Science.gov

Sample records for offset alluvial fan

  1. Late Quaternary Offset of Alluvial Fan Surfaces along the Central Sierra Madre Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, A.; Burgette, R. J.; Scharer, K. M.; Midttun, N. C.

    2015-12-01

    The Sierra Madre fault (SMF) is an east-west trending reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. The ~140 km long SMF is separated into four segments, we focus on the multi-stranded, ~60 km long Central Sierra Madre fault (CSMF; W118.3-W117.7) as it lacks a well-characterized long-term geologic slip rate. We combine 1-m lidar DEM with geologic and geomorphic mapping to correlate alluvial fan surfaces along strike and across the fault strands in order to derive fault slip rates that cross the CSMF. We have refined mapping on two sets of terraces described by Crook et al. (1987) and references therein: a flight of Q3 surfaces (after nomenclature of Crook et al., 1987; McFadden, 1982) in Arroyo Seco with distinct terraces ~30 m, ~40 m, ~50 m, and ~55 m above the modern stream and in Pickens Canyon divided a Q3 and Q2 surface, with heights that are ~35 m and ~25 m above the modern stream respectively. Relative degree of clast weathering and soil development is consistent with geomorphic relationships; for example, hues of 7.5 YR to 10 YR are typical of Q3, while hues of 10 YR to 2.5 Y are typical of Q2. A scarp in the Q3 surface at Arroyo Seco has a vertical offset of ~16 m and a scarp in the Q3 at Pickens Canyon has a vertical offset of ~14 m, while the Q2 surface is not faulted. Our Quaternary dating strategy is focused on dating suites of terraces offset along CSMF scarps in order to provide broader stratigraphic context for the cosmogenic radionuclide and luminescence dating. We will present (pending) cosmogenic radionuclide depth profiles from the Q3 surfaces. A better-constrained slip rate for the CSMF will improve earthquake hazard assessment for the Los Angeles area and help clarify the tectonic role of the SMF in the broader plate boundary system. Additionally, the fan chronology will provide information about the timing of alluvial fan aggradation and incision in the western Transverse Ranges.

  2. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  3. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently

  4. Hydraulic processes on alluvial fans

    SciTech Connect

    French, R.H.

    1987-01-01

    Alluvial fans are among the most prominent landscape features in the American Southwest and throughout the semi-arid and arid regions of the world. The importance of developing a qualitative and quantitative understanding of the hydraulic processes which formed, and which continue to modify, these features derives from their rapid and significant development over the past four decades. As unplanned urban sprawl moved from valley floors onto alluvial fans, the serious damage incurred from infrequent flow events has dramatically increased. This book presents a discussion of our current and rapidly expanding knowledge of hydraulic processes on alluvial fans. It addresses the subject from a multidisciplinary viewpoint, acquainting the reader with geological principles pertinent to the analysis of hydraulic processes on alluvial fans.

  5. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    SciTech Connect

    der Woerd, J v; Klinger, Y; Sieh, K; Tapponnier, P; Ryerson, F; M?riaux, A

    2006-01-13

    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposure history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.

  6. Northern San Andreas Fault slip rates on the Santa Cruz Mountain section: 10Be dating of an offset alluvial fan complex, Sanborn County Park, Saratoga, CA

    NASA Astrophysics Data System (ADS)

    Guns, K. A.; Prentice, C. S.; DeLong, S. B.; Kiefer, K.; Blisniuk, K.; Burgmann, R.

    2015-12-01

    To better assess seismic hazard and fault behavior along the southern peninsula in the San Francisco Bay Area on the Santa Cruz Mountain section of the San Andreas Fault, we combine field observations and high-resolution lidar topography data with 10Be exposure dating on offset landforms to estimate geologic fault slip rates. Our mapping at Sanborn County Park near Saratoga reveals a progression of alluvial fans and debris flows offset from their upstream sources by dextral slip on the San Andreas Fault. These upstream sources are 3 drainages, Todd Creek, Service Road Creek and Aubry Creek. Coarse alluvial deposits from each of these creeks contain large Tertiary sandstone boulders of varying size and abundance, derived from the Vaqueros Formation, that allow us to constrain the provenance of offset alluvial deposits to their upstream sources. Initial reconstruction, based on clast-count data on lithology and size from Todd Creek (n=68), Service Road Creek (N=32) and the offset deposits (n=68), suggest ≥140 m of dextral fault movement. Initial 10Be cosmogenic dating of sandstone boulders on an offset deposit from Service Road Creek yields a maximum date of 8 ka, a date uncorrected for hillslope residence and fluvial transport of inherited 10Be concentrations. These data suggest a minimum slip rate of at least 17 mm/yr on the Santa Cruz Mountain section of the San Andreas Fault in the peninsula. Ongoing analysis will refine this fault slip rate. Our preliminary data underscore the potential of this site to provide geologic slip rate estimates, and therefore answer a question critical to seismic hazard assessment, in a region where steep terrain, mass wasting, vegetation and urban development have generally made slip rate estimates challenging to obtain.

  7. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    USGS Publications Warehouse

    Frankel, K.L.; Brantley, K.S.; Dolan, J.F.; Finkel, R.C.; Klinger, R.E.; Knott, J.R.; Machette, M.N.; Owen, L.A.; Phillips, F.M.; Slate, J.L.; Wernicke, B.P.

    2007-01-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ???297 ?? 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36C1 geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ?? 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ???8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant. Copyright 2007 by the American Geophysical Union.

  8. Long-term slip rates of the Elsinore-Laguna Salada fault, southern California, by U-series Dating of Pedogenic Carbonate in Progressively Offset Alluvial fan Remnants.

    NASA Astrophysics Data System (ADS)

    Fletcher, K. E.; Rockwell, T. K.; Sharp, W. D.

    2007-12-01

    The Elsinore-Laguna Salada (ELS) fault is one of the principal strands of the San Andreas fault system in southern California, however its seismic potential is often de-emphasized due to previous estimates of a low slip rate. Nevertheless, the fault zone has produced two historic earthquakes over M6, with the 1892 event estimated at >M7; thus further investigation of the long-term slip rate on the ELS fault is warranted. On the western slopes of the Coyote Mountains (CM), southwest Imperial Valley, a series of alluvial fans are progressively offset by the Elsinore fault. These fans can be correlated to their source drainages via distinctive clast assemblages, thereby defining measurable offsets on the fault. Dating of the CM fans (to compute slip rates), however, is challenging. Organic materials appropriate for C-14 dating are rare or absent in the arid, oxidizing environment. Cosmogenic surface exposure techniques are limited by the absence of suitable sample materials and are inapplicable to numerous buried fan remnants that are otherwise excellent strain markers. Pedogenic carbonate datable by U-series, however, occurs in CM soil profiles, ubiquitously developed in fan gravels, and is apparent in deposits as young as ~1 ka. In CM gravels 10's ka and older, carbonate forms continuous, dense, yellow coatings up to 3 mm thick on the undersides of clasts. Powdery white carbonate may completely engulf clasts, but is not dateable. Carefully selected samples of dense, innermost carbonate lamina weighing 10's of milligrams and analyzed by TIMS, are geochemically favorable for precise U-series dating (e.g., U = 1-1.5 ppm, median 238U/232Th ~ 7), and yield reproducible ages for coatings from the same microstratigraphic horizon (e.g., 48.2 ± 2.7 and 49.9 ± 2.2 ka), indicating that U-Th systems have remained closed and that inherited coatings, though present, have been avoided. Accordingly, U-series on pedogenic carbonate provides reliable minimum ages for deposition of

  9. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California.

    NASA Astrophysics Data System (ADS)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas

    2013-04-01

    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  10. Modern and ancient alluvial fan deposits

    SciTech Connect

    Nilsen, T.H.

    1985-01-01

    Understanding the structure and depositional processes of alluvial fans (river outwash deposits) has a special interest for those involved with the exploration of petroleum and many minerals. This collection of facsimile reprints of significant and classical research papers sheds new light on the subject. This reference covers the stratigraphy, sedimentology, and depositional processes of modern and ancient alluvial fans. Geographical areas considered include Arctic Canada, the American Southwest, Australia, Wyoming, Norway, and Spain. It includes a state-of-the-art introduction by the editor along with commentaries on all the papers included, a master author citation index and a subject index, and a chronological listing of early studies of alluvial fans.

  11. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported. PMID:25215729

  12. No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~ 64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans

    NASA Astrophysics Data System (ADS)

    Sarıkaya, M. A.; Yıldırım, C.; Çiner, A.

    2015-05-01

    The Ecemiş Fault Zone (EF) has been recognized as a major left lateral strike-slip fault in the Central Anatolian Fault Zone (CAFZ) of Turkey. However, its Quaternary slip-rate has been challenging to determine due to the difficulty of dating offset markers. Using high-precision offset measurements and 36Cl cosmogenic nuclide dating, we present the first geochronologically determined Late Quaternary slip-rate for the EF. Our study focuses on the excellent exposures of offset alluvial fan surfaces, originating from the Aladağlar, a Late Quaternary glaciated mountain. Analysis of airborne orthophotogrametry and GNSS (Global Navigation Satellite System) surveys indicates 168 ± 2 m left lateral and 31 ± 1 m vertical displacements. In-situ terrestrial cosmogenic 36Cl geochronology obtained from eleven surface boulders provides a minimum abandonment/incision age of 104.2 ± 16.5 ka for the oldest offset alluvial fan surface. Our geomorphic observations together with Self-potential geophysical surveys revealed the presence of an unfaulted alluvial fan terrace, which allows us to constrain the timing of deformation. The abandonment/incision age of this fan is 64.5 ± 5.6 ka based on thirteen 36Cl depth profile samples. Accordingly, we obtained a geologic fault slip-rate of 4.2 ± 1.9 mm a- 1 horizontally and 0.8 ± 0.3 mm a- 1 vertically for the time frame between 104.2 ± 16.5 ka and 64.5 ± 5.6 ka. Our analysis indicates that the EF has not been producing a major surface breaking earthquake on the main strand at least since 64.5 ± 5.6 ka (mid-Late Pleistocene). This could be the result of abandonment of the main strand and accommodation of deformation by other faults within the EF. Nevertheless, a recently occurred (30 September 2011) low magnitude (ML: 4.3) left lateral strike-slip earthquake indicates recent seismic activity of the EF. Comparison of the recent GPS velocity field with the longer slip history along the CAFZ indicates a constant but low strain

  13. Experimental Study of Alluvial Fan Formation

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Barrier, L.; Métivier, F.

    2015-12-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters ( fluid and sediment discharges, grain size). Our observation accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil; Pastaza, Peru).

  14. Controls on alluvial fan long-profiles

    USGS Publications Warehouse

    Stock, J.D.; Schmidt, K.M.; Miller, D.M.

    2008-01-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of

  15. The Problem of Alluvial Fan Slopes

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Schmidt, K.

    2005-12-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and

  16. Design of flood protection for transportation alignments on alluvial fans

    SciTech Connect

    French, R.H.

    1991-01-01

    The method of floodplain delineation on alluvial fans developed for the national flood insurance program is modified to provide estimates of peak flood flows at transportation alignments crossing an alluvial fan. The modified methodology divides the total alignment length into drainage design segments and estimates the peak flows that drainage structures would be required to convey as a function of the length of the drainage design segment, the return period of the event, and the location of the alignment on the alluvial fan. An example of the application of the methodology is provided. 16 refs., 5 figs.

  17. Distribution and Orientation of Alluvial Fans in Martian Craters

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. I.

    2005-01-01

    We present the results of the complete survey of Martian alluvial fans from 0-30 S, initiated by Moore and Howard. Nineteen impact craters contain alluvial fans. They are regionally grouped into three distinct areas. We present our initial results regarding their distribution and orientation in order to understand what controls their formation. Since alluvial fans are formed by water transport of sediment, these features record wetter episodes of Martian climate. In addition, their enigmatic distribution (in regional groups and in some craters, but not similar adjacent ones) needs to be understood, to see how regional geology, topographic characteristics, and/or climate influence their formation and distribution.

  18. Directional scales of heterogeneity in alluvial fan aquifers

    SciTech Connect

    Neton, M.J.; Dorsch, J.; Young, S.C.; Olson, C.D. . Dept. of Geological Sciences Tennessee Valley Authority Engineering Lab., Norris, TN )

    1992-01-01

    Abrupt lateral and vertical permeability changes of up to 12 orders of magnitude are common in alluvial fan aquifers due to depositional heterogeneity. This abrupt heterogeneity is problematic, particularly in construction of a continuous hydraulic conductivity field from point measurements. Site characterization is improved through use of a scale-and-directionally-related model of fan heterogeneities. A directional classification of alluvial fan aquifer heterogeneities is proposed. The three directional scales of heterogeneity in alluvial fan aquifers are: (1) within-fan, (2) between-fan (strike-parallel), and (3) cross-fan (strike-perpendicular). Within-fan heterogeneity ranges from very small-scale intergrain relationships which control the nature of pores, to larger scale permeability trends between fan apex and toe, and includes abrupt lateral and vertical facies relationships. Between-fan heterogeneities are of a larger-scale and include differences between adjacent (non)coalescent fans along a basin-margin fault due primarily to changes in lithology between adjacent upland source basins. These differences produce different (a) grain and pore fluid compositions, (b) lithologic facies and proportions, and (c) down-fan fining trends, between adjacent fans. Cross-fan heterogeneities extend from source to basin. Fan deposits are in abrupt contact upgradient with low permeability, basin-margin source rock. Downgradient, fan deposits are in gradational to abrupt contact with time-equivalent, generally lower permeability deposits of lake, desert, longitudinal braided and meandering river, volcanic, and shallow marine environments. Throughout basin history these environments may abruptly cover the fan with low permeability horizons.

  19. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  20. Alluvial fans and fan deltas: a guide to exploration for oil and gas

    SciTech Connect

    Fraser, G.S.; Suttner, L.

    1986-01-01

    This volume is a result of a series of lectures presented to an oil company in 1985 and is intended for an audience of explorationists. Material is presented in the order in which an exploration program might proceed in a frontier area. The volume is divided into six chapters that cover definitions and tectonic setting, alluvial-fan morphology, processes and facies on alluvial fans, geomorphic controls, effects of extrinsic controls (chiefly tectonism and climate) on alluvial-fan sequences, and diagenesis. Previously published black-and-white line drawings from studies of modern and ancient fans and fan deltas provide almost all the illustrative material; only one photograph is included, an aerial view of fans in part of Death Valley. The authors emphasize the complexity and variability of fan deposits and their resultant architecture. Although the volume contains a useful review of previous literature, it contains little new material, and it is remarkably lacking subsurface examples and data for a volume intended for the exploration community. In addition, fan deltas receive only brief attention; the overwhelming part of the book is devoted to alluvial fans. The volume will be of interest to those involved in studies of modern and ancient alluvial-fan deposits. 165 references.

  1. Alluvial Fans as Recorders of Landscape Development: Potential for Determining Depositional Chronologies Using Luminescence Dating

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Rhodes, E. J.; Roder, B. J.; Antinao, J.; McDonald, E.

    2011-12-01

    Alluvial fans in both arid and humid environments provide a record of depositional events at the transition between mountain and lowland environments. Though complex in the detail of their depositional and erosional characteristics, they undoubtedly provide a valuable record of the highest erosion rate events in their upland catchments. Alluvial fans often also record tectonic activity; their mountain-front location is ideal to intersect bounding faults, and their characteristic geometry renders offsets easily recognisable. Dating of Quaternary alluvial fans can be accomplished using a number of techniques. These include radiocarbon dating where suitable organic materials are preserved; uranium series methods may be applied to provide a minimum age by dating carbonate inter-clast cements in some arid or semi-arid environments; terrestrial cosmogenic nuclide (TCN) methods work well in many dryland contexts though issues of inheritance in some catchments are significant. Optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) rely on light sensitive charge populations trapped at meta-stable centers associated with impurities in quartz and feldspar grains. When grains are exposed to light, charge is evicted from these traps, and is slowly re-tapped by interaction with environmental ionizing radiaton. These signals have the potential to date a range of Quaternary sediments including alluvial fans on timescales of one year to several hundred thousand years. The specific issues relating to alluvial fans are problems of incomplete signal zeroing caused by rapid deposition, as well as low sensitivity and poor signal characteristics for quartz OSL. In this presentation, we explore the relative importance of these issues in determining luminescence chronologies for alluvial fans in different locations, and the ways in which these chronologies may be used to help inform models of landscape evolution, both numerical and conceptual.

  2. Thermal imaging of sedimentary features on alluvial fans

    NASA Astrophysics Data System (ADS)

    Hardgrove, Craig; Moersch, Jeffrey; Whisner, Stephen

    2010-03-01

    Aerial thermal imaging is used to study grain-size distributions and induration on a wide variety of alluvial fans in the desert southwest of the United States. High-resolution aerial thermal images reveal evidence of sedimentary processes that rework and build alluvial fans, as preserved in the grain-size distributions and surface induration those processes leave behind. A catalog of constituent sedimentary features that can be identified using aerial thermal and visible imaging is provided. These features include clast-rich and clast-poor debris flows, incised channel deposits, headward-eroding gullies, sheetflood, lag surfaces, active/inactive lobes, distal sand-skirts and basin-related salt pans. Ground-based field observations of surface grain-size distributions, as well as morphologic, cross-cutting and topographic relationships were used to confirm the identifications of these feature types in remotely acquired thermal and visible images. Thermal images can also reveal trends in grain sizes between neighboring alluvial fans on a regional scale. Although inferences can be made using thermal images alone, the results from this study demonstrate that a more thorough geological interpretation of sedimentary features on an alluvial fan can be made using a combination of thermal and visible images. The results of this study have potential applications for Mars, where orbital thermal imaging might be used as a tool for evaluating constituent sedimentary processes on proposed alluvial fans.

  3. Geometry and evolution of a syntectonic alluvial fan, Southern Pyrenees

    SciTech Connect

    Arminio, J.F. ); Nichols, G.J. )

    1993-02-01

    Syntectonic alluvial fans formed on the northern margin of the Ebro Foreland Basin along the South Pyrenean thrust front during late orogenic thrust movements in the late Oligocene/early Miocene. The present-day geometry, structural relations and sedimentology of one of these fans, the Aguero fan in the province of Huesca, Spain, were studied. Field observations of the architecture of depositional facies and the geometries of syn-tectonic folds and unconformities indicate that the Aguero fan formed as the result of several phases of sedimentation which were primarily controlled by periods of tectonic activity and quiescence. The syntectonic unconformities and growth folds in the fan deposits provide a detailed record of the evolution of a fan adjacent to an active thrust front. Using a computer program to simulate sedimentation and deformation of an alluvial fan it is possible to constrain rates of both sedimentary and tectonic processes by modeling the evolution of the fan body. A facies model for the fan phases indicates that the facies change from proximal (coarse-grained, amalgamated) to distal (finger grained, stacked fining up cycles) in less than 1 km across a fan of radius estimated to be about 2 km.

  4. Experimental study of a single channel alluvial fan

    NASA Astrophysics Data System (ADS)

    Delorme, Pauline; Devauchelle, Olivier; Barrier, Laurie; Métivier, François

    2016-04-01

    At the outlet of mountain ranges, rivers reach a flat plain and start to depose their sediment load into a conical sedimentary structure called alluvial fan. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters (fluid and sediment discharges, grain size). Our observations accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. At the first order, the fan profile is linear and control by the water discharge. The downstream decrease in sediment discharge add a curvature to this profile. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil).

  5. Experimental alluvial fans: Advances in understanding of fan dynamics and processes

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy E.

    2015-09-01

    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  6. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  7. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  8. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  9. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  10. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  11. Combined velocity and depth mapping on developing laboratory alluvial fans

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; Strom, K. B.; Hoyal, D. C.

    2011-12-01

    Large-scale particle image velocimetry (LSPIV) is a nonintrusive method for measuring free-surface velocities using tracer patterns in a sequence of images. This method has been applied in both natural rivers and large-scale hydraulic models (Muste et al., 2008). Here the method is used to map channel and sheet flow velocity during the development of laboratory-scale alluvial fans. Measuring the time and space varying hydraulics on laboratory fans by traditional methods is not practical since flows are quite shallow (~1 cm). Additionally, the highly dynamic environment makes positioning of traditional probe-type instruments difficult and their physical presence could alter autogenic fan evolution. These difficulties can be overcome by using particle image velocimetry techniques. Furthermore, images collected in the LSPIV method can be used to extract flow depth using a calibrated dye-intensity method (Gran and Paola, 2001). This allows for simultaneous measurement of flow velocity and depth everywhere over the fan at any point in time. To validate the method, a set of controlled small-scale experiments were run for depths ranging from 0.2-1.5 cm and velocities from 10-100 cm/sec. Comparison of the LSPIV and dye-intensity method measurements to the known values indicated that the methodology was able to accurately capture simultaneous flow velocity and depth in this range of conditions, i.e., those encountered during the development of laboratory-scale alluvial fans and streams. The method is then used to map the hydraulics associated with various fan processes during development as demonstrated in figure 1. The ability to measure hydraulic properties during fan development is important since physical models provide an arena for observing the time evolution and morphodynamic feedback in depositional systems such as alluvial fans.

  12. Alluvial Fan Morphology, distribution and formation on Titan

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Howard, A. D.; Moore, J. M.; Radebaugh, J.

    2016-05-01

    Titan is a hydrologically active world, with dozens of alluvial fans that are evidence of sediment transport from high to low elevations. However, the distribution and requirements for the formation of fans on Titan are not well understood. We performed the first global survey of alluvial fans on Titan using Cassini Synthetic Aperture Radar (SAR) data, which cover 61% of Titan's surface. We identified 82 fans with areas ranging from 28 km2 to 27,000 km2. A significant fraction (∼60%) of the fans are restricted to latitudes of ±50-80°, suggesting that fluvial sediment transport may have been concentrated in the near-polar terrains in the geologically recent past. The density of fans is also found to be correlated with the latitudes predicted to have the highest precipitation rates by Titan Global Circulation Models. In equatorial regions, observable fans are not generally found in proximity to dune fields. Such observations suggest that sediment transport in these areas is dominated by aeolian transport mechanisms, though with some degree of recent equatorial fluvial activity. The fan area-drainage area relationship on Titan is more similar to that on Earth than on Mars, suggesting that the fans on Titan are smaller than what may be expected, and that the transport of bedload sediment is limited. We hypothesize that this has led to the development of a coarse gravel-lag deposit over much of Titan's surface. Such a model explains both the morphology of the fans and their latitudinal concentration, yielding insight into the sediment transport regimes that operate across Titan today.

  13. Morphometric Characterization and Classification of Alluvial Fans in Eastern Oman

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Mattern, Frank; van Gasselt, Stephan

    2015-04-01

    Morphologic characteristics of alluvial fans are a product of fluvial erosion, transportation and deposition. Consequently, fans have been described and defined on the basis of their shape, their composition, conditions and processes under which they from, their so-called "controlling factors", and their geomorphic and tectonic settings. The aim of our study is to reconstruct the morphologic evolution and to relate it to past and present climate conditions. In order to achieve this, we first characterize alluvial fans based on their climatic settings and conditions and classify them accordingly using satellite image data and digital elevation models. For mapping of different alluvial fan bodies multispectral images of the Landsat Enhanced Thematic Mapper (ETM+) with a scale of 15-30 m/px were utilized. For the detection of morphometric parameters as input data for subsequent hydrological studies digital terrain model data of the Shuttle Radar Topography Mission (SRTM) and the ASTER GDEM with a scale of 90 m/px and 30m, respectively, were used. Using these datasets morphological characteristics, such as sizes of drainage basins, transport areas and areas of deposition derived from spatial semi-automatic analysis, have been computed. The area of Muscat at the Oman Mountains has been selected as a study area because of its size, accessibility and climate conditions and it is considered well-suited for studying the development of alluvial fans and their controlling factors. The Oman Mountains are well-known for the world's largest intact and best exposed obducted ophiolite complex, the Semail Ophiolite. They are today subjected to a mild desert climate (Bwh), influenced by the Indian Ocean but they have experienced extensive pluvial periods in the geologic past. Formation of alluvial fans was, therefore, likely triggered by the interplay of increased sediment production caused by high rainfalls with enhanced erosion of hillslopes and transport rates during pluvial

  14. Coastal alluvial fans (fan deltas) of the Gulf of Aqaba (Gulf of Eilat), Red Sea

    NASA Astrophysics Data System (ADS)

    Hayward, A. B.

    1985-04-01

    Coastal sediments of the Gulf of Aqaba are dominated by alluvial fans that prograde directly into the sea. The fans can be subdivided into four types: (1) largely inactive alluvial fans that merge into a braided fluvial system and pass seaward into sabkha flats, lagoons, mangroves and fringing reefs; (2) large alluvial fans that pass directly into the sea with one major entrenched channel and a fringing reef with a large incised canyon; both of these were formed during the Pleistocene, present fluvial activity is confined to the entrenched channels; (3) medium-sized (1-2 km long, 3-4 km wide) moderate to highly active alluvial fans with fringing reefs and backreef lagoons; and (4) small short-headed wadis that empty directly into the sea. The scale, overall sediment body geometry and facies associations of type (3) coastal alluvial fans (fan deltas) provide a close and useful modern analogue for many ancient fan-delta sedimentary sequences. On subaerial parts of the fan, disorganised cobbles and boulders, at the apex, deposited by debris flows pass downslope into longitudinal bars deposited during the high flood stage of periodic flash-flood events. The bars extend over the entire fan surface becoming progressively smaller and finer grained down fan. In general, the fans are characterised by a low proportion of floodplain deposits and extensive modification by aeolian processes, producing widespread gravel pavements and small dune fields over inactive areas of the lower fan. In the marine environment the fans are modified by a combination of wave action and longshore drift. Sand beaches are characterised by low-angle seaward-dipping lamination. On shingle beaches all gravel clasts have a strong preferred seaward dipping orientation. In areas where the fringing reefs are situated offshore from the fan, mixed quartz-bioclastic sand-filled lagoons develop. The nearshore lagoon areas are characterised by large sand bars orientated parallel to the shore. These pass

  15. Surface exposure dating of moraines and alluvial fans in the Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Terrizzano, Carla; Zech, Roland; García Morabito, Ezequiel; Haghipour, Negar; Christl, Marcus; Likermann, Jeremías; Tobal, Jonathan; Yamin, Marcela

    2016-04-01

    The role of tectonics versus climate in controlling the evolution of alluvial fans in discussed controversially. The southern Central Andes and their forelands provide a perfect setting to study climate versus tectonic control of alluvial fans. On the one hand, the region is tectonically active and alluvial fan surfaces are offset by faults. The higher summits, on the other hand, are glaciated today, and glacial deposits document past periods of lower temperatures and increased precipitation. We applied 10Be surface exposure dating on 5 fan terraces 4 moraines of the Ansilta range (31.6°S - 69.8°W) using boulders and amalgamated pebbles to explore their chronological relationship. From youngest to oldest, the alluvial fan terraces yield minimum ages of 15 ± 1 ka (T1), 97 ± 9 ka (T2), 141 ± 9 ka (T3), 286 ± 14 ka (T4) and 570 ± 57 ka (T5). Minimum ages derived from moraines are 14 ± 1 ka (M1), 22 ± 2 ka (M2), 157 ± 14 ka (M3) and 351 ± 33 ka (M4), all calculations assuming no erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. The moraines document glacial advances during cold periods at the marine isotope stages (MIS) 2, 6 and 10. The terraces T1, T3 seem to be geomorphologic counterparts during MIS 2 and 6. We suggest that T2, T4 and T5 document aggradation during the cold periods MIS 5d, 8 and 14 in response to glacial advances, although the respective moraines are not preserved. Our results highlight: i) the arid climate in the Southern Central Andes favors the preservation of glacial and alluvial deposits allowing landscape and climate reconstructions back to ~570 ka), ii) alluvial deposits correlate with moraines or fall into cold glacial times, so that climate, and in particular the existence of glaciers, seems to be the main forcing of alluvial fan formation at our study site. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary

  16. Are North Slope surface alluvial fans pre-Holocene relicts?

    USGS Publications Warehouse

    Reimnitz, Erk; Wolf, Stephen C.

    1998-01-01

    The surface morphology of the northern slope of the Brooks Range (North Slope) from the Canning River, Alaska, eastward is dominated by a series of large alluvial fans and braided streams floored by coarse alluvium. On the basis of our studies, we conclude that the fans are not prograding now nor have they been prograding at any time during the Holocene. During the latest transgression and the following sea-level highstand, the North Slope depositional environment and climate probably differed greatly from the present ones.

  17. Detectability of minerals on desert alluvial fans using reflectance spectra

    NASA Technical Reports Server (NTRS)

    Shipman, Hugh; Adams, John B.

    1987-01-01

    The visible and near-infrared reflectance spectra of soil samples collected from desert alluvial and colluvial surfaces in the Cuprite mining district, Nevada, were analyzed. These surfaces are downslope from hydrothermally altered volcanic rocks that contain spectrally characteristic minerals such as alunite and kaolinite. Coarse fractions of the soils on the alluvial fans are mineralogically variable and express the upslope lithologies; fine fractions are remarkably similar mineralogically and spectrally in all samples because of dilution of local mineral components by regionally derived windblown dust. Theoretical models for spectral mixing and for particle-size effects were used to model the observed spectral variations. Diagnostic mineral absorption bands in the spectra of fan materials were enhanced by computationally removing the spectrum of the homogeneous fine-soil component. Results show that spectral mixing models are useful for analyzing data with high spectral resolution obtained by field and aircraft spectrometers.

  18. Sedimentology of Holocene debris flow-dominated alluvial fans, northwest Wyoming: Contributions to alluvial fan facies models

    SciTech Connect

    Cechovic, M.T.; Schmitt, J.G. . Dept. of Earth Sciences)

    1993-04-01

    Facies models for debris flow-dominated alluvial fans are based exclusively upon studies of relatively few fans in the arid American southwest. Detailed geomorphic, stratigraphic, and sedimentologic analyses of several highly-active, debris flow-dominated alluvial fans in northern Yellowstone National Park, WY (temperature, semi-arid) serve to diversify and increase the usefulness of alluvial fan facies models. These fans display an intricate distributary pattern of incised active (0--6 m deep; 700--900 m long) and abandoned channels (1--4 m deep; 400 m long) with levees/levee complexes (<3 m high; <20 m wide; <750 m long) and lobes constructed by pseudoplastic to plastic debris flows. The complex pattern of debris flow deposits is due to repeated channel back filling and overtopping by debris flows behind in-channel obstructions which subsequently lead to channel abandonment. Debris-flow deposition is dominant due to: (1) small, steep (up to 35 degrees) source area catchments, (2) extensive mud rock outcrops in the source area, and (3) episodic summer rainfall events. Proximal to distal fan surfaces exhibit sheetflood deposits several cm thick and up to 70 m in lateral extent. Vertical lithofacies profiles reveal: (1) massive, matrix- and clast-supported gravel units (1--2 m thick) deposited by clast-poor and clast-rich debris flows respectively, with reworked; scoured tops overlain by thin (<0.25 m) trough cross-bedded gravel and ripple cross-laminated sand intervals, and (2) volumetrically less significant 1--2 m thick intervals comprising fining-upward sequences of interbedded cm-scale trough cross-bedded pebbly gravel, massive sand, horizontally stratified sand, and mud rock deposited by hyperconcentrated flow and stream flow during decelerating sheetflood events. Organic rich layers record periods of non-deposition. Channelized stream flow is restricted to minor reworking of in-channel debris flow and hyperconcentrated flow deposits.

  19. Fluvial processes on an urbanizing alluvial fan: Eilat, Israel

    NASA Astrophysics Data System (ADS)

    Schick, A. P.

    Despite hyperarid conditions and the very small area of its up-fan catchments, the flooding erosion, and sedimentation hazards affecting the resort town of Eilat, Israel, are substantial. The hazards have increased with the advent of urbanization upslope on the fan and will soon reach their maximum potential as construction abuts the mountain slopes. A gradual decrease in the proportion of unpaved areas in the older parts of the town contributes as well. Although the main streets of the town were designed to convey the bulk of the floodwaters downslope, the system is unable to cope due to the much larger, sediment-laden flows. Jumpouts from the street floodways result, leading to the development of an unplanned semi-natural drainage network that resurrects temporarily portions of the natural pre-urbanized alluvial fan.

  20. Braided alluvial fan in the Terra Sirenum region, Mars

    NASA Astrophysics Data System (ADS)

    Adeli, S.; Hauber, E.; Le Deit, L.; Kleinhans, M. G.; Platz, T.; Fawdon, P.; Jaumann, R.

    2015-10-01

    Here we report the presence of an Amazonian-aged outflow channel located on the rim of the Ariadnes Colles basin (37°S/178°E) that has an alluvial fan on its downstream part. The study area is located in the Noachian highlands of Terra Sirenum, the site of a large hypothesized paleolake [3]. This so-called Eridania lake existed during the Late Noachian -Early Hesperian and drained into Ma'adim Vallis, one of the largest valleys on Mars. The Ariadnes Colles basin was part of the Eridania paleolake and hosted later a closed lake.

  1. Thermophysical Characterization of Terrestrial Alluvial Fans, With Applications to Mars

    NASA Astrophysics Data System (ADS)

    Moersch, J. E.; Whisner, S. C.; Hardgrove, C.

    2005-12-01

    Visible and infrared spectral remote sensing are currently being used to map lithologic variation on Mars, but these techniques are only sensitive to a depth equivalent to a few times the wavelength of observation (several 10's of microns at most). Thus, a fine regolith can make it difficult to characterize the geology of a surface based on spectral properties. This problem can be partially ameliorated by using thermal infrared temperature images. The temperature of the surface is controlled by material within approximately one diurnal thermal skin depth (typically a few cm) of the surface. Thermal images "see below" thin, spectrally obscuring surface layers, and enable the mapping of some underlying geologic heterogeneities (but not mineral compositions). Temperature variation is related, in part, to differences in thermal inertia, which in turn are related to lithology, particle size, degree of induration, and (for Earth) moisture content. THEMIS (and other) images of the Martian surface reveal a variety of features that may be the result of sedimentary processes. Earth analogs have been proposed for many of these features, but very little terrestrial analog work has been done to establish whether particular classes of sedimentary features have distinctive spatial-thermophysical signatures. Sedimentary processes often lead to sorting of grain sizes and/or varying degrees of cementation, so it is reasonable to expect that such signatures might exist. Here we present the results of a preliminary study of alluvial fans in Death Valley. As seen from above in ASTER nighttime thermal infrared images, these fans display distinct "thermophysical facies." Each fan apex has a relatively high thermal inertia, mid-fan areas have intermediate thermal inertias, and distal terminus areas have relatively low thermal inertias. This pattern of thermal inertias is consistent with field-based grain size studies that have been conducted on other debris flow-dominated fans in the area

  2. Unraveling fan-climate relationships: Milankovitch cyclicity in a Miocene alluvial fan (Teruel Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Ventra, D.; Abels, H. A.; Hilgen, F. J.; de Boer, P. L.

    2009-04-01

    The role of climate change in alluvial fan sedimentation is often evident in geomorphological studies dealing with Quaternary successions, but remains hard to assess in the pre-Quaternary stratigraphic record, for which an additional obstacle is represented by detailed chronologies difficult to established within coarse clastic systems. The Teruel Basin (eastern Spain) is an extensional trough whose main tectonic activity spanned from late Oligocene to Pliocene times. Permanent internal drainage and a Mediterranean semi-arid climate made the basin and its sedimentary signatures highly sensitive to climate fluctuations, especially in terms of hydrological balance. Recent studies have proved orbital control on the development of facies sequences from low-energy, basinal settings in Teruel. In particular, high-resolution chronological and paleoclimatic information has been derived by orbital tuning of mudflat to ephemeral lake deposits in the Prado area (Villastar), linking basic facies rhythms to alternating, relatively humid/arid phases paced mainly by climatic precession. Clastic lobes from a coeval alluvial fan distally interfinger with this reference section. Stratigraphic relationships show how fan sedimentation patterns were also influenced by climate cyclicity. Highest volumes of debris transfer towards the distal mudflat repeatedly coincide with relatively humid periods. Furthermore, distal to medial fan outcrops feature prominent rhythms of distinct, alternating coarse and fine clastic packages. Such a highly organized architecture, unusual in alluvial fan successions, points to the influence of a rhythmic forcing mechanism which might have been climate variability, as evidenced by the adjacent reference section. Rather than on processes of sediment transport basinwards, climate change would have acted on sediment production and availability at the source, within the fan catchment.

  3. Morphometry of Alluvial Fans in a Polar Desert (Svalbard, Norway): Implications for Interpreting Martian Fans

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Preusker, F.; Trauthan, F.; Reiss, D.; Zanetti, M.; Jaumann, R.; Hiesinger, H.

    2009-04-01

    Alluvial fan-like landforms have been identified on Mars [e.g., 1-3]. Alluvial fans contain information on several controlling factors (tectonism, climate, lithology/geology), and therefore the investigation of possible Martian fans can reveal information about the planet`s climate. In lieu of direct observations of active depositional processes on Martian fans, comparisons with terrestrial analogues can constrain models of Martian fan formation derived from remote sensing data. Since present-day Mars is cold and dry, alluvial fans formed in cold deserts should be considered as useful analogues. The probably closest climatic analogue to Mars on Earth are the Antarctic Dry Valleys [5], but polar deserts can also be found in the Arctic. We report on our field work in summer 2008 and a simultaneous flight campaign with an airborne version (HRSC-AX) of the High Resolution Stereo Camera (HRSC) onboard Mars Express [6]. The results are compared with measurements of Martian fans, based on HRSC DEM. Our study area is in Svalbard near Longyearbyen (78°13'0"N, 15°38'0"E), around mountains of Mesozoic layered sandstones and shales) on the northern side of Adventfjorden. Climate data are available from the nearby Longyearbyen airport (just a few km from the study area). The present climate is arctic [7], with low mean annual air temperatures and very low precipitation, mostly as snow. Stereo images acquired in July 2008 (at the end of the snow melting season) were processed to orthoimages with a spatial resolution of 20 cm/pixel, and corresponding Digital Elevation Models (DEM) with a grid spacing of 50 cm/pixel. Simultaneous field measurements focused on channels and levees (widths, depths, heights), which were determined at vertical increments of 10 m, together with the local slope. Alluvial fans in the study area are present on slopes of all orientations. They typically coalesce into bajadas. Basically all alluvial fans in the study area are characterized by sinuous

  4. Alluvial Fan Delineation from SAR and LIDAR-Derived Digital Elevation Models in the Philippines

    NASA Astrophysics Data System (ADS)

    Aquino, D. T.; Ortiz, I.; Timbas, N.; Gacusan, R.; Montalbo, K.; Eco, R. C.; Lagmay, A.

    2013-12-01

    Occurrence of floods and debris flows leading to the formation of alluvial fans at the base of mountains naturally improve fertility of alluvial plains. However, these formations also have detrimental effects to communities within these zones like the case of Barangay (village) Andap, New Bataan, Compostela Valley where the whole village was wiped out by debris flow when it was hit by Supertyphoon Bopha in 2012. Hence, demarcating the boundaries of alluvial fans is crucial in disaster preparedness and mitigation. This study describes a method to delineate alluvial fans through contour maps from SAR and LiDAR-derived digital elevation models. Based on this data, we used hydrographic apex point polygons to plot the outflow points of upstream watersheds. The watershed and alluvial fan polygons were used to simulate debris flows in the study sites. The fans generated from the flood simulation were consistent with the polygons delineated from the digital elevation model. Satellite imagery and evidences of alluvial deposits found on site revealed 392 alluvial fans in the country. Widest among these is the sprawling 760 sq km fan identified in Cagayan Valley threatening about 434,329 persons at risk of debris flow. Other fans include those identified in Calapan, Mindoro (531 sq km), Kaliwanagan, Pangasinan (436 sq km), Pampanga Alluvial Fan (325 sq km), Mina, Iloilo (315 sq km), Lamsugod, S. Cotabato (286 sq km), in Tignaman, Oton and Alimodian in Iloilo (272 sq km), and the bajada, a series of alluvial fan coalescing to form a larger fan, identified in Ilocos Norte (218 sq km).

  5. Depositional facies and Hohokam settlement patterns of Holocene alluvial fans, N. Tucson Basin, Arizona

    SciTech Connect

    Field, J.J.

    1985-01-01

    The distribution of depositional facies on eight Holocene alluvial fans of varying dimensions is used to evaluate prehistoric Hohokam agricultural settlement patterns. Two facies are recognized: channel gravelly sand facies and overbank silty sand facies. No debris flow deposits occur. The channel facies is characterized by relatively well sorted stratified sands and gravels with common heavy mineral laminations. Overbank facies deposits are massive and very poorly sorted due to heavy bioturbation. Lithostratigraphic profiles from backhoe trenches and sediment size analysis document headward migration of depositional facies which results in fining upward sequences. Each sequence is a channel fan lobe with an underlying coarse grained channel sand which fines to overbank silty sands. Lateral and vertical variations in facies distributions show that depositional processes are affected by drainage basin area (fan size) and distance from fan head. Gravelly channel sands dominate at the headward portions of the fan and are more pervasive on large fans; overbank silty sands are ubiquitous at fan toes and approach closer to the fan head of smaller alluvial fans. When depositional facies are considered as records of water flow over an alluvial surface, the farming potential of each fan can be analyzed. Depositional models of alluvial fan sedimentation provide the basis for understanding Hohokam settlement patterns on active alluvial surfaces.

  6. Methodologies for hydraulic hazard mapping in alluvial fan areas

    NASA Astrophysics Data System (ADS)

    Milanesi, L.; Pilotti, M.; Ranzi, R.; Valerio, G.

    2014-09-01

    Hydraulic hazards in alluvial fan areas are mainly related to torrential floods and debris flows. These processes are characterized by their fast time evolution and relevant sediment load. Rational approaches for the estimation of hazard levels in flood-prone areas make use of the maps of depth and velocity, which are provided by numerical simulations of the event. This paper focuses on national regulations regarding quantitative debris-flow hazard mapping and compares them to a simple conceptual model for the quantification of the hazard levels on the basis of human stability in a flood. In particular, the proposed method takes into account, in a conceptual fashion, both the local slope and the density of the fluid, that are crucial aspects affecting stability for processes in mountain environments. Physically-based hazard criteria provide more comprehensible and objective maps, increasing awareness among stakeholders and providing more acceptable constraints for land planning.

  7. Isotopic evidence for climatic influence on alluvial-fan development in Death Valley, California

    SciTech Connect

    Dorn, R.I.; DeNiro, M.J.; Ajie, H.O.

    1987-02-01

    At least three semiarid to arid cycles are recorded by ..delta../sup 13/C values of organic matter in layers of rock varnishes on surfaces of Hanaupah Canyon and Johnson Canyon alluvial fans, Death Valley, California. These isotopic paleoenvironmental signals are interpreted as indicating major periods of fan aggradation during relatively more humid periods and fan entrenchment during subsequent lengthy arid periods.

  8. Sustainable Water Use System of Artesian Water in Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  9. Formation and Evolution Process of Typical Alluvial fan in North China Plain

    NASA Astrophysics Data System (ADS)

    Hongmei, Z.; Hua, Z.

    2012-12-01

    Through Quaternary scientific drilling, well-logging, sampling and testing at Hutuo River Alluvial Fan in North China Plain, combined with existing lithology and lithofacies data of borehole, and comprehensive analysises with approaches of sedimentology, palaeontology, climatostratigraphy, we have identified the formation and evolution process of Hutuo River Alluvial Fan, our results indicate that: 1) There are three phases of large-scale alluvial fan during Quaternary period in the Hutuo River alluvial fan, which were buried in the depth of 40 ~ 70m, 70 ~ 130m, 130 ~ 160m respectively, with corresponding geological age are middle Pleistocene, early and mid-term of early Pleistocene, early-term of early Pleistocene. The leading edge of Hutuo River Alluvial Fan reached to counties of Ning jin, Hengshui, Wuqiang and, Raoyang. 2) The sedimentary facies of Hutuo River Alluvial Fan include alluvial facies and lake - swamp facies. Alluvial facies have been widely distributed from the piedmont area to Xinji county, including two sub-facies of river bed and alluvial flat facies. Lake-swamp facies mainly appeared at Shen county and it's east, and also scattered in the piedmont and the central of the fan. 3) On the basis of the lithology, lithofacies characteristics and stratigraphic cycles, and combined with biostratigraphic characteristics and luminescence age, we can definite the division of Quaternary geological boundary of Hutuo River Alluvial Fan as follows: Q4 / Q3 - -8.85m; Q3 / Q2 -32.68 m; Q2 / Q1 -73.84m; Q1 / N2 - 157.04m.

  10. Morphometry and Geomorphic Characteristics of Large Alluvial fans and Megafans in South America

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.; Sounny-Slitine, M. A.

    2015-12-01

    Alluvial megafans are 'large' fan-shaped bodies of sediment that form from lateral migrations of a river as it exits a topographic front. They differ from large alluvial fans (radial length between 30-100km) with sizes greater than 100-km in radial length. This study characterizes and describes megafans and large alluvial fan through morphometrics. We cataloged the fans into a geodatabase delineating size and extent of basins both upstream and downstream from the apex. Through remote sensing, elevation modeling and geomorphic mapping, we populated the database with fan morphometric measurements, qualitative descriptions and basin parameters. Metrics include planform area, catchment area, gradient, relief index, drainage density, and others. These were compared to longitudinal/transverse profiles, satellite imagery, and geomorphic maps. The database is global, however since the largest megafans of the world are located in South America, this preliminary analysis will focus on the continent. We found morphometric and characteristic differences between large alluvial fans and megafans in the region. These include difference in relationship between morphometrics, for example the ratio between catchment and fan size area. These properties of fans could be a better approach in differentiating megafans from large alluvial fans. The current criteria is an artificial scale divide, which varies in the literature, with the most common being a 100-km apex-to-toe length. Alternative values as little of 30-km apex-to-toe length have been proposed, as well as alternative metrics like coverage areas of greater than 10,000 square-km. We propose that geomorphic characteristics and morphometrics provide an intrinsic approach to differentiating megafans from larger alluvial fans.

  11. Flood hazard assessment on alluvial fans: an examination of the methodology

    SciTech Connect

    French, R.H.

    1984-08-01

    The report presents the results of a critical examination of assumptions and methodology recommended by the Federal Emergency Management Agency (FEMA) to assess flood hazard on alluvial fans. The conculsions reached are as follows. First, the assumption that a flow on an alluvial fan has an equal probability of crossing any point on a given contour seems to be a very conservative assumption. Second, given the data from the Nevada Test Site, it would appear that the assumption that fans have critical to supercritical slopes is acceptable. Third, the present methods of estimating channel width and depth on alluvial fans seem to be invalid. Fourth, the specific flood hazard evaluation procedures recommended by FEMA are not valid in some cases because they are based on the assumption that sufficient records exist to do a standard peak flow analysis. Fifth, the validity of the implied assumption that debris flows present no risk can only be assessed after a location on a fan relative to the intersection point has been established. It is concluded that the current methods of flood hazard assessment on alluvial fans are not adequate given the current and projected economic value of structures and development on alluvial fans in the southwestern United States. 55 references, 5 figures, 5 tables.

  12. Large Well-exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A.D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early- Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters = 70 km in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 deg S and 30 deg S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  13. Large Well-Exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early-Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters greater than or equal to 70 kilometers in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 degrees S and 30 degrees S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  14. Differentiating tectonic from climatic factors in the evolution of alluvial fans

    SciTech Connect

    Wilson, D.S.; West, R.B. . Dept. of Geology)

    1993-04-01

    Alluvial fans are integral parts of landscapes of arid and semi-arid regions and are most commonly found along the flanks of tectonically active mountain ranges. Alluvial fans are sensitive indicators of tectonic and climatic activity through time. Three dimensional fan modelling has the potential to discriminate between these two forces and provide quantitative estimates of deformation of fan surfaces due to tilting, faulting, or folding. The model has tremendous potential for seismic hazard evaluation at both the reconnaissance and detailed level of investigation. The ability to recognize deformation of alluvial fans alleviates the need for postulation of complex interactions between climate and internal variables in the depositional system leading to present fan morphology. The greatest problems associated with fan modelling come from failure to identify individual segments. Inclusion of more than one segment can lead to poor model performance or, more likely, inaccurate results. The long term tectonic influence on a fan's evolution can be assessed from the differences in deformation of different segments. Reliable correlations of segments from different fans along the same mountain front can provide a means to asses regional deformation. Once tectonic effects are taken into account, then climatic effects can be evaluated. Previous fan models have failed to recognize areal limitations, failed to account for deformation, or assumed deformation geometry.

  15. Use of TOPSAR digital elevation data to determine the 3-dimensional shape of an alluvial fan

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1995-01-01

    Landforms in arid regions record the interplay between tectonic forces and climate. Alluvial fans are a common landform in desert regions where the rate of uplift is greater than weathering or sedimentation. Changes in uplift rate or climatic conditions can lead to isolation of the currently forming fan surface through entrenchment and construction of another fan either further from the mountain front (decreased uplift or increased runoff) or closer to the mountain front (increased uplift or decreased runoff). Thus, many alluvial fans are made up of a mosaic of fan units of different age, some older than 1 million years. For this reason, determination of the stages of fan evolution can lead to a history of uplift and runoff. In an attempt to separate the effects of tectonic (uplift) and climatic (weathering, runoff, sedimentation) processes on the shapes of alluvial fan units, a modified conic equation developed by Troeh (1965) was fitted to TOPSAR digital topographic data for the Trail Canyon alluvial fan in Death Valley, California. This allows parameters for the apex position, slope, and radial curvature to be compared with unit age.

  16. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Dolan, James F.

    2007-06-01

    Range-front alluvial fan deposition in arid environments is episodic and results in multiple fan surfaces and ages. These distinct landforms are often defined by descriptions of their surface morphology, desert varnish accumulation, clast rubification, desert pavement formation, soil development, and stratigraphy. Although quantifying surface roughness differences between alluvial fan units has proven to be difficult in the past, high-resolution airborne laser swath mapping (ALSM) digital topographic data are now providing researchers with an opportunity to study topography in unprecedented detail. Here we use ALSM data to calculate surface roughness on two alluvial fans in northern Death Valley, California. We define surface roughness as the standard deviation of slope in a 5-m by 5-m moving window. Comparison of surface roughness values between mapped fan surfaces shows that each unit is statistically unique at the 99% confidence level. Furthermore, there is an obvious smoothing trend from the presently active channel to a deposit with cosmogenic 10Be and 36Cl surface exposure ages of ˜70 ka. Beyond 70 ka, alluvial landforms become progressively rougher with age. These data suggest that alluvial fans in arid regions smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces.

  17. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    SciTech Connect

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  18. Reconnaissance of alluvial fans as potential sources of gravel aggregate, Santa Cruz River valley, Southeast Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Melick, Roger

    2002-01-01

    This investigation was conducted to provide information on the aggregate potential of alluvial fan sediments in the Santa Cruz River valley. Pebble lithology, roundness, and particle size were determined in the field, and structures and textures of alluvial fan sediments were photographed and described. Additional measurements of particle size on digital photographs were made on a computer screen. Digital elevation models were acquired and compiled for viewing the areal extent of selected fans. Alluvial fan gravel in the Santa Cruz River valley reflects the lithology of its source. Gravel derived from granitic and gneissic terrane of the Tortolita, Santa Catalina, and Rincon Mountains weathers to grus and is generally inferior for use as aggregate. Gravel derived from the Tucson, Sierrita, and Tumacacori Mountains is composed mostly of angular particles of volcanic rock, much of it felsic in composition. This angular volcanic gravel should be suitable for use in asphalt but may require treatment for alkali-silica reaction prior to use in concrete. Gravel derived from the Santa Rita Mountains is of mixed plutonic (mostly granitic rocks), volcanic (mostly felsic rocks), and sedimentary (sandstone and carbonate rock) composition. The sedimentary component tends to make gravel derived from the Santa Rita Mountains slightly more rounded than other fan gravel. The coarsest (pebble, cobble, and boulder) gravel is found near the heads (proximal part) of alluvial fans. At the foot (distal part) of alluvial fans, most gravel is pebble-sized and interbedded with sand and silt. Some of the coarsest gravel was observed near the head of the Madera Canyon, Montosa Canyon, and Esperanza Wash fans. The large Cienega Creek fan, located immediately south and southeast of Tucson, consists entirely of distal-fan pebble gravel, sand, and silt.

  19. Rapid delineation of alluvial fans using IfSAR-derived DEM for selected provinces in the Philippines

    NASA Astrophysics Data System (ADS)

    Ortiz, Iris Jill; Aquino, Dakila; Norini, Gianluca; Narod Eco, Rodrigo; Mahar Lagmay, Alfredo

    2015-04-01

    Alluvial fans are fan-shaped geomorphic features formed when sediments from a watershed are transported and deposited downstream via tributaries flowing out from the sudden break of a slope. Hazards usually associated with alluvial fans are flooding and debris flows. In this study, we used an Interferometric Synthetic Aperture Radar-derived digital elevation model of Pangasinan and Nueva Ecija Provinces in the Philippines to identify and delineate alluvial fans. Primary parameters considered include the geomorphic characteristics of the catchment area, stream network and slopes ranging from 0.11 to 8 degrees. Using this method, 12 alluvial fans were identified in Pangasinan and 16 in Nueva Ecija with areas ranging from 0.35 to 80 sq. km. The largest fan identified is the Mangatarem-Aguilar fan in Pangaisnan with a total area of 80.87 sq km while the Gabaldon fan in Nueva Ecija with total area of 48.11 sq km. We observed from the results that some alluvial fans have multiple feeder streams, and others have overlapping lateral extents with adjacent fans. These overlapping fans are called bajadas. In addition, the general location of fans and their apices in the two provinces appear to coincide with segments of the Philippines Fault System. There are about people 1.4 million living within these alluvial fans. Mapping and characterizing and identifying their associated hazards is crucial in the disaster preparedness efforts of the exposed population.

  20. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    NASA Astrophysics Data System (ADS)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  1. Exploring the use of weathering indexes in an alluvial fan chronology

    NASA Astrophysics Data System (ADS)

    Hardenbicker, Ulrike; Watanabe, Makiko; Kotowich, Roberta

    2015-04-01

    Alluvial fan sediments can act as an archive of local environmental history. Two borehole cores (FN 350 cm and AG 850cm) from Holocene alluvial fans located in the Qu'Appelle Valley in southern Saskatchewan were analyzed in order to identify how changes in land use of upland catchment plateaus modified the pattern and rate of sediment delivery to the fan. Due to the lack of material for radiometric dating a chronology of depositional events within the alluvial fans was established by using lithostratigraphy data of soils and sediments. In order to establish a more detailed relative chronology we evaluated if weathering indexes (the Parker Index, the CaO/ZrO2 molar ratio, the Product Index) originally developed for studies of in situ weathering of bedrock, are suitable to assess sediment weathering within alluvial fan sediments. To quantify the degree of weathering within the sediment samples the three indexes of weathering were calculated using the proportions of elements measure by Energy Dispersive X-ray Spectroscopy and there is an inverse relationship between weathering index and sample age. For further statistical analyses the fan sediments were classified into three groups: a sheet flow facies of well sorted silt loam and sandy loam textures, bed load facies characterized by high sand and gravel content and layers with high organic matter in combination with higher clay content indicative of in situ weathering and soil development. First results show that the Product Index may be the most suitable weathering index to indicate weathering or input of less weathered sediment within the sheet flow and bed load facies. In general, the weathering indexes do not take into account complexities of the weathering processes nor the overall environmental conditions in an alluvial fan. But chemical weathering indexes accompanied by geophysical and geo-chemical information have value, especially when the amount of sample material is limited.

  2. Geomorphology, internal structure and evolution of alluvial fans at Motozintla, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Sánchez-Núñez, J. M.; Macías, J. L.; Saucedo, Ricardo; Zamorano, J. J.; Novelo, David; Mendoza, M. E.; Torres-Hernández, J. R.

    2015-02-01

    Alluvial fans and terraces develop in diverse regions responding to different tectonic and climatic conditions. The Motozintla basin is located in the State of Chiapas, southern Mexico and has an E-W orientation following the trace of the left-lateral Polochic Fault. The evolution of the Motozintla basin and the alluvial plain is related to several factors, such as fault movement, intense erosion by hydrometeorological events, and anthropogenic activity. This study presents the geomorphology of the alluvial plain that between the villages of Motozintla and Mazapa de Juárez exposes 31 alluvial fans, 5 hanging terraces and 13 ramps. Fourteen of these alluvial fans have been truncated by the Polochic fault, exposing maximum uplifts of ~ 12 m. The internal structure of truncated fans consists of single massive beds (monolithologic fans) or stacked beds (polygenetic fans). The fans' stratigraphy is made of debris flow deposits separated by paleosols and minor hyperconcentrated flows, fluviatile beds, and pyroclastic fall deposits. The reconstruction of the stratigraphy assisted by radiocarbon geochronology suggests that these fans have been active since late Pleistocene (25 ka) to the present. This record suggests that at least 10 events have been recorded at the fan interior during the past ~ 1840 years. One of these events at 355 ± 65 14C yrs. BP (cal yrs. AD 1438 to 1652) can be correlated across the fans and is likely associated with an extreme hydrometeorologic event. The presence of a 165 ± 60 14C yrs. BP (cal yrs. AD 1652-1949) debris flow deposit within the fans suggests that movement along the Polochic fault formed the fans' scarp afterwards. In fact, a historic earthquake along the fault occurred east of Motozintla on July 22, 1816 with a Mw of 7.5-7.75. Recent catastrophic floods have affected Motozintla in 1998 and 2005 induced by extreme hydrometeorological events and anthropogenic factors. Therefore, scenarios for Motozintla involved several types of

  3. Alluvial fan response to climatic change: Insights from numerical modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2009-12-01

    Alluvial fans in the western U.S. exhibit a regionally correlative sequence of Plio-Quaternary deposits. Cosmogenic and U-series dating has greatly improved the age control on these deposits and their associated terraces and generally strengthened the case for aggradation during humid-to-arid transitions. Still, the linkages between climate change, upland basin response, and alluvial fan response are not well constrained. Fans may fill and cut as a result of autogenetic processes/internal adjustments, changes in regional temperature (which controls snowmelt-induced flooding), changes in the frequency-size distribution of rainfall events, and/or changes in upslope vegetation. Here I describe the results of a numerical modeling study designed to better constrain the relationships between different end-member forcing mechanisms and the geologic record of alluvial fan deposits and terraces. The model solves the evolution of the fan topography using Exner's equation (conservation of mass) coupled with a nonlinear, threshold-controlled transport relation for sand and gravel. Bank retreat is modeled using an advection equation with a rate proportional to bank shear stress. I begin by considering the building of a fan under conditions of constant water and sediment supply. This simple system exhibits all of the complexity of fans developed under experimental conditions, and it provides insights into the mechanisms that control avulsions and it provides a baseline estimate for the within-fan relief that can result from autogenetic processes. Relationships between the magnitude and period of variations in the sediment-to-water ratio and the geomorphic response of fans are then discussed. I also consider the response of a coupled drainage basin-fan system to changes in climate, including the hydrologic and vegetation response of upland hillslopes. Fans can aggrade or incise in response to the same climatic event depending on the relief of the upstream drainage basin, which

  4. Late Quaternary Alluvial Fans and Beach Ridge Systems in Jakes Valley, Central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Garcia, A. F.; Stokes, M.; Benitez, L.

    2002-12-01

    Alluvial fan and lake beach ridge landforms provide archives of the geomorphic response to Late Quaternary climate change within the Great Basin region. This study presents the first detailed results of landform mapping and soil characterization from Jakes Valley, a high altitude (1920m) and internally drained basin, located within a previously unstudied part of White Pine County, East-Central Nevada. Mountain front alluvial fans sourced from the White Pine and Egan Ranges (west-east basin margins) are characterized by four morphostratigraphic units: Qf0 (oldest) through to Qf3 (youngest). Analysis of the soil properties of these stratigraphic units reveals two landform-soil assemblages: 1) Qf0-1, characterized by well-developed calcic soils (stages III+ to IV) and 2) Qf2-3, characterized by less well-developed calcic soils (stages I to II). Beach ridge systems formed during pluvial lake highstands are extensively developed into the mid and distal parts of alluvial fans. Integrated field and aerial photograph mapping has revealed a sequence of between 4-6 ridges with linear and / or highly curved / arcuate morphologies. Beach ridge soil properties are characterized by less well-developed calcic soils (stages I+ to II) that are similar to soils formed in Qf2 alluvial fan units. The interaction between the alluvial fan and beach ridge landforms can be utilized to explore the geomorphic response in relation to climatic amelioration during the Late Pleistocene-Holocene transition. Of particular interest is the common occurrence of the curved / arcuate beach ridges which may correspond to a period of fan progradation coincident with base-level lowering.

  5. Sedimentary facies of alluvial fan deposits, Death Valley, California

    SciTech Connect

    Middleton, G.V. )

    1992-01-01

    Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River. The most remarkable features of the fan deposits are the very weak segregation of sand and gravel, and the complete absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and even large wash surfaces is steep enough to produce upper flow regimes. There are also very few trends in facies abundance down fans: most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). The facies characteristics of a given fan vary little from proximal to distal regions, but may differ strongly from the facies seen in adjacent fans. Ancient deposits that show clear segregation of gravel from cross-bedded sand beds, or strong proximal to distal facies transitions, must have been deposited in environments quite different from Death Valley.

  6. Hydrogeochemical Indicators of Groundwater Flow Systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J.; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater δ2H and δ18O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. 87Sr/86Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems.

  7. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China.

    PubMed

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater delta(2)H and delta(18)O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. (87)Sr/(86)Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems. PMID:19548025

  8. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.; Kahle, A. B.; Pallluconi, F. D.

    1984-01-01

    Alluvial fans have been mapped in Death Valley, California using NASA's 8-12 micron six-channel airborne Thermal Infrared Multispectral Scanner (TIMS). Both composition and relative age differences were recognized. Age unit boundries are generally consistent with those obtained by conventional mapping. Composition was verified by field investigation and comparison with existing geologic maps. Bedrock and its young derived fan gravels have similar emissivities. The original composition of the fans is modified by differential erosion and weathering, permitting relative age mapping with TIMS.

  9. Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion

    NASA Astrophysics Data System (ADS)

    Hsu, Leslie; Pelletier, Jon D.

    2004-06-01

    Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30-50% accuracy.

  10. Effects of weathering and lithology on the quality of aggregates in the alluvial fans of Northeast Rivand, Sabzevar, Iran

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram; Fatemi Aghda, Seyed Mahmoud; Bahrami, Kazem; Motamedi Rad, Mohammad; Poorhashemi, Sima

    2015-07-01

    Alluvial fans as depositional landforms can be considered as potential sources of aggregates. As the age of alluvial fans increases, their constituent sediments are exposed to longer periods of weathering and increased mineral alteration, resulting in a decrease in aggregate quality. In this study, physical properties and point load tests were used to assess the aggregate quality on three alluvial fan surfaces (relict, old and young) in the northeastern part of Rivand village in west of Sabzevar, Northeast Iran. Differentiating young from old and relict fans was carried out based on geomorphic criteria such as weathering features, fan surface morphology and drainage pattern. The young alluvial fan is characterized by sub-rounded and unvarnished clasts, distributary drainage patterns and a relatively flat surface, whereas old and relict fans are characterized by incised and rough surfaces, tributary drainage pattern and highly weathered and varnished clasts due to their long-term exposure to weathering. Due to a range of rock types occurring across each fan surface, lithological studies were performed to eliminate the effect of lithology on aggregate quality. A total of 18 rock types comprising comparable lithologies were sampled from each of the three alluvial fans. Results show that, in almost all 18 rock types, the point load test values increases from relict to young fans whereas porosity and percentage of water absorption decrease, implying that aggregate quality decreases with time as a function of duration of exposure to weathering. Also, the strength of aggregates in all three fans decreases from the fan apex to the fan toe. Data show that micaceous, intrusive igneous rocks, tuffs with high porosity and fine-grained extrusive igneous rocks with some porosity are more sensitive to physical weathering, and therefore have lower strength, particularly on the relict and old fans. Overall, variations in aggregate strength on these fans can be attributed to the

  11. Self-similar growth of an alluvial fan fed with bimodal sediment

    NASA Astrophysics Data System (ADS)

    Delorme, Pauline; Voller, Vaughan; Paola, Chris; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie; Métivier, François

    2016-04-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. We carried out a series of experiments to investigate the growth of alluvial fans fed with mixed sediments. The density difference between silica and coal sediments mimics a bimodal grain-size distribution in nature. The sediment and water discharges are constant during an experiment. During the run, we track the evolution of the surface pattern by digital imaging. At the end of each run, we acquire the fan topography using a scanning laser. Finally, we cut a radial cross section to visualize the sedimentary deposit. We observe there is a distinct slope break at the transition that dominates the overall curvature of the fan surface. Based on mass conservation and observations, we propose that this alluvial fan grows in a self-similar way, thus causing the transition between silica and coal deposits to be a straight line. The shape of the experimental transition accords with this prediction.

  12. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also

  13. Effects of Alluvial and Debris Flow Fans on Channel Morphology in Idaho, Washington, and Oregon

    NASA Astrophysics Data System (ADS)

    Bigelow, P. E.; Benda, L.; Miller, D.; Andras, K.

    2003-12-01

    Formation of debris flow and alluvial fans at tributary confluences from episodic erosion associated with large storms and fires ("extreme events") are often viewed negatively over short time spans (years). However, when viewed over long periods of time (decades to centuries), fans that form at tributary junctions are often sources of morphological diversity in streams and rivers. To evaluate effects of tributary fans on the morphology of mainstem channels, we surveyed a total of 44 km of streams in the Sawtooth Mountains of Idaho (27 km), Olympic Mountains of Washington (10 km), and Central Coast Range of Oregon (7 km). Rejuvenated alluvial fans resulting from post-fire gully erosion in the Sawtooth Mountains created gradient nick points in 4th to 6th order mainstem channels (30 to 350 km2 drainage area) that increased sediment storage upstream resulting in decreased channel gradients, widened flood plains, side channel construction, and the beginning of terrace formation. Downstream effects included increased channel gradients, often creating rapids. In 3rd and 4th order mainstem channels (< 10 km2 drainage area) in the Olympic Mountains, there was statistically significant association between low-order confluences containing debris flow deposits and gravel abundance, wide channels, and numbers of logs and large pools. Moreover, heterogeneity of mainstem channel morphology increased in proximity to low-order confluences prone to debris flows in the Olympic study sites. In 3rd and 4th order channels in the Oregon Coast Range, density of large wood and boulders in mainstem channels (< 30 km2 drainage area) increased with proximity to all debris flow fans at low-order confluences regardless of fan age, while channel gradients and sediment depth in mainstem channels increased with proximity to recent (< 60 yrs old) debris fans. Consequently, alluvial and debris flow fans can be significant agents of heterogeneity in riverine habitats, similar to other sources of

  14. Geomorphic Processes and Remote Sensing Signatures of Alluvial Fans in the Kun Lun Mountains, China

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Chadwick, Oliver A.

    1996-01-01

    The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.

  15. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith D.; Jerolmack, Douglas J.

    2012-06-01

    River deltas and alluvial fans have channelization and deposition dynamics that are not entirely understood, but which dictate the evolution of landscapes of great social, economic, and ecologic value. Our lack of a process-based understanding of fan dynamics hampers our ability to construct accurate prediction and hazard models, leaving these regions vulnerable. Here we describe the growth of a series of experimental alluvial fans composed of a noncohesive grain mixture bimodal in size and density. We impose conditions that simulate a gravel/sand fan prograding into a static basin with constant water and sediment influx, and the resulting fans display realistic channelization and avulsion dynamics. We find that we can describe the dynamics of our fans in terms of a few processes: (1) an avulsion sequence with a timescale dictated by mass conservation between incoming flux and deposit volume; (2) a tendency for flow to reoccupy former channel paths; and (3) bistable slopes corresponding to separate entrainment and deposition conditions for grains. Several important observations related to these processes are: an avulsion timescale that increases with time and decreases with sediment feed rate; fan lobes that grow in a self-similar, quasi-radial pattern; and channel geometry that is adjusted to the threshold entrainment stress. We propose that the formation of well-defined channels in noncohesive fans is a transient phenomenon resulting from incision following avulsion, and can be directly described with dual transport thresholds. We present a fairly complete, process-based description of the mechanics of avulsion and its resulting timescale on our fans. Because the relevant dynamics depend only on threshold transport conditions and conservation of mass, we show how results may be directly applied to field-scale systems.

  16. Alluvial Fans on Titan Reveal Atmosphere and Surface Interactions and Material Transport

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Ventra, D.; Lorenz, R. D.; Farr, T. G.; Kirk, R. L.; Hayes, A.; Malaska, M. J.; Birch, S.; Liu, Z. Y. C.; Lunine, J. I.; Barnes, J. W.; Le Gall, A. A.; Lopes, R. M. C.; Stofan, E. R.; Wall, S. D.; Paillou, P.

    2015-12-01

    Alluvial fans, important depositional systems that record how sediment is stored and moved on planetary surfaces, are found on the surface of Titan, a body of significantly different materials and process rates than Earth. As seen by Cassini's Synthetic Aperture Radar (SAR) images at 350 m resolution, fans on Titan are found globally and are variable in size, shape and relationship to adjacent landforms. Their morphologies and SAR characteristics, which reveal roughness, textural patterns and other material properties, show similarities with fans in Death Valley seen by SAR and indicate there are regions of high relative relief locally, in the Ganesa, Xanadu and equatorial mountain belt regions. The Leilah Fluctus fans near Ganesa are ~30 km x 15 km, similar to the largest Death Valley fans, and revealing mountainous topography adjacent to plains. Others have gentle slopes over hundreds of kilometers, as in the high southern latitude lakes regions or the Mezzoramia southern midlatitudes, where a fan system is 200 km x 150 km, similar to the Qarn Alam fan emerging into the Rub al Khali in Oman. Additionally, there is evidence for a range of particle sizes, from relatively coarse (~2 cm or more) to fine, revealing long-term duration and variability in erosion by methane rainfall and transport. Some features have morphologies consistent with proximality to high-relief source areas and highly ephemeral runoff, while others appear to draw larger catchment areas and are perhaps characterized by more prolonged episodes of flow. The presence of many fans indicates the longevity of rainfall and erosion in Titan's surface processes and reveals that sediment transport and the precipitation that drives it are strongly episodic. Alluvial fans join rivers, lakes, eroded mountains, sand dunes and dissolution features in the list of surface morphologies derived from atmospheric and fluvial processes similar to those on Earth, strengthening comparisons between the two planetary

  17. Climatic and Tectonic Controls on Alluvial Fan Evolution: The Lost River Range, Idaho

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Pierce, J. L.; Sharp, W. D.; Pierce, K. L.

    2006-12-01

    In the northern Basin &Range, alluvial fans developed along the Lost River range-front consist of several distinct inset fan segments with concave-up radial profiles. Multiple large radius (>5 km), shallow (2- 3°), alluvial fans extend across and beyond the active, ~140-km-long, normal Lost River fault. These large fans are relict features, formed by major sheetfloods that occurred intermittently between ~15-180 ka. More recent deposition has been dominated by debris-flows that form small-radius (<2 km), steep (8- 17°), fans closely confined to the mountain front [1,2]. In order to determine the timing of fan surface stabilization, we have undertaken precise mass spectrometric 230Th/U dating of pedogenic carbonate from calcic soils that mantle fan surfaces on the Arco fault segment. Careful selection of mg-size samples of dense soil carbonate pebble coats, from within a trench that cuts through gravelly fan deposits, indicates that the fan soils are geochemically suitable for uranium-series dating (median U=7ppm, 232Th=0.09ppm, 232Th/230Th=154). 230Th/U analysis of these calcic soils can thus provide precise temporal constraints on intervals of surface stability and subsequent soil formation. The oldest fan surface (Qfo1, 178+/-8 ka), exposed within the footwall of the trench, suggests an interval of surface stability, indicating that the fan was likely abandoned due to incision early in MIS 6. Incision may have resulted from surface faulting along the Arco segment of the Lost River fault, but could relate to changes in stream power or sediment supply associated with climatic change or with auto-cyclic variations within the drainage basin. A younger incised and faulted fan surface (Qfo2, 69+/-6 ka), likely represents active alluviation at the beginning of MIS 4 and, since it formed as hanging-wall alluvial gravel, provides age limits on an episode of fault displacement between Qfo1 and Qfo2. In situ pedogenic carbonate coats on sub-angular gravels within the

  18. Ground Penetrating Radar Imaging of the Emigrant Peak Fault Zone and Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Christie, M. W.; Tsoflias, G. P.

    2006-12-01

    Near-surface geophysical studies at the University of Kansas are investigating active faulting in the Eastern California Shear Zone. The Emigrant Peak Fault, in Fish Lake Valley, Nevada, is a normal fault that aids in the transfer of right-lateral deformation associated with the Furnace Creek/Fish Lake/Death Valley fault system of the Walker Lane Belt/Eastern California Shear Zone. During the spring and summer of 2006 we collected ground penetrating radar (GPR) across the deformed alluvial fan associated with the Emigrant Peak Fault. The GPR study is conducted in conjunction with high resolution shallow seismic and geologic investigations underway to more fully characterize the fault zone. The GPR data crosses the surface expression of the Emigrant Peak Fault and it is comprised of a 50 MHz 3-D grid and 25 MHz 2-D lines. The 3-D grid covers an area of 115m X 500m at 1m trace spacing, 5m in-line spacing and intersecting cross-lines at 50, 100, 150, 250, and 450m across the in-lines. 2-D GPR lines were acquired at coincident locations with the shallow seismic data and along a 1500m regional line over the fault and alluvial fan deposits. Depth of imaging ranged between 17m for the 50 MHz data and 25m for the 25 MHz data. GPR imaging aids in the characterization of the fault zone structurally as well as characterizing alluvial fan stratigraphy. Data shows stratigraphic reflectors on a 1m scale. Reflector geometries are quite complex, showing continuous coherent events, as well as areas that are less coherent which appear to signal a change to more boulder/cobble-rich deposition, a common characteristic in debris-flow dominated alluvial fans. The reflectors are also heavily influenced by the structural components that are imaged. The GPR shows a number of west-dipping faults that seem to migrate towards the basin. The faults are not imaged merely as interrupted reflectors, but the fault surfaces are actually imaged. Stratigraphic reflectors truncate at the faults in

  19. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  20. Quaternary climate change and hillslope processes: What can we learn from alluvial fans?

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Pierce, J. L.; Rittenour, T. M.; Sharp, W. D.; Pierce, K. L.

    2009-12-01

    Examining the timing of sediment deposition on alluvial fans may clarify relationships among Quaternary changes in climate, sediment production, and sediment removal from uplifted mountain blocks. Deposition on fans indicates that (1) ample sediment is available for transport within contributing basins and (2) that stream power is adequate to move that sediment to the fan environment. Dating alluvial fan deposition clarifies relationships among climatically controlled factors (e.g. precipitation, vegetation, temperature), and hydrologic and geomorphic responses (e.g. weathering rates, frost action, glaciation, stream power) that influence landscape evolution. Numerous 2-5 km radius, low gradient alluvial fans head along the western side of the Lost River Range (LRR) in east-central Idaho. Timing of deposition on these fans is based on optically stimulated luminescence dating (OSL). In addition we described general deposit characteristics and mapped different aged fan surfaces to explore how fan deposition has changed over time. OSL results indicate that evacuation of sediment from contributing basins and deposition on fans was enhanced ~10-14 ka and ~40-50 ka. The younger episode is more robust in this record, with deposition recorded on all five studied fans despite differences in Quaternary glacial extent in contributing basins that varied from ~0-80%. Glacial chronologies from the nearby Sawtooth Range (Thackray, 2008) and Yellowstone-Teton region (Licciardi and Pierce, 2008; Gosse et al, 1995) suggest that this time period may have coincided with and followed the last glacial maxima in the northern Rocky Mountains. Deposition during the ~40-50 ka episode is recorded on the two largest studied fans, both with <10% glaciation in basin areas, as well as a ~40 m terrace of the East Fork Big Lost River that drains the Pioneer Range west of the LRR. A ~60-65 ka moraine in the northern LRR dated by U-series on pedogenic carbonate, an extensive glacio-fluvial terrace

  1. Investigating the impact of vegetation on alluvial fans using laboratory experiments

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Tom, Coutlhard

    2016-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved, whereas the controlled conditions afforded by laboratory experiments provide the ideal opportunity to explore these relationships. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator (operated by the University of Hull). The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (Medicago Sativa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on 2x2m fan plots, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography were used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution

  2. Shapefile of the Elevation of the Bedrock Surface Beneath the Rocky Flats Alluvial Fan, Boulder and Jefferson Counties, Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.

    2003-01-01

    The Rocky Flats alluvial fan is a large early Pleistocene gravel deposit at the mouth of Coal Creek Canyon along the eastern flank of the Colorado Front Range in Jefferson and Boulder Counties, Colorado. Elevations of the bedrock surface beneath the alluvial fan gravels have been compiled at selected points from a variety of sources and recorded in a digital dataset suitable for importing into commonly used GIS and image processing software packages.

  3. Geomorphological evolution of the Tilcara alluvial fan (Jujuy Province, NW Argentina): Tectonic implications and palaeoenvironmental considerations

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Peña, José Luis; Rivelli, Felipe; Rhodes, Ed; Muñoz, Arsenio

    2008-07-01

    The development and evolution of the Tilcara alluvial fan, in the Quebrada de Humahuaca (Andean Eastern Cordillera, NW Argentina), has been analysed by using geomorphological mapping techniques, sedimentological characterisation of the deposits and OSL chronological methods. It is a complex segmented alluvial fan made up of five evolutionary stages (units Qf1, Qf2, Qf3, Qf4 and Qf5) developed under arid climatic environments as well as compressive tectonic conditions. Segmentation processes, including aggradation/entrenchment cycles and changes in the location of the depositional lobe, are mainly controlled by climatic and/or tectonic changes as well as channel piracy processes in the drainage system. Alluvial fan deposits include debris flows, sheet flows and braided channel facies associated with high water discharge events in an arid environment. The best mean OSL age estimated for stage Qf2 is 84.5 ± 7 ka BP. In addition, a thrust fault affecting these deposits has been recognized and, as a consequence, the compressive tectonics must date from the Upper Pleistocene in this area of the Andean Eastern Cordillera.

  4. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    USGS Publications Warehouse

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  5. Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Fadong; Pan, Guoying; Tang, Changyuan; Zhang, Qiuying; Yu, Jingjie

    2008-09-01

    Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca-HCO3 type water with depleted δ18O and δD (mean value of -8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca-Na-Mg-HCO3-Cl-SO4 type), and heavier δ18O and δD were observed (around -8‰ δ18O). Before the surface water with mean δ18O of -8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of -8.8‰ δ18O) were similar to those of transferred water (-8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca-HCO3, Na-HCO3, to Na-SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the

  6. Drivers for the development of an alluvial fan in a high-altitude glaciated catchment

    NASA Astrophysics Data System (ADS)

    Steiner, Jakob; Miles, Evan; Ragettli, Silvan

    2016-04-01

    Alluvial fans have channelization and deposition dynamics that are not entirely understood but can have considerable impact on the local hydrological regime. Especially in high-altitude and glaciated catchments they are rather rarely investigated. During glaciological field work between 2012 and 2015 in the Langtang catchment in the Nepalese Himalaya, such an alluvial fan of ca. 0.35 km2 (4000 m a.s.l.) at the end of a very small glaciated subcatchment (~9km2) was observed. The subcatchment is the site of one of the presumed largest landslides in earth's history, that likely happened 40 000 years ago with a volume of approximately 10^10 m3 and land surface erosion is well visible. During the recent Gorkha earthquake in April 2015 (M=7.8), additional sediments were mobilized along the steep valley slopes. From 6 sets of concurrent high-resolution satellite images and DEMs between 2006 and 2015 and an additional image from 1974 we derive the evolution in space and volume of this fan and identify main sources of sediment supply. Precipitation data from a nearby Automatic Weather Station provides insight into strong rainfall events. We can compare the growth of the fan in the period without significant earthquakes until April 2014 to the change after the seismic event (image from May 2015) and after the following Monsoon season (image from October 2015) and determine dominant drivers of erosion.

  7. Bedrock erosion surface beneath the rocky flats alluvial fan, Jefferson and Boulder counties, Colorado

    USGS Publications Warehouse

    Knepper, D.H., Jr.

    2005-01-01

    The early Pleistocene Rocky Flats alluvial fan formed at the mouth of unglaciated Coal Creek Canyon along the eastern flank of the Colorado Front Range. The fan consists of boulder, cobble, and pebble gravel deposited on an erosional surface cut on tilted Mesozoic sedimentary strata. A north-trending hogback of steeply dipping Cretaceous Laramie Formation and Fox Hills Sandstone is exposed through the gravel across the central portion of the fan. Elevations on the gravel-bedrock contact were used in a GIS to reconstruct the bedrock surface at the base of the gravel, providing a glimpse of the geomorphology of the early Pleistocene Colorado Piedmont. The reconstructed erosional bedrock surface portrays a landscape carved by a series of easterly flowing streams that eroded headward to the resistant hogback units, creating a bedrock step up to 37 m high. East-trending ridges on the bedrock surface are remnants of drainage divides between the Pleistocene streams. Water gaps in the bedrock step allowed the streams access to the upper surface of the step. This entire surface, except the hogback, was covered by gravel about 1.35 to 1.5 Ma ago. Subsequent erosion of the alluvial fan has been by headward (westward) erosion of easterly flowing streams incising into the eastern portion of the fan. Because the gravel is more resistant than the underlying bedrock, modern streams are established over the Pleistocene drainage divides, where the gravel was thinnest. Thicker gravel in the Pleistocene paleovalleys now caps modern drainage divides, producing an inverted topography.

  8. Laramide thrust-generated alluvial-fan sedimentation, Sphinx conglomerate, southwestern Montana

    SciTech Connect

    Decelles, P.G.; Tolson, R.B.; Graham, S.A.; Smith, G.A.; Ingersoll, R.V.; White, J.; Schmidt, C.J.; Rice, R.; Moxon, I.; Lemke, L.; handschy, J.W.; Follo, M.F.; Edwards, D.P.; Cavazza, W.; Caldwell, M.; Bargar, E. )

    1987-02-01

    The uppermost Cretaceous-lower Tertiary Sphinx Conglomerate crops out over an area of approximately 20 km{sup 2} (8 mi{sup 2}) in the Madison Range of southwestern Montana. The Sphinx consists of more than 1,000 m (3,300 ft) of synorogenic boulder and cobble conglomerate derived from a Late Cretaceous Laramide uplift that was located in the area presently occupied by the Madison River valley. Palynological and radiometric age data indicate that the Sphinx was deposited 75-58 Ma, and that thrusting and folding of the deposit had largely ceased by 56 Ma. Compositions of Sphinx clasts and paleocurrent data indicate that the Sphinx was produced by uplift and unroofing of Mesozoic and Paleozoic rocks located on two thrust sheets to the west and southwest. The lower Sphinx was deposited on the distal portions of an eastward prograding alluvial-fan system. Clast assemblages and lithofacies indicate that deposition of the middle Sphinx was controlled by a combination of progradation in response to ongoing thrusting and an influx of resistant clasts derived from middle Paleozoic carbonates in the source area. Deposition of the upper Sphinx was probably controlled by source lithology, as the influx of very coarse, resistant clasts from middle and lower Paleozoic carbonates overwhelmed the fan system's ability to organize its load of sediment by normal fan processes. A preliminary facies model for thrust-generated alluvial-fan deposits predicts intraformational deformation, cannibalization of proximal synorogenic fan facies, and abrupt compositional breaks in response to episodes of thrusting. 14 figs., 1 tab.

  9. Stochastic Spectral Analysis for Characterizing Hydraulic Diffusivity in an Alluvial Fan Aquifer with River Stimulus

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Zha, Y.; Yeh, T. C. J.; Wen, J. C.

    2015-12-01

    Estimation of subsurface hydraulic diffusivity was carried out to understand the characteristics of Zhuoshui River alluvial fan, Taiwan. The fan, an important agricultural and industrial region with high water demand, is located at middle Taiwan with an area of 1800 km2. The prior geo-investigations suggest that the main recharge region of the fan is at an apex along the river. The distribution of soil hydraulic diffusivity was estimated by fusing naturally recurring stimulus provided by river and groundwater head. Specifically, the variance and power spectrum provided by temporal and spatial change of groundwater head in response to river stage variations are analyzed to estimate hydraulic diffusivity distribution. It is found that the hydraulic diffusivity of the fan is at the range from 0.08 to 16 m2/s. The average hydraulic diffusivity at the apex, middle, and tail of the fan along the river is about 0.4, 0.6, and 1.0 m2/s, respectively.

  10. Quaternary tilt of Death Valley determined from landform modelling of alluvial fans

    SciTech Connect

    West, R.B.; Wilson, D.S. . Dept. of Geology)

    1993-04-01

    Alluvial fans along the east side of central Death Valley are being actively back-tilted along the Death Valley fault zone. Initial modelling of the Copper Canyon and Furnace Creek fans led to recognition of distinct segments. Field reconnaissance and aerial photo mapping were conducted to check model results and improve segment discrimination. Surface roughness, relative position, vegetation distribution, and drainage patterns provided independent evidence for segment discrimination. Subsequent modelling of individual segments produced a range of tilt values from 0.275[degree] to 0.559[degree] down to the northeast. Continued analysis of these fan segments is concentrated on: (1) assigning confidence and error values to the tilt values; and (2) dating individual segments. Further work will compare the tilt rates of east-side fans with those from the west. The mean squared error (MSE) is currently being used as a first order assessment of the quality of the model's fit to data digitized from 1:24,000 scale USGS topographic maps. MSE values of 1 m or less can be expected for relatively young or actively aggrading segments. Previous fan models have found the expected range of misfits to be between 2 m and 5 m. This seven parameter least squares model has produced fits with less than 2 m total range in misfits. Previous models have not accounted for tilt or have relied on simplifying assumptions to fix apex position.

  11. Channel migration patterns and related sequences in some alluvial fan systems

    NASA Astrophysics Data System (ADS)

    Viseras, C.; Fernández, J.

    1994-01-01

    The pendular displacement of a channel system, consisting of an area of higher channel density (trunk channel zone) on both sides of which channel density progressively decreases (secondary channel zone), can, under favourable subsidence conditions, lead to the development of alluvial fans. Characteristic sequences are found in these fans, depending on their position in the sedimentary body. A marginal position in the fan is thus recognized by the superposition of fining and thinning upwards (FTU) cycles, the upper part of which is made up of important thicknesses of overbank fines, all the backsets of bars dipping in the same direction (towards the centre of the cone). On the other hand, a central position is characterized by a higher number of FTU cycles, which are incomplete due to erosion of the upper parts (corresponding to the higher concentration of overbank fines), and the backsets in each cycle dip alternately in opposite directions. The displacement of the channel system in a constant direction may be caused by the preferential accumulation of bars on one of the banks of the channel. The change in migratory direction giving rise to the pendular movement is caused by the trunk channel reaching the basin margin or the sedimentation area of an adjoining fan. Palaeogeographic reconstructions of fans using this technique contribute to the analysis of ancient basins: small-radius fans with a high sweep angle (A S) are characteristic of basin margins subjected to a low sediment supply/subsidence ratio (S S /S B), whereas large-radius fans with a low A S characterize periods with a high S S /S B ratio on the basin margin. This model can be applied in economic geology studies, as the location of an ancient cone permits delimitation of the axial strip (with a higher proportion of coarse, highly porous, channelled facies) and the marginal sectors (where thick layers of less porous overbank fines are intercalated). We here present the example of the alluvial fans in

  12. Denudation rates from mass balance on alluvial fans in the chinese Tian Shan

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Barrier, Laurie; Métivier, François; Jolivet, Marc; Fu, Bihong

    2015-04-01

    Denudation is a key process for mountain ranges evolution as it is an essential parameter to study the mass transfer over the Earth surface, the evolution of reliefs, or the complex relationships between climate, erosion and landscape changes. Several methods have been develop to quantify denudation such as the estimation of paleo-sediment fluxes from mass budget. In fact, markers of erosion within drainage areas are often scarce, temporary and difficult to reach. At the outlet of mountain belts, more continuous and perennial records of deposition can be found in sedimentary basins. Sediment budget is thus a powerful approach, generally used at the scale of sedimentary basins. However, this method can also be applied on smaller sedimentary systems, such as alluvial fans. Yet, it is seldom used on these systems, and consequently, its accuracy is barely questioned. We propose to implement such a method on several alluvial fan systems in the Chinese part of the Tian Shan Range, where estimations of denudation rates have already been proposed. Based on the reconstruction of two generations of alluvial fans, we estimate the volume of sediment exported out of the drainage system of the range for the Middle- Late Pleistocene (300 000 to ~11 000 y) and for the Holocene (~11 000 y to present). From these volumes, we derive denudation rates of ~135 m/My at maximum for these two periods, in good agreement with previous mass balance studies. Despite a strong change in the morphology of the piedmont at the onset of the Holocene, denudation rate seems quite stable within the hinterland mountains. This value is quite low for such a range. Based on a comparison of denudation rates observed in other areas over the world with comparable shortening or precipitation rates, we suggest that the low denudation rate observed in the chinese Tian Shan is related to the limited amount of precipitation.

  13. Age and origin of the Gezira alluvial fan between the Blue and White Nile rivers

    NASA Astrophysics Data System (ADS)

    Williams, martin

    2014-05-01

    The Gezira is a low-angle alluvial fan bounded by the Blue Nile to the east and the White Nile to the west. It is the main agricultural region of Sudan and produces high quality long-staple cotton for export. Dark cracking clays (vertisols) cover much of the Gezira and range in age from 50 kyr to Holocene. The Gezira is traversed by a series of defunct sandy channels that originate between Sennar and Wad Medani on the present-day Blue Nile. With a radius of 300 km and an area of 40,000 km2 the Gezira is a mega-fan. The younger channels range in age from early Holocene to 100 kyr, while near surface channels filled with rolled quartz and carbonate gravels have ages back to >250 kyr. Boreholes in the Gezira reveal coarse alluvial sands and gravels in now buried channels overlain by alluvial clays, forming a repetitive sequence of fining-upwards alluvial units. that probably extend back to Pliocene times. The fan is up to 180 m thick with a volume of ~1,800 km3. The sandy or gravelly bed-load channels coincide with colder drier climates and sparse vegetation in the Ethiopian headwaters of the Blue Nile and the alluvial clays denote widespread flooding during times of stronger summer monsoon. The early stages of such flood events were often accompanied by mass burial of Nile oyster (Etheria elliptica) beds, such as the 45-50 kyr floods that deposited up to 5 m of clay in the northern Gezira. A unique feature of the eastern Gezira is a former Blue Nile channel at least 80 km long running parallel to the present river and entirely filled with volcanic ash. The channel was only 3-4 m deep and 20-30 m wide. Very fine laminations and cross-beds, together with locally abundant phytoliths and sponge spicules, suggest slow-moving water, with flow dispersed across many distributary channels. The ash geochemistry is similar to that in the lower part of the Kibish Formation in the lower Omo valley of southern Ethiopia and points to a minimum age of 100 kyr and a maximum age of

  14. Radar facies and architecture of alluvial fans and related sediments in high-energy alpine environments, British Columbia

    NASA Astrophysics Data System (ADS)

    Ekes, Csaba

    2000-08-01

    It is widely recognized that the dominant depositional processes on alluvial fans include rock falls, rock slides, rock avalanches, debris flows, sheetfloods and incised-channel floods. A fundamental question addressed in this thesis is: Can ground penetrating radar (GPR) differentiate between the sediments associated with these processes? Do these individual deposits have characteristic radar reflection signatures? The dissertation is divided into two parts. In part one, a calibration exercise conducted in southern British Columbia, it was demonstrated that GPR was able to obtain good penetration and resolution in rock fall, rock slide, fluvial and alluvial fan sediments, and that a characteristic radar reflection pattern (or radar facies) can be assigned to these deposits. Bedrock reflection pattern is characterised by a discontinuous radar signal and by stacked diffractions. The radar facies for rock slide and rock avalanche sediments, where boulders constitute the predominant clast size, is characterized by discontinuous, high amplitude, macro-scale, hyperbolic reflections that are different from diffractions generated by bedrock. Alluvial fans dominated by debris flow processes produce a chaotic and discontinuous radar pattern; diffractions in these patterns are attributed to boulders. Alluvial fans dominated by sheetflood processes are likely to produce surface-parallel, gently dipping, more or less continuous radar patterns. Large-scale meandering-river radar-patterns are characterized by high amplitude, continuous, dipping clinoforms. Braided-river radar facies, based on data collected on the Kicking Horse braidplain, are characterized by predominantly horizontally continuous reflections with few identifiable features. Based solely on GPR data, it was possible to distinguish between sediments of meandering and braided rivers. Analysis of over 95 km GPR data suggests that alluvial fan radar-reflection patterns are distinctly different from those observed in

  15. Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan.

    PubMed

    Liu, Chen-Wuing; Wang, Sheng-Wei; Jang, Cheng-Shin; Lin, Kao-Hong

    2006-01-01

    An investigation of shallow ground water quality revealed that high arsenic (As) concentrations were found in both aquifers and aquitards in the southern Choushui River alluvial fan of Taiwan. A total of 655 geological core samples from 13 drilling wells were collected and analyzed. High As contents were found primarily in aquitards, to a maximum of 590 mg/kg. The contents were correlated with the locations of the marine sequences. Additionally, strong correlations among the As concentrations of core samples, the clay, and the geological age of the Holocene transgression were identified. Most of the As in ground water originated from the aquitard of the marine sequence. The high As content in marine formations with high clay contents may be attributable to the bioaccumulation of As in the sea organisms, which accrued and were deposited in the formation. A preliminary geogenic model of the origin of the high As concentration in the shallow sedimentary basin of the Choushui River alluvial fan of Taiwan is proposed. PMID:16391278

  16. Alluvial fan sensitivity to glacial-interglacial climate change: case studies from Death Valley.

    NASA Astrophysics Data System (ADS)

    Whittaker, Alexander; D'Arcy, Mitch; Roda-Boluda, Duna; Brooke, Sam

    2016-04-01

    The effects of climate change on eroding landscapes and the sedimentary record remain poorly understood. The measurement of regional grain size trends in stream-flow deposits provides one way to address this issue because, in principle, these trends embed important information on the dynamics of sediment routing systems and their sensitivity to external forcings. In many cases, downstream stratigraphic fining is primarily driven by selective deposition of sediment. The relative efficiency of this process is determined by the physical characteristics of the input sediment supply and the spatial distribution of subsidence rate, which generates the accommodation necessary for mass extraction. Here, we measure grain size fining rates from apex to toe for alluvial fan systems in Death Valley, California, which have well-exposed modern and late Pleistocene deposits, where the long-term tectonic boundary conditions are known and where climatic variation over this time period is well-constrained. Our field data demonstrate that input grain sizes and input fining rates do vary noticeably over the late Pleistocene-Holocene period in this study area, although there is little evidence for significant changes in rates of faulting in the last 200 ky. For two catchments in the Grapevine Mountains for which we have excellent stratigraphic constraints on modern and 70 ka fan deposits, we use a self-similarity based grain size fining model to understand changes in sediment flux to the fans over this time period. When calibrated with cosmogenically-derived catchment erosion rates, our results show that a 30 % decrease in average precipitation rate over this time-frame led to a 20 % decrease in sediment flux to the fans, and a clear increase in the down-fan rate of fining. This supports existing landscape evolution models that relate a decrease in precipitation rate to a decrease in sediment flux, but implies that the relationship between sediment flux and precipitation rate may be

  17. Fracture Detection in Alluvial Fan Deposits Using Near-Surface Seismic Reflection Techniques

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Miller, B.

    2012-12-01

    In this study we document the observation of probable extensive shallow vertical fracture systems in unprocessed 2-D source gathers from near-surface seismic reflection surveys conducted over unconsolidated materials in alluvial fans environments. Mapping of fracture and fault systems within the sedimentary sections at hydrocarbon exploration scales has become common practice. This is due to the advent of post-stack attribute analysis of 3-D seismic images worldwide. However, examples of fracture detection and imaging in the near-surface are currently lacking in the literature. In addition, examples of fracture detection and mapping in the pre-stack domain are also lacking. In this study, unprocessed seismic source gathers from very high-resolution reflection surveys over alluvial fan deposits in tectonically active areas appear to display distinct patterns of amplitude drop off, geometrically similar to patterns expected for vertical fracture systems. The patterns can also be extracted by attribute analysis using techniques such as envelope and coherency analyses. Simple standard processing steps such as trace editing, muting, and bandpass filtering enhance interpretability. The patterns appear to be consistent and spatially fixed in the subsurface from source location to source location. These are observed in areas of obvious recent local large-scale fault movement. Examples are given from two areas, eastern Queen Valley in California and eastern Fish Lake Valley in Nevada. The stratigraphic and sedimentation patterns are quite complicated in both areas, and sediment characteristics vary considerably between sites. The surface sediments in the Queen Valley case are, in general, much coarser with many more boulder-sized clasts in the shallow subsurface. The seismic source consisted of a 30-06 rifle fired downhole at a depth of 0.5m. While the boulders interfered with seismic source operations, the record quality was excellent. The alluvial materials, especially

  18. Alluvial Fan Records of Climatically Driven Changes in Hillslope Eerosion Rates: Successes, Limitations, and Future Directions

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.; Miller, D. M.; Reheis, M. C.

    2012-12-01

    The erosional response of semi-arid landscapes to changes in the frequency and intensity of precipitation is poorly understood. Some have argued that hillslope erosion rates are greater when precipitation is dominated by short-duration, high-intensity events that generate intense overland flow on poorly vegetated hillslopes, whereas others have suggested that hillslope erosion and sediment transport rates are greater when precipitation is dominated by long-duration, low-intensity events due to higher rates of sediment production on hillslopes and sustained stream discharge. Both of these models suggest that hillslope erosion rates will vary as a function of the relative balance of low-intensity, long-duration (e.g., winter frontal storms) to high-intensity, short-duration (e.g., monsoons and convective storms) precipitation. Variations in hillslope erosion rates should affect sediment supply to alluvial fan heads, and so the timing and magnitude of fan head depositional events may provide a record of temporal changes in the style of precipitation. Preliminary depositional ages, interpreted from new cosmogenic 10Be measurements, are combined with existing soils, sedimentologic, and existing 10Be data from an alluvial fan head in the semi-arid Providence Mountains, eastern Mojave Desert, CA, to test this hypothesis. The Providence Mountains expose Proterozoic gneisses and Mesozoic granites and show no evidence of Quaternary faulting, indicating that Pleistocene fan complexes exposed at the mountain front are primarily climatically driven. Erosion rates determined from 10Be concentrations in active wash sediments vary from 33.27 ± 1.20 to 62.40 ± 1.40 m/My and show no apparent relation to grain size. Additionally, soil stratigraphic observations from a 5.5 m thick alluvial package exposed in the fan head include a ~70 cm thick stage IV calcic horizon that is cross cut by a ~3 m deep paleochannel, which contains at least four separate soils. The paleochannel is

  19. Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D

    NASA Astrophysics Data System (ADS)

    Wright, J.; Kallio, R.; Sankovich, V.

    2013-12-01

    Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based

  20. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    SciTech Connect

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium.

  1. Using remotely-sensed multispectral imagery to build age models for alluvial fan surfaces

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Mason, Philippa J.; Roda Boluda, Duna C.; Whittaker, Alexander C.; Lewis, James

    2016-04-01

    Accurate exposure age models are essential for much geomorphological field research, and generally depend on laboratory analyses such as radiocarbon, cosmogenic nuclide, or luminescence techniques. These approaches continue to revolutionise geomorphology, however they cannot be deployed remotely or in situ in the field. Therefore other methods are still needed for producing preliminary age models, performing relative dating of surfaces, or selecting sampling sites for the laboratory analyses above. With the widespread availability of detailed multispectral imagery, a promising approach is to use remotely-sensed data to discriminate surfaces with different ages. Here, we use new Landsat 8 Operational Land Imager (OLI) multispectral imagery to characterise the reflectance of 35 alluvial fan surfaces in the semi-arid Owens Valley, California. Alluvial fans are useful landforms to date, as they are widely used to study the effects of tectonics, climate and sediment transport processes on source-to-sink sedimentation. Our target fan surfaces have all been mapped in detail in the field, and have well-constrained exposure ages ranging from modern to ~ 125 ka measured using a high density of 10Be cosmogenic nuclide samples. Despite all having similar granitic compositions, the spectral properties of these surfaces vary systematically with their exposure ages. Older surfaces demonstrate a predictable shift in reflectance across the visible and short-wave infrared spectrum. Simple calculations, such as the brightness ratios of different wavelengths, generate sensitive power law relationships with exposure age that depend on post-depositional alteration processes affecting these surfaces. We investigate what these processes might be in this dryland location, and evaluate the potential for using remotely-sensed multispectral imagery for developing surface age models. The ability to remotely sense relative exposure ages has useful implications for preliminary mapping, selecting

  2. Minturn and Sangre de Cristo Formations of southern Colorado: a prograding fan-delta to alluvial-fan sequence shed from ancestral Rocky Mountains

    SciTech Connect

    Lindsey, D.A.; Clark, R.F.; Ashe, S.J.; Flores, R.J.

    1983-08-01

    The Pennsylvanian Minturn and Pennsylvanian-Permian Sangre de Cristo Formations of the northern Sangre de Cristo Mountains comprise a 3,800-m (12,500-ft) thick progradational sequence of coarse clastic sediments shed into a basin on the northeastern side of the late Paleozoic San Luis-Uncompahgre highland. From bottom to top, the mostly marine Minturn Formation contains probable deltaic (700 m, 2,300 ft), mixed fan-delta and prodelta (800 m, 2,600 ft), and fan-delta (600 m, 2,000 ft) deposits; the mostly continental Sangre de Cristo Formation contains distal alluvial fan (600 m, 2,000 ft) and proximal alluvial fan (1,100m 3,600 ft) deposits. At least three episodes of uplift are indicated by the distribution of unconformities, geometry of intertonguing facies, and abrupt vertical changes in facies. The deltaic and mixed fan-delta and prodelta deposits of the lower and middle parts of the Minturn Formation consist of coarsening-upward cycles 30 to 300 m (100 to 1,000 ft) thick of shale, siltstone, sandstone, and conglomeratic sandstone. The mixed deposits in the middle part of the Minturn contain cycles of shale, proximalturbidite sandstones, and conglomeratic sandstone; such cycles are interpreted as deposits of submarine fans overridden by fan deltas. Continental deposits of the lower member of the Sangre de Cristo Formation consist of fining-upward cycles 2 to 37 m (6.5 to 121 ft) thick of cross-bedded conglomerate, sandstone, and siltstone deposited by braided streams on the distal parts of alluvial fans.

  3. Geomorphic Characterization of the FortyMile Wash Alluvial Fan, Nye County, Nevada, In Support of the Yucca Mountain Project

    SciTech Connect

    Cline; De Long; Pelletier; Harrington

    2005-09-06

    In the event of an unlikely volcanic eruption through the proposed high-level radioactive waste repository at Yucca Mountain, contaminated ash would be deposited in portions of the Fortymile Wash drainage basin and would subsequently be redistributed to the Fortymile Wash alluvial fan by fluvial processes. As part of an effort to quantify the transport of contaminated ash throughout the fluvial system, characterization of the Fortymile Wash alluvial fan is required, especially the spatial distribution of fluvial activity over time scales of repository operation, and the rates of radionuclide migration into different soils on the fan. The Fortymile Wash alluvial fan consists of extremely low relief terraces as old as 70 ka. By conducting soils-geomorphic mapping and correlating relative surface ages with available geochronology from the Fortymile Wash fan and adjacent piedmonts, we identified 4 distinct surfaces on the fan. Surface ages are used to predict the relative stability of different areas of the fan to fluvial activity. Pleistocene-aged surfaces are assumed to be fluvially inactive over the 10 kyr time scale, for example. Our mapping and correlation provides a map of the depozone for contaminated ash that takes into account long-term channel migration the time scales of repository operation, and it provides a geomorphic framework for predicting radionuclide dispersion rates into different soils across the fan. The standard model for vertical migration of radionuclides in soil is diffusion; therefore we used diffusion profiles derived from {sup 137}Cs fallout to determine infiltration rates on the various geomorphic surfaces. The results show a strong inverse correlation of the geomorphic surface age and diffusivity values inferred from the {sup 137}Cs profiles collected on the different surfaces of the fan.

  4. Geomorphic characterization of the Fortymile Wash alluvial fan, Nye County, Nevada, in support of the Yucca Mountain Project

    NASA Astrophysics Data System (ADS)

    Cline, M.; Delong, S.; Pelletier, J.

    2005-12-01

    In the event of an unlikely volcanic eruption through the proposed high-level radioactive waste repository at Yucca Mountain, contaminated ash may be deposited in portions of the Fortymile Wash drainage basin and subsequently redistributed to the Fortymile Wash alluvial fan by fluvial processes. Characterization of the Fortymile Wash alluvial fan has been undertaken as part of an effort to quantify the transport of contaminated ash throughout the fluvial system, especially to define the spatial distribution of fluvial activity over time scales of repository operation, and the rates of radionuclide migration into different soils on the fan. The Fortymile Wash alluvial fan consists of extremely low relief terraces as old as 70 ka. By conducting soils-geomorphic mapping and correlating relative surface ages with available geochronology from the Fortymile Wash fan and adjacent piedmonts, we identified 4 distinct surfaces on the fan. Surface ages are used to predict the relative stability of different areas of the fan to fluvial activity. Pleistocene-aged surfaces are assumed to be fluvially inactive over the 10 kyr time scale, for example. Our mapping and correlation provides a map of the depozone for contaminated ash that takes into account long-term channel migration for the time scales of repository operation, and it provides a geomorphic framework for predicting radionuclide dispersion rates into different soils across the fan. The standard model for vertical migration of radionuclides in soil is diffusion; therefore we used diffusion profiles derived from 137Cs fallout to determine radionuclide infiltration rates on the various geomorphic surfaces. The results show a strong inverse correlation of the geomorphic surface age and diffusivity values inferred from the 137Cs profiles collected on the different surfaces of the fan.

  5. Ground-Water Geology and Hydrology of the Kern River Alluvial-Fan Area, California

    USGS Publications Warehouse

    Dale, R.H.; French, James J.; Gordon, G.V.

    1966-01-01

    The Kern River alluvial fan is the southernmost major alluvial fan built by the streams which drain the west side of the Sierra Nevada. The climate is semiarid with rainfall near 5 inches per year. Agricultural development within the area uses over half the 700,000 acre-feet per year flow of the Kern River, plus a considerable amount drawn from the ground-water reservoir particularly during periods of low flow. The area overlies a deep structural trough between crystalline rocks of the Sierra Nevada and the marine rocks of Tertiary age of the Coast Ranges. The top horizon of the marine rocks that lap on the Sierra Nevada block underlies the report area at an average depth of 2,000 feet. The overlying continental deposits that form the groundwater reservoir consist of alluvial-fan and lacustrine deposits. The continental deposits are subdivided into three lithologic units on the basis of grain size and sorting. The gravel and clay unit consists of older alluvial-fan material, of both Sierra Nevada and Coast Range provenance, that shows extremely poor sorting with some diagenetic decomposition through chemical weathering. The fine sand to clay unit consists principally of fine sand, silt, and clay deposited in a lacustrine environment, although some of the unit is of alluvial-fan origin derived from poorly consolidated marine shale of the Coast Ranges. Within the fine sand to clay unit three distinct clays, which affect ground-water conditions, can be recognized. The gravel to medium sand unit consists of unweathered alluvial-fan material that shows much better sorting than the gravel and clay unit. In the eastern part of the area the basal part of this unit is a gravel lentil that can be traced in the subsurface more than 250 square miles. The overlying deposits consist principally of medium sand. In the western part of the area the unit is a heterogeneous gravel and sand unit. Permeability in Meinzer units of the gravel and clay unit ranges between 10 and 100 with

  6. Characterization of land subsidence induced by groundwater withdrawals in Wenyu River alluvial fan, Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, R.; Luo, Y.; Yang, Y.; Tian, F.; Zhou, Y.; Tian, M.-Z.

    2015-11-01

    The Beijing plain area has suffered from severe land subsidence owing to groundwater overdraft. A major example is the Wenyu River alluvial fan in the Beijing plain area. This area has experienced as much as 10 m of land subsidence through 2000s. An integrated subsidence-monitoring program, including borehole extensometer and multilayer monitoring of groundwater, has been designed to meet the needs of monitoring land subsidence in this region. This work has allowed us to characterize land subsidence and understand the mechanical properties of the strata. The analysis results show the development of the land subsidence in this area is consistent with water-level change. The major strata contributing to compression deformation are Mid-Pleistocene stratum which contributed around 70 % of total subsidence. The shallow stratum and deep stratum show elastic mechanical behavior the intermediate stratum exhibit elastic-plastic mechanical behavior.

  7. Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait

    NASA Astrophysics Data System (ADS)

    AlShuaibi, Arafat A.; Khalaf, Fikry I.

    2011-08-01

    A model is proposed for the development of the Quaternary palustrine carbonate-calcrete association, which occurs as hard crust capping low hills at a distal flood plain of Al Dibdibba alluvial fan located at southwestern Kuwait. Field occurrence, detailed petrographic investigation and geochemical analysis revealed that a single cycle of groundwater calcrete with vertical gradational maturity pattern was developed. This represents a continuous sedimentological cycle during which flood sheet conditions prevailed with intermittent periods of humid and arid conditions. Subsequently, calcitic micrite was continuously precipitated from small, shallow, local, isolated and short lived ponds fringed by freshwater marshes with abundant charophyte meadows. The latter were developed as a result of flooding scattered depressions by groundwater supersaturated with respect to calcite due to rise of groundwater table. The deposition of two facies of carbonate muds, namely; biomicrite and pelintraclasts skeletal micrites was followed by a drought phase which witnessed desiccation of the fresh water ponds and significant drop in groundwater level. A sequence of pedogenic and diagenetic processes acted on the deposited carbonate muds are manifested by: (a) desiccation cracks, (b) micrite neomorphism, (c) infilling of root burrows and some cracks by aeolian siliciclastics, (d) karstification, (e) marmorization, (f) calcretization of root burrow infill and development of pseudo-rhizocrete, (g) calcite cementation and mineral authigenesis, and (h) silcretization. These processes are responsible for the development of hard palustrine carbonate crust. At the advent of aridity, the whole system of Al Dibdibba alluvial fan was subjected to deflation. This resulted in reversing the paleotopography of the hard crusted palustrine depressions into carbonate capped domal hills.

  8. Historical Ground-Water Development in the Salinas Alluvial Fan Area, Salinas, Puerto Rico, 1900-2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    The Salinas alluvial fan area has historically been one of the most intensively used agricultural areas in the South Coastal Plain of Puerto Rico. Changes in agricultural practices and land use in the Salinas alluvial fan have also caused changes in the geographic distribution of ground-water withdrawals from the alluvial aquifer. As a result, the ground-water balance and ground-water flow pattern have changed throughout the years and may explain the presence of saline ground water along parts of the coast at present. By providing a reconstruction of historical ground-water development in the Salinas alluvial fan area, from the initial years of aquifer development at about 1900 to the most recent conditions existing in 2005, water resources managers and planners can use the results of the analysis for a more complete understanding of aquifer conditions especially pertaining to water quality. This study effort was conducted by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources as a contribution in the management of the Jobos Bay National Estuarine Research Reserve. The study area encompasses about 20 mi2 (square miles) of the extensive South Coastal Plain alluvial aquifer system (fig. 1). The study area is bounded to the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, and to the east and west by the Rio Nigua de Salinas and the Quebrada Aguas Verdes, respectively. Fan-delta and alluvial deposits contain the principal aquifers in the study area.

  9. Use of spectral data and Landsat TM for mapping alluvial fan deposits of the Rosillos Mountains in Brewster County, Texas

    SciTech Connect

    Bittick, S.M.; Morgan, K.M.; Busbey, A.B. . Dept. of Geology)

    1993-02-01

    The Rosillos Mountains consist of a large, highly faulted and fracture, exposed Tertiary igneous intrusion (laccolith) located adjacent to Big Bend National Park. This study examines the alluvial deposits that fan out over the 25,000 acre privately owned Rosillos Ranch located on the east side of the laccolith. Using a field spectrometer, spectral curves were generated for the various materials present. These surface reflectance patterns were used for spectral recognition and, along with Landsat digital data, for computer classification mapping of the alluvial fans. Several computer classification techniques will be presented along with mapping accuracies. Initial results indicate the resulting Landsat generated fan deposit maps are, in fact, related to the source areas and the age of deposition.

  10. Tributary debris fans and the late Holocene alluvial chronology of the Colorado River, eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, R.; Thompson, K.S.; Burke, K.J.; Fairley, H.C.

    1996-01-01

    Bouldery debris fans and sandy alluvial terraces of the Colorado River developed contemporaneously during the late Holocene at the mouths of nine major tributaries in eastern Grand Canyon. The age of the debris fans and alluvial terraces contributes to understanding river hydraulics and to the history of human activity along the river, which has been concentrated on these surfaces for at least two to three millennia. Poorly sorted, coarse-grained debris-flow deposits of several ages are interbedded with, overlie, or are overlapped by three terrace-forming alluviums. The alluvial deposits are of three age groups: the striped alluvium, deposited from before 770 B.C. to about A.D. 300; the alluvium of Pueblo II age deposited from about A.D. 700 to 1200; and the alluvium of the upper mesquite terrace, deposited from about A.D. 1400 to 1880. Two elements define the geomorphology of a typical debris fan: the large, inactive surface of the fan and a smaller, entrenched, active debris-flow channel and fan that is about one-sixth the area of the inactive fan. The inactive fan is segmented into at least three surfaces with distinctive weathering characteristics. These surfaces are conformable with underlying debris-flow deposits that date from before 770 B.C. to around A.D. 660, A.D. 660 to before A.D. 1200, and from A.D. 1200 to slightly before 1890, respectively, based on late-19th-century photographs, radiocarbon and archaeologic dating of the three stratigraphically related alluviums, and radiocarbon dating of fine-grained debris-flow deposits. These debris flows aggraded the fans in at least three stages beginning about 2.8 ka, if not earlier in the late Holocene. Several main-stem floods eroded the margin of the segmented fans, reducing fan symmetry. The entrenched, active debris-flow channels contain deposits <100 yr old, which form debris fans at the mouth of the channel adjacent to the river. Early and middle Holocene debris-flow and alluvial deposits have not been

  11. Radon hazard in shallow groundwaters II: dry season fracture drainage and alluvial fan upwelling.

    PubMed

    Tommasone, F Pascale; De Francesco, S; Cuoco, E; Verrengia, G; Santoro, D; Tedesco, D

    2011-08-15

    ²²²Rn concentrations have been measured in a well located on the edge of a large Pleistocene-Holocene fan and belonging to the shallow pyroclastic aquifer of the Pietramelara Plain, southern Italy. The aim of this study has been both to characterise the hydrological inputs that determine the influx of ²²²Rn to the shallow aquifer and to understand the correlations between ²²²Rn, major ions, physical-chemical parameters and rainfall. Results obtained from the time series indicate that the studied well shows a ²²²Rn variability that is inconsistent with a mechanism of pure hydrological amplification, such as described in Radon hazard in shallow groundwaters: Amplification and long term variability induced by rainfall (De Francesco et al., 2010a). On the contrary, in this well hydrological amplification appears to be mainly tied to the upwelling of alluvial fan waters, rich in radon, in response to pistoning from recharge in the carbonate substrate. This upwelling of alluvial fan waters occurs during almost the whole period of the annual recharge and is also responsible of the constant increase in ²²²Rn levels during the autumn-spring period, when both the water table level and weekly rainfall totals drop. Furthermore, a rapid delivery mechanism for ²²²Rn likely operates through fracture drainage in concomitance with the very first late summer-early autumn rains, when rainfall totals appear largely insufficient to saturate the soil storage capacity. Results obtained from this study appear to be particularly significant in both radon hazard zoning in relation to the shallow aquifer and possibly also for indoor radon, owing to possible shallow aquifer-soil-building exchanges. Moreover, both the spike-like events and the long wave monthly scale background fluctuations detected can also have potential significance in interpreting ²²²Rn time series data as seismic and/or volcanic precursors. Finally, ²²²Rn has proved to be an excellent tracer for

  12. Controls on morphometry and morphology of alluvial and colluvial fans in the high-Arctic setting, Petuniabukta, Svalbard.

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra; Ewertowski, Marek

    2016-04-01

    The Petuniabukta (78o42' N, 16o32') is a bay in the northern part of Billefjorden in the central part of Spitsbergen Island, Svalbard. The bay is surrounded by six major, partly glaciated valleys. A numerous alluvial and colluvial fans have developed within valleys as well as along the fiord margins. Distribution and characterization of morphometric parameters of fans were investigated using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite imagery from 2013. In addition, a very detailed DEM and orthophoto (5 cm resolution) have been produced from unmanned aerial vehicle (UAV) imagery from 2014 and 2015, covering three fans characterised by different types of surface morphology. A 1:40,000 map showing the distribution of almost 300 alluvial and colluvial fans (ranging in area from 325 km2 to 451 275 km2), together with time-series of 1:5,000 geomorphological maps of sample fans enabled an assessment of the spatial and temporal evolution of processes responsible for delivery and erosion of sediments from the fans. The relationship between terrain parameters (e.g. slope, exposition) as well as geology was also investigated. Many of the studied alluvial fans were at least partly coupled and sediments were transferred from the upstream zone to the downstream zone, either due to debris-flow or channelized stream flow. In other cases, coarse sediments were stored within fans, and fines were transported downstream by sheet flows or sub-surface flows. In most of smaller colluvial fans and debris cones, sediments were delivered by mass movement processes (mainly rockfalls and snowfalls) and did not reach lower margin of landforms. Analysis of historical aerial photographs indicated recent increase in the activity of debris-flow modification of surface morphology of fans. Fans located outside limits of the Little Ice Age (LIA) glaciation are dominated by the secondary processes

  13. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages

    SciTech Connect

    Blair, T.C. ); McPherson, J.G. )

    1994-07-01

    Contrary to common contemporary usage, alluvial fans are a naturally unique phenomenon readily distinguishable from other sedimentary environments, including gravel-bed rivers, on the basis of morphology, hydraulic processes, sedimentologic processes, and facies assemblages. The piedmont setting of alluvial fans where the feeder channel of an upland drainage basin intersects the mountain front assures that catastrophic fluid gravity flows and sediment gravity flows, including sheetfloods, rock falls, rock slides, rock avalanches, and debris flows, are major constructional processes, regardless of climate. The unconfinement of these flows at the mountain front gives rise to the high-sloping, semiconical form that typifies fans. The plano-convex cross-profile geometry inherent in this form is the inverse of the toughlike cross-sectional form of river systems, and precludes the development of floodplains that characterize rivers. The relatively high slope of alluvial fans creates unique hydraulic conditions where passing fluid gravity flows attain high capacity, high competency, and upper flow regime, resulting in sheetfloods that deposit low-angle antidune or surface-parallel planar-stratified sequences. These waterlaid facies contrast with the typically lower-flow-regime thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences, of rivers. The unconfinement of flows on fans causes a swift decrease in velocity, competency, and capacity as they attenuate, inducing rapid deposition that leads to the angular, poorly sorted textures and short radii typical of fans. This condition is markedly different than for rivers, where sediment gravity flows are rare and water flows remain confined by channel walls or spill into floodplains, and increase in depth downstream.

  14. Groundwater recharge and agricultural contamination in alluvial fan of Eastern Kofu basin, JAPAN

    NASA Astrophysics Data System (ADS)

    Nakamura, T.

    2009-12-01

    Agriculture has significant effects on the rate and composition of groundwater recharge. The chemical loading into groundwater have been dominated by the constituents derived directly or indirectly from agricultural practices and additives. The contamination of groundwater with nitrate is a major public health and environmental concern around the world. The inorganic constituents like, K+, Ca2+, Mg2+, SO42-, Cl- and variety of other minor elements of groundwater are often used as agricultural additives; and the natural occurrence of these elements are dominated by the agricultural sources. A recent study has reported that Kofu basin groundwater aquifer is contaminated by nitrate from agricultural areas because of the fertilizer application for the orchard (Kazama and Yoneyama, 2002; Sakamoto et al., 1997, Nakamura et al., 2007). The water-oxygen and hydrogen stable isotope (δ18O and δD) and nitrate-nitrogen stable isotope (δ15N) of groundwater, river water and precipitation samples were investigated to identify the source of groundwater and nitrate nitrogen contamination in groundwater in the Fuefukigawa and Hikawa_Kanegawa alluvial fans in Kofu basin. The plot of δD versus δ18O values of groundwater, river water and precipitation samples suggest that the groundwater is a mixture of precipitation and river water. And nitrate-nitrogen isotope values have suggested the nitrate contamination of groundwater is from agricultural area. The study revealed positive correlation between groundwater δ18O values and NO3-, Cl-, SO42-, Ca2+, Mg2+ concentration, which shows the agricultural contamination is carried by the recharge of groundwater from precipitation in alluvial fan. Whereas, NO3-, Cl-, SO42-, Ca2+, Mg2+ are diluted by the river water recharges. This study showed the quality of groundwater is resulted from the mixing of water from the different source during the groundwater recharge in the study area. References Kazama F, Yoneyama M (2002) Nitrogen generation

  15. Jesse Ewing Canyon Formation, an interpreted alluvial fan deposit in the basal Uinta Mountain Group (Middle Proterozoic), Utah

    SciTech Connect

    Sanderson, I.D.; Wiley, M.T.

    1986-07-01

    The Jesse Ewing Canyon Formation, a member of the Middle Proterozic Uinta Mountain Group, is here proposed as a formal lithostratigraphic unit. It consists of interbedded dark reddish-brown to dark gray conglomerate with predominant white, pale green, gray, or pink metaquartzite clasts, light to dark brown or reddish-brown quartz arenite, and reddish-brown, red, or maroon shale. This represents the first proposal of a formation in the Uinta Mountain Group in the eastern part of the range and follows by only a few years beginning efforts to establish formations in the group in the western part. The Jesse Ewing Canyon Formation locally constitutes the basal member of the Uinta Mountain Group and is here reaffirmed as an alluvial fan deposit, based on a detailed comparison of observed features to those of modern alluvial fans. This interpretation supports the hypothesis that the Uinta Trough is an aulacogen.

  16. Integration of AIRSAR and AVIRIS data for Trail Canyon alluvial fan, Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1995-01-01

    Combining quantitative geophysical information extracted from the optical and microwave wavelengths provides complementary information about both the surface mineralogy and morphology. This study combines inversion results from two remote sensing instruments, a polarimetric synthetic aperture radar, AIRSAR, and an imaging spectrometer, AVIRIS, for Trail Canyon alluvial fan in Death Valley, California. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) is a quad-polarization, three frequency instrument. AIRSAR collects data at C-band = 5.66 cm, L-band = 23.98 cm, and P-band = 68.13 cm. The data are processed to four-looks and have a spatial resolution of 10 m and a swath width of 12 km. The AIRSAR data used in this study were collected as part of the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley on 9/14/89. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a NASA/JPL instrument that flies in an ER-2 aircraft at an altitude of 20 km. AVIRIS uses four spectrometers to collect data in 224 spectral channels from 0.4 micrometer to 2.45 micrometer. The width of each spectral band is approximately 10 nm. AVIRIS collects data with a swath width of 11 km and a pixel size of 20 m. The AVIRIS data used in this study were collected over Death Valley on 5/31/92.

  17. Spatial patterns of ecohydrologic properties on a hillslope-alluvial fan transect, central New Mexico

    USGS Publications Warehouse

    Bedford, D.R.; Small, E.E.

    2008-01-01

    Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.

  18. Constraints on Environmental Conditions on Mars during Periods of Alluvial Fan Formation: Results from Landform Evolution Modeling

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.

    2015-12-01

    As depositional systems forming within enclosed crater basins, the Late Noachian and Hesperian -aged [1] alluvial fans on Mars (including the Peace Vallis fan in Gale crater) may be representative of the last vestiges of widespread fluvial activity on the planet's surface, an era during which the climate transitioned from a wetter early Mars to the cold and dry planet we observe today. We have constructed a landform evolution model that combines sediment transport with channel avulsion to study the evolution of a fan-forming channel network over timescales of decades to hundreds of thousands of years. We aim to address two related questions: (1) what were the characteristics of water discharge (flow magnitude and duration); and (2) what are the associated implications for the responsible climatic environment (e.g. amount and frequency of precipitation sourcing the fans). The model uses a cellular network with a grid spacing set equal to the channel width. Two end-members of sediment are transported through the channel network: gravel bedload and fine grained material that is deposited overbank as a function of distance and elevation difference from an active channel. Overbank deposition creates channel levees, which must be overtopped for the channel to undergo an avulsion. By recording the relative amounts of bedload and overbank deposition, the 3-D stratigraphy is recorded as the fan is constructed. Using measures such as channel width, relative proportions of channel versus overbank deposited sediment, and frequency of channel branching, output is statistically compared with digital elevation models that we been produced from high-resolution CTX and HiRISE stereo pairs. Our modeling suggests that the fans formed from many flow events over many thousands of years, in agreement with estimations based on geomorphological observations by [2]. We are continuing to refine the model to test for varying patterns of precipitation, duricrusts, and limits on sediment

  19. Alluvial Fans and Megafans Along the Southern Side of the Alps

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Mozzi, P.

    2011-12-01

    The Po Plain extents for about 40.000 km2 and fills an area representing the foreland of the Alps and the foredeep of the Apennines. Towards East, the Po plain continues in the Venetian-Friulian Plain, which has an area of 10.000 km2. Along the Alpine piedmont sector the alluvial deposition has been related to the major Alpine rivers, that drain a total mountain catchement of about 50.000 km2, with a maximum elevation between 2800-4810 m. A major depositional phase occurred in the area during LGM (24-17 ka BP), when the fronts of the glaciers hosted in the main Alpine valleys reached the plain and fed the related fluvioglacial and fluvial systems. These experienced a large and widespread aggradation and led to the formation of several megafans (i.e. Isonzo, Tagliamento, Piave, Brenta, Chiese, Oglio, Adda, Ticino) and fans (e.g. Cellina, Astico, Serio, Lambro). The LGM megafans have an extent between 1000-3000 km2 and are characterized by a piedmont sector (10-25 km from the apex) of amalgamated gravels related to unconfined braided channels; the distal sector is fine-dominated and channels are sandy braided, whereas the meandering typology started from the terminal portion (40-60 km from apex). The thickness of LGM alluvial sedimentation spans between 30-20 m in the plain and thins to 10 m in the Adriatic seabed. Soon after the ice decay (since 17 ka BP), the sedimentary delivery from Alpine catchments to the plain stopped, mainly due to the formation of intramontane lakes trapping the bedload. Thus, an erosive phase affected the whole pede-Alpine sector, leading the Alpine rivers to entrench for tens of meters in the apical gravelly portions of their fans or megafans. In the Venetian-Friulian Plain a single incision characterize the apical portion, whereas 2-5 fluvial incisions developed in the distal sector, up to the present coastal area, where they have a depth of 15-30 m and a width of 600-2000 m. The incised-valley fills (IVF) have been recognized in the

  20. 230Th/U dating of a late pleistocene alluvial fan along the southern san andreas fault

    USGS Publications Warehouse

    Fletcher, K.E.K.; Sharp, W.D.; Kendrick, K.J.; Behr, W.M.; Hudnut, K.W.; Hanks, T.C.

    2010-01-01

    U-series dating of pedogenic carbonate-clast coatings provides a reliable, precise minimum age of 45.1 ?? 0.6 ka (2??) for the T2 geomorphic surface of the Biskra Palms alluvial fan, Coachella Valley, California. Concordant ages for multiple subsamples from individual carbonate coatings provide evidence that the 238U-234U-230Th system has remained closed since carbonate formation. The U-series minimum age is used to assess previously published 10Be exposure ages of cobbles and boulders. All but one cobble age and some boulder 10Be ages are younger than the U-series minimum age, indicating that surface cobbles and some boulders were partially shielded after deposition of the fan and have been subsequently exhumed by erosion of fine-grained matrix to expose them on the present fan surface. A comparison of U-series and 10Be ages indicates that the interval between final alluvial deposition on the T2 fan surface and accumulation of dateable carbonate is not well resolved at Biskra Palms; however, the "time lag" inherent to dating via U-series on pedogenic carbonate can be no larger than ~10 k.y., the uncertainty of the 10Be-derived age of the T2 fan surface. Dating of the T2 fan surface via U-series on pedogenic carbonate (minimum age, 45.1 ?? 0.6 ka) and 10Be on boulder-top samples using forward modeling (preferred age, 50 ?? 5 ka) provides broadly consistent constraints on the age of the fan surface and helps to elucidate its postdepositional development. ?? 2010 Geological Society of America.

  1. 230Th/U dating of a late Pleistocene alluvial fan along the southern San Andreas fault

    USGS Publications Warehouse

    Fletcher, Kathryn E.K.; Sharp, Warren D.; Kendrick, Katherine J.; Behr, Whitney M.; Hudnut, Kenneth W.; Hanks, Thomas C.

    2010-01-01

    U-series dating of pedogenic carbonate-clast coatings provides a reliable, precise minimum age of 45.1 ± 0.6 ka (2σ) for the T2 geomorphic surface of the Biskra Palms alluvial fan, Coachella Valley, California. Concordant ages for multiple subsamples from individual carbonate coatings provide evidence that the 238U-234U-230Th system has remained closed since carbonate formation. The U-series minimum age is used to assess previously published 10Be exposure ages of cobbles and boulders. All but one cobble age and some boulder 10Be ages are younger than the U-series minimum age, indicating that surface cobbles and some boulders were partially shielded after deposition of the fan and have been subsequently exhumed by erosion of fine-grained matrix to expose them on the present fan surface. A comparison of U-series and 10Be ages indicates that the interval between final alluvial deposition on the T2 fan surface and accumulation of dateable carbonate is not well resolved at Biskra Palms; however, the “time lag” inherent to dating via U-series on pedogenic carbonate can be no larger than ∼10 k.y., the uncertainty of the 10Be-derived age of the T2 fan surface. Dating of the T2 fan surface via U-series on pedogenic carbonate (minimum age, 45.1 ± 0.6 ka) and 10Be on boulder-top samples using forward modeling (preferred age, 50 ± 5 ka) provides broadly consistent constraints on the age of the fan surface and helps to elucidate its postdepositional development.

  2. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    The Mesopotamian alluvial plain is dominated by large aggradading river systems (the Euphrates, Tigris and their tributaries), which are prone to avulsions. An avulsion can be defined as the diversion of flow from an existing channel onto the floodplain, eventually resulting in a new channel belt. Early civilizations depended on the position of rivers for their economic survival and hence the impact of channel shifts could be devastating (Wilkinson 2003; Morozova 2005; Heyvaert & Baeteman 2008). Research in the Iranian deltaic part of the Mesopotamian plain has demonstrated that deliberate human action (such as the construction of irrigation canals and dams) triggered or obstructed the alluvial processes leading to an avulsion on fluvial megafans (during preconditioning, triggering and post-triggering stages) (Walstra et al. 2010; Heyvaert et al. 2012, Heyvaert et al.2013). Thus, there is ample evidence that the present-day alluvial landscapes in the region are the result of complex interactions between natural and anthropogenic processes. Here we present a reconstruction of the Late Holocene evolution of the Diyala alluvial fan (one of the main tributaries of the Tigris in Iraq), with particular attention to the relations between alluvial fan development, changes in channel pattern, the construction of irrigation networks and the rise and collapse of societies through historic times. The work largely draws on the use of remote sensing and GIS techniques for geomorphological mapping, and previously published archaeological field data (Adams 1965). By linking archaeological sites of known age with traces of ancient irrigation networks we were able to establish a chronological framework of alluvial activity of the Diyala alluvial fan. Our results demonstrate that centralized and technologically advanced societies were able to maintain a rapidly aggradading distibutary channel system, supplying water and sediment across the entire alluvial fan. As a consequence

  3. Quaternary alluvial fans of Ciudad Juárez, Chihuahua, northern México: OSL ages and implications for climatic history of the region

    USGS Publications Warehouse

    Zúñiga de León, David; Kershaw, Stephen; Mahan, Shannon

    2016-01-01

    Alluvial fans formed from sediments derived from erosion of the Juárez Mountains in northernmost México have a significant flood impact on the Ciudad Juárez, which is built on the fan system. The northern part of Ciudad Juárez is the most active; further south, older parts of the fan, upon which the rest of the city is built, were largely eroded by natural processes prior to human habitation and subsequently modified only recently by human construction. Three aeolian sand samples, collected from the uppermost (youngest) parts of the fan system in the city area, in places where human intervention has not disturbed the sediment, and constrain the latest dates of fan building. Depositional ages of the Quaternary alluvial fans were measured using Optically Stimulated Luminescence (OSL) on aeolian sands that have inter-fingered with alluvial fan material. These dates are: a) sample P1, 31 ka; b) sample P2, 41 ka; c) sample P3, 74 ka, between Oxygen Isotope Stages (OIS) 3 to 5. They demonstrate that fan development, in the area now occupied by the city, terminated in the Late Pleistocene, immediately after what we interpret to have been an extended period of erosion without further deposition, lasting from the Late Pleistocene to Holocene. The three dates broadly correspond to global glacial periods, implying that the cool, dry periods may reflect periods of aeolian transport in northern México in between phases that were wetter to form the alluvial fans. Alluvial fan margins inter-finger with fluvial terrace sediments derived from the Río Bravo, indicating an additional component of fan dissection by Río Bravo lateral erosion, presumed to be active during earlier times than our OSL ages, but these are not yet dated. Further dating is required to ascertain the controls on the fan and fluvial system.

  4. Mapping Quaternary Alluvial Fans in the Southwestern United States based on Multi-Parameter Surface Roughness of LiDAR Topographic Data

    NASA Astrophysics Data System (ADS)

    Regmi, N. R.; McDonald, E.; Bacon, S. N.

    2012-12-01

    Quaternary alluvial fans, common landforms in hyper- to semi-arid regions, have diverse surface morphology, desert varnish accumulation, clasts rubification, desert pavement formation, soil development, and soil stratigraphy. Their age and surface topographic expression vary greatly within a single fan between adjacent fans. Numerous studies have demonstrated that the surface expression and morphometry of alluvial fans can be used as an indicator of their relative age of deposition, but only recently has there been an effort to utilize high resolution topographic data to differentiate alluvial fans with automated and quantifiable routines We developed a quantitative model for mapping the relative age of alluvial fan surfaces based on a multi-parameter surface roughness computed from 1-meter resolution LiDAR topographic data. Roughness is defined as a function of scale of observation and the integration of slope, curvature (tangential), and aspect topographic parameters. Alluvial fan roughness values were computed across multiple observation scales (3m×3m to 150m×150m moving observation windows) based on the standard deviation (STD) of slope, curvature, and aspect. Plots of roughness value versus size of observation scale suggest that the STD of each of the three topographic parameters at 7m×7m observation window best identified the signature of surface roughness elements. Roughness maps derived from the slope, curvature, and aspect at this scale were integrated using fuzzy logic operators (fuzzy OR and fuzzy gamma). The integrated roughness map was then classified into five relative morpho-stratigraphic surface age categories (active wash to ~400 ka) and statistically compared with a similar five-fold surface age map of alluvial fans developed using traditional field surveys and aerial photo interpretation. The model correctly predicted the distribution and relative surface age of ~61% of the observed alluvial fan map. The results of the multi-parameter model

  5. Identification of Net Recharge Rate Using Expert System - A Case Study of Choshuichi Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Tsai, J. P.; Chang, L. C.; Chen, Y. W.; Chiang, C. J.; Huang, C. C.

    2012-04-01

    Conventionally, parameters identification of groundwater model can be classified into manual parametersidentification and automatic parameters identification using optimization method. Parameter searching in manualparameters identification requires heavily interaction with the modeler. Therefore, the identified parametersvalue is interpretable by the modeler. However, manual method is a complicated and time-consuming work and requires groundwater modeling practice and parameters identification experiences to performing the task. Optimization-based identification is more efficient and convenient comparing to the manual one. Nevertheless, the parameters search in the optimization approach can't directly interactive with modeler and one can only examine the final results. Moreover, because of the simplification of the optimization model, the parameters value obtained by optimization-based identification may not be feasible in reality. In light of previous discussion, this study integrates a rule-based expert system and a groundwater simulation model, MODFLOW 2000, to develop an automatic groundwater parameters identification system. We apply this proposed methodology to a real case study of Choshuihsi Alluvial Fan which is located at the central Taiwan. To test the robustness for high dimension problems, the proposed methodology is applied to calibrate the net recharge rates in a transient simulation in the study area. The result is compared with the calibration results obtained from UCODE. The results show that UCODE has difficulty converging to a global optimum in a high dimension situation and the initial guess dramatically effects the convergency of the optimization. Our proposed methodology is very robust for achieving the convergence requirements of output error criteria for high dimensional problems. These results presented the robustness and the applicability of the proposed methodology for high dimensional groundwater parameter identification problems.

  6. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  7. Hydrogeologic facies characterization of an alluvial fan near Fresno, California, using geophysical techniques

    USGS Publications Warehouse

    Burow, Karen R.; Weissmann, G.S.; Miller, R.D.; Placzek, Gary

    1997-01-01

    DBCP (1,2-dibromo-3-chloropropane) contamination in the sole source aquifer near Fresno, California, has significantly affected drinking-water supplies. Borehole and surface geophysical data were integrated with borehole textural data to characterize the Kings River alluvial fan sediments and to provide a framework for computer modeling of pesticide transport in ground water. Primary hydrogeologic facies units, such as gravel, coarse sand or gravel, fine sand, and silt and clay, were identified in cores collected from three borings located on a 4.6-kilometer transect of multilevel monitoring wells. Borehole geophysical logs collected from seven wells and surface geophysical surveys were used to extrapolate hydrogeologic facies to depths of about 82meters and to correlate the facies units with neighboring drilling sites. Thickness ranged from 0.3to 13 meters for sand and gravel units, and from 0.3 to 17 meters for silt and clay. The lateral extent of distinct silt and clay layers was mapped using shallow seismic reflection and ground-penetrating radar techniques. About 3.6 kilometers of seismic reflection data were collected; at least three distinct fine-grained layers were mapped. The depth of investigation of the seismic survey ranged from 34 to 107 meters below land surface, and vertical resolution was about 3.5 meters. The ground-penetrating radar survey covered 3.6kilometers and imaged a 1.5-meters thick, continuous fine-grained layer located at a depth of about 8 meters. Integrated results from the borehole sediment descriptions and geophysical surveys provided a detailed characterization over a larger areal extent than traditional hydrogeologic methods alone.

  8. Modeling analysis of ground water recharge potential on alluvial fans using limited data.

    PubMed

    Munévar, A; Mariño, M A

    1999-01-01

    A modeling approach is developed to evaluate the potential for artificial recharge on alluvial fans in the Salinas Valley, California, using limited data of soil texture, soil hydraulic properties, and interwell stratigraphy. Promising areas for surface recharge are identified and mapped on a broad-scale using soil surveys, geologic investigations, permeability tests, and seasonal ground water response to rainfall and runoff. Two-dimensional representations of the vadose zone at selected sites are then constructed from drillers'logs and soil material types are estimated. Next, hydraulic properties are assigned to each soil material type by comparing them to laboratory-tested cores of similar soils taken from one site. Finally, water flow through the vadose zone is modeled in two dimensions at seven sites using a transient, finite-difference, variably saturated flow model. Average infiltration rates range from 0.84 to 1.54 cm/hr and recharge efficiency, the percentage of infiltrated water that reaches the water table, varies from 51% to 79%. Infiltration rates and recharge efficiency are found to be relatively insensitive to recharge basin ponding depth due to the thickness of the vadose zones modeled (31 to 84 m). The impact of artificial recharge on the Salinas Valley ground water basin is investigated by simulating the regional ground water response to surface spreading and streamflow augmentation with a recently calibrated, finite-element, ground water-surface water model for the basin. It was determined that a combined approach of surface recharge and streamflow augmentation significantly reduces the state of ground water overdraft and, to a lesser extent, reduces the rate of sea water intrusion. PMID:19125917

  9. Alluvial fan facies in Death Valley: Contrasts with fluvial gravels and implications for the interpretation of ancient fan'' gravels

    SciTech Connect

    Middleton, G.V. . Dept. of Geology)

    1993-03-01

    Sedimentary environments in Death Valley belong to three major groups: fans, washes, and playas. Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits of the playa, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River, which drains into the south end of Death Valley. The most remarkable features of the fan and wash deposits are the very weak segregation of sand and gravel, and the absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and wash surfaces is steep enough to produce upper regime flows. Most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). Within a fan, facies vary little from proximal to distal regions, but may differ strongly from facies seen in adjacent fans.

  10. Horizontal anisotropy of the principal ground-water flow zone in the Salinas alluvial fan, Puerto Rico

    USGS Publications Warehouse

    Quinones-Aponte, V.

    1989-01-01

    Well drawdown data from an anisotropic aquifer in the Salinas alluvial fan were collected and analyzed with a computer program called TENSOR2D. The program uses ordinary and weighted least-squares optimization procedures to solve the system of simultaneous equations needed to define the theoretical transmissivity ellipse. Prediction of drawdown data was made by coupling the anisotropy ellipse with the Hantush modified leaky-confined or Theis model. Drawdown data predicted by using the theoretical directional diffusivity obtained with the weighted least-squared fit gave a more accurate representation of the actual drawdown data than when using the test-data directional diffusivity. -from Author

  11. Supercritical sheetflood deposits on the volcaniclastic alluvial fan: the Cretaceous upper Daeri Member, Wido Island, Korea

    NASA Astrophysics Data System (ADS)

    Gul Hwang, In; Gihm, Yong Sik; Kim, Min Cheol

    2016-04-01

    The upper Daeri Member is composed of subaerial primary and resedimented pyroclastic deposits. The upper Daeri Member accumulated under influence of tectonic subsidence, and the basin was divided into four blocks (Block 1 to 4) by intrabasinal normal faults (Fault A to C). Vertical separation of Fault B is estimated about 250 m and provided sufficient accommodation space on Block 3 with intrabasinal physiographic relief, resulting in conformable stacking of the upper Daeri Member on a volcaniclastic alluvial fan. The welded pumiceous lapilli tuff (primary one) was deposited by a pyroclastic density current during an explosive volcanic eruption. After the eruption, the resedimented pyroclastic deposits were deposited by episodic sediment gravity flows and are intercalated with the reddish, homogeneous mudstones. In Block 3 the resedimented pyroclastic deposits show an abrupt decrease in ten largest lithic clasts from within 3 km away from Fault B, reflecting rapid waning of parental sediment gravity flows. A wavy bedded lapilli tuff is one of the lithofacies of the resedimented pyroclastic deposits. The wavy bedded lapilli tuff is composed of symmetrical or nearly-symmetrical, wavy stratifications, forming undulatory bed geometry. The wavy stratifications are recognized by distinctive alternations of few cm to 10 cm thick, lapilli-rich and ash-rich layers. Beds of the wavy bedded lapilli tuff are 0.1 to 2 m thick (estimated in crests) and range in wavelength 1.3 m to 12 m (ave. 8 m). Both amplitude and wavelength gradually decrease away from Fault B. The wavy bedded lapilli tuff can laterally be traced over 90 m. Based on undulatory bed geometry and wavy stratifications, the wavy bedded lapilli tuff is interpreted as antidune bedforms, formed by supercritical sheetfloods. The symmetrical or nearly symmetrical wavy stratifications are due to maintenance of stationary state of standing waves of the sheetfloods. A down current decrease in both wavelength and thickness

  12. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing

    USGS Publications Warehouse

    Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.

    2005-01-01

    Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In

  13. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina)

    NASA Astrophysics Data System (ADS)

    Marcato, G.; Bossi, G.; Rivelli, F.; Borgatti, L.

    2012-06-01

    For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

  14. New morpho-stratigraphic constraints for the evolution of the alluvial fan system along the northern slopes of the Taburno-Camposauro Mountains (Calore River basin, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Leone, Natalia; Amato, Vincenzo; Aucelli, Pietro P. C.; Cesarano, Massimo; Filocamo, Francesca; Petrosino, Paola; Rosskopf, Carmen M.; Valente, Ettore; Giralt, Santiago; Casciello, Emilio

    2016-04-01

    The Lower Calore River Valley is a morphostructural depression located in the inner sector of the Campanian Apennine, between the Taburno-Camposauro and the Matese carbonate massifs. The river is the main left tributary of the Volturno River, it has a meandering channel partially structural-controlled. Numerous morphotectonic clues and historical seismicity data suggest that this part of the Apennine chain was particularly active during the late-Quaternary. In detail, the valley is E-W oriented and presents an asymmetry of the opposed valley slopes. The left side, corresponding to the northern flank of the Camposauro massif, is characterized by a steep slope (70°-35°), partially controlled by a ~E-W oriented fault system, and by a wide less-inclined piedmont aggradation zone. The latter started growing since middle Pleistocene, with the deposition of alluvial fans and slope deposits over the well cemented early Pleistocene breccias of Laiano Synthem. The alluvial fan deposition has been active until present giving rise to three main generations of alluvial fans. The right side of the valley, instead, is characterized by seven orders of fluvial terraces, both of erosional and depositional origin. The quaternary morpho-stratigraphic evolution of alluvial fans and fluvial terraces has been strongly conditioned by the interaction of tectonic phases and climatic variations. A detailed geomorphological study (1:5.000 in scale) was carried out with the aim to map the main depositional and erosional fluvial landforms and to identify the main tectonic lineaments of the area. A detailed field survey allowed to better define the stratigraphic and paleoenvironmental context in which the alluvial deposits developed and also to find chrono-stratigraphic markers. Tephra-stratigraphic analyses were performed on pyroclastic deposits interbedded into the alluvial fan and fluvial successions. At the moment the age of the first generation of alluvial fans is still under

  15. Using the Bidirectional Reflectance Distribution Function (BRDF) for remotely mapping surface roughness on alluvial fans: A comparison of Death Valley, CA to Mojave Crater on Mars

    NASA Astrophysics Data System (ADS)

    Doyle, S. L.; Wilkinson, M. J.; Scuderi, L. A.; Weissmann, G. S.; Scuderi, L. J.

    2011-12-01

    The Bidirectional Reflectance Distribution Function (BRDF) describes how incoming light from a given direction is reflected from specific surfaces in response to different incoming solar radiation angles. The amount and directionality of reflected light is a function of surface roughness and orientation. The goal of this study is to assess whether a BRDF based approach may be applicable for creating surface roughness maps for Martian alluvial fans. Landsat 7 satellite imagery is used to make classifications of surfaces with different roughness and spectral properties for alluvial fan surfaces in Death Valley, California. The resulting classes have been interpreted to represent surfaces of different ages and also different deposit types. In Death Valley, older surfaces are classified based on the amount of shadowing due to gully formation, differences in the amount of surface smoothness from desert pavement formation, and desert varnish color variations. In contrast, the most recently formed surfaces have an assemblage of classes that represent surface deposits of different grain size and sorting, as well as different landform types - incised channels and elevated bars. Many Death Valley fans have a telescoping morphology where progressively younger surfaces reach basin-ward. This is more evident on some fans using a BRDF classification. A similar map was made for depositional landforms within Mojave Crater on Mars, identified as sub-kilometer alluvial fans by Williams and Malin (2008). These alluvial fans are the youngest found on Mars (Amazonian age) and have topographic similarities to fans in the southwestern US. Any geomorphic similarities between Death Valley fans and those within Mojave Crater can be assessed using surface roughness. Imagery from both the High Resolution Imaging Experiment (HiRISE) and Context Camera (CTX) onboard the Mars Reconnaissance Orbiter (MRO) were used to compare differences in spatial resolution on BRDF classifications. The

  16. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  17. Integrating a Gravity Simulation and Groundwater Numerical Modeling on the Calibration of Specific Yield for Choshui Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Hsu, C. Y.

    2014-12-01

    In Taiwan, groundwater resources play a vital role on the regional supply management. Because the groundwater resources have been used without proper management in decades, several kinds of natural hazards, such as land subsidence, have been occurred. The Choshui alluvial fan is one of the hot spots in Taiwan. For sustainable management, accurately estimation of recharge is the most important information. The accuracy is highly related to the uncertainty of specific yield (Sy). Besides, because the value of Sy should be tested via a multi-well pumping test, the installation cost for the multi-well system limits the number of field tests. Therefore, the low spatial density of field test for Sy makes the estimation of recharge contains high uncertainty. The proposed method combines MODFLOW with a numerical integration procedure that calculates the gravity variations. Heterogeneous parameters (Sy) can be assigned to MODFLOW cells. An inverse procedure is then applied to interpret and identify the Sy value around the gravity station. The proposed methodology is applied to the Choshui alluvial fan, one of the most important groundwater basins in Taiwan. Three gravity measurement stations, "GS01", "GS02" and "GS03", were established. The location of GS01 is in the neighborhood of a groundwater observation well where pumping test data are available. The Sy value estimated from the gravitation measurements collected from GS01 compares favorably with that obtained from the traditional pumping test. The comparison verifies the correctness and accuracy of the proposed method. We then use the gravity measurements collected from GS02 and GS03 to estimate the Sy values in the areas where there exist no pumping test data. Using the estimated values obtained from gravity measurements, the spatial distribution of the values of specific yield for the aquifer can be further refined. The proposed method is a cost-saving and accuracy alternative for the estimation of specific yield in

  18. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  19. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  20. High-resolution sequence stratigraphy of an alluvial fan fan delta environment: stratigraphic and geodynamic implications An example from the Keuper Chaunoy Sandstones, Paris Basin

    NASA Astrophysics Data System (ADS)

    Bourquin, Sylvie; Rigollet, Christophe; Bourges, Philippe

    1998-11-01

    Facies analysis of the Chaunoy Formation, conducted as the first stage of this study, reveals that the corresponding fluvial system essentially involved bedload deposition, 2-D and 3-D megaripple migration, and debris-flow deposition. Such processes are characteristic of alluvial fan depositional environments. These alluvial fan deposits pass laterally eastward into a shallow lacustrine environment. In stage 2 of the study, electrofacies are defined by well-log analysis and then matched with sedimentary facies defined by core analysis. Electrofacies associations and depositional environments are then inferred directly from well-logs on this basis. Six electrofacies characterizing the main sedimentary facies associations and depositional environments within the Chaunoy Formation are defined (channel, lag deposits, channel infilling, lake or flood-plain, overflow deposits and paleosols). Stage 3 involves establishing correlations based on high-resolution sequence stratigraphy. Within these continental deposits, the procedure consists in analysing high-frequency fluctuations in baselevel defined from sedimentological studies and calibrated on well-log signatures. The correlations show that the top of the Chaunoy Formation is diachronous. The formation is subdivided here into three stratigraphic units from base to top: Chaunoy I, II and III. This study shows that the degree of preservation of continental deposits varies with stratigraphic cycle: genetic sequences and genetic sequence sets are asymmetrical, with the baselevel rise being better preserved than the baselevel fall, while, for minor cycle, deposits may be similarly preserved during baselevel rise and fall. The sequence stratigraphy pattern of the genetic sequences and the genetic sequence sets can result from climatic and/or tectonic factors but their effects are difficult to distinguish. At the scale of the minor Chaunoy I cycle or the Chaunoy II cycle, preservation is similar during the baselevel rise and

  1. Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey

    NASA Astrophysics Data System (ADS)

    Dogan, Tamer; Cetin, Hasan; Yegingil, Zehra; Topaksu, Mustafa; Yüksel, Mehmet; Duygun, Fırat; Nur, Necmettin; Yegingil, İlhami

    2015-07-01

    In this study, the optically stimulated luminescence dating technique was used to determine the time of deposition of alluvial sediment samples from the Türkoğlu-Antakya segment of the East Anatolian Fault System (EAFS) in Turkey. The double-single aliquot regenerative dose protocol on fine grain samples was used to estimate equivalent doses (De). Annual dose rate was computed using elemental concentration of uranium (U) and thorium (Th) determined by using thick-source alpha counting and potassium (K) concentrations using X-ray fluorescence and/or atomic absorption spectroscopy. The environmental dose was measured in situ using α-Al2O3:C chips inside plastic tubes for a year. The two different bulk sediment samples collected from the Islahiye trench yielded ages of 4.54 ± 0.28 and 2.91 ± 0.23 ka. We also obtained a 2.60 ± 0.18 ka age for the alluvial deposit in the Kıranyurdu trench and 2.31 ± 0.14 ka age for an excavation area called Malzeme Ocağı. These ages were consistent with the corresponding calibrated Carbon-14 (14C) ages of the region. The differences between the determined ages were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation in the region. They provide a record of alluvial aggradation in the region and may determine undocumented historical earthquake events.

  2. Lahar hazard assessment using Titan2D for an alluvial fan with rapidly changing geomorphology: Whangaehu River, Mt. Ruapehu

    NASA Astrophysics Data System (ADS)

    Procter, J. N.; Cronin, S. J.; Fuller, I. C.; Sheridan, M.; Neall, V. E.; Keys, H.

    2010-03-01

    Rapid changes in small areas at the apex of alluvial fans may have devastating consequences by directing downstream flood or lahar impacts into catchments of widely varying population or infrastructure vulnerability. During a series of lahars in 1995 at Mt. Ruapehu, New Zealand, aggradation of the Whangaehu fan apex (draining the eastern edifice) caused the onset of avulsion of flows northward into the highly vulnerable Tongariro catchment. An earth training dike (or bund) was constructed to protect this catchment by retaining flows on the southern side and the normal lahar outlet path to the south. Surveys in 2001, late 2005, and following a major lahar in March 2007 now show net degradation of a channel in the Whangaehu fan apex, bordered by the bund. This indicates a net increase in the channel capacity at this site and shows that the bund remains at its effective design capacity. Past hydrological modelling used for the bund design provided a large range of discharge estimates but lacked precise constraints on the size and nature of lahars from eruption and lake-breakout events. New modelling has been carried out using Titan2D to examine the impacts of a 6 × 10 6 m 3 volume granular flow down this catchment. This simulates either an eruption or a lake breakout-induced lahar with a historically typical volumetric bulking factor of 4. These simulations predict minimum discharges between 1800 and 2100 m 3/s at the bund site. By comparison, the largest 1995 flow at this site was estimated at around 1200 m 3/s. Further, any single modelled flow from the normal outlet channel of Crater Lake could not be induced to overtop the bund because discharge appears to be limited by the narrow upper reaches of the Whangaehu Gorge. Theoretical discharge levels required to overtop the bund are estimated to be > 6800 m 3/s, assuming no aggradation of the channel by the decelerating flow. Maximum potential discharge at the bund site is additionally modified by potential

  3. Clarifying stages of alluvial fan evolution along the Sfakian piedmont, southern Crete: New evidence from analysis of post-incisive soils and OSL dating

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Wilkinson, Keith; Skourtsos, Emmanuel; Triantaphyllou, Maria; Ferrier, Graham

    2008-02-01

    Analysis of fan sediments and post-incisive soils was combined with luminescence dating to re-assess Nemec and Postma's [Nemec, W., Postma, G., 1993. Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. In: Marzo, M., Puigdefábregas, C. (Eds.), Alluvial Sedimentation. Special Publication of the International Association of Sedimentologists, vol. 17, pp. 235-276] model of fan evolution on the Sfakian piedmont, southern Crete. Field mapping supports the assertion that sedimentation occurred in three developmental stages. Stage 1 sediments comprise angular debris flows forming small cone-like deposits; stage 2 fluvial gravels form large, relatively steep streamflow-dominated telescopic fans; and stage 3 sediments consist of coarse sieve-type alluvium, localised mudflows and hyperconcentrated flow deposits. Irrespective of gradient, fan surfaces are capped by post-incisive soils that form a chronosequence comprising remnant chromic luvisols. The most developed profiles, highest redness rating, and greatest concentrations of Fe d and magnetic minerals are associated with soils formed on stage 1 surfaces. The stage 2 and 3 soils record progressively lower redness rating, Fe d, and magnetic values, indicating that the stage 1 soils and fan surfaces formed first, followed by stage 2 and 3 soils and fan surfaces. Nanofossil data strongly suggest that stage 1 sedimentation commenced no earlier than the Early Pleistocene. Optically stimulated luminescence (OSL) results suggest that sedimentation responsible for stage 2 surfaces occurred between Marine Isotope Stage (MIS) 6 and MIS 2, while archaeological data indicate that stage 3 sedimentation is of Holocene age. The re-investigation of fan sediments and morphology corroborates the sedimentary and morphological elements of Nemec and Postma's model. The soil data support the model's assumptions that sedimentation was broadly synchronous across the piedmont and the locus of

  4. Variations in rock types on alluvial fan surfaces as an indicator of source reach and geomorphic process, Fish Lake Valley, Nevada-California

    SciTech Connect

    Slate, J.L. )

    1993-04-01

    Lithologic composition of fan-surface clasts can reflect the source of alluvial fan deposits within those drainages where rock types vary with location in the basin, provided that clasts at the surface resemble the makeup of rocks within the deposit. Interpreting the reach from which deposits were derived may, in turn, be used to infer the relation of fan deposition to causal events and source-area conditions. A multiparameter study of alluvial fans in four drainage basins of Fish Lake Valley, Nevada-California, included assessing modal lithology and the lithologic ratio among three main rock types. The author tallied rock types of 100 surface pebbles described on geomorphic surfaces along 50-m-long transects oriented perpendicular to streamflow direction near the mountain fronts. Source areas for the fan deposits shifted from the Pleistocene to the late Holocene, and may be a result of changes in weathering and transport conditions. The middle and lower reach sources of the two youngest (late Holocene) units (based on 7 transects) suggest that they were deposited in response to events that were only sufficient to transport material from these areas and not the headwaters, or that insufficient material was available for transport from the headwaters. The presence of these units of apparently similar age in the four mapped areas rules out localized storms or isolated faulting events as causes of deposition. The headwater and drainage-basin wide sources of two Pleistocene fan units (based on 13 transects) indicate deposition of these units may have occurred in response to significant climatic events that weathered material in the headwaters areas and transported that material to the fans. Thus, climatic conditions or elapsed time or a combination of the two may control sources of fan deposits.

  5. Integrative geomorphological mapping approach for reconstructing meso-scale alluvial fan palaeoenvironments at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Majid Padashi, Seyed; Baumhauer, Roland

    2013-04-01

    Alluvial fans and aprons are common depositional features in general Iranian geomorphology. The countries major cities as well as settlements and surrounding area have often been developed and been built up on this Quaternary sediment covers. Hence they periodically face the effects of varying fluvial and slope-fluvial activity occurring as part of this geosystem. The Geological Survey of Iran therefore supports considerable efforts in Quaternary studies yielding to a selection of detailed mapped Quaternary landscapes. The studied geomorphologic structures which are settled up around an endorheic basin in Semnan Province represent a typical type of landform configuration in the area. A 12-km-transect was laid across this basin and range formation. It is oriented in north-south direction from the southern saltpan, called "Kavir-e-Haj Aligholi"/"Chah-e-Jam" ("Damghan Kavir"), across a vast sandy braided river plain, which is entering from the north east direction of the city of Shahroud. At its northern rim it covers alluvial sediment bodies, which are mainly constituted by broad alluvial aprons, fed by watersheds in Alborz Mountains and having their genetic origins in Mio-/Pliocene times. During this study a fully analytical mapping system was used for developing a geodatabase capable of integrating geomorphological analyses. Therefore the system must provide proper differentiation of form, material and process elements as well as geometric separation. Hence the German GMK25 system was set up and slightly modified to fit to the specific project demands. Due to its structure it offers most sophisticated standards and scale independent hierarchies, which fit very well to the software-determinated possibilities of advanced geodatabase applications. One of the main aspects of mapping Quaternary sediments and structures is to acquire a proper description and systematic correlation and categorization of the belonging mapping-objects. Therefore the team from GSI and

  6. Large to intermediate-scale aquifer heterogeneity in fine-grain dominated alluvial fans (Cenozoic As Pontes Basin, northwestern Spain): insight based on three-dimensional geostatistical reconstruction

    NASA Astrophysics Data System (ADS)

    Falivene, O.; Cabrera, L.; Sáez, A.

    2007-08-01

    Facies reconstructions are used in hydrogeology to improve the interpretation of aquifer permeability distribution. In the absence of sufficient data to define the heterogeneity due to geological processes, uncertainties in the distribution of aquifer hydrofacies and characteristics may appear. Geometric and geostatistical methods are used to understand and model aquifer hydrofacies distribution, providing models to improve comprehension and development of aquifers. However, these models require some input statistical parameters that can be difficult to infer from the study site. A three-dimensional reconstruction of a kilometer scale fine-grain dominated Cenozoic alluvial fan derived from more than 200 continuously cored, closely spaced, and regularly distributed wells is presented. The facies distributions were reconstructed using a genetic stratigraphic subdivision and a deterministic geostatistical algorithm. The reconstruction is only slightly affected by variations in the geostatistical input parameters because of the high-density data set. Analysis of the reconstruction allowed identification in the proximal to medial alluvial fan zones of several laterally extensive sand bodies with relatively higher permeability; these sand bodies were quantified in terms of volume, mean thickness, maximum area, and maximum equivalent diameter. These quantifications provide trends and geological scenarios for input statistical parameters to model aquifer systems in similar alluvial fan depositional settings.

  7. Mineral Occurrence, Translocation, and Weathering in Soils Developed on Four Types of Carbonate and Non-carbonate Alluvial Fan Deposits in Mojave Desert, Southeastern California

    NASA Astrophysics Data System (ADS)

    Deng, Y.; McDonald, E. V.

    2007-12-01

    Soil geomorphology and mineralogy can reveal important clues about Quaternary climate change and geochemical process occurring in desert soils. We investigated (1) the mineral transformation in desert soils developed on four types of alluvial fans (carbonate and non-carbonate) under the same conditions of climate and landscape evolution; and (2) the effects of age, parent materials, and eolian processes on the transformation and translocation of the minerals. Four types of alluvial-fan deposits along the Providence Mountains piedmonts, Mojave Desert, southeastern California, USA were studied: (1) carbonate rocks, primarily limestone and marble (LS), (2) fine-grained rhyodacite and rhyolitic tuff mixed with plutonic and carbonate rocks (VX), (3) fine- to coarse- grained mixed plutonic (PM) rocks, and (4) coarse-grained quartz monzonite (QM). These juxtaposed fan deposits are physically correlated in a small area (about 20 km by 15 km) and experienced the same climatic changes in the late Pleistocene and Holocene. The soils show characteristic mineral compositions of arid/semiarid soils: calcite is present in nearly all of the samples, and a few of the oldest soils contain gypsum and soluble salts. Parent material has profound influence on clay mineral composition of the soils: (1) talc were observed only in soils developed on the volcanic mixture fan deposits, and talc occurs in all horizons; (2) palygorskite occur mainly in the petrocalcic (Bkm) of old soils developed on the LS and VX fan deposits, indicating pedogenic origin; (3) chlorite was observed mainly in soils developed on VX fan deposits (all ages) and on some LS deposits, but it is absent in soils developed on PM and QM fan deposits; and (4) vermiculite was common throughout soils developed on plutonic rock fan deposits. These mineralogical differences suggest that minerals in the soils are primarily inherited from their parent materials and that mineral weathering in this area was weak. Except the

  8. Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic 26Al and 10Be

    USGS Publications Warehouse

    Matmon, A.; Schwartz, D.P.; Finkel, R.; Clemmens, S.; Hanks, T.

    2005-01-01

    Analysis of cosmogenic 10Be and 26Al in samples collected from exposed boulders (n = 20) and from buried sediment (n = 3) from offset fans along the San Andreas fault near Little Rock, California, yielded ages, ranging from 16 to 413 ka, which increase with distance from their source at the mouth of Little Rock Creek. In order to determine the age of the relatively younger fans, the erosion rate of the boulders and the cosmogenic nuclide inheritance from exposure prior to deposition in the fan were established. Cosmogenic nuclide inheritance values that range between 8.5 ?? 103 and 196 ?? 103 atoms 10Be g-1 quartz were determined by measuring the concentrations and ratios of 10Be and 26Al in boulders (n = 10) and fine sediment (n = 7) at the outlet of the present active stream. Boulder erosion rate, ranging between 17 and 160 mm k.y.-1, was estimated by measuring 10Be and 26Al concentrations in nearby bedrock outcrops (n = 8). Since the boulders on the fans represent the most resistant rocks in this environment, we used the lowest rate for the age calculations. Monte Carlo simulations were used to determine ages of 16 ?? 5 and 29 ?? 7 ka for the two younger fan surfaces. Older fans (older than 100 ka) were dated by analyzing 10Be and 26Al concentrations in buried sand samples. The ages of the three oldest fans range between 227 ?? 242 and 413 ?? 185 ka. Although fan age determinations are accompanied by large uncertainties, the results of this study show a clear trend of increasing fan ages with increasing distance from the source near Little Rock Creek and provide a long-term slip rate along this section of the San Andreas fault. Slip rate along the Mojave section of the San Andreas fault for the past 413 k.y. can be determined in several ways. The average slip rate calculated from the individual fan ages is 4.2 ?? 0.9 cm yr-1. A linear regression through the data points implies a slip rate of 3.7 ?? 1.0 cm yr-1. A most probable slip rate of 3.0 ?? 1.0 cm yr-1 is

  9. Reconstructing the evolution of the Chamoson alluvial fan (Swiss Rhône Valley) from outcrop observations and geo-radar survey.

    NASA Astrophysics Data System (ADS)

    Boulicault, Lise; Moscariello, Andrea; Ventra, Dario; Moreau, Julien

    2014-05-01

    Following the withdrawal of the Wurmian glacier occupying the Rhône Valley (Swiss Alps), a complex of glacial sediments, alluvial fan deposits generated form tributary valleys, and lacustrine sediments were accumulated. Here, we focus on the Chamoson alluvial fan, the largest (ca. 8 km2) fan in the area , characterised by frequent floods (4 to 6 event per year) which are confined within its incised channel. The study aims to understand the spatial and temporal evolution of the fan in particular with respect to the larger trunk of the Rhône Valley. The methodology includes (1) the description of sedimentary logs and photo mosaics along both 400 metre-long walls in the incised channel, (2) a Ground Penetrating Radar (GPR) survey designed to obtain a 3D model for identifying the internal architecture and geometry of the alluvial fan complex, and (3) carbon-14 age-determinations on suitable material in order to constrain a chronological framework of the sedimentary events observed in outcrop. The Chamoson alluvial fan largely consists of a vertical stack of amalgamated waterline debris flow deposits alternated with graded gravels and coarse sandstones associated with bedload processes. Intercalated within the coarse debris flow succession, field observations revealed the presence of a ca. 2 m-thick lacustrine silty and clayey interval containing wood fragments and well-preserved fresh-water gastropod shells. The AMS 14C-dating on gastropods indicates a Late Bronze Age for the formation of these deposits. The GPR data also show the wide 3D spatial extension of a sharp horizontal reflector, which was interpreted to be the lacustrine deposit within the fan by correlation with the sedimentological logs. These lacustrine deposits are situated 40 m above the current altitude of the Rhône Valley, which may suggest a very different depositional and physiographic setting in this part of the Rhône Valley at the end of the Late Bronze Age. The finding of these extensive fine

  10. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of

  11. Tracing ground-water movement by using the stable isotopes of oxygen and hydrogen, upper Penitencia Creek alluvial fan, Santa Clara Valley, California

    USGS Publications Warehouse

    Muir, K.S.; Coplen, Tyler B.

    1981-01-01

    Starting in 1965 the Santa Clara Valley Water District began importing about i00,000 acre-feet per year of northern California water. About one-half of this water was used to artificially recharge the Upper Penitencia Creek alluvial fan in Santa Clara Valley. In order to determine the relative amounts of local ground water and recharged imported water being pumped from the wells, stable isotopes of oxygen and hydrogen were used to trace the movement of the imported water in the alluvial fan. To trace the movement of imported water in the Upper Penitencia Creek alluvial fan, well samples were selected to give areal and depth coverage for the whole fan. The stable isotopes of oxygen-16, oxygen-18, and deuterium were measured in the water samples of imported water and from the wells and streams in the Santa Clara Valley. The d18oand dD compositions of the local runoff were about -6.00 o/oo (parts per thousand) and -40 o/oo, respectively; the average compositions for the local native ground-water samples were about -6.1 o/oo and -41 o/oo, respectively; and the average compositions of the imported water samples were -10.2 o/oo and -74 o/oo, respectively. (The oxygen isotopic composition of water samples is reported relative to Standard Mean Ocean Water, in parts per thousand.) The difference between local ground water and recharged imported water was about 4.1 o/oo in d18o and 33 o/oo in dL. The isotopic data indicate dilution of northern California water with local ground water in a downgradient direction. Two wells contain approximately 74 percent northern California water, six wells more than 50 percent. Data indicate that there may be a correlation between the percentage of northern California water and the depth or length of perforated intervals in wells.

  12. The Estimation of Hydraulic Conductivity Using Pumping Test Data and Vertical Electrical Sounding Measurements - A Case Study of Taiwan's Choshuihsi Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Tsai, J.; Chang, P.; Chen, Y.; Chang, L.; Chiang, C.; Wang, Y.; Huang, C. C.; Chen, J.; Lin, H.

    2013-12-01

    Hydraulic conductivity (K) is an important aquifer parameter and is usually obtained using conventional pumping test. However, only a limited amount of data can be collected, because pumping tests are time consuming and expensive. In recent years, some studies estimated K by using pumping test data and surface electrical resistivity surveys. These studies cost less because less pumping tests are required. Linear regression is then applied to model the relationship between K and the formation factors. The problem is that most of these studies do not consider the effects caused by layers of clay. In fact, clay layers are commonly distributed in middle and distal fan. Therefore, this study divides the Zhuoshui River Alluvial Fan into several zones based on the sediment distribution. A linear regression equation is derived from the pumping test data and formation factors for each zone. This study applies these equations to develop the distribution of K in the shallow aquifer of the major fan. The result shows that the shallow aquifer of Zhuoshui River's major fan can be divided into two zones: top and non-top fan. The regression results show a good correlation between K and the formation factors in each zone. These regression equations are then used to estimate K in the study area. The estimation error is between 11m/day and 58m/day, which is in an acceptable range. The results of this study can be further applied to other analyses such as groundwater modeling or fluctuation methods.

  13. Evaluation of hydrologic conditions and nitrate concentrations in the Rio Nigua de Salinas alluvial fan aquifer, Salinas, Puerto Rico, 2002-03

    USGS Publications Warehouse

    Rodriguez, Jose M.

    2006-01-01

    A ground-water quality study to define the potential sources and concentration of nitrate in the Rio Nigua de Salinas alluvial fan aquifer was conducted between January 2002 and March 2003. The study area covers about 3,600 hectares of the coastal plain within the municipality of Salinas in southern Puerto Rico, extending from the foothills to the Caribbean Sea. Agriculture is the principal land use and includes cultivation of diverse crops, turf grass, bioengineered crops for seed production, and commercial poultry farms. Ground-water withdrawal in the alluvial fan was estimated to be about 43,500 cubic meters per day, of which 49 percent was withdrawn for agriculture, 42 percent for public supply, and 9 percent for industrial use. Ground-water flow in the study area was primarily to the south and toward a cone of depression within the south-central part of the alluvial fan. The presence of that cone of depression and a smaller one located in the northeastern quadrant of the study area may contribute to the increase in nitrate concentration within a total area of about 545 hectares by 'recycling' ground water used for irrigation of cultivated lands. In an area that covers about 405 hectares near the center of the Salinas alluvial fan, nitrate concentrations increased from 0.9 to 6.7 milligrams per liter as nitrogen in 1986 to 8 to 12 milligrams per liter as nitrogen in 2002. Principal sources of nitrate in the study area are fertilizers (used in the cultivated farmlands) and poultry farm wastes. The highest nitrogen concentrations were found at poultry farms in the foothills area. In the area of disposed poultry farm wastes, nitrate concentrations in ground water ranged from 25 to 77 milligrams per liter as nitrogen. Analyses for the stable isotope ratios of nitrogen-15/nitrogen-14 in nitrate were used to distinguish the source of nitrate in the coastal plain alluvial fan aquifer. Potential nitrate loads from areas under cultivation were estimated for the

  14. Stratigraphic architecture and fault offsets of alluvial terraces at Te Marua, Wellington fault, New Zealand, revealed by pseudo-3D GPR investigation

    NASA Astrophysics Data System (ADS)

    Beauprêtre, S.; Manighetti, I.; Garambois, S.; Malavieille, J.; Dominguez, S.

    2013-08-01

    earthquake slips on faults are commonly determined by measuring morphological offsets at current ground surface. Because those offsets might not always be well preserved, we examine whether the first 10 m below ground surface contains relevant information to complement them. We focus on the Te Marua site, New Zealand, where 11 alluvial terraces have been dextrally offset by the Wellington fault. We investigated the site using pseudo-3D Ground Penetrating Radar and also produced a high-resolution digital elevation model (DEM) of the zone to constrain the surface slip record. The GPR data reveal additional information: (1) they image the 3D stratigraphic architecture of the seven youngest terraces and show that they are strath terraces carved into graywacke bedrock. Each strath surface is overlain by 3-5 m of horizontally bedded gravel sheets, including two pronounced and traceable reflectors; (2) thanks to the multilayer architecture, terrace risers and channels are imaged at three depths and their lateral offsets can be measured three to four times, constraining respective offsets and their uncertainties more reliably; and (3) the offsets are better preserved in the subsurface than at the ground surface, likely due to subsequent erosion-deposition on the latter. From surface and subsurface data, we infer that Te Marua has recorded six cumulative offsets of 2.9, 7.6, 18, 23.2, 26, and 31 m (± 1-2 m). Large earthquakes on southern Wellington fault might produce 3-5 m of slip, slightly less than previously proposed. Pseudo-3D GPR thus provides a novel paleoseismological tool to complement and refine surface investigations.

  15. Using Varnish Microlaminations to Provide Minimum Ages on Alluvium Associated with Ground Water Discharge Deposits on an Alluvial Fan at Fenner Gap, Cadiz, CA.

    NASA Astrophysics Data System (ADS)

    Erickson, B.; Hemphill-Haley, M. A.

    2015-12-01

    Groundwater discharge (GWD) deposits are situated on three lobes of an alluvial fan at Fenner Gap near Cadiz, CA, between 220-250 m elevations. They are representative of past wetlands that raised base level leading to aggradation upstream on the alluvial fan. This study utilized the varnish microlamination (VML) dating method to provide minimum ages on the alluvium overlying GWD deposits, as well as estimating the age of a remnant older alluvium in Fenner Gap. VML results provide a minimum age of 2.8-4.1 ka on the overlying alluvium at the Chambless GWD deposit; agreeable with previously published OSL dates on the underlying GWD of about 10 ka. A VML age of 8.1 ka was found on the overlying alluvium at the Archer sediments GWD situated on the southern lobe. The oldest remnant alluvium in Fenner Gap is situated < 1 km upstream from the GWD deposits and has a minimum VML age of 17.75 ka. This older alluvium could be indicative of a raise in base level caused by wetlands formed during a ground water highstand associated with the last glacial maximum. These VML minimum age estimates may be too young due to the collection of varnish that may not be the oldest present.

  16. Quaternary migration of active extension revealed by a syn-tectonic alluvial fan shift. A case study in the Northern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Mirabella, Francesco; Bucci, Francesco; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2016-04-01

    In areas characterized by the progressive migration of active extension through time, shifts in the position of the active depocenter occur. Such shifts through time produces peculiar geomorphological settings that are often characterized by wind gaps, abandoned valleys, streams captures and drainage inversions. These features provide the opportunity to investigate active areas by studying the recent-most geological history of the related nearby basins. We investigate this topic in a tectonically active area in the Northern Apennines of Italy, as indicated by both instrumental and historical seismicity (maximum epicentral intensity I0=VIII) and extension rates in the order of 2.5-2.7 mm/yr. In particular, we study the Montefalco ridge drainage inversion. Here, fluvial sands and imbricated conglomerates deposited in a lower Pleistocene depocenter constituted by an extensional subsiding basin, are presently uplifted more than 200 m above the present day alluvial plain. The Montefalco ridge drainage inversion, at about 400 m a.s.l., separates two valleys, the Gualdo Cattaneo - Bastardo valley to the West (300 m a.s.l.) and the Foligno present-day alluvial plain to the East (200 m a.s.l.). Seismic reflection data show that the maximum thickness of the continental sequence in the Foligno valley is in the order of 500 m. This valley is presently occupied by a 37 km2 alluvial fan produced by the Topino river flowing from NE to SW. To unravel the Quaternary tectonic evolution of the area, we integrate different data sets collected by field mapping, detailed photo-geological data, sediments provenance information, and subsurface data. We interpret the Montefalco ridge as a paleo-Foligno-like alluvial fan representing the evidence of the recent migration of the active extension to the East of around 7 km. Considering an age of deformation of 2.5 My, an extension rate of about 2.8 mm/yr is derived, which corresponds to the present-day geodetic rates. We stress the importance

  17. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  18. The application of remotely sensed data to pedologic and geomorphic mapping on alluvial fan and playa surfaces in Saline Valley, California

    NASA Technical Reports Server (NTRS)

    Miller, D. A.; Petersen, G. W.; Kahle, A. B.

    1986-01-01

    Arid and semiarid regions yield excellent opportunities for the study of pedologic and geomorphic processes. The dominance of rock and soil exposure over vegetation not only provides the ground observer with observational possibilities but also affords good opportunities for measurement by aircraft and satellite remote sensor devices. Previous studies conducted in the area of pedologic and geomorphic mapping in arid regions with remotely sensed data have utilized information obtained in the visible to near-infrared portion of the spectrum. Thermal Infrared Multispectral Scanner (TIMS) and Thematic Mapping (TM) data collected in 1984 are being used in comjunction with maps compiled during a Bureau of Land Management (BLM) soil survey to aid in a detailed mapping of alluvial fan and playa surfaces within the valley. The results from this study may yield valuable information concerning the application of thermal data and thermal/visible data combinations to the problem of dating pedologic and geomorphic features in arid regions.

  19. Braidplain, floodplain and playa lake, alluvial-fan, aeolian and palaeosol facies composing a diversified lithogenetical sequence in the permian and triassic of South Devon (England)

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    The Permian and Triassic of South Devon (England) are a continental red bed sequence of very diversified lithogenetical composition. Within the thick series, the distribution of the main depositional environments being fluvial braidplain, fluvial floodplain and playa lake, alluvial fan, aeolian dune and calcrete palaeosol changes repeatedly in both horizontal and vertical direction. Significant sedimentary milieus such as aeolian dunes and calcrete palaeosols occur repeatedly within the succession, but are also lacking in several parts of the sequence. Fluvial braidplain deposits comprise conglomerates, sandstones, intraformational reworking horizons and mudstones and originate in channels and overbank plains of a braided river system. Conglomerates and sandstones are formed by migration of bars and spreading out of sheets during infilling of streams and aggradation of flats. Gravel is often enriched as lag pockets or veneers within steeper scour holes and kolk pots or on the plane floor of the watercourse. Finer-grained sandstones and mudstones are laid down by suspension settling in stagnant water bodies such as small lakes in the overbank area and residual pools in interbar depressions during low-stage or waning-flow in active channels or in abandoned streams. Spectacular bioturbation features in some sandstones with both horizontal tubes and vertical burrows testify to the colonization of the sediments at the bottom of the rivers with declining discharge and transport capacity. Intraformational reworking horizons with ghost-like remnants of degraded sandstones, mudstones and pedogenic carbonates document partially severe condensation of the sequence by removal of some facies elements from the depositional record. The occasionally occurring gravel-bearing mudstones or silty-clayey sandstones represent products of high-energy water surges overspilling the channel banks and transporting sandy and gravelly bed-load in limited amounts beyond the levee wall. The

  20. Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a ≤3 mm/yr slip rate for the Bucaramanga-Santa Marta Fault, Colombia

    NASA Astrophysics Data System (ADS)

    Jiménez, Giovanny; Speranza, Fabio; Faccenna, Claudio; Bayona, German; Mora, Andres

    2015-01-01

    The 550 km long Bucaramanga-Santa Marta Fault is one of the main active tectonic features of NW South America. It is a left-lateral strike-slip fault bounding the Maracaibo block, and straddling northern Colombia from the Caribbean Sea to the Eastern Cordillera. Variable total displacement values (from 40 to 110 km), and present-day slip rates (from 0.01 to 10 mm/yr) have been proposed so far for the Bucaramanga Fault. Here we report on the paleomagnetic investigation of a Plio-Pleistocene (?) continental alluvial fan juxtaposed to the Bucaramanga Fault, and horizontally displaced by 2.5 km with respect to its feeding river. Nine (out of fourteen) reliable paleomagnetic directions define a succession of six different magnetic polarity zones that, lacking additional age constraints, can be correlated with several tracks of the Plio-Pleistocene magnetic polarity time scale. If the youngest age model is considered, most recent sediments of the fan can be reasonably dated at 0.8 Ma (Brunhes-Matuyama chron transition), translating into a maximum 3 mm/yr slip rate for the Bucaramanga Fault. Older age models would obviously yield smaller slip rates. Our paleomagnetic sites, located at 4-10 km from the fault, do not show significant rotations, implying weak fault coupling and/or ductile upper crust behavior adjacent to the Bucaramanga Fault.

  1. Debris flow dominated alluvial fans in the Australian high country indicate that landscape denudation through the Holocene has been dominated by post-bushfire runoff events

    NASA Astrophysics Data System (ADS)

    Marren, Philip; Nyman, Petter; Kermode, Stephanie

    2016-04-01

    Bushfires play a major role in shaping landscapes across the globe. Whilst the role of fire in shaping and changing vegetation assemblages is relatively well understood, there is still debate about the significance of fire in driving landscape denudation, relative to other processes, such as major rainfall and flood events and questions remain about the frequency of extreme fire events over longer timescales in response to climate forcing. Studies of post-fire landscape impact of recent bushfires in southeast Australia indicate that where storm events occur shortly after a major bushfire, hillslope erosion is enhanced, due to debris flows and erosion of both primary hillslope sediment and sediment stored in hillslope channel networks. In Australia, knowledge of long-term bushfire frequency is largely derived from pollen and micro-charcoal records in lake-sediment archives and is not directly relevant to resolving questions regarding fire impacts on landscape denudation and sediment transfer. We excavated trenches in four alluvial fans at the base of hillslopes in the high country of northeast Victoria, Australia. This area was burnt by bushfires in 1939 and 2003, and regional climate and hydrology are strongly controlled by El Niño. The trenches were up to 3.5m deep, and in most cases intersected underlying floodplain sediment at the base of the trench, indicating that they provide a full record of sedimentation for that sector of the fan. Fan stratigraphy consisted of sub-horizontal (parallel to the fan surface) units 0.3-0.5m thick, with occasional units 1-1.2m thick, and cross-cutting channelized units. Debris flow deposits accounted for 70-80% of the observed sediments, with water-laid gravels and soil units forming the remainder. Most soil layers were burnt, and most (but not all) debris flow units contained charcoal. A typical stratigraphy consisted of 6-8 debris flow units per fan, with four units containing a fire signature or overlying a burnt soil layer

  2. A database on flood and debris-flow processes in alluvial fans: a preliminary analysis aimed at evaluation of the damage

    NASA Astrophysics Data System (ADS)

    Vennari, Carmela; Santangelo, Nicoletta; Santo, Antonio; Parise, Mario

    2015-04-01

    Debris-flow and flood events cause yearly wide damages to buildings and infrastructures, and produce many casualties and fatalities. These processes are very common in Italy, affecting mainly torrential stream basins with different geological and morphological settings: in the Alpine mountain areas they are quite well analysed, whilst much less attention is generally paid in contexts such as those of the Apennines mostly due to the minor frequency of the events. Nevertheless, debris-flows and flood processes occur along many alluvial fans, have greatly contributed to their building up, and are therefore worth to be studied. Along many areas of the Southern Apennines, coalescent alluvial fans are a widespread geomorphic unit, typically located at the foot of steep slopes. In most cases these areas correspond to the more highly urbanised sectors, generally considered to be safer than the bottom valley, as concerns the direct effects from flooding. During intense storms, villages and towns built on alluvial fans may be affected by flooding and/or debris flow processes originated in the above catchment, and rapidly transferred downslope due to the steep slopes and the torrential character of the streams. This creates a very high hazard to the population and is at the origin of the severe and recurrent damage to urban settlements. Starting from the above considerations, we compiled a catalogue of flood and debris-flow events occurred in Campania Region, southern Italy, by consulting very different information sources: national and local newspapers and journals, regional historical archives, scientific literature, internet blogs. More than 350 events, occurred in Campania from 1700 to present, were collected. Information on time of occurrence and location are available for each event, with different level of accuracy, that is typically lower going back to the oldest events for which only the year or the month of occurrence of the event was identified; nevertheless, for

  3. A model of early calcite cementation in alluvial fans: Evidence from the Burdigalian sandstones and limestones of the Vallès-Penedès half-graben (NE Spain)

    NASA Astrophysics Data System (ADS)

    Parcerisa, D.; Gómez-Gras, D.; Travé, A.

    2005-07-01

    The Vallès-Penedès half-graben developed during a Neogene extensive period as part of the Catalan Coastal Ranges in the northwestern edge of the Valencia Trough. The Neogene deposits of the Vallès-Penedès half-graben consist of, from base to top, three lithostratigraphic complexes: i) a lower continental complex of Aquitanian?-early Langhian age; ii) a continental to marine complex with reefal carbonate platforms of Langhian age and; iii) an upper continental complex of middle Serravallian-Tortonian age. This study focuses on the calcite cements of the lower continental complex consisting of red beds (mudstones, sandstones and conglomerates) and lacustrine limestones deposited in alluvial fan environments. The studied materials are cemented by calcite precipitated from meteoric waters that circulated through the sediments during the early diagenesis at shallow burial depths. The calcite cement was studied by means of petrographic, cathodoluminescence, microprobe and δ 18O and δ 13C isotopic analysis. The petrographic and geochemical results show that these cements vary according to the sedimentary environment: (i) sandstones deposited in proximal alluvial fan environments cemented by calcite with low contents of Mg, Fe, Mn, Sr and Na, δ 13C values of - 7,4‰ PDB and δ 18O values from - 6.5 to - 6.2‰ PDB; (ii) sandstones sedimented in medium to distal alluvial fan environments cemented by Mn-rich and Mg, Fe, Sr and Na-poor calcite with δ 13C values from - 7.9 to - 6.9‰ PDB and δ 18O values from - 10.5 to - 8.6‰ PDB; and (iii) lacustrine limestones of distal alluvial fan environments cemented by Fe-rich calcite with variable contents of Mn and low contents of Mg, Sr and Na. The distribution of these calcite cements allows us to propose a model of fluid circulation and early calcite cementation within an alluvial fan indicating spatial and temporal variations in chemical composition of meteoric water during migration from proximal to distal alluvial

  4. Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Jia, Yongfeng; Guo, Huaming; Jiang, Yuxiao; Wu, Yang; Zhou, Yinzhu

    2014-10-01

    High As groundwater has been found in shallow aquifers of the flat plain of the Hetao basin, but little is known about As concentration in deep groundwaters around piedmont areas, which are the major drinking water resources. One hundred and three groundwater samples from wells with depths >50 m and seven samples from one multi-level monitoring well (89 m in depth) were analyzed for chemical compositions and 18O and D isotopes to examine the geochemical processes controlling As mobilization. According to hydrogeological setting, chemical and isotopic characteristics of deep groundwater, three distinguished hydrogeochemical zones are delineated, including Recharge-Oxic Zone (Zone I), Groundwater Flow-Moderate Reducing Zone (Zone II), and Groundwater Flow-Reducing Zone (Zone III). Zone I is located in proximal fans in the recharge area with oxic conditions, where low As groundwater generally occurs. In Zone II, located in the intermediate between the fans and the flat plain with Fe-reduction predominated, groundwater As is moderate. Zone III lies in the flat plain with the occurrence of SO42- reduction, where high As groundwater is mostly found. This indicates that release of As to groundwater is primarily determined by reduction sequences. Arsenic is immobilized in O2 /NO3- reduction stage in Zone I and released in Fe-reducing conditions of Zone II, and displays a significant elevated concentration in SO4-reducing stage in Zone III. Dissolution of carbonate minerals occurs in Zone I, while Ca2+ and Mg2+ are expected to precipitate in Zone II and Zone III. In the multi-level monitoring well, both chemical and isotopic compositions are dependent of sampling depths, with the similar trend to the hydrogeochemical zonation along the flow path. The apparent increases in δD and δ18O values in Zone III reveal the possibility of high As shallow groundwater recharge to deep groundwater. It indicates that deep groundwaters in proximal fans have low As concentrations and are

  5. Ground-water investigation at the alluvial fan of the South Fork River, Anchorage, Alaska: results of test drilling, 1976

    USGS Publications Warehouse

    Dearborn, Larry L.

    1977-01-01

    In late 1976, at Anchorage, Alaska, a ground-water exploration well was drilled to a depth of 487 feet on the South Fork Eagle River fan near the confluence with the mainstream. The well penetrated four sand and gravel strata of low water-yielding capacity and extended 37 ft into metamorphic bedrock. Earth water-bearing stratum was pumped for several hours, and the best aquifer yield was found to be 1.7 gal/min/ft of drawdown. These test results support the conclusion, previously inferred from drilling data at a nearby test hole drilled in 1973, that there are no confined aquifers of large yield in the subsurface at this locality. (Woodard-USGS)

  6. Regional and local risk assessments of alluvial fans by combination of historical and geomorphological data on debris flows, the most damaging natural hazard in the Aosta Valley Region (NW-Italy)

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Ratto, Sara; Alberto, Walter; Armand, Marco; Cignetti, Martina; Palomba, Mauro; Navillod, Evelyne

    2010-05-01

    The Aosta Valley (NW-Italy) is a small alpine Region (area = 3262 km2) where alluvial fans occupy large sectors of the main valley bottom and also of the tributary valleys; most towns and villages lie in these sectors which are frequently affected by different geomorphological processes, including debris flows. For a best environmental hazard assessment and management of alluvial fans, a research project has been carried out with a particular attention to debris flows, responsible for causing major damages to human activities and infrastructures. A debris flows inventory on a regional scale has been created, combining historical data (1900 to present), technical maps and geomorphological analysis on the alluvial fans areas. A complex methodology for data collection and analysis has been organized in two different stages. As a first step, aerial photointerpretation and Digital Elevation Models (DEMs) analysis were conducted over the Aosta Valley Region to obtain a complete fans inventory and to identify the most affected sectors by debris flows. As a second step, data on debris flow events occurred in the Region has been collected from different sources, such as bibliographic and historical data, municipality hazard maps for land planning restriction and drainage basin technical studies. For each inventored debris flow, aerial photointerpretations have been performed to validate geomorphological and historical data, mostly collected during major regional flood events. Finally, the selected debris flow events has been formally organized in a GIS to perform spatial and statistical analysis. Application of the methodology to the complete Aosta Valley Region dataset involved the overcoming of some difficulties, such as: 1) correct identification of repeated events from different sources, 2) exact recognition of small phenomena by photointerpretation and 3) problems related to the rapid landforms obliteration. The preliminary results of the research activity are outlined

  7. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    NASA Astrophysics Data System (ADS)

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkel, Robert C.; Mahan, Shannon A.

    2014-12-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/-1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  8. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    USGS Publications Warehouse

    Gray, Harrison J.; Owen, Lewis; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  9. Structure and climate controls on the evolution of a Mid-Late Jurassic alluvial fan-delta system in the western part of Yanshan fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Lin, Chengfa; Liu, Shaofeng; Yao, Xiang; Ma, Pengfei

    2016-04-01

    The Yanshan fold-thrust belt experienced several significant tectonic events during Mesozoic time and developed thrust fault-bounded intramontane sedimentary basins. However, elaborate works of sedimentology is inadequate in the Yanshan belt, particularly in its western segment, leading to a failure in comprehensively understanding how bounding-faults and climate change influence the basin filling processes. Our detailed sedimentological study of the Middle Jurassic Xiahuayuan Formation and Upper Jurassic-Lower Cretaceous Jiulongshan Formation in the Xiahuayuan basin of northern Hebei province, indicates a genetic relationship between the evolution of an alluvial fan-delta system and the tectonic and climate setting. The Xiahuayuan Formation was assigned to a debris flow-dominated Gilbert-type fan-delta composed of topset conglomerates, foreset massive siltstone-fine grained sandstone interbedded with lenticular conglomerate units and bottomset/lake bottom fine-grained deposits, spatially restricted to the northern part of the basin. While the lower Jiulongshan Formation was considered as a relatively small debris flow- and turbidity currents-dominated fan-delta with a single-ramp portrait, prograding into the middle part of the basin. And the upper part of Jiulongshan Formation contributed to the lake bottom component of the delta system during the forming of the Jiulongshan Formation. Our results reveal a transformation of a fan-delta from Gilbert-type to single-ramp type and the basinward migration of this fan-delta during Mid-Late Jurassic in the Xiahuayuan basin. And it is assumed that the activity of a thrust fault along the northern basin margin and the rapid switch of climate conditions from warm and humid to hot and dry triggered the transformation and migration of this fan-delta system.

  10. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    SciTech Connect

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  11. Variation in erosion/deposition rates over the last 50 years on alluvial fan surfaces of L. Pleistocene- Mid Holocene age, estimations using 137Cs soil profile data, Amargosa Valley, Nevada.

    NASA Astrophysics Data System (ADS)

    Harrington, C.; Kelley, R.; Ebert, T.; Delong, S.; Cline, M.; Pelletier, J.; Whitney, J.

    2005-12-01

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from1.0 +/-.01 cm to 2.0+/-.01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic system

  12. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Akif Sarikaya, Mehmet; Ciner, Attila

    2016-04-01

    Late Pleistocene activity of the Ecemiş Fault Zone is integrally tied to ongoing intraplate crustal deformation in the Central Anatolian Plateau. Here we document the vertical displacement, slip rate, extension rate, and geochronology of normal faults within a narrow strip along the main strand of the fault zone. The Kartal, Cevizlik and Lorut faults are normal faults that have evident surface expression within the strip. Terrestrial cosmogenic nuclide geochronology reveals that the Kartal Fault deformed a 104.2 ± 16.5 ka alluvial fan surface and the Cevizlik Fault deformed 21.9 ± 1.8 ka glacial moraine and talus fan surfaces. The Cevizlik Fault delimits mountain front of the Aladaglar and forms >1 km relief. Our topographic surveys indicate 13.1 ± 1.4 m surface breaking vertical displacements along Cevizlik Faults, respectively. Accordingly, we suggest a 0.60 ± 0.08 mm a-1 slip rate and 0.35 ± 0.05 mm a-1 extension rate for the last 21.9 ± 1.8 ka on the Cevizlik Fault. Taken together with other structural observations in the region, we believe that the Cevizlik, Kartal ve Lorut faults are an integral part of intraplate crustal deformation in Central Anatolia. They imply that intraplate structures such as the Ecemiş Fault Zone may change their mode through time; presently, the Ecemiş Fault Zone has been deformed predominantly by normal faults. The presence of steep preserved fault scarps along the Kartal, Cevizlik and Lorut faults point to surface breaking normal faulting away from the main strand and particularly signify that these structures need to be taken into account for regional seismic hazard assessments. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 112Y087).

  13. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone

    NASA Astrophysics Data System (ADS)

    Yıldırım, Cengiz; Sarıkaya, M. Akif; ćiner, Attila

    2016-06-01

    Here we documented the vertical displacement, slip rate, extension rate, and geochronology of normal faults within a narrow strip along the main strand of the Ecemiş Fault Zone. The Kartal, Cevizlik, and Lorut Faults are normal faults that have evident surface expression within the strip. Terrestrial cosmogenic nuclide geochronology revealed that the Kartal Fault deformed the 104.2 ± 16.5 ka aged alluvial fan surface and the Cevizlik Fault deformed the 21.9 ± 1.8 ka old moraine and talus fan surfaces. Our topographic surveys indicated 120 ± 10 m and 13.1 ± 1.4 m surface-breaking vertical displacements along the Kartal and Cevizlik Faults, respectively. Accordingly, we suggest a 1.15 ± 0.21 mm a-1 slip rate and 0.66 ± 0.12 mm a-1 extension rate for the last 104.2 ± 16.5 ka on the Kartal Fault, and a 0.60 ± 0.08 mm a-1 slip rate and 0.35 ± 0.05 mm a-1 extension rate for the last 21.9 ± 1.8 ka on the Cevizlik Fault. We believe that these structures are an integral part of intraplate crustal deformation in the Central Anatolia. They imply that intraplate structures such as the Ecemiş Fault Zone may change their mode through time; presently, the Ecemiş Fault Zone has been deformed predominantly by normal faults. The presence of steep preserved fault scarps along the Kartal, Cevizlik, and Lorut Faults point to surface-breaking normal faulting away from the main strand and particularly signify that these structures need to be taken into account for regional seismic hazard assessments.

  14. Constraining aggradation and degradation phases of alluvial fans in the sedimentary record: a case study from the Namib Desert, NW Namibia

    NASA Astrophysics Data System (ADS)

    von Hagke, Christoph; Malatesta, Luca C.; Ayoub, Francois; Stollhofen, Harald

    2015-04-01

    Along the Southern African margin it remains unclear whether the topography is the result of one or more Neogene uplift phases possibly related to mantle-driven dynamic topography, or a remnant of uplift due to pre-South Atlantic rifting and breakup during the Mesozoic. Whereas offshore seismic profiles and raised marine terraces onshore suggest phases of accelerated Neogene uplift, cosmogenic nuclide dating of river sediments and thermochronological data indicate constant uplift since post-Gondwana breakup. In this contribution we report present day erosion rate estimates from a fan-delta outboard the rift shoulder of the passive margin (i.e. the Great Escarpment), located in an area where erosion rate estimates on different timescales exist. Additionally, this fan-delta preserves elevated marine terraces on its surface, providing a unique time stratigraphic framework. It thus allows for direct comparison of erosion and uplift rate data as well as offshore-onshore correlation of sedimentary records. We constrain present day erosion rates of the system using quantitative sedimentology, and compare these results with published estimates of millennial and million year timescales. At present, erosion rates are 1.33E -06 mm/a, which is more than one order of magnitude lower than rates derived from cosmogenic nuclides, and several magnitudes lower than rates derived from thermochronological data. This shows that erosion rates constantly declined since the uplift pulse related to passive margin break-up. Subsequent erosional phases have not been effective enough to perturb this overall long-term trend. This is not in conflict with uplift rates inferred from raised beaches along the passive margin, if corrected for timescale dependent bias. With this study we are able to reconcile the confounding results from different data sets.

  15. A fan tale, modern and ancient fans - A comparison

    SciTech Connect

    Fischer, P.J. ); Thor, D.R. ); Cherven, V.B.

    1991-02-01

    The Quaternary Conception fan of the Santa Barbara basin and the Upper Cretaceous Lathrop fan of the northern San Joaquin basin tell an interesting tale. Both fans show a well defined sequence stratigraphy of alternating low-stand, sand-rich units that alternate with thin high-stand silt units that drape and in-fill the surface topography of the previous sand-cycle. Isopachs made from detailed well log correlations (Lathrop) and seismic reflection data tied to borings (Conception) show that the fans are composed of a series of offset-stacked, elongate fan lobes. These lobes are similar in size. A major difference in the development of the two fans is the timing of tectonism. Concomitant tectonism uplifted the Conception fan lobes and resulted in localized erosion of high-stand silts beds and sand-on-sand lobe contacts. Tectonism and Lathrop occurred after fan deposition and provided the trapping structure-the Lathrop anticlinal fold. Following are some lessons to be learned from these and other fans the authors have studied: (1) Quaternary or modern' fans and ancient fans are similar. (2) Elongate sand-rich fan lobes separated by highstand silt units are typical of fans. (3) In addition to well-known techniques (seismic stratigraphy and detailed well log correlations), original reservoir pressures may be used to differentiate sequences and lobes (e.g., Lathrop). (4) Tectonism and erosion along the margin may limit traps to the uppermost lobe sequence (e.g., Conception). (5) An offset-stacked elongate fan lobe model is a valuable exploration and production tool.

  16. Miocene Blanca Fan, Northern Channel Islands, California: Small fans reflecting tectonism and volcanism

    USGS Publications Warehouse

    McLean, H.; Howell, D.G.

    1984-01-01

    Blanca fan is a submarine fan composed of Miocene volcaniclastic strata. Parts of the fan system are exposed on Santa Cruz and Santa Rosa Islands, and possibly correlative strata crop out on San Miguel and Santa Catalina Islands. The Blanca fan and underlying breccia reflect regional transcurrent faulting in the California Continental Borderland and development of a system of rapidly subsiding basins and uplifted linear ridges during early and middle Miocene time. Erosion of uplifted crystalline basement rocks followed by the onset of silicic volcanism created linear sediment sources for the alluvial and submarine fans, respectively. ?? 1984 Springer-Verlag New York Inc.

  17. Meander in valley crossing a deep-ocean fan.

    PubMed

    Shepard, F P

    1966-10-21

    Seaward of most submarine canyons there are large sediment fans comparable to the fans at the base of mountain ranges. Many of the submarine fans are cut by valleys called fan-valleys which usually connect with the mouths of submarine canyons. Loop-like bends or meanders characterize the channels of rivers in their lower flood plains, but have never been found in the shallow channels that cross the alluvial fans at the base of mountain canyons. Therefore, it was surprising to find that the channel in a very deep submarine fan-valley off Monterey Bay, California, has a tight meander. PMID:17751705

  18. Preliminary results of chronostratigraphic field work, OSL-dating and morphogenetic reconstruction of an alluvial apron at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Fuchs, Markus; Majid Padashi, Seyed; Baumhauer, Roland

    2014-05-01

    Here we present preliminary results of a chronostratigraphic study of an alluvial fan in the Damghan Basin, northern Iran. The basin sediments date back to the Mio- and Pliocene and therefore represent the starting point of alluvial fan aggradation. Today, the still active alluvial fans prograde from the Albors Mountain ranges and sit on the older sediment bodies. In this study, our focus is on the late Pleistocene to Holocene alluvial fan sedimentation history. The upper stratigraphy of the alluvial fans and intercalated lake deposits is characterized by six individual layers of gravels and fines, representing six different stratigraphic units. These units are described and classified by detailed geomorphological and stratigraphic mapping. To establish an alluvial fan chronology, six profiles were sampled for OSL dating. As expected, due to the high-energy transport system of alluvial fan aggradation in semi-desert environments, OSL dating of these sediments is challenging due to the problem of insufficient bleaching. Consequently, most of the samples are interpreted as maximum ages. However, the measurements show a consistent internal age structure and the overall OSL-based chronology is in agreement with the age model derived from our geomorphological analysis. As a first interpretation, based on surveyed geomorphological features and chronological analysis, we could identify seven morphodynamic phases, leading to a genetic model of alluvial fan aggradation. The oldest Pleistocene age estimate is derived from a former lake terrace. The following ages represent ongoing lake sediment deposition and the development of a proximal and mid-fan gravel cover. After the youngest lake deposits were accumulated within the Holocene, the lake starts to retreat and small alluvial fans are filling up the former lake bottom. This last sedimentation phase can be divided in at least two sub-phases, probably coupled to a lateral shifting of the active depositional lobe and to the

  19. The timing of alluvial activity in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Grant, John A.; Wilson, Sharon A.; Mangold, Nicolas; Calef, Fred; Grotzinger, John P.

    2014-02-01

    The Curiosity rover's discovery of rocks preserving evidence of past habitable conditions in Gale crater highlights the importance of constraining the timing of responsible depositional settings to understand the astrobiological implications for Mars. Crater statistics and mapping reveal the bulk of the alluvial deposits in Gale, including those interrogated by Curiosity, were likely emplaced during the Hesperian, thereby implying that habitable conditions persisted after the Noachian. Crater counting data sets and upper Peace Vallis fan morphology also suggest a possible younger period of fluvial activation that deposited ~10-20 m of sediments on the upper fan after emplacement of the main body of the fan. If validated, water associated with later alluvial activity may have contributed to secondary diagenetic features in Yellowknife Bay.

  20. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  1. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  2. Large Fluvial Fans: Aspects of the Attribute Array

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin M.

    2015-01-01

    In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.

  3. Layered Fan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03692 Layered Fan

    This beautiful fan deposit is located at the end of a mega-gully that empties into the southern trough of Coprates Chasma.

    Image information: VIS instrument. Latitude -14.9N, Longitude 299.8E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Generation of waterfalls at intermittently alluviated fault scarps releases tectonic forcing on a climatic beat.

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca C.; Lamb, Michael P.

    2016-04-01

    Normal or reverse faults bonding mountain catchments typically mark the transition from the erosional to the depositional domain where bedrock channels flow into alluvial fans. We show here that interactions between the two fluvial domains can result in knickpoints that convolve tectonic and climatic signals. Changes in the ratio of sediment and water fluxes (Qs/Qw) modify the equilibrium geometry of the system and in particular of the reactive alluvial reaches so that a larger Qs/Qw forces steepening of the fan, backfilling of the bedrock reach and a heightened base level. Under these conditions, slip on the fault - covered and shielded by alluvium - can accumulate over several seismic cycles before being released at once by incision of the alluvial fan back to a shallow geometry. We demonstrate in this study that climate-driven aggradation and incision of alluvial fans in the Death Valley area can account for otherwise unexplained waterfalls at the base of catchments manyfold the height of coseismic throw. As a consequence, in this common configuration, tectonic slip can accumulate and be released at once on a tempo set by climatic fluctuations. Such that the faster denudation rate that might follow from increased precipitations is accompanied by an important retreating knickpoint. We propose that this mechanism can increase catchment reactivity and broaden the range of external forcings potentially recorded in the stratigraphy.

  5. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  6. Debris-flow hazards on tributary junction fans, Chitral, Hindu Kush Range, northern Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, M. Asif; Haneef, M.; Khan, Anwar S.; Tahirkheli, Tazeem

    2013-01-01

    The Chitral district of northern Pakistan lies in the eastern Hindu Kush Range. The population in this high-relief mountainous terrain is restricted to tributary-junction fans in the Chitral valley. Proximity to steep valley slopes renders these fans prone to hydrogeomorphic hazards, including landslides, floods and debris flows. This paper focuses on debris-flow hazards on tributary-junction fans in Chitral. Using field observations, satellite-image analyses and a preliminary morphometry, the tributary-junction fans in the Chitral valley are classified into (1) discrete and (2) composite. The discrete fans are modern-day active landforms and include debris cones associated with ephemeral gullies, debris fans associated with ephemeral channels and alluvial fans formed by perennial streams. The composite fans are a collage of sediment deposits of widely different ages and formed by diverse alluvial-fan forming processes. These include fans formed predominantly during MIS-2/Holocene interglacial stages superimposed by modern-day alluvial and debris fans. Composite fans are turned into relict fans when entrenched by modern-day perennial streams. These deeply incised channels discharge their sediment load directly into the trunk river without significant spread on fan surface. In comparison, when associated with ephemeral streams, active debris fans develop directly at composite-fan surfaces. Major settlements in Chitral are located on composite fans, as they provide large tracts of leveled land with easy accesses to water from the tributary streams. These fan surfaces are relatively more stable, especially when they are entrenched by perennial streams (e.g., Chitral, Ayun, and Reshun). When associated with ephemeral streams (e.g., Snowghar) or a combination of ephemeral and perennial streams (e.g., Drosh), these fans are subject to frequent debris-flow hazards. Fans associated with ephemeral streams are prone to high-frequency (˜10 years return period) debris

  7. Application of terrestrial LiDAR topographic data to reconstruct offset geomorphic markers along the Fuyun strike-slip fault, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Etchebes, M.; Tapponnier, P.; Klinger, Y.; Van Der Woerd, J.; Xu, X.; Xinzhe, S.; Xibin, T.; Rizza, M.; Hang, T. Lok

    2012-04-01

    Tectonically offset geomorphic markers such as stream channels, terrace risers, alluvial fan surfaces and other types of ridges and troughs record the surface signature of successive earthquakes on active faults. Increasingly detailed 3D surface measurements, together with multiple age constraints, now yield a much-improved understanding of the long-term seismic behavior of such faults. Using sub-metric-resolution Quickbird optical satellite images, we obtained a dense horizontal offset dataset (553 measurements) along the right-lateral Fuyun fault. The most recent rupture along this fault, which is remarkably well preserved due to the arid climate, was generated by the Ms 7.9, august 11, 1931 Fuyun earthquake. For 5 successive earthquakes of similar size, the dataset is consistent with characteristic seismic behavior (≈ 6 ± 1 m of co-seismic slip). To complement and validate this dataset, we acquired terrestrial LiDAR topographic data over a total length of 7.5 km at 4 sites where multiples of the 1931 offsets were measured on Quickbird images. Using the new LiDAR DEMs obtained, we were able to map fault scarps more accurately, and the restoration of horizontal offset measurements was improved using apparent vertical offsets. The identification and definition of the markers with the 3D LiDAR data is unambiguous, and qualitative differences in the apparent ages of the markers may be assessed, increasing the confidence level in the reconstructions. On the thrust segments of the rupture, knickpoint retreat can be quantified, opening the way to a better understanding of the interaction between erosion and seismic surface deformation in shaping the landforms. Field observations, HR optical satellite images and LiDAR topographic data ideally complement one another to test the repeatability of offset measurements and constrain the densest possible vertical and horizontal slip distributions along active faults. By combining them, we are starting to build unique

  8. Rhone deep-sea fan: morphostructure and growth pattern

    SciTech Connect

    Droz, L.; Bellaiche, G.

    1985-03-01

    A detailed bathymetric survey of the Rhone deep-sea fan and its feeder canyon using Sea-Beam, reveals morphologic features such as very tight meanders of the canyon and channel courses, cutoff meanders, and downslope narrowing of the inner channel floor. Striking similarities exist between these deep-sea features and some continental landforms, especially in alluvial plain areas or desert environments. Sea-Beam also reveals evidence of huge slump scars affecting the slope and fan. The superficial structure of the Rhone Fan results from the stacking of numerous lenticular acoustic units displaying specific seismic characters in which the authors recognized channel and levee facies. Except in the upper fan area, these units have not been constant; they have generally migrated, owing to shifting of the channel throughout fan evolution. Construction of the fan probably began as early as the early Pliocene and continued to the close of the Wurmian (late Wisconsinian). The fan's growth pattern could be associated with climatic fluctuations. The principal sedimentary mechanism responsible for the growth of the fan appears to be turbidity currents, but mass gravity flows have also been an important factor in building the fan by occasionally blocking the main channel and forcing it to migrate.

  9. Alluvial channel hydraulics

    NASA Astrophysics Data System (ADS)

    Ackers, Peter

    1988-07-01

    The development and utilisation of water resources for irrigation, hydropower and public supply can be severely affected by sediment. Where there is a mature and well vegetated landscape, sediment problems may be relatively minor; but where slopes are steep and vegetation sparse, the yield of sediment from the catchment gives high concentrations in the rivers. In utilising these resources, for whatever purpose, an understanding of the hydraulics of alluvial channels is vital. The regime of any conveyance channel in alluvium depends on the interrelationships of sediment transport, channel resistance and bank stability. The regime concept was originally based on empirical relations obtained from observations from canal systems in the Indian subcontinent, and for many years was surrounded by a certain degree of mystique and much scepticism from academics. In more recent years the unabashed empiricism of the original method has been replaced by process-based methods, which have also served as broad confirmation of the classic regime formulae, including their extension to natural channels and meandering channels. The empirical approach to the hydraulics of alluvial channels has thus been updated by physically based formulae for sediment transport and resistance, though there remains some uncertainty about the third function to complete the definition of slope and geometry. Latest thoughts in this respect are that the channel seeks a natural optimum state. Physical modelling using scaled down representations of rivers and estuaries has been used for almost a century, but it requires the correct simulation of the relevant processes. The coming of a better understanding of the physics of sediment transport and the complexity of alluvial channel roughness leads to the conclusion that only in very restricted circumstances can scale models simulate closely the full-size condition. However, the quantification of these processes has been instrumental in the development of

  10. Supersonic throughflow fans

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Moore, R. D.

    1988-01-01

    Supersonic throughflow fan research, and technology needs are reviewed. The design of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser is described. The results from the analysis codes used in executing the design are shown. An engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope is presented.

  11. Abo Formation alluvial facies and Associated Basin Fill, Sacramento Mountains, New Mexico

    SciTech Connect

    Speer, S.W.

    1986-03-01

    Outcrops of the Abo Formation (Wolfcampian to early Leonardian age) in the Sacramento Mountains of south-central New Mexico record the evolution of a dry alluvial fan system as it was deposited off the pedernal uplift into the Orogrande basin. The location and orientation of present-day outcrops allow us to observe an inferred east-to-west transverse facies tract consisting of: (1) proximal alluvial fans (lower Abo), which are contiguous in places with underlying Laborcita Formation fan-deltaic sediments; (2) medial anastomosed streams (middle Abo); and (3) distal low-gradient mud-dominated flood basins characterized by either distributary streams (upper Abo) or clastic tidal flats (Lee Ranch Tongue of the Abo) with associated marine carbonates (Pendejo Tongue of the Hueco Formation). Tectonism in the Pedernal highlands, which climaxed during the Late Pennsylvanian, apparently continued well into the Wolfcampian in this region, as evidenced by a major basal Abo unconformity and distinct stacked megasequences of lower Abo alluvial fan lithofacies. However, by the middle Abo, tectonic activity had quiesced and the uplift began eroding and retreating to the north and east. By the late Abo, a pediment surface had formed that was subsequently onlapped by upper Abo and eventually Yeso Formation sediments.

  12. Morphometric differences in debris flow and mixed flow fans in eastern Death Valley, CA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T. A.; Whitworth, J.

    2004-12-01

    Geomorphological features are best examined through direct measurement and parameterization of accurate topographic data. Fine-scale data are therefore required to produce a complete set of elevation data. Airborne Laser Swath Mapping (ALSM) data provide high-resolution data over large spatially continuous areas. The National Center for Advanced Laser Mapping (NCALM) collected ALSM data for an area along the eastern side of Death Valley extending from slightly north of Badwater to Mormon Point. The raw ALSM data were post-processed and delivered by NCALM in one-meter grid nodes that we converted to one-meter raster data sets. ALSM data are used to assess variations in the dimensions of surficial features found in 32 alluvial fans (21 debris flow and 11 mixed flow fans). Planimetric curvature of the fan surfaces is used to develop a topographic signature to distinguish debris flow from mixed flow fans. These two groups of fans are identified from field analysis of near vertical exposures along channels as well as surficial exposures at proximal, medial, and distal fan locations. One group of fans exhibited debris flow characteristics (DF), while the second group contained a mixture of fluid and debris flows (MF). Local planimetric curvature of the alluvial fan surfaces was derived from the one-meter DEM. The local curvature data were reclassified into concave and convex features. This sequence corresponds to two broad classes of fan features: channels and interfluves. Thirty random points were generated inside each fan polygon. The length of the nearest concave-convex (channel-interfluve) couplet was measured at each point and the percentage of convex and concave pixels in a 10m box centered on the random point was also recorded. Plots and statistical analyses of the data show clear indication that local planimetric curvature can be used as a topographic signature to distinguish between the varying formative processes in alluvial fans. Significant differences in the

  13. Late Pleistocene eolian-alluvial interference in the Balearic Islands (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Pomar, Francisco; Del Valle, Laura; Fornós, Joan J.; Gómez-Pujol, Lluís; Anechitei-Deacu, Valentina; Timar-Gabor, Alida

    2016-04-01

    This study deals with alluvial fan and aeolian sediments interference. Although initially they are two different environments, with different processes and resulting forms, very often their interaction produces deposits that share characteristics and features from both environments, as well as, maintain inherited elements from one to each other. In this sense, the aeolian-alluvial interference is the geomorphological expression of the coincidence, disruption and/or overlapping of aeolian and alluvial environments. Climate appears to be one of the most important controls on the role and magnitude of each environment in terms of sediment supply, precipitation, runoff or aeolian transport. In this study, eight major sedimentary facies have been described involving the succession of coastal, aeolian, colluvial and alluvial environments. Carbonate sandstones, breccias, conglomerates and fine-grained deposits are the main component of these sequences. OSL dating of aeolian levels indicate that their deposition took place during the Late Pleistocene, establishing a paleoclimatic evolution of Balearic coastal areas during the last 125 ka. The sedimentological and chronological analysis of these deposits allows reconstructing the coastal environmental changes during the Late Pleistocene at the Balearic archipelago. Keywords: Alluvial sedimentation, eolian sedimentation, alluvial-eolian interference, sea level, Late Pleistocene, Balearic Islands.

  14. Engine cooling fan and fan shrouding arrangement

    SciTech Connect

    Longhouse, R.E.; Vona, N.

    1987-08-11

    This patent describes a vehicle engine cooling fan and shrouding assembly for forcing cooling air through a radiator in which engine coolant is circulated comprising support means adjacent to the radiator, a fan shroud and mounting shell operatively secured to the support means adjacent to the radiator. The shell has a peripheral forwardly extending wall portion to provide an intake for air flowing through the radiator. The shell further has a generally cylindrical and rearwardly extending portion to provide a reduced dimensioned air ejector for the shell, spoke means extending inwardly from the air ejector, a fan drive motor supported by the spoke means extending axially into the shell, the motor having a rotatable output shaft extending outwardly therefrom toward the radiator and having a terminal end portion, and engine cooling fan operatively driven by the drive motor and rotatably mounted in the shell.

  15. Variable scale channel avulsion history using fan architecture and stratigraphy, and sediment provenance of Sutlej-Yamuna fans in northwest Gangetic plains during Late Quaternary

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Gupta, Sanjeev; Sinha, Rajiv; Densmore, Alexander; Buylaert, Jan-Pieter; Carter, Andrew; Van-Dijk, Wout M.; Joshi, Suneel; Nayak, Nibedita; Mason, Philippa J.; Kumar, Dewashish; Mondal, Setbandhu; Murray, Andrew; Rai, Shiv P.; Shekhar, Shashank

    2016-04-01

    Channel avulsion during fan development controls distribution and deposition of channel sandbodies and hence alluvial architecture of a fan system. Variable scale spatio-temporal information of fluvial responses to past climate changes is stored in these channel sandbodies. Further these channel sandbodies form fluvial aquifers in alluvial fans and therefore understanding of alluvial architecture and stratigraphy of a fan is crucial for development of groundwater management strategies. In this study we used multiple approaches to map subsurface fluvial aquifer architecture and alluvial stratigraphy, and to estimate sediment provenance using U-Pb dating of detrital zircon grains of Sutlej-Yamuna fan system in northwest India. Satellite imagery based geomorphic mapping shows two large fan system with interfan area. The fan surfaces show presence of major and minor paleochannels. 2D resistivity tomography along several transects across fan surfaces shows distinct layers with contrasting resistivity values. These geo-electric facies corresponds to presence of channel sandbodies beneath surface signature of paleochannels and finer floodplain deposits useful to demarcate lateral extent of subsurface channel sandbodies. A more detailed subsurface stratigraphy using ~50m deep sediment cores and their luminescence ages from across fan surface shows presence of multi-storey sandbodies (MSB) separated by floodplain fines. Within the MSB, individual channel deposits are identified by presence of channel scour surfaces located at coarse sand overlying fine sand layer. Depositional ages of MSB's ranges from ~81 ka (late MIS5) to ~15 ka (MIS2) with major depositional break during MIS3 in parts of the fans. Sediment aggradation rate varies laterally across fan surface as well as vertically down the depth with an average rate of 0.54 mm/year. Fluvial channel persistence for studied time interval (about last 81 ka BP) shows major depositional breaks (and possible incision) at ~41 ka

  16. Noise Prediction Module for Offset Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  17. Centrifugal fan monitoring guidelines

    SciTech Connect

    Piety, K.R.; Piety, R.W.; Greene, R.H.; Johnson, E.L. )

    1991-07-01

    This study provide guidelines on the vibration monitoring of centrifugal fans in fossil-fired utility plants. Based on an intensive analysis of a fan database, it provides a substantial amount of detailed information relating to vibration patterns and vibration amplitudes and recommends parameter bands and alarm levels. The study focuses on forced draft, induced draft, primary air, and gas recirculating fans. 8 refs., 19 figs., 19 tabs.

  18. Temperature offset control system

    SciTech Connect

    Fried, M.

    1987-07-28

    This patent describes a temperature offset control system for controlling the operation of both heating and air conditioning systems simultaneously contained within the same premises each of which is set by local thermostats to operate at an appropriate temperature, the offset control system comprising: a central control station having means for presetting an offset temperature range, means for sensing the temperature at a central location, means for comparing the sensed temperature with the offset temperature range, means responsive to the comparison for producing a control signal indicative of whether the sensed temperature is within the offset temperature range or beyond the offset temperature range, and means for transmitting the control signal onto the standard energy lines servicing the premises; and a receiving station respectively associated with each heating and air conditioning system, the receiving stations each comprising means for receiving the same transmitted control signal from the energy lines, and switch means for controlling the energization of the respective system in response to the received control signal. The heating systems and associated local thermostat are disabled by the control signal when the control signal originates from a sensed temperature above the lower end of the offset temperature range. The air conditioning systems and associated thermostats are disabled by the same control signal when the control signal originates from a sensed temperature below the upper end of the offset temperature range.

  19. 1. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN HOUSE LOOKING NORTHWEST The building on the left, the New Fan House, houses a Corliss steam engine which powered a Buffalo Forge Company single inlet Duplex Conoidal centrifugal exhausted fan through a metal updraft chimney. Part of the brick airway leading to the Baltimore shaft is visible to its right rear. The Hillman Fan House, on the right, houses the 1883 double inlet Guibal fan. The south entry, the curve of the fan housing, and brick updraft chimney are visible in this view. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  20. Fan type end moraine related glaciofluvial deposits of Last Glaciation from Lithuania

    NASA Astrophysics Data System (ADS)

    Šinkūnė, Eglė; Šinkūnas, Petras

    2015-04-01

    Several alluvial-fan type end moraine related sites were chosen for detailed sedimentological analyses in ice marginal zone of the last glaciation in Lithuania. Such glaciofluvial ice-marginal fans are formed close to linear ice-sheet front and have semi-conical form or represent simple asymmetric hill forms or more complex ridges with steep proximal and gentler distal slopes. Sedimentary sequences of ice-marginal fans studied consist mainly of waterlain sandy and gravelly deposits with pebbles and boulders. In some sequences a debris-flow deposits are observed as well as beds of sorted material interbedded with dominating high energy sheetflow deposits. Sediment grain size, sorting, structure and bedding characteristics dependent on ice proximity and hydrodynamic conditions were analysed. Highly pulsatory water discharge can be interpreted from depositional architecture of the end moraine related fans. The inferred character of sedimentation suggests that landforms consisting of deposits studied are genetically similar to the alluvial fans. According to the sedimentation features the investigated landforms are an intermediate between the marginal glaciofluvial ridges and sandur fans. Are they a transition zone of sedimentation between the end moraines and proximal outwash plains, or can be the end moraine related fans distinguished as a separate type of glaciofluvial deposits? This question is still open.

  1. Seismic offset balancing

    SciTech Connect

    Ross, C.P.; Beale, P.L.

    1994-01-01

    The ability to successfully predict lithology and fluid content from reflection seismic records using AVO techniques is contingent upon accurate pre-analysis conditioning of the seismic data. However, all too often, residual amplitude effects remain after the many offset-dependent processing steps are completed. Residual amplitude effects often represent a significant error when compared to the amplitude variation with offset (AVO) response that the authors are attempting to quantify. They propose a model-based, offset-dependent amplitude balancing method that attempts to correct for these residuals and other errors due to sub-optimal processing. Seismic offset balancing attempts to quantify the relationship between the offset response of back-ground seismic reflections and corresponding theoretical predictions for average lithologic interfaces thought to cause these background reflections. It is assumed that any deviation from the theoretical response is a result of residual processing phenomenon and/or suboptimal processing, and a simple offset-dependent scaling function is designed to correct for these differences. This function can then be applied to seismic data over both prospective and nonprospective zones within an area where the theoretical values are appropriate and the seismic characteristics are consistent. A conservative application of the above procedure results in an AVO response over both gas sands and wet sands that is much closer to theoretically expected values. A case history from the Gulf of Mexico Flexure Trend is presented as an example to demonstrate the offset balancing technique.

  2. Calibrated, late Quaternary age indices using clast rubification and soil development on alluvial surfaces in Pilot Knob Valley, Mojave Desert, southeastern California

    NASA Astrophysics Data System (ADS)

    Helms, John G.; McGill, Sally F.; Rockwell, Thomas K.

    2003-11-01

    The orange coating (varnish) that forms on the undersides (ventral sides) of clasts in desert pavements constitutes a potential relative-age indicator. Using Munsell color notation, we semiquantified the color of the orange, ventral varnish on the undersides of clasts from 15 different alluvial fan and terrace surfaces of various ages ranging from less than 500 to about 25,000 yr. All of the surfaces studied are located along the central portion of the left-lateral Garlock fault, in the Mojave Desert of southern California. The amount of left-lateral offset may be used to determine the relative ages of the surfaces. The previously published slip rate of the fault may also be used to estimate the absolute age of each surface. The color of the ventral varnish is strongly correlated with surface age and appears to be a more reliable age-indicator than the percentage coverage of dorsal varnish. Soil development indices also were not as strongly correlated with age, as were the colors of the ventral varnish. In particular, rubification appears to be more useful than soils for distinguishing relative ages among Holocene surfaces. Humidity sensors indicated that the undersides of clasts condensed moisture nightly for a period of several days to over a week after each rain. These frequent wet-dry cycles may be responsible for the rapid development of clast rubification on Holocene surfaces.

  3. Fan Unit Physics

    NASA Astrophysics Data System (ADS)

    Morse, Robert A.

    2005-03-01

    A lightweight motor-driven propeller mounted on a low-friction cart provides a nearly constant thrust over a moderate range of velocities and can be a powerful pedagogical tool for investigating force and motion. A variety of homemade and commercial versions are now available. This article revisits and extends the topic of fan unit use described earlier. It looks at the rationale for use of fan units, gives examples of teaching ideas, and describes construction of two homemade versions of fan units.

  4. Drainage basin morphometry controls on the active depositional area of debris flow fans

    NASA Astrophysics Data System (ADS)

    Mihir, Monika; Wasklewicz, Thad; Malamud, Bruce

    2015-04-01

    A majority of the research on understanding the connection between alluvial fans and drainage basins to date has focused on coarse-scale relations between total fan area and drainage basin area. Here we take a new approach where we assess relationships between active fan depositional area and drainage basin morphometry using 52 debris flow fans (32 from the White Mountains and 20 from the Inyo Mountains) on the eastern side of Owens Valley, California, USA. The boundaries for fans, drainage basin and active depositional areas were delineated from 10m digital elevation models and 1 m aerial photographs. We examined the relationships between the normalised active depositional area of the fan (Afad/Af, where Afad is the fan active depositional area and Af the entire fan area) and the following four variables for drainage basin: (i) area (Adb), (ii) total stream length (Ls), (iii) relief (BHH), (iv) roughness (R). We find a statistically significant (r2 > 0.40) inverse power-law relationship between recent sediment contribution to the fan and drainage basin area (Afad/Af = 0.29Adb-0.167) drainage network length (Afad/Af = 0.39Ls-0.161) and basin relief (Afad/Af = 3.90BHH-0.401), and a statistically weak (r2 = 0.22) inverse power law with basin roughness (Afad/Af = 0.32R0.5441). Drainage basin size combined with other morphometric variables may largely determine efficiency in sediment transport and delivery to the fan surface. A large proportion of the total fan area of smaller fans are flooded by debris flow indicating less sediment storage in the drainage basins and greater efficiency in sediment delivery. The findings signify the importance of coarse-scale relationships to both long- and short-term fan evolution.

  5. Policy Development for Biodiversity Offsets: A Review of Offset Frameworks

    NASA Astrophysics Data System (ADS)

    McKenney, Bruce A.; Kiesecker, Joseph M.

    2010-01-01

    Biodiversity offsets seek to compensate for residual environmental impacts of planned developments after appropriate steps have been taken to avoid, minimize or restore impacts on site. Offsets are emerging as an increasingly employed mechanism for achieving net environmental benefits, with offset policies being advanced in a wide range of countries (i.e., United States, Australia, Brazil, Colombia, and South Africa). To support policy development for biodiversity offsets, we review a set of major offset policy frameworks—US wetlands mitigation, US conservation banking, EU Natura 2000, Australian offset policies in New South Wales, Victoria, and Western Australia, and Brazilian industrial and forest offsets. We compare how the frameworks define offset policy goals, approach the mitigation process, and address six key issues for implementing offsets: (1) equivalence of project impacts with offset gains; (2) location of the offset relative to the impact site; (3) “additionality” (a new contribution to conservation) and acceptable types of offsets; (4) timing of project impacts versus offset benefits; (5) offset duration and compliance; and (6) “currency” and mitigation replacement ratios. We find substantial policy commonalities that may serve as a sound basis for future development of biodiversity offsets policy. We also identify issues requiring further policy guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; and (3) determine appropriate mitigation replacement ratios.

  6. Fault-scarp morphology and amount of surface offset on late-Quaternary surficial deposits, eastern escarpment of the central Sierra Nevada, CA

    SciTech Connect

    Berry, M.E. . Dept. of Geology)

    1992-01-01

    Faults scarps, formed on glacial deposits and an alluvial fan near the east-central Sierra Nevada mountain front by late-Quaternary movement on the Hilton Creek (HCF), Wheeler Crest (WCFZ) and Coyote Warp (CWFZ) fault zones, were profiled to determine the amount and to estimate the recency of fault offset. Areas studied include McGee (N--near Lake Crowley), Pine, Mount Tom, Basin Mountain, McGee (S--near Bishop), and Bishop Creek drainages. The profile data indicate that movement of the range-front faults (HCF and WCFZ), which is characterized by normal slip, has offset Tioga-age deposits 6.5-26 m. Offset of Tahoe-age moraines cannot be measured directly because the landforms are buried at the mountain-front by moraines from later glaciations. However, the amount of offset is estimated at 52--130 m, based on crest-height differences between Tahoe and Tioga moraines. The rates of slip are highest on the northern end of the HCF, at McGee (N) Creek; the higher slip rates in this latter area may be related to its close proximity to the Long Valley caldera, where tectonic processes are complex and considered closely related to ongoing magmatic activity. The preservation of bevels on the fault scarps in both HCF and WCFZ, combined with the amounts of surface offset on the late-Pleistocene moraines, and AMS C-14 dates for charcoal found in fault-scarp colluvium, indicate that large ground-rupturing events have occurred on these faults during the Holocene. In contrast to the mountain-front faults, faults in the CWFZ, on a broad warp that separates the WCFZ from range-front faults to the south of Bishop, do not cross Tioga moraines, implying that surface rupture has not occurred in the CWFZ for at least 15,000-25,000 years. The degraded morphology of the fault scarps on adjacent Tahoe and pre-Tahoe moraines, which have been offset between 10.5 and 30 m, attests to the lack of late-Pleistocene and Holocene fault activity in this latter area.

  7. Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: A case study of Nasunogahara area, central Japan

    NASA Astrophysics Data System (ADS)

    Liu, Yaping; Yamanaka, Tsutomu; Zhou, Xun; Tian, Fuqiang; Ma, Wenchao

    2014-11-01

    In this study, we simulate the spatial and temporal distribution of groundwater recharge in an alluvial aquifer system in the Nasunogahara area of Japan. Natural stable isotopes (18O, D) were considered as additional calibration targets in a numerical model. The reliability of the model outputs was further validated by comparing the results from the numerical simulation and an independent tracer approach. The results indicated that the calibrated model can effectively simulate the spatial and temporal characteristics of the contribution ratios of recharge sources to groundwater in the Nasunogahara area. However, the tracer approach (i.e., end member mixing analysis) provided more reliable results at point scale, particularly for the estimated contribution ratios of paddy field water. The precipitation in the Nasunogahara area is the major recharge source; its mean contribution ratio is 58% for a one-year period over the entire alluvial fan. River seepage is significant in the upstream area of the alluvial fan, and the contribution ratio of river waters along the river channels in the upstream area increases during the wet season. Paddy field water is a highly important recharge source in the midstream and downstream areas of the alluvial fan, and the contribution ratio of paddy field water obviously increases from dry season to wet season because of irrigation. This study demonstrates that combined use of the tracer approach and numerical simulation with stable isotopes as additional calibration targets can eliminate their respective limitations and can assist in better understanding the groundwater recharge mechanism in alluvial aquifer systems.

  8. Training SVMs without offset

    SciTech Connect

    Steinwart, Ingo; Hush, Don; Scovel, Clint

    2009-01-01

    We develop, analyze, and test a training algorithm for support vector machine cla.'>sifiers without offset. Key features of this algorithm are a new stopping criterion and a set of working set selection strategies that, although inexpensive, do not lead to substantially more iterations than the optimal working set selection strategy. For these working set strategies, we establish convergence rates that coincide with the best known rates for SYMs with offset. We further conduct various experiments that investigate both the run time behavior and the performed iterations of the new training algorithm. It turns out, that the new algorithm needs less iterations and run-time than standard training algorithms for SYMs with offset.

  9. Development of the Astoria Canyon-Fan physiography and comparison with similar systems

    USGS Publications Warehouse

    Nelson, C.H.; Carlson, P.R.; Byrne, J.V.; Alpha, T.R.

    1970-01-01

    A detailed bathymetric study of Astoria Canyon and Astoria Fan provides a model for typical submarine canyon-fan systems. The present canyon head is 9 miles (17 km) west of the Columbia River mouth but buried Pleistocene channels appear to have connected the two features in the past. The canyon, which is distinguished by its relief, V-shaped profiles, and numerous tributaries, winds sinuously and is coincident with apparent structural trends across the continental shelf and slope. At the fan apex, the canyon mouth merges smoothly into Astoria Channel, which is characterized by its U-shaped profiles, lower walls of even height, and levee development. Astoria Channel and the fan valley at the base of the continental slope are the most recently active of a series of main fan valleys that appear to have: (1) progressively "hooked left"; (2) migrated from north to south across the fan during its formation; and (3) been partly responsible for the asymmetrical shape of the fan. The deep, narrow upper fan valleys that characterize the steep (> 1:100, or 0??35???) and rough (10-30 fathoms, or 18-55 m) upper fan surface break into distributaries on the middle fan, where there is the sharpest change in gradient. The main valleys become broader and shallower down the fan, while the generally concave fan surface grades to nearly a flat seafloor (to gradients < 1:1000, or 0??0.5???), (< 10 fathoms, or 18 m relief). Similarity of Astoria Canyon-Fan system with other deep-sea fan and alluvial fan systems, suggests the hypothesis that size of drainage basin, sediment size, and sediment load control the size, gradient, and valley development of any fan system. Data from bathymetry, seismic refraction stations, and sediment load of the Columbia River indicate that the cutting of Astoria Canyon and the deposition of the unconsolidated sediment layer forming Astoria Fan could have been accomplished during the Pleistocene. A similar history can be suggested for other major submarine

  10. Report from working group on alluvial pedogenesis

    USGS Publications Warehouse

    Autin, W.J.; Aslan, A.; Bettis, E.A.; Walthall, P.M.

    1998-01-01

    These uses illustrate the complexity of alluvial pedogenesis as it relates to the analysis and interpretation of paleosols. Difficulties with interpretations of alluvial paleosols are probably greatest when applied to the preserved sedimentary record, where direct evidence of paleolandscape variability is scanty or lacking.

  11. Dating intramontane alluvial deposits from NW Argentina using luminescence techniques: Problems and potential

    NASA Astrophysics Data System (ADS)

    Spencer, Joel Q. G.; Robinson, Ruth A. J.

    2008-01-01

    Intramontane basin sediments are an archive of the interaction between basin bounding faults, and alluvial fan and fluvial systems. The chronologies of intramontane basin sedimentation enable an understanding of the cycling of sediments within a basin through time, can be interrogated to identify periods of alluvial storage and erosion, provide rates of sediment accumulation and storage and date fault movement. If suitable dating methods (in terms of resolution and timescale) are applied to develop the chronologies of alluvial archives, it is then possible to discriminate between climate and tectonic forcing mechanisms on long-term basin behaviour. Optically stimulated luminescence (OSL) dating of quartz grains from alluvial sediments is an ideal technique for establishing a chronological framework of basin sedimentation as the method directly dates sedimentation events. However, our experience of OSL dating of quartz minerals extracted from Late Quaternary alluvial sequences in the quebradas of the Eastern Cordillera of NW Argentina has presented a number of challenges concerning selection of appropriate facies to analyse, mineral contamination, failure of fundamental protocol tests, proximity to saturation, and broad and multi-modal age distributions. Through careful analysis of the alluvial sedimentology and choice of sampling environments we have been able to locate suitable samples in most vertical sequences studied. A post-infrared-OSL approach demonstrated that contaminant signals were resulting in protocol test failure and, conversely, circumvention of this problem has increased confidence and reliability in the dating results. Assessment of dose-response characteristics suggests that the luminescence for the oldest samples is not likely to be saturated and in turn ages are not considered to be underestimated. Finally, different statistical tests have enabled objective identification of single low-dose populations in complex distributions and confirmed that

  12. Hydrogeologic features of the alluvial deposits in the Owl Creek Valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1982-01-01

    The alluvial acquifer principally of the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits and consists subordinately of alluvial-fan deposits. Thickness of the alluvial aquifer is generally 20 to 40 feet. Dissolved-solids concentration of water in the alluvial aquifer ranges from about 500 to more than 3,000 milligrams per liter. The most favorable areas for groundwater development are the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits; however, in much of these units, the water contains more than 2,000 milligrams per liter of dissolved solids. Measurements of specific conductance of the flow of Owl Creek indicate a progressive increase in the down stream direction and range between 15 and 355 micromhos per centimeter at 25C per mile. The increases are due to return flow of irrigation water, inflow from tributaries, and inflow from groundwater. Conspicuous terraces in Owl Creek Valley included an unnamed terrace at 500 feet above Owl Creek, the Embar Ranch terrace 160 to 120 feet above the creek, and the Arapahoe Ranch terrace 50 to 20 feet above the creek. (USGS)

  13. Bedload transport in alluvial channels

    USGS Publications Warehouse

    Bravo-Espinosa, M.; Osterkamp, W.R.; Lopes, V.L.

    2003-01-01

    Hydraulic, sediment, land-use, and rock-erosivity data of 22 alluvial streams were used to evaluate conditions of bedload transport and the performance of selected bedload-transport equations. Transport categories of transport-limited (TL), partially transport-limited (PTL), and supply-limited (SL) were identified by a semiquantitative approach that considers hydraulic constraints on sediment movement and the processes that control sediment availability at the basin scale. Equations by Parker et al. in 1982, Schoklitsch in 1962, and Meyer-Peter and Muller in 1948 adequately predicted sediment transport in channels with TL condition, whereas the equations of Bagnold in 1980, and Schoklitsch, in 1962, performed well for PTL and SL conditions. Overall, the equation of Schoklitsch predicted well the measured bedload data for eight of 22 streams, and the Bagnold equation predicted the measured data in seven streams.

  14. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    SciTech Connect

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  15. Noise generated by quiet engine fans. 1: FanB

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.

    1972-01-01

    Acoustical tests of full scale fans for jet engines are presented. The fans are described and some aerodynamic operating data are given. Far field noise around the fan was measured for a variety of configurations over a range of operating conditions. Complete results of one third octave band analysis are presented in tabular form. Power spectra and sideline perceived noise levels are included.

  16. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  17. Architecture of a Coarse-Grained Upper Middle Cambrian Alluvial Delta Dominated by Braidplain and Gilbert-Style Delta Components

    NASA Astrophysics Data System (ADS)

    Pound, K. S.

    2014-12-01

    The ~500-m thick upper Middle Cambrian Lockett Conglomerate was deposited as part of an alluvial delta that includes Gilbert-type mega-crossbeds as well as braidplain conglomerates, and was constructed across an accretionary prism. Internal Lockett Conglomerate architecture indicates at least three phases of progradation are recorded by Gilbert-type, delta-front deposits that are separated by delta-top distributaries and/or braidplain deposits, all of which form discontinuous sheets and lenses, and record aggradation. Evaluation of sedimentary features (particle size and organization, bedding features) allows identification of eight facies within the Lockett Conglomerate; sedimentary features were used to infer transportational and depositional mechanisms. Conglomerate facies HL-1 - HL-8 were assigned to one or more of the following depositional associations: Beachface/shoreface, Deltafront, Alluvial fan, Braidplain (fluvial, unchannelized), Delta-top distributaries, and Mouth-bars. A series of Depositional Packages was identified, and mapped; integration with measured sections allowed development of a facies model for an alluvial delta in which the subaerial component is dominated by the braidplain association, and the subaqueous component by the (Gilbert-type) deltafront association as well as the delta-top distributary and mouthbar associations. Locally, the beachface association marks the transition between the subaqueous and subaerial components of the alluvial delta. Alluvial fan deposits are absent, but the rounded pebbles, cobbles and boulders with a new and distinctive provenance signature indicate derivation from a newly exposed igneous and metamorphic basement, and abrasion during transport through the fluvial (braidplain) system prior to deposition as part of the alluvial delta.

  18. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  19. Centrifugal fans: Similarity, scaling laws, and fan performance

    NASA Astrophysics Data System (ADS)

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC

  20. Dispersion in alluvial convergent estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2016-04-01

    The Van der Burgh's equation for longitudinal effective dispersion is a purely empirical method with practical implications. Its application to the effective tidal average dispersion under equilibrium conditions appears to have excellent performance in a wide range of alluvial estuaries. In this research, we try to find out the physical meaning of Van der Burgh's coefficient. Researchers like MacCready, Fischer, Kuijper, Hansen and Rattray have tried to split up dispersion into its constituents which did not do much to explain overall behaviour. In addition, traditional literature on dispersion is mostly related to flumes with constant cross-section. This research is about understanding the Van der Burgh's coefficient facing the fact that natural estuaries have exponentially varying cross-section. The objective is to derive a simple 1-D model considering both longitudinal and lateral mixing processes based on field observations (theoretical derivation). To that effect, we connect dispersion with salinity using the salt balance equation. Then we calculate the salinity along the longitudinal direction and compare it to the observed salinity. Calibrated dispersion coefficients in a range of estuaries are then compared with new expressions for the Van der Burgh's coefficient K and it is analysed if K varies from estuary to estuary. The set of reliable data used will be from estuaries: Kurau, Perak, Bernam, Selangor, Muar, Endau, Maputo, Thames, Corantijn, Sinnamary, Mae Klong, Lalang, Limpopo, Tha Chin, Chao Phraya, Edisto and Elbe.

  1. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  2. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  3. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  4. Comparison of modern Mississippi fan with selected ancient fans

    SciTech Connect

    Shanmugam, G.; Moiola, R.J.; McPherson, J.G.; O'Connell, S.

    1988-09-01

    A comparison of the modern passive-margin Mississippi fan (DSDP Leg 96) with selected ancient active-margin fans reveals major differences in turbidite facies associations and seismic characteristics of the lower fan area. The lower Mississippi fan is composed of channel (facies B and F) and nonchannel sequences (facies C. and D), whereas lower fan areas of ancient active-margin fans are characterized by nonchannelized, thickening-upward depositional lobes (facies C and D) with sheetlike geometry. An absence of depositional lobes in the lower Mississippi fan is also suggested by a lack of mounded seismic reflections. Continuous and parallel seismic reflections of the lower Mississippi fan may represent sheet sands, but not those of true depositional lobes. In mature passive-margin fans, long, sinuous channels develop as a consequence of low gradients and the transport of sediment with a relatively low sand/mud ratio, and these channels develop lenticular sand bodies. In contrast, channels in active-margin fans are short and commonly braided as a result of high gradients and the transport of sediment with a relatively high sand/mud ratio. Braided channels characteristically develop sheetlike sand bodies.

  5. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    NASA Astrophysics Data System (ADS)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a

  6. Charcoal and the Record of Fire-related Sedimentation in Holocene Alluvial Sediments

    NASA Astrophysics Data System (ADS)

    Meyer, G. A.

    2006-12-01

    Over the last few decades, rising temperatures and ensuing severe wildfires in the western USA cordillera have provided the opportunity to examine processes and deposits of postfire sedimentation on alluvial fans and floodplains. Most events are generated by widespread surface runoff from intense convective-storm precipitation on severely burned slopes. Flow processes range from debris flow to sediment-charged water floods. Muddy debris flows best preserve coarse charcoal in fan deposits, whereas gravelly debris flows often comminute charcoal into fine particles. As charcoal remains suspended in high-energy hyperconcentrated and water floods, only their fine-grained deposits typically contain much charcoal. Charcoal is locally concentrated in low-energy fluvial deposits, but displays increasing evidence for reworking with distance from source. Charred vegetation and litter marking burned soil surfaces may be preserved under postfire fan and fluvial sediments. Modern deposits provide models for identification of Holocene fire-related sediments and estimates of paleofire severity. AMS 14C dating of discrete charcoal fragments allows sample selection to minimize errors of sample age > fire age. Fires are incompletely recorded in the event stratigraphy of one fan, but larger populations of 14C ages from numerous fans permit composite probability distributions that represent centennial- to millennial-scale changes in fire-related sedimentation across a study area. Records from Yellowstone and central Idaho indicate the large role of fire in episodic erosion across a range of conifer forests, most strongly during severe, multidecadal droughts in warmer periods (e.g. in Medieval time 900-1300 AD). In central Idaho, identification of charcoal macrofossils indicates broadly similar, aspect-controlled forest compositions over the last 3000 yr. Emerging data from the Sacramento Mountains, New Mexico, show rapid fan aggradation due to fire-related events in the warm middle

  7. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  8. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads for main and booster fans, and air ducts connecting main fans to underground openings shall...

  9. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  10. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  11. Field of Fans

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Subimage #1 Figure 1 Subimage #2 Figure 2 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Anaglyph Figure 3 Subimage #3 Figure 4

    At the very beginning of spring in the southern hemisphere on Mars the ground is covered with a seasonal layer of carbon dioxide ice. In this image there are two lanes of undisturbed ice bordered by two lanes peppered with fans of dark dust.

    When we zoom in to the subimage (figure 1), the fans are seen to be pointed in the same direction, dust carried along by the prevailing wind. The fans seem to emanate from spider-like features.

    The second subimage (figure 2) zooms in to full HiRISE resolution to reveal the nature of the 'spiders.' The arms are channels carved in the surface, blanketed by the seasonal carbon dioxide ice. The seasonal ice, warmed from below, evaporates and the gas is carried along the channels. Wherever a weak spot is found the gas vents to the top of the seasonal ice, carrying along dust from below.

    The anaglyph (figure 3) of this spider shows that these channels are deep, deepening and widening as they converge. Spiders like this are often draped over the local topography and often channels get larger as they go uphill. This is consistent with a gas eroding the channels.

    A different channel morphology is apparent in the lanes not showing fans. In these regions the channels are dense, more like lace, and are not radially organized. The third subimage (figure 4) shows an example of 'lace.'

    Observation Geometry Image PSP_002532_0935 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 09-Feb-2007. The complete image is centered at -86.4 degrees latitude, 99.1 degrees East longitude. The range to the target site was 276.1 km (172.6 miles). At this distance the image scale is

  12. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    USGS Publications Warehouse

    Elliott, J.G.; Parker, R.S.

    2001-01-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred. An alluvial sequence near the mouth of a tributary draining a 0??82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a 'millennium-scale' geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and

  13. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Elliott, John G.; Parker, R. S.

    2001-10-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred.An alluvial sequence near the mouth of a tributary draining a 0·82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a millennium-scale geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and

  14. Reconstructing the timescale of a catastrophic fan-forming event on Earth using a Mars model

    NASA Astrophysics Data System (ADS)

    Duller, Robert A.; Warner, Nicholas H.; De Angelis, Silvio; Armitage, John J.; Poyatos-Moré, Miquel

    2015-12-01

    The calculation of formation timescales of alluvial fans and deltas on Mars is important as it has direct implications for understanding the planet's hydrologic history. The robustness of sediment transport models is not in doubt but validation of the broad approach using a terrestrial example of similar scale and likely origin, where hydraulic parameters and timescales are known, is useful. Using a catastrophically formed terrestrial fan, where abundant sedimentological information is available, we find that the modeled hydraulic parameters and formation timescales are in very close agreement with the known values of the event. This supports the general modeling approach as applied to Mars fans but also highlights the added value of detailed sedimentary information when reconstructing hydraulics and timescales on Earth and Mars, which cannot be confidently gleaned from the final snapshot of surface geomorphology alone.

  15. Holocene paleoearthquakes of the Daqingshan fault detected from knickpoint identification and alluvial soil profile

    NASA Astrophysics Data System (ADS)

    He, Zhongtai

    2016-04-01

    Are there any effective methods to reveal paleoearthquakes on normal faults except traditional trenching technique? In this paper, we study Holocene paleoearthquakes of the Daqingshan fault which is a normal fault along the Daqingshan piedmont of Inner Mongolia in China. We identify knickpoints from stream profiles and study alluvial soil profiles to reconstruct the Holocene paleoearthquakes of the fault. From the fault's footwall we extract 25 gullies from IRS-P5 DEM data, and identify knickpoints in the profile that result from fault motion disturbing each channel. We combine the retreat distances and the knickpoint retreat rates to determine each knickpoint's forming time. We study alluvial fan outcrops that contain various paleosol sequences. As three distinct Holocene paleosols developed in the Daqingshan piedmont alluvial fans, we assume that the soil profile development was interrupted by fault activity preserved by interbedded gravel between the paleosols. The gravel layer between two adjacent paleosol layers represents material transported there after a paleoseismic event. Thus we date paleosol layers which are above and below the gravel layer to constrain paleoseismic events. Since trenches had been made by our predecessors along the fault to reveal the Holocene paleoearthquakes, we identify the Holocene paleoearthquake records from both sides of the fault, and then compare the results with the results from the trenches. The final result demonstrates that the knickpoints' sequence in the footwall and the paleosols' ages in the hanging wall correspond very closely with the Holocene paleoearthquakes along the Daqingshan piedmont fault. Methods in this paper have future application value to study paleoearthquakes on other normal faults with similar structure to the Daqingshan fault.

  16. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  17. Architectural elements of fan-delta complex in Pennsylvanian Taos Trough, New Mexico

    SciTech Connect

    Soegaard, K.

    1989-03-01

    Identification of architectural elements within alluvial-fan and subaqueous fan-delta gravel units is fundamental to resolving depositional processes within fan-delta complexes of the Pennsylvanian Taos trough, New Mexico. Subaqueous fan-delta deposits consist of lenticular gravel-body complexes encased by black, basinal shales. Gravel-body complexes are composed of a series of stacked gravel lenses, each of which is enveloped by fifth-order bounding surfaces. The central portion of individual gravel lenses contains a channel complex. Channels are outlined by third- and fourth-order bounding surfaces and are infilled by high-density gravity flow deposits. The fringe of submarine gravel lenses consists of stacked, laterally continuous Bouma sequences separated by second-order bounding surfaces. Bouma sequences were deposited by dilute turbidity flows during evacuation of submarine channels. Subaqueous channel complexes within gravel lenses represent midfan channels, whereas the fringe of lenticular gravel lenses represent outer-fan lobes. Recognition of depositional processes and architectural elements of fan deltas in the Sandia Formation enables distinction between these and other types of coarse-grained deltas in the Taos trough. This, in turn, has implications for resolving evolution of the trough.

  18. Morphodynamic equilibrium of alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni

    2014-05-01

    The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final

  19. Scatter correction in CBCT with an offset detector through a deconvolution method using data consistency

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Lee, Hoyeon; Cho, Seungryong

    2016-03-01

    Our earlier work has demonstrated that the data consistency condition can be used as a criterion for scatter kernel optimization in deconvolution methods in a full-fan mode cone-beam CT [1]. However, this scheme cannot be directly applied to CBCT system with an offset detector (half-fan mode) because of transverse data truncation in projections. In this study, we proposed a modified scheme of the scatter kernel optimization method that can be used in a half-fan mode cone-beam CT, and have successfully shown its feasibility. Using the first-reconstructed volume image from half-fan projection data, we acquired full-fan projection data by forward projection synthesis. The synthesized full-fan projections were partly used to fill the truncated regions in the half-fan data. By doing so, we were able to utilize the existing data consistency-driven scatter kernel optimization method. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by an experimental study using the ACS head phantom.

  20. Design features of fans, blowers, and compressors

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  1. Do I have an alluvial valley floor

    SciTech Connect

    Beach, G.G.

    1980-12-01

    The Surface Mining Control and Reclamation Act of 1977 establishes specific restrictions for coal mining on or adjacent to alluvial valley floors. Alluvial valley floors are lands in the Western United States where water availability for flood irrigation or subirrigation provides enhanced agricultural productivity on stream-laid deposits located in valley bottoms. Alluvial valley floors may consist of developed land or undeveloped rangeland. Developed land, if of sufficient size to be important to a farming operation, cannot be mined whereas undeveloped rangeland can be mined provided certain performance standards are met. Developed land is important to farming when the percentage loss of production by removal of the alluvial valley floor from a farm(s) total production exceeds the equation P = 3 + 0.0014X, where P is the maximum percentage loss of productivity considered to be a negligible impact to a Wyoming farming operation and X is the number of animal units of total farm production above 100. A threshold level of 10 percent is placed on P, above which such a loss is considered to be a significant loss to any size farming operation.

  2. Arsenate adsorption by unsaturated alluvial sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenate adsorption as a function of solution arsenic concentration and solution pH was investigated on five alluvial sediments from the Antelope Valley, Western Mojave Desert, California. Arsenate adsorption increased with increasing solution pH, exhibited a maximum around pH 4 to 5, and then decr...

  3. Fan noise prediction assessment

    NASA Technical Reports Server (NTRS)

    Bent, Paul H.

    1995-01-01

    This report is an evaluation of two techniques for predicting the fan noise radiation from engine nacelles. The first is a relatively computational intensive finite element technique. The code is named ARC, an abbreviation of Acoustic Radiation Code, and was developed by Eversman. This is actually a suite of software that first generates a grid around the nacelle, then solves for the potential flowfield, and finally solves the acoustic radiation problem. The second approach is an analytical technique requiring minimal computational effort. This is termed the cutoff ratio technique and was developed by Rice. Details of the duct geometry, such as the hub-to-tip ratio and Mach number of the flow in the duct, and modal content of the duct noise are required for proper prediction.

  4. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  5. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  6. Artificial recharge experiments on the Ship Creek alluvial fan, Anchorage, Alaska

    USGS Publications Warehouse

    Anderson, Gary S.

    1977-01-01

    During the summers of 1973 and 174, water from Ship Creek, Alaska, was diverted at an average rate of approximately 6 cfs (cubic feet per second) to an 11-acre recharge basin. Maximum sustained unit recharge for the basin was approximately 1.4 feet per day. During 1975 a second basin of 8 acres was also used for recharge, and the total diversion rate was increased to as much as 30 cfs. The second basin was never completely filled, but the unit recharge rate was at least four times as great as that in the first basin. During 1973 and 1974, when only one recharge basin was in operation, a maximum rise of 18 feet was observed in the ground-water table near the basin. In 1975, when both basins were being used, the maximum rise was 30 feet in the same area. During 1973 and 1974, the water-level rise was 12 and 8 feet in the unconfined and confined systems, respectively, at a point 4,400 feet downgradient from the basins; in 1975 the rise at the same point was 31 and 16 feet, respectively. The potentiometric rise that was achieved in the confined aquifer during summer operation of the recharge basins was quickly dissipated when diversion stopped and the basins drained. Thus the benefits of recharge would not persist into late winter, the critical period for water availability in Anchorage, unless diversion to the basins could be continued until January or February. (Woodard-USGS)

  7. The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.

    2013-12-01

    Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8°C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 °C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 °C which are higher than the current surface air temperature (SAT) of 23.65 °C. Data from Taiwan's weather stations also show 1-1.5 °C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.

  8. Modeling groundwater-surface water interaction in cross-cutting alluvial fan system

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sager, J. C.; Fogg, G. E.

    2011-12-01

    In the classic interpretation, a deep water table can cause hydraulic 'disconnection' between a river and an underlying aquifer, with the lack of a saturated zone connection between them. Previous research indicates that in such cases heterogeneity may create localized saturated connections between the river and a deep water table. The dynamics of groundwater and surface water interaction under such circumstances has not been adequately investigated. This basin- scale modeling study of the Cosumnes River and American River groundwater systems of the Central Valley of California, which includes both high-resolution (200m×200m×0.5m) modeling of the hydro-facies (~18 million nodes) and variably saturated flow modeling with the parallel computing code ParFlow, investigates how the textual heterogeneity (e.g., connected channels and abundant aquitard facies) affects interplay between the groundwater and surface water, including possible mechanisms for enhancing both stream base flow and recharge through surface spreading. The possible influence of perched aquifers created by low permeability layers on river base flow is also investigated. Optimal locations of floodplain and flooding time frames are being examined. Results of this study will enhance our understanding of the mechanism of water dynamics in the variably saturated zone coupling with heterogeneity. Ultimately, the results will also help restore or better manage the stream base flow and the ecosystem that depends on it.

  9. Variations in alluvial style of Tertiary units in response to tectonism, Las Monas area, middle Magdalena valley, Colombia

    SciTech Connect

    Jordan, D.W.; Siemers, C.T.

    1989-03-01

    Detailed sedimentologic and petrographic analyses of Tertiary alluvial sandstone outcrops within and east of producing oil fields in the Las Monas area in Colombia, South America, indicate that depositional style changed from fluvial-deltaic to braided streams atop alluvial fans to high-sinuosity meandering streams in response to uplifts in the surrounding areas. Diverse paleocurrent trends in the Tertiary formations in the perimeter area demonstrate that streams flowed northeast and northwest. Streams in the oil field had easterly and southerly components. Source areas contributing sediment were different and reflected uplifts to the west and south of the Las Monas area. Petrographic composition of sandstones that have easterly and southerly paleocurrent trends in the field area contain more feldspar and less polycrystalline strained quartz than sandstones having a northerly trend in the perimeter area. Sandstones in the field area represent an unroofing of a western granitic terrain, possibly in the ancestral Central Cordillera.

  10. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.