognized as an important revolutionary development in surgical device. Due to its convenience in cutting, coagulating, and dissecting harmonic scalpel has been increasingly used to performed surgery by more and more surgeons. In gastrointestinal surgeries, however, many manipulationssuch as dissecting soft connective tissues off the stomach or colon, isolating and cutting particular vessels, would require proper techniques in handling harmonic scalpels. Thus, based on our experiences of using harmonic scalpel in laparoscopic gastrointestinal surgeries, we summarized a "nine-word tactics", which may be helpful for beginners to use harmonic scalpels in a proper and efficient manner.

  11. Unlocking higher harmonics in atomic force microscopy with gentle interactions.

    PubMed

    Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert

    2014-01-01

    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  12. Testing quantum gravity

    NASA Astrophysics Data System (ADS)

    Hansson, Johan; Francois, Stephane

    The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose-Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.

  13. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  14. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  15. Hyperbolic Harmonic Mapping for Surface Registration

    PubMed Central

    Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng

    2016-01-01

    Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948

  16. Quantum gravity in the Southern Cone Conference. Proceedings. Conference, Bariloche (Argentina), 7 - 10 Jan 1998.

    NASA Astrophysics Data System (ADS)

    1999-04-01

    The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.

  17. Degradation in finite-harmonic subcarrier demodulation

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Townes, S.; Pham, T.

    1995-01-01

    Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.

  18. Butterfly effect in 3D gravity

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  19. Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, S.; Martin, C. P.

    2018-01-01

    We work out the one-loop and order κ2 mphi2 UV divergent contributions, coming from Unimodular Gravity and General Relativity, to the S matrix element of the scattering process phi + phi→ phi + phi in a λ phi4 theory with mass mphi. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contributions in Dimensional Regularization. This seems to be at odds with the known result that in a multiplicative MS dimensional regularization scheme the General Relativity corrections, in the de Donder gauge, to the beta function, βλ, of the λ coupling do not vanish, whereas the Unimodular Gravity corrections, in a certain gauge, do vanish. Actually, by comparing the UV divergent contributions calculated in this paper with those which give rise to the non-vanishing gravitational corrections to βλ, one readily concludes that the UV divergent contributions that yield the just mentioned non-vanishing gravitational corrections to βλ do not contribute to the UV divergent behaviour of the S matrix element of phi + phi→ phi + phi. This shows that any physical consequence—such as the existence of asymptotic freedom due to gravitational interactions—drawn from the value of βλ is not physically meaningful.

  20. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  1. Generation of intense high-order vortex harmonics.

    PubMed

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  2. Promoting clinical and laboratory interaction by harmonization.

    PubMed

    Plebani, Mario; Panteghini, Mauro

    2014-05-15

    The lack of interchangeable results in current practice among clinical laboratories has underpinned greater attention to standardization and harmonization projects. Although the focus was mainly on the standardization and harmonization of measurement procedures and their results, the scope of harmonization goes beyond method and analytical results: it includes all other aspects of laboratory testing, including terminology and units, report formats, reference limits and decision thresholds, as well as test profiles and criteria for the interpretation of results. In particular, as evidence collected in last decades demonstrates that pre-pre- and post-post-analytical steps are more vulnerable to errors, harmonization initiatives should be performed to improve procedures and processes at the laboratory-clinical interface. Managing upstream demand, down-stream interpretation of laboratory results, and subsequent appropriate action through close relationships between laboratorians and clinicians remains a crucial issue of the laboratory testing process. Therefore, initiatives to improve test demand management from one hand and to harmonize procedures to improve physicians' acknowledgment of laboratory data and their interpretation from the other hand are needed in order to assure quality and safety in the total testing process. © 2013.

  3. Higher Harmonics in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Jeon, Sangyong

    2013-03-01

    As the QGP expands and cools, it carries much information on its creation and evolution imprinted on the patterns of higher harmonic flow. In this proceeding we report on the progress in simulating and understanding the higher harmonics by the McGill group using the 3+1D event-by-event viscous hydrodynamics simulation suite named MUSIC.

  4. Sunspots and Their Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  5. Lenore White Harmon: One Woman's Career Development.

    ERIC Educational Resources Information Center

    Fouad, Nadya A.

    1997-01-01

    Presents biographical information on Lenore White Harmon, noted professor, counselor, and researcher. In a question-and-answer section, Harmon describes her early career decisions, work history, research efforts, professional contributions, important influences and reflections on her career development. (KW)

  6. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  7. Born-Infeld Gravity Revisited

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Sahraee, M.

    2013-12-01

    In this paper, we investigate the behavior of linearized gravitational excitation in the Born-Infeld gravity in AdS3 space. We obtain the linearized equation of motion and show that this higher-order gravity propagate two gravitons, massless and massive, on the AdS3 background. In contrast to the R2 models, such as TMG or NMG, Born-Infeld gravity does not have a critical point for any regular choice of parameters. So the logarithmic solution is not a solution of this model, due to this one cannot find a logarithmic conformal field theory as a dual model for Born-Infeld gravity.

  8. Harmonic arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrarymore » waveform.« less

  9. Brane-World Gravity.

    PubMed

    Maartens, Roy; Koyama, Kazuya

    2010-01-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  10. Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Grafarend, E. W.

    2001-09-01

    The Somigliana-Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana-Pizzetti gravity o({,u) as a function of Jacobi spheroidal latitude { and height u to the order ™(10m10 Gal), and o(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ™(10m10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana-Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (u,{,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet.

  11. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  12. The Gravity Field, Orientation, and Ephemeris of Mercury from MESSENGER Observations After Three Years in Orbit

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan M.; Genova, Antonio; Goossens, Sander; Lemoine, Gregory; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-01-01

    We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  13. Sleep and gravity.

    PubMed

    Gonfalone, Alain A

    2018-04-01

    What is known about sleep results from years of observation at the surface of the Earth. Since a few decade man has been able to reach space, escape from the earth attraction and spend days and nights in a weightless condition. Some major physiological changes have been observed during long stays and in particular the sleep duration in space is shorter than on ground. This paper reviews a novel hypothesis proposing that sleep is partly due to gravity. Gravity is a fundamental part of our environment, but is elusive and difficult to apprehend. At the same time, all creatures on Earth undergo cycles of activity and periods of rest (although not always sleep). Careful analysis of previous research on sleep, on Earth, in space and in water, shows that gravity differs in these three situations, and sleep also varies, at least in its duration. On Earth, Rapid Eye Movement (REM) sleep is conditioned by gravity; in space, astronauts have a shorter sleep duration and this is even more striking when a test subject is immersed in water for a week. In conclusion, sleep is partly due to gravity, which acts on our body and brain during the wake period. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  15. Second International Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  16. Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.

    PubMed

    Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling

    2017-06-01

    A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.

  17. Gravity gradient preprocessing at the GOCE HPF

    NASA Astrophysics Data System (ADS)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  18. New standards for reducing gravity data: The North American gravity database

    USGS Publications Warehouse

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  19. Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-11-01

    We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).

  20. Observation of odd toroidal Alfvén eigenmodes.

    PubMed

    Kramer, G J; Sharapov, S E; Nazikian, R; Gorelenkov, N N; Budny, R V

    2004-01-09

    Experimental evidence is presented for the existence of the theoretically predicted odd toroidicity induced Alfvén eigenmode (TAE) from the simultaneous appearance of odd and even TAEs in a normal shear discharge of the joint European torus. The modes are observed in low central magnetic shear plasmas created by injecting lower hybrid current drive. A fast ion population was created by applying ion cyclotron heating at the high-field side to excite the TAEs. The odd TAEs were identified from their frequency, mode number, and timing relative to the even TAEs.

  1. Separation of High Order Harmonics with Fluoride Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  2. Second-harmonic generation of practical Bessel beams

    NASA Astrophysics Data System (ADS)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  3. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  4. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    NASA Astrophysics Data System (ADS)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  5. Jupiter’s atmospheric jet streams extend thousands of kilometres deep

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Galanti, E.; Hubbard, W. B.; Stevenson, D. J.; Bolton, S. J.; Iess, L.; Guillot, T.; Bloxham, J.; Connerney, J. E. P.; Cao, H.; Durante, D.; Folkner, W. M.; Helled, R.; Ingersoll, A. P.; Levin, S. M.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Parisi, M.; Wahl, S. M.

    2018-03-01

    The depth to which Jupiter’s observed east–west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno’s gravitational measurements have revealed that Jupiter’s gravitational field is north–south asymmetric, which is a signature of the planet’s atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter’s total mass.

  6. Jupiter's atmospheric jet streams extend thousands of kilometres deep.

    PubMed

    Kaspi, Y; Galanti, E; Hubbard, W B; Stevenson, D J; Bolton, S J; Iess, L; Guillot, T; Bloxham, J; Connerney, J E P; Cao, H; Durante, D; Folkner, W M; Helled, R; Ingersoll, A P; Levin, S M; Lunine, J I; Miguel, Y; Militzer, B; Parisi, M; Wahl, S M

    2018-03-07

    The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J 3 , J 5 , J 7 and J 9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J 8 and J 10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.

  7. Comparison of model results transporting the odd nitrogen family with results transporting separate odd nitrogen species

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Stolarski, Richard S.

    1989-01-01

    A fast two-dimensional residual circulation stratospheric family transport model, designed to minimize computer requirements, is developed. The model was used to calculate the ambient and perturbed atmospheres in which odd nitrogen species are transported as a family, and the results were compared with calculations in which HNO3, N2O5, ClONO2, and HO2NO2 are transported separately. It was found that ozone distributions computed by the two models for a present-day atmosphere are nearly identical. Good agreement was also found between calculated species concentrations and the ozone response, indicating the general applicability of the odd-nitrogen family approximations.

  8. A refined gravity model from Lageos /GEM-L2/

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Klosko, S. M.; Patel, G. B.

    1982-01-01

    Lageos satellite laser ranging (SLR) data taken over a 2.5 yr period were employed to develop the Goddard Earth Model GEM-L2, a refined gravity field model. Additional data was gathered with 30 other satellites, resulting in spherical harmonics through degree and order 20, based on over 600,000 measurements. The Lageos data was accurate down to 10 cm, after which the GEM 9 data were used to make adjustments past order 7. The resolution of long wavelength activity, through degree and order 4, was made possible by the Lageos data. The GEM-L2 model features a 20 x 20 geopotential, tracking station coordinates (20), 5-day polar motion and A1-UT1 values, and a GM value of 398,600.607 cu km/sq sec. The accuracy of station positioning has been raised to within 6 cm total position globally and within 1.8 cm in baselines. It is concluded that SLR is useful for measuring tectonic plate motions and inter-plate deformations.

  9. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing

  10. Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors

    NASA Astrophysics Data System (ADS)

    Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.

    2018-04-01

    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.

  11. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  12. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early

  13. Theory of high-order harmonic generation for gapless graphene

    NASA Astrophysics Data System (ADS)

    Zurrón, Óscar; Picón, Antonio; Plaja, Luis

    2018-05-01

    We study the high-harmonic spectrum emitted by a single-layer graphene, irradiated by an ultrashort intense infrared laser pulse. We show the emergence of the typical non-perturbative spectral features, harmonic plateau and cut-off, for mid-infrared driving fields, at fluences below the damage threshold. In contrast to previous works, using THz drivings, we demonstrate that the harmonic cut-off frequency saturates with the intensity. Our results are derived from the numerical integration of the time-dependent Schrödinger equation using a nearest neighbor tight-binding description of graphene. We also develop a saddle-point analysis that reveals a mechanism for harmonic emission in graphene different from that reported in atoms, molecules and finite gap solids. In graphene, the first step is initiated by the non-diabatic crossing of the valence band electron trajectories through the Dirac points, instead of tunneling ionization/excitation. We include a complete identification of the trajectories contributing to any particular high harmonic and reproduce the harmonic cut-off scaling with the driving intensity.

  14. Cusp-Gun Sixth-Harmonic Slotted Gyrotron

    NASA Astrophysics Data System (ADS)

    Stutzman, R. C.; McDermott, D. B.; Hirata Luhmann, Y., Jr.; Gallagher, D. A.; Spencer, T. A.

    2000-10-01

    A high-harmonic slotted gyrotron has been constructed at UC Davis to be driven by a 70 kV, 3.5 A, axis-encircling electron beam from a Northrop Grumman Cusp gun. The 94 GHz, slotted sixth-harmonic gyrotron is predicted to generate 50 kW with an efficiency of 20%. Using the profile of the adiabatic field reversal from the UC Davis superconducting test-magnet, EGUN simulations predict that an axis-encircling electron beam will be generated with an axial velocity spread of Δ v_z/v_z=10% for the desired velocity ratio of α =v_z/v_z=1.5. The design will also be presented for an 8th-harmonic W-band gyrotron whose magnetic field can be supplied by a lightweight permanent magnet.

  15. Satellite borne gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Metzger, E.; Jircitano, A.; Affleck, C.

    1976-01-01

    Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.

  16. Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.

    PubMed

    Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter

    2011-03-01

    A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.

  17. Gravity is the Key Experiment to Address the Habitability of the Ocean in Jupiter's Moon Europa

    NASA Astrophysics Data System (ADS)

    Sessa, A. M.; Dombard, A. J.

    2013-12-01

    Life requires three constituents: a liquid solvent (i.e., water), a chemical system that can form large molecules to record genetic information (e.g., carbon based) as well as chemical nutrients (e.g., nitrogen, phosphorous), and a chemical disequilibrium system that can provide metabolic energy. While it is believed that there is a saline water layer located between the rock and ice layers in Jupiter's moon Europa, which would satisfy the first requirement, it is unknown if the other conditions are currently met. The likelihood that Europa is a haven for life in our Solar System skyrockets, however, if there is currently active volcanism at the rock-water interface, much the same that volcanic processes enable the chemosynthetic life that forms the basis of deep sea-vent communities at the bottom of Earth's oceans. Exploring the volcanic activity on this interface is challenging, as direct observation via a submersible or high-resolution indirect observations via a dense global seismic network on the surface is at present technically (and fiscally!) untenable. Thus, gravity studies are the best way to explore currently the structure of this all-important interface. Though mostly a silicate body with only a relatively thin (~100 km) layer of water, Europa is different from the terrestrial planets in that this rock-water interface, and not the surface, represents the largest density contrast across the moon's near-surface layers, and thus topography on this interface could conceivably dominate the gravity. Here, we calculate the potential anomalies that arise from topography on the surface, the water-ice interface (at 20 km depth), and the rock-water interface, finding that the latter dominates the free-air gravity at the longest wavelengths (spherical harmonic degrees < 10) and the Bouguer gravity at intermediate wavelengths (degrees ~10-50), and only for the shortest wavelengths (degrees > 50) does the water-ice interface (and presumably mass-density anomalies

  18. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  19. Twenty-Four Tuba Harmonics Using a Single Pipe Length

    ERIC Educational Resources Information Center

    Holmes, Bud; Ruiz, Michael J.

    2017-01-01

    Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 "YouTube: Tuba Harmonics" (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the…

  20. Using the full tensor of GOCE gravity gradients for regional gravity field modelling

    NASA Astrophysics Data System (ADS)

    Lieb, Verena; Bouman, Johannes; Dettmering, Denise; Fuchs, Martin; Schmidt, Michael

    2013-04-01

    With its 3-axis gradiometer GOCE delivers 3-dimensional (3D) information of the Earth's gravity field. This essential advantage - e.g. compared with the 1D gravity field information from GRACE - can be used for research on the Earth's interior and for geophysical exploration. To benefit from this multidimensional measurement system, the combination of all 6 GOCE gradients and additionally the consistent combination with other gravity observations mean an innovative challenge for regional gravity field modelling. As the individual gravity gradients reflect the gravity field depending on different spatial directions, observation equations are formulated separately for each of these components. In our approach we use spherical localizing base functions to display the gravity field for specified regions. Therefore the series expansions based on Legendre polynomials have to be adopted to obtain mathematical expressions for the second derivatives of the gravitational potential which are observed by GOCE in the Cartesian Gradiometer Reference Frame (GRF). We (1) have to transform the equations from the spherical terrestrial into a Cartesian Local North-Oriented Reference Frame (LNOF), (2) to set up a 3x3 tensor of observation equations and (3) finally to rotate the tensor defined in the terrestrial LNOF into the GRF. Thus we ensure the use of the original non-rotated and unaffected GOCE measurements within the analysis procedure. As output from the synthesis procedure we then obtain the second derivatives of the gravitational potential for all combinations of the xyz Cartesian coordinates in the LNOF. Further the implementation of variance component estimation provides a flexible tool to diversify the influence of the input gradiometer observations. On the one hand the less accurate xy and yz measurements are nearly excluded by estimating large variance components. On the other hand the yy measurements, which show systematic errors increasing at high latitudes, could be

  1. Global grids of gravity anomalies and vertical gravity gradients at 10 km altitude from GOCE gradient data 2009-2011 and polar gravity.

    NASA Astrophysics Data System (ADS)

    Tscherning, Carl Christian; Arabelos, Dimitrios; Reguzzoni, Mirko

    2013-04-01

    The GOCE satellite measures gravity gradients which are filtered and transformed to gradients into an Earth-referenced frame by the GOCE High Level processing Facility. More than 80000000 data with 6 components are available from the period 2009-2011. IAG Arctic gravity was used north of 83 deg., while data at the Antarctic was not used due to bureaucratic restrictions by the data-holders. Subsets of the data have been used to produce gridded values at 10 km altitude of gravity anomalies and vertical gravity gradients in 20 deg. x 20 deg. blocks with 10' spacing. Various combinations and densities of data were used to obtain values in areas with known gravity anomalies. The (marginally) best choice was vertical gravity gradients selected with an approximately 0.125 deg spacing. Using Least-Squares Collocation, error-estimates were computed and compared to the difference between the GOCE-grids and grids derived from EGM2008 to deg. 512. In general a good agreement was found, however with some inconsistencies in certain areas. The computation time on a usual server with 24 processors was typically 100 minutes for a block with generally 40000 GOCE vertical gradients as input. The computations will be updated with new Wiener-filtered data in the near future.

  2. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  3. The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Chappell, Steven P.; Skytland, Nicholas G.

    2009-01-01

    NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.

  4. Nuclear structure of the odd-neutron radon isotopes radon-203,205,207

    NASA Astrophysics Data System (ADS)

    Novak, John R.

    High-spin states in the odd-neutron nuclei 203,205,207Rn have been investigated following heavy-ion fusion evaporation reaction experiments at Yale University, the University of Jyväskylä, and Argonne National Laboratory. The emitted gamma rays were measured at each location using the Jurosphere, YRAST Ball and Gammasphere detector arrays, respectively. Fusion products were detected at Jyväskylä using the gas-filled recoil separator RITU and at Argonne with the Fragment Mass Analyzer. Internal conversion electrons were measured at Argonne using the ICE Ball array of mini-orange spectrometers. Experiments that were carried out include excitation function measurements, multi-gamma coincidences, angular distribution measurements, polarization measurements, and internal conversion electron spectroscopy. No gamma-ray transitions above the 13/2+ state had been reported for any of these isotopes prior to this work. Nuclear decay schemes were constructed for 203,205,207Rn up to a spin of ~29/2ħ and an excitation energy of ~4 MeV. The states built on the 13/2 + isomers feature strongly in the decay of these nuclei. A roughly harmonic ΔI = 2 sequence assigned the ν( i13/2-1) configuration was observed in each odd-A nucleus. The energy level spacing of the 17/2+, 21/2+ and 25/2+ states relative to the 13/2 + state is similar to the 0+, 2+, 4 +, 6+ spacing observed in the neighboring even-even isotopes. The decreasing E(17/2+) energies and increasing R(/) /(/) values with decreasing neutron number reflect the increasing collectivity in the lighter isotopes as more neutron holes are added to the system. In contrast to the even-even neighbors, no evidence was found in any of the odd-A isotopes for isomeric states with lifetimes of tens of nanoseconds. An unobserved isomer in 205Rn with a lifetime of a few nanoseconds is suggested to exist near the top of the most intense cascade to account for the essentially isotropic angular distributions of the transitions in this

  5. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    NASA Technical Reports Server (NTRS)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  6. Harmonic template neurons in primate auditory cortex underlying complex sound processing

    PubMed Central

    Feng, Lei

    2017-01-01

    Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music. PMID:28096341

  7. Harmonic engine

    DOEpatents

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  8. Laser waveform control of extreme ultraviolet high harmonics from solids.

    PubMed

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  9. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low

  10. Harmonic distortion in microwave photonic filters.

    PubMed

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  11. Calculation of four-particle harmonic-oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.

    2010-02-01

    A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.

  12. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  13. Lifshitz gravity for Lifshitz holography.

    PubMed

    Griffin, Tom; Hořava, Petr; Melby-Thompson, Charles M

    2013-02-22

    We argue that Hořava-Lifshitz (HL) gravity provides the minimal holographic dual for Lifshitz-type field theories with anisotropic scaling and a dynamical exponent z. First we show that Lifshitz spacetimes are vacuum solutions of HL gravity, without need for additional matter. Then we perform holographic renormalization of HL gravity, and show how it reproduces the full structure of the z=2 anisotropic Weyl anomaly in dual field theories in 2+1 dimensions, while its minimal relativistic gravity counterpart yields only one of two independent central charges in the anomaly.

  14. Urine specific gravity test

    MedlinePlus

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  15. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  16. Spectroscopy of the odd-odd fp-shell nucleus {sup 52}Sc from secondary fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, A.; Bazin, D.; Mueller, W.F.

    2006-03-15

    The odd-odd fp-shell nucleus {sup 52}Sc was investigated using in-beam {gamma}-ray spectroscopy following secondary fragmentation of a {sup 55}V and {sup 57}Cr cocktail beam. Aside from the known {gamma}-ray transition at 674(5) keV, a new decay at E{sub {gamma}}=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of {sup 52}Sc irrespective of the choice of the effective interaction. In addition, the frequencymore » of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.« less

  17. Light and harmonicity: the golden section

    NASA Astrophysics Data System (ADS)

    Raftopoulos, Dionysios G.

    2015-09-01

    Adhering to Werner Heisenberg's and to the school of Copenhagen's physical philosophy we introduce the localized observer as an absolutely necessary element of a consistent physical description of nature. Thus we have synthesized the theory of the harmonicity of the field of light, which attempts to present a new approach to the events in the human perceptible space. It is an axiomatic theory based on the selection of the projective space as the geometrical space of choice, while its first fundamental hypothesis is none other than special relativity theory's second hypothesis, properly modified. The result is that all our observations and measurements of physical entities always refer not to their present state but rather to a previous one, a conclusion evocative of the "shadows" paradigm in Plato's cave allegory. In the kinematics of a material point this previous state we call "conjugate position", which has been called the "retarded position" by Richard Feynman. We prove that the relation of the present position with its conjugate is ruled by a harmonic tetrad. Thus the relation of the elements of the geometrical (noetic) and the perceptible space is harmonic. In this work we show a consequence of this harmonic relation: the golden section.

  18. Foam formation in low gravity

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas

    1990-01-01

    An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.

  19. Laparoscopic nephrectomy using the harmonic scalpel.

    PubMed

    Helal, M; Albertini, J; Lockhart, J; Albrink, M

    1997-08-01

    Laparoscopic nephrectomy is gaining popularity. Improved instrumentation is making surgery easier with fewer complications. Our first three laparoscopic nephrectomies using the Harmonic Scalpel were performed on two women and one man. The surgical indications were nonfunctioning kidneys (two left, one right) with hypertension in one patient and stone disease in two. The three patients had a mean age of 46.3 years. The average hospital stay was 4 days, the average operative time 3.7 hours, and the average blood loss 160 mL. No complications occurred. Patients resumed oral intake within 8 hours postoperatively. We found the Harmonic Scalpel easy and safe to use. It saved time, was cost effective, and was capable of easily controlling small-vessel bleeding. In conclusion, the Harmonic Scalpel could be used effectively for both dissection and bleeding control without suction or other instrumentation.

  20. Comparison of Fine Structures of Electron Cyclotron Harmonic Emissions in Aurora

    NASA Astrophysics Data System (ADS)

    Labelle, J. W.; Dundek, M.

    2015-12-01

    Recent discoveries of emissions at four and five times the electron cyclotron frequency in aurora occuring under daylit conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-4 and 2014-5. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events revealed that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at locations where the upper hybrid frequency matches the cyclotron harmonic, which for higher harmonics requires higher electron densities which are associated with higher solar zenith angles. Detailed examination of 21 cases in which two harmonics occur simultaneously showed that only rarely, about ten percent of the time, are the frequencies of the fine structures of the emissions in exact integer ratio (e.g., 3:2, 4:3, or 5:4 depending on which combination of harmonics is observed). In the remaining approximately ninety percent of the cases, the higher harmonic occurred at a lower ratio than the appropriate integer ratio, as expected if the harmonics are generated independently at their separate matching conditions in the bottomside ionosphere, where the upper hybrid frequency increases with altitude while the gyroharmonics decrease with altitude. (The bottomside is the most likely source of the emissions, since from there the mode converted Z-modes have access to ground-level.) Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at locations where the upper hybrid frequency matches each harmonic, i.e., at a separate source altitude for each harmonic. Generation of higher harmonics through coalescence of lower harmonic waves explains at most a small minority of events.