Science.gov

Sample records for offices simulations measurements

  1. Office Simulation Activities.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    This document consists of nineteen task simulations designed for use in developing the office skills of business education students. Each task simulation unit includes a description of the task, procedures for performing the task, and a listing of materials needed to perform the task. The task simulations included cover: (1) folding and inserting…

  2. Office Simulation Brings Stimulation and Enthusiasm

    ERIC Educational Resources Information Center

    Lynn, Helen

    1976-01-01

    An office simulation devised at an Oregon community college is now being offered in other U.S. and Canadian colleges and high schools. Each simulation employs from 4 to 36 individuals in three areas: main office, training division, and supportive services (customers, bank, etc.). "Employees" rotate positions every three weeks. (AJ)

  3. Office Skills: Measuring Typewriting Output.

    ERIC Educational Resources Information Center

    Petersen, Lois E.; Kruk, Leonard B.

    1978-01-01

    The advent of word processing centers has provided typewriting teachers with an alternative measurement system that, instead of penalizing errors, grades students according to Usable Lines Produced (ULP). The ULP system is job-oriented and promotes realistic office standards in typewriting productivity. (MF)

  4. Business Office Clerical/Business Office Services. Simulations [and] Test Bank.

    ERIC Educational Resources Information Center

    Patton, Jan; Murray, Darlena

    The first of two documents provides realistic simulated business activities that are coordinated with the curriculum guide for business office clerical/business office services courses. Simulations are included for five sections of the curriculum: word processing/proofreading, filing/data entry, desktop publishing, calculating machines, and…

  5. Successful deployment of thermal simulation technology to field office

    SciTech Connect

    Hong, K.C.; Cook, G.W.

    1996-02-01

    The authors successfully deployed thermal simulation technology to a field office to enable the staff responsible for operating steamfloods to conduct on-site studies of their projects. The success was attributed to a number of factors, including (1) placement of a simulation expert in the field office, (2) formation of a thermal modeling focus group, (3) introduction of simulation software on PC`s, (4) increased speed and memory of desktop PC`s, and (5) designation of reservoir heat management as a key job responsibility for thermal engineers. Field engineers now routinely use this technology to evaluate investment decisions and development alternatives, manage steamflood reservoirs, and optimize project operations. Field engineers have carried out many simulation studies by use of the desktop technology. Examples include (1) optimizing slim-hole injector-injector spacing and injector-horizontal producer spacing in a dipping reservoir, (2) fine-tuning water and steam injection periods in a field wide application of the water-alternating-steam process, and (3) evaluating the economic potential of heavy oil, trough reservoirs. These studies have resulted in adding value to heavy oil assets by reducing operating costs or increasing reserves.

  6. Successful deployment of thermal simulation technology to field office

    SciTech Connect

    Hong, K.C.; Cook, G.W.

    1995-12-31

    Thermal simulation technology was successfully deployed to a field office to enable the staff responsible for operating steamfloods to conduct on-site studies of their projects. The success was attributed to a number of factors including: (1) placement of a simulation expert in the field office, (2) formation of a thermal modeling focus group, (3) introduction of simulation software on PCs, (4) increased speed and memory of desktop PCs, and (5) designation of reservoir heat management as a key job responsibility for thermal engineers. Field engineers now routinely use this technology to evaluate investment decisions and development alternatives, manage steamflood reservoirs, and optimize project operations. Many simulation studies have been carried out by field engineers using the desktop technology. Examples include: (1) optimizing slimhole injector-injector spacing and injector-horizontal producer spacing in a dipping reservoir, (2) fine-tuning water and steam injection periods in a fieldwide application of the water-alternating-steam process, and (3) evaluating the economic potential of heavy oil, trough reservoirs. These studies have resulted in adding value to heavy oil assets by reducing operating costs or increasing reserves.

  7. Simulated Office Education: Course of Study: Teacher's Manual and Student's Manual.

    ERIC Educational Resources Information Center

    Utah State Board for Vocational Education, Salt Lake City.

    Two separate manuals give detailed instructions for setting up and carrying out simulated office practice. The simulation design covers all office skills and all kinds of office situations, from management decisions to ground rules for coffee breaks and includes handling rush jobs. Procedures and roles for seven office positions, from vice…

  8. Simulation of realistic retinoscopic measurement

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Chen, Ying-Ling; Baker, K.; Lewis, J. W.; Swartz, T.; Jiang, Y.; Wang, M.

    2007-03-01

    Realistic simulation of ophthalmic measurements on normal and diseased eyes is presented. We use clinical data of ametropic and keratoconus patients to construct anatomically accurate three-dimensional eye models and simulate the measurement of a streak retinoscope with all the optical elements. The results show the clinical observations including the anomalous motion in high myopia and the scissors reflex in keratoconus. The demonstrated technique can be applied to other ophthalmic instruments and to other and more extensively abnormal eye conditions. It provides promising features for medical training and for evaluating and developing ocular instruments.

  9. Adaptive thinking & leadership simulation game training for special forces officers.

    SciTech Connect

    Raybourn, Elaine Marie; Mendini, Kip; Heneghan, Jerry; Deagle, Edwin

    2005-07-01

    multiplayer simulation game is successfully used in the Special Forces Officer training program.

  10. FMPS measurement of nanoparticle pollutant in office air

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqin; Lin, Jianzhong; Yu, Mingzhou

    2010-08-01

    Fast Mobility Particle Sizer (FMPS) is an electrical mobility instrument used to measure the nanoparticle number concentration and size distribution in an office environment. Actual measurements indicate the distributions of ultrafine particle number and size in office air are inhomogeneous in space. The nonaparticle size is bimodal and log-normally distribution in an office environment when only people activities are considered. The traffic pollutant in the outdoor including the automobile tail gas and the dust will change the particles size distribution and enhance the particle number concentration those of indoor air. It can also be seen from the results that the laser printer releases a large number of nanoparticles, especially around 80nm in diameter in the printing process. The laser printer may be the mainly ultrafine particle source in the office air.

  11. The Patriot Company: A Simulated Office. Parkview High School, Little Rock, Arkansas.

    ERIC Educational Resources Information Center

    Smith, Phyllis W.

    The document is a student manual and teacher's manual for a simulated office practice class designed to give students training in a business office on school premises. In the simulation, students perform as office personnel and as customers and creditors. The first part of the guide, directed to students, contains: general information on the…

  12. Measurement outcomes from hip simulators.

    PubMed

    de Villiers, Danielle; Shelton, Julia C

    2016-05-01

    Simulation of wear in total hip replacements has been recognised as an important factor in determining the likelihood of clinical success. However, accurate measurement of wear can be problematic with factors such as number and morphology of wear particles produced as well as ion release proving more important in the biological response to hip replacements than wear volume or wear rate alone. In this study, hard-on-hard (CoCr alloy, AgCrN coating) and hard-on-soft (CoCr alloy and CrN coating on vitamin E blended highly cross-linked polyethylene) bearing combinations were tested in an orbital hip simulator under standard and some adverse conditions. Gravimetric wear rates were determined for all bearings, with cobalt and where applicable, silver release determined throughout testing. Isolation of wear particles from the lubricating fluid was used to determine the influence of different bearing combinations and wear conditions on particle morphology. It was found that cobalt and silver could be measured in the lubricating fluid even when volumetric wear was not detectable. In hard-on-hard bearings, Pearson's correlation of 0.98 was established between metal release into the lubricating fluid and wear volume. In hard-on-soft bearings, coating the head did not influence the polyethylene wear rates measured under standard conditions but did influence the cobalt release; the diameter influenced both polyethylene wear and cobalt release, and the introduction of adverse testing generated smaller polyethylene particles. While hip simulators can be useful to assess the wear performance of a new material or design, measurement of other outcomes may yield greater insight into the clinical behaviour of the bearings in vivo. PMID:26888886

  13. [Student diagnostic vignette. How to measure office blood pressure].

    PubMed

    Krzesinski, J-M; Saint-Remy, A

    2012-09-01

    Routinely measuring blood pressure is still performed according to the auscultatory method using recognition of Korotkoff sounds. This usual technique is, however, often mishandled and is thus a source of error in the estimation of the true blood pressure level. Accuracy of such measure is, however, of paramount importance to be useful in daily medical practice. This methodology paper more specifically written for medical students recalls the essential principles of blood pressure measurement at the medical office, but also at home. PMID:23115851

  14. Photocopy of measured drawing (from First Coast Guard District Office, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of measured drawing (from First Coast Guard District Office, John F. Kennedy Federal Building, Government Center, Boston, Massachusetts) designed by Edward P. Adams and Royal Luther, 1890 "PLAN FOR FRAMED DOUBLE DWELLING AT PORTLAND HEAD, ME., LIGHT STATION" - Portland Head Light, Portland Head, approximately 1/2 mile East of Shore Road, Cape Elizabeth, Cumberland County, ME

  15. Why use automated office blood pressure measurements in clinical practice?

    PubMed

    Andreadis, Emmanuel A; Angelopoulos, Epameinondas T; Agaliotis, Gerasimos D; Tsakanikas, Athanasios P; Mousoulis, George P

    2011-09-01

    Automated office blood pressure (AOBP) measurement with the patient resting alone in a quiet examining room can eliminate the white-coat effect associated with conventional readings taken by manual sphygmomanometer. The key to reducing the white-coat response appears to be multiple blood pressure (BP) readings taken in a non-observer office setting, thus eliminating any interaction that could provoke an office-induced increase in BP. Furthermore, AOBP readings have shown a higher correlation with the mean awake ambulatory BP compared with BP readings recorded in routine clinical practice. Although there is a paucity of studies connecting AOBP with organ damage, AOBP values were recently found to be equally associated with left ventricular mass index as those of ambulatory BP. This concludes that in contrast to routine manual office BP, AOBP readings compare favourably with 24-hour ambulatory BP measurements in the appraisal of cardiac remodelling and, as such, could be complementary to ambulatory readings in a way similar to home BP measurements. PMID:21950780

  16. Novel Uses of Office-Based Measures of Arterial Compliance

    PubMed Central

    Townsend, Raymond R.

    2015-01-01

    Office-based blood pressure monitoring has been the primary way of managing the cardiovascular risk associated with a diagnosis of hypertension. As research unfolds the nature in which the pulse waveform is generated, additional insights beyond standard measures of systolic and diastolic blood pressure have emerged to help reclassify the cardiovascular risk of patients or point out patterns that have, in longitudinal cohort studies, shown promise as predictors of outcomes such as heart failure. In this review, we focus on the pressure profile in the proximal aorta that can be obtained easily and noninvasively from the radial or brachial artery during a clinical office encounter and the potential value of these measures in outcomes such as left ventricular hypertrophy and heart failure. PMID:27057290

  17. Simulation Based Acquisition for NASA's Office of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OEx

  18. Proffitt, Dorsey & Huff, Inc. An Administrative Assistant Position Simulation. Employee's Manual. Office Occupations.

    ERIC Educational Resources Information Center

    Pickens Area Vocational-Technical School, Jasper, GA.

    This employee's manual, part of a series of publications for use in implementing an administrative assistant simulation designed for students enrolled in a postsecondary-level office applications laboratory, outlines the office rules of a fictitious insurance company, Proffitt, Dorsey & Huff, Inc., that functions as both a sales and a service…

  19. Expanding the Lester Hill Experience: A Report on Two 'Branch Office' Simulations

    ERIC Educational Resources Information Center

    Melvin, Opal B.

    1976-01-01

    Describes use of the Lester Hill Office Simulation, a program taught at the Tishomingo County Area Vocational-Technical Center in Mississippi. A fictitious company which provides students with the opportunity to gain realistic office experience in a classroom setting. Suggested ideas and optional activities can be used by teachers as a starting…

  20. DUVFEL PHOTOINJECTOR DYNAMICS: MEASUREMENT AND SIMULATION.

    SciTech Connect

    GRAVES, W.S.; DIMAURO, L.F.; HEESE, R.; JOHNSON, E.D.; ROSE, J.; RUDATI, J.; SHAFTAN, T.; SHEEHY, B.; YU, L.H.; DOWELL, D.H.

    2001-06-18

    The DUVFEL photoinjector consists of a 1.6 cell BNL gun IV with copper cathode, variable pulse length Ti:Sapp and solenoid magnet. The beam dynamics and the electromagnetic fields in the photoinjector have been characterized by producing a short electron beam with very low charge that is used as a field probe. Transverse beam size and divergence are measured as a function of initial RF phase and initial spot size and compared with simulations using the code HOMDYN. The electromagnetic fields used in the simulations are produced by SUPERFISH, and have been verified with RF measurements. The simulations and measurements of beam dynamics are presented.

  1. Specimen mass measurement. [during space environment simulation

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Ord, J.

    1973-01-01

    The Skylab specimen mass measurement device was operated throughout the altitude test in close simulation of the 56-day Skylab mission. It performed operational specimen measurements well until it was passed out of the chamber for replacement of the specimen hold-down and was autoclaved prior to return. Fecal measurements were typically made with less than one percent error.

  2. Short-Duration Simulations from Measurements.

    SciTech Connect

    Mitchell, Dean J.; Enghauser, Michael

    2014-08-01

    A method is presented that ascribes proper statistical variability to simulations that are derived from longer-duration measurements. This method is applicable to simulations of either real-value or integer-value data. An example is presented that demonstrates the applicability of this technique to the synthesis of gamma-ray spectra.

  3. Simmons Insurance Agency. A Clerk-Typist Position Simulation. Student Packet IV. Office Occupations.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta.

    This is the fourth of five student packets forming part of a position simulation developed for use in an office applications laboratory at the postsecondary level. The purpose of the simulation is to give the student an opportunity to become familiar with the tasks and duties performed by a clerk-typist working for an independent insurance agency.…

  4. Simmons Insurance Agency. A Clerk-Typist Position Simulation. Student Packet III. Office Occupations.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta.

    This is the third of five student packets forming part of a position simulation developed for use in an office applications laboratory at the postsecondary level. The purpose of the simulation is to give the student an opportunity to become familiar with the tasks and duties performed by a clerk-typist working for an independent insurance agency.…

  5. Simmons Insurance Agency. A Clerk-Typist Position Simulation. Student Packet II. Office Occupations.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta.

    This is the second of five student packets forming part of a position simulation developed for use in an office applications laboratory at the postsecondary level. The purpose of the simulation is to give the student an opportunity to become familiar with the tasks and duties performed by a clerk-typist working for an independent insurance agency.…

  6. Simmons Insurance Agency. A Clerk-Typist Position Simulation. Student Packet I. Office Occupations.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta.

    This is the first of five student packets forming part of a position simulation developed for use in an office applications laboratory at the postsecondary level. The purpose of the simulation is to give the student an opportunity to become familiar with the tasks and duties performed by a clerk-typist working for an independent insurance agency.…

  7. Comparison of HEU Measurements Using Measured and Simulated Data

    SciTech Connect

    Hutchinson, Jesson D.; Sood, Avneet; Smith-Nelson, Mark A.; Dinwiddie, Derek R.; Myers, William L.

    2012-06-19

    Correlated neutron data analyzed using the Feynman Variance-to-Mean method are can be used to assess the multiplication and mass of special nuclear material (SNM) systems. After list-mode data are acquired, the multiplication and mass can be determined using detector parameters. This work compares data sets that were measured to simulated data using recent MCNP list-mode modifications. In addition, both sets of data are analyzed using both measured and simulated parameters to infer the system multiplication.

  8. Numerical Simulations of Instabilities in Single-Hole Office Elements

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  9. Generation of Requirements for Simulant Measurements

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Schrader, C. M.; Edmunson, J. E.

    2010-01-01

    This TM presents a formal, logical explanation of the parameters selected for the figure of merit (FoM) algorithm. The FoM algorithm is used to evaluate lunar regolith simulant. The objectives, requirements, assumptions, and analysis behind the parameters are provided. A requirement is derived to verify and validate simulant performance versus lunar regolith from NASA s objectives for lunar simulants. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn, this leads to a set of nine criteria with which to evaluate comparative measurements. Many of the potential measurements of interest are not defensible under these criteria. For example, many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users. Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three parameters (composition, size, and shape) are recognized as being definable at the particle level. The fourth parameter (density) is a bulk property. In recent work, a fifth parameter (spectroscopy) has been identified, which will need to be added to future releases of the FoM.

  10. Spectral Measurements of Pulse Solar Simulators

    SciTech Connect

    Cannon, T. W.

    1998-11-12

    Spectral measurements of pulse solar simulators are used to quantify the wavelength-dependant characteristics of the light. Because every PV device has a unique spectral response, it is important to know the spectral irradiance and to periodically monitor the spectra for changes. Measurements are made at the National Renewable Energy Laboratory (NREL) using several different techniques including the NREL-developed Pulse Analysis Spectroradiometer System (PASS).

  11. Measuring defibrillator surface potentials for simulation verification.

    PubMed

    Tate, Jess; Stinstra, Jeroen; Pilcher, Thomas; Poursaid, Ahrash; Saarel, Elizabeth; MacLeod, Rob

    2011-01-01

    Though implantable cardioverter defibrillators (ICDs) are increasing in use in both adults and children, little progress has been devoted to optimizing device and electrode placement. To facilitate effective ICD placement, especially in pediatric cases, we have developed a predictive model that evaluates the efficacy of a delivered shock. We have also developed an experimental validation approach based on measurements from clinical cases. The approach involves obtaining body surface potential maps of ICD discharges during implantation surgery using a limited lead selection and body surface estimation algorithm. Comparison of the simulated and measured potentials yielded very similar patterns and a typical correlation greater than 0.93, suggesting that the predictive simulation generates realistic potential values. This validation approach provides confidence in application of the simulation pipeline and offers areas to focus future improvements. PMID:22254294

  12. Superiority of home blood pressure measurements over office measurements for testing antihypertensive drugs.

    PubMed

    Vaur; Dubroca; Dutrey-Dupagne; Genès; Chatellier; Bouvier-d'Yvoire; Elkik; Ménard

    1998-04-01

    OBJECTIVE: To compare the effects on office blood pressure and home blood pressure of placebo and active drug administration. DESIGN: After a 2-week wash-out period, patients with mild-to-moderate hypertension entered a 2-week single-blind placebo period and then a 4-week double-blind period. Patients were randomly assigned to be administered either 2 mg trandolapril once daily or its placebo in a 2:1 proportion. Office blood pressure was measured by a physician at the end of each period, using a mercury sphygmomanometer (mean of three consecutive measurements). Home blood pressure was measured during the last week of each period according to standard procedure carefully taught to each patient by the physician. Compliance was checked by using electronic pill boxes. RESULTS: Data for 34 of the 44 patients who entered the study were eligible for analysis. Baseline systolic blood pressure/diastolic blood pressure were significantly (P = 0.0001/P = 0.0001) higher for office blood pressure (161/101 mmHg) than they were for home blood pressure (145/93 mmHg). There was no statistically significant difference between the placebo and active-treatment groups at baseline. During the single-blind period, blood pressures measured at the office and at home did not change significantly. Office blood pressure decreased by 2.7 +/- 10 mmHg for systolic blood pressure and by 0.5 +/- 4 mmHg for diastolic blood pressure whereas home blood pressure increased by 0.8 +/- 6 mmHg for systolic blood pressure and by 0.7 +/- 4 mmHg for diastolic blood pressure. During the double-blind period, office blood pressure fell significantly with trandolapril treatment (systolic by 10.2 +/- 12 mmHg, diastolic by 8.3 +/- 6 mmHg; P = 0.0005/0.0001, versus single-blind placebo period) but this decrease was not significantly different (P = 0.45/0.92) from the fall in members of the placebo group (systolic by 6.9 +/- 9 mmHg, diastolic by 8.0 +/-6 mmHg; P = 0.04/0.002, versus single-blind placebo period

  13. Proffitt, Dorsey & Huff, Inc. An Administrative Assistant Position Simulation. Student Manual. Office Occupations.

    ERIC Educational Resources Information Center

    Pickens Area Vocational-Technical School, Jasper, GA.

    This student manual, part of a series of publications for use in an administrative assistant simulation for students enrolled in a postsecondary-level office applications laboratory, includes 20 jobs or tasks that are likely to be required of an administrative assistant working in an independent insurance agency that is both a sales and a service…

  14. Proffitt, Dorsey & Huff, Inc. An Administrative Assistant Position Simulation. Administration Manual. Office Occupations.

    ERIC Educational Resources Information Center

    Pickens Area Vocational-Technical School, Jasper, GA.

    This instructor's guide, one of three volumes designed for use in implementing an administrative assistant simulation for students enrolled in a postsecondary-level office applications laboratory, includes 20 jobs or tasks that are likely to be required of an administrative assistant working at an independent insurance agency that is both a sales…

  15. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for

  16. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    SciTech Connect

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  17. TE/TM Simulations of Interferometric Measurements

    NASA Technical Reports Server (NTRS)

    Houshmand, Bijan

    2000-01-01

    Interferometric synthetic aperture radar (IFSAR) measurements at X-, C-, L-, and P-band are used to derive ground topography at meter level resolution. Interpretation of the derived topography requires attention due to the complex interaction of the radar signal with ground cover. The presence of penetrable surfaces such as vegetation, and tree canopies poses a challenge since the depth of penetration depends on a number of parameters such as the operating radar frequency, polarization, incident angle, as well as terrain structure. The dependence of the reconstructed topography on polarization may lead to the characterization of the ground cover. Simulation of interferometric measurements is useful for interpretation of the derived topography (B. Houshmand, Proceedings of URSI, 314, 1997). In this talk , time domain simulations for interferometric measurement for TE- and TM- polarization are presented. Time domain simulation includes the effects of the surface material property as well geometry comparable the radar signal wavelength (B. Houshmand, Proceedings of the URSI, 25, 1998). The IFSAR simulation is carried out in two steps. First, the forward scattering data is generated based on full wave analysis. Next, the electromagnetic information is inverted to generate surface topography. This inversion is based on the well known IFSAR processing technique which is composed of signal compression, and formation of an interferogram. The full wave forward scattering data is generated by the scattered-field formulation of the FDTD algorithm. The simulation is carried out by exciting the computational domain by a radar signal. The scattered field is then computed and translated to the receiving interferometric antennas using the time-domain Huygen's principle. The inversion process starts by compressing the time-domain data. The range compressed data from both receivers are then coregistered to form an interferogram. The resulting interferogram is then related to the

  18. Simulations for the Development of Thermoelectric Measurements

    NASA Astrophysics Data System (ADS)

    Zabrocki, Knud; Ziolkowski, Pawel; Dasgupta, Titas; de Boor, Johannes; Müller, Eckhard

    2013-07-01

    In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an

  19. Computational simulation of Faraday probe measurements

    NASA Astrophysics Data System (ADS)

    Boerner, Jeremiah J.

    Electric propulsion devices, including ion thrusters and Hall thrusters, are becoming increasingly popular for long duration space missions. Ground-based experimental testing of such devices is performed in vacuum chambers, which develop an unavoidable background gas due to pumping limitations and facility leakage. Besides directly altering the operating environment, the background gas may indirectly affect the performance of immersed plasma probe diagnostics. This work focuses on computational modeling research conducted to evaluate the performance of a current-collecting Faraday probe. Initial findings from one dimensional analytical models of plasma sheaths are used as reference cases for subsequent modeling. A two dimensional, axisymmetric, hybrid electron fluid and Particle In Cell computational code is used for extensive simulation of the plasma flow around a representative Faraday probe geometry. The hybrid fluid PIC code is used to simulate a range of inflowing plasma conditions, from a simple ion beam consistent with one dimensional models to a multiple component plasma representative of a low-power Hall thruster plume. These simulations produce profiles of plasma properties and simulated current measurements at the probe surface. Interpretation of the simulation results leads to recommendations for probe design and experimental techniques. Significant contributions of this work include the development and use of two new non-neutral detailed electron fluid models and the recent incorporation of multi grid capabilities.

  20. Friction measurement in a hip wear simulator.

    PubMed

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. PMID:27160557

  1. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment.

    PubMed

    Fadeyi, Moshood O; Weschler, Charles J; Tham, Kwok W; Wu, Wei Y; Sultan, Zuraimi M

    2013-04-16

    Several studies have documented reductions in indoor ozone levels that occur as a consequence of its reactions with the exposed skin, hair and clothing of human occupants. One would anticipate that consumption of ozone via such reactions would impact co-occurring products derived from ozone's reactions with various indoor pollutants. The present study examines this possibility for secondary organic aerosols (SOA) derived from ozone-initiated chemistry with limonene, a commonly occurring indoor terpene. The experiments were conducted at realistic ozone and limonene concentrations in a 240 m(3) chamber configured to simulate a typical open office environment. During an experiment the chamber was either unoccupied or occupied with 18-20 workers. Ozone and particle levels were continuously monitored using a UV photometric ozone analyzer and a fast mobility particle sizer (FMPS), respectively. Under otherwise identical conditions, when workers were present in the simulated office the ozone concentrations were approximately two-thirds and the SOA mass concentrations were approximately one-half of those measured when the office was unoccupied. This was observed whether new or used filters were present in the air handling system. These results illustrate the importance of accounting for occupancy when estimating human exposure to pollutants in various indoor settings. PMID:23488675

  2. Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring

    SciTech Connect

    Yun, Geun Young; Steemers, Koen

    2010-07-15

    This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

  3. Volatilization of EPTC: Simulation and measurement

    SciTech Connect

    Baker, J.M.; Koskinen, W.C.; Dowdy, R.H.

    1996-01-01

    Many of the organic chemicals used in agricultural production are susceptible to loss from the soil surface to the atmosphere by volatilization. Adequate prediction of the impact of these chemicals on the environment thus requires consideration of both downward movement through the soil to groundwater and upward movement in the gas phase to the atmosphere. We developed a method to mechanistically simulate volatilization within the framework of a conventionally formulated solute transport model and used it to simulate the gas-phase losses of EPTC, a commonly used volatile herbicide. The model considers efflux of a trace gas at the sod surface to be a process of unsteady diffusion, interrupted intermittently by dispersive events that can be thought of as eddies at the innermost scale. Model results were compared to measurements of volatilization during the first 7 d following application of EPTC, conducted with a Bowen ratio system in a 17-ha field at Rosemount, MN. The measurements indicated a relatively large initial flux (ca. 150 g ha{sup -1} h{sup -1}) that rapidly decreased to negligible levels within a day following application. The model agreed reasonably well on the first day, if a measured value for Henry`s constant was used rather than a value estimated from the saturation vapor pressure and the solubility. However, on subsequent days the model considerably overestimated volatilization, regardless of the Henry`s constant that was used. It is likely that hysteresis in sorption/desorption, particularly as surface soil dries following herbicide incorporation, may be the primary reason why volatile losses are lower than might be predicted on the basis of equilibrium partitioning theory. 42 refs., 5 figs., 1 tab.

  4. A Web-Based Lean Simulation Game for Office Operations: Training the Other Side of a Lean Enterprise

    ERIC Educational Resources Information Center

    Kuriger, Glenn W.; Wan, Huang-da; Mirehei, S. Moussa; Tamma, Saumya; Chen, F. Frank

    2010-01-01

    This research proposes a Web-based version of a lean office simulation game (WeBLOG). The game is designed to be used to train lean concepts to office and administrative personnel. This group belongs to the frequently forgotten side of a lean enterprise. Over four phases, the game presents the following seven lean tools: one-piece flow,…

  5. The integrated motion measurement simulation for SOFIA

    NASA Astrophysics Data System (ADS)

    Kaswekar, Prashant; Greiner, Benjamin; Wagner, Jörg

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy SOFIA consists of a B747-SP aircraft, which carries aloft a 2.7-meter reflecting telescope. The image stability goal for SOFIA is 0:2 arc-seconds rms. The performance of the telescope structure is affected by elastic vibrations induced by aeroacoustic and suspension disturbances. Active compensation of such disturbances requires a fast way of estimating the structural motion. Integrated navigation systems are examples of such estimation systems. However they employ a rigid body assumption. A possible extension of these systems to an elastic structure is shown by different authors for one dimensional beam structures taking into account the eigenmodes of the structural system. The rigid body motion as well as the flexible modes of the telescope assembly, however, are coupled among the three axes. Extending a special mathematical approach to three dimensional structures, the aspect of a modal observer based on integrated motion measurement is simulated for SOFIA. It is in general a fusion of different measurement methods by using their benefits and blinding out their disadvantages. There are no mass and stillness properties needed directly in this approach. However, the knowledge of modal properties of the structure is necessary for the implementation of this method. A finite-element model is chosen as a basis to extract the modal properties of the structure.

  6. Power levels in office equipment: Measurements of new monitors and personal computers

    SciTech Connect

    Roberson, Judy A.; Brown, Richard E.; Nordman, Bruce; Webber, Carrie A.; Homan, Gregory H.; Mahajan, Akshay; McWhinney, Marla; Koomey, Jonathan G.

    2002-05-14

    Electronic office equipment has proliferated rapidly over the last twenty years and is projected to continue growing in the future. Efforts to reduce the growth in office equipment energy use have focused on power management to reduce power consumption of electronic devices when not being used for their primary purpose. The EPA ENERGY STAR[registered trademark] program has been instrumental in gaining widespread support for power management in office equipment, and accurate information about the energy used by office equipment in all power levels is important to improving program design and evaluation. This paper presents the results of a field study conducted during 2001 to measure the power levels of new monitors and personal computers. We measured off, on, and low-power levels in about 60 units manufactured since July 2000. The paper summarizes power data collected, explores differences within the sample (e.g., between CRT and LCD monitors), and discusses some issues that arise in m etering office equipment. We also present conclusions to help improve the success of future power management programs.Our findings include a trend among monitor manufacturers to provide a single very low low-power level, and the need to standardize methods for measuring monitor on power, to more accurately estimate the annual energy consumption of office equipment, as well as actual and potential energy savings from power management.

  7. Simulating UT measurements from bolthole cracks

    NASA Astrophysics Data System (ADS)

    Grandin, Robert; Gray, Tim; Roberts, Ron

    2016-02-01

    Analytical computer models of UT measurements are becoming more prominent in evaluating NDE methods - a process known as Model Assisted Probability of Detection, or MAPOD. As inspection requirements become more stringent, the respective models become more complex. An important application for aerospace structures involves inspection for cracks near boltholes in plate and layered structures. This paper describes a project to develop and validate analytical models for bolthole crack inspection, as well as to implement and demonstrate those models within an integrated graphical interface which can be used to simulate these inspections. The work involves a combination of approximate, paraxial, bulk-wave models as well as more rigorous, analytical models that include both bulk and surface/plate modes. The simpler models have greater flexibility and efficiency for handling complex geometry, while the more exact models are useful for benchmarking and assessing the accuracy of the paraxial versions. Model results will be presented for bolthole cracks in single layered components. Extensions of the models to multiple layers and to more complex geometries and materials will also be discussed.

  8. Numerical simulation of noninvasive blood pressure measurement.

    PubMed

    Hayashi, Satoru; Hayase, Toshiyuki; Shirai, Atsushi; Maruyama, Masaru

    2006-10-01

    In this paper, a simulation model based on the partially pressurized collapsible tube model for reproducing noninvasive blood pressure measurement is presented. The model consists of a collapsible tube, which models the pressurized part of the artery, rigid pipes connected to the collapsible tube, which model proximal and distal region far from the pressurized part, and the Windkessel model, which represents the capacitance and the resistance of the distal part of the circulation. The blood flow is simplified to a one-dimensional system. Collapse and expansion of the tube is represented by the change in the cross-sectional area of the tube considering the force balance acting on the tube membrane in the direction normal to the tube axis. They are solved using the Runge-Kutta method. This simple model can easily reproduce the oscillation of inner fluid and corresponding tube collapse typical for the Korotkoff sounds generated by the cuff pressure. The numerical result is compared with the experiment and shows good agreement. PMID:16995754

  9. Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

    2012-08-03

    This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

  10. [Simulator sickness and its measurement with Simulator Sickness Questionnaire (SSQ)].

    PubMed

    Biernacki, Marcin P; Kennedy, Robert S; Dziuda, Łukasz

    2016-01-01

    One of the most common methods for studying the simulator sickness issue is the Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993). Despite the undoubted popularity of the SSQ, this questionnaire has not as yet been standardized and translated, which could allow us to use it in Poland for research purposes. The aim of our article is to introduce the SSQ to Polish readers, both researchers and practitioners. In the first part of this paper, the studies using the SSQ are discussed, whereas the second part consists of the description of the SSQ test procedure and the calculation method of sample results. Med Pr 2016;67(4):545-555. PMID:27623835

  11. A compact spectroradiometer for solar simulator measurements

    NASA Technical Reports Server (NTRS)

    Seward, H. H.; Mcwilliams, I. G.; Davidson, G. A.

    1972-01-01

    Compact spectral irradiance probe has been designed and built which uses wedge filter in conjunction with silicon cell and operational amplifier. Probe is used to monitor spectral energy distribution of solar simulators and other high intensity sources.

  12. Statistical Analysis and Modeling of Occupancy Patterns in Open-Plan Offices using Measured Lighting-Switch Data

    SciTech Connect

    Chang, Wen-Kuei; Hong, Tianzhen

    2013-01-01

    Occupancy profile is one of the driving factors behind discrepancies between the measured and simulated energy consumption of buildings. The frequencies of occupants leaving their offices and the corresponding durations of absences have significant impact on energy use and the operational controls of buildings. This study used statistical methods to analyze the occupancy status, based on measured lighting-switch data in five-minute intervals, for a total of 200 open-plan (cubicle) offices. Five typical occupancy patterns were identified based on the average daily 24-hour profiles of the presence of occupants in their cubicles. These statistical patterns were represented by a one-square curve, a one-valley curve, a two-valley curve, a variable curve, and a flat curve. The key parameters that define the occupancy model are the average occupancy profile together with probability distributions of absence duration, and the number of times an occupant is absent from the cubicle. The statistical results also reveal that the number of absence occurrences decreases as total daily presence hours decrease, and the duration of absence from the cubicle decreases as the frequency of absence increases. The developed occupancy model captures the stochastic nature of occupants moving in and out of cubicles, and can be used to generate a more realistic occupancy schedule. This is crucial for improving the evaluation of the energy saving potential of occupancy based technologies and controls using building simulations. Finally, to demonstrate the use of the occupancy model, weekday occupant schedules were generated and discussed.

  13. Lumbar postures, seat interface pressures and discomfort responses to a novel thoracic support for police officers during prolonged simulated driving exposures.

    PubMed

    Gruevski, Kristina M; Holmes, Michael W R; Gooyers, Chad E; Dickerson, Clark R; Callaghan, Jack P

    2016-01-01

    A high prevalence of low back pain has been reported among professional drivers, including mobile police officers. The purpose of this investigation was to develop and evaluate a novel thoracic support designed for mobile police officers. Fourteen participants (7 male, 7 female) attended two 120-min driving simulations using a Crown Victoria Interceptor seat and the same seat equipped with a surface mounted thoracic support. Time-varying spine postures, seat pressures and ratings of discomfort were measured. Averaged discomfort values were low (less than 10 mm of a possible 100 mm) for both seating conditions. The postures in the thoracic support condition were more similar to non-occupational driving without occupational equipment than the Crown Victoria seating condition. The reduction in pressure area at the low back with the thoracic support has the potential to reduce discomfort reporting in officers compared to a standard vehicle package. PMID:26360207

  14. A Simulation Method Measuring Psychomotor Nursing Skills.

    ERIC Educational Resources Information Center

    McBride, Helena; And Others

    1981-01-01

    The development of a simulation technique to evaluate performance of psychomotor skills in an undergraduate nursing program is described. This method is used as one admission requirement to an alternate route nursing program. With modifications, any health profession could use this technique where psychomotor skills performance is important.…

  15. Simple Numerical Simulation of Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2002-01-01

    By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.

  16. The Use of In-Situ Simulation to Improve Safety in the Plastic Surgery Office: A Feasibility Study

    PubMed Central

    Shapiro, Fred E.; Pawlowski, John B.; Rosenberg, Noah M.; Liu, Xiaoxia; Feinstein, David M.; Urman, Richard D.

    2014-01-01

    Objective: Simulation-based interventions and education can potentially contribute to safer and more effective systems of care. We utilized in-situ simulation to highlight safety issues, regulatory requirements, and assess perceptions of safety processes by the plastic surgery office staff. Methods: A high-fidelity human patient simulator was brought to an office-based plastic surgery setting to enact a half-day full-scale, multidisciplinary medical emergency. Facilitated group debriefings were conducted after each scenario with special consideration of the principles of team training, communication, crisis management, and adherence to evidence-based protocols and regulatory standards. Abbreviated AHRQ Medical Office Safety Culture Survey was completed by the participants before and after the session. Results: The in-situ simulations had a high degree of acceptance and face validity according to the participants. Areas highlighted by the simulation sessions included rapid communication, delegation of tasks, location of emergency materials, scope of practice, and logistics of transport. The participant survey indicated greater awareness of patient safety issues following participation in simulation and debriefing exercises in 3 areas (P < 0.05): the need to change processes if there is a recognized patient safety issue (100% vs 75%), openness to ideas about improving office processes (100% vs 88%), and the need to discuss ways to prevent errors from recurring (88% vs 62%). Conclusions: Issues of safety and regulatory compliance can be assessed in an office-based setting through the short-term (half-day) use of in-situ simulation with facilitated debriefing and the review of audiovisual recordings by trained facilities inspectors. PMID:24501616

  17. Solar chimney design: Investigating natural ventilation and cooling in offices with the aid of computer simulation

    NASA Astrophysics Data System (ADS)

    Angelis, Nikolaos

    Solar chimney design is investigated as a means of improving natural ventilation and passive cooling in office buildings. Existing scientific research and built precedents are generally limited literature review findings on various features of solar chimneys were categorised and used to develop a building simulation strategy. Using UK climatic data, simulations were performed on several computer models in order to investigate solar chimney performance during a single day period and an entire cooling season. Passive cooling with a solar chimney is possible but actual reduction in temperatures in most cases examined could be negligible. Cooling potential is increased on still, warm days, while the prospects for night cooling are further improved. A solar chimney may help reduce considerably the occurrence of resultant temperatures at or above the 25 C and 28 C thresholds. Solar chimney width, height, apertures and integral use of thermal mass are the most significant parameters for cooling. Simulation results showed that a solar chimney can increase significantly natural ventilation rates. Total ventilation rates may be increased by at least 22%. During still days a solar chimney can enhance ventilation rates by 36% or more. Stack ventilation through a solar chimney is typically 20% of cross ventilation during night time this may increase to at least 40-45% and on still days it may reach 100% of typical cross ventilation rates. Solar chimney induced stack ventilation and cross ventilation are interrelated. Resultant air flow patterns may have an important effect on convective heat transfers and thermal comfort. Climate and microclimate conditions should be an integral part of solar chimney design. Key aspects and recommendations regarding solar chimneys, passive cooling and natural ventilation are provided for design guidance and feedback in further research.

  18. Correlation between pedometer and the Global Physical Activity Questionnaire on physical activity measurement in office workers

    PubMed Central

    2014-01-01

    Background This study aimed to examine the correlation of physical activity levels assessed by pedometer and those by the Global Physical Activity Questionnaire (GPAQ) in a population of office workers. Methods A cross-sectional study was conducted on 320 office workers. A self-administered questionnaire was distributed to each office worker by hand. Physical activity level was objectively assessed by a pedometer for 7 consecutive days and subjectively assessed by the GPAQ. Based on the pedometer and GPAQ outcomes, participants were classified into 3 groups: inactive, moderately active, and highly active. Results No correlation in the physical activity level assessed by the pedometer and GPAQ was found (rs = .08, P = 0.15). When considering the pedometer as the criterion for comparison, 65.3% of participants had underestimated their physical activity level using the GPAQ, whereas 9.3% of participants overestimated their physical activity level. Conclusions Physical activity level in office workers assessed by a subjective measure was greatly different from assessed by an objective tool. Consequently, research on physical activity level, especially in those with sedentary lifestyle, should consider using an objective measure to ensure that it closely reflects a person’s physical activity level. PMID:24886593

  19. Requirements and Techniques for Developing and Measuring Simulant Materials

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Owens, Charles; Howard, Rick

    2006-01-01

    The 1989 workshop report entitled Workshop on Production and Uses of Simulated Lunar Materials and the Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage, NASA Technical Publication identify and reinforced a need for a set of standards and requirements for the production and usage of the lunar simulant materials. As NASA need prepares to return to the moon, a set of requirements have been developed for simulant materials and methods to produce and measure those simulants have been defined. Addressed in the requirements document are: 1) a method for evaluating the quality of any simulant of a regolith, 2) the minimum Characteristics for simulants of lunar regolith, and 3) a method to produce lunar regolith simulants needed for NASA's exploration mission. A method to evaluate new and current simulants has also been rigorously defined through the mathematics of Figures of Merit (FoM), a concept new to simulant development. A single FoM is conceptually an algorithm defining a single characteristic of a simulant and provides a clear comparison of that characteristic for both the simulant and a reference material. Included as an intrinsic part of the algorithm is a minimum acceptable performance for the characteristic of interest. The algorithms for the FoM for Standard Lunar Regolith Simulants are also explicitly keyed to a recommended method to make lunar simulants.

  20. Automated measurement of office, home and ambulatory blood pressure in atrial fibrillation.

    PubMed

    Kollias, Anastasios; Stergiou, George S

    2014-01-01

    1. Hypertension and atrial fibrillation (AF) often coexist and are strong risk factors for stroke. Current guidelines for blood pressure (BP) measurement in AF recommend repeated measurements using the auscultatory method, whereas the accuracy of the automated devices is regarded as questionable. This review presents the current evidence on the feasibility and accuracy of automated BP measurement in the presence of AF and the potential for automated detection of undiagnosed AF during such measurements. 2. Studies evaluating the use of automated BP monitors in AF are limited and have significant heterogeneity in methodology and protocols. Overall, the oscillometric method is feasible for static (office or home) and ambulatory use and appears to be more accurate for systolic than diastolic BP measurement. 3. Given that systolic hypertension is particularly common and important in the elderly, the automated BP measurement method may be acceptable for self-home and ambulatory monitoring, but not for professional office or clinic measurement. 4. An embedded algorithm for the detection of asymptomatic AF during routine automated BP measurement with high diagnostic accuracy has been developed and appears to be a useful screening tool for elderly hypertensives. PMID:23647092

  1. Enhancements in Photon Pressure Measurements Using a Solar Simulator

    NASA Technical Reports Server (NTRS)

    Gray, P. A.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Initial proof of concept photon momentum measurements were reported at the AIAA Conference in Reno Nevada, January 8-11, 2001. That presentation verified that photon pressure on a simulated solar sail material can be measured under high vacuum conditions using a full spectrum solar simulator and a vacuum compatible force measurement system. Modifications to this test system were implemented to enhance the accuracy of the photon pressure measurement. This paper describes the photon pressure measurement technique and modifications to increase the measurement accuracy using a candidate sail material, aluminized Mylar.

  2. Usefulness of heart measures in flight simulation

    NASA Technical Reports Server (NTRS)

    Harris, Randall L., Sr.; Bonadies, Gregory A.; Comstock, J. Raymond, Jr.

    1990-01-01

    The results of three studies performed at the NASA Langley Research Center are presented to indicate the areas in which heart measures are useful for detecting differences in the workload state of subjects. Tasks that involve the arousal of the sympathetic nervous system, such as landing approaches, were excellent candidates for the use of average heart-rate and/or the increase in heart-rate during a task. The latter of these two measures was the better parameter because it removed the effects of diurnal variations in heart-rate and some of the intersubject variability. Tasks which differ in the amount of mental resources required are excellent candidates for heart-rate variability measures. Heart-rate variability measures based upon power spectral density techniques were responsive to the changing task demands of landing approach tasks, approach guidance options, and 2 versus 20 second interstimulus-intervals of a monitoring task. Heart-rate variability measures were especially sensitive to time-on-task when the task was characterized by minimal novelty, complexity, and uncertainty (i.e., heart-rate variability increases as a function of the subjects boredom).

  3. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  4. Control over the Scheduling of Simulated Office Work Reduces the Impact of Workload on Mental Fatigue and Task Performance

    ERIC Educational Resources Information Center

    Hockey, G. Robert J.; Earle, Fiona

    2006-01-01

    Two experiments tested the hypothesis that task-induced mental fatigue is moderated by control over work scheduling. Participants worked for 2 hr on simulated office work, with control manipulated by a yoking procedure. Matched participants were assigned to conditions of either high control (HC) or low control (LC). HC participants decided their…

  5. An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings - Simulated Results Using EnergyPlus

    SciTech Connect

    Belzer, David B.

    2010-08-01

    The Department of Energy’s (DOE) Building Technologies Program (BTP) has had an active research program in supporting the development of electrochromic (EC) windows. Electrochromic glazings used in these windows have the capability of varying the transmittance of light and heat in response to an applied voltage. This dynamic property allows these windows to reduce lighting, cooling, and heating energy in buildings where they are employed. The exploratory analysis described in this report examined three different variants of EC glazings, characterized by the amount of visible light and solar heat gain (as measured by the solar heat gain coefficients [SHGC] in their “clear” or transparent states). For these EC glazings, the dynamic range of the SHGC’s between their “dark” (or tinted) state and the clear state were: (0.22 - 0.70, termed “high” SHGC); (0.16 - 0.39, termed “low” SHGC); and (0.13 - 0.19; termed “very low” SHGC). These glazings are compared to conventional (static) glazing that meets the ASHRAE Standard 90.1-2004 energy standard for five different locations in the U.S. All analysis used the EnergyPlus building energy simulation program for modeling EC windows and alternative control strategies. The simulations were conducted for a small and a medium office building, where engineering specifications were taken from the set of Commercial Building Benchmark building models developed by BTP. On the basis of these simulations, total source-level savings in these buildings were estimated to range between 2 to 7%, depending on the amount of window area and building location.

  6. Wearable ECG recorder with acceleration sensors for monitoring daily stress: office work simulation study.

    PubMed

    Okada, Y; Yoto, T Y; Suzuki, T; Sakuragawa, S; Sugiura, T

    2013-01-01

    A small and light-weight wearable electrocardiograph (ECG) equipment with a tri-axis accelerometer (x, y and z-axis) was developed for prolonged monitoring of everyday stress. It consists of an amplifier, a microcomputer with an AD converter, a triaxial accelerometer, and a memory card. Four parameters can be sampled at 1 kHz for more than 24 h and a maximum of 27 h with a default battery and a memory card of one giga byte (1 GB). Off-line data processing includes motion information along three axes and autonomic nervous system (ANS) activity bispectral analysis and the tone-entropy method (T-E method) from HRV data. The availability of the system was tested through simulated office work and three-day monitoring by replacing the battery and the memory card every 24 h. Both short-term and circadian rhythms of ANS activity were clearly observed. In addition, sympathetic nervous activities gradually increased from the second to the third day. The experimental data presented verifies the functionality of the proposed system. PMID:24110788

  7. A Measure of Psychological Realism on a Visual Simulator

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Petitt, John

    1977-01-01

    A FUNDAMENTAL question of simulation technology is how to determine if an aircraft simulation is creating the proper psychological space necessary to assess manned-system performance. The standard approach to this problem for visual simulators is to measure how well pilots can make approaches and landings on the simulator. Experiments of this type generally show that simulator performance is worse than actual landing performance and that there is an excessive amount of training required to reach acceptable performance. Unfortunately, in these experiments it is difficult to sort out the inadequacies of the visual subsystem from possible inadequacies in other simulator subsystems, such as the motion subsystem. This synoptic presents the results from one of a series of five experiments which attempted to provide direct measures of the psychological realism on a computer graphics night visual flight attachment. These experiments used experimental procedures and methodologies that psychologists have developed in their attempts to determine how people perceived visual space in the real world.

  8. Whole body measurement systems. [for weightlessness simulation

    NASA Technical Reports Server (NTRS)

    Ogle, J. S. (Inventor)

    1973-01-01

    A system for measuring the volume and volume variations of a human body under zero gravity conditions is disclosed. An enclosed chamber having a defined volume and arranged for receiving a human body is provided with means for infrasonically varying the volume of the chamber. The changes in volume produce resultant changes in pressure, and under substantially isentropic conditions, an isentropic relationship permits a determination of gas volume which, in turn, when related to total chamber volume permits a determination of the body volume. By comparison techniques, volume changes of a human independent of gravity conditions can be determined.

  9. Strategies for classifying patients based on office, home, and ambulatory blood pressure measurement.

    PubMed

    Zhang, Lu; Li, Yan; Wei, Fang-Fei; Thijs, Lutgarde; Kang, Yuan-Yuan; Wang, Shuai; Xu, Ting-Yan; Wang, Ji-Guang; Staessen, Jan A

    2015-06-01

    Hypertension guidelines propose home or ambulatory blood pressure monitoring as indispensable after office measurement. However, whether preference should be given to home or ambulatory monitoring remains undetermined. In 831 untreated outpatients (mean age, 50.6 years; 49.8% women), we measured office (3 visits), home (7 days), and 24-h ambulatory blood pressures. We applied hypertension guidelines for cross-classification of patients into normotension or white-coat, masked, or sustained hypertension. Based on office and home blood pressures, the prevalence of white-coat, masked, and sustained hypertension was 61 (10.3%), 166 (20.0%), and 162 (19.5%), respectively. Using daytime (from 8 am to 6 pm) instead of home blood pressure confirmed the cross-classification in 575 patients (69.2%), downgraded risk from masked hypertension to normotension (n=24) or from sustained to white-coat hypertension (n=9) in 33 (4.0%), but upgraded risk from normotension to masked hypertension (n=179) or from white-coat to sustained hypertension (n=44) in 223 (26.8%). Analyses based on 24-h ambulatory blood pressure were confirmatory. In adjusted analyses, both the urinary albumin-to-creatinine ratio (+20.6%; confidence interval, 4.4-39.3) and aortic pulse wave velocity (+0.30 m/s; confidence interval, 0.09-0.51) were higher in patients who moved up to a higher risk category. Both indexes of target organ damage and central augmentation index were positively associated (P≤0.048) with the odds of being reclassified. In conclusion, for reliably diagnosing hypertension and starting treatment, office measurement should be followed by ambulatory blood pressure monitoring. Using home instead of ambulatory monitoring misses the high-risk diagnoses of masked or sustained hypertension in over 25% of patients. PMID:25870194

  10. DETERMINING UNCERTAINTY IN PHYSICAL PARAMETER MEASUREMENTS BY MONTE CARLO SIMULATION

    EPA Science Inventory

    A statistical approach, often called Monte Carlo Simulation, has been used to examine propagation of error with measurement of several parameters important in predicting environmental transport of chemicals. These parameters are vapor pressure, water solubility, octanol-water par...

  11. Evaluating the Met Office Unified Model simulated land surface temperature (LST) using a multi-platform approach

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Harlow, Chawn; Best, Martin; Newman, Stuart; Scott, Russell; Edwards, John; Thelen, Jean-Claude; Pavelin, Ed; Weeks, Mark

    2015-04-01

    The Met Office Unified Model (UM) has a significant cold bias in land surface temperature (LST) in semi-arid regions at global resolution, and limited area 4.4 km and 2.2 km configurations. The daytime LST cold bias simulated by the JULES land surface scheme within the UM is present throughout the annual cycle in semi-arid regions of the globe in comparison to IASI retrievals. These errors are largest in late spring and early summer and have magnitudes of 5 to 15 K, dependent on model resolution. This work will show verification of model biases through ground-based, in-situ airborne and satellite observations during the Semi-Arid Land Surface Temperature and IASI Calibration Experiment (SALSTICE) in semi-arid south-eastern Arizona in May 2013. Airborne observations of LST from the FAAM research aircraft using the Airborne Research Interferometer Evaluation System (ARIES) were used to investigate the spatial distribution of the model errors and evaluate IASI retrievals. Airborne retrievals of surface temperature were found to broadly agree with IASI retrievals; uncertainties are attributed to the spatial variability in the ARIES measurements compared with the IASI footprints and due to differences within the retrieval, such as assumed emissivity. The UM errors in LST were found to vary with model resolution as well as topographic complexity, with the coarse resolution global model having larger errors than the limited area models. Regions with complex terrain had the highest LST errors while the errors over the less complex basins were lower, in the range of 4-5 K. Evaluation of the JULES land surface scheme has been performed for flux tower sites in the Walnut Gulch Experimental Watershed in south-eastern Arizona. An annual dataset of flux tower measurements confirms the LST biases seen with aircraft and satellite observations and indicates that night-time LST biases are of the order of those observed during the day. Comparisons of different model resolutions show

  12. Experimental Validation of Simulations Using Full-field Measurement Techniques

    SciTech Connect

    Hack, Erwin

    2010-05-28

    The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

  13. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions. PMID:26943520

  14. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  15. Are pressure measurements effective in the assessment of office chair comfort/discomfort? A review.

    PubMed

    Zemp, Roland; Taylor, William R; Lorenzetti, Silvio

    2015-05-01

    Nowadays, the majority of jobs in the western world involves sitting in an office chair. As a result, a comfortable and supported sitting position is essential for employees. In the literature, various objective methods (e.g. pressure measurements, measurements of posture, EMG etc.) have been used to assess sitting comfort/discomfort, but their validity remains unknown. This review therefore examines the relationship between subjective comfort/discomfort and pressure measurements while sitting in office chairs. The literature search resulted in eight papers that met all our requirements. Four studies identified a relationship between subjective comfort/discomfort and pressure distribution parameters (including correlations of up to r = 0.7 ± 0.13). However, the technique for evaluating subjective comfort/discomfort seems to play an important role on the results achieved, therefore placing their validity into question. The peak pressure on the seat pan, the pressure distribution on the backrest and the pressure pattern changes (seat pan and backrest) all appear to be reliable measures for quantifying comfort or discomfort. PMID:25683554

  16. Recommendations for blood pressure measuring devices for office/clinic use in low resource settings.

    PubMed

    Parati, Gianfranco; Mendis, Shanthi; Abegunde, Dele; Asmar, Ronald; Mieke, Stephan; Murray, Alan; Shengelia, Bakuti; Steenvoorden, Gijs; Van Montfrans, Gert; O'Brien, Eoin

    2005-02-01

    This paper, which summarizes the conclusions of a WHO Expert meeting, is aimed at proposing indications to develop technical specifications for an accurate and affordable blood pressure measuring device for office/clinic use in low resource settings. Blood pressure measuring devices to be used in low resource settings should be accurate, affordable, and easily available worldwide. Given the serious inherent inaccuracy of the auscultatory technique, validated and affordable electronic devices, that have the option to select manual readings, seem to be a suitable solution for low resource settings. The agreement on the technical specifications for automated blood pressure measuring devices for office/clinic use in low resource settings included the following features: high accuracy, adoption of electronic transducers and solar batteries for power supply, standard rates of cuff inflation and deflation, adequate cuff size, digital display powered by solar batteries, facilities for adequate calibration, environmental requirements, no need of memory function, resistance to shock and temperature changes, and low cost. Availability of a device with these features should be accompanied by adequate training of health care personnel, who should guarantee implementation of the procedures recommended in recent European and American Guidelines for accurate blood pressure measurement. PMID:15687867

  17. In Situ Measurement Activities at the Nasa Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Burchell, M.; Corsaro, R.; Drolshagen, G.; Giovane, F.; Pisacane, V.; Stansbery, E.

    2009-01-01

    The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper.

  18. Comsol Simulations as a Tool in Validating a Measurement Chamber

    NASA Astrophysics Data System (ADS)

    Lakka, Antti; Sairanen, Hannu; Heinonen, Martti; Högström, Richard

    2015-12-01

    The Centre for Metrology and Accreditation (MIKES) is developing a temperature-humidity calibration system for radiosondes. The target minimum air temperature and dew-point temperature are -80° C and -90° C, respectively. When operating in this range, a major limiting factor is the time of stabilization which is mainly affected by the design of the measurement chamber. To find an optimal geometry for the chamber, we developed a numerical simulation method taking into account heat and mass transfer in the chamber. This paper describes the method and its experimental validation using two stainless steel chambers with different geometries. The numerical simulation was carried out using Comsol Multiphysics simulation software. Equilibrium states of dry air flow at -70° C with different inlet air flow rates were used to determine the geometry of the chamber. It was revealed that the flow is very unstable despite having relatively small Reynolds number values. Humidity saturation abilities of the new chamber were studied by simulating water vapor diffusion in the chamber in time-dependent mode. The differences in time of humidity stabilization after a step change were determined for both the new chamber model and the MIKES Relative Humidity Generator III (MRHG) model. These simulations were used as a validation of the simulation method along with experimental measurements using a spectroscopic hygrometer. Humidity saturation stabilization simulations proved the new chamber to be the faster of the two, which was confirmed by experimental measurements.

  19. Prototype simulates remote sensing spectral measurements on fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Hahn, Federico

    1998-09-01

    A prototype was designed to simulate spectral packinghouse measurements in order to simplify fruit and vegetable damage assessment. A computerized spectrometer is used together with lenses and an externally controlled illumination in order to have a remote sensing simulator. A laser is introduced between the spectrometer and the lenses in order to mark the zone where the measurement is being taken. This facilitates further correlation work and can assure that the physical and remote sensing measurements are taken in the same place. Tomato ripening and mango anthracnose spectral signatures are shown.

  20. Predictors of Speed Using Off-Ice Measures of College Hockey Players.

    PubMed

    Runner, Aaron R; Lehnhard, Robert A; Butterfield, Stephen A; Tu, Shihfen; OʼNeill, Terrence

    2016-06-01

    Runner, AR, Lehnhard, RA, Butterfield, SA, Tu, S, and O'Neill, T. Predictors of speed using off-ice measures of college hockey players. J Strength Cond Res 30(6): 1626-1632, 2016-The purpose of this study was to examine the relationship between commonly employed dry-land performance tests and skating speed in male collegiate ice hockey players. Forty male National Collegiate Athletic Association Division I hockey players were tested on the following performance variables: vertical jump (VJ), standing broad jump, 40-yard dash, and maximal back squat (SQT). The subjects also performed 3 skating tests: the 90-ft forward acceleration test, the 90-ft backward acceleration test, and the 50-ft flying top speed test (F50). Pearson correlation coefficients were applied to compare the strength of association between each selected off-ice measure and each on-ice measure. Three multiple regression equations were then used to compare the weighted strengths of association between predictor and criterion variables. Only VJ showed significance in relation to skating speed (p = 0.011). These results suggest that meaningful performance testing in ice hockey players should occur mainly on the ice. PMID:25719922

  1. Water balance measurements and simulations of maize plants on lysimeters

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2016-04-01

    In Central Europe expected major aspects of climate change are a shift of precipitation events and amounts towards winter months, and the general increase of extreme weather events like heat waves or summer droughts. This will lead to strongly changing regional water availability and will have an impact on future crop growth, water use efficiency and yields. Therefore, to estimate future crop yields by growth models accurate descriptions of transpiration as part of the water balance is important. In this study, maize was grown on weighing lysimeters (sowdate: 24 April 2013). Transpiration was determined by sap flow measurement devices (ICT International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which allows the calculation of sap flow. Water balance simulations were executed with different applications of the model framework Expert-N. The same pedotransfer and hydraulic functions and the same modules to simulate soil water flow, soil heat and nitrogen transport, nitrification, denitrification and mineralization were used. Differences occur in the chosen potential evapotranspiration ETpot (Penman-Monteith ASCE, Penman-Monteith FAO, Haude) and plant modules (SPASS, CERES). In all simulations ETpot is separated into a soil and a plant part using the leaf are index (LAI). In a next step, these parts are reduced by soil water availability. The sum of these parts is the actual evapotranspiration ETact which is compared to the lysimeter measurements. The results were analyzed from Mid-August to Mid-September 2013. The measured sap flow rates show clear diurnal cycles except on rainy days. The SPASS model is able to simulate these diurnal cycles, overestimates the measurements on rainy days and at the beginning of the analyzed period, and underestimates transpiration on the other days. The main reason is an overestimation of potential transpiration Tpot due to too high

  2. Numerical simulation of thermal boundary layer profile measurement

    NASA Astrophysics Data System (ADS)

    Kulkarni, K. S.; Han, S.; Goldstein, R. J.

    2011-08-01

    Heat transfer rates from a surface can be determined from the slope of the temperature profile measured with a thermocouple wire traversing within a boundary layer. However, accuracy of such measurement can suffer due to flow distortion and conduction through the thermocouple wire. The present numerical study consists of two parts—a 2D simulation of flow distortion due to a cylinder in cross flow near a solid wall and a 3D simulation defined as a fin problem to calculate the thermal profile measurement error due to conduction through the thermocouple wires. Results show that the measured temperature is lower than the true temperature resulting in a 5% under-prediction of local heat transfer coefficient. A parametric study shows that low thermal conductivity thermocouple (E type) with a small wire diameter (76 micron) is desirable to reduce the measurement error in local Nusselt number.

  3. Simulation and Measurement of Stray Light in the CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Tsuzuki, Toshihiro; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Giono, Gabriel; Suematsu, Yoshinori; Winebarger, Amy; Kobayashi, Ken

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman Alpha line polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly?? lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For total flux of the sun visible light overwhelmingly larger and about 200 000 times the Ly?? line wavelength region, also hinder to 0.1% of the polarization photometric accuracy achieved in the stray light of slight visible light. Therefore we were first carried out using the illumination design analysis software called stray light simulation CLASP Light Tools. Feature of this simulation, using optical design file (ZEMAX format) and structural design file (STEP format), to reproduce realistic CLASP as possible to calculate machine is that it was stray study. And, at the stage in the actual equipment that made the provisional set of CLASP, actually put sunlight into CLASP using coelostat of National Astronomical Observatory of Japan, was subjected to measurement of stray light (San test). Pattern was not observed in the simulation is observed in the stray light measurement results need arise that measures. However, thanks to the stray light measurement and simulation was performed by adding, it was found this pattern is due to the diffracted light at the slit. Currently, the simulation results is where you have taken steps to reference. In this presentation, we report the stray light simulation and stray light measurement results that we have implemented

  4. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.

    PubMed

    Steinle, Patrick

    2016-01-01

    Emissions from a desktop 3D printer based on fused deposition modeling (FDM) technology were measured in a test chamber and indoor air was monitored in office settings. Ultrafine aerosol (UFA) emissions were higher while printing a standard object with polylactic acid (PLA) than with acrylonitrile butadiene styrene (ABS) polymer (2.1 × 10(9) vs. 2.4 × 10(8) particles/min). Prolonged use of the printer led to higher emission rates (factor 2 with PLA and 4 with ABS, measured after seven months of occasional use). UFA consisted mainly of volatile droplets, and some small (100-300 nm diameter) iron containing and soot-like particles were found. Emissions of inhalable and respirable dust were below the limit of detection (LOD) when measured gravimetrically, and only slightly higher than background when measured with an aerosol spectrometer. Emissions of volatile organic compounds (VOC) were in the range of 10 µg/min. Styrene accounted for more than 50% of total VOC emitted when printing with ABS; for PLA, methyl methacrylate (MMA, 37% of TVOC) was detected as the predominant compound. Two polycyclic aromatic hydrocarbons (PAH), fluoranthene and pyrene, were observed in very low amounts. All other analyzed PAH, as well as inorganic gases and metal emissions except iron (Fe) and zinc (Zn), were below the LOD or did not differ from background without printing. A single 3D print (165 min) in a large, well-ventilated office did not significantly increase the UFA and VOC concentrations, whereas these were readily detectable in a small, unventilated room, with UFA concentrations increasing by 2,000 particles/cm(3) and MMA reaching a peak of 21 µg/m(3) and still being detectable in the room even 20 hr after printing. PMID:26550911

  5. A computer simulation approach to measurement of human control strategy

    NASA Technical Reports Server (NTRS)

    Green, J.; Davenport, E. L.; Engler, H. F.; Sears, W. E., III

    1982-01-01

    Human control strategy is measured through use of a psychologically-based computer simulation which reflects a broader theory of control behavior. The simulation is called the human operator performance emulator, or HOPE. HOPE was designed to emulate control learning in a one-dimensional preview tracking task and to measure control strategy in that setting. When given a numerical representation of a track and information about current position in relation to that track, HOPE generates positions for a stick controlling the cursor to be moved along the track. In other words, HOPE generates control stick behavior corresponding to that which might be used by a person learning preview tracking.

  6. Generation of Requirements for Simulant Measurements. Revised, May 30, 2010

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Edmunson, Jennifer

    2010-01-01

    This document provides a formal, logical explanation of the parameters selected for the Figure of Merit algorithm used to evaluate lunar regolith simulant. The objectives, requirements, assumptions and analysis behind the parameters is provided. From NASA's objectives for lunar simulants a requirement is derived to verify and validate simulant performance versus lunar regolith. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn this leads to a set of 9 criteria with which to evaluate comparative measurement. Many of the potential measurements of interest are not defensible under these criteria, for example many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users (Sibille Carpenter Schlagheck, and French, 2006). Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three: composition, size and shape, are recognized as being definable at the particle level. The fourth, density, is a bulk property. In recent work a fifth parameter has been identified, which will need to be added to future releases of the Figure of Merit: spectroscopy.

  7. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  8. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    SciTech Connect

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  9. NIF-0096141-OA Prop Simulations of NEL PBRS Measurements

    SciTech Connect

    Widmayer, C; Manes, K

    2003-02-21

    Portable Back Reflection Sensor, PBRS, (NEL only) and Quad Back Reflection Sensor, QBRS, time delay reflectometer traces are among the most useful diagnostics of NIF laser status available. NEL PBRS measurements show several signals reaching the detector for each shot. The time delay between signals suggests that the largest of these is due to energy at the spatial filter pinhole planes leaking into adjacent pinholes and traveling back upstream to the PBRS. Prop simulations agree with current PBRS measurements to within 50%. This suggests that pinhole leakage is the dominant source of energy at the PBRS. However, the simulations predict that the energy leakage is proportional to beam output energy, while the PBRS measurements increase more slowly (''saturate''). Further refinement of the model or the measurement may be necessary to resolve this discrepancy.

  10. Calibration of three rainfall simulators with automatic measurement methods

    NASA Astrophysics Data System (ADS)

    Roldan, Margarita

    2010-05-01

    CALIBRATION OF THREE RAINFALL SIMULATORS WITH AUTOMATIC MEASUREMENT METHODS M. Roldán (1), I. Martín (2), F. Martín (2), S. de Alba(3), M. Alcázar(3), F.I. Cermeño(3) 1 Grupo de Investigación Ecología y Gestión Forestal Sostenible. ECOGESFOR-Universidad Politécnica de Madrid. E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. margarita.roldan@upm.es 2 E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. 3 Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040 Madrid The rainfall erosivity is the potential ability of rain to cause erosion. It is function of the physical characteristics of rainfall (Hudson, 1971). Most expressions describing erosivity are related to kinetic energy or momentum and so with drop mass or size and fall velocity. Therefore, research on factors determining erosivity leds to the necessity to study the relation between fall height and fall velocity for different drop sizes, generated in a rainfall simulator (Epema G.F.and Riezebos H.Th, 1983) Rainfall simulators are one of the most used tools for erosion studies and are used to determine fall velocity and drop size. Rainfall simulators allow repeated and multiple measurements The main reason for use of rainfall simulation as a research tool is to reproduce in a controlled way the behaviour expected in the natural environment. But in many occasions when simulated rain is used in order to compare it with natural rain, there is a lack of correspondence between natural and simulated rain and this can introduce some doubt about validity of data because the characteristics of natural rain are not adequately represented in rainfall simulation research (Dunkerley D., 2008). Many times the rainfall simulations have high rain rates and they do not resemble natural rain events and these measures are not comparables. And besides the intensity is related to the kinetic energy which

  11. Radiological Disaster Simulators for Field and Aerial Measurements

    SciTech Connect

    H. W. Clark, Jr

    2002-11-01

    Simulators have been developed to dramatically improve the fidelity of play for field monitors and aircraft participating in radiological disaster drills and exercises. Simulated radiological measurements for the current Global Positioning System (GPS) location are derived from realistic models of radiological consequences for accidents and malicious acts. The aerial version outputs analog pulses corresponding to the signal that would be produced by various NaI (Tl) detectors at that location. The field monitor version reports the reading for any make/model of survey instrument selected. Position simulation modes are included in the aerial and field versions. The aerial version can generate a flight path based on input parameters or import an externally generated sequence of latitude and longitude coordinates. The field version utilizes a map-based point and click/drag interface to generate individual or a sequence of evenly spaced instrument measurements.

  12. Simulation of Quantum-Mechanical Measurements with Programmable Pocket Calculators.

    ERIC Educational Resources Information Center

    Sauer, G.

    1979-01-01

    Described is a method for the illustration of the statistical nature of measurements in quantum physics by means of simulation with pocket calculators. The application to examples like the double-slit experiment, Mott scattering, and the demonstration of the uncertainty relation is discussed. (Author/HM)

  13. Measuring the Accuracy of Prediction in a Simulated Environment.

    ERIC Educational Resources Information Center

    Mailles, Stephanie; Batatia, Hadj

    1998-01-01

    Describes use of a computerized simulation to study prediction in a complex environment (i.e., bus traffic control). Nature of the task, presentation method, number of repetitions, and length of time taken for prediction were measured. Prediction was significantly affected by all factors except number of repetitions. No learning effect was…

  14. Enhancing the energy-efficient design of office buildings using a based-simulation design support system

    NASA Astrophysics Data System (ADS)

    Kassab, Mohamed Samy Moawad

    This thesis presents a comprehensive study for enhancing the energy efficiency of office buildings in Canada. Two models were used: the thermal model to develop the thermal-related alternatives, and the daylighting model to explore means for more effectively exploiting daylight in buildings through extending periods of illumination free from glare problems. The key concept is to quantify and examine the impact of developed design parameters on the buildings' performance. The University of Calgary's Information and Communication Technology (ICT) office building is used as a base model for which the innovative techniques are developed and presented in this study. Although simulation programs can evaluate the illuminance levels and energy consumption of buildings, they are predicting programs rather than optimizing tools. Moreover, the concept of energy efficiency includes more than the total energy consumption; therefore, the Simulation-Based Design Support System (SBDSS) was developed to decide on the optimum design solutions for office buildings. The SBDSS was established using the C++ program and based on the simulation results of the EnergyPlus and Desktop Radiance software programs. The thermal and daylighting models were developed first; then, the SBDSS automatically modified the design parameters of models according to information provided by users. A database was created that includes the entire simulation results, comprising a large number of design solutions. The alternatives include the variations of individual parameters and the available combinations among such parameters composing multi-dimensional groups. The evaluation of the design alternatives was based on the life-cycle approach. Three objective functions were used in this analysis, including the total energy consumption; life-cycle cost; and environmental impacts, evaluated in terms of the equivalent CO2 emissions. A selection tool, developed by Excel, was used to derive the optimum alternatives

  15. Simulations of neutron multiplicity measurements with MCNP-PoliMi.

    SciTech Connect

    Mattingly, John K.; Pozzi, Sara A.; Clarke, Shaun D.; Dennis, Ben D.; Miller, Eric C.

    2010-09-01

    The heightened focus on nuclear safeguards and accountability has increased the need to develop and verify simulation tools for modeling these applications. The ability to accurately simulate safeguards techniques, such as neutron multiplicity counting, aids in the design and development of future systems. This work focuses on validating the ability of the Monte Carlo code MCNPX-PoliMi to reproduce measured neutron multiplicity results for a highly multiplicative sample. The benchmark experiment for this validation consists of a 4.5-kg sphere of plutonium metal that was moderated by various thicknesses of polyethylene. The detector system was the nPod, which contains a bank of 15 3He detectors. Simulations of the experiments were compared to the actual measurements and several sources of potential bias in the simulation were evaluated. The analysis included the effects of detector dead time, source-detector distance, density, and adjustments made to the value of {nu}-bar in the data libraries. Based on this analysis it was observed that a 1.14% decrease in the evaluated value of {nu}-bar for 239Pu in the ENDF-VII library substantially improved the accuracy of the simulation.

  16. Simulation of optical breast density measurements using structured light illumination

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Li, Yifan; Chen, Jeon-Hor; Su, Min-Ying; Gulsen, Gultekin

    2014-02-01

    Breast density is a risk factor for breast cancer and we propose using diffuse optical tomography with structured light illuminations (SLI) to quantify the percentage of the fibroglandular (dense) tissue within the breast. Segmentations of dense tissue from breast MRI cases were used to create a geometric model of the breast. COMSOL-generated Finite Element Method (FEM) meshes were used for simulating photon migration through the breast tissue and reconstructing the absorption maps. In these preliminary simulations, the absorption coefficients of the non-dense and dense tissue were assigned using literature values based on their concentrations of water, lipid, oxy- and deoxyhemoglobin as they are the main chromophores, or absorbers of light, within the breast. Synthetic SLI measurements were obtained using a FEMbased forward solver. During the simulation, 12 distinct patterns consisting of vertical stripes, horizontal stripes, and checkerboard patterns were used for illumination and detection. Using these simulated measurements, FEM-based inverse solvers were used to reconstruct the 3D absorption maps. In this study, the methods are applied to reconstruct the absorption maps for multiple wavelengths (780nm, 830nm, 900nm, 1000nm) using one case as an example. We are currently continuing these simulations with additional cases and reconstructing 3D concentration maps of the chromophores within the dense and non-dense breast tissue.

  17. Measuring Entanglement in a Photonic Embedding Quantum Simulator.

    PubMed

    Loredo, J C; Almeida, M P; Di Candia, R; Pedernales, J S; Casanova, J; Solano, E; White, A G

    2016-02-19

    Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated with antilinear operations. Here, we report on the experimental implementation of such a device-an embedding quantum simulator-in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15, without full tomographic information. PMID:26943521

  18. A Simulation Model for Measuring Customer Satisfaction through Employee Satisfaction

    NASA Astrophysics Data System (ADS)

    Zondiros, Dimitris; Konstantopoulos, Nikolaos; Tomaras, Petros

    2007-12-01

    Customer satisfaction is defined as a measure of how a firm's product or service performs compared to customer's expectations. It has long been a subject of research due to its importance for measuring marketing and business performance. A lot of models have been developed for its measurement. This paper propose a simulation model using employee satisfaction as one of the most important factors leading to customer satisfaction (the others being expectations and disconfirmation of expectations). Data obtained from a two-year survey in customers of banks in Greece were used. The application of three approaches regarding employee satisfaction resulted in greater customer satisfaction when there is serious effort to keep employees satisfied.

  19. Simulating performance impacts of bus lanes and supporting measures

    SciTech Connect

    Shalaby, A.S.

    1999-10-01

    This study used the TRANSYT-7F simulator to examine changes in performance measures of through buses and adjacent traffic following the introduction of reserved lanes in an urban arterial. In addition, the TRANSYT-7F simulator was used to examine the specific impacts on modal performance of two policy measures implemented in conjunction with lane introduction. The results showed that TRANSYT-7F provided relatively accurate estimates of bus delays and auto speeds. However, the study identified one area of improvement for TRANSYT-7F to model priority treatments on arterials more effectively. The simulation results showed that the performance of the average bus improved after project implementation, whereas the performance of the adjacent through traffic deteriorated. However, the deterioration exceeded the improvement. Other aggregate estimates of performance were examined and discussed. The simulations also showed that modifications to left-turn movements would have a minor impact on both bus and adjacent traffic performance, whereas the removal of taxis from the reserved lanes would cause far more performance deterioration to the adjacent traffic than the performance improvement this policy measure would bring to buses.

  20. Simulation of radar reflectivity and surface measurements of rainfall

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Bringi, V. N.

    1987-01-01

    Raindrop size distributions (RSDs) are often estimated using surface raindrop sampling devices (e.g., disdrometers) or optical array (2D-PMS) probes. A number of authors have used these measured distributions to compute certain higher-order RSD moments that correspond to radar reflectivity, attenuation, optical extinction, etc. Scatter plots of these RSD moments versus disdrometer-measured rainrates are then used to deduce physical relationships between radar reflectivity, attenuation, etc., which are measured by independent instruments (e.g., radar), and rainrate. In this paper RSDs of the gamma form as well as radar reflectivity (via time series simulation) are simulated to study the correlation structure of radar estimates versus rainrate as opposed to RSD moment estimates versus rainrate. The parameters N0, D0 and m of a gamma distribution are varied over the range normally found in rainfall, as well as varying the device sampling volume. The simulations are used to explain some possible features related to discrepancies which can arise when radar rainfall measurements are compared with surface or aircraft-based sampling devices.

  1. A higher illuminance induces alertness even during office hours: findings on subjective measures, task performance and heart rate measures.

    PubMed

    Smolders, K C H J; de Kort, Y A W; Cluitmans, P J M

    2012-08-20

    Nocturnal white light exposure has shown marked results on subjective and objective indicators of alertness, vitality and mood, yet effects of white light during daytime and under usual office work conditions have not been investigated extensively. The current study employed a mixed-group design (N=32), testing effects of two illuminance levels (200lx or 1000lx at eye level, 4000K) during one hour of morning versus afternoon exposure. In four repeated blocks, subjective reports, objective performance and physiological arousal were measured. Results showed effects of illuminance on subjective alertness and vitality, sustained attention in tasks, and heart rate and heart rate variability. Participants felt less sleepy and more energetic in the high versus the low lighting condition, had shorter reaction times on the psychomotor vigilance task and increased physiological arousal. Effects of illuminance on the subjective measures, as well as those on heart rate were not dependent on time of day or duration of exposure. Performance effects were most pronounced in the morning sessions and towards the end of the one-hour exposure period. The effect on heart rate variability was also most pronounced at the end of the one-hour exposure. The results demonstrate that even under normal, i.e., neither sleep nor light deprived conditions, more intense light can improve feelings of alertness and vitality, as well as objective performance and physiological arousal. PMID:22564492

  2. Simulating Scintillator Light Collection Using Measured Optical Reflectance

    SciTech Connect

    Janecek, Martin; Moses, William

    2010-01-28

    To accurately predict the light collection from a scintillating crystal through Monte Carlo simulations, it is crucial to know the angular distribution from the surface reflectance. Current Monte Carlo codes allow the user to set the optical reflectance to a linear combination of backscatter spike, specular spike, specular lobe, and Lambertian reflections. However, not all light distributions can be expressed in this way. In addition, the user seldom has the detailed knowledge about the surfaces that is required for accurate modeling. We have previously measured the angular distributions within BGO crystals and now incorporate these data as look-up-tables (LUTs) into modified Geant4 and GATE Monte Carlo codes. The modified codes allow the user to specify the surface treatment (ground, etched, or polished), the attached reflector (Lumirror(R), Teflon(R), ESR film, Tyvek(R), or TiO paint), and the bonding type (air-coupled or glued). Each LUT consists of measured angular distributions with 4o by 5o resolution in theta and phi, respectively, for incidence angles from 0? to 90? degrees, in 1o-steps. We compared the new codes to the original codes by running simulations with a 3 x 10 x 30 mm3 BGO crystal coupled to a PMT. The simulations were then compared to measurements. Light output was measured by counting the photons detected by the PMT with the 3 x 10, 3 x 30, or 10 x 30 mm2 side coupled to the PMT, respectively. Our new code shows better agreement with the measured data than the current Geant4 code. The new code can also simulate reflector materials that are not pure specular or Lambertian reflectors, as was previously required. Our code is also more user friendly, as no detailed knowledge about the surfaces or light distributions is required from the user.

  3. Thermal crosstalk simulation and measurement of linear terahertz detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Huang, Zehua; Wang, Jun; Li, Mingyu; Gou, Jun; Jiang, Yadong

    2015-11-01

    Thermal simulation of differently structured linear terahertz detector arrays (TDAs) based on lithium tantalate was performed by finite element analysis (FEA). Simulation results revealed that a relatively simple TDA structure can have good thermal insulation, i.e., low thermal crosstalk effect (TCE), between adjacent pixels, which was thus selected for the real fabrication of TDA sample. Current responsivity (Ri) of the sample for a 2.52 THz source was measured to be 6.66 × 10-6 A/W and non-uniformity (NU) of Ri was 4.1%, showing good performance of the sample. TCE test result demonstrated that small TCE existed in the sample, which was in good agreement with the simulation results.

  4. Measuring the instructional validity of clinical simulation problems.

    PubMed

    Feinstein, E; Gustavson, L P; Levine, H G

    1983-03-01

    Written clinical simulation problems in two formats--forced-choiced and essay--were used to test junior and senior medical students at the conclusion of their pediatric rotations. A comparison was made in the performance of students with varying levels of clinical experience. There seemed to be no consistent pattern of improvement with increased instructional time on the forced-choice management problems. Junior students did show improvement over time on the essay management problems, which also seemed to reflect the increased problem-solving and organizational skills of seniors in comparison to juniors. Correlations across problems and correlations between the clinical problem test and other measurement techniques were very weak, partly due to the low sampling reliability of clinical simulation problems. In this study, clinical simulation problems failed to demonstrate responsiveness to development and maturation in the problem-solving approach to patient care. PMID:10259952

  5. Comparison of Experimentally Measured Rayleigh-Taylor Growth to Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Verdon, C. P.; Betti, R.; Meyerhofer, D. D.; Boehly, T. R.; Bradley, D. K.; Smalyuk, V. A.

    1997-11-01

    Experimental measurements of perturbation growth due to the Rayleigh-Taylor (RT) instability at the ablation interface have been used to try to understand the physical processes involved in ablative stabilization. The growth rate calculated from a dispersion relation and values for the acceleration and ablation velocity determined by a numerical simulation are compared to a growth rate from an experiment where the numerical simulation includes the correct ablation interface physics. Planar targets with initial perturbations of 20-, 31-, and 60- μ*m wavelengths and initial amplitudes of 0.5 μ*m have been accelerated. The analysis shows that the growth rate determined from an x-ray radiograph of the planar foil should not be compared with the results from a dispersion formula that calculates the spatial development of the perturbation. The ORCHID* simulation indicates a significant modification to the density distribution so that the measurement of ρΔ*x* does not reflect the evolution of Δ*x*. The amplitude of a perturbation measured as ρΔ*x* can be characterized as a=a0 ^**e^γ*^t*+c*, where a_0* is the initial amplitude, γ* is the growth rate, and c is a slowly varying function of time. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  6. Measurement and simulation of thermoelectric efficiency for single leg.

    PubMed

    Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka

    2015-04-01

    Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150°C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow. PMID:25933893

  7. Measurement and simulation of thermoelectric efficiency for single leg

    SciTech Connect

    Hu, Xiaokai; Yamamoto, Atsushi Ohta, Michihiro; Nishiate, Hirotaka

    2015-04-15

    Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150°C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.

  8. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  9. Numerical simulations of ultrasimple ultrashortlaser-pulse measurement.

    PubMed

    Liu, Xuan; Trebino, Rick; Smith, Arlee V

    2007-04-16

    We numerically simulate the performance of the ultrasimple frequency-resolved-optical-gating (FROG) technique, GRENOUILLE, for measuring ultrashort laser pulses. While simple in practice, GRENOUILLE has many theoretical subtleties because it involves the second-harmonic generation of relatively tightly focused and broadband pulses. In addition, these processes occur in a thick crystal, in which the phase-matching bandwidth is deliberately made narrow compared to the pulse bandwidth. In these simulations, we include all sum-frequency-generation processes, both collinear and noncollinear. We also include dispersion using the Sellmeier equation for the crystal BBO. Working in the frequency domain, we compute the GRENOUILLE trace for practical-and impractical- examples and show that accurate measurements are easily obtained for properly designed devices. PMID:19532705

  10. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review.

    PubMed

    Alberdi, Ane; Aztiria, Asier; Basarab, Adrian

    2016-02-01

    Stress is a major problem of our society, as it is the cause of many health problems and huge economic losses in companies. Continuous high mental workloads and non-stop technological development, which leads to constant change and need for adaptation, makes the problem increasingly serious for office workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary to detect it in its early stages. Unfortunately, an automatic, continuous and unobtrusive early stress detection method does not exist yet. The multimodal nature of stress and the research conducted in this area suggest that the developed method will depend on several modalities. Thus, this work reviews and brings together the recent works carried out in the automatic stress detection looking over the measurements executed along the three main modalities, namely, psychological, physiological and behavioural modalities, along with contextual measurements, in order to give hints about the most appropriate techniques to be used and thereby, to facilitate the development of such a holistic system. PMID:26621099

  11. Risk Associated with Pulse Pressure on Out-of-Office Blood Pressure Measurement

    PubMed Central

    Gu, Yu-Mei; Aparicio, Lucas S.; Liu, Yan-Ping; Asayama, Kei; Hansen, Tine W.; Niiranen, Teemu J.; Boggia, José; Thijs, Lutgarde; Staessen, Jan A.

    2014-01-01

    Background Longitudinal studies have demonstrated that the risk of cardiovascular disease increases with pulse pressure (PP). However, PP remains an elusive cardiovascular risk factor with findings being inconsistent between studies. The 2013 ESH/ESC guideline proposed that PP is useful in stratification and suggested a threshold of 60 mm Hg, which is 10 mm Hg higher compared to that in the 2007 guideline; however, no justification for this increase was provided. Methodology Published thresholds of PP are based on office blood pressure measurement and often on arbitrary categorical analyses. In the International Database on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) and the International Database on HOme blood pressure in relation to Cardiovascular Outcome (IDHOCO), we determined outcome-driven thresholds for PP based on ambulatory or home blood pressure measurement, respectively. Results The main findings were that for people aged <60 years, PP did not refine risk stratification, whereas in older people the thresholds were 64 and 76 mm Hg for the ambulatory and home PP, respectively. However, PP provided little added predictive value over and beyond classical risk factors. PMID:26587443

  12. Dosimetric considerations on TEPC fluka-simulation and measurements.

    PubMed

    Rollet, S; Beck, P; Ferrari, A; Pelliccioni, M; Autischer, M

    2004-01-01

    The response of a tissue equivalent proportional counter (TEPC) has been simulated with the Monte Carlo transport code FLUKA. The absorbed dose distribution of lineal energy y has been determined for several monoenergetic photon and neutron sources. The agreement between the calculated results and the measurements carried out with different well-known sources is well demonstrated. Work is in progress in order to evaluate the response of the instrument in the cosmic ray environment. PMID:15353755

  13. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    USGS Publications Warehouse

    Daniel Buscombe; Rubin, David M.

    2012-01-01

    1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  14. Measurement and simulation of the UMERbeam in the sourceregion

    SciTech Connect

    Haber, I.; Bernal, S.; Kishek, R.A.; O'Shea, P.G.; Quinn, B.; Reiser, M.; Zou, Y.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2004-06-11

    As the beam propagates in the University of Maryland Electron Ring (UMER) complex transverse density structure including halos has been observed. A primary objective of the experiment is to understand the evolution of a space-charge-dominated beam as it propagates over a substantial distance. It is therefore important to understand which details of the beam structure result from propagation of the beam in the ring and which characteristics result from the specific details of the initial distribution. Detailed measurements of the initial beam characteristics have therefore been performed. These include direct measurement of the density using a phosphor screen, as well as pepper pot measurements of the initial transverse distribution function. Detailed measurements of the distribution function have also been obtained by scanning a pinhole aperture across a beam diameter, and recording phosphor screen pictures of the beam downstream of the pinhole. Simulations of the beam characteristics in the gun region have also been performed using the WARP P.I.C. code. From these simulations, the observed behavior has been attributed to a combination of perturbations to the transverse distribution by a cathode grid that is used to modulate the beam current, as well as the complex transverse dynamics that results from the combination of the nonlinear external focusing fields of the gun structure and the nonlinear space charge forces.

  15. Development of a simulation for measuring neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Katayama, Ryo; Mishima, Kenji; Yamashita, Satoru; Sakurai, Dai; Kitaguchi, Masaaki; Yoshioka, Tamaki; Seki, Yoshichika

    2014-07-01

    The neutron electric dipole moment (nEDM) is sensitive to new physics beyond the standard model and could prove to be a new source of CP violation. Several experiments are being planned worldwide for its high-precision measurement. The nEDM is measured as the ultracold neutron (UCN) spin precession in a storage bottle under homogeneous electric and magnetic fields. In nEDM measurement, the systematic uncertainties are due to the motion of the UCNs, the geometry of the measurement system, and inhomogeneous electric and magnetic fields. Therefore, it is essential to quantitatively understand these effects in order to reduce them. Geant4UCN is an ideal simulation framework because it can compute the UCN trajectory, evaluate the time evolution of the spin precession due to arbitrary electric and magnetic fields, and define the storage geometry flexibly. We checked how accurately Geant4UCN can calculate the spin precession. We found that because of rounding errors, it cannot simulate it accurately enough for nEDM experiments, assuming homogeneous electric and magnetic fields with strengths of 10 kV/cm and 1 μT, respectively, and 100 s of storage. In this paper, we report on its discrepancies and describe a solution.

  16. High performance surface plasmon sensors: Simulations and measurements

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal; Sharma, Suresh C.; Hozhabri, Nader

    2015-09-01

    Through computer simulations and surface plasmon resonance (SPR) measurements, we establish optimum parameters for the design and fabrication of SPR sensors of high sensitivity, resolution, stability, and long decay-length evanescent fields. We present simulations and experimental SPR data for variety of sensors fabricated by using bimetal (Ag/Au) and multilayer waveguide-coupled Ag/Si3N4/Au structures. The simulations were carried out by using the transfer matrix method in MATLAB environment. Results are presented as functions of the thickness of the metal (Ag or Au) and the waveguide dielectric used in Ag/Si3N4/Au structures. Excellent agreement is observed between the simulations and experiments. For optimized thickness of the Si3N4 waveguide (150 nm), the sensor exhibits very high sensitivity to changes in the refractive index of analytes, Sn≈52°/R I U , extremely high resolution (F W H M ≤0.28° ) , and long penetration depth of evanescent fields (δ≥305 n m ) .

  17. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  18. Simulation on Measurement Method of Geometric Distortion of Telescopes

    NASA Astrophysics Data System (ADS)

    Li, F.; Ren, S. L.

    2015-11-01

    Measuring the geometric distortion is conducive to improve the astrometric accuracy of telescopes, which is meaningful for many disciplines of astronomy, such as stellar clusters, natural satellites, asteroids, comets, and the other celestial bodies in the solar system. For this reason, researchers have developed an iterative self-calibration method to measure the geometric distortion of telescopes by observing a dense star field in the dithering mode, and have achieved many good results. However, the previous work did not constrain the density of star field or the dithering number in the observing mode, but chose relative good conditions to observe, which took up much observing time. In order to explore the validity of self-calibration method, and optimize its observing conditions, it is necessary to carry out the corresponding simulation. Firstly, we introduce the self-calibration method in detail in the present work. By the simulation method, the effectiveness of self-calibration method to give the geometric distortion is proved, and the observing conditions, such as the density of star field and dithering number, are optimized to give the geometric distortion with a high accuracy. Considering the practical application for correcting the geometric distortion, we also analyze the relation between the number of reference stars in the field of view and the astrometric accuracy by virtue of the simulation method.

  19. Organ radiation exposure with EOS: GATE simulations versus TLD measurements

    NASA Astrophysics Data System (ADS)

    Clavel, A. H.; Thevenard-Berger, P.; Verdun, F. R.; Létang, J. M.; Darbon, A.

    2016-03-01

    EOS® is an innovative X-ray imaging system allowing the acquisition of two simultaneous images of a patient in the standing position, during the vertical scan of two orthogonal fan beams. This study aimed to compute organs radiation exposure to a patient, in the particular geometry of this system. Two different positions of the patient in the machine were studied, corresponding to postero-anterior plus left lateral projections (PA-LLAT) and antero-posterior plus right lateral projections (AP-RLAT). To achieve this goal, a Monte-Carlo simulation was developed based on a GATE environment. To model the physical properties of the patient, a computational phantom was produced based on computed tomography scan data of an anthropomorphic phantom. The simulations provided several organs doses, which were compared to previously published dose results measured with Thermo Luminescent Detectors (TLD) in the same conditions and with the same phantom. The simulation results showed a good agreement with measured doses at the TLD locations, for both AP-RLAT and PA-LLAT projections. This study also showed that the organ dose assessed only from a sample of locations, rather than considering the whole organ, introduced significant bias, depending on organs and projections.

  20. Simulation and measurement of transcranial near infrared light penetration

    NASA Astrophysics Data System (ADS)

    Yue, Lan; Monge, Manuel; Ozgur, Mehmet H.; Murphy, Kevin; Louie, Stan; Miller, Carol A.; Emami, Azita; Humayun, Mark S.

    2015-03-01

    We are studying the transmission of LED array-emitted near-infrared (NIR) light through human tissues. Herein, we simulated and measured transcranial NIR penetration in highly scattering human head tissues. Using finite element analysis, we simulated photon diffusion in a multilayered 3D human head model that consists of scalp, skull, cerebral spinal fluid, gray matter and white matter. The optical properties of each layer, namely scattering and absorption coefficient, correspond to the 850 nm NIR light. The geometry of the model is minimally modified from the IEEE standard and the multiple LED emitters in an array were evenly distributed on the scalp. Our results show that photon distribution produced by the array exhibits little variation at similar brain depth, suggesting that due to strong scattering effects of the tissues, discrete spatial arrangements of LED emitters in an array has the potential to create a quasi-radially symmetrical illumination field. Measurements on cadaveric human head tissues excised from occipital, parietal, frontal and temporal regions show that illumination with an 850 nm LED emitter rendered a photon flux that closely follows simulation results. In addition, prolonged illumination of LED emitted NIR showed minimal thermal effects on the brain.

  1. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. PMID:26377510

  2. Lidar simulation. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of measuring atmospheric water vapor via orbital lidar is estimated. The calculation starts with laser radar equations representing backscatter with and without molecular line absorption; the magnitudes of off-line backscatter are demonstrated. Extensive prior data on water line strengths are summarized to indicate the available sensitivity to water vapor concentration. Several lidar situations are considered starting with uniform and perturbed atmospheres at 0, 3, 10 and 20 kM (stratosphere) altitudes. These simulations are indicative of results to be obtained in ground truth measurements (ground-based and airborne). An approximate treatment of polar observations is also given. Vertical atmospheric soundings from orbit and from ground stations are calculated. Errors are discussed as regards their propagation through the lidar equation to render the measured water vapor concentration imprecise; conclusions are given as to required laser energy and feasible altitude resolution.

  3. Evaluation of Intersection Traffic Control Measures through Simulation

    NASA Astrophysics Data System (ADS)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  4. Measurement and simulation of the RHIC abort kicker longitudinal impedence

    SciTech Connect

    Abreu,N.P.; Hahn,H.; Choi, E.

    2009-09-01

    In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, of the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.

  5. SIMULATED FARADAY ROTATION MEASURES TOWARD HIGH GALACTIC LATITUDES

    SciTech Connect

    Akahori, Takuya; Kim, Jongsoo; Ryu, Dongsu; Gaensler, B. M. E-mail: akahori@physics.usyd.edu.au E-mail: ryu@canopus.cnu.ac.kr

    2013-04-20

    We study the Faraday rotation measure (RM) due to the Galactic magnetic field (GMF) toward high Galactic latitudes. The RM arises from the global, regular component as well as from the turbulent, random component of the GMF. We model the former based on observations and the latter using the data of magnetohydrodynamic turbulence simulations. For a large number of different GMF models, we produce mock RM maps around the Galactic poles and calculate various statistical quantities with the RM maps. We find that the observed medians of RMs toward the north and south Galactic poles, {approx}0.0 {+-} 0.5 rad m{sup -2} and {approx} + 6.3 {+-} 0.5 rad m{sup -2}, are difficult to explain with any of our many alternate GMF models. The standard deviation of observed RMs, {approx}9 rad m{sup -2}, is clearly larger than that of simulated RMs. The second-order structure function of observed RMs is substantially larger than that of simulated RMs, especially at small angular scales. We discuss other possible contributions to RM toward high Galactic latitudes. Besides observational errors and the intrinsic RM of background radio sources against which RM is observed, we suggest that the RM due to the intergalactic magnetic field may account for a substantial fraction of the observed RM. Finally, we note that reproducing the observed medians may require additional components or/and structures of the GMF that are not present in our models.

  6. Measurements and simulation on the comfort of forklifts

    NASA Astrophysics Data System (ADS)

    Verschoore, R.; Pieters, J. G.; Pollet, I. V.

    2003-09-01

    In order to determine the influence of some parameters of a forklift such as the road profile, the tyre characteristics, the riding comfort, etc., measurements carried out on a forklift with different tyres and seats were evaluated using different standards and methods. In addition, a simulation model was developed and used to investigate the influence of these parameters. Simulations and test run results showed good agreement. The comparison of the results obtained with several methods of comfort evaluation and a series of tests showed that they nearly all resulted in the same classification. However, the results obtained with different methods could not always be compared among themselves. Solid tyres were found to be more comfortable than pneumatic ones because of their high damping. The negative influence of higher stiffness was smaller than the positive influence of higher damping. The simulations pointed out that for a global general investigation about comfort, the influence of the horizontal tyre stiffness and damping can be neglected. Also the seat characteristics could be linearized. When the stability of the forklift has to be investigated, the horizontal forces must also be considered.

  7. Track structure of carbon ions: measurements and simulations.

    PubMed

    Conte, V; Colautti, P; Moro, D; Grosswendt, B

    2014-10-01

    The likelihood of radiation to produce clustered damages in irradiated biological tissue and the reparability of such damages are closely related to the stochastics of localised ionising interactions within small volumes of nanometre sizes, determined by the particle track structure. Track structure investigations in nanometre-sized volumes have been subject of research for several decades, mainly by means of Monte Carlo simulations. Today, the 'track-nanodosimeter', installed at the TANDEM-ALPI accelerator complex of LNL, is a measuring device able to count the electrons produced in a 20-nm equivalent sensitive site (De Nardo et al. A detector for track-nanodosimetry. Nucl. Instrum. Methods. Phys. Res. A 484: , 312-326 (2002)). It allows studying track structure properties both in the near neighbourhood of a primary particle trajectory and separately in the penumbra region. An extended study for different ionising particles of medical interest has been recently performed with the track-nanodosimeter (Conte et al. Track structure of light ions: experiments and simulations. New J. Phys. 14: , 093010, (2012)). Here, new experimental data and results of Monte Carlo simulations for 240- and 96-MeV (12)C-ions are presented and discussed. PMID:24249779

  8. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation

    NASA Astrophysics Data System (ADS)

    Marrasé, Celia

    2004-03-01

    Researchers in aquatic sciences have long been interested in describing temporal and biological heterogeneities at different observation scales. During the 1970s, scaling studies received a boost from the application of spectral analysis to ecological sciences. Since then, new insights have evolved in parallel with advances in observation technologies and computing power. In particular, during the last 2 decades, novel theoretical achievements were facilitated by the use of microstructure profilers, the application of mathematical tools derived from fractal and wavelet analyses, and the increase in computing power that allowed more complex simulations. The idea of publishing the Handbook of Scaling Methods in Aquatic Ecology arose out of a special session of the 2001 Aquatic Science Meeting of the American Society of Limnology and Oceanography. The edition of the book is timely, because it compiles a good amount of the work done in these last 2 decades. The book is comprised of three sections: measurements, analysis, and simulation. Each contains some review chapters and a number of more specialized contributions. The contents are multidisciplinary and focus on biological and physical processes and their interactions over a broad range of scales, from micro-layers to ocean basins. The handbook topics include high-resolution observation methodologies, as well as applications of different mathematical tools for analysis and simulation of spatial structures, time variability of physical and biological processes, and individual organism behavior. The scientific background of the authors is highly diverse, ensuring broad interest for the scientific community.

  9. Simulation of eye deformation in the measurement of intraocular pressure

    NASA Astrophysics Data System (ADS)

    Khusainov, R. R.; Tsibul'Skii, V. R.; Yakushev, V. L.

    2011-02-01

    The procedure of measuring the intraocular pressure by an optical analyzer is numerically simulated. The cornea and the sclera are considered as axisymmetrically deformable shells of revolution with fixed boundaries; the space between these shells is filled with incompressible fluid. Nonlinear shell theory is used to describe the stressed and strained state of the cornea and sclera. The optical system is calculated from the viewpoint of the geometrical optics. Dependences between the pressure in the air jet and the area of the surface reflecting the light into a photodetector are obtained. The shapes of the regions on the cornea surface are found from which the reflected light falls on the photodetector. First, the light is reflected from the center of the cornea, but then, as the cornea deforms, the light is reflected from its periphery. The numerical results make it possible to better interpret the measurement data.

  10. Measuring kinetic coefficients by molecular dynamics simulation of zone melting

    NASA Astrophysics Data System (ADS)

    Celestini, Franck; Debierre, Jean-Marc

    2002-04-01

    Molecular dynamics simulations are performed to measure the kinetic coefficient at the solid-liquid interface in pure gold. Results are obtained for the (111), (100), and (110) orientations. Both Au(100) and Au(110) are in reasonable agreement with the law proposed for collision-limited growth. For Au(111), stacking fault domains form, as first reported by Burke, Broughton, and Gilmer [J. Chem. Phys. 89, 1030 (1988)]. The consequence on the kinetics of this interface is dramatic: the measured kinetic coefficient is three times smaller than that predicted by collision-limited growth. Finally, crystallization and melting are found to be always asymmetrical and here again the effect is much more pronounced for the (111) orientation.

  11. Measurements and simulations of seeded electron microbunches with collective effects

    NASA Astrophysics Data System (ADS)

    Hacker, K.; Molo, R.; Khan, S.; Lazzarino, L. L.; Lechner, C.; Maltezopoulos, Th.; Plath, T.; Rossbach, J.; Ackermann, S.; Bödewadt, J.; Dohlus, M.; Ekanayake, N.; Laarmann, T.; Schlarb, H.

    2015-09-01

    Measurements of the longitudinal phase-space distributions of electron bunches seeded with an external laser were done in order to study the impact of collective effects on seeded microbunches in free-electron lasers. When the collective effects of Coulomb forces in a drift space and coherent synchrotron radiation in a chicane are considered, velocity bunching of a seeded microbunch appears to be a viable alternative to compression with a magnetic chicane under high-gain harmonic generation seeding conditions. Measurements of these effects on seeded electron microbunches were performed with a rf deflecting structure and a dipole magnet which streak out the electron bunch for single-shot images of the longitudinal phase-space distribution. Particle tracking simulations in 3D predicted the compression dynamics of the seeded microbunches with collective effects.

  12. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    SciTech Connect

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  13. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  14. In-vivo mechanical tissue property measurement for improved simulations

    NASA Astrophysics Data System (ADS)

    Ottensmeyer, Mark P.; Salisbury, J. Kenneth, Jr.

    2000-08-01

    Surgical training today, beyond what can be learned in didactic form or practice on animal or other models, is subject to the availability of appropriate training cases from which students can learn. This is especially true for battlefield surgery, as civilian hospitals may not expose doctors to frequent examples of relevant injuries. To provide a more uniform training experience, covering a standard suite of typical operations without relying on the misfortune of patients requiring surgery, many groups are developing computer-based surgical simulation systems. One of the current areas of development is the implementation of force and tactile (haptic) feedback in simulations. To create a model with realistic haptic feedback, knowledge of the material properties of the tissues in question is essential. While there is much data from tissue samples in vitro, the properties of living tissue in situ are mostly unknown. From the data that is available, it is clear that living tissue and tissue in vitro can have radically different mechanical properties. For this reason, our group is developing surgical tools that will be able to measure the force-displacement characteristics of a variety of tissues in living organisms. Taking these data over the range of frequencies relevant to haptic simulation provides information to extract stiffness and material damping parameters of different kinds of tissue. The tools are being designed for use during minimally invasive surgery, but will permit data to be acquired either during MIS or open procedures. Animal tests are expected to commence in early 2000, but the tools are being designed with safety considerations in mind for eventual use in humans. Data will be taken both for solid organs and for selected elements of the vasculature. These data will be used in simulation systems under development at the Center for Innovative Minimally Invasive Therapy at Massachusetts General Hospital and the Laboratory for Human and Machine Haptics

  15. Invasively Measured Aortic Systolic Blood Pressure and Office Systolic Blood Pressure in Cardiovascular Risk Assessment: A Prospective Cohort Study.

    PubMed

    Laugesen, Esben; Knudsen, Søren T; Hansen, Klavs W; Rossen, Niklas B; Jensen, Lisette Okkels; Hansen, Michael G; Munkholm, Henrik; Thomsen, Kristian K; Søndergaard, Hanne; Bøttcher, Morten; Raungaard, Bent; Madsen, Morten; Hulman, Adam; Witte, Daniel; Bøtker, Hans Erik; Poulsen, Per L

    2016-09-01

    Aortic systolic blood pressure (BP) represents the hemodynamic cardiac and cerebral burden more directly than office systolic BP. Whether invasively measured aortic systolic BP confers additional prognostic value beyond office BP remains debated. In this study, office systolic BP and invasively measured aortic systolic BP were recorded in 21 908 patients (mean age: 63 years; 58% men; 14% with diabetes mellitus) with stable angina pectoris undergoing elective coronary angiography during January 2001 to December 2012. Multivariate Cox models were used to assess the association with incident myocardial infarction, stroke, and death. Discrimination and reclassification were assessed using Harrell's C and the Continuous Net Reclassification Index. Data were analyzed with and without stratification by diabetes mellitus status. During a median follow-up period of 3.7 years (range: 0.1-10.8 years), 422 strokes, 511 myocardial infarctions, and 1530 deaths occurred. Both office and aortic systolic BP were associated with stroke in patients with diabetes mellitus (hazard ratio per 10 mm Hg, 1.18 [95% confidence interval, 1.07-1.30] and 1.14 [95% confidence interval, 1.05-1.24], respectively) and with myocardial infarction in patients without diabetes mellitus (hazard ratio, 1.07 [95% confidence interval, 1.02-1.12] and 1.05 [95% confidence interval, 1.01-1.10], respectively). In models including both BP measurements, aortic BP lost statistical significance and aortic BP did not confer improvement in either C-statistics or net reclassification analysis. In conclusion, invasively measured aortic systolic BP does not add prognostic information about cardiovascular outcomes and all-cause mortality compared with office BP in patients with stable angina pectoris, either with or without diabetes mellitus. PMID:27402917

  16. Road and track irregularities: measurement, assessment and simulation

    NASA Astrophysics Data System (ADS)

    Haigermoser, Andreas; Luber, Bernd; Rauh, Jochen; Gräfe, Gunnar

    2015-07-01

    Road and track irregularities have an important influence on the dynamic behaviour of vehicles. Knowledge of their characteristics and magnitude is essential for the design of the vehicle but also for comparable homologation and acceptance tests as well as for the planning and management of track maintenance. Irregularities of tracks and roads are regularly measured using various measurement technologies. All have advantages and weaknesses and require several processing steps. Characterisation of irregularities is done in the distance as well as in the wavelength domain. For rail irregularities, various distance domain description methods have been proposed and are in use. Methods have been analysed and compared with regard to their processing steps. Several methods have been analysed using measured irregularity and vehicle response data. Characterisation in the wavelength domain is done in a similar way for track and road irregularities. Here, an important issue is the estimation of the power spectral densities and the approximation by analytical formulas. For rail irregularities, periodic defects also play an important role. The use of irregularities in simulations requires various processing steps if measured irregularities are used, as well as if synthetic data are utilised. This paper gives a quite complete overview of rail irregularities and points out similarities and differences to the road.

  17. Measurement and simulation of the TRR BNCT beam parameters

    NASA Astrophysics Data System (ADS)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  18. Comparison of CFD simulation of night purge ventilation to full-scale building measurements

    NASA Astrophysics Data System (ADS)

    Chigurupati, Asha; Gorle, Catherine; Iaccarino, Gianluca

    2014-11-01

    Efforts to improve the understanding of air motion in and around buildings can lead to more efficient natural ventilation systems, thereby significantly reducing a building's heating and cooling demands. CFD simulations enable solving the details of the flow and convective heat transfer in buildings and have the potential to predict the performance of natural ventilation with a high degree of accuracy. Understanding the actual predictive capability of CFD simulations is however complicated by the complexity of the geometry and physics involved, and the uncertainty and variability in the boundary conditions. In the present study we model the night flush process in the Y2E2 building on Stanford University's campus and compare the results to measurements in the full-scale, operational building. We model half of the building, which consists of three floors with office spaces and two atriums. We solve the RANS equations using ANSYS/Fluent and k-e RNG theory turbulence closure model for the duration of one night flush and will present a comparison of the CFD results to measurements of the temperature on each floor in both atriums. Future investigations will focus on the potential of reducing the discrepancy between observed and predicted values by varying uncertain model parameters and boundary conditions.

  19. Simulation of n-qubit quantum systems. V. Quantum measurements

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2010-02-01

    The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun

  20. Measurement of time delay for a prospectively gated CT simulator.

    PubMed

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  1. Measurements and simulations of focused beam for orthovoltage therapy

    SciTech Connect

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  2. Measurements and simulations of focused beam for orthovoltage therapy

    PubMed Central

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-01-01

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface. PMID:24694122

  3. Simulation of trabecular mineralization measurements in micro-CT

    NASA Astrophysics Data System (ADS)

    Prevrhal, Sven

    2006-08-01

    Micro-CT for bone structural analysis has progressed from an in-vitro laboratory technique to devices for in-vivo assessment of small animals and the peripheral human skeleton. Currently, topological parameters of bone architecture are the primary goals of analysis. Additional measurement of the density or degree of mineralization (DMB) of trabecular and cortical bone at the microscopic level is desirable to study effects of disease and treatment progress. This information is not commonly extracted because of the challenges of accurate measurement and calibration at the tissue level. To assess the accuracy of micro-CT DMB measurements in a realistic but controlled situation, we prepared bone-mimicking watery solutions at concentrations of 100 to 600 mg/cm3 K2PO4H and scanned them with micro-CT, both in glass vials and microcapillary tubes with inner diameters of 50, 100 and 150 mm to simulate trabecular thickness. Values of the linear attenuation coefficients m in the reconstructed image are commonly affected by beam hardening effects for larger samples and by partial volume effects for small volumes. We implemented an iterative reconstruction technique to reduce beam hardening. Partial voluming was sought to be reduced by excluding voxels near the tube wall. With these two measures, improvement on the constancy of the reconstructed voxel values and linearity with solution concentration could be observed to over 90% accuracy. However, since the expected change in real bone is small more measurements are needed to confirm that micro-CT can indeed be adapted to assess bone mineralization at the tissue level.

  4. Curve squealing of trains: Measurement, modelling and simulation

    NASA Astrophysics Data System (ADS)

    Glocker, Ch.; Cataldi-Spinola, E.; Leine, R. I.

    2009-07-01

    Curve squealing of railway wheels occurs erratically in narrow curves with a frequency of about 4 kHz. Squealing is caused by a self-excited stick-slip oscillation in the wheel-rail contact. The mechanism which activates squeal is still unexplained and will be analyzed in the paper at hand. The squeal model consists of the first modal forms of an elastic wheel and is equipped with a three-dimensional hard Coulomb contact. Based on this model, a linear stability analysis of the stationary run through a curve is performed for the four wheels of the investigated bogie. The results show that in particular the front inner wheel tends to squeal. A numerical simulation of the system's differential inclusions performed on the unstable states shows the existence of a self-excited stick-slip oscillation. The computed frequency of the limit cycle agrees well with the measurements. The design of the squeal model, the steps necessary to perform the stability analysis on systems with non-ideal constraints, as well as the non-smooth dynamics code used to perform the simulations are explained in detail.

  5. Measuring the redshift factor in binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Lewis, Adam; Pfeiffer, Harald

    2016-03-01

    The redshift factor z is an invariant quantity of fundamental interest in Post-Newtonian and self-force descriptions of circular binaries. It allows for interconnections between each theory, and plays a central role in the Laws of Binary Black Hole Mechanics, which link local quantities to asymptotic measures of energy and angular momentum in these systems. Through these laws, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We have implemented a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface gravity of the holes. This redshift factor allows us to test PN and self-force predictions for z in spacetimes where the binary is only approximately circular, and allows for an array of new comparisons between analytic approximations and numerical simulations. I will present our new method, our initial results in using z to verify the Laws of Binary Black Holes Mechanics, and discuss future directions for this work.

  6. Measures Of Diffusion Regions Applied To PIC Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2015-12-01

    The primary goal of the current NASA-MMS mission is to "identify and study diffusion regions during magnetic reconnection in Earth's magnetopause and magnetotail. Yet the term diffusion region is often misunderstood and can be ambiguous. Different conditions for a region to be a "diffusion region" are interpreted theoretically, related to each other and applied to PIC simulations of tail reconnection(a) (and to MMS measurements, if possible, at time of AGU). None of the conditions is both necessary and sufficient for topological reconnection to occur. During magnetic reconnection in a kinetic plasma key differences exist between the locations of diffusion regions in the electron fluid, the ion fluid and a single (MHD) fluid. (a)M.V. Goldman, D.L. Newman and G. Lapenta, Space Science Reviews, 2015

  7. Measurements of plasma parameters in a simulated thermionic converter

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1971-01-01

    Cesium-filled thermionic energy converters are examined as candidate electrical energy sources in spacecraft requiring tens to hundreds of kilowatts of electric power. The high operating temperatures necessary for a large specific power and high efficiency inevitably impose stringent constraints on the converter fabrication to achieve the desired reliability of the power system. The converter physics for reducing operating temperatures and cesium plasma losses are studied to achieve high reliability without sacrificing the power performance of the converters. Various cesium parameters which affect the converter performance are: (1) electron temperatures, (2) plasma ion densities, and (3) electric potential profiles. These were investigated using a Langmuir probe in a simulated converter. The parameters were measured in different cesium discharge modes.

  8. Measurements of the ionization coefficient of simulated iron micrometeoroids

    NASA Astrophysics Data System (ADS)

    Thomas, Evan; Horányi, Mihály; Janches, Diego; Munsat, Tobin; Simolka, Jonas; Sternovsky, Zoltan

    2016-04-01

    The interpretation of meteor radar observations has remained an open problem for decades. One of the most critical parameters to establish the size of an incoming meteoroid from radar echoes is the ionization coefficient, β, which still remains poorly known. Here we report on new experiments to simulate micrometeoroid ablation in laboratory conditions to measure β for iron particles impacting N2, air, CO2, and He gases. This new data set is compared to previous laboratory data where we find agreement except for He and air impacts > 30 km/s. We calibrate the Jones model of β(v) and provide fit parameters to these gases and find agreement with all gases except CO2 and high-speed air impacts where we observe βair > 1 for velocities > 70 km/s. These data therefore demonstrate potential problems with using the Jones model for CO2 atmospheres as well as for high-speed meteors on Earth.

  9. Measurement and simulation of scattering properties of dysprosium

    NASA Astrophysics Data System (ADS)

    Tang, Yijun; Burdick, Nathaniel; Lev, Benjamin; Sykesy, Andrew; Bohn, John

    2015-05-01

    Ultracold collisions can often be characterized by a single parameter, the s-wave scattering length a, but despite the simplicity of this model, the scattering length a often must be determined experimentally, even for alkali atoms. For highly magnetic lanthanide atoms such as dysprosium (Dy, 10 μB), the dipolar interaction may strongly affect the scattering properties and must also be taken into account. We have characterized the elastic cross-section for scattering between ultracold Dy atoms by measuring the rethermalization rate in a Dy clouds driven out of equilibrium. The experimental data agree well with numerical simulations based on Boltzmann equations that include the dipolar interaction contribution. Our recent work on observations of inelastic dipolar scattering will also be briefly discussed.

  10. Heat transfer measurements and CFD simulations of an impinging jet

    NASA Astrophysics Data System (ADS)

    Petera, Karel; Dostál, Martin

    2016-03-01

    Heat transport in impinging jets makes a part of many experimental and numerical studies because some similarities can be identified between a pure impingement jet and industrial processes like, for example, the heat transfer at the bottom of an agitated vessel. In this paper, experimental results based on measuring the response to heat flux oscillations applied to the heat transfer surface are compared with CFD simulations. The computational cost of a LES-based approach is usually too high therefore a comparison with less computationally expensive RANS-based turbulence models is made in this paper and a possible improvement of implementing an anisotropic explicit algebraic model for the turbulent heat flux model is evaluated.

  11. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.

    2013-12-01

    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  12. Simulated O VI Doppler dimming measurements of coronal outflow velocities

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Gardner, L. D.; Kohl, John L.

    1992-01-01

    The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.

  13. Electrophysiological measurement of interest during walking in a simulated environment.

    PubMed

    Takeda, Yuji; Okuma, Takashi; Kimura, Motohiro; Kurata, Takeshi; Takenaka, Takeshi; Iwaki, Sunao

    2014-09-01

    A reliable neuroscientific technique for objectively estimating the degree of interest in a real environment is currently required in the research fields of neuroergonomics and neuroeconomics. Toward the development of such a technique, the present study explored electrophysiological measures that reflect an observer's interest in a nearly-real visual environment. Participants were asked to walk through a simulated shopping mall and the attractiveness of the shopping mall was manipulated by opening and closing the shutters of stores. During the walking task, participants were exposed to task-irrelevant auditory probes (two-stimulus oddball sequence). The results showed a smaller P2/early P3a component of task-irrelevant auditory event-related potentials and a larger lambda response of eye-fixation-related potentials in an interesting environment (i.e., open-shutter condition) than in a boring environment (i.e., closed-shutter condition); these findings can be reasonably explained by supposing that participants allocated more attentional resources to visual information in an interesting environment than in a boring environment, and thus residual attentional resources that could be allocated to task-irrelevant auditory probes were reduced. The P2/early P3a component and the lambda response may be useful measures of interest in a real visual environment. PMID:24892726

  14. Simulation study of process control by multistructure CD measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Ng, Luke K. C.; Yap, Carol

    2003-05-01

    As critical-dimension shrink below 0.18 μm, the SPC (Statistical Process Control) based CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate process control. So Advanced Process Control (APC) is going to be a must in the future deep sub-micron lithography, especially 0.18 μm and below. Successful implementation of APC into photolithography depends on how accurate we can determine exposure and defocus from in-line production wafer. Traditionally, in-line process control is based on single structure CD measurement, normally of the smallest dimension as per design. However single import is not enough to predict exposure and focus drift simultaneously. So a lot of studies were done on how to extract exposure and defocus information from in-line CD measurements. And one of these methods is to distinguish focus from energy by monitoring multi-structure CD (CDs of iso/dense, line/pillar and space/hole etc) on normal production wafer. In this paper, we will give a description of this concept. And from that we can see the advantages and drawbacks of this method. Photolithography Simulations (on Prolith) will be carried out to understand the problems we are facing to implement this method into tool matching and inline process control. Finally, we will also propose a new approach to overcome the drawbacks of this method.

  15. Measurements and simulations of turbines on common grid

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Storli, P.-T.

    2014-03-01

    Speed droop control is of basic importance for the primary governing in the Nordic grid. The speed droop control. a mandatory and build-in regulatory loop on all larger units. is automatically changing the produced power on synchronous units as the grid frequency changes. This part of the governor allows a certain deviance from the nominal 50 Hz grid frequency. If the grid frequency is decreasing this means that the load on the grid is greater than the power delivered into the grid. and the local speed droop regulatory loop on each unit then autonomously increases the production to obtain a new balance between load and production. which will be at a lower frequency than 50 Hz. If the power delivered into the grid is greater than the load. the rotating masses will be accelerated (thus increasing the grid frequency) and the speed droop operation will act to reduce the power produced to obtain a new balance. this time at a higher frequency than 50 Hz. The frequency in the Nordic power grid has in recent years for increasing duration been outside the allowed steady state frequency band of 50 ± 0.1 Hz. In order to study the behaviour of a turbine operating on a common grid, measurements have been done at site. The measurements performed are the generator power, main servo motor position, the rotational speed of the unit and the grid frequency. The purpose of the measurements was to see if it is possible to observe the behaviour of the machine as it is linked together with all the other machines on a synchronous grid. It is interesting to observe the response to deviations in the frequency due to the speed droop operation. In order to better understand the behaviour, a simulation model of two power plants, complete with individual conduit system, turbine and generator, connected to the same grid was used.

  16. Spectral Irradiance Measurements of Simulated Lightning in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; McKay, C. P.; Jebbens, D.; Lakkaraju, H. S.; Vanajakshi, C. T.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Optical emissions from lightning provide information to estimate the altitude, latitude and longitude of lightning storms, the energy of the discharges, and the production of important trace species such as HCN and C2H2. Knowledge of the spectra of planetary lightning is needed to deduce the total energy dissipated by lightning (and thereby, the production of trace gases) and to help design experiments to detect and track lightning storms. Measurements of the spectral irradiance from approximately 380 to 820 nm are reported for laboratory simulations of lightning in the atmospheres of Venus, Jupiter, and Titan. In our laboratory, laser-induced plasmas (LIP) are used to simulate lightning discharges. This technique avoids contamination of the spectra by elect-ode material and maintains a safe environment while allowing the use of flammable gases, such as hydrogen and methane, found in outer planet atmospheres. The observations were made at I and 5 bars pressure for Venus and Jupiter and at 1 bar for the Titan mixture. At a pressure of one bar, our results show prominent lines from H(sub alpha), H(sub beta), H(sub gamma), and H(sub delta) lines of the Balmer Series of atomic hydrogen, a single line from Helium at 588 nm and strong continuum radiation. At pressures of 5 bars, the H(sub alpha) and H(sub beta) lines are wider, the H(sub gamma), and H(sub delta) lines merge into the continuum because of pressure broadening, and the helium line at 588 nm is no longer visible. The observed spectra of simulated lightning in the venusian atmosphere at 1 and 5 bars shows that the OI multiplet at 777.7 nm dominates the spectra, but weak features due to atomic carbon and singly excited and singly ionized oxygen atoms are also visible. Although lightning has not yet been observed on Titan, it conceivable that some form of lightning discharge could be occurring. Therefore experiments on a Titan atmosphere mixture were conducted. The most prominent features seen in the simulated

  17. Study of accuracy of precipitation measurements using simulation method

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián

    2013-04-01

    Hungarian Meteorological Service1 Budapest University of Technology and Economics2 Precipitation is one of the the most important meteorological parameters describing the state of the climate and to get correct information from trends, accurate measurements of precipitation is very important. The problem is that the precipitation measurements are affected by systematic errors leading to an underestimation of actual precipitation which errors vary by type of precipitaion and gauge type. It is well known that the wind speed is the most important enviromental factor that contributes to the underestimation of actual precipitation, especially for solid precipitation. To study and correct the errors of precipitation measurements there are two basic possibilities: · Use of results and conclusion of International Precipitation Measurements Intercomparisons; · To build standard reference gauges (DFIR, pit gauge) and make own investigation; In 1999 at the HMS we tried to achieve own investigation and built standard reference gauges But the cost-benefit ratio in case of snow (use of DFIR) was very bad (we had several winters without significant amount of snow, while the state of DFIR was continously falling) Due to the problem mentioned above there was need for new approximation that was the modelling made by Budapest University of Technology and Economics, Department of Fluid Mechanics using the FLUENT 6.2 model. The ANSYS Fluent package is featured fluid dynamics solution for modelling flow and other related physical phenomena. It provides the tools needed to describe atmospheric processes, design and optimize new equipment. The CFD package includes solvers that accurately simulate behaviour of the broad range of flows that from single-phase to multi-phase. The questions we wanted to get answer to are as follows: · How do the different types of gauges deform the airflow around themselves? · Try to give quantitative estimation of wind induced error. · How does the use

  18. Measuring aniseikonia using scattering filters to simulate cataract

    NASA Astrophysics Data System (ADS)

    Wilson, Jason

    2011-12-01

    The relationship between anisometropia and aniseikonia (ANK) is not well understood. Ametropic cataract patients provide a unique opportunity to study this relationship after undergoing emmetropizing lens extraction. Because light scatter may affect ANK measurement in cataract patients, its effect should also be evaluated. The Basic Aniseikonia Test (BAT) was evaluated using afocal size lenses to produce specific changes in retinal height. Several light scattering devices were then evaluated to determine which produced effects most similar to cataract. Contrast sensitivity and visual acuity (VA) losses were measured with each device and compared to those reported in cataract. After determining the most appropriate light scattering device, twenty healthy patients with normal visual function were recruited to perform the BAT using the filters to simulate cataract. Cataract patients were recruited from Vision America and the University of Alabama at Birmingham School of Optometry. Patients between 20 and 75 years of age with at least 20/80 VA in each eye, ≥ 2D ametropia, and normal binocular function were recruited. Stereopsis and ANK were tested and each patient completed a symptom questionnaire. ANK measurements using afocal size lenses indicated that the BAT underestimates ANK, although the effect was minimal for vertical targets and darkened surroundings, as previously reported. Based on VA and contrast sensitivity loss, Vistech scattering filters produced changes most similar to cataract. Results of the BAT using Vistech filters demonstrated that a moderate cataract but not a mild cataract may affect the ANK measurement. ANK measurements on cataract patients indicated that those with ≥ 2 D ametropia in each eye may suffer from induced ANK after the first cataract extraction. With upcoming healthcare reform, unilateral cataract extraction may be covered, but not necessarily bilateral, depending on patient VA in each eye. However, a questionnaire about symptoms

  19. Thresholds for Diagnosing Hypertension Based on Automated Office Blood Pressure Measurements and Cardiovascular Risk.

    PubMed

    Myers, Martin G; Kaczorowski, Janusz; Paterson, J Michael; Dolovich, Lisa; Tu, Karen

    2015-09-01

    The risk of cardiovascular events in relation to blood pressure is largely based on readings taken with a mercury sphygmomanometer in populations which differ from those of today in terms of hypertension severity and drug therapy. Given replacement of the mercury sphygmomanometer with electronic devices, we sought to determine the blood pressure threshold for a significant increase in cardiovascular risk using a fully automated device, which takes multiple readings with the subject resting quietly alone. Participants were 3627 community-dwelling residents aged >65 years untreated for hypertension. Automated office blood pressure readings were obtained in a community pharmacy with subjects seated and undisturbed. This method for recording blood pressure produces similar readings in different settings, including a pharmacy and family doctor's office providing the above procedures are followed. Subjects were followed for a mean (SD) of 4.9 (1.0) years for fatal and nonfatal cardiovascular events. Adjusted hazard ratios (95% confidence intervals) were computed for 10 mm Hg increments in blood pressure (mm Hg) using Cox proportional hazards regression and the blood pressure category with the lowest event rate as the reference category. A total of 271 subjects experienced a cardiovascular event. There was a significant (P=0.02) increase in the hazard ratio of 1.66 (1.09, 2.54) at a systolic blood pressure of 135 to 144 and 1.72 (1.21, 2.45; P=0.003) at a diastolic blood pressure of 80 to 89. A significant (P=0.03) increase in hazard ratio of 1.73 (1.04, 2.86) occurred with a pulse pressure of 80 to 89. These findings are consistent with a threshold of 135/85 for diagnosing hypertension in older subjects using automated office blood pressure. PMID:26269653

  20. HOMs simulation and measurement results of IHEP02 cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Hong-Juan; Zhai, Ji-Yuan; Zhao, Tong-Xian; Gao, Jie

    2015-11-01

    In accelerator RF cavities, there exists not only the fundamental mode which is used to accelerate the beam, but also higher order modes (HOMs). The higher order modes excited by the beam can seriously affect beam quality, especially for the higher R/Q modes. 1.3 GHz low-loss 9-cell superconducting cavity as a candidate for ILC high gradient cavity, the properties of higher order mode has not been studied carefully. IHEP based on existing low loss cavity, designed and developed a large grain size 1.3 GHz low-loss 9-cell superconducting cavity (IHEP02 cavity). The higher order mode coupler of IHEP02 used TESLA coupler's design. As a result of the limitation of the mechanical design, the distance between higher order mode coupler and end cell is larger than TESLA cavity. This paper reports on measured results of higher order modes in the IHEP02 1.3 GHz low-loss 9-cell superconducting cavity. Using different methods, Qe of the dangerous modes passbands have been obtained. The results are compared with TESLA cavity results. R/Q of the first three passbands have also been obtained by simulation and compared with the results of the TESLA cavity. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences

  1. Geostationary Imaging FTS (GIFTS) Data Processing: Measurement Simulation and Compression

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Revercomb, H. E.; Thom, J.; Antonelli, P. B.; Osborne, B.; Tobin, D.; Knuteson, R.; Garcia, R.; Dutcher, S.; Li, J.

    2001-01-01

    GIFTS (Geostationary Imaging Fourier Transform Spectrometer), a forerunner of next generation geostationary satellite weather observing systems, will be built to fly on the NASA EO-3 geostationary orbit mission in 2004 to demonstrate the use of large area detector arrays and readouts. Timely high spatial resolution images and quantitative soundings of clouds, water vapor, temperature, and pollutants of the atmosphere for weather prediction and air quality monitoring will be achieved. GIFTS is novel in terms of providing many scientific returns that traditionally can only be achieved by separate advanced imaging and sounding systems. GIFTS' ability to obtain half-hourly high vertical density wind over the full earth disk is revolutionary. However, these new technologies bring forth many challenges for data transmission, archiving, and geophysical data processing. In this paper, we will focus on the aspect of data volume and downlink issues by conducting a GIFTS data compression experiment. We will discuss the scenario of using principal component analysis as a foundation for atmospheric data retrieval and compression of uncalibrated and un-normalized interferograms. The effects of compression on the degradation of the signal and noise reduction in interferogram and spectral domains will be highlighted. A simulation system developed to model the GIFTS instrument measurements is described in detail.

  2. Measuring Financial Literacy: Developing and Testing a Measurement Instrument with a Selected Group of South African Military Officers

    ERIC Educational Resources Information Center

    Schwella, E.; van Nieuwenhuyzen, Bernard J.

    2014-01-01

    Are South Africans financially literate, and how can this be measured? Until 2009 there was no South African financial literacy measure and, therefore, the aim was to develop a South African measurement instrument that is scientific, socially acceptable, valid and reliable. To achieve this aim a contextual and conceptual analysis of financial…

  3. Simultaneous measurement of friction and wear in hip simulators.

    PubMed

    Haider, Hani; Weisenburger, Joel N; Garvin, Kevin L

    2016-05-01

    We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively

  4. Validation of the Parama-Tech PS-501 device for office blood pressure measurement according to the international protocol.

    PubMed

    Kikuya, Masahiro; Ohkubo, Takayoshi; Satoh, Michihiro; Hashimoto, Takanao; Hirose, Takuo; Metoki, Hirohito; Obara, Taku; Inoue, Ryusuke; Asayama, Kei; Totsune, Kazuhito; Imai, Yutaka

    2012-01-01

    The PS-501 device (Parama-Tech, Fukuoka, Japan), an automated device for office blood pressure measurement based on the Korotkoff method and designed for professional use in clinical settings, was validated. Consecutive outpatients with hypertension and ≥30 years old at an outpatient hypertension clinic were recruited. According to the European Society of Hypertension protocol, 33 participants were included in the validation study (phase 1, n = 15; phase 2, n = 18). The cuff deflation rate can be selected manually from 2, 3, and 4 mm Hg/beat. The validation was performed with the device deflating at a rate of 2 mm Hg/beat. All blood pressure readings were measured on the left arm. The tested device passed all criteria for both systolic and diastolic blood pressure measurements. The mean (± standard deviation) differences in systolic and diastolic blood pressure between the tested device and the mean of observer readings were -1.9 ± 4.6 and -2.5 ± 2.9 mm Hg, respectively. The PS-501 device for office blood pressure measurement passed all the validation criteria of the European Society of Hypertension and can therefore be recommended for clinical use in an adult population. PMID:21967030

  5. Thermal effects on human performance in office environment measured by integrating task speed and accuracy.

    PubMed

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2014-05-01

    We have proposed a method in which the speed and accuracy can be integrated into one metric of human performance. This was achieved by designing a performance task in which the subjects receive feedback on their performance by informing them whether they have committed errors, and if did, they can only proceed when the errors are corrected. Traditionally, the tasks are presented without giving this feedback and thus the speed and accuracy are treated separately. The method was examined in a subjective experiment with thermal environment as the prototypical example. During exposure in an office, 12 subjects performed tasks under two thermal conditions (neutral & warm) repeatedly. The tasks were presented with and without feedback on errors committed, as outlined above. The results indicate that there was a greater decrease in task performance due to thermal discomfort when feedback was given, compared to the performance of tasks presented without feedback. PMID:23871091

  6. Associations between overweight, obesity, health measures and need for recovery in office employees: a cross-sectional analysis

    PubMed Central

    2013-01-01

    Background With both a high need for recovery (NFR) and overweight and obesity being a potential burden for organizations (e.g. productivity loss and sickness absence), the aim of this paper was to examine the associations between overweight and obesity and several other health measures and NFR in office workers. Methods Baseline data of 412 office employees participating in a randomised controlled trial aimed at improving NFR in office workers were used. Associations between self-reported BMI categories (normal body weight, overweight, obesity) and several other health measures (general health, mental health, sleep quality, stress and vitality) with NFR were examined. Unadjusted and adjusted linear regression analyses were performed and adjusted for age, education and job demands. In addition, we adjusted for general health in the association between overweight and obesity and NFR. Results A significant positive association was observed between stress and NFR (B = 18.04, 95%CI:14.53-21.56). General health, mental health, sleep quality and vitality were negatively associated with NFR (p < 0.001). Analyses also showed a significant positive association between obesity and NFR (B = 8.77, 95%CI:0.01-17.56), but not between overweight and NFR. Conclusions The findings suggest that self-reported stress is, and obesity may be, associated with a higher NFR. Additionally, the results imply that health measures that indicate a better health are associated with a lower NFR. Trial registration The trial is registered at the Dutch Trial Register (NTR) under trial registration number: NTR2553. PMID:24359267

  7. Experimental ship fire measurements with simulated radioactive cargo

    SciTech Connect

    Koski, J.A.; Arviso, M.; Bobbe, J.G.; Wix, S.D.; Cole, J.K.; Hohnstreiter, G.F.; Beene, D.E. Jr.; Keane, M.P.

    1997-10-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages.

  8. Comparison of Hydrocode Simulations with Measured Shock Wave Velocities

    SciTech Connect

    Hixson, R. S.; Veeser, L. R.

    2014-11-30

    We have conducted detailed 1- and 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly made to understand various shock processes in a sample and to design shock experiments. We began with relatively simple shock experiments, where we examined the effects of the equation of state and the viscoplastic strength models. Eventually we included spallation in copper and iron and a solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations.

  9. Evaluating the impact of distance measures on deforestation simulations in the fluvial landscapes of amazonia.

    PubMed

    Salonen, Maria; Maeda, Eduardo Eiji; Toivonen, Tuuli

    2014-10-01

    Land use and land cover change (LUCC) models frequently employ different accessibility measures as a proxy for human influence on land change processes. Here, we simulate deforestation in Peruvian Amazonia and evaluate different accessibility measures as LUCC model inputs. We demonstrate how the selection, and different combinations, of accessibility measures impact simulation results. Out of the individual measures, time distance to market center catches the essential aspects of accessibility in our study area. The most accurate simulation is achieved when time distance to market center is used in association with distance to transport network and additional landscape variables. Although traditional Euclidean measures result in clearly lower simulation accuracy when used separately, the combination of two complementary Euclidean measures enhances simulation accuracy significantly. Our results highlight the need for site and context sensitive selection of accessibility variables. More sophisticated accessibility measures can potentially improve LUCC models' spatial accuracy, which often remains low. PMID:24165869

  10. Performance Measures for Evaluating Public Participation Activities in the Office of Environmental Management (DOE)

    SciTech Connect

    Carnes, S.A.

    2001-02-15

    Public participation in Office of Environmental Management (EM) activities throughout the DOE complex is a critical component of the overall success of remediation and waste management efforts. The challenges facing EM and its stakeholders over the next decade or more are daunting (Nuclear Waste News 1996). Achieving a mission composed of such challenges will require innovation, dedication, and a significant degree of good will among all stakeholders. EM's efforts to date, including obtaining and using inputs offered by EM stakeholders, have been notable. Public participation specialists have accepted and met challenges and have consistently tried to improve their performance. They have reported their experiences both formally and informally (e.g., at professional conferences and EM Public Participation Network Workshops, other internal meetings of DOE and contractor public participation specialists, and one-on-one consultations) in order to advance the state of their practice. Our research, and our field research in particular (including our interactions with many representatives of numerous stakeholder groups at nine DOE sites with diverse EM problems), have shown that it, is possible to develop coherent results even in a problem domain as complex as that of EM. We conclude that performance-based evaluations of public participation appear possible, and we have recommended an approach, based on combined and integrated multi-stakeholder views on the attributes of successful public participation and associated performance indicators, that seems workable and should be acceptable to diverse stakeholders. Of course, as an untested recommendation, our approach needs the validation that can only be achieved by application (perhaps at a few DOE sites with ongoing EM activities). Such an application would serve to refine the proposed approach in terms of its clarity, its workability, and its potential for full-scale use by EM and, potentially, other government agencies and

  11. Bistatic GPR Measurements in the Egyptian Western Desert - Measured and Simulated data

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Le Gall, A.; Berthelier, J.; Ney, R.; Corbel, C.; Dolon, F.

    2006-12-01

    The TAPIR (Terrestrial And Planetary Investigation Radar) instrument has been designed at CETP (Centre d'etude des Environnements Terrestre et Planetaires) to explore the deep Martian subsurface (down to a few kilometers) and to detect liquid water reservoirs. TAPIR is an impulse ground penetrating radar operating at central frequencies ranging from 2 to 4 MHz operating from the surface. In November 2005, an updated version of the instrument working either in monostatic or in bi-static mode was tested in the Egyptian Western Desert. The work presented here focuses on the bi-static measurements performed on the Abou Saied plateau which shows a horizontally layered sub-surface. The electromagnetic signal was transmitted using one of the two orthogonal 70 m loaded electrical dipole antennas of the transmitting GPR. A second GPR, 50 or 100 meters apart, was dedicated to the signal reception. The received waves were characterized by a set of 5 measurements performed on the receiving GPR : the two horizontal components of the electric field and the three composants of the magnetic field. They were used to compute the direction of arrival of the incoming waves and to retrieve more accurately their propagation path and especially to discriminate between waves due to some sub-surface reflecting structure and those due to interaction with the surface clutter. A very efficient synchronization between the two radars enabled us to perform coherent additions up to 2^{31} which improves dramatically the obtained signal to noise ratio. Complementary electromagnetic measurements were conducted on the same site by the LPI (Lunar and Planetary Institute) and the SwRI (Southwest Research Institute). They provided independent information which helped the interpretation of the TAPIR data. Accurate simulations obtained by FDTD taking into account the information available are presented and used for both the interpretation of the measured data and the validation of the instrument.

  12. Ability of College Students to Simulate ADHD on Objective Measures of Attention

    ERIC Educational Resources Information Center

    Booksh, Randee Lee; Pella, Russell D.; Singh, Ashvind N.; Gouvier, William Drew

    2010-01-01

    Objective: The authors examined the ability of college students to simulate ADHD symptoms on objective and self-report measures and the relationship between knowledge of ADHD and ability to simulate ADHD. Method: Undergraduate students were assigned to a control or a simulated ADHD malingering condition and compared with a clinical AD/HD group.…

  13. Forecasting Accuracy as a Performance Measure in Business Simulations.

    ERIC Educational Resources Information Center

    Teach, Richard D.

    1993-01-01

    Describes results of a study of business school students that investigated the link between the ability of business simulation team participants to forecast financial and/or market-related outcomes and the actual results of their decision making. Profitability and forecasting errors are discussed, and implications for designing business…

  14. Albedo in the ATIC Experiment: Results of Measurements and Simulation

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    Characteristics of albedo, or backscatter current, providing a 'background' for calorimeter experiments in high energy cosmic rays are analyzed. The comparison of experimental data obtained in the flights of the ATIC spectrometer is made with simulations performed using the GEANT 3.21 code. The influence of the backscatter on charge resolution in the ATIC experiment is discussed.

  15. A Simulated Measure of Adolescent Career Information-Seeking Behavior.

    ERIC Educational Resources Information Center

    Jepsen, David A.; Dustin, Richard

    1984-01-01

    Describes a simulation method for observing career information-seeking behavior. The Career Information Request (CIR) was tested at a Career Development Day for 53 high school juniors. No clear pattern of internal consistency was found among students' responses to the seven information opportunities. (JAC)

  16. Measures for simulator evaluation of a helicopter obstacle avoidance system

    NASA Technical Reports Server (NTRS)

    Demaio, Joe; Sharkey, Thomas J.; Kennedy, David; Hughes, Micheal; Meade, Perry

    1993-01-01

    The U.S. Army Aeroflightdynamics Directorate (AFDD) has developed a high-fidelity, full-mission simulation facility for the demonstration and evaluation of advanced helicopter mission equipment. The Crew Station Research and Development Facility (CSRDF) provides the capability to conduct one- or two-crew full-mission simulations in a state-of-the-art helicopter simulator. The CSRDF provides a realistic, full field-of-regard visual environment with simulation of state-of-the-art weapons, sensors, and flight control systems. We are using the CSRDF to evaluate the ability of an obstacle avoidance system (OASYS) to support low altitude flight in cluttered terrain using night vision goggles (NVG). The OASYS uses a laser radar to locate obstacles to safe flight in the aircraft's flight path. A major concern is the detection of wires, which can be difficult to see with NVG, but other obstacles--such as trees, poles or the ground--are also a concern. The OASYS symbology is presented to the pilot on a head-up display mounted on the NVG (NVG-HUD). The NVG-HUD presents head-stabilized symbology to the pilot while allowing him to view the image intensified, out-the-window scene through the HUD. Since interference with viewing through the display is a major concern, OASYS symbology must be designed to present usable obstacle clearance information with a minimum of clutter.

  17. Simulation of Space Shuttle neutron measurements with FLUKA.

    PubMed

    Pinsky, L; Carminati, F; Ferrari, A

    2001-06-01

    FLUKA is an integrated particle transport code that has enhanced multigroup low-energy neutron transport capability similar to the well-known MORSE transport code. Gammas are produced in groups but many important individual lines are specifically included, and subsequently transported by the main FLUKA routines which use a modified version of EGS4 for electromagnetic (EM) transport. Recoil protons are also transported by the primary FLUKA transport simulation. The neutron cross-section libraries employed within FLUKA were supplied by Giancarlo Panini (ENEA, Italy) based upon the most recent data from JEF-1, JEF-2.2, ENDF/B-VI, JENDL-3, etc. More than 60 different materials are included in the FLUKA databases with temperature ranges including down to cryogenic temperatures. This code has been used extensively to model the neutron environments near high-energy physics experiment shielding. A simulation of the Space Shuttle based upon a spherical aluminum equivalent shielding distribution has been performed with reasonable results. There are good prospects for extending this calculation to a more realistic 3-D geometrical representation of the Shuttle including an accurate representation of its composition, which is an essential ingredient for the improvement of the predictions. A proposed project to develop a combined analysis and simulation package based upon FLUKA and the analysis infrastructure provided by the ROOT software is under active consideration. The code to be developed for this project will be of direct application to the problem of simulating the neutron environment in space, including the albedo effects. PMID:11855415

  18. Effects of a Simulated Tennis Match on Lymphocyte Subset Measurements

    ERIC Educational Resources Information Center

    Schafer, Mark; Kell, Holly; Navalta, James; Tibana, Ramires; Lyons, Scott; Arnett, Scott

    2014-01-01

    Tennis is an activity requiring both endurance and anaerobic components, which could have immunosuppressive effects postexercise. Purpose: The purpose of this investigation was to determine the effect of a simulated tennis match on apoptotic and migratory markers on lymphocyte subsets. Method: Male high school (n = 5) and college (n = 3) tennis…

  19. Office blood pressure measurement practices among community health providers (medical and paramedical) in northern district of India

    PubMed Central

    Mohan, Bishav; Aslam, Naved; Ralhan, Upma; Sharma, Sarit; Gupta, Naveen; Singh, Vivudh Pratap; Takkar, Shibba; Wander, G.S.

    2014-01-01

    Introduction Hypertension is directly responsible for 57% of all stroke deaths and 24% of all coronary heart disease deaths in India. Appropriate blood pressure measurement techniques are the cornerstone of clinical acumen. Despite the clear guidelines on BP measurement technique, there seems to be large inter-observer variations. Aim & methods A prospective, observational study was done to assess the knowledge and to study the current practices of office BP measurement among the 400 medical and paramedical staff working in various hospitals of a northern district of India. A single observer under the supervision of investigators observed all the participants and a proforma was filled based on AHA guidelines. After observing BP measurement technique scoring was done (≤8 question correct = inaccurate practices, >9 questions correct = accurate practices). Similarly, the knowledge was assessed by giving a pretested questionnaire. Results 5.85 % of the medical staff had excellent knowledge and 80% of the doctors and 62% of the paramedical staff had good knowledge about BPM. Only 1.47% (3 doctors) and 0.5% (1 nurse) had accurate practices. There was no correlation between knowledge and practices. Conclusions We conclude that the right technique and knowledge of blood pressure measurement among community health providers is inadequate and warrants further interventions to improve. PMID:25173197

  20. Effectiveness of in-office blood pressure measurement by eye care practitioners in early detection and management of hypertension

    PubMed Central

    AlAnazi, Saud A.; Osuagwu, Uchechukwu L.; AlMubrad, Turki M.; Ahmed, Hany K.; Ogbuehi, Kelechi C.

    2015-01-01

    AIM To investigate the number of hypertensive patients, the optometrist is able to identify by routinely taking blood pressure (BP) measurements for patients in “at-risk” groups, and to sample patients' opinions regarding in-office BP measurement. Many of the optometrists in Saudi Arabia practice in optical stores. These stores are wide spread, easily accessible and seldom need appointments. The expanding role of the optometrist as a primary health care provider (PHCP) and the increasing global prevalence of hypertension, highlight the need for an integrated approach towards detecting and monitoring hypertension. METHODS Automated BP measurements were made twice (during the same session) at five selected optometry practices using a validated BP monitor (Omron M6) to assess the number of patients with high BP (HBP) -in at-risk groups-visiting the eye clinic routinely. Prior to data collection, practitioners underwent a two-day training workshop by a cardiologist on hypertension and how to obtain accurate BP readings. A protocol for BP measurement was distributed and retained in all participating clinics. The general attitude towards cardiovascular health of 480 patients aged 37.2 (±12.4)y and their opinion towards in-office BP measurement was assessed using a self-administered questionnaire. RESULTS A response rate of 83.6% was obtained for the survey. Ninety-three of the 443 patients (21.0%) tested for BP in this study had HBP. Of these, (62 subjects) 66.7% were unaware of their HBP status. Thirty of the 105 subjects (28.6%) who had previously been diagnosed with HBP, still had HBP at the time of this study, and only 22 (73.3%) of these patients were on medication. Also, only 25% of the diagnosed hypertensive patients owned a BP monitor. CONCLUSION Taking BP measurements in optometry practices, we were able to identify one previously undiagnosed patient with HBP for every 8 adults tested. We also identified 30 of 105 previously diagnosed patients whose BP was

  1. Operation Sun Beam, Shot Small Boy. Project Officers report. Project 1. 9. Crater measurements

    SciTech Connect

    Rooke, A.D.; Davis, L.K.; Strange, J.N.

    1985-09-01

    The objectives of Project 1.9 were to obtain the dimensions of the apparent and true craters formed by the Small Boy event and to measure the permanent earth deformation occurring beyond the true crater boundary. Measurements were made of the apparent crater by aerial stereophotography and ground survey and of the true crater and subsurface zones of residual deformation by the excavation and mapping of an array of vertical, colored sand columns which were placed along one crater diameter prior to the shot. The results of the crater exploration are discussed, particularly the permanent compression of the medium beneath the true crater which was responsible for the major portion of the apparent and true crater volumes. Apparent and true crater dimensions are compared with those of previous cratering events.

  2. Simulation of SWOT measurements over the Amazon delta

    NASA Astrophysics Data System (ADS)

    Lion, C.; Lyard, F.; Calmant, S.; Crétaux, J.; Le Bars, Y.; Fjortoft, R.

    2010-12-01

    The purpose of our study is to evaluate SWOT’s skills with the high mode of resolution (pixel: 4m x 10 to 70m) to highlight estuaries dynamic or to complete a lack of in situ data used by the hydrodynamic models . To reach this goal we have two simulators: one end-to-end developed by S. Biancamaria at Legos and another one developed by the help of industrials Altamira Information and Cap Gemini which describes the physic phenomenon. Both of them need a full description of the instantaneous water states described by a DEM and model’s output. We present first results on the Amazon’s delta due to his peculiar tided-sensitivity. To perform our simulation we have used the hydrodynamic finite element model T-UGOm, the Ore-Hybam data base and data collected during a campaign realised in 2010 over the Amazon river.

  3. Quantum Dynamics Simulations for Modeling Experimental Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Pearson, Brett; Nayyar, Sahil; Liss, Kyle; Weinacht, Thomas

    2016-05-01

    Time-resolved studies of quantum dynamics have benefited greatly from developments in ultrafast table-top and free electron lasers. Advances in computer software and hardware have lowered the barrier for performing calculations such that relatively simple simulations allow for direct comparison with experimental results. We describe here a set of quantum dynamics calculations in low-dimensional molecular systems. The calculations incorporate coupled electronic-nuclear dynamics, including two interactions with an applied field and nuclear wave packet propagation. The simulations were written and carried out by undergraduates as part of a senior research project, with the specific goal of allowing for detailed interpretation of experimental pump-probe data (in additional to the pedagogical value).

  4. Simulation of airborne electromagnetic measurements in three dimensional environments

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1994-12-31

    A 3-D frequency domain EM modeling code has been implemented for helicopter electromagnetic (HEM) simulations. A vector Helmholtz formulation for the electric fields is employed to avoid problems associated with the first order Maxwell`s equations numerically decoupling in the air. Additional stability is introduced by formulating the problem in terms of the scattered electric fields which replaces an impressed dipole source with an equivalent source that possesses a much smoother spatial dependence and is easier to model. In older to compute this equivalent source, a primary field arising from dipole sources in a whole space must be calculated where ever the conductivity is different than that of the background. The Helmholtz equation is approximated using finite differences on a staggered grid. After finite differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) method. In order to both speed up the solution and allow for larger, more realistic models to be simulated, the scheme has been modified to run on massively parallel architectures. The solution has been compared against other I-D and 3-D numerical models and is found to produce results in good agreement. The versatility of the scheme is demonstrated by simulating a survey over a salt water intrusion zone in the Florida Everglades.

  5. [Clerical and Typing Skills of High School Students Trained in "MOE" Compared to Rural and Urban High School Students Trained in Regular Classroom Techniques (with Teacher and Student Simulated Office Education Packages), Final Report.

    ERIC Educational Resources Information Center

    Cottrell, Milford C.; And Others

    The purpose of this study was to compare national norms maintained by the National Business Entrance Testing Service with achievement, as measured by the National Busines s Entrance General Office Clerical and Typewriting Tests, of senior office-practice students in rural schools using the Mobile Office Education (MOE) program, in rural schools…

  6. Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media.

    PubMed

    Fraga, Carlos G; Sego, Landon H; Hoggard, Jamin C; Acosta, Gabriel A Pérez; Viglino, Emilie A; Wahl, Jon H; Synovec, Robert E

    2012-12-28

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA's impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products of the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA's useable impurity profile, (2) low selectivity among a CTA's known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted toward higher volatility impurities are more likely to be altered by volatilization following CTA exposure. PMID:23177156

  7. Preliminary Effects of Real-World Factors on the Recovery and Exploitation of Forensic Impurity Profiles of a Nerve-Agent Simulant from Office Media

    SciTech Connect

    Fraga, Carlos G.; Sego, Landon H.; Hoggard, Jamin C.; Perez Acosta, Gabriel A.; Viglino, Emilie A.; Wahl, Jon H.; Synovec, Robert E.

    2012-12-28

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA’s impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2-D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products of the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA’s useable impurity profile, (2) low selectivity among a CTA’s known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted towards higher volatility impurities are more likely to be altered by volatilization following CTA exposure.

  8. A Structured-Grid Quality Measure for Simulated Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A structured-grid quality measure is proposed, combining three traditional measurements: intersection angles, stretching, and curvature. Quality assesses whether the grid generated provides the best possible tradeoffs in grid stretching and skewness that enable accurate flow predictions, whereas the grid density is assumed to be a constraint imposed by the available computational resources and the desired resolution of the flow field. The usefulness of this quality measure is assessed by comparing heat transfer predictions from grid convergence studies for grids of varying quality in the range of [0.6-0.8] on an 8'half-angle sphere-cone, at laminar, perfect gas, Mach 10 wind tunnel conditions.

  9. The Comparison of Measured and Simulated Dynamic Responses of Vehicles Indicated by Road Pavement Unevenness

    NASA Astrophysics Data System (ADS)

    Decký, Martin; Kováč, Matúš; Kotek, Peter

    2015-05-01

    The article presents the comparison of measured and simulated dynamic responses of heavy vehicle which are indicated by road pavement unevenness. This unevenness was represented by speed control bumps, potholes and stochastic pavement unevenness. The objective simulations were realized through the medium Quarter- Car Simulation by means of application of simulated theory of dynamic systems. The reliability of used model was verificated with comparison of measured and simulated values of sprung mass T815 vehicle accelerations. In the article, there are presented courses of total vertical forces of Quarter-Car Simulation for the first, the second and the fourth classification degree of unevenness, which was considered through the world's respected parameter IRI (International Roughness Index). Obtained simulated dynamic effects of the vehicle on the pavement were used for modification of a relevant Slovak design method of asphalt pavements.

  10. Muscle stiffness measured under conditions simulating natural sound production.

    PubMed

    Dobrunz, L E; Pelletier, D G; McMahon, T A

    1990-08-01

    Isolated whole frog gastrocnemius muscles were electrically stimulated to peak twitch tension while held isometrically in a bath at 4 degrees C. A quartz hydrophone detected vibrations of the muscle by measuring the pressure fluctuations caused by muscle movement. A small steel collar was slipped over the belly of the muscle. Transient forces including plucks and steady sinusoidal driving were applied to the collar by causing currents to flow in a coil held near the collar. The instantaneous resonant frequencies measured by the pluck and driving techniques were the same at various times during a twitch contraction cycle. The strain produced by the plucking technique in the outermost fibers was less than 1.6 x 10(-4%), a strain three orders of magnitude less than that required to drop the tension to zero in quick-length-change experiments. Because the pressure transients recorded by the hydrophone during plucks and naturally occurring sounds were of comparable amplitude, strains in the muscle due to naturally occurring sound must also be of the order 10(-3%). A simple model assuming that the muscle is an elastic bar under tension was used to calculate the instantaneous elastic modulus E as a function of time during a twitch, given the tension and resonant frequency. The result for Emax, the peak value of E during a twitch, was typically 2.8 x 10(6) N/m2. The methods used here for measuring muscle stiffness are unusual in that the apparatus used for measuring stiffness is separate from the apparatus controlling and measuring force and length. PMID:2207252

  11. Comparison of measured and simulated fast ion velocity distributions in the TEXTOR tokamak

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Meo, F.; Korsholm, S. B.; Koskela, T.; Albergante, M.; Asunta, O.; Bindslev, H.; Bürger, A.; Furtula, V.; Kantor, M. Yu; Leipold, F.; Michelsen, P. K.; Nielsen, S. K.; Salewski, M.; Schmitz, O.; Stejner, M.; Westerhof, E.; TEXTOR Team

    2011-10-01

    Here we demonstrate a comprehensive comparison of collective Thomson scattering (CTS) measurements with steady-state Monte Carlo simulations performed with the ASCOT and VENUS codes. The measurements were taken at a location on the magnetic axis as well as at an off-axis location, using two projection directions at each location. The simulations agree with the measurements on-axis, but for the off-axis geometries discrepancies are observed for both projection directions. For the near perpendicular projection direction with respect to the magnetic field, the discrepancies between measurement and simulations can be explained by uncertainty in plasma parameters. However, the discrepancies between measurement and simulations for the more parallel projection direction cannot be explained solely by uncertainties in plasma parameters. Here anomalous fast ion transport is a possible explanation for the discrepancy.

  12. State-of-the-Art Solar Simulator Reduces Measurement Time and Uncertainty (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    One-Sun Multisource Solar Simulator (OSMSS) brings accurate energy-rating predictions that account for the nonlinear behavior of multijunction photovoltaic devices. The National Renewable Energy Laboratory (NREL) is one of only a few International Organization for Standardization (ISO)-accredited calibration labs in the world for primary and secondary reference cells and modules. As such, it is critical to seek new horizons in developing simulators and measurement methods. Current solar simulators are not well suited for accurately measuring multijunction devices. To set the electrical current to each junction independently, simulators must precisely tune the spectral content with no overlap between the wavelength regions. Current simulators do not have this capability, and the overlaps lead to large measurement uncertainties of {+-}6%. In collaboration with LabSphere, NREL scientists have designed and implemented the One-Sun Multisource Solar Simulator (OSMSS), which enables automatic spectral adjustment with nine independent wavelength regions. This fiber-optic simulator allows researchers and developers to set the current to each junction independently, reducing errors relating to spectral effects. NREL also developed proprietary software that allows this fully automated simulator to rapidly 'build' a spectrum under which all junctions of a multijunction device are current matched and behave as they would under a reference spectrum. The OSMSS will reduce the measurement uncertainty for multijunction devices, while significantly reducing the current-voltage measurement time from several days to minutes. These features will enable highly accurate energy-rating predictions that take into account the nonlinear behavior of multijunction photovoltaic devices.

  13. Simulation of laser radar tooling ball measurements: focus dependence

    NASA Astrophysics Data System (ADS)

    Smith, Daniel G.; Slotwinski, Anthony; Hedges, Thomas

    2015-10-01

    The Nikon Metrology Laser Radar system focuses a beam from a fiber to a target object and receives the light scattered from the target through the same fiber. The system can, among other things, make highly accurate measurements of the position of a tooling ball by locating the angular position of peak signal quality, which is related to the fiber coupling efficiency. This article explores the relationship between fiber coupling efficiency and focus condition.

  14. Office spirometry: temperature conversion of volumes measured by the Vitalograph-R bellows spirometer is not necessary.

    PubMed

    Madsen, F; Frølund, L; Ulrik, C S; Dirksen, A

    1999-10-01

    The aim of the present study was to investigate the relevance of BTPS (gas at body temperature, atmospheric pressure and saturated with water vapour) conversion of volumes measured with the Vitalograph bellows spirometer. The Vitalograph bellows were tested against a MicroMedical turbine spirometer in extreme temperatures (0-37 degrees C) using a biological control to deliver expired gas at BTPS. Before testing, it was shown that the accuracy of the DairyCard turbine was stable in the relevant temperature range. In a clinical trial six patients with emphysema performed home spirometry b.i.d for 1 month using both the Vitalograph and the turbine. Both the DairyCard and the Vitalograph showed stable accuracy at extreme temperatures when results were reported without any BTPS conversion. These findings were supported by the clinical trial but the conclusions from the clinical setting were weakened by the surprising fact that domiciliary temperatures showed almost no variation. We conclude that the Vitalograph bellows, during dynamic spirometry, measures expired volume at conditions closer to BTPS (than to ATPS) gas at ambient temperature, atmospheric pressure and saturated with water vapour). The use of the BTPS correction based on ambient temperature seems unjustified at office temperatures close to 23 degrees C and at extreme temperatures the conversion of volume will introduce significant over or underestimation. PMID:10581656

  15. Electrocardiographic abnormalities and home blood pressure in treated elderly hypertensive patients: Japan home versus office blood pressure measurement evaluation in the elderly (J-HOME-Elderly) study.

    PubMed

    Shibamiya, Taku; Obara, Taku; Ohkubo, Takayoshi; Shinki, Takahiro; Ishikura, Kazuki; Yoshida, Makoto; Satoh, Michihiro; Hashimoto, Takanao; Hara, Azusa; Metoki, Hirohito; Inoue, Ryusuke; Asayama, Kei; Kikuya, Masahiro; Imai, Yutaka

    2010-07-01

    This study compares relationships between each of morning home blood pressure (BP), evening home BP and office BP with electrocardiographic (ECG) abnormalities among treated hypertensive Japanese patients. We defined ECG left ventricular hypertrophy (LVH) as Sokolow-Lyon voltage and/or Cornell voltage duration product. Abnormal T waves and ST segment depression were categorized based on the Minnesota code. Office BP was calculated as the mean of four readings taken during two visits. Morning and evening home BP were calculated as the mean of five readings measured once each morning and evening for 5 days, respectively. Multivariate analysis showed that ECG-LVH in 747 hypertensives (mean age: 72 years; women: 63%) was more closely associated with morning home BP than with either office or evening home BP. Even the first reading of morning home BP on day 1 was significantly associated with ECG-LVH independently of office BP. The association between home BP and ECG-LVH increased with the cumulative number of home BP measurements. The results for abnormal T waves were similar. Home and office BP did not significantly differ between patients with and without ST segment depression. Morning home BP was more closely associated with ECG-LVH and abnormal T waves than either office or evening home BP among treated hypertensive Japanese patients. PMID:20431591

  16. Simulations of Convection Zone Flows and Measurements from Multiple Viewing Angles

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L.; Hanasoge, Shravan

    2011-01-01

    A deep-focusing time-distance measurement technique has been applied to linear acoustic simulations of a solar interior perturbed by convective flows. The simulations are for the full sphere for r/R greater than 0.2. From these it is straightforward to simulate the observations from different viewing angles and to test how multiple viewing angles enhance detectibility. Some initial results will be presented.

  17. Complex issues of military capability: Measurement, assessment, simulation

    NASA Astrophysics Data System (ADS)

    Miller, L. D.; Sulcoski, M. F.; Farmer, B. A.

    1997-05-01

    The nonlinear science methodology behind the Military Capability Spectrum Project (PRISM) is presented. This project approaches assessments of military power of nations (worldwide) from the perspective that their military organizations are complex adaptive systems (CAS) locked in a threat/alliance coupled group that collectively evolves toward a self-organized critical state. Dissipative behavior can take the form of war and other forms of geopolitical instability. Measurement tools for assessing the characteristics of military organizations are presented and methodologies for displaying the resulting spectrum of worldwide military power are discussed. Tools for regional stability/instability analysis are suggested that rely upon time history data.

  18. Visualization of Orifice Flow with Measurement-integrated Simulation Using a Turbulent Model

    NASA Astrophysics Data System (ADS)

    Nakao, Mitsuhiro; Kawashima, Kenji; Kagawa, Toshiharu

    Measurement-integrated (MI) simulation is a numerical simulation in which experimental results are fed back to the simulation. The calculated values become closer to the experimental values. In this paper, MI simulation using a standard k-ε model is proposed and applied it to steady airflows passing an orifice plate in a pipeline. The upstream corner tap pressure in simulation is compensated by using proportional controller or proportional-integral controller. The signal is fed back to the axial velocity control volume in vena contract. The effectiveness of the method was evaluated compared with the experimental results at downstream of orifice. The calculation time of proposed MI simulation is significantly reduced compared with ordinary simulation analysis.

  19. Estimation of particulate matter from simulation and measurements

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo

    2011-11-01

    The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.

  20. Field measurement results versus DAYCENT simulations in nitrous oxide emission from agricultural soil in Central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide emissions measured from corn-soybean rotations in Central Iowa were compared with the results obtained from DAYCENT simulations. Available whole year emission field data taken weekly during the growing season and monthly during the winter time, were used. DAYCENT simulations were perfo...

  1. From measurements to inferences of physical quantities in numerical simulations

    NASA Astrophysics Data System (ADS)

    Nakamura, Tota

    2016-01-01

    We propose a change of style for numerical estimations of physical quantities from measurements to inferences. We estimate the most probable quantities for all the parameter region simultaneously by using the raw data cooperatively. Estimations with higher precisions are made possible. We can obtain a physical quantity as a continuous function, which is processed to obtain another quantity. We applied the method to the Heisenberg spin-glass model in three dimensions. A dynamic correlation-length scaling analysis suggests that the spin-glass and the chiral-glass transitions occur at the same temperature with a common exponent ν . The value is consistent with the experimental results. We explained a spin-chirality separation problem by a size-crossover effect.

  2. Fluorescence cross section measurements of biological agent simulants

    SciTech Connect

    Stephens, J.R.

    1996-11-01

    Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

  3. Experimental measurement of investment shell properties and use of the data in casting simulation software

    SciTech Connect

    Browne, D.J.; Sayers, K.

    1995-12-31

    This paper describes the development of a systematic program of experimental measurement of relevant properties of mould materials, conducted with the express purpose of generating data for use in casting (filling and solidification) simulation software. In particular the thermophysical properties of the ceramic shell built up for the investment casting process are measured. These properties include specific heat capacity, thermal conductivity, gas permeability, density and surface emissivity. Much of the experimental measurements are taken as a function of temperature, up to the temperature at which moulds are typically fired or preheated. Typical results are presented. The data so generated is then used in a casting simulation model to simulate the investment casting of a prosthetic device. The results of the simulation are presented, and comparisons are made with measurements and observations from an experimental casting of the same part. In this way both the reliability of the data and the accuracy of the filling and solidification model are validated.

  4. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    NASA Technical Reports Server (NTRS)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  5. Thermal emissivity of coated glazing—simulation versus measurements

    NASA Astrophysics Data System (ADS)

    Gelin, Kristina; Roos, Arne; Geotti-Bianchini, Franco; Nijnatten, Peter van

    2005-01-01

    A large variety of coated glazing products are available on the market today. These are used in energy efficient low emissivity (low-e) or solar control windows. Not only the solar optical properties, but also the thermal emissivity of these coated glazing materials are of importance for the performance of such energy efficient windows. The thermal emissivity is calculated from the IR reflectance. A problem is that for accurate determination of the emissivity according to international standards, the reflectance needs to be known between 2000 and 200 cm -1, and many FTIR spectrophotometers cannot measure below 400 cm -1. In this paper some different strategies for the extrapolation to 200 cm -1 are discussed. A sensitivity analysis for different types of materials is presented for a few different extrapolation algorithms. The simplest extrapolation procedure assumes a constant reflectance value throughout the extrapolation interval. This appears to work well for surfaces with high reflectance values. A procedure based on a linear relation between the values at a starting wavelength and at the end point of the extrapolation interval or one using a simple second-degree polynomial function can be used when coatings on glass having medium or low reflectance values are evaluated. A guide on how to extrapolate the spectra, according to the different strategies, is included in the Appendix.

  6. Soil moisture at local scale: Measurements and simulations

    NASA Astrophysics Data System (ADS)

    Romano, Nunzio

    2014-08-01

    Soil moisture refers to the water present in the uppermost part of a field soil and is a state variable controlling a wide array of ecological, hydrological, geotechnical, and meteorological processes. The literature on soil moisture is very extensive and is developing so rapidly that it might be considered ambitious to seek to present the state of the art concerning research into this key variable. Even when covering investigations about only one aspect of the problem, there is a risk of some inevitable omission. A specific feature of the present essay, which may make this overview if not comprehensive at least of particular interest, is that the reader is guided through the various traditional and more up-to-date methods by the central thread of techniques developed to measure soil moisture interwoven with applications of modeling tools that exploit the observed datasets. This paper restricts its analysis to the evolution of soil moisture at the local (spatial) scale. Though a somewhat loosely defined term, it is linked here to a characteristic length of the soil volume investigated by the soil moisture sensing probe. After presenting the most common concepts and definitions about the amount of water stored in a certain volume of soil close to the land surface, this paper proceeds to review ground-based methods for monitoring soil moisture and evaluates modeling tools for the analysis of the gathered information in various applications. Concluding remarks address questions of monitoring and modeling of soil moisture at scales larger than the local scale with the related issue of data aggregation. An extensive, but not exhaustive, list of references is provided, enabling the reader to gain further insights into this subject.

  7. Combining Disparate Measures of Metabolic Rate During Simulated Spacewalks

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Kuznetz, Larry; Nguyen, Dan

    2009-01-01

    Scientists from NASA's Extravehicular Activities (EVA) Physiology Systems and Performance Project help design space suits for future missions, during which astronauts are expected to perform EVA activities on the Lunar or Martian surface. During an EVA, an astronaut s integrated metabolic rate is used to predict how much longer the activity can continue and still provide a safe margin of remaining consumables. For EVAs in the Apollo era, NASA physicians monitored live data feeds of heart rate, O2 consumption, and liquid cooled garment (LCG) temperatures, which were subjectively combined or compared to produce an estimate of metabolic rate. But these multiple data feeds sometimes provided conflicting estimates of metabolic rate, making real-time calculations of remaining time difficult for physician/monitors. Currently, designs planned for the Constellation Program EVAs utilize an automated, but largely heuristic methodology for incorporating the above three measurements, plus an additional one - CO2 production, ignoring data that appears in conflict; however a more rigorous model-based approach is desirable. In this study, we show how principal axis factor analysis, in combination with OLS regression and LOWESS smoothing can be used to estimate metabolic rate as a data-driven weighted average of heart rate, O2 consumption, LCG temperature data, and CO2 production. Preliminary results suggest less sensitivity to occasional spikes in observed data feeds, and reasonable within-subject reproducibility when applied to subsequent tasks. These methods do not require physician monitoring and as such can be automated in the electronic components of future space suits. With additional validation, our models show promise for increasing astronaut safety, while reducing the need for and potential errors associated with human monitoring of multiple systems.

  8. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    SciTech Connect

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.; Bennett, Mitchell; Segneri, Brittany

    2015-04-25

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectors provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.

  9. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  10. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  11. Martian dust threshold measurements: Simulations under heated surface conditions

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Leach, Rodman N.

    1991-01-01

    Diurnal changes in solar radiation on Mars set up a cycle of cooling and heating of the planetary boundary layer, this effect strongly influences the wind field. The stratification of the air layer is stable in early morning since the ground is cooler than the air above it. When the ground is heated and becomes warmer than the air its heat is transferred to the air above it. The heated parcels of air near the surface will, in effect, increase the near surface wind speed or increase the aeolian surface stress the wind has upon the surface when compared to an unheated or cooled surface. This means that for the same wind speed at a fixed height above the surface, ground-level shear stress will be greater for the heated surface than an unheated surface. Thus, it is possible to obtain saltation threshold conditions at lower mean wind speeds when the surface is heated. Even though the mean wind speed is less when the surface is heated, the surface shear stress required to initiate particle movement remains the same in both cases. To investigate this phenomenon, low-density surface dust aeolian threshold measurements have been made in the MARSWIT wind tunnel located at NASA Ames Research Center, Moffett Field, California. The first series of tests examined threshold values of the 100 micron sand material. At 13 mb surface pressure the unheated surface had a threshold friction speed of 2.93 m/s (and approximately corresponded to a velocity of 41.4 m/s at a height of 1 meter) while the heated surface equivalent bulk Richardson number of -0.02, yielded a threshold friction speed of 2.67 m/s (and approximately corresponded to a velocity of 38.0 m/s at a height of 1 meter). This change represents an 8.8 percent decrease in threshold conditions for the heated case. The values of velocities are well within the threshold range as observed by Arvidson et al., 1983. As the surface was heated the threshold decreased. At a value of bulk Richardson number equal to -0.02 the threshold

  12. Software simulator for design and optimization of the kaleidoscopes for the surface reflectance measurement

    NASA Astrophysics Data System (ADS)

    Havran, Vlastimil; Bittner, Jiří; Čáp, Jiří; Hošek, Jan; Macúchová, Karolina; Němcová, Šárka

    2015-01-01

    Realistic reproduction of appearance of real-world materials by means of computer graphics requires accurate measurement and reconstruction of surface reflectance properties. We propose an interactive software simulation tool for modeling properties of a kaleidoscopic optical system for surface reflectance measurement. We use ray tracing to obtain fine grain simulation results corresponding to the resolution of a simulated image sensor and computing the reflections inside this system based on planar mirrors. We allow for a simulation of different geometric configurations of a kaleidoscope such as the number of mirrors, the length, and the taper angle. For accelerating the computation and delivering interactivity we use parallel processing of large groups of rays. Apart from the interactive mode our tool also features batch optimization suitable for automatic search for optimized kaleidoscope designs. We discuss the possibilities of the simulation and present some preliminary results obtained by using it in practice.

  13. Benchmarking of measurement and simulation of transverse rms-emittance growth

    SciTech Connect

    Jeon, Dong-O

    2008-01-01

    Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind the DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.

  14. RSRM top hat cover simulator lightning test, volume 2. Appendix A: Resistance measurements. Appendix B: Lightning test data plots

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Resistance measurements are given in graphical for when a simulated lightning discharge strikes on an exposed top hat cover simulator. The test sequence was to measure the electric and magnetic fields induced inside a redesigned solid rocket motor case.

  15. Observations, Measurements, and Simulations of Convectively Enhanced Carbon Dioxide Dissolution (Invited)

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Pruess, K.

    2010-12-01

    Carbon dioxide injected into a porous, permeable rock stratum overlain by low-permeability caprock will flow in response to applied pressures and buoyant, viscous, and capillary forces. Four modes of CO2 storage will occur upon injection, which are (in order of increased security and permanence): 1) free-phase supercritical CO2, 2) capillary-trapped CO2, 3) CO2 dissolved into the brine, and 4) CO2 that has chemically reacted with aqueous species and host rock resulting in precipitation. In the target formation, the injected supercritical CO2 will tend to rise due to buoyancy, and accumulate beneath the caprock. At some distance from the injection well, the CO2/brine interface will be roughly horizontal. In the absence of fluid motion, CO2 dissolution into the brine will be dominated by the slow process of molecular diffusion of the CO2 away from the CO2-brine interface, and the rate of dissolution will decrease with time. As CO2 dissolves into the brine, the density of the brine increases by a small amount, on the order of 0.1 to 1%. This results in a fluid dynamics instability because denser fluid overlies less dense fluid, which induces convective flow of the denser fluid downward. The downward convection of the CO2-bearing denser fluid causes less dense brine to flow upwards and contact the CO2. This is a desirable process because it significantly increases the dissolution of CO2 into the brine. We have performed laboratory visualization tests, quantitative measurements at elevated pressures, and numerical simulations to examine this phenomenon. In our visualization tests, we introduce CO2 into the headspace above water containing a pH sensitive indicator contained in a transparent Hele-Shaw cell. When CO2 dissolves into the water, the pH is lowered and the indicator changes color. Upon introduction of CO2 into the cell, a fairly uniform layer of low pH fluid containing dissolved CO2 slowly enlarges downward from the gas-water interface. At some point, many

  16. Ozone Modes and Differences in the Variability of Measured and Simulated Tropospheric Ozone Mixing Ratios

    NASA Astrophysics Data System (ADS)

    Stockwell, W. R.; Fitzgerald, R. M.; Lu, D.

    2013-12-01

    Modes are found in measured and modeled aerosol distributions and they illuminate processes affecting aerosol properties but there has been much less examination of modes in tropospheric ozone distributions. The Paso del Norte region was used as a test-bed because of the availability of ozone measurements and because of its relative isolation. The Comprehensive Air Quality Model with Extensions (CAM-X) was used to perform wintertime ozone simulations with two versions of the Carbon Bond mechanism. The objective of this study is to examine differences by modes in the measured and simulated ozone distributions. Although there are differences in the error and bias of the simulated ozone mixing ratios due to the choice of mechanism, the boundary conditions, emissions and other factors should have had a much lower affect on the simulated ozone variability, distribution and modes. The simulations made with two versions of the Carbon Bond mechanism showed large differences in their calculated ozone distributions. While the measured distribution and the Carbon Bond mechanism, version 4 showed three modes the more recent version 5 was very different with only two modes. Furthermore the distributions show that the probability of low ozone mixing ratios is much greater in the measurements than in the simulated ozone. These differences may show systematic problems in the chemical mechanisms for urban and regional air quality models and it illustrates the potential utility of the examination modes in ozone data for the evaluation of air quality models.

  17. Uncertainty Analysis of Sonic Boom Levels Measured in a Simulator at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Ely, Jeffry W.

    2012-01-01

    A sonic boom simulator has been constructed at NASA Langley Research Center for testing the human response to sonic booms heard indoors. Like all measured quantities, sonic boom levels in the simulator are subject to systematic and random errors. To quantify these errors, and their net influence on the measurement result, a formal uncertainty analysis is conducted. Knowledge of the measurement uncertainty, or range of values attributable to the quantity being measured, enables reliable comparisons among measurements at different locations in the simulator as well as comparisons with field data or laboratory data from other simulators. The analysis reported here accounts for acoustic excitation from two sets of loudspeakers: one loudspeaker set at the facility exterior that reproduces the exterior sonic boom waveform and a second set of interior loudspeakers for reproducing indoor rattle sounds. The analysis also addresses the effect of pressure fluctuations generated when exterior doors of the building housing the simulator are opened. An uncertainty budget is assembled to document each uncertainty component, its sensitivity coefficient, and the combined standard uncertainty. The latter quantity will be reported alongside measurement results in future research reports to indicate data reliability.

  18. MCNPX simulation of influence of cosmic rays on low-activity spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Kovář, Petr; Dryák, Pavel

    2014-02-01

    Germanium gamma spectrometers are effective instruments for low-activity measurement of a mixture of radionuclides in environmental samples, food samples, in materials released from nuclear facilities to the environment, etc. In such measurements cosmic rays have a significant contribution to the background signal. A Monte Carlo code MCNPXTM was used to calculate coaxial high-purity germanium (HPGe) detector pulse-height spectra caused by cosmic rays penetrating through shielding made of concrete and lead. Simulations were compared to two different measurements, one performed inside a 10 cm thick lead shielding and another done inside a larger chamber made of low-activity concrete and with several ceiling thicknesses. In the first experiment, a discrepancy was found between simulated and measured spectra by up to the factor of 4 at 2.62 MeV and slowly decreasing to unity at 13 MeV. It is assumed that the discrepancy between the measured and simulated spectra is caused by the simplification of muon energy losses treatment resulting in the underestimation of count rate in simulated pulse-height spectrum. Good agreement was obtained between simulation and measurement of differences of detector count rates in 662 keV and 1332 keV energy windows inside a concrete chamber with varying ceiling thickness. It is assumed that due to lower effective Z of concrete, delta electron bremsstrahlung has lower yield and the muon radiation energy losses start to be important at higher energies than in lead. As a result, the total contribution of these effects to the outputs of MCNPXTM simulations of concrete chamber is not dominant in the investigated energy windows and the simulation results are in a close agreement with the measurement.

  19. Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet

    NASA Technical Reports Server (NTRS)

    Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.

    2008-01-01

    Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.

  20. Numerical validation of MR-measurement-integrated simulation of blood flow in a cerebral aneurysm.

    PubMed

    Funamoto, Kenichi; Suzuki, Yoshitsugu; Hayase, Toshiyuki; Kosugi, Takashi; Isoda, Haruo

    2009-06-01

    This study proposes magnetic resonance (MR)-measurement-integrated (MR-MI) simulation, in which the difference between the computed velocity field and the phase-contrast MRI measurement data is fed back to the numerical simulation. The computational accuracy and the fundamental characteristics, such as steady characteristics and transient characteristics, of the MR-MI simulation were investigated by a numerical experiment. We dealt with reproduction of three-dimensional steady and unsteady blood flow fields in a realistic cerebral aneurysm developed at a bifurcation. The MR-MI simulation reduced the error derived from the incorrect boundary conditions in the blood flow in the cerebral aneurysm. For the reproduction of steady and unsteady standard solutions, the error of velocity decreased to 13% and to 22% in one cardiac cycle, respectively, compared with the ordinary simulation without feedback. Moreover, the application of feedback shortened the computational convergence, and thus the convergent solution and periodic solution were obtained within less computational time in the MR-MI simulation than that in the ordinary simulation. The dividing flow ratio toward the two outlets after bifurcation was well estimated owing to the improvement of computational accuracy. Furthermore, the MR-MI simulation yielded wall shear stress distribution on the cerebral aneurysm of the standard solution accurately and in detail. PMID:19350390

  1. Coupling impedance of an in-vacuum undulator. Measurement, simulation, and analytical estimation

    SciTech Connect

    Simaluk, Victor; Blednykh, Alexei; Fielder, Richard; Rehm, Guenther; Bartolini, Riccardo

    2014-07-25

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. In order to get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. Moreover, the impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  2. Nanorod measurement-layer separate structure for nanorod-character measurement, simulation, and application as sensor devices

    NASA Astrophysics Data System (ADS)

    Leem, Myoung-Kun; Park, Jin-Uk; Kim, Chang-Man; Kim, Kyu-Jin; Yeom, Se-Hyuk; Choi, Woo-Youp; Kang, Won-Seok; Kim, Jae-Ho; Kang, Shin-Won

    2009-02-01

    This paper reported the simple nanorod characteristic measurement method by layer separated structure. The structures are designed by the ANSYS simulation and they are fabricated by semiconductor fabrications. In the experiment, dielectrophoresis (DEP) principle is used to assemble nanorods which are synthesized by electrochemical deposition (ECD) method. However, it is difficult to make devices without assembly process because nanorods which are synthesized by the ECD method are dispersed in the medium. Therefore, this paper was studied to design and fabricate the nanorod assembly-layer and measurement-layer separation. After assembling the nanorods, I-V characteristics of the nanorods were measured.

  3. Simulation of soil moisture on a hillslope using multiple hydrologic models in comparison to field measurements

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun; Kim, Hyeonjun

    2015-04-01

    Soil moisture in a hillslope is simulated using three multi-dimensional hydrologic models: a 3D surface-subsurface integrated model and two 2D distributed hydrologic models, MIKE-SHE and WEP, which adopt the Richards equation at different levels of approximation. High-resolution topographic data (1 m in horizontal accuracy), soil depth, hydraulic conductivity, porosity, and soil characteristics obtained from the literature and in-situ measurements were used as prior information for modeling. Numerical simulations were compared with multiple TDR sensor measurements from different locations and depths. Using available input data, the models had limited ability to reproduce the soil moisture dynamics shown in field measurements. The 3D model estimated the spatial diversity of the infiltration process of soil water movement more accurately than the distributed hydrologic models, MIKE-SHE and WEP. Suitable model parameters and correlations among them were estimated through Monte Carlo simulation using the 3D model. Parameters selected through the Monte Carlo method were used to simulate soil moisture variations at measurement sites. Relatively high correlations were found among the van Genuchten model parameters and the bottom boundary condition (bed rock). An increasing pattern of correlation between porosity to the downstream direction was found, which shows connectivity between parameter correlation and identifiability. Simulation results imply that multi-dimensional modeling of soil moisture in a hillslope may benefit from ensemble-based simulations that consider inherent uncertainty from model parameters and structures.

  4. Efficient classical simulation of matchgate circuits with generalized inputs and measurements

    NASA Astrophysics Data System (ADS)

    Brod, Daniel J.

    2016-06-01

    Matchgates are a restricted set of two-qubit gates known to be classically simulable under particular conditions. Specifically, if a circuit consists only of nearest-neighbor matchgates, an efficient classical simulation is possible if either (i) the input is a computational-basis state and the simulation requires computing probabilities of multiqubit outcomes (including also adaptive measurements) or (ii) if the input is an arbitrary product state, but the output of the circuit consists of a single qubit. In this paper we extend these results to show that matchgates are classically simulable even in the most general combination of these settings, namely, if the inputs are arbitrary product states, if the measurements are over arbitrarily many output qubits, and if adaptive measurements are allowed. This remains true even for arbitrary single-qubit measurements, albeit only in a weaker notion of classical simulation. These results make for an interesting contrast with other restricted models of computation, such as Clifford circuits or (bosonic) linear optics, where the complexity of simulation varies greatly under similar modifications.

  5. An Evaluation of Monte Carlo Simulations of Neutron Multiplicity Measurements of Plutonium Metal

    SciTech Connect

    Mattingly, John; Miller, Eric; Solomon, Clell J. Jr.; Dennis, Ben; Meldrum, Amy; Clarke, Shaun; Pozzi, Sara

    2012-06-21

    In January 2009, Sandia National Laboratories conducted neutron multiplicity measurements of a polyethylene-reflected plutonium metal sphere. Over the past 3 years, those experiments have been collaboratively analyzed using Monte Carlo simulations conducted by University of Michigan (UM), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and North Carolina State University (NCSU). Monte Carlo simulations of the experiments consistently overpredict the mean and variance of the measured neutron multiplicity distribution. This paper presents a sensitivity study conducted to evaluate the potential sources of the observed errors. MCNPX-PoliMi simulations of plutonium neutron multiplicity measurements exhibited systematic over-prediction of the neutron multiplicity distribution. The over-prediction tended to increase with increasing multiplication. MCNPX-PoliMi had previously been validated against only very low multiplication benchmarks. We conducted sensitivity studies to try to identify the cause(s) of the simulation errors; we eliminated the potential causes we identified, except for Pu-239 {bar {nu}}. A very small change (-1.1%) in the Pu-239 {bar {nu}} dramatically improved the accuracy of the MCNPX-PoliMi simulation for all 6 measurements. This observation is consistent with the trend observed in the bias exhibited by the MCNPX-PoliMi simulations: a very small error in {bar {nu}} is 'magnified' by increasing multiplication. We applied a scalar adjustment to Pu-239 {bar {nu}} (independent of neutron energy); an adjustment that depends on energy is probably more appropriate.

  6. Using GTO-Velo to Facilitate Communication and Sharing of Simulation Results in Support of the Geothermal Technologies Office Code Comparison Study

    SciTech Connect

    White, Signe K.; Purohit, Sumit; Boyd, Lauren W.

    2015-01-26

    The Geothermal Technologies Office Code Comparison Study (GTO-CCS) aims to support the DOE Geothermal Technologies Office in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. Teams of researchers are collaborating in this code comparison effort, and it is important to be able to share results in a forum where technical discussions can easily take place without requiring teams to travel to a common location. Pacific Northwest National Laboratory has developed an open-source, flexible framework called Velo that provides a knowledge management infrastructure and tools to support modeling and simulation for a variety of types of projects in a number of scientific domains. GTO-Velo is a customized version of the Velo Framework that is being used as the collaborative tool in support of the GTO-CCS project. Velo is designed around a novel integration of a collaborative Web-based environment and a scalable enterprise Content Management System (CMS). The underlying framework provides a flexible and unstructured data storage system that allows for easy upload of files that can be in any format. Data files are organized in hierarchical folders and each folder and each file has a corresponding wiki page for metadata. The user interacts with Velo through a web browser based wiki technology, providing the benefit of familiarity and ease of use. High-level folders have been defined in GTO-Velo for the benchmark problem descriptions, descriptions of simulator/code capabilities, a project notebook, and folders for participating teams. Each team has a subfolder with write access limited only to the team members, where they can upload their simulation results. The GTO-CCS participants are charged with defining the benchmark problems for the study, and as each GTO-CCS Benchmark problem is

  7. Construction and fielding of TRS (thermal radiation simulation) units for the Mill Race high explosive event. Project officer's report

    SciTech Connect

    Dishon, J.F. III

    1981-12-18

    Thermal radiation simulation units were developed and fielded on the MILL RACE event. The units released over 1 billion calories of radiant energy at a peak power rate of 1.4 x 10 to the 9th power watts. The units were fired in conjunction with the 600 ton MILL RACE event to produce blast and thermal radiation loadings on a variety of structures.

  8. Final Report - From Measurements to Models: Cross-Comparison of Measured and Simulated Behavioral States of the Atmosphere

    SciTech Connect

    Del Genio, Anthony D; Hoffman, Forrest M; Hargrove, Jr, William W

    2007-10-22

    The ARM sites and the ARM Mobile Facility (AMF) were constructed to make measurements of the atmosphere and radiation system in order to quantify deficiencies in the simulation of clouds within models and to make improvements in those models. While the measurement infrastructure of ARM is well-developed and a model parameterization testbed capability has been established, additional effort is needed to develop statistical techniques which permit the comparison of simulation output from atmospheric models with actual measurements. Our project establishes a new methodology for objectively comparing ARM measurements to the outputs of leading global climate models and reanalysis data. The quantitative basis for this comparison is provided by a statistical procedure which establishes an exhaustive set of mutually-exclusive, recurring states of the atmosphere from sets of multivariate atmospheric and cloud conditions, and then classifies multivariate measurements or simulation outputs into those states. Whether measurements and models classify the atmosphere into the same states at specific locations through time provides an unequivocal comparison result. Times and locations in both geographic and state space of model-measurement agreement and disagreement will suggest directions for the collection of additional measurements at existing sites, provide insight into the global representativeness of the current ARM sites (suggesting locations and times for use of the AMF), and provide a basis for improvement of models. Two different analyses were conducted: One, using the Parallel Climate Model, focused on an IPCC climate change scenario and clusters that characterize long-term changes in the hydrologic cycle. The other, using the GISS Model E GCM and the ARM Active Remotely Sensed Cloud Layers product, explored current climate cloud regimes in the Tropical West Pacific.

  9. An assessment of discriminatory power of office blood pressure measurements in predicting optimal ambulatory blood pressure control in people with type 2 diabetes

    PubMed Central

    Kengne, Andre Pascal; Libend, Christelle Nong; Dzudie, Anastase; Menanga, Alain; Dehayem, Mesmin Yefou; Kingue, Samuel; Sobngwi, Eugene

    2014-01-01

    Introduction Ambulatory blood pressure (BP) measurements (ABPM) predict health outcomes better than office BP, and are recommended for assessing BP control, particularly in high-risk patients. We assessed the performance of office BP in predicting optimal ambulatory BP control in sub-Saharan Africans with type 2 diabetes (T2DM). Methods Participants were a random sample of 51 T2DM patients (25 men) drug-treated for hypertension, receiving care in a referral diabetes clinic in Yaounde, Cameroon. A quality control group included 46 non-diabetic individuals with hypertension. Targets for BP control were systolic (and diastolic) BP. Results Mean age of diabetic participants was 60 years (standard deviation: 10) and median duration of diabetes was 6 years (min-max: 0-29). Correlation coefficients between each office-based variable and the 24-h ABPM equivalent (diabetic vs. non-diabetic participants) were 0.571 and 0.601 for systolic (SBP), 0.520 and 0.539 for diastolic (DBP), 0.631 and 0.549 for pulse pressure (PP), and 0.522 and 0.583 for mean arterial pressure (MAP). The c-statistic for the prediction of optimal ambulatory control from office-BP in diabetic participants was 0.717 for SBP, 0.494 for DBP, 0.712 for PP, 0.582 for MAP, and 0.721 for either SBP + DBP or PP + MAP. Equivalents in diabetes-free participants were 0.805, 0.763, 0.695, 0.801 and 0.813. Conclusion Office DBP was ineffective in discriminating optimal ambulatory BP control in diabetic patients, and did not improve predictions based on office SBP alone. Targeting ABPM to those T2DM patients who are already at optimal office-based SBP would likely be more cost effective in this setting. PMID:25838859

  10. Measurements for the Development of a Simulated Naturally Occurring Radioactive Material

    PubMed Central

    Pibida, L.

    2012-01-01

    Nineteen different commercially available samples containing naturally occurring radioactive materials (NORM) (i.e., natural uranium, thorium, radium and potassium) were investigated, including zircon sand, cat litter, roofing tiles, ice melt and fertilizer among others. A large variation in isotopic composition was observed across the measured samples. As a result of this observation, a need was identified to develop and implement the use of a simulated NORM sample to serve as a reference standard sample containing naturally occurring radioactive elements. The purpose of the simulated NORM sample would be to simulate typical samples containing NORM to be used for testing radiation detection instruments against ANSI/IEEE and IEC document standards requirements. The design and construction of the proposed new simulated NORM sample and the subsequent energy spectra characterization measurements are presented as part of this work. PMID:26900520

  11. MSFC solar simulator test plane uniformity measurement. [for testing solar collectors

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1976-01-01

    The equipment and procedure used to measure the test plane uniformity produced by the MSFC 405 lamp solar simulator array are described along with details of the computer program used to analyze the measurement data. The results of the first measurement show the uniformity not to be as good as expected. The best uniformity obtained had a standared deviation of 4 percent with peak-to-peak values of + or - 11 percent.

  12. Sensors as confidence building measures: A demonstration using a combat simulation

    SciTech Connect

    Warshawsky, A.S.; Spinosa, A.; Pimper, J.

    1994-06-01

    Numerous combat simulations have been developed and used to study the consequences of alternative force structures, analyze weapon performance, and train combat force commanders. These same simulations can, with minor modifications, be used to study a suite of arms control issues. To demonstrate this point, a modification of the LLNL Joint Conflict Model (JCM) was used to explain the utility of unattended ground sensors (UGS) as confidence building measures (CBMs) in the context of a regional arms control situation. It was shown that existing simulations (in particular, JCM) have the functionality necessary to easily and readily address regional arms control issues in a meaningful fashion.

  13. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  14. Gyrokinetic studies of core turbulence features in ASDEX Upgrade: Can gyrokinetic simulations match the fluctuation measurements?

    NASA Astrophysics Data System (ADS)

    Banon Navarro, Alejandro

    2015-11-01

    Worldwide, gyrokinetic codes are used to predict the dominant micro-instabilities as well as the resulting anomalous transport in fusion experiments. A careful verification and validation of these codes is crucial to develop confidence in the model and improving the predictive capabilities of the numerical simulations. To date, the validation of gyrokinetic simulations versus experiments is mainly done at a macroscopic level, namely, by comparing turbulent heat fluxes. This is usually achieved by varying the profile gradients within the experimental error bars until a match with the experimental heat fluxes is obtained. However, since the turbulent fluxes are caused by plasma fluctuations on microscopic scales, it is also necessary to validate gyrokinetic codes on a microscopic level. We will describe a recent step in this direction by presenting simulation results with the gyrokinetic code GENE for an ASDEX Upgrade discharge. In particular, after flux-matched simulations are achieved, density fluctuations measured by means of Doppler reflectometry are compared with results of gyrokinetic simulations. We will also show that density and temperature fluctuation amplitudes and even the fluctuation spectra can be very sensitive to small changes in the profile gradients. This implies that a match of gyrokinetic simulations with experiment measurements for these quantities can be very difficult to achieve. However, it is observed that cross-phases between different quantities are robust to changes in this parameter, indicating that cross-phases could be a better observable for comparisons with experimental measurements.

  15. Ripple field losses in direct current biased superconductors: Simulations and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Lahtinen, Valtteri; Pardo, Enric; Šouc, Ján; Solovyov, Mykola; Stenvall, Antti

    2014-03-01

    In several superconducting applications, as, for example, in some supercondcuting generators, motors, and power transmission cables, the superconductor experiences a changing magnetic field in a DC background. Simulating the losses caused by this AC ripple field is an important task from the application design point of view. In this work, we compare two formulations, the H-formulation and the minimum magnetic energy variation-formulation, based on the eddy current model (ECM) and the critical state model (CSM), respectively, for simulating ripple field losses in a DC biased coated conductor tape. Furthermore, we compare our simulation results with measurements. We investigate the frequency-dependence of the hysteresis loss predictions of the power law based ECM and verify by measurements, that in DC use, ECM clearly over-estimates the homogenization of the current density profile in the coated conductor tape: the relaxation of the local current density is not nearly as prominent in the measurement as it is in the simulation. Hence, we suggest that the power law resistivity, used as the local relation between the electric field intensity E and current density J in ECM, is not an intrinsic property of high-temperature superconductors. The difference between the models manifests itself as discrepancies in ripple field loss simulations in very low AC fields with significant DC fields or currents involved. The results also show, however, that for many practical situations, CSM and ECM are both eligible models for ripple field loss simulations.

  16. Comparison of Experimental Fluctuation and Turbulence Measurements with Theory and Simulation at DIII-D

    SciTech Connect

    Rhodes, T.L.; McKee, G.R.; Politzer, P.A.; Ross, D.W.

    2005-10-15

    Considerable research at DIII-D has been aimed at detailed comparisons of a variety of experimental fluctuation and turbulence measurements to turbulence simulations and theory. The goals of such comparisons are to improve the understanding of turbulence and transport as well as to test and provide feedback to the theory and simulations. Progress in this area will lead to confidence in the extrapolation of predictions to next-step fusion devices and, potentially, to improved control of transport. This paper summarizes some of the more recent and significant results of comparisons of experiment to theory and simulation that have been performed at DIII-D. These comparisons cover a range of plasma conditions (ohmic, L-mode, and impurity enhanced confinement), physical phenomena [transport, avalanches, zonal flows, and geodesic acoustic modes (GAMs)], and measurements (fluctuation levels, fluctuation spectra, radial correlation lengths, heat transport, and poloidal fluctuation velocity). Results reviewed here include comparisons between experimental turbulent radial correlation lengths and nonlinear turbulence simulations, measurements showing GAM activity (a type of zonal flow) similar to predictions, long-range or avalanche-type behavior with significant heat transport similar to that seen in nonlinear simulations, and reduction of turbulence with an enhancement of confinement during impurity injection similar to theory and simulation.

  17. Simulation of large x-ray fields using independently measured source and geometry details

    PubMed Central

    Sawkey, D.; Faddegon, B. A.

    2009-01-01

    Purpose: Obtain an accurate simulation of the dose from the 6 and 18 MV x-ray beams from a Siemens Oncor linear accelerator by comparing simulation to measurement. Constrain the simulation by independently determining parameters of the treatment head and incident beam, in particular, the energy and spot size. Methods: Measurements were done with the treatment head in three different configurations: (1) The clinical configuration, (2) the flattening filter removed, and (3) the target and flattening filter removed. Parameters of the incident beam and treatment head were measured directly. Incident beam energy and spectral width were determined from the percent-depth ionization of the raw beam (as described previously), spot size was determined using a spot camera, and the densities of the flattening filters were determined by weighing them. Simulations were done with EGSnrc∕BEAMnrc code. An asymmetric simulation was used, including offsets of the spot, primary collimator, and flattening filter from the collimator rotation axis. Results: Agreement between measurement and simulation was obtained to the least restrictive of 1% or 1 mm at 6 MV, both with and without the flattening filter in place, except for the buildup region. At 18 MV, the agreement was 1.5%∕1.5 mm with the flattening filter in place and 1%∕1 mm with it removed, except for in the buildup region. In the buildup region, the discrepancy was 2%∕2 mm at 18 MV and 1.5%∕1.5 mm at 6 MV with the flattening filter either removed or in place. The methodology for measuring the source and geometry parameters for the treatment head simulation is described. Except to determine the density of the flattening filter, no physical modification of the treatment head is necessary to obtain those parameters. In particular, the flattening filter does not need to be removed as was done in this work. Conclusions: Good agreement between measured and simulated dose distributions was obtained, even in the buildup region

  18. Using multidimensional Rasch to enhance measurement precision: initial results from simulation and empirical studies.

    PubMed

    Mok, Magdalena Mo Ching; Xu, Kun

    2013-01-01

    This study aimed to explore the effect on measurement precision of multidimensional, as compared with unidimensional, Rasch measurement for constructing measures from multidimensional Likert-type scales. Many educational and psychological tests are multidimensional but common practice is to ignore correlations among the latent traits in these multidimensional scales in the measurement process. These practices may have serious validity and reliability implications. This study made use of both empirical data from 208,083 students, and simulated data simulated by 24 systematic combinations, each replicated 1000 times, of three conditions, namely, sample size, degree of dimensionality, and scale length to compare unidimensional and multidimensional approaches and to identify effects of sample size, dimensionality and scale length on measurement precision. Results showed that the multidimensional Rasch approach yielded more precise estimates than did unidimensional approach if the two dimensions were strongly correlated. The effect was more pronounced for long scales. PMID:23442326

  19. Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations

    NASA Astrophysics Data System (ADS)

    Toosi, Siavash; Larsson, Johan

    2015-11-01

    Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.

  20. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  1. Fast error simulation of optical 3D measurements at translucent objects

    NASA Astrophysics Data System (ADS)

    Lutzke, P.; Kühmstedt, P.; Notni, G.

    2012-09-01

    The scan results of optical 3D measurements at translucent objects deviate from the real objects surface. This error is caused by the fact that light is scattered in the objects volume and is not exclusively reflected at its surface. A few approaches were made to separate the surface reflected light from the volume scattered. For smooth objects the surface reflected light is dominantly concentrated in specular direction and could only be observed from a point in this direction. Thus the separation either leads to measurement results only creating data for near specular directions or provides data from not well separated areas. To ensure the flexibility and precision of optical 3D measurement systems for translucent materials it is necessary to enhance the understanding of the error forming process. For this purpose a technique for simulating the 3D measurement at translucent objects is presented. A simple error model is shortly outlined and extended to an efficient simulation environment based upon ordinary raytracing methods. In comparison the results of a Monte-Carlo simulation are presented. Only a few material and object parameters are needed for the raytracing simulation approach. The attempt of in-system collection of these material and object specific parameters is illustrated. The main concept of developing an error-compensation method based on the simulation environment and the collected parameters is described. The complete procedure is using both, the surface reflected and the volume scattered light for further processing.

  2. A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA

    SciTech Connect

    Maile, Tobias; Bazjanac, Vladimir; O'Donnell, James; Garr, Matthew

    2011-11-01

    Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots and data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.

  3. Infrared measurements and simulations of metal meshes in a focused beam

    SciTech Connect

    Stewart, K. P.; Möller, K. D.; Grebel, H.

    2014-02-07

    Infrared transmittance measurements of quasioptical filters are often restricted to a focused beam due to the optical design of the spectrometer. In contrast, numerical simulations assume an incident plane wave, which makes it difficult to compare theory with experimental data. We compare transmittance measurements with numerical simulations of square arrays of circular holes in 3-μm thick Cu sheets at angles of incidence from 0° to 20° for both s and p polarizations. These simple structures allow detailed tests of our electromagnetic simulation methods and show excellent agreement between theory and measurement. Measurements in a focused beam are accurately simulated by combining plane wave calculations over a range of angles that correspond to the focal ratio of the incident beam. Similar screens have been used as components of narrow bandpass filters for far-infrared astronomy, but these results show that the transmittance variations with angle of incidence and polarization limit their use to collimated beams at near normal incidence. The simulations are accurate enough to eliminate a costly trial-and-error approach to the design of more complex and useful quasioptical infrared filters and to predict their in-band performance and out-of-band blocking in focused beams.

  4. Measurements and simulations of the cosmic-ray-induced neutron background

    NASA Astrophysics Data System (ADS)

    Becchetti, M. F.; Flaska, M.; Clarke, S. D.; Pozzi, S. A.

    2015-03-01

    The cosmic-ray-induced neutron background at ground level has been measured and simulated in conjunction with EJ-309 organic liquid scintillators with an approximate deposited energy range of 0.5-6 MeV. Specifically, the pulse height distributions, net neutron count rates, and angular dependences were obtained. The simulations were carried out using the Monte Carlo transport code MCNPX-PoliMi combined with the (Cosmic-Ray Shower Generator) CRY source subroutine that returns secondary particles produced by cosmic rays. A scaling formula from literature was also implemented in the simulation. The angular dependence of the neutron count rate was measured by collimating the liquid scintillator with polyethylene to attain 18° angular resolution from 0° downwards to 72° horizontally. The neutron count rate was measured to be 23.10±1.69 h-1 sr-1 at 0°, and 7.20±0.78 h-1 sr-1 at 72°. The simulations and measurements compare well and show similar cosine anisotropy for the angular distribution. The study thus shows that the neutron background response in detector systems can be efficiently and accurately simulated using the procedures described.

  5. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  6. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20. 8-cm Nova box amplifier cavities

    SciTech Connect

    Julien, J.L.; Molishever, E.L.

    1983-10-31

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks.

  7. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards. PMID:26444196

  8. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

    NASA Astrophysics Data System (ADS)

    Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.

    2013-12-01

    The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

  9. Simulation of a Novel Active Target for Neutron-Unbound State Measurements

    NASA Astrophysics Data System (ADS)

    Frank, Nathan; MoNA Collaboration

    2013-10-01

    Measurement of nuclei at extreme ratios of protons to neutrons is challenging due to the low production rate. New facilities will increase the production of neutron-rich isotopes, but still not reach the neutron dripline for heavier nuclei. We simulated a carbon-based active target system that could be constructed to both increase statistics while preserving the experimental resolution. This simulation is an adaptation of the in-house MoNA Collaboration C + + based simulation tool to extract the decay energy of neutron-unbound states. A number of experiments of this type have been carried out at the National Superconducting Cyclotron Laboratory (NSCL). In most experiments, we produce neutron-unbound nuclei by bombarding a Beryllium target with a radioactive beam. The nucleus of interest immediately decays into a charged particle and one or more neutrons. In this simulation, we have constructed a carbon-based active target that provides a measurement of energy loss, which is used to calculate the nuclear interaction point within the target. This additional information is used to improve the resolution or preserve the resolution of a thinner target while increasing statistics. This presentation will cover some aspects of the simulation process as well as show a resolution improvement of up to about 4 with a ~700 mg/cm2 active target compared to a Be-target. The simulation utilized experimental settings from published work. Work supported by National Science Foundation Grant #0969173.

  10. The 3-D LDV Measurements on a 30-Degree Swept Wing with a Simulated Ice Accretion

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Kerho, Michael K.

    1994-01-01

    Three dimensional flowfield measurements have been obtained for a semispan 30-degree swept wing with a simulated glaze ice accretion. The model tested has a NACA 0012 section perpendicular to the leading edge. Measurements were made using a two-component laser Doppler velocimeter (LDV) system. Mean velocity measurements were obtained for all three velocity components. Streamwise turbulence intensities were also obtained. All measurements were taken in the University of Illinois 3 by 4 foot subsonic wind tunnel at a Reynolds number of 1 million and 8 degrees angle of attack. The data is presented in tabular form.