Sample records for offshore tension leg

  1. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  2. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  3. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  4. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  5. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  6. 33 CFR 147.817 - Sir Douglas Morpeth Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sir Douglas Morpeth Tension Leg... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.817 Sir Douglas Morpeth Tension Leg Platform safety zone. (a) Description. The Sir Douglas Morpeth Tension Leg Platform (Morpeth...

  7. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  8. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  9. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  10. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  11. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  12. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  13. Update on the Comparison of Second-Order Loads on a Tension Leg Platform for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueydon, Sebastien; Jonkman, Jason

    2016-07-01

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less

  14. 33 CFR 147.819 - Allegheny Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Platform safety zone. (a) Description. The Allegheny Tension Leg Platform (Allegheny TLP), Green Canyon Block 254A (GC 254A), is located at position 27°41′29.65″ N, 90°16′31.93″ W. The area within 500 meters (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  15. 33 CFR 147.837 - Marco Polo Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Platform safety zone. (a) Description. Marco Polo Tension Leg Platform, Green Canyon 608 (GC 608), located at position 27°21′43.32″ N, 90°10′53.01″ W. The area within 500 meters (1640.4 feet) from each point on the structure's outer edge is a safety zone. These coordinates are based upon [NAD 83]. (b...

  16. A Delay Vector Variance based Marker for an Output-Only Assessment of Structural Changes in Tension Leg Platforms

    NASA Astrophysics Data System (ADS)

    Jaksic, V.; Wright, C.; Mandic, D. P.; Murphy, J.; Pakrashi, V.

    2015-07-01

    Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.

  17. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.

    PubMed

    Yan, J H; Zhang, X B; Zhao, J; Liu, G F; Cai, H G; Pan, Q M

    2015-08-04

    The highly agile and efficient water-surface locomotion of the water strider has stimulated substantial interest in biomimetic research. In this paper, we propose a new miniature surface tension-driven robot inspired by the water strider. A key feature of this robot is that its actuating leg possesses an ellipse-like spatial trajectory similar to that of a water strider by using a cam-link mechanism. Simplified models are presented to discuss the leg-water interactions as well as critical conditions for a leg penetrating the water surface, and simulations are performed on the robot's dynamic properties. The final fabricated robot weighs about 3.9 g, and can freely and stably walk on water at different gaits. The maximum forward and turning speeds of the robot are measured as 16 cm s(-1) and 23°/s, respectively. Furthermore, a similarity analysis with Bond number and Weber number demonstrates that the locomotion of this robot is quite analogous to that of a real water strider: the surface tension force dominates the lifting force and plays a major role in the propulsion force. This miniature surface tension-driven robot might have potential applications in many areas such as water quality monitoring and aquatic search and rescue.

  18. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    NASA Astrophysics Data System (ADS)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  19. Performance of a Single Liquid Column Damper for the Control of Dynamic Responses of a Tension Leg Platform

    NASA Astrophysics Data System (ADS)

    Jaksic, V.; Wright, C.; Chanayil, Afeef; Faruque Ali, Shaikh; Murphy, Jimmy; Pakrashi, Vikram

    2015-07-01

    Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.

  20. Application of a newly built semi-submersible vessel for transportation of a tension leg platform

    NASA Astrophysics Data System (ADS)

    Zhang, Dagang; Sun, Weiying; Fan, Zhixia

    2012-09-01

    Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and their availability is limited. To prepare for the future development of South China Sea deepwater projects, the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278. This semi-submersible vessel has a displacement capacity of 50k DWT, and a breath of 42 meters. Understanding the vessel's applicability and preparing it for use in future deepwater projects are becoming imminent needs. This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation. The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea. The entire process included the load-out of the TLP structure from the landsite of the fabrication yard, the offloading and float-on of the platform from the vessel, the dry transport of the TLP over a long distance, and the final offloading of the platform. Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure. Special attention was paid to critical areas associated with the use of this new vessel, along with any potential limitations. The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation. The procedure and details were presented on the basis of the study results. Special attention was also given to discussion on future use based on the results from the analysis.

  1. Eighteenth annual offshore technology conference. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    These sixty papers were given at a conference on offshore technology. Topics covered include friction effects of driving piles into sea beds of various compositions, wave forces on offshore platforms, stability, materials testing of various components such as plates, legs, wellheads, pipe joints, and protection of offshore platforms against ice and collision with icebergs.

  2. Sea loads on ships and offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faltinsen, O.

    1990-01-01

    The book introduces the theory of the structural loading on ships and offshore structures caused by wind, waves and currents, and goes on to describe the applications of this theory in terms of real structures. The main topics described are linear-wave induced motions, loads on floating structures, numerical methods for ascertaining wave induced motions and loads, viscous wave loads and damping, stationkeeping and water impact and entry. The applications of the theoretical principles are introduced with extensive use of exercises and examples. Applications covered include conventional ships, barges, high speed marine vehicles, semisubmersibles, tension leg platforms, moored or dynamic positionedmore » ships, risers, buoys, fishing nets, jacket structures and gravity platforms. One aim of the book is to provide a physical understanding through simplified mathematical models. In this way one can develop analytical tools to evaluate results from test models, full scale trials or computer simulation, and learns which parameters represent the major contributions and influences on sea loads.« less

  3. Floating Offshore WTG Integrated Load Analysis & Optimization Employing a Tuned Mass Damper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Matt; Cross-Whiter, John

    2015-09-25

    Floating offshore wind turbines (FOWTs) present complex design challenges due to the coupled dynamics of the platform motion, mooring system, and turbine control systems, in response to wind and wave loading. This can lead to higher extreme and fatigue loads than a comparable fixed bottom or onshore system. Previous research[1] has shown the potential to reduced extreme and fatigue loads on FOWT using tuned mass dampers (TMD) for structural control. This project aims to reduce maximum loads using passive TMDs located at the tower top during extreme storm events, when grid supplied power for other controls systems may not bemore » available. The Alstom Haliade 6MW wind turbine is modelled on the Glosten Pelastar tension-leg platform (TLP). The primary objectives of this project are to provide a preliminary assessment of the load reduction potential of passive TMDs on real wind turbine and TLP designs.« less

  4. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  5. Changes in Passive Tension of the Hamstring Muscles During a Simulated Soccer Match.

    PubMed

    Marshall, Paul W; Lovell, Ric; Siegler, Jason C

    2016-07-01

    Passive muscle tension is increased after damaging eccentric exercise. Hamstring-strain injury is associated with damaging eccentric muscle actions, but no research has examined changes in hamstring passive muscle tension throughout a simulated sport activity. The authors measured hamstring passive tension throughout a 90-min simulated soccer match (SAFT90), including the warm-up period and every 15 min throughout the 90-min simulation. Passive hamstring tension of 15 amateur male soccer players was measured using the instrumented straight-leg-raise test. Absolute torque (Nm) and slope (Nm/°) of the recorded torque-angular position curve were used for data analysis, in addition to total leg range of motion (ROM). Players performed a 15-min prematch warm-up, then performed the SAFT90 including a 15-min halftime rest period. Reductions in passive stiffness of 20-50° of passive hip flexion of 22.1-29.2% (P < .05) were observed after the warm-up period. During the SAFT90, passive tension increased in the latter 20% of the range of motion of 10.1-10.9% (P < .05) concomitant to a 4.5% increase in total hamstring ROM (P = .0009). The findings of this study imply that hamstring passive tension is reduced after an active warm-up that includes dynamic stretching but does not increase in a pattern suggestive of eccentric induced muscle damage during soccer-specific intermittent exercise. Hamstring ROM and passive tension increases are best explained by improved stretch tolerance.

  6. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Jonkman, Jason; Pegalajar-Jurado, Antonio

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at themore » wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.« less

  7. LES and URANS predictions of the hydrodynamic loads on a tension-leg platform

    NASA Astrophysics Data System (ADS)

    Abrishamchi, A.; Younis, B. A.

    2012-01-01

    This paper reports on the prediction of the unsteady hydrodynamic forces that act on a floating Tension-Leg Platform (TLP) due to the action of a steady current. The results were obtained by solving the three-dimensional, time-dependent form of the equations governing conservation of mass and momentum. Movement of the free surface was tracked using the volume of fluid algorithm. The effects of turbulence were accounted for using two very different approaches: Large-Eddy Simulations (LES) and Unsteady Reynolds-Averaged Navier-Stokes (URANS). The latter approach utilized a two-equation turbulence closure that has been extended to capture the occurrence and consequences of vortex shedding from bluff bodies. The primary objective of the work was to explore the merits and de-merits of each modeling approach when applied to a large-scale structure of the type frequently encountered in practice. The test case chosen for this purposes of this assessment was the case of a conventional TLP in steady current at Reynolds numbers (based on column diameter) of 7.5×106 and 7.5×107. These values are representative of those encountered in deep-sea operations. Experiments and field observations have indicated that the resulting flows exhibit a number of complicated features due to the interactions between the shed vortices and the various structural components of the TLP. Many but not all of these features were captured by the present computations. In addition to a critical assessment of the two modeling approaches, the paper reports on a number of practical experiences gained in the course of conducting this study, including an assessment of the importance of allowing for the movement of the free surface (as opposed to adopting the usual solid-lid approximation) and an illustration of the effects of the current's angle of incidence on the computed hydrodynamic loads.

  8. Elicitation and abrupt termination of behaviorally significant catchlike tension in a primitive insect.

    PubMed

    Hoyle, G; Field, L H

    1983-07-01

    Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10(-8) M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.

  9. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGES

    Browning, J. R.; Jonkman, J.; Robertson, A.; ...

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  10. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Jonkman, Jason; Pegalajar-Jurado, Antonio

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at themore » wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.« less

  11. Changes in passive tension of muscle in humans and animals after eccentric exercise

    PubMed Central

    Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U

    2001-01-01

    This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215

  12. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Mathew; Cross-Whiter, John

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less thanmore » 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.« less

  13. Comparative analysis of a jack-up drilling unit with different leg systems

    NASA Astrophysics Data System (ADS)

    Ren, Xiangang; Bai, Yong; Jia, Lusheng

    2012-09-01

    The jack-up unit is one of the best drilling platforms in offshore oil fields with water depth shallower than 150 meters. As the most pivotal component of the jack-up unit, the leg system can directly affect the global performance of a jack-up unit. Investigation shows that there are three kinds of leg structure forms in the world now: the reverse K, X, and mixing types. In order to clarify the advantage and defects of each one, as well as their effect on the global performance of the jack-up unit, this paper commenced to study performance targets of a deepwater jack-up unit with different leg systems (X type, reverse K type, and mixing type). In this paper a typical leg scantling dimension and identical external loads were selected, detailed finite element snalysis (FEA) models were built to simulate the jack-up unit's structural behavior, and the multi-point constraint (MPC) element together with the spring element was used to deal with the boundary condition. Finally, the above problems were solved by comparative analysis of their main performance targets (including ultimate static strength, dynamic response, and weight).

  14. Probabilistic analysis and fatigue damage assessment of offshore mooring system due to non-Gaussian bimodal tension processes

    NASA Astrophysics Data System (ADS)

    Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng

    2017-08-01

    Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.

  15. Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal Final Report CRADA No. TC02009.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, L. A.; Barker, J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC/Lawrence Livermore National Laboratory (LLNL) (formerly the University of California) and Jet Research Center, a wholly owned division of Halliburton Energy Services, Inc. to design and prototype an improved explosive cutter for cutting the support legs of offshore oil and gas platforms.

  16. Helical piles: an innovative foundation design option for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2015-02-28

    Offshore wind turbines play a key part in the renewable energy strategy in the UK and Europe as well as in other parts of the world (for example, China). The majority of current developments, certainly in UK waters, have taken place in relatively shallow water and close to shore. This limits the scale of the engineering to relatively simple structures, such as those using monopile foundations, and these have been the most common design to date, in UK waters. However, as larger turbines are designed, or they are placed in deeper water, it will be necessary to use multi-footing structures such as tripods or jackets. For these designs, the tension on the upwind footing becomes the critical design condition. Driven pile foundations could be used, as could suction-installed foundations. However, in this paper, we present another concept-the use of helical pile foundations. These foundations are routinely applied onshore where large tension capacities are required. However, for use offshore, a significant upscaling of the technology will be needed, particularly of the equipment required for installation of the piles. A clear understanding of the relevant geotechnical engineering will be needed if this upscaling is to be successful. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. The difference in passive tension applied to the muscles composing the hamstrings - Comparison among muscles using ultrasound shear wave elastography.

    PubMed

    Nakamura, Masatoshi; Hasegawa, Satoshi; Umegaki, Hiroki; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ibuki, Satoko; Ichihashi, Noriaki

    2016-08-01

    Hamstring muscle strain is one of the most common injuries in sports. Therefore, to investigate the factors influencing hamstring strain, the differences in passive tension applied to the hamstring muscles at the same knee and hip positions as during terminal swing phase would be useful information. In addition, passive tension applied to the hamstrings could change with anterior or posterior tilt of the pelvis. The aims of this study were to investigate the difference in passive tension applied to the individual muscles composing the hamstrings during passive elongation, and to investigate the effect of pelvic position on passive tension. Fifteen healthy men volunteered for this study. The subject lay supine with the angle of the trunk axis to the femur of their dominant leg at 70° and the knee angle of the dominant leg fixed at 30° flexion. In three pelvic positions ("Non-Tilt", "Anterior-Tilt" and "Posterior-Tilt"), the shear elastic modulus of each muscle composing the hamstrings (semitendinosus, semimembranosus, and biceps femoris) was measured using an ultrasound shear wave elastography. The shear elastic modulus of semimembranosus was significantly higher than the others. Shear elastic modulus of the hamstrings in Anterior-Tilt was significantly higher than in Posterior-Tilt. Passive tension applied to semimembranosus is higher than the other muscles when the hamstring muscle is passively elongated, and passive tension applied to the hamstrings increases with anterior tilt of the pelvis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Functional aspects of cross-legged sitting with special attention to piriformis muscles and sacroiliac joints.

    PubMed

    Snijders, Chris J; Hermans, Paul F G; Kleinrensink, Gerrit Jan

    2006-02-01

    Transversely oriented pelvic muscles such as the internal abdominal oblique, transversus abdominis, piriformis and pelvic floor muscles may contribute to sacroiliac joint stability by pressing the sacrum between the hipbones. Surface electromyographic measurements showed that leg crossing lowers the activity of the internal oblique abdominal muscle significantly. This suggests that leg crossing is a substitute for abdominal muscle activity. No previous studies addressed piriformis muscle and related pelvic structures in cross-legged sitting. Angles of pelvis and femur were measured in healthy subjects in standing, normal sitting and cross-legged sitting, and were used to simulate these postures on embalmed pelvises and measure piriformis muscle elongation. Deformations of pelvic ring and iliolumbar ligament caused by piriformis muscle force were measured on embalmed pelvises. Cross-legged sitting resulted in a relative elongation of the piriformis muscle of 11.7% compared to normal sitting and even 21.4% compared to standing. Application of piriformis muscle force resulted in inward deformation of the pelvic ring and compression of the sacroiliac joints and the dorsal side of the pubic symphysis. Cross-legged sitting is common. We believe that it contributes to sacroiliac joint stability. This study demonstrates the influence of the piriformis muscle on sacroiliac joint compression. The elongation of the piriformis muscle bilaterally by crossing the legs may be functional in the build-up of active or passive tension between sacrum and femur.

  19. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    PubMed

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-06-01

    Leg order during sequential single-leg cycling (i.e., exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 yr) completed six 1-min double-leg intervals interspersed with 1 min of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with 1 min of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume, and power output were measured throughout each session. Oxygen consumption, heart rate, and power output were not different between sets of single-leg intervals, but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 vs 104 ± 9 mm Hg, P < 0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 vs 101 ± 10 mm Hg, P < 0.05). The increase in muscle blood volume from baseline was similar between the active single leg and the double leg (267 ± 150 vs 214 ± 169 μM·cm, P = 0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (P < 0.05) when the leg was active in the initial (-52.3% ± 111.6%) compared with second set (65.1% ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  20. Comparative study of two approaches to model the offshore fish cages

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei

    2015-06-01

    The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.

  1. Leg size and muscle functions associated with leg compliance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  2. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions

    PubMed Central

    Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.

    2015-01-01

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859

  3. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  4. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg.

    PubMed

    van der Harst, J J; Gokeler, A; Hof, A L

    2007-07-01

    Anterior cruciate ligament (ACL) deficiency can be a major problem for athletes and subsequent reconstruction of the ACL may be indicated if a conservative regimen has failed. After ACL reconstruction signs of abnormality in the use of the leg remain for a long time. It is expected that the landing after a single-leg hop for distance (horizontal hop) might give insight in the differences in kinematics and kinetics between uninjured legs and ACL-reconstructed legs. Before the ACL-reconstructed leg can be compared with the contralateral leg, knowledge of differences between legs of uninjured subjects is needed. Kinematic and kinetic variables of both legs were measured with an optoelectronic system and a force plate and calculated by inverse dynamics. The dominant leg (the leg with biggest horizontal hop distance) and the contralateral leg of nine uninjured subjects were compared. No significant differences were found in most of the kinematic and kinetic variables between dominant leg and contralateral leg of uninjured subjects. Only hop distance and hip extension angles differed significantly. This study suggests that there are no important differences between dominant leg and contralateral leg in healthy subjects. As a consequence, the uninvolved leg of ACL-reconstructed patients can be used as a reference. The observed variables of this study can be used as a reference of normal values and normal differences between legs in healthy subjects.

  5. Advanced mooring method for installation of Enserch Garden Banks 388 FPF mooring legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honig, H.J.; Koolwijk, W.; Scovell, D.C.

    1995-12-31

    In the fall of 1994 HeereMac v.o.f installed the 12 mooring legs for Enserch Exploration`s Floating Production Facility in Garden Banks Block 388 in the Gulf of Mexico with the SSCV Balder. The installation of the catenary mooring system, each leg comprising several varying sections of spiral strand wire and chain, required sufficient handling and maneuverability power of the vessel, while enough holding capacity and stiffness of the system had to be provided. The most important aspects of the actual installation of the mooring legs are explained, for example, the use of a purpose built tipping winch. The method selectedmore » by HeereMac for station-keeping the Balder was to use a minimum number of anchor lines in combination with a tug, in order to maintain position and at the same time have an easy and controlled method of maneuvering to a new position. The method of station-keeping the SSCV in this way is part of a development towards full position control with a spread of tugs. In this paper the station-keeping system is described and the offshore experiences with the system are discussed. Some future developments with respect to tug-assisted station-keeping systems are highlighted.« less

  6. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed

    Evans, P D; Siegler, M V

    1982-03-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion.

  7. [Paraesthesia in the legs].

    PubMed

    Eisensehr, Ilonka

    2007-10-18

    Paraesthesia in the legs can have numerous causes. In addition to the restless legs syndrome, other primary causes include venous insufficiency in the leg, propriospinal myoclonus, nocturnal leg cramps, peripheral polyneuropathy that affects mostly the legs or neuroleptic drug-induced akathisia. Through detailed questioning of the patient, restless legs syndrome can be specifically distinguished from the other named differential diagnoses.

  8. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  9. Task driven optimal leg trajectories in insect-scale legged microrobots

    NASA Astrophysics Data System (ADS)

    Doshi, Neel; Goldberg, Benjamin; Jayaram, Kaushik; Wood, Robert

    Origami inspired layered manufacturing techniques and 3D-printing have enabled the development of highly articulated legged robots at the insect-scale, including the 1.43g Harvard Ambulatory MicroRobot (HAMR). Research on these platforms has expanded its focus from manufacturing aspects to include design optimization and control for application-driven tasks. Consequently, the choice of gait selection, body morphology, leg trajectory, foot design, etc. have become areas of active research. HAMR has two controlled degrees-of-freedom per leg, making it an ideal candidate for exploring leg trajectory. We will discuss our work towards optimizing HAMR's leg trajectories for two different tasks: climbing using electroadhesives and level ground running (5-10 BL/s). These tasks demonstrate the ability of single platform to adapt to vastly different locomotive scenarios: quasi-static climbing with controlled ground contact, and dynamic running with un-controlled ground contact. We will utilize trajectory optimization methods informed by existing models and experimental studies to determine leg trajectories for each task. We also plan to discuss how task specifications and choice of objective function have contributed to the shape of these optimal leg trajectories.

  10. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    PubMed

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Offshore medicine.

    PubMed

    Baker, D

    2001-03-01

    Offshore life can be refreshing for medics who are looking for a little change of pace; however, it is not for everyone. Working offshore can be the easiest or most boring job you'll ever have. It takes a specific type of medic to fit this mold. So, if you are considering a career in the offshore field, take all of the above into consideration. You are not just making a change in jobs, but a change in lifestyle. Once you become accustomed to this lifestyle, it will be hard to go back to the everyday hustle and bustle of the streets. For more information about working offshore, contact Acadian Contract Services at 800/259-333, or visit www.acadian.com.

  12. Preliminary results of a new surgical technique in total knee arthroplasty (TKA) using the native ligament tension for femoral implant positioning in varus osteoarthritis.

    PubMed

    Hommel, Hagen; Perka, Carsten; Pfitzner, Tilman

    2016-07-01

    Individual implant alignment in total knee arthroplasty (TKA) has seen growing interest over the past years. This study therefore aimed to develop a surgical technique for implant alignment based on native ligament tension, and to present the results obtained using this technique. 25 patients were included in this prospective study. Patient-specific instrumentation (PSI) was used for the resection of the extension gap. Ligament tension was measured after the removal of all accessible osteophytes. In the event of asymmetry, the distal femur resection was adjusted up to 2.5° using an adjustable cutting block. The aim was to achieve a symmetrical extension gap without release, not a neutral leg axis. Femoral rotation was aligned on the basis of ligament tension. Patients were followed up to 3 months postoperatively. The postoperative whole-leg axis was 2.8° ± 1.6° varus. Patients achieved a flexion of 118° ± 9°, a Knee Score of 91.5 ± 3.2 and a Function Score of 86.8 ± 8.3 points. For the first time, the new surgical technique described here permits a ligament tension based femoral implant alignment together with PSI. It was shown to be safe, with encouraging clinical and radiological results. Therapeutic study level IV.

  13. The Lindsay Leg Club: supporting the NHS to provide leg ulcer care.

    PubMed

    McKenzie, Morag

    2013-06-01

    Public health services will need to cope with additional demands due to an ageing society and the increasing prevalence of chronic conditions. Lower-limb ulceration is a long-term, life-changing condition and leg ulcer management can be challenging for nursing staff. The Lindsay Leg Club model is a unique partnership between community nurses, members and the local community, which provides quality of care and empowerment for patients with leg ulcers, while also supporting and educating nursing staff. The Leg Club model works in accord with core themes of Government and NHS policy. Patient feedback on the Leg Club model is positive and the Leg Clubs provide a service to members which is well accepted by patients, yet is more economically efficient than the traditional district nursing practice of home visits. Lindsay Leg Clubs provide a valuable support service to the NHS in delivering improved quality of care while improving efficiency.

  14. Defying geometric similarity: Shape centralization in male UK offshore workers.

    PubMed

    Stewart, Arthur D; Ledingham, Robert J; Furnace, Graham; Williams, Hector; Nevill, Alan M

    2017-05-06

    Applying geometric similarity predictions of body dimensions to specific occupational groups has the potential to reveal useful ergonomic and health implications. This study assessed a representative sample of the male UK offshore workforce, and examined how body dimensions from sites typifying musculoskeletal development or fat accumulation, differed from predicted values. A cross sectional sample was obtained across seven weight categories using quota sampling, to match the wider workforce. In total, 588 UK offshore workers, 84 from each of seven weight categories, were measured for stature, mass and underwent 3D body scans which yielded 22 dimensional measurements. Each measurement was modeled using a body-mass power law (adjusting for age), to derive its exponent, which was compared against that predicted from geometric similarity. Mass scaled to stature 1.73 (CI: 1.44-2.02). Arm and leg volume increased by mass 0.8 , and torso volume increased by mass 1.1 in contrast to mass 1.0 predicted by geometric similarity. Neck girth increased by mass 0.33 as expected, while torso girth and depth dimensions increased by mass 0.53-0.72 , all substantially greater than assumed by geometric similarity. After controlling for age, offshore workers experience spectacular "super-centralization" of body shape, with greatest gains in abdominal depth and girth dimensions in areas of fat accumulation, and relative dimensional loss in limbs. These findings are consistent with the antecedents of sarcopenic obesity, and should be flagged as a health concern for this workforce, and for future targeted research and lifestyle interventions. © 2016 Wiley Periodicals, Inc.

  15. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed Central

    Evans, P D; Siegler, M V

    1982-01-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion. PMID:6808122

  16. The Relationship among Leg Strength, Leg Power and Alpine Skiing Success.

    ERIC Educational Resources Information Center

    Gettman, Larry R.; Huckel, Jack R.

    The purpose of this study was to relate leg strength and power to alpine skiing success as measured by FIS points. Isometric leg strength was represented by the knee extension test described by Clarke. Leg power was measured by the vertical jump test and the Margaria-Kalamen stair run. Results in the strength and power tests were correlated with…

  17. Respiratory muscle tension as symptom generator in individuals with high anxiety sensitivity.

    PubMed

    Ritz, Thomas; Meuret, Alicia E; Bhaskara, Lavanya; Petersen, Sibylle

    2013-02-01

    Anxiety and panic are associated with the experience of a range of bodily symptoms, in particular unpleasant breathing sensations (dyspnea). Respiratory theories of panic disorder have focused on disturbances in blood gas regulation, but respiratory muscle tension as a source of dyspnea has not been considered. We therefore examined the potential of intercostal muscle tension to elicit dyspnea in individuals with high anxiety sensitivity, a risk factor for developing panic disorder. Individuals high and low in anxiety sensitivity (total N=62) completed four tasks: electromyogram biofeedback for tensing intercostal muscle, electromyogram biofeedback for tensing leg muscles, paced breathing at three different speeds, and a fine motor task. Global dyspnea, individual respiratory sensations, nonrespiratory sensations, and discomfort were assessed after each task, whereas respiratory pattern (respiratory inductance plethysmography) and end-tidal carbon dioxide (capnography) were measured continuously. In individuals with high compared to low anxiety sensitivity, intercostal muscle tension elicited a particularly strong report of obstruction (M=5.1, SD=3.6 versus M=2.5, SD=3.0), air hunger (M=1.9, SD=2.1 versus M=0.4, SD=0.8), hyperventilation symptoms (M=0.6, SD=0.6 versus M=0.1, SD=0.1), and discomfort (M=5.1, SD=3.2 versus M=2.2, SD=2.1) (all p values<.05). This effect was not explained by site-unspecific muscle tension, voluntary manipulation of respiration, or sustained task-related attention. Nonrespiratory control sensations were not significantly affected by tasks (F<1), and respiratory variables did not reflect any specific responding of high-Anxiety Sensitivity Index participants to intercostal muscle tension. Respiratory muscle tension may contribute to the respiratory sensations experienced by panic-prone individuals. Theories and treatments for panic disorder should consider this potential source of symptoms.

  18. Single-leg squats can predict leg alignment in dancers performing ballet movements in "turnout".

    PubMed

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve "turning out" or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in "turned out" postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat.

  19. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  20. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, L.M.

    1984-01-09

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  1. Offshore Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan

    In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principlesmore » of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.« less

  2. Dynamically Stable Legged Locomotion.

    DTIC Science & Technology

    1983-01-27

    sweeps the leg during stance, and the third places the foot during flight and controls body attitude during stance. Each of the three methods elucidates...secondary strategy has been to examine systems with springy legs, so that the role of resonant oscillatory leg behavior might be better understood. ’ The ...body attitude : I lopping _leit: ’ The control system rcgulate:; hopping height by manlil)Lulating hopping energy. The leg is springy, so hopping is a

  3. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command.

    PubMed

    Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana

    2016-11-01

    When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.

  4. Venous leg ulcers

    PubMed Central

    2011-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids

  5. Evaluating stress analysis and failure criteria for offshore structures for Pechora Sea conditions

    NASA Astrophysics Data System (ADS)

    Nesic, S.; Donskoy, Y.; Zolotukhin, A.

    2017-12-01

    Development of Arctic hydrocarbon resources has faced many challenges due to sensitive environmental conditions including low temperatures, ice cover and terrestrial permafrost and extreme seasonal variation in sunlight. Russian offshore field development in Arctic region is usually associated with annual ice cover, which can cause serious damage on the offshore platforms. The Pechora Sea has claimed as one of the most perspective oil and gas region of the Russian Arctic with seven discovered oil and gas fields and several dozens of structures. Our rough assessment, based on in-place hydrocarbon volumes and recovery factor evaluation concept, indicates that Pechora Sea alone has in-place volumes amounting to ca. 20 billion barrel oil equivalent (BOE). This quantity is enough to secure produced volumes by 2040 exceeding 3 billion BOE [1] that indicates huge resource potential of the region. The environmental conditions are primarily function of water dynamics and ice cover. The sea is covered by the ice for greatest part of the year. In this article, the ice load simulations were performed using explicit dynamic analysis system in ANSYS software to determine best shape and size of an offshore platform for the Pechora Sea ice conditions. Different gravity based structures (GBS) were analyzed: artificial island, hollow cylindrical and conical concrete structures and four-leg GBS. Relationships between the stress, deformations and time were analyzed and important observations from the simulation results were a basis for selecting the most preferable structures.

  6. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  7. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    PubMed

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae

  8. Development of a Semi-submersible Barge for the installation of a TLP floating substructure. TLPWIND® case study

    NASA Astrophysics Data System (ADS)

    Amate, Juan; Sánchez, Gustavo D.; González, Gonzalo

    2016-09-01

    One of the biggest challenges to introduce Tension Leg Platform (TLP) technology into the Offshore Wind market are the Transport & Installation (T&I) stages, since most of TLPs are not self-stable as semisubmersible or SPAR platforms, and consequently requires additional means to perform these operations. This paper addresses this problem that has been overcome through the development of a Semi-submersible “Transport & Installation” Barge (SSB) for Iberdrola's TLPWIND® floating support structure. The Semi-submersible Barge has been designed both through the use of numerical models and an extensive basin testing campaign carried out at the University of Strathclyde facilities. This paper also includes an estimation of the duration in time to carry out the installation process of a Floating Offshore Wind Farm, comprising 100x5MW TLPWIND® units in different scenarios.

  9. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    PubMed Central

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. PMID:27895518

  10. Getting offshoring right.

    PubMed

    Aron, Ravi; Singh, Jitendra V

    2005-12-01

    The prospect of offshoring and outsourcing business processes has captured the imagination of CEOs everywhere. In the past five years, a rising number of companies in North America and Europe have experimented with this strategy, hoping to reduce costs and gain strategic advantage. But many businesses have had mixed results. According to several studies, half the organizations that have shifted processes offshore have failed to generate the expected financial benefits. What's more, many of them have faced employee resistance and consumer dissatisfaction. Clearly, companies have to rethink how they formulate their offshoring strategies. A three-part methodology can help. First, companies need to prioritize their processes, ranking each based on two criteria: the value it creates for customers and the degree to which the company can capture some of that value. Companies will want to keep their core (highest-priority) processes in-house and consider outsourcing their commodity (low-priority) processes; critical (moderate-priority) processes are up for debate and must be considered carefully. Second, businesses should analyze all the risks that accompany offshoring and look systematically at their critical and commodity processes in terms of operational risk (the risk that processes won't operate smoothly after being offshored) and structural risk (the risk that relationships with service providers may not work as expected). Finally, companies should determine possible locations for their offshore efforts, as well as the organizational forms--such as captive centers and joint ventures--that those efforts might take. They can do so by examining each process's operational and structural risks side by side. This article outlines the tools that will help companies choose the right processes to offshore. It also describes a new organizational structure called the extended organization, in which companies specify the quality of services they want and work alongside providers

  11. Restless Legs Syndrome

    MedlinePlus

    ... Legs Syndrome Condition Restless Legs Syndrome Share Print Table of Contents1. Overview2. Symptoms3. Diagnosis4. Treatment5. Questions Overview ... twitch when you try and sleep (also called periodic limb movements of sleep or PLMS). Diagnosis How ...

  12. Venous leg ulcers

    PubMed Central

    2008-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 80 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide, thromboxane alpha2 antagonists, zinc), peri

  13. Interfacial tension measurement of immiscible liq uids using a capillary tube

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.

    1992-01-01

    The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.

  14. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father

  15. Development of jacket platform tsunami risk rating system in waters offshore North Borneo

    NASA Astrophysics Data System (ADS)

    Lee, H. E.; Liew, M. S.; Mardi, N. H.; Na, K. L.; Toloue, Iraj; Wong, S. K.

    2016-09-01

    This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living quarter jacket platform located in a water depth of 63m is modelled in SACS v5.3. Malaysia has traditionally been perceived to be safe from the hazards of earthquakes and tsunamis. Local design practices tend to neglect tsunami waves and include no such provisions. In 2004, a 9.3 M w seaquake occurred off the northwest coast of Aceh, which generated tsunami waves that caused destruction in Malaysia totalling US 25 million and 68 deaths. This event prompted an awareness of the need to study the reliability of fixed offshore platforms scattered throughout Malaysian waters. In this paper, we present a review of research on the seismicity of the Manila Trench, which is perceived to be high risk for Southeast Asia. From the tsunami numerical model TUNA-M2, we extract computer-simulated tsunami waves at prescribed grid points in the vicinity of the platforms in the region. Using wave heights as input, we simulate the tsunami using SACS v5.3 structural analysis software of offshore platforms, which is widely accepted by the industry. We employ the nonlinear solitary wave theory in our tsunami loading calculations for the platforms, and formulate a platform-specific risk quantification system. We then perform an intensive structural sensitivity analysis and derive a corresponding platform-specific risk rating model.

  16. National Offshore Wind Energy Grid Interconnection Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systemsmore » most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.« less

  17. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    PubMed

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  18. Steerable Hopping Six-Legged Robot

    NASA Technical Reports Server (NTRS)

    Younse, Paulo; Aghazarian, Hrand

    2010-01-01

    The figure depicts selected aspects of a six-legged robot that moves by hopping and that can be steered in the sense that it can be launched into a hop in a controllable direction. This is a prototype of hopping robots being developed for use in scientific exploration of rough terrain on remote planets that have surface gravitation less than that of Earth. Hopping robots could also be used on Earth, albeit at diminished hopping distances associated with the greater Earth gravitation. The upper end of each leg is connected through two universal joints to an upper and a lower hexagonal frame, such that the tilt of the leg depends on the relative position of the two frames. Two non-back-driveable worm-gear motor drives are used to control the relative position of the two frames along two axes 120 apart, thereby controlling the common tilt of all six legs and thereby, further, controlling the direction of hopping. Each leg includes an upper and a lower aluminum frame segment with a joint between them. A fiberglass spring, connected via hinges to both segments, is used to store hopping energy prior to launch into a hop and to cushion the landing at the end of the hop. A cable for loading the spring is run into each leg through the center of the universal joints and then down along the center lines of the segments to the lower end of the leg. A central spool actuated by a motor with a harmonic drive and an electromagnetic clutch winds in all six cables to compress all six springs (thereby also flexing all six legs) simultaneously. To ensure that all the legs push off and land in the same direction, timing- belt pulley drives are attached to the leg segments, restricting the flexing and extension of all six legs to a common linear motion. In preparation for a hop, the spool can be driven to load the spring legs by an amount corresponding to a desired hop distance within range. The amount of compression can be computed from the reading of a shaft-angle encoder that

  19. Leg Injuries and Disorders

    MedlinePlus

    ... are important for motion and standing. Playing sports, running, falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. ...

  20. Healthy offshore workforce? A qualitative study on offshore wind employees' occupational strain, health, and coping.

    PubMed

    Mette, Janika; Velasco Garrido, Marcial; Harth, Volker; Preisser, Alexandra M; Mache, Stefanie

    2018-01-23

    Offshore work has been described as demanding and stressful. Despite this, evidence regarding the occupational strain, health, and coping behaviors of workers in the growing offshore wind industry in Germany is still limited. The purpose of our study was to explore offshore wind employees' perceptions of occupational strain and health, and to investigate their strategies for dealing with the demands of offshore work. We conducted 21 semi-structured telephone interviews with employees in the German offshore wind industry. The interviews were transcribed and analyzed in a deductive-inductive approach following Mayring's qualitative content analysis. Workers generally reported good mental and physical health. However, they also stated perceptions of stress at work, fatigue, difficulties detaching from work, and sleeping problems, all to varying extents. In addition, physical health impairment in relation to offshore work, e.g. musculoskeletal and gastrointestinal complaints, was documented. Employees described different strategies for coping with their job demands. The strategies comprised of both problem and emotion-focused approaches, and were classified as either work-related, health-related, or related to seeking social support. Our study is the first to investigate the occupational strain, health, and coping of workers in the expanding German offshore wind industry. The results offer new insights that can be utilized for future research in this field. In terms of practical implications, the findings suggest that measures should be carried out aimed at reducing occupational strain and health impairment among offshore wind workers. In addition, interventions should be initiated that foster offshore wind workers' health and empower them to further expand on effective coping strategies at their workplace.

  1. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  2. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.

  3. Athletes' leg pains.

    PubMed Central

    Orava, S.; Puranen, J.

    1979-01-01

    The frequency and nature of exertion pains of the leg in athletes were studied in 2,750 cases of overuse injuries treated at the Sports Clinic of the Deaconess Institute of Oulu, Finland, during the years 1972-1977. 465 cases of exertion pain (18%) were located in the shin. The medial tibial syndrome was the most common overuse injury among these athletes, comprising 9.5% of all exertion injuries and 60% of the leg exertion pains. Together with stress fracture of the tibia, the second most common exertion pain of the leg, it accounted for 75% of the total leg pains. There are certain difficulties in differentiating between the medial tibial syndrome and stress fracture of the tibia. They both occur at the same site with similar symptoms. Radiological examination and isotope scanning are needed. The medial tibial syndrome is an overuse injury at the medial tibial border caused by running exercises. The pain is elicited by exertional ischaemia. The pathogenesis is explained by increased pressure in the fascial compartment of the deep flexor muscles due to prolonged exercise. Similar chronic ischaemic pains from exercise are also found in other fascial compartments of the leg, especially in the anterior compartment. The only treatment needed for stress fractures is rest from training. Fascial compartment pains also usually subside. If chronic fascial syndromes prevent training, fasciotomy is recommended as a reliable method to restore the athlete to normal training without pains. PMID:486888

  4. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Offshore Wind Energy Resource Assessment for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa Moreira, Paula; Scott, George N.; Musial, Walter D.

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined.more » Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.« less

  6. Offshore wind development research.

    DOT National Transportation Integrated Search

    2014-04-01

    Offshore wind (OSW) development is a new undertaking in the US. This project is a response to : New Jerseys 2011 Energy Master Plan that envisions procuring 22.5% of the states power : originating from renewable sources by 2021. The Offshore Wi...

  7. Offshore Fish Community: Ecological Interactions | Science ...

    EPA Pesticide Factsheets

    The offshore (>80 m) fish community of Lake Superior is made up of predominately native species. The most prominent species are deepwater sculpin, kiyi, cisco, siscowet lake trout, burbot, and the exotic sea lamprey. Bloater and shortjaw cisco are also found in the offshore zone. Bloater is abundant in the offshore zone but appears restricted to depths shallower than 150 m (Selgeby and Hoff 1996; Stockwell et al. 2010), although it occuppied greater depths several decades ago (Dryer 1966; Peck 1977). Shortjaw is relatively rare in the offshore zone (Hoff and Todd 2004; Gorman and Hoff 2009; Gorman and Todd 2007). Lake whitefish is also known to frequent bathymetric depths >100 m (Yule et al. 2008b). In this chapter, we develop a conceptual model of the offshore food web based on data collected during 2001-2005 and on inferences from species interactions known for the nearshore fish community. We then develop a framework for examination of energy and nutrient movements within the pelagic and benthic habitats of the offshore zone and across the offshore and nearshore zones. To document research results.

  8. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    PubMed

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Static balance according to hip joint angle of unsupported leg during one-leg standing.

    PubMed

    Cha, Ju-Hyung; Kim, Jang-Joon; Ye, Jae-Gwan; Lee, Seul-Ji; Hong, Jeong-Mi; Choi, Hyun-Kyu; Choi, Ho-Suk; Shin, Won-Seob

    2017-05-01

    [Purpose] This study aimed to determine static balance according to hip joint angle of the unsupported leg during one-leg standing. [Subjects and Methods] Subjects included 45 healthy adult males and females in their 20s. During one-leg standing on the non-dominant leg, the position of the unsupported leg was classified according to hip joint angles of point angle was class. Static balance was then measured using a force plate with eyes open and closed. The total length, sway velocity, maximum deviation, and velocity on the mediolateral and anteroposterior axes of center of pressure were measured. [Results] In balance assessment with eyes open, there were significant differences between groups according to hip joint angle, except for maximum deviation on the anteroposterior axis. In balance assessment with eyes closed, there were significant differences between total length measurements at 0° and 30°, 60° and between 30° and 90°. There were significant differences between sway velocity measurements at 0° and 30° and between 30° and 90°. [Conclusion] Thus, there were differences in static balance according to hip joint angle. It is necessary to clearly identify the hip joint angle during one-leg standing testing.

  10. Offshore Wind Market and Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Bruce Duncan

    2014-08-27

    This report is the third annual assessment of the U.S. offshore wind market. It includes the following major sections: Section 1: key data on developments in the offshore wind technology sector and the global development of offshore wind projects, with a particular focus on progress in the United States; Section 2: analysis of policy developments at the federal and state levels that have been effective in advancing offshore wind deployment in the United States; Section 3: analysis of actual and projected economic impact, including regional development and job creation; Section 4: analysis of developments in relevant sectors of the economymore » with the potential to affect offshore wind deployment in the United States« less

  11. Integrated NMR Core and Log Investigations With Respect to ODP LEG 204

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Pechnig, R.; Clauser, C.; Anferova, S.; Blümich, B.

    2005-12-01

    NMR techniques are widely used in the oil industry and are one of the most suitable methods to evaluate in-situ formation porosity and permeability. Recently, efforts are directed towards adapting NMR methods also to the Ocean Drilling Program (ODP) and the upcoming Integrated Ocean Drilling Program (IODP). We apply a newly developed light-weight, mobile NMR core scanner as a non-destructive instrument to determine routinely rock porosity and to estimate the pore size distribution. The NMR core scanner is used for transverse relaxation measurements on water-saturated core sections using a CPMG sequence with a short echo time. A regularized Laplace-transform analysis yields the distribution of transverse relaxation times T2. In homogeneous magnetic fields, T2 is proportional to the pore diameter of rocks. Hence, the T2 signal maps the pore-size distribution of the studied rock samples. For fully saturated samples the integral of the distribution curve and the CPMG echo amplitude extrapolated to zero echo time are proportional to porosity. Preliminary results show that the NMR core scanner is a suitable tool to determine rock porosity and to estimate pore size distribution of limestones and sandstones. Presently our investigations focus on Leg 204, where NMR Logging-While-Drilling (LWD) was performed for the first time in ODP. Leg 204 was drilled into Hydrate Ridge on the Cascadia accretionary margin, offshore Oregon. All drilling and logging operations were highly successful, providing excellent core, wireline, and LWD data from adjacent boreholes. Cores recovered during Leg 204 consist mainly of clay and claystone. As the NMR core scanner operates at frequencies higher than that of the well-logging sensor it has a shorter dead time. This advantage makes the NMR core scanner sensitive to signals with T2 values down to 0.1 ms as compared to 3 ms in NMR logging. Hence, we can study even rocks with small pores, such as the mudcores recovered during Leg 204. We present

  12. NREL Offshore Balance-of-System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maness, Michael; Maples, Benjamin; Smith, Aaron

    The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast ofmore » Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.« less

  13. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    PubMed

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  14. Frequency Domain Decomposition performed on the strain data obtained from the aluminium model of an offshore support structure

    NASA Astrophysics Data System (ADS)

    Mieloszyk, M.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    This paper presents an application of Fibre Bragg Grating (FBG) sensors for Structural Health Monitoring (SHM) of offshore wind energy support structure model. The analysed structure is a tripod equipped with 16 FBG sensors. From a wide variety of Operational Modal Analysis (OMA) methods Frequency Domain Decomposition (FDD) technique is used in this paper under assumption that the input loading is similar to a white noise excitation. The FDD method can be applied using different sets of sensors, i.e. the one which contains all FBG sensors and the other set of sensors localised only on a particular tripod's leg. The cases considered during investigation were as follows: damaged and undamaged scenarios, different support conditions. The damage was simulated as an dismantled flange on an upper brace in one of the tripod legs. First the model was fixed to an antishaker table and investigated in the air under impulse excitations. Next the tripod was submerged into water basin in order to check the quality of the measurement set-up in different environmental condition. In this case the model was excited by regular waves.

  15. Restless legs syndrome.

    PubMed

    Ekbom, Karl; Ulfberg, J

    2009-11-01

    Restless legs syndrome (RLS) is a common neurological sensory-motor disorder that is characterized by intense restlessness and unpleasant creeping sensations deep inside the lower legs. Symptoms appear when the legs are at rest and are worst in the evening and at night. They force patients to keep moving their legs, and often to get out of bed and wander about. Periodic limb movements (PLMS) are also common during sleep amongst those suffering from RLS, and sleep efficiency is severely reduced. There are idiopathic as well as symptomatic forms of RLS, the latter being associated with e.g. pregnancy, iron deficiency and chronic renal failure. A family history of RLS is very common and pedigrees in these cases suggest an autosomal-dominant transmission with high penetrance. Genetic investigations have been performed in order to identify genes associated with RLS. Several loci have been found (on chromosomes 12q, 14q, 9p, 2q, 20p and 16p). Pathophysiology of RLS remains incompletely understood. However, advanced brain imaging studies and positive results of dopaminergic treatment suggest that RLS may be generated by dopamine dysfunction locally within the central nervous system. At present, there is a wide range of treatment options including levodopa, dopamine agonists, opioids, benzodiazepines, antiepileptic drugs and iron supplements.

  16. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    PubMed Central

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  17. 2016 Offshore Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walter; Beiter, Philipp; Schwabe, Paul

    The 2016 Offshore Wind Technologies Market Report is intended to provide stakeholders with quantitative information about the offshore wind market, technology, and cost trends in the United States and worldwide.

  18. A colored leg banding technique for Amazona parrots

    USGS Publications Warehouse

    Meyers, J.M.

    1995-01-01

    A technique for individual identification of Amazona was developed using plastic leg bands. Bands were made from 5- and 7-mm-wide strips of laminated PVC coiled 2.5 times with an inside diameter 4-5 mm gt the maximum diameter of the parrot's leg. Seventeen parrots were captured in Puerto Rico, marked with individual plastic leg bands, and observed for 204-658 d with only one lost or damaged plastic band. Plastic leg bands did not cause injury to or calluses on parrots' legs. The plastic material used for making leg bands was available in 18 colors in 1994, which would allow unique marking of 306 individuals using one plastic leg band on each leg.

  19. Foot, leg, and ankle swelling

    MedlinePlus

    ... feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... 31. Trayes KP, Studdiford JS, Pickle S, Tully AS. Edema: diagnosis and management. Am Fam Physician . 2013;88( ...

  20. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension

    PubMed Central

    Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria

    2010-01-01

    In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053

  1. Bolt-Tension Sensor

    NASA Technical Reports Server (NTRS)

    Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.

    1995-01-01

    In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.

  2. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  3. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  4. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawlmore » through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.« less

  5. Restless legs syndrome mimicking S1 radiculopathy.

    PubMed

    Zambelis, Th; Wolgamuth, B R; Papoutsi, S N; Economou, N T

    2016-01-01

    Α case of a chronic idiopathic form of a severe type of Restless Legs Syndrome (RLS), which developed during pregnancy and persisted after this, misdiagnosed for 34 years as radiculopathy S1, is reported. In spite of the thorough clinical and laboratory investigation, in addition to constant changes of the therapeutic approach, the diagnosis of S1 radiculopathy could not be confirmed, resulting in a chronic clinical course; the latter was characterized by relapses and remissions not attributed or linked in any way to the treatment (various types of). In fact, it was due to a routine workup in a sleep clinic, where the patient was referred because of a coincident chronic insomnia (Restless Legs Syndrome is a known and important cause of insomnia/chronic insomnia), which resulted in a proper diagnosis and treatment of this case. With the use of Restless Legs Syndrome appropriate treatment (Pramipexole 0.18 mg taken at bedtime, a dopaminergic agent and Level A recommended drug for Restless Legs Syndrome) an excellent response and immediate elimination of symptoms was achieved. Restless Legs Syndrome may present with a variety of symptoms (with the most prominent shortly being reported with the acronym URGE: Urge to move the legs usually associated with unpleasant leg sensations, Rest induces symptoms, Getting active brings relief, Evening and night deteriorate symptoms); given the fact that Restless Legs Syndrome presents with a great variety and heterogeneity of symptoms (mostly pain, dysesthesia and paresthesia), which may occur in several other diseases (the so called "RLS mimics"), proper diagnosis of Restless Legs Syndrome usually fails. Restless Legs Syndrome misinterpreted as S1 radiculopathy, to the best of our knowledge, has not been reported yet in the literature. Here, case history, clinical course and common RLS mimics are presented. Different forms of Restless Legs Syndrome manifestations, which are commonly -as in this case- misinterpreted due to their

  6. The Benslimane's Artistic Model for Leg Beauty.

    PubMed

    Benslimane, Fahd

    2012-08-01

    In 2000, the author started observing legs considered to be attractive. The goal was to have an ideal aesthetic model and compare the disparity between this model and a patient's reality. This could prove helpful during leg sculpturing to get closer to this ideal. Postoperatively, the result could then be compared to the ideal curves of the model legs and any remaining deviations from the ideal curves could be pointed out and eventually corrected in a second session. The lack of anthropometric studies of legs from the knee to the ankle led the author to select and study attractive legs to find out the common denominators of their beauty. The study consisted in analyzing the features that make legs look attractive. The legs of models in magazines were scanned and inserted into a PowerPoint program. The legs of live models, Barbie dolls, and athletes were photographed. Artistic drawings by Leonardo da Vinci were reviewed and Greek sculptures studied. Sculptures from the National Archaeological Museum of Athens were photographed and included in the PowerPoint program. This study shows that the first criterion for beautiful legs is the straightness of the leg column. Not a single attractive leg was found to deviate from the vertical, and each was in absolute continuity with the thigh. The second criterion is the similarity of curve distribution and progression from knee to ankle. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.

  7. On the Biomimetic Design of Agile-Robot Legs

    PubMed Central

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  8. On the biomimetic design of agile-robot legs.

    PubMed

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  9. Permanent tensions in organization.

    PubMed

    Jansson, Noora

    2015-01-01

    The purpose of this paper is to investigate the relationship between permanent tensions and organizational change. This study used paradox theory and a case study. The case organization is a public university hospital in Finland involving several stakeholders. The analysis suggests that the relationship between permanent tensions and organizational change is a paradox that is part of organizational reality. As an organization learns to live with its permanent tensions, the renewal paradox settles into equilibrium. When tensions are provoked, the paradox is disturbed until it finds a new balance. This flexible nature of the paradox is the force that keeps the different stakeholders simultaneously empowered to maintain their unique missions and cohesive in order to benefit from the larger synergy. This research suggests that identification and evaluation of each permanent tension within an organization is important when executing organizational change. The fact that certain tensions are permanent and cannot be solved may have an influence on how planned change initiatives are executed. The results show that permanent tensions may be harnessed for the benefit of an organizational change. This research demonstrates originality by offering an alternative view of tensions, a view which emphasizes not only their permanent and plural nature but their importance for enabling the organization to change at its own, non-disruptive pace. The research also proposes a new concept, the "renewal paradox", to enhance understanding of the relationship between permanent tensions and organizational change.

  10. Ice interaction with offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammaert, A.B.; Muggeridge, D.B.

    1988-01-01

    Oil platforms and other offshore structures being built in the arctic regions must be able to withstand icebergs, ice islands, and pack ice. This reference explain the effect ice has on offshore structures and demonstrates design and construction methods that allow such structures to survive in harsh, ice-ridden environments. It analyzes the characteristics of sea ice as well as dynamic ice forces on structures. Techniques for ice modeling and field testing facilitate the design and construction of sturdy, offshore constructions. Computer programs included.

  11. Passive zero-gravity leg restraint

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R. (Inventor)

    1989-01-01

    A passive zero or microgravity leg restraint is described which includes a central support post with a top and a bottom. Extending from the central support post are a calf pad tab, to which calf pad is attached, and a foot pad tab, to which foot tab is attached. Also extending from central support post are knee pads. When the restraint is in use the user's legs are forced between pads by a user imposed scissors action of the legs. The user's body is then supported in a zero or microgravity neutral body posture by the leg restraint. The calf pad has semi-ridig elastic padding material covering structural stiffener. The foot pad has padding material and a structural stiffener. Knee pads have s structural tube stiffener at their core.

  12. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.

    PubMed

    Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht

    2018-03-21

    Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.

  13. Why do flamingos stand on one leg?

    PubMed

    Anderson, Matthew J; Williams, Sarah A

    2010-01-01

    A series of observational studies of captive Caribbean flamingos Phoenicopterus ruber were conducted to determine why flamingos rest on one leg. While frequently asked by the general public, this basic question has remained unanswered by the scientific community. Here we suggest that the latency of flamingos to initiate forward locomotion following resting on one leg is significantly longer than following resting on two, discounting the possibility that unipedal resting reduces muscle fatigue or enhances predatory escape. Additionally, we demonstrate that flamingos do not display lateral preferences at the individual or group levels when resting on one leg, with each bird dividing its resting time across both legs. We show that while flamingos prefer resting on one leg to two regardless of location, the percentage of birds resting on one leg is significantly higher among birds standing in the water than among those on land. Finally, we demonstrate a negative relationship between temperature and the percentage of observed birds resting on one leg, such that resting on one leg decreases as temperature rises. Results strongly suggest that unipedal resting aids flamingos in thermoregulation. (c) 2009 Wiley-Liss, Inc.

  14. Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring

    NASA Astrophysics Data System (ADS)

    D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele

    2016-04-01

    From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine

  15. Smarter offshoring.

    PubMed

    Farrell, Diana

    2006-06-01

    During the past 15 years, companies have flocked to a handful of cities in India and Eastern Europe for offshore service functions. As a result, the most popular sites are now overheating: Demand for young professionals is outstripping supply, wages and turnover are soaring, and overburdened infrastructure systems are struggling to serve the explosive growth. The happy news is that the tight labor markets in the well-known hot spots are the exceptions, not the rule. Many attractive alternatives are emerging around the world. According to a McKinsey Global Institute study, more than 90% of the vast and rapidly growing pool of university-educated people suitable for work in multinationals are located outside the current hot spot cities. For instance, Morocco is now home to offshore centers for French and Spanish companies requiring fluent speakers of their home languages. Neighboring Tunisia has used its modern infrastructure, business-friendly regulations, and stable, low-cost workforce to attract companies such as Siemens and Wanadoo. Vietnam offers university graduates who have strong mathematics skills; speak French, English, German, or Russian; and do not demand high wages. The problems facing the hot spots, coupled with the emergence of many more countries able and willing to provide offshore services, mean that picking a site has become more complicated. In choosing a location, companies will have to focus less on low wages and much more on other ways that candidate cities can fulfill their business needs. They will have to be much more rigorous in articulating precisely what they require from an offshore location. That means evaluating their unique needs on a range of dimensions and understanding how alternative locations can meet those needs for the foreseeable future.

  16. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1991-04-02

    This invention is comprised of a pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing. between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair laying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is widemore » and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.« less

  17. The Legs Problem--For All Ages

    ERIC Educational Resources Information Center

    Way, Jenni

    2005-01-01

    This article presents an example of a versatile multi-solution problem that can be used right across the primary years. The basic problem is: "Noah saw 16 legs go past him into the Ark. How many creatures did he see?" Any even number can be used, although, 2 legs allows only one answer and with 16 legs there are already 14 different…

  18. Offshore wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Elkinton, Christopher Neil

    Offshore wind energy technology is maturing in Europe and is poised to make a significant contribution to the U.S. energy production portfolio. Building on the knowledge the wind industry has gained to date, this dissertation investigates the influences of different site conditions on offshore wind farm micrositing---the layout of individual turbines within the boundaries of a wind farm. For offshore wind farms, these conditions include, among others, the wind and wave climates, water depths, and soil conditions at the site. An analysis tool has been developed that is capable of estimating the cost of energy (COE) from offshore wind farms. For this analysis, the COE has been divided into several modeled components: major costs (e.g. turbines, electrical interconnection, maintenance, etc.), energy production, and energy losses. By treating these component models as functions of site-dependent parameters, the analysis tool can investigate the influence of these parameters on the COE. Some parameters result in simultaneous increases of both energy and cost. In these cases, the analysis tool was used to determine the value of the parameter that yielded the lowest COE and, thus, the best balance of cost and energy. The models have been validated and generally compare favorably with existing offshore wind farm data. The analysis technique was then paired with optimization algorithms to form a tool with which to design offshore wind farm layouts for which the COE was minimized. Greedy heuristic and genetic optimization algorithms have been tuned and implemented. The use of these two algorithms in series has been shown to produce the best, most consistent solutions. The influences of site conditions on the COE have been studied further by applying the analysis and optimization tools to the initial design of a small offshore wind farm near the town of Hull, Massachusetts. The results of an initial full-site analysis and optimization were used to constrain the boundaries of

  19. Multisystemic Sarcoidosis Presenting as Pretibial Leg Ulcers.

    PubMed

    Wollina, Uwe; Baunacke, Anja; Hansel, Gesina

    2016-09-01

    Sarcoidosis is a multisystemic disease of unknown etiology. Up to 30% of patients develop cutaneous manifestations, either specific or nonspecific. Ulcerating sarcoidosis leading to leg ulcers is a rare observation that may lead to confusions with other, more common types of chronic leg ulcers. We report the case of a 45-year-old female patient with chronic multisystemic sarcoidosis presenting with pretibial leg ulcers. Other etiology could be excluded. Histology revealed nonspecific findings. Therefore, the diagnosis of nonspecific leg ulcers in sarcoidosis was confirmed. Treatment consisted of oral prednisolone and good ulcer care. Complete healing was achieved within 6 months. Sarcoidosis is a rare cause of leg ulcers and usually sarcoid granulomas can be found. Our patient illustrates that even in the absence of sarcoid granulomas, leg ulcers can be due to sarcoidosis. © The Author(s) 2016.

  20. QATAR offshore oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Qatar Petroleum Producing Authority is presently operating three offshore fields - Idd al-Shargi, Maydan Mahzam and Bul Hanine. The Idd al-Shargi field consists of 14 naturally flowing wells and three suspended wells. Individual flow rates of the producing wells range from 250 to 3000 barrels per day (b/d). The Maydan Mahzam field produces from 11 naturally flowing wells. Reservoir energy in the field is maintained by water injection. Each of the wells produce oil at rates ranging from 2500 to 20,000 b/d. The Bul Hanine field comprises 10 producing wells supported by 9 dumpflooders. Production rates of the individualmore » wells reach 29,000 b/d, making them among the world's highest. In 1978 the completion of a major acceleration project for the Bul Hanine Arab IV reservoir added more than 40,000 b/d to the production potential of the field. Total Qatari oil exports in 1978 were 91,708,000 barrels, equivalent to an average export rate of 25,000 b/d. Total production in Qatar in 1979 was 100,641,394 barrels (offshore) and 84,130,917 (onshore), an increase of 11% and a decrease of 3%, respectively, over 1978. Halal Island provides offshore storage for oil and gas berthing and loading operations. A natural gas liquids offshore complex, including a fractionation plant, is nearing completion at Umm Said. (SAC)« less

  1. 2016 Offshore Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walter; Beiter, Philipp; Schwabe, Paul

    The 2016 Offshore Wind Technologies Market Report was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) and is intended to provide offshore wind policymakers, regulators, developers, researchers, engineers, financiers, and supply chain participants, with quantitative information about the offshore wind market, technology, and cost trends in the United States and worldwide. In particular, this report is intended to provide detailed information on the domestic offshore wind industry to provide context to help navigate technical and market barriers and opportunities. The scope of the report covers the status of the 111 operating offshore windmore » projects in the global fleet through December 31, 2016, and provides the status and analysis on a broader pipeline of 593 projects at some stage of development. In addition, this report provides a wider assessment of domestic developments and events through the second quarter of 2017 to provide a more up-to-date discussion of this dynamically evolving industry.« less

  2. Does a crouched leg posture enhance running stability and robustness?

    PubMed

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height

  3. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.

    PubMed

    Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W; Daley, Monica A

    2014-11-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force-length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force-length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. © 2014. Published by The Company of Biologists Ltd.

  4. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain

    PubMed Central

    Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. PMID:25355848

  5. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  6. Offshore Fish Community: Ecological Interactions

    EPA Science Inventory

    The offshore (>80 m) fish community of Lake Superior is made up of predominately native species. The most prominent species are deepwater sculpin, kiyi, cisco, siscowet lake trout, burbot, and the exotic sea lamprey. Bloater and shortjaw cisco are also found in the offshore zone...

  7. [Replantation at lower leg level].

    PubMed

    Daigeler, A; Fansa, H; Westphal, T; Schneider, W

    2003-11-01

    Replantation in reconstructive surgery is an established procedure due to microsurgical techniques. It can be routinely performed in unilateral lower leg amputation. In some cases of bilateral amputation, in which orthotopic replantation is not possible due to the complex trauma, heterotopic replantation is a therapeutic option. This avoids prosthetic fitting. We report five cases of orthotopic and two of heterotopic lower limb replantations. Functional outcome concerning sensibility, mobility, pain, and aesthetic result were assessed clinically and using a questionnaire. Functional outcome and patient satisfaction were good. The psychological situation of the patients as well as mobility and stability of the replanted limbs were satisfying. Heterotopically replanted patients found the replanted legs superior to the prostheses. We conclude that, in lower leg amputation, attempts should be made to replant the extremity. In bilateral lower leg amputations, at least one limb should be reconstructed, even if "only" a heterotopic replantation can be performed.

  8. Leg stiffness and expertise in men jumping.

    PubMed

    Laffaye, Guillaume; Bardy, Benoît G; Durey, Alain

    2005-04-01

    The aim of the present study is to investigate: a) the leg spring behavior in the one-leg vertical jump, b) the contribution of impulse parameters to this behavior, and c) the effect of jumping expertise on leg stiffness. Four categories of experts (handball, basketball, volleyball players, and Fosbury athletes), as well as novice subjects performed a run-and-jump test to touch a ball with the head. Five experimental conditions were tested from 55 to 95% of the maximum jump height. Kinematic and kinetic data were collected using six cameras and a force plate. The mechanical behavior of the musculoskeleton component of the human body can be modeled as a simple mass-spring system, from which leg stiffness values can be extracted to better understand energy transfer during running or jumping. The results indicate that leg stiffness (mean value of 11.5 kN.m) decreased with jumping height. Leg shortening at takeoff also increased with jumping height, whereas contact time decreased (-18%). No difference was found between experts and novices for leg stiffness. However, a principal components analysis (PCA) indicated the contribution of two main factors to the performance. The first factor emerged out of vertical force, stiffness, and duration of impulse. The second factor included leg shortening and jumping height. Differences between experts and novices were observed in terms of the contribution of leg stiffness to jump height, and more importantly, clear differences existed between experts in jumping parameters. The analysis performed on the sport categories indeed revealed different jumping profiles, characterized by specific, sport-related impulse parameters.

  9. Managing tension headaches at home

    MedlinePlus

    Tension-type headache - self-care; Muscle contraction headache - self-care; Headache - benign - self-care; Headache - tension- self-care; Chronic headaches - tension - self-care; Rebound headaches - ...

  10. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    PubMed Central

    Knutson, Gary A

    2005-01-01

    Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787

  11. INTRA-RATER RELIABILITY OF THE MULTIPLE SINGLE-LEG HOP-STABILIZATION TEST AND RELATIONSHIPS WITH AGE, LEG DOMINANCE AND TRAINING.

    PubMed

    Sawle, Leanne; Freeman, Jennifer; Marsden, Jonathan

    2017-04-01

    Balance is a complex construct, affected by multiple components such as strength and co-ordination. However, whilst assessing an athlete's dynamic balance is an important part of clinical examination, there is no gold standard measure. The multiple single-leg hop-stabilization test is a functional test which may offer a method of evaluating the dynamic attributes of balance, but it needs to show adequate intra-tester reliability. The purpose of this study was to assess the intra-rater reliability of a dynamic balance test, the multiple single-leg hop-stabilization test on the dominant and non-dominant legs. Intra-rater reliability study. Fifteen active participants were tested twice with a 10-minute break between tests. The outcome measure was the multiple single-leg hop-stabilization test score, based on a clinically assessed numerical scoring system. Results were analysed using an Intraclass Correlations Coefficient (ICC 2,1 ) and Bland-Altman plots. Regression analyses explored relationships between test scores, leg dominance, age and training (an alpha level of p = 0.05 was selected). ICCs for intra-rater reliability were 0.85 for the dominant and non-dominant legs (confidence intervals = 0.62-0.95 and 0.61-0.95 respectively). Bland-Altman plots showed scores within two standard deviations. A significant correlation was observed between the dominant and non-dominant leg on balance scores (R 2 =0.49, p<0.05), and better balance was associated with younger participants in their non-dominant leg (R 2 =0.28, p<0.05) and their dominant leg (R 2 =0.39, p<0.05), and a higher number of hours spent training for the non-dominant leg R 2 =0.37, p<0.05). The multiple single-leg hop-stabilisation test demonstrated strong intra-tester reliability with active participants. Younger participants who trained more, have better balance scores. This test may be a useful measure for evaluating the dynamic attributes of balance. 3.

  12. The onshore influence of offshore fresh groundwater

    NASA Astrophysics Data System (ADS)

    Knight, Andrew C.; Werner, Adrian D.; Morgan, Leanne K.

    2018-06-01

    Freshwater contained within the submarine extensions of coastal aquifers is increasingly proposed as a freshwater source for coastal communities. However, the extent to which offshore freshwater supports onshore pumping is currently unknown on a global scale. This study provides the first attempt to examine the likely prevalence of situations where offshore freshwater influences onshore salinities, considering various sites from around the world. The groundwater conditions in twenty-seven confined and semi-confined coastal aquifers with plausible connections to inferred or observed offshore freshwater are explored. The investigation uses available onshore salinities and groundwater levels, and offshore salinity knowledge, in combination with analytical modelling, to develop simplified conceptual models of the study sites. Seven different conceptual models are proposed based on the freshwater-saltwater extent and insights gained from analytical modelling. We consider both present-day and pre-development conditions in assessing potential modern contributions to offshore fresh groundwater. Conceptual models also include interpretations of whether offshore freshwater is a significant factor influencing onshore salinities and well pumping sustainability. The results indicate that onshore water levels have declined between pre-development and present-day conditions in fourteen of the fifteen regions for which pre-development data are available. Estimates of the associated steady-state freshwater extents show the potential for considerable offshore fresh groundwater losses accompanying these declines. Both present-day and pre-development heads are insufficient to account for the observed offshore freshwater in all cases where adequate data exist. This suggests that paleo-freshwater and/or aquifer heterogeneities contribute significantly to offshore freshwater extent. Present-day heads indicate that active seawater intrusion (SWI) will eventually impact onshore pumping

  13. Broken Leg

    MedlinePlus

    ... devices into the broken bone to maintain proper alignment during healing. Other injuries may be treated with ... that extend into the joint and poor bone alignment can cause osteoarthritis years later. If your leg ...

  14. United States Offshore Wind Resource Assessment

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Haymes, S.; Heimiller, D.

    2008-12-01

    The utilization of the offshore wind resource will be necessary if the United States is to meet the goal of having 20% of its electricity generated by wind power because many of the electrical load centers in the country are located along the coastlines. The United States Department of Energy, through its National Renewable Energy Laboratory (NREL), has supported an ongoing project to assess the wind resource for the offshore regions of the contiguous United States including the Great Lakes. Final offshore maps with a horizontal resolution of 200 meters (m) have been completed for Texas, Louisiana, Georgia, northern New England, and the Great Lakes. The ocean wind resource maps extend from the coastline to 50 nautical miles (nm) offshore. The Great Lake maps show the resource for all of the individual lakes. These maps depict the wind resource at 50 m above the water as classes of wind power density. Class 1 represents the lowest available wind resource, while Class 7 is the highest resource. Areas with Class 5 and higher wind resource can be economical for offshore project development. As offshore wind turbine technology improves, areas with Class 4 and higher resource should become economically viable. The wind resource maps are generated using output from a modified numerical weather prediction model combined with a wind flow model. The preliminary modeling is performed by AWS Truewind under subcontract to NREL. The preliminary model estimates are sent to NREL to be validated. NREL validates the preliminary estimates by comparing 50 m model data to available measurements that are extrapolated to 50 m. The validation results are used to modify the preliminary map and produce the final resource map. The sources of offshore wind measurement data include buoys, automated stations, lighthouses, and satellite- derived ocean wind speed data. The wind electric potential is represented as Megawatts (MW) of potential installed capacity and is based on the square

  15. Operational management of offshore energy assets

    NASA Astrophysics Data System (ADS)

    Kolios, A. J.; Martinez Luengo, M.

    2016-02-01

    Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.

  16. Offshore oil platforms and fouling communities in the southern Arabian Gulf (Abu Dhabi).

    PubMed

    Stachowitsch, Michael; Kikinger, Reinhard; Herler, Jürgen; Zolda, Pamela; Geutebrück, Ernst

    2002-09-01

    This study examined the fouling organisms on the legs of offshore oil platforms at two sites in the southern Arabian Gulf (offshore Abu Dhabi, United Arab Emirates). 100% of the metal structures was colonized by encrusting organisms. Both the number of individuals and the total biomass tended to decrease with depth. The total weight of dead shells always exceeded that of living organisms. Sessile filter feeders dominated the biomass, whereas small mobile forms had the largest number of individuals. The biomass at the deeper platform (22 m) was dominated by bivalves, barnacles and bryozoans, while polychaetes and amphipods had the greatest number of individuals. Biomass values here ranged from 1 g/0.1 m2 at 20 m to 147 g/0.1 m2 at 5 m; the corresponding individual numbers were 266 (20 m) and 11,814 indiv./0.1 m2 (5 m). The results at the shallower platform (11 m) differed in several respects: barnacles clearly dominated over bivalves, and sponges exceeded byrozoans, while total individual numbers fell due to a decline in polychaete dominance. Biomass values here ranged from 84 g/0.1 m2 at 10 m to 153 g/0.1 m2 at 0 m; the corresponding individual numbers were 695 (10 m) and 3,125 indiv./0.1 m2 (0 m). The potential role of such fouling communities on artificial structures in the Gulf is discussed.

  17. Offshore rectenna feasbility

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Hervey, D.; Glaser, P.

    1980-01-01

    A preliminary study of the feasibility and cost of an offshore rectenna to serve the upper metropolitan east coast was performed. A candidate site at which to build a 5 GW rectenna was selected on the basis of proximity to load centers, avoidance of shipping lanes, sea floor terrain, and relocated conditions. Several types of support structures were selected for study based initially on the reference system rectenna concept of a wire mesh ground screen and dipoles each with its own rectifier and filter circuits. Possible secondary uses of an offshore rectenna were examined and are evaluated.

  18. Approches pour la reduction de l'impact de defaut dans le transport d'energie du parc eolien offshore via VSC-HVDC =

    NASA Astrophysics Data System (ADS)

    Benadja, Mounir

    Dans ce travail est presente un systeme de generation d'energie d'un parc eolien offshore et un systeme de transport utilisant les stations VSC-HVDC connectees au reseau principal AC onshore. Trois configurations ont ete etudiees, modelisees et validees par simulation. Dans chacune des configurations, des contributions ameliorant les cotes techniques et economiques sont decrites ci-dessous : La premiere contribution concerne un nouvel algorithme MPPT (Maximum Power Point Tracking) utilise pour l'extraction de la puissance maximale disponible dans les eoliennes des parcs offshores. Cette technique d'extraction du MPPT ameliore le rendement energetique de la chaine de conversion des energies renouvelables notamment l'energie eolienne a petite et a grande echelles (parc eolien offshore) qui constitue un probleme pour les constructeurs qui se trouvent confrontes a developper des dispositifs MPPT simples, moins couteux, robustes, fiables et capable d'obtenir un rendement energetique maximal. La deuxieme contribution concerne la reduction de la taille, du cout et de l'impact des defauts electriques (AC et DC) dans le systeme construit pour transporter l'energie d'un parc eolien offshore (OWF) vers le reseau principal AC onshore via deux stations 3L-NPC VSCHVDC. La solution developpee utilise des observateurs non-lineaires bases sur le filtre de Kalman etendu (EKF). Ce filtre permet d'estimer la vitesse de rotation et la position du rotor de chacune des generatrices du parc eolien offshore et de la tension du bus DC de l'onduleur DC-AC offshore et des deux stations 3L-NPC-VSC-HVDC (offshore et onshore). De plus, ce developpement du filtre de Kalman etendu a permis de reduire l'impact des defauts AC et DC. Deux commandes ont ete utilisees, l'une (commande indirect dans le plan abc) avec EKF integre destinee pour controler le convertisseur DC-AC offshore et l'autre (commande d-q) avec EKF integre pour controler les convertisseurs des deux stations AC-DC et DC-AC tout en

  19. Offshore Energy Knowledge Exchange Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-04-12

    A report detailing the presentations and topics discussed at the Offshore Energy Knowledge Exchange Workshop, an event designed to bring together offshore energy industry representatives to share information, best practices, and lessons learned.

  20. A miniature tension sensor to measure surgical suture tension of deformable musculoskeletal tissues during joint motion.

    PubMed

    Kiriyama, Yoshimori; Matsumoto, Hideo; Toyama, Yoshiaki; Nagura, Takeo

    2014-02-01

    The aim of this study was to develop a new suture tension sensor for musculoskeletal soft tissue that shows deformation or movements. The suture tension sensor was 10 mm in size, which was small enough to avoid conflicting with the adjacent sensor. Furthermore, the sensor had good linearity up to a tension of 50 N, which is equivalent to the breaking strength of a size 1 absorbable suture defined by the United States Pharmacopeia. The design and mechanism were analyzed using a finite element model prior to developing the actual sensor. Based on the analysis, adequate material was selected, and the output linearity was confirmed and compared with the simulated result. To evaluate practical application, the incision of the skin and capsule were sutured during simulated total knee arthroplasty. When conventional surgery and minimally invasive surgery were performed, suture tensions were compared. In minimally invasive surgery, the distal portion of the knee was dissected, and the proximal portion of the knee was dissected additionally in conventional surgery. In the skin suturing, the maximum tension was 4.4 N, and this tension was independent of the sensor location. In contrast, the sensor suturing the capsule in the distal portion had a tension of 4.4 N in minimally invasive surgery, while the proximal sensor had a tension of 44 N in conventional surgery. The suture tensions increased nonlinearly and were dependent on the knee flexion angle. Furthermore, the tension changes showed hysteresis. This miniature tension sensor may help establish the optimal suturing method with adequate tension to ensure wound healing and early recovery.

  1. Offshore oil in the Alaskan Arctic

    NASA Technical Reports Server (NTRS)

    Weeks, W. F.; Weller, G.

    1984-01-01

    Oil and gas deposits in the Alaskan Arctic are estimated to contain up to 40 percent of the remaining undiscovered crude oil and oil-equivalent natural gas within U.S. jurisdiction. Most (65 to 70 percent) of these estimated reserves are believed to occuur offshore beneath the shallow, ice-covered seas of the Alaskan continental shelf. Offshore recovery operations for such areas are far from routine, with the primary problems associated with the presence of ice. Some problems that must be resolved if efficient, cost-effective, environmentally safe, year-round offshore production is to be achieved include the accurate estimation of ice forces on offshore structures, the proper placement of pipelines beneath ice-produced gouges in the sea floor, and the cleanup of oil spills in pack ice areas.

  2. [Acute leg compartment syndrome after exertion].

    PubMed

    Misović, Sidor; Kronja, Goran; Ignjatović, Dragan; Tomić, Aleksandar

    2005-03-01

    A case of a 22-year old soldier, with a history of pain in the leg during heavy exercise, which desisted at rest, was presented. One day before admission, the patient had felt an extreme exertion-induced pain in his right leg which had not lessenned at rest. At the same time, the patient noticed persistent severe leg edema. On physical examination, the intracompartmental pressure was 62 mmHg (> 30 mmHg). The patient was urgently operated on, and fasciotomy according to Mubarak was used. At second surgery, the debridement of the muscles of the posterior group of the leg, and the evacuation of hemathoma from the anterior and lateral group of the right leg muscles were perfomed. Postoperative recovery was uneventful. Fasciotomy wounds were closed within 14 days of the surgery. The complete physical treatment was done. Follow-up examinations 1, 3, and 6 months afterwards were satisfactory. The soldier completed his compulsory military service without any sequelae. Laboratory results were normal. Overlooked, unrecognized or surgically untreated compartment syndrome can cause severe damage, including even the loss of the extremity.

  3. Evaluation of arm-leg coordination in flat breaststroke.

    PubMed

    Chollet, D; Seifert, L; Leblanc, H; Boulesteix, L; Carter, M

    2004-10-01

    This study proposes a new method to evaluate arm-leg coordination in flat breaststroke. Five arm and leg stroke phases were defined with a velocity-video system. Five time gaps quantified the time between arm and leg actions during three paces of a race (200 m, 100 m and 50 m) in 16 top level swimmers. Based on these time gaps, effective glide, effective propulsion, effective leg insweep and effective recovery were used to identify the different stroke phases of the body. A faster pace corresponded to increased stroke rate, decreased stroke length, increased propulsive phases, shorter glide phases, and a shorter T1 time gap, which measured the effective body glide. The top level swimmers showed short time gaps (T2, T3, T4, measuring the timing of arm-leg recoveries), which reflected the continuity in arm and leg actions. The measurement of these time gaps thus provides a pertinent evaluation of swimmers' skill in adapting their arm-leg coordination to biomechanical constraints.

  4. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.

    PubMed

    Zhou, R; Alvarado, L; Kim, S; Chong, S L; Mushahwar, V K

    2017-10-01

    The spinal cervico-lumbar interaction during rhythmic movements in humans has recently been studied; however, the role of arm movements in modulating the corticospinal drive to the legs is not well understood. The goals of this study were to investigate the effect of active rhythmic arm movements on the corticospinal drive to the legs ( study 1 ) and assess the effect of simultaneous arm and leg training on the corticospinal pathway after incomplete spinal cord injury (iSCI) ( study 2). In study 1 , neurologically intact (NI) participants or participants with iSCI performed combinations of stationary and rhythmic cycling of the arms and legs while motor evoked potentials (MEPs) were recorded from the vastus lateralis (VL) muscle. In the NI group, arm cycling alone could facilitate the VL MEP amplitude, suggesting that dynamic arm movements strongly modulate the corticospinal pathway to the legs. No significant difference in VL MEP between conditions was found in participants with iSCI. In study 2 , participants with iSCI underwent 12 wk of electrical stimulation-assisted cycling training: one group performed simultaneous arm and leg (A&L) cycling and the other legs-only cycling. MEPs in the tibialis anterior (TA) muscle were compared before and after training. After training, only the A&L group had a significantly larger TA MEP, suggesting increased excitability in the corticospinal pathway. The findings demonstrate the importance of arm movements in modulating the corticospinal drive to the legs and suggest that active engagement of the arms in lower limb rehabilitation may produce better neural regulation and restoration of function. NEW & NOTEWORTHY This study aimed to demonstrate the importance of arm movements in modulating the corticospinal drive to the legs. It provides direct evidence in humans that active movement of the arms could facilitate corticospinal transmission to the legs and, for the first time, shows that facilitation is absent after spinal cord

  5. Dynamic leg length asymmetry during gait is not a valid method for estimating mild anatomic leg length discrepancy.

    PubMed

    Leporace, Gustavo; Batista, Luiz Alberto; Serra Cruz, Raphael; Zeitoune, Gabriel; Cavalin, Gabriel Armondi; Metsavaht, Leonardo

    2018-03-01

    The purpose of this study was to test the validity of dynamic leg length discrepancy (DLLD) during gait as a radiation-free screening method for measuring anatomic leg length discrepancy (ALLD). Thirty-three subjects with mild leg length discrepancy walked along a walkway and the dynamic leg length discrepancy (DLLD) was calculated using a motion analysis system. Pearson correlation and paired Student t -tests were applied to calculate the correlation and compare the differences between DLLD and ALLD (α = 0.05). The results of our study showed DLLD is not a valid method to predict ALLD in subjects with mild limb discrepancy.

  6. Leg stiffness and stride frequency in human running.

    PubMed

    Farley, C T; González, O

    1996-02-01

    When humans and other mammals run, the body's complex system of muscle, tendon and ligament springs behaves like a single linear spring ('leg spring'). A simple spring-mass model, consisting of a single linear leg spring and a mass equivalent to the animal's mass, has been shown to describe the mechanics of running remarkably well. Force platform measurements from running animals, including humans, have shown that the stiffness of the leg spring remains nearly the same at all speeds and that the spring-mass system is adjusted for higher speeds by increasing the angle swept by the leg spring. The goal of the present study is to determine the relative importance of changes to the leg spring stiffness and the angle swept by the leg spring when humans alter their stride frequency at a given running speed. Human subjects ran on treadmill-mounted force platform at 2.5ms-1 while using a range of stride frequencies from 26% below to 36% above the preferred stride frequency. Force platform measurements revealed that the stiffness of the leg spring increased by 2.3-fold from 7.0 to 16.3 kNm-1 between the lowest and highest stride frequencies. The angle swept by the leg spring decreased at higher stride frequencies, partially offsetting the effect of the increased leg spring stiffness on the mechanical behavior of the spring-mass system. We conclude that the most important adjustment to the body's spring system to accommodate higher stride frequencies is that leg spring becomes stiffer.

  7. 77 FR 17491 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... from the Mobile Offshore Drilling Unit Guidance Policy, Notice of Availability, request for comments... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0091] National Offshore Safety... Management; Notice of Federal Advisory Committee Meetings. SUMMARY: The National Offshore Safety Advisory...

  8. Sensing the Tension

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Spanning over 4 decades, NASA's bolt tension monitoring technology has benefited automakers, airplane builders, and other major manufacturers that rely on the devices to evaluate the performance of computerized torque wrenches and other assembly line mechanisms. In recent years, the advancement of ultrasonic sensors has drastically eased this process for users, ensuring that proper tension and torque are being applied to bolts and fasteners, with less time needed for data analysis. Langley Research Center s Nondestructive Evaluation Branch is one of the latest NASA programs to incorporate ultrasonic sensors within a bolt tension measurement instrument. As a multi-disciplined research group focused on spacecraft and aerospace transportation safety, one of the branch s many commitments includes transferring problem solutions to industry. In 1998, the branch carried out this obligation in a licensing agreement with Micro Control, Inc., of West Bloomfield, Michigan. Micro Control, an automotive inspection company, obtained the licenses to two Langley patents to provide an improved-but-inexpensive means of ultrasonic tension measurement.

  9. WIND Toolkit Offshore Summary Dataset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, Caroline; Musial, Walt; Scott, George

    This dataset contains summary statistics for offshore wind resources for the continental United States derived from the Wind Integration National Datatset (WIND) Toolkit. These data are available in two formats: GDB - Compressed geodatabases containing statistical summaries aligned with lease blocks (aliquots) stored in a GIS format. These data are partitioned into Pacific, Atlantic, and Gulf resource regions. HDF5 - Statistical summaries of all points in the offshore Pacific, Atlantic, and Gulf offshore regions. These data are located on the original WIND Toolkit grid and have not been reassigned or downsampled to lease blocks. These data were developed under contractmore » by NREL for the Bureau of Oceanic Energy Management (BOEM).« less

  10. Neuromuscular transmission in a primitive insect: modulation by octopamine, and catch-like tension.

    PubMed

    Hoyle, G

    1984-01-01

    The third pair of legs of the primitive New Zealand orthopteran insect, the " weta ", has and innervation and muscle cell distribution exactly similar to that of locusts, but wetas do not jump. Neuromuscular transmission to the slow excitatory axon ( SETi ) is potentiated more than 10-fold by the natural modulator octopamine (OCT). A brief burst of SETi impulses following infusion of as little as 10(-8) M OCT is followed by a very long-lasting plateau of catch-like tension (CT). The plateau is abruptly relaxed by a single inhibitory impulse, or even by a single SETi impulse if this arrives no sooner than about 30 sec following excitation. CT is used by wetas in a defense posture. Locusts and grasshoppers have a different type of modulation by OCT.

  11. 78 FR 18614 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Continental Shelf (OCS); (b) Electrical Equipment in Hazardous Areas on Foreign Flag Mobile Offshore Drilling... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0182] National Offshore Safety... Advisory Committee Meetings. SUMMARY: The National Offshore Safety Advisory Committee (NOSAC) will meet on...

  12. A new leg voxel model in two different positions for simulation of the non-uniform distribution of (241)Am in leg bones.

    PubMed

    Khalaf, Majid; Brey, Richard R; Meldrum, Jeff

    2013-01-01

    A new leg voxel model in two different positions (straight and bent) has been developed for in vivo measurement calibration purposes. This voxel phantom is a representation of a human leg that may provide a substantial enhancement to Monte Carlo modeling because it more accurately models different geometric leg positions and the non-uniform distribution of Am throughout the leg bones instead of assuming a one-position geometry and a uniform distribution of radionuclides. This was accomplished by performing a radiochemical analysis on small sections of the leg bones from the U.S. Transuranium and Uranium Registries (USTUR) case 0846. USTUR case 0846 represents an individual who was repeatedly contaminated by Am via chronic inhalation. To construct the voxel model, high resolution (2 mm) computed tomography (CT) images of the USTUR case 0846 leg were obtained in different positions. Thirty-six (36) objects (universes) were segmented manually from the CT images using 3D-Doctor software. Bones were divided into 30 small sections with an assigned weight exactly equal to the weight of bone sections obtained from radiochemical analysis of the USTUR case 0846 leg. The segmented images were then converted into a boundary file, and the Human Monitoring Laboratory (HML) voxelizer was used to convert the boundary file into the leg voxel phantom. Excluding the surrounding air regions, the straight leg phantom consists of 592,023 voxels, while the bent leg consists of 337,567 voxels. The resulting leg voxel model is now ready for use as an MCNPX input file to simulate in vivo measurement of bone-seeking radionuclides.

  13. Offshore Wind Energy Systems Engineering Curriculum Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This coursemore » was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.« less

  14. Boundary Spanning in Offshored Information Systems Development Projects

    ERIC Educational Resources Information Center

    Krishnan, Poornima

    2010-01-01

    Recent growth in offshore outsourcing of information systems (IS) services is accompanied by managing the offshore projects successfully. Much of the project failures can be attributed to geographic and organizational boundaries which create differences in culture, language, work patterns, and decision making processes among the offshore project…

  15. Lake Michigan Offshore Wind Feasibility Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of futuremore » offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined

  16. U.S. Offshore Wind Port Readiness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Elkinton, A. Blatiak, H. Ameen

    2013-10-13

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  17. 46 CFR 15.520 - Mobile offshore drilling units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  18. 46 CFR 15.520 - Mobile offshore drilling units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  19. 46 CFR 15.520 - Mobile offshore drilling units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  20. 46 CFR 15.520 - Mobile offshore drilling units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  1. Ocean Drilling Program: Completed Legs

    Science.gov Websites

    . Austin Leg summary Repository Wolfgang Schlager 102 14-Mar-85 25-Apr-85 Miami, Florida 418 Bermuda Rise Lisbon, Portugal 902-906 New Jersey Sea-Level Transect Peter Blum Gregory Mountain Leg summary Repository , Nova Scotia 1071-1073 Continuing the New Jersey Sea-Level Transect Mitchell J. Malone James A. Austin

  2. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    NASA Astrophysics Data System (ADS)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  3. [Musculoskeletal disorders in the offshore oil industry].

    PubMed

    Morken, Tone; Tveito, Torill H; Torp, Steffen; Bakke, Ashild

    2004-10-21

    Musculoskeletal disorders are important causes of sick leave and disability among Norwegian offshore petroleum workers. More knowledge and interventions are needed in order to prevent this. In this review we consider prevalence and risk factors among offshore petroleum workers and point to the need for more research. Literature searches on ISI Web of Science and PubMed were supplemented by reports from Norwegian offshore industry companies and the Norwegian Petroleum Directorate. Few studies were found on musculoskeletal disorders among offshore petroleum workers. The disorders are widespread, particularly among catering, construction and drilling personnel. It is not clear whether the prevalence is different from that among onshore workers. Risk factors are physical stressors and fast pace of work. Among catering personnel, these disorders are important causes of loss of the required health certificate but we could not identify any review of causes in the offshore industry generally. More scientific studies are needed on musculoskeletal disorders as comparisons of prevalence and risk factors for offshore and onshore workers may point to more effective interventions. Better knowledge of the causes of loss of the health certificate may contribute to preventing early retirement. Interventions to prevent these disorders should be evaluated by controlled intervention studies.

  4. Structural design significance of tension-tension fatigue data on composites

    NASA Technical Reports Server (NTRS)

    Grimes, G. C.

    1977-01-01

    Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.

  5. International Offshore Students' Perceptions of Virtual Office Hours

    ERIC Educational Resources Information Center

    Wdowik, Steven; Michael, Kathy

    2013-01-01

    Purpose: The main aim of this study is to gauge international offshore students' perceptions of virtual office hours (VOH) to consult with their offshore unit coordinators in Australia. Design/methodology/approach: This paper employs a quantitative and qualitative approach where data was sourced from three offshore campuses over a 12-month period…

  6. Not letting the left leg know what the right leg is doing: limb-specific locomotor adaptation to sensory-cue conflict.

    PubMed

    Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong

    2003-11-01

    We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.

  7. Quantifying Leg Movement Activity During Sleep.

    PubMed

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Loading and performance of the support leg in kicking.

    PubMed

    Ball, Kevin

    2013-09-01

    The punt kick is important in many football codes and support leg kinematics and ground reaction forces have been implicated in injury and performance in kicking. To evaluate ground reaction forces and support leg kinematics in the punt kick. Cross sectional study. Seven elite Australian football players performed maximal kicks into a net using both the preferred and non-preferred legs. A force plate measured ground reaction forces and an optical motion capture system (200Hz) collected kinematic data during the stance phase of the kick. Preferred and non-preferred legs were compared and performance was evaluated by correlating parameters with foot speed at ball contact. Vertical forces were larger than running at a similar speed but did not reach levels that might be considered an injury risk. Braking forces were directed solely posteriorly, as for soccer kicks, but lateral force patterns varied with some players experiencing greater forces medially and others laterally. A more extended support leg, larger peak vertical and braking force during the stance phase and a shorter stance contact time was associated with larger kick leg foot speed at ball contact. No difference existed between the preferred and non-preferred legs for ground reaction forces or support leg mechanics. To punt kick longer, a straighter support leg, less time on the ground and stronger braking should be encouraged. Conditioning the support leg to provide stronger braking potential is recommended. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. 31 CFR 598.407 - Offshore transactions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Offshore transactions. 598.407 Section 598.407 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... Interpretations § 598.407 Offshore transactions. The prohibitions contained in § 598.203 apply to transactions by...

  10. Towards a Comparative Measure of Legged Agility

    DTIC Science & Technology

    2014-06-01

    body movement with change of velocity or direction in response to a stimulus” [18]. Notwithstanding the many informative and inspiring studies of legged...specific power (watts per kilogram taken over a gait cycle of leg power output relative to leg muscle mass or body mass) [22, 26–28] but it is not scale...closest to the body mass normalized mea- sure we will introduce below. In contrast, characterizing directional aspects of agility performance seems

  11. Motion of the center of mass in children with spastic hemiplegia: balance, energy transfer, and work performed by the affected leg vs. the unaffected leg.

    PubMed

    Feng, Jing; Pierce, Rosemary; Do, K Patrick; Aiona, Michael

    2014-01-01

    Asymmetry between limbs in people with spastic hemiplegic cerebral palsy (HEMI) adversely affects limb coordination and energy generation and consumption. This study compared how the affected leg and the unaffected leg of children with HEMI would differ based on which leg trails. Full-body gait analysis data and force-plate data were analyzed for 31 children (11.9 ± 3.8 years) with HEMI and 23 children (11.1 ± 3.1 years) with typical development (TD). Results showed that peak posterior center of mass-center of pressure (COM-COP) inclination angles of HEMI were smaller than TD when the affected leg trailed but not when the unaffected leg trailed. HEMI showed greater peak medial COM-COP inclination angles and wider step width than TD, no matter which leg trailed. More importantly, when the affected leg of HEMI trailed, it did not perform enough positive work during double support to propel COM motion. Consequently, the unaffected leg had to perform additional positive work during the early portion of single support, which costs more energy. When the unaffected leg trailed, the affected leg performed more negative work during double support; therefore, more positive work was still needed during early single support, but energy efficiency was closer to that of TD. Energy recovery factor was lower when the affected leg trailed than when the unaffected leg trailed; both were lower than TD. These findings suggest that the trailing leg plays a significant role in propelling COM motion during double support, and the 'unaffected' side of HEMI may not be completely unaffected. It is important to strengthen both legs. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Chronic Lower Leg Pain in Athletes

    PubMed Central

    Brewer, Rachel Biber; Gregory, Andrew J. M.

    2012-01-01

    Context: Chronic lower leg pain in athletes can be a frustrating problem for patients and a difficult diagnosis for clinicians. Myriad approaches have been suggested to evaluate these conditions. With the continued evolution of diagnostic studies, evidence-based guidance for a standard approach is unfortunately sparse. Evidence Acquisition: PubMed was searched from January 1980 to May 2011 to identify publications regarding chronic lower leg pain in athletes (excluding conditions related to the foot), including differential diagnosis, clinical presentation, physical examination, history, diagnostic workup, and treatment. Results: Leg pain in athletes can be caused by many conditions, with the most frequent being medial tibial stress syndrome; chronic exertional compartment syndrome, stress fracture, nerve entrapment, and popliteal artery entrapment syndrome are also considerations. Conservative management is the mainstay of care for the majority of causes of chronic lower leg pain; however, surgical intervention may be necessary. Conclusion: Chronic lower extremity pain in athletes includes a wide differential and can pose diagnostic dilemmas for clinicians. PMID:23016078

  13. The Limits of Offshore Balancing

    DTIC Science & Technology

    2015-09-01

    believe, is to adopt a minimalist approach referred to as “offshore balancing.” Briefly stated, offshore balancing envisions a dramatic reduction in...behavior from allies and adversaries alike. The proper response to this situation, they believe, is to adopt a minimalist approach usually referred to as...as a minimalist , or free-hand strategy, because it asserts that America can attain that goal while also shedding obligations and resources.30 Indeed

  14. External post-tensioning anchorage.

    DOT National Transportation Integrated Search

    2011-05-01

    Post-tensioning tendons in segmental bridge construction are often only anchored within the deviator and pier segments. The effectiveness of the post-tensioning (PT) system is therefore dependent on proper functioning of the anchorages. On August 28,...

  15. Human hopping on damped surfaces: strategies for adjusting leg mechanics.

    PubMed

    Moritz, Chet T; Farley, Claire T

    2003-08-22

    Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.

  16. 31 CFR 598.407 - Offshore transactions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Offshore transactions. 598.407 Section 598.407 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Interpretations § 598.407 Offshore transactions. The prohibitions contained in § 598.203 apply to transactions by...

  17. 31 CFR 598.407 - Offshore transactions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Offshore transactions. 598.407 Section 598.407 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Interpretations § 598.407 Offshore transactions. The prohibitions contained in § 598.203 apply to transactions by...

  18. 31 CFR 598.407 - Offshore transactions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Offshore transactions. 598.407 Section 598.407 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Interpretations § 598.407 Offshore transactions. The prohibitions contained in § 598.203 apply to transactions by...

  19. 31 CFR 598.407 - Offshore transactions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Offshore transactions. 598.407 Section 598.407 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Interpretations § 598.407 Offshore transactions. The prohibitions contained in § 598.203 apply to transactions by...

  20. 76 FR 11503 - National Offshore Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... person representing enterprises specializing in offshore drilling. To be eligible, applicants for all... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0040] National Offshore Safety... Coast Guard seeks applications for membership on the National Offshore Safety Advisory Committee. This...

  1. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  2. Offshore safety case approach and formal safety assessment of ships.

    PubMed

    Wang, J

    2002-01-01

    Tragic marine and offshore accidents have caused serious consequences including loss of lives, loss of property, and damage of the environment. A proactive, risk-based "goal setting" regime is introduced to the marine and offshore industries to increase the level of safety. To maximize marine and offshore safety, risks need to be modeled and safety-based decisions need to be made in a logical and confident way. Risk modeling and decision-making tools need to be developed and applied in a practical environment. This paper describes both the offshore safety case approach and formal safety assessment of ships in detail with particular reference to the design aspects. The current practices and the latest development in safety assessment in both the marine and offshore industries are described. The relationship between the offshore safety case approach and formal ship safety assessment is described and discussed. Three examples are used to demonstrate both the offshore safety case approach and formal ship safety assessment. The study of risk criteria in marine and offshore safety assessment is carried out. The recommendations on further work required are given. This paper gives safety engineers in the marine and offshore industries an overview of the offshore safety case approach and formal ship safety assessment. The significance of moving toward a risk-based "goal setting" regime is given.

  3. 76 FR 39410 - National Offshore Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... energy industry; (d) One member representing enterprises specializing in offshore drilling; and, (e) One... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0539] National Offshore Safety... Coast Guard seeks applications for membership on the National Offshore Safety Advisory Committee. This...

  4. Offshore fatigue design turbulence

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner C.

    2001-07-01

    Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative.

  5. ODYSSEUS autonomous walking robot: The leg/arm design

    NASA Technical Reports Server (NTRS)

    Bourbakis, N. G.; Maas, M.; Tascillo, A.; Vandewinckel, C.

    1994-01-01

    ODYSSEUS is an autonomous walking robot, which makes use of three wheels and three legs for its movement in the free navigation space. More specifically, it makes use of its autonomous wheels to move around in an environment where the surface is smooth and not uneven. However, in the case that there are small height obstacles, stairs, or small height unevenness in the navigation environment, the robot makes use of both wheels and legs to travel efficiently. In this paper we present the detailed hardware design and the simulated behavior of the extended leg/arm part of the robot, since it plays a very significant role in the robot actions (movements, selection of objects, etc.). In particular, the leg/arm consists of three major parts: The first part is a pipe attached to the robot base with a flexible 3-D joint. This pipe has a rotated bar as an extended part, which terminates in a 3-D flexible joint. The second part of the leg/arm is also a pipe similar to the first. The extended bar of the second part ends at a 2-D joint. The last part of the leg/arm is a clip-hand. It is used for selecting several small weight and size objects, and when it is in a 'closed' mode, it is used as a supporting part of the robot leg. The entire leg/arm part is controlled and synchronized by a microcontroller (68CH11) attached to the robot base.

  6. Investigating daily fatigue scores during two-week offshore day shifts.

    PubMed

    Riethmeister, Vanessa; Bültmann, Ute; Gordijn, Marijke; Brouwer, Sandra; de Boer, Michiel

    2018-09-01

    This study examined daily scores of fatigue and circadian rhythm markers over two-week offshore day shift periods. A prospective cohort study among N = 60 offshore day-shift workers working two-week offshore shifts was conducted. Offshore day shifts lasted from 07:00 - 19:00 h. Fatigue was measured objectively with pre- and post-shift scores of the 3-minute psychomotor vigilance tasks (PVT-B) parameters (reaction times, number of lapses, errors and false starts) and subjectively with pre- and post-shift Karolinska Sleepiness Scale (KSS) ratings. Evening saliva samples were collected on offshore days 2,7 and 13 to measure circadian rhythm markers such as dim-light melatonin onset times and cortisol. Generalized and linear mixed model analyses were used to examine daily fatigue scores over time. Complete data from N = 42 offshore day shift workers was analyzed. Daily parameters of objective fatigue, PVT-B scores (reaction times, average number of lapses, errors and false starts), remained stable over the course of the two-week offshore day shifts. Daily subjective post-shift fatigue scores significantly increased over the course of the two-week offshore shifts. Each day offshore was associated with an increased post-shift subjective fatigue score of 0.06 points (95%CI: .03 - .09 p < .001). No significant statistical differences in subjective pre-shift fatigue scores were found. Neither a circadian rhythm phase shift of melatonin nor an effect on the pattern and levels of evening cortisol was found. Daily parameters of objective fatigue scores remained stable over the course of the two-week offshore day shifts. Daily subjective post-shift fatigue scores significantly increased over the course of the two-week offshore shifts. No significant changes in circadian rhythm markers were found. Increased post-shift fatigue scores, especially during the last days of an offshore shift, should be considered and managed in (offshore) fatigue risk management programs and fatigue

  7. Human hopping on damped surfaces: strategies for adjusting leg mechanics.

    PubMed Central

    Moritz, Chet T; Farley, Claire T

    2003-01-01

    Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain. PMID:12965003

  8. The Offshore New European Wind Atlas

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  9. 47 CFR 22.1037 - Application requirements for offshore stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... telephone number of the applicant; (2) The location and geographical coordinates of the proposed station; (3... 47 Telecommunication 2 2013-10-01 2013-10-01 false Application requirements for offshore stations... for offshore stations. Applications for new Offshore Radiotelephone Service stations must contain an...

  10. 47 CFR 22.1037 - Application requirements for offshore stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... telephone number of the applicant; (2) The location and geographical coordinates of the proposed station; (3... 47 Telecommunication 2 2011-10-01 2011-10-01 false Application requirements for offshore stations... for offshore stations. Applications for new Offshore Radiotelephone Service stations must contain an...

  11. 47 CFR 22.1037 - Application requirements for offshore stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... telephone number of the applicant; (2) The location and geographical coordinates of the proposed station; (3... 47 Telecommunication 2 2014-10-01 2014-10-01 false Application requirements for offshore stations... for offshore stations. Applications for new Offshore Radiotelephone Service stations must contain an...

  12. 47 CFR 22.1037 - Application requirements for offshore stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... telephone number of the applicant; (2) The location and geographical coordinates of the proposed station; (3... 47 Telecommunication 2 2012-10-01 2012-10-01 false Application requirements for offshore stations... for offshore stations. Applications for new Offshore Radiotelephone Service stations must contain an...

  13. NREL Researchers Play Integral Role in National Offshore Wind Strategy |

    Science.gov Websites

    News | NREL Researchers Play Integral Role in National Offshore Wind Strategy NREL Researchers Play Integral Role in National Offshore Wind Strategy December 16, 2016 A photo of three offshore wind turbines in turbulent water. Offshore wind energy in the United States is just getting started, with the

  14. Night Leg Cramps

    MedlinePlus

    ... feet or thighs might cramp as well. Forcefully stretching the contracted muscle relieves the pain. Most of ... include Drinking plenty of fluids to avoid dehydration Stretching your leg muscles or riding a stationary bicycle ...

  15. Leg MRI scan

    MedlinePlus

    ... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...

  16. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  17. A load-based mechanism for inter-leg coordination in insects

    PubMed Central

    2017-01-01

    Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals. PMID:29187626

  18. Frustrated S = 1/2 Two-Leg Ladder with Different Leg Interactions

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Okamoto, Kiyomi; Hikihara, Toshiya; Sakai, Tôru

    2017-04-01

    We explore the ground-state phase diagram of the S = 1/2 two-leg ladder. The isotropic leg interactions J1,a and J1,b between nearest neighbor spins in the legs a and b, respectively, are different from each other. The xy and z components of the uniform rung interactions are denoted by Jr and ΔJr, respectively, where Δ is the XXZ anisotropy parameter. This system has a frustration when J1,aJ1,b < 0 irrespective of the sign of Jr. The phase diagrams on the Δ (0≤Δ<1) versus J1,b plane in the cases of J1,a = - 0.2 and J1,a = 0.2 with Jr = -1 are determined numerically. We employ the physical consideration, the level spectroscopy analysis of the results obtained by the exact diagonalization method and also the density-matrix renormalization-group method. It is found that the non-collinear ferrimagnetic (NCFR) state appears as the ground state in the frustrated region of the parameters. Furthermore, the direct-product triplet-dimer (TD) state in which all rungs form the TD pair is the exact ground state, when J1,a + J1,b = 0 and 0≤ Δ ≲ 0.83. The obtained phase diagrams consist of the TD, XY and Haldane phases as well as the NCFR phase.

  19. 78 FR 63233 - National Offshore Safety Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Equipment in Hazardous Areas on Foreign Flag Mobile Offshore Drilling Units. (4) Safety Impact of Liftboat... Equipment in Hazardous Areas on Foreign Flag Mobile Offshore Drilling Units (MODUs); (d) Safety Impact of... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0886] National Offshore Safety...

  20. 46 CFR 15.520 - Mobile offshore drilling units (MODUs).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Mobile offshore drilling units (MODUs). 15.520 Section... MANNING REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units... endorsement on an MMC as offshore installation manager (OIM), barge supervisor (BS), or ballast control...

  1. Soft-tissue tension total knee arthroplasty.

    PubMed

    Asano, Hiroshi; Hoshino, Akiho; Wilton, Tim J

    2004-08-01

    It is far from clear how best to define the proper strength of soft-tissue tensioning in total knee arthroplasty (TKA). We attached a torque driver to the Monogram balancer/tensor device and measured soft-tissue tension in full extension and 90 degrees flexion during TKA. In our surgical procedure, when we felt proper soft-tissue tension was being applied, the mean distraction force was noted to be 126N in extension and 121N in flexion. There was no significant correlation between soft-tissue tension and the postoperative flexion angle finally achieved. To the best of our knowledge, this is the first study to assess the actual distraction forces in relation to soft-tissue tension in TKA. Further study may reveal the most appropriate forces to achieve proper soft-tissue tension in the wide variety of circumstances presenting at knee arthroplasty.

  2. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.

    PubMed

    Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline; Donnelly, Cyril

    2018-06-14

    Unplanned sidestepping and single-leg landing have both been used to screen athletes for injury risk in sport. The aim of this study was to directly compare the lower limb mechanics of three single-leg landing tasks and an unplanned sidestepping task. Thirteen elite female team sport athletes completed a series of non-contact single-leg drop landings, single-leg countermovement jumps, single-leg jump landings and unplanned sidestepping in a randomized counterbalanced design. Three dimensional kinematics (250 Hz) and ground reaction force (2,000 Hz) data with a participant specific lower limb skeletal model were used to calculate and compare hip, knee and ankle joint kinematics, peak joint moments, instantaneous joint power and joint work during the weight acceptance phase of each sporting task (α=0.05). Peak knee joint moments and relevant injury risk thresholds were used to classify each athlete's anterior cruciate ligament injury risk during unplanned sidestepping and single-leg jump landing. Results showed that peak joint moments, power and work were greater during the single-leg jump landing task when compared to the single-leg drop landings and single-leg countermovement jumps tasks. Peak frontal and sagittal plane knee joint moments, knee joint power, as well as hip and knee joint work were greater during unplanned sidestepping when compared to the landing tasks. Peak ankle joint moments, power and work were greater during the landing tasks when compared to unplanned sidestepping. For 4 of the 13 athletes tested, their anterior cruciate ligament injury risk classification changed depending on whether they performed an unplanned sidestepping or single-leg jump landing testing procedure. To summarize, a single-leg jump landing testing procedure places a larger mechanical on the ankle joint when compared to single-leg drop landings, single-leg countermovement jumps and unplanned sidestepping. An unplanned sidestepping testing procedure places a larger

  3. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults.

    PubMed

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2014-01-01

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Microgravity, Mesh-Crawling Legged Robots

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Marzwell, Neville; Matthews, Jaret; Richardson, Krandalyn; Wall, Jonathan; Poole, Michael; Foor, David; Rodgers, Damian

    2008-01-01

    The design, fabrication, and microgravity flight-testing are part of a continuing development of palm-sized mobile robots that resemble spiders (except that they have six legs apiece, whereas a spider has eight legs). Denoted SpiderBots (see figure), they are prototypes of proposed product line of relatively inexpensive walking robots that could be deployed in large numbers to function cooperatively in construction, repair, exploration, search, and rescue activities in connection with exploration of outer space and remote planets.

  5. Promethus Hot Leg Piping Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactormore » (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.« less

  6. New OBS network deployment offshore Ireland

    NASA Astrophysics Data System (ADS)

    Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Horan, Clare; Hogg, Colin; Donne, Sarah; McCann, Hannah; Möllhoff, Martin; Kirk, Henning; Ploetz, Aline

    2016-04-01

    With the presence of the stormy NE Atlantic, Ireland is ideally located to investigate further our understanding of ocean generated microseisms and use noise correlation methods to develop seismic imaging in marine environments as well as time-lapse monitoring. In order to study the microseismic activity offshore Ireland, 10 Broad Band Ocean Bottom Seismographs (OBSs) units including hydrophones have been deployed in January 2016 across the shelf offshore Donegal and out into the Rockall Trough. This survey represents the first Broadband passive study in this part of the NE Atlantic. The instruments will be recovered in August 2016 providing 8 months worth of data to study microseisms but also the offshore seismic activity in the area. One of the main goal of the survey is to investigate the spatial and temporal distributions of dominant microseism source regions, close to the microseism sources. Additionally we will study the coupling of seismic and acoustic signals at the sea bed and its evolution in both the deep water and continental shelf areas. Furthermore, the survey also aims to investigate further the relationship between sea state conditions (e.g. wave height, period), seafloor pressure variations and seismic data recorded on both land and seafloor. Finally, the deployed OBS network is also the first ever attempt to closely monitor local offshore earthquakes in Ireland. Ireland seismicity although relatively low can reduce slope stability and poses the possibility of triggering large offshore landslides and local tsunamis.

  7. Leadership Tensions and Dilemmas

    ERIC Educational Resources Information Center

    Edmunds, Bill; Mulford, Bill; Kendall, Diana; Kendall, Lawrie

    2008-01-01

    Results from the Tasmanian Successful School Principal Project (SSPP) survey concur with the four major leadership tensions and dilemmas identified in a background literature review. These tensions and dilemmas relate to internal/external control, ethic of care/responsibility, and an emphasis on professional/personal as well as…

  8. Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness.

    PubMed

    Müller, Roy; Andrada, Emanuel

    2018-01-01

    It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.

  9. Managing leg ulceration in intravenous drug users.

    PubMed

    Geraghty, Jemell

    2015-09-01

    Chronic venous leg ulceration is a long-term condition commonly associated with lower-limb injecting and chronic venous hypertension caused by collapsed veins, incompetent valves, deep vein thrombosis and reflux. It is not usually a medical emergency, but intravenous (IV) drug users with leg ulcers can attend emergency departments (EDs) with a different primary complaint such as pain or because they cannot access local primary care or voluntary services. Leg ulceration might then be identified during history taking, so it is important that ED nurses know how to assess and manage these wounds. This article explains how to assess and manage chronic venous leg ulcers in patients with a history of IV drug use, and highlights the importance of referral to specialist services when required, and to local primary care or voluntary services, before discharge to prevent admission and re-attendance.

  10. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  11. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  12. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  13. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  14. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  15. Lower Limb Symmetry: Comparison of Muscular Power Between Dominant and Nondominant Legs in Healthy Young Adults Associated With Single-Leg-Dominant Sports.

    PubMed

    Vaisman, Alex; Guiloff, Rodrigo; Rojas, Juan; Delgado, Iris; Figueroa, David; Calvo, Rafael

    2017-12-01

    Achieving a symmetrical power performance (difference <15%) between lower limbs is generally recommended during sports rehabilitation. However, athletes in single-leg-dominant sports, such as professional soccer players, could develop significant asymmetry between their dominant and nondominant legs, such that symmetry does not act as a viable comparison. To (1) compare maximal muscular power between the dominant and nondominant legs in healthy young adults, (2) evaluate the effect of a single-leg-dominant sport activity performed at the professional level, and (3) propose a parameter of normality for maximal power difference in the lower limbs of this young adult population. Controlled laboratory study. A total of 78 healthy, male, young adults were divided into 2 groups according to sport activity level. Group 1 consisted of 51 nonathletes (mean ± SD age, 20.8 ± 1.5 years; weight, 71.9 ± 10.5 kg) who participated in less than 8 hours a week of recreational physical activity with nonspecific training; group 2 consisted of 27 single-leg-dominant professional soccer players (age, 18.4 ± 0.6 years; weight, 70.1 ± 7.5 kg) who specifically trained and competed at their particular activity 8 hours or more a week. For assessment of maximal leg power, both groups completed the single-leg squat jump test. Dominance was determined when participants completed 2 of 3 specific tests with the same extremity. Statistical analysis included the Student t test. No statistical difference was found for maximal power between dominant and nondominant legs for nonathletes ( t = -1.01, P = .316) or single-leg-dominant professional soccer players ( t = -1.10, P = .281). A majority (95%) of participants studied showed a power difference of less than 15% between their lower extremities. Among young healthy adults, symmetrical power performance is expected between lower extremities independent of the existence of dominance and difference in sport activity level. A less than 15

  16. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].

    PubMed

    Selionov, V A; Solopova, I A; Zhvansky, D S

    2016-01-01

    We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries

  17. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. Copyright © 2015, American Association for the Advancement of Science.

  18. Leg pairs as virtual wheels

    NASA Astrophysics Data System (ADS)

    Howe, Russel; Duttweiler, Mark; Khanlian, Luke; Setrakian, Mark

    2005-05-01

    We propose the use of virtual wheels as the starting point of a new vehicle design. Each virtual wheel incorporates a pair of simple legs that, by simulating the rotary motion and ground contact of a traditional wheel, combine many of the benefits of legged and wheeled motion. We describe the use of virtual wheels in the design of a robotic mule, presenting an analysis of the mule's mobility the results of our efforts to model and build such a device.

  19. Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.

    PubMed

    Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias

    2017-10-01

    Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.

  20. ORTHOPEDIC LEG BRACE

    NASA Technical Reports Server (NTRS)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  1. Tensions in Distributed Leadership

    ERIC Educational Resources Information Center

    Ho, Jeanne; Ng, David

    2017-01-01

    Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…

  2. Injury due to leg bands in willow flycatchers

    USGS Publications Warehouse

    Sedgwick, J.A.; Klus, R.J.

    1997-01-01

    We report an apparently unusually high incidence of leg injury in Willow Flycatchers (Empidonax traillii) as a result of banding and color banding. Color bands and U.S. Fish and Wildlife Service (USFWS) bands applied to Willow Flycatchers from 1988-1995 resulted in an overall leg injury rate of 9.6% to birds returning to our study areas in subsequent years. Most injuries occurred on legs with only color band(s) (58.3%) or on legs with both a USFWS band and a color band (35%); only 6.7% of injuries (4/60) were due to USFWS bands alone, yielding an overall USFWS band injury rate of only 0.6%. Injuries ranged from severe (swollen, bleeding legs; a missing foot) to relatively minor (irritations on the tarsus). Amputation of the foot occurred in 33.9% of the cases. Return rates of adult injured birds in the year(s) following injury were significantly lower than for the population at large.

  3. The effect of leg preference on postural stability in healthy athletes.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H

    2014-01-03

    In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.

  4. A framework for offshore vendor capability development

    NASA Astrophysics Data System (ADS)

    Yusuf Wibisono, Yogi; Govindaraju, Rajesri; Irianto, Dradjad; Sudirman, Iman

    2016-02-01

    Offshore outsourcing is a common practice conducted by companies, especially in developed countries, by relocating one or more their business processes to other companies abroad, especially in developing countries. This practice grows rapidly owing to the ease of accessing qualified vendors with a lower cost. Vendors in developing countries compete more intensely to acquire offshore projects. Indonesia is still below India, China, Malaysia as main global offshore destinations. Vendor capability is among other factors that contribute to the inability of Indonesian vendor in competing with other companies in the global market. Therefore, it is essential to study how to increase the vendor's capability in Indonesia, in the context of global offshore outsourcing. Previous studies on the vendor's capability mainly focus on capabilities without considering the dynamic of capabilities due to the environmental changes. In order to be able to compete with competitors and maintain the competitive advantage, it is necessary for vendors to develop their capabilities continuously. The purpose of this study is to develop a framework that describes offshore vendor capability development along the client-vendor relationship stages. The framework consists of three main components, i.e. the stages of client-vendor relationship, the success of each stage, and the capabilities of vendor at each stage.

  5. Initial tension loss in cerclage cables.

    PubMed

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y

    2013-10-01

    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (P<0.05). Removing the tensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Solar power satellite offshore rectenna study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    It was found that an offshore rectenna is feasible and cost competitive with land rectennas but that the type of rectenna which is suitable for offshore use is quite different from that specified in the present reference system. The result is a nonground plane design which minimizes the weight and greatly reduces the number of costly support towers. This preferred design is an antenna array consisting of individually encapsulated dipoles with reflectors supported on feed wires. Such a 5 GW rectenna could be built at a 50 m water depth site to withstand hurricane and icing conditions for a one time cost of 5.7 billion dollars. Subsequent units would be about 1/3 less expensive. The east coast site chosen for this study represents an extreme case of severe environmental conditions. More benign and more shallow water sites would result in lower costs. Secondary uses such as mariculture appear practical with only minor impact on the rectenna design. The potential advantages of an offshore rectenna, such as no land requirements, removal of microwave radiation from populated areas and minimal impact on the local geopolitics argue strongly that further investigation of the offshore rectenna should be vigorously pursued.

  7. [Stabilometry, Electromyography and Electroencephalography in Postmenopausal Women after Training of the Leg Support Sensation].

    PubMed

    Bazanova, O M; Kholodina, N V; Podoinikov, A S; Nikolenko, E D

    2015-01-01

    Ageing, lack of physical activity and sedentary lifestyle cause disorders of the sensorimotor system of postural control. The role of support afferentation in the changes in cortical activity in balance impairments has not been studied yet. The purpose of this study was to investigate the changes in the stabilographic parameters of the body center of gravity, alpha activity indices of the electroencephalography (EEG) and electromyographic (EMG) measurements of forehead muscle tone in response to visual activation in standing and sitting positions in postmenopausal women after and without training of leg support sensation (LSS) The variables were compared between 3 groups: Group A (n = 12, age: 66 ± 9 years)--women who have trained LSS with the help of Aikido techniques for 8 years; group F (n = 12, age: 65 ± 6 years)--women who have attended Fitness training for 8 years; group N (n = 11, age: 66 ± 7 years)--women who have not taken physical exercises for the last 8 years. It was found that in group N a change in body position from "sitting" to "standing" leads to a much greater increase in the area of stabilogram and in the energy expenditure needed to maintain the bal- ance than in groups A and F. Posture changes from sitting to standing position increases the tension of the forehead muscles and the suppression of alpha-1-amplitude, but decreases the power in high- and low-frequency alpha-band of EEG and the width of alpha-band in group N. In women ofgroup F the posture change does not result in an increase in EMG and signs of activation or tension in EEG; in group A it leads to a decrease of visual activation indices and psychoemotional tension and to an increase in power in alpha-2-band which is a sign of neuronal efficiency. Basing on these data, we can conclude that training focused on support afferentation in postmenopausal women decreases the psychoemotional tension and increases neuronal efficiency ofsensorimotor integration of postural control system

  8. Offshore Wind Initiatives at the U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Coastal and Great Lakes states account for nearly 80% of U.S. electricity demand, and the winds off the shores of these coastal load centers have a technical resource potential twice as large as the nation’s current electricity use. With the costs of offshore wind energy falling globally and the first U.S. offshore wind farm installed off the coast of Block Island, Rhode Island in 2016, offshore wind has the potential to contribute significantly to a clean, affordable, and secure national energy mix. To support the development of a world-class offshore wind industry, the U.S. Department of Energy has been supportingmore » a broad portfolio of offshore wind research, development, and demonstration projects since 2011 and released a new National Offshore Wind Strategy jointly with the U.S. Department of the Interior in 2016.« less

  9. Clinical diagnostic model for sciatica developed in primary care patients with low back-related leg pain

    PubMed Central

    Konstantinou, Kika; Ogollah, Reuben; Hay, Elaine M.; Dunn, Kate M.

    2018-01-01

    Background Identification of sciatica may assist timely management but can be challenging in clinical practice. Diagnostic models to identify sciatica have mainly been developed in secondary care settings with conflicting reference standard selection. This study explores the challenges of reference standard selection and aims to ascertain which combination of clinical assessment items best identify sciatica in people seeking primary healthcare. Methods Data on 394 low back-related leg pain consulters were analysed. Potential sciatica indicators were seven clinical assessment items. Two reference standards were used: (i) high confidence sciatica clinical diagnosis; (ii) high confidence sciatica clinical diagnosis with confirmatory magnetic resonance imaging findings. Multivariable logistic regression models were produced for both reference standards. A tool predicting sciatica diagnosis in low back-related leg pain was derived. Latent class modelling explored the validity of the reference standard. Results Model (i) retained five items; model (ii) retained six items. Four items remained in both models: below knee pain, leg pain worse than back pain, positive neural tension tests and neurological deficit. Model (i) was well calibrated (p = 0.18), discrimination was area under the receiver operating characteristic curve (AUC) 0.95 (95% CI 0.93, 0.98). Model (ii) showed good discrimination (AUC 0.82; 0.78, 0.86) but poor calibration (p = 0.004). Bootstrapping revealed minimal overfitting in both models. Agreement between the two latent classes and clinical diagnosis groups defined by model (i) was substantial, and fair for model (ii). Conclusion Four clinical assessment items were common in both reference standard definitions of sciatica. A simple scoring tool for identifying sciatica was developed. These criteria could be used clinically and in research to improve accuracy of identification of this subgroup of back pain patients. PMID:29621243

  10. Integrated system for single leg walking

    NASA Astrophysics Data System (ADS)

    Simmons, Reid; Krotkov, Eric; Roston, Gerry

    1990-07-01

    The Carnegie Mellon University Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. This report describes an integrated software system capable of navigating a single leg of the robot over rugged terrain. The leg, based on an early design of the Ambler Planetary Rover, is suspended below a carriage that slides along rails. To walk, the system creates an elevation map of the terrain from laser scanner images, plans an appropriate foothold based on terrain and geometric constraints, weaves the leg through the terrain to position it above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced obstacles, and sand hills. The implemented system consists of a number of task-specific processes (two for planning, two for perception, one for real-time control) and a central control process that directs the flow of communication between processes.

  11. Agreement and correlation between the straight leg raise and slump tests in subjects with leg pain.

    PubMed

    Walsh, Jeremy; Hall, Toby

    2009-01-01

    The straight leg raise (SLR) and slump tests have traditionally been used to identify nerve root compression arising from disk herniation. However, they may be more appropriate as tests of lumbosacral neural tissue mechanosensitivity. The aim of this study was to determine agreement and correlation between the SLR and slump tests in a population presenting with back and leg pain. This was an observational, cross-sectional study design. Forty-five subjects with unilateral leg pain were recruited from an outpatient Back Pain Screening Clinic at a large teaching hospital in Ireland. The SLR and slump tests were performed on each side. In the event of symptom reproduction, the ankle was dorsiflexed. Reproduction of presenting symptoms, which were intensified by ankle dorsiflexion, was interpreted as a positive test. An inclinometer was used to measure range of motion (ROM). There was substantial agreement between SLR and slump test interpretation (kappa = 0.69) with good correlation in ROM between the 2 tests (r = 0.64) on the symptomatic side. In subjects who had positive results, ROM for both tests was significantly reduced compared to ROM on the contralateral side and ROM in subjects who had negative results. When the SLR and slump tests are interpreted as positive in the event of reproduction of presenting leg pain that are intensified by ankle dorsiflexion, these tests show substantial agreement and good correlation in the leg pain population. When interpreted in this way, these tests may be appropriate tests of neural tissue mechanosensitivity, but further criteria must be met before a definitive conclusion in relation to neural tissue mechanosensitivity may be drawn.

  12. Compliant leg behaviour explains basic dynamics of walking and running

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2006-01-01

    The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312

  13. An Assessment of Wave and Wind Data for Use in Design of Tension Leg Platforms - U.S. Offshore Areas.

    DTIC Science & Technology

    1984-07-01

    level crossing rate equations first developed by Rice are commonly employed, reference 4. If one assumes that the wave height variance spectrum is...wave photo was kindly furnished by Mr. Dillard Hammett of SEDCO, Inc. : "The photo was taken in November, 1982. The location was the Ekofisk Field

  14. 2014-2015 Offshore Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  15. Quantifying the hurricane catastrophe risk to offshore wind power.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  16. Foundations for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  17. Terminology Guideline for Classifying Offshore Wind Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Musial, Walt

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conformingmore » to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.« less

  18. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Treesearch

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  19. Swimming with stiff legs at low Reynolds number.

    PubMed

    Takagi, Daisuke

    2015-08-01

    Locomotion at low Reynolds number is not possible with cycles of reciprocal motion, an example being the oscillation of a single pair of rigid paddles or legs. Here, I demonstrate the possibility of swimming with two or more pairs of legs. They are assumed to oscillate collectively in a metachronal wave pattern in a minimal model based on slender-body theory for Stokes flow. The model predicts locomotion in the direction of the traveling wave, as commonly observed along the body of free-swimming crustaceans. The displacement of the body and the swimming efficiency depend on the number of legs, the amplitude, and the phase of oscillations. This study shows that paddling legs with distinct orientations and phases offers a simple mechanism for driving flow.

  20. Dimensional synthesis of a leg mechanism

    NASA Astrophysics Data System (ADS)

    Pop, F.; Lovasz, E.-Ch; Pop, C.; Dolga, V.

    2016-08-01

    An eight bar leg mechanism dimensional synthesis is presented. The mathematical model regarding the synthesis is described and the results obtained after computation are verified with help of 2D mechanism simulation in Matlab. This mechanism, inspired from proposed solution of Theo Jansen, is integrated into the structure of a 2 DOF quadruped robot. With help of the kinematic synthesis method described, it is tried to determine new dimensions for the mechanism, based on a set of initial conditions. These are established by taking into account the movement of the end point of the leg mechanism, which enters in contact with the ground, during walking. An optimization process based on the results obtained can be conducted further in order to find a better solution for the leg mechanism.

  1. Professional Identity Tensions of Beginning Teachers

    ERIC Educational Resources Information Center

    Pillen, Marieke; Beijaard, Douwe; den Brok, Perry

    2013-01-01

    This study reports on interviews with 24 beginning teachers about tensions they experienced regarding their professional identity. The interviewees reported a total of 59 tensions of tension that fell into three themes: (1) the change in role from student to teacher; (2) conflicts between desired and actual support given to students; and (3)…

  2. Coordination of planar cell polarity pathways through Spiny-legs

    PubMed Central

    Ambegaonkar, Abhijit A; Irvine, Kenneth D

    2015-01-01

    Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI: http://dx.doi.org/10.7554/eLife.09946.001 PMID:26505959

  3. Blood Vessel Tension Tester

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

  4. 46 CFR 11.470 - Officer endorsements as offshore installation manager.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Officer endorsements as offshore installation manager... Officer endorsements as offshore installation manager. (a) Officer endorsements as offshore installation manager (OIM) include: (1) OIM Unrestricted; (2) OIM Surface Units on Location; (3) OIM Surface Units...

  5. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables

    NASA Astrophysics Data System (ADS)

    Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke

    2017-11-01

    Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.

  6. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot

  7. Spontaneous tension haemopneumothorax.

    PubMed

    Patterson, Benjamin Oliver; Itam, Sarah; Probst, Fey

    2008-10-31

    We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported.Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  8. Leg exoskeleton reduces the metabolic cost of human hopping.

    PubMed

    Grabowski, Alena M; Herr, Hugh M

    2009-09-01

    During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.

  9. Study on Mucin in Normal-Appearing Leg Skin.

    PubMed

    Fernandez-Flores, Angel

    2017-03-01

    Dermal deposits of mucin in the legs have been described associated with venous insufficiency. However, some degree of stasis dermatitis is generally common in aged individuals. Therefore, some amount of mucin is expected a priori in the reticular dermis of aged patients, even in the absence of clinical lesions. To test this hypothesis, the authors investigated the mucin in the legs of aged individuals without any dermatologic disease. Cutaneous samples were taken from the legs of 15 autopsy cases. A sample of the skin of the legs (either from the left or the right leg without any distinction being made) was randomly taken (without selecting any specific area or attending to macroscopical features). The skin samples were fixed in formaldehyde, and sections obtained from all samples were stained with hematoxylin and eosin, iron, and Alcian blue. Iron deposits were graded as 0/4 in 7 cases, as 1/4 in 4 cases, as 2/4 in 2 cases, and as 4/4 in 2 cases. Cases with greater deposits of iron also had other signs of stasis, such as neovascularization. All the samples scored 0 for dermal mucin deposits in the reticular dermis. The authors conclude that mucin deposits in the legs are not inherent to aging. Therefore, any mucin deposit in the reticular dermis, as well as expansion of the periadnexal dermis by mucin deposits, should be considered abnormal.

  10. Laboratory on legs: an architecture for adjustable morphology with legged robots

    NASA Astrophysics Data System (ADS)

    Haynes, G. Clark; Pusey, Jason; Knopf, Ryan; Johnson, Aaron M.; Koditschek, Daniel E.

    2012-06-01

    For mobile robots, the essential units of actuation, computation, and sensing must be designed to fit within the body of the robot. Additional capabilities will largely depend upon a given activity, and should be easily reconfigurable to maximize the diversity of applications and experiments. To address this issue, we introduce a modular architecture originally developed and tested in the design and implementation of the X-RHex hexapod that allows the robot to operate as a mobile laboratory on legs. In the present paper we will introduce the specification, design and very earliest operational data of Canid, an actively driven compliant-spined quadruped whose completely different morphology and intended dynamical operating point are nevertheless built around exactly the same "Lab on Legs" actuation, computation, and sensing infrastructure. We will review as well, more briefly a second RHex variation, the XRL platform, built using the same components.

  11. Membrane tension regulates clathrin-coated pit dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates

  12. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  13. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  14. Solar power satellite offshore rectenna study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Offshore rectennas are feasible and cost competitive with land rectennas but the type of rectenna suitable for offshore use is quite different from that specified in the present reference system. A nonground plane design minimizes the weight and greatly reduces the number of costly support towers. This perferred design is an antenna array consisting of individually encapsulated dipoles with reflectors or tagis supported on feed wires. Such a 5 GW rectenna could be built at a 50 m water depth site to withstand hurricane, winter storm, and icing conditions for a one time cost of $5.7 billion. Subsequent units would be about 1.3 less expensive. More benign and more shallow water sites would result in substantially lower costs. The major advantage of an offshore rectenna is the removal of microwave radiation from populated areas.

  15. Fair shares: a preliminary framework and case analyzing the ethics of offshoring.

    PubMed

    Gordon, Cameron; Zimmerman, Alan

    2010-06-01

    Much has been written about the offshoring phenomenon from an economic efficiency perspective. Most authors have attempted to measure the net economic effects of the strategy and many purport to show that "in the long run" that benefits will outweigh the costs. There is also a relatively large literature on implementation which describes the best way to manage the offshoring process. But what is the morality of offshoring? What is its "rightness" or "wrongness?" Little analysis of the ethics of offshoring has been completed thus far. This paper develops a preliminary framework for analyzing the ethics of offshoring and then applies this framework to basic case study of offshoring in the U.S. The paper following discusses the definition of offshoring; shifts to the basic philosophical grounding of the ethical concepts; develops a template for conducting an ethics analysis of offshoring; applies this template using basic data for offshoring in the United States; and conducts a preliminary ethical analysis of the phenomenon in that country, using a form of utilitarianism as an analytical baseline. The paper concludes with suggestions for further research.

  16. [Design and application of medical electric leg-raising machine].

    PubMed

    Liang, Jintang; Chen, Jinyuan; Zhao, Zixian; Lin, Jinfeng; Li, Juanhong; Zhong, Jingliang

    2017-08-01

    Passive leg raising is widely used in clinic, but it lacks of specialized mechanical raise equipment. It requires medical staff to raise leg by hand or requires a multi-functional bed to raise leg, which takes time and effort. Therefore we have developed a new medical electric leg-raising machine. The equipment has the following characteristics: simple structure, stable performance, easy operation, fast and effective, safe and comfortable. The height range of the lifter is 50-120 cm, the range of the angle of raising leg is 10degree angle-80degree angle, the maximum supporting weight is 40 kg. Because of raising the height of the lower limbs and making precise angle, this equipment can completely replace the traditional manner of lifting leg by hand with multi-functional bed to lift patients' leg and can reduce the physical exhaustion and time consumption of medical staff. It can change the settings at any time to meet the needs of the patient; can be applied to the testing of PLR and dynamically assessing the hemodynamics; can prevent deep vein thrombosis and some related complications of staying in bed; and the machine is easy to be cleaned and disinfected, which can effectively avoid hospital acquired infection and cross infection; and can also be applied to emergency rescue of various disasters and emergencies.

  17. An index for breathlessness and leg fatigue.

    PubMed

    Borg, E; Borg, G; Larsson, K; Letzter, M; Sundblad, B-M

    2010-08-01

    The features of perceived symptoms causing discontinuation of strenuous exercise have been scarcely studied. The aim was to characterize the two main symptoms causing the discontinuation of heavy work in healthy persons as well as describe the growth of symptoms during exercise. Breathlessness (b) and leg fatigue (l) were assessed using the Borg CR10 Scale and the Borg CR100 (centiMax) Scale, during a standardized exercise test in 38 healthy subjects (24-71 years). The b/l-relationships were calculated for terminal perceptions (ERI(b/l)), and the growth of symptoms determined by power functions for the whole test, as well as by growth response indexes (GRI). This latter index was constructed as a ratio between power levels corresponding to a very strong and a moderate perception. In the majority (71%) of the test subjects, leg fatigue was the dominant symptom at the conclusion of exercise (P<0.001) and the b/l ratio was 0.77 (CR10) and 0.75 (CR100), respectively. The GRI for breathlessness and leg fatigue was similar, with good correlations between GRI and the power function exponent (P<0.005). In healthy subjects, leg fatigue is the most common cause for discontinuing an incremental exercise test. The growth functions for breathlessness and leg fatigue during work are, however, almost parallel.

  18. Quantifying the hurricane risk to offshore wind turbines.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs.

  19. Quantifying the hurricane risk to offshore wind turbines

    PubMed Central

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J.; Grossmann, Iris; Apt, Jay

    2012-01-01

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures—increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk—can greatly enhance the probability that offshore wind can help to meet the United States’ electricity needs. PMID:22331894

  20. Domestic Options to Offshore Oil and Gas.

    ERIC Educational Resources Information Center

    Kash, Don E.

    1983-01-01

    The continuing controversey over offshore oil/gas has given impetus to searching for domestic energy alternatives. The need for and types of several alternative sources are discussed. Indicates that the United States needs to pursue both offshore and other domestic liquid-fuel sources if it is to avoid becoming increasingly dependent on imports.…

  1. Estimating the Economic Potential of Offshore Wind in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, P.; Musial, W.; Smith, A.

    The potential for cost reduction and market deployment for offshore wind varies considerably within the United States. This analysis estimates the future economic viability of offshore wind at more than 7,000 sites under a variety of electric sector and cost reduction scenarios. Identifying the economic potential of offshore wind at a high geospatial resolution can capture the significant variation in local offshore resource quality, costs, and revenue potential. In estimating economic potential, this article applies a method initially developed in Brown et al. (2015) to offshore wind and estimates the sensitivity of results under a variety of most likely electricmore » sector scenarios. For the purposes of this analysis, a theoretical framework is developed introducing a novel offshore resource classification system that is analogous to established resource classifications from the oil and gas sector. Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The results of this analysis are intended to inform the development of the U.S. Department of Energy's offshore wind strategy.« less

  2. 75 FR 47311 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-0489] National Offshore Safety Advisory... Offshore Safety Advisory Committee (NOSAC) will meet by teleconference to discuss items related to safety... advice and makes recommendations to the Coast Guard on [[Page 47312

  3. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser

    NASA Astrophysics Data System (ADS)

    Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.

    1997-09-01

    Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.

  4. Leg deformation during imaginal ecdysis in the downy emerald, Cordulia aenea (Odonata, Corduliidae).

    PubMed

    Frantsevich, Leonid; Frantsevich, Ludmilla

    2018-04-01

    A dragonfly larva migrates from the water to the shore, perches on a plant stem and grasps it with strongly flexed legs. Adult legs inside the larval exoskeleton fit to the larval legs joint-to-joint. The adult emerges with stretched legs. During the molt, an imaginal leg must follow all the angles in exuvial joints. In turn, larval apodemes are withdrawn from imaginal legs. We visualized transient shapes of the imaginal legs by the instant fixation of insects at different moments of the molt, photographed isolated exuvial legs with the imaginal legs inside and then removed the exuvial sheath. Instant shapes of the imaginal tibia show sharp intrapodomere bends copying the angle in the larval femoro-tibial joint. The site of bending shifts distad during the molt. This is possible if the imaginal leg is pliable. The same problem of leg squeezing is also common in hemimetabolous insects as well as in other arthropods, whereas holometabolous insects overcome problems of a tight confinement either by using leg pliability in other ways but not squeezing (cyclorrhaphan flies, mosquitoes) or by pulling hardened legs out without change of their pupal zigzag configuration (moths, ants, honey bees). The pupal legs are not intended to grasp any external substrate. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Toward a general psychological model of tension and suspense.

    PubMed

    Lehne, Moritz; Koelsch, Stefan

    2015-01-01

    Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena.

  6. Toward a general psychological model of tension and suspense

    PubMed Central

    Lehne, Moritz; Koelsch, Stefan

    2015-01-01

    Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena. PMID:25717309

  7. 1:50 Scale Testing of Three Floating Wind Turbines at MARIN and Numerical Model Validation Against Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew

    The primary goal of the basin model test program discussed herein is to properly scale and accurately capture physical data of the rigid body motions, accelerations and loads for different floating wind turbine platform technologies. The intended use for this data is for performing comparisons with predictions from various aero-hydro-servo-elastic floating wind turbine simulators for calibration and validation. Of particular interest is validating the floating offshore wind turbine simulation capabilities of NREL’s FAST open-source simulation tool. Once the validation process is complete, coupled simulators such as FAST can be used with a much greater degree of confidence in design processesmore » for commercial development of floating offshore wind turbines. The test program subsequently described in this report was performed at MARIN (Maritime Research Institute Netherlands) in Wageningen, the Netherlands. The models considered consisted of the horizontal axis, NREL 5 MW Reference Wind Turbine (Jonkman et al., 2009) with a flexible tower affixed atop three distinct platforms: a tension leg platform (TLP), a spar-buoy modeled after the OC3 Hywind (Jonkman, 2010) and a semi-submersible. The three generic platform designs were intended to cover the spectrum of currently investigated concepts, each based on proven floating offshore structure technology. The models were tested under Froude scale wind and wave loads. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibits negligible swirl and low turbulence intensity in the flow field. Recorded data from the floating wind turbine models included rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions

  8. Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs

    NASA Astrophysics Data System (ADS)

    Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh

    2017-04-01

    Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.

  9. New perspectives in offshore wind energy

    PubMed Central

    Failla, Giuseppe; Arena, Felice

    2015-01-01

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. PMID:25583869

  10. Offshore Oil: Environmental Impacts on Land and Sea

    ERIC Educational Resources Information Center

    Baldwin, Pamela L.

    1974-01-01

    Presents a counter position to that provided in SE 512 127 in which the author emphasizes that there are too many problems yet to be solved (related to offshore oil development) to proceed with full-scale development of offshore oil drilling. (PEB)

  11. 78 FR 34115 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0461] National Offshore Safety.... SUMMARY: The National Offshore Safety Advisory Committee (NOSAC) will meet via teleconference to receive a.... Additionally the committee will reconvene the Subcommittee on commercial diving safety to consider...

  12. 75 FR 65025 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-0925] National Offshore Safety Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Notice of meeting. SUMMARY: The National Offshore Safety Advisory Committee (NOSAC) will meet to discuss items related to safety of operations and other matters...

  13. The study and design of tension controller

    NASA Astrophysics Data System (ADS)

    Jun, G.; Lamei, X.

    2018-02-01

    Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, F.J.

    As the petroleum industry has moved into deeper and deeper water for the recovery of oil and gas, weight-sensitive floating platforms have replaced stationary, bottom-founded structures. The cost penalty for weight or vertical tension supported by floaters such as tension leg platforms (TLPs) is in the range of $10--20/kg. Hence, there is considerable incentive to reduce the weight of equipment or structural members on these platforms and downward forces exerted on these platforms by production and export risers, and mooring lines. Thus, there are numerous opportunities for utilizing light-weight, high-strength composites. The offshore petroleum industry has acknowledged the desirable performancemore » characteristics of composites for some time but only recently has there been some optimism that composites could be cost-effective. For most, if not all perceived applications, advanced composites are not considered to be technically enabling for current water depths of interest, i.e., 600--1,200m. However, in a very real sense, they may be economically enabling. In particular, they may allow marginal prospects to be developed or may expedite field development subject to capital constraints. The paper discusses composite production risers, break-even costs and savings, and riser tensioners.« less

  15. Mid-Atlantic Offshore Wind Interconnection and Transmission (MAOWIT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempton, Willett

    This project has carried out a detailed analysis to evaluate the pros and cons of offshore transmission, a possible method to decrease balance-of-system costs and permitting time identified in the DOE Office Wind Strategic Plan (DOE, 2011). It also addresses questions regarding the adequacy of existing transmission infrastructure and the ability of existing generating resources to provide the necessary Ancillary Services (A/S) support (spinning and contingency reserves) in the ISO territory. This project has completed the tasks identified in the proposal: 1. Evaluation of the offshore wind resource off PJM, then examination of offshore wind penetrations consistent with U.S. Departmentmore » of Energy’s (DOE) targets and with their assumed resource size (DOE, 2011). 2. Comparison of piecemeal radial connections to the Independent System Operator (ISO) with connections via a high-voltage direct current (HVDC) offshore network similar to a team partner. 3. High-resolution examination of power fluctuations at each node due to wind energy variability 4. Analysis of wind power production profiles over the Eastern offshore region of the regional ISO to assess the effectiveness of long-distance, North- South transmission for leveling offshore wind energy output 5. Analysis of how the third and fourth items affect the need for ISO grid upgrades, congestion management, and demand for Ancillary Services (A/S) 6. Analysis of actual historic 36-hr and 24-hr forecasts to solve the unit commitment problem and determine the optimal mix of generators given the need to respond to both wind variability and wind forecasting uncertainties.« less

  16. 78 FR 27913 - Revision of Crane Regulation Standards for Mobile Offshore Drilling Units (MODUs), Offshore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ...The Coast Guard proposes to revise regulations related to the design, certification, inspection, and testing of cranes. These regulations apply to cranes installed on Mobile Offshore Drilling Units (MODUs), Offshore Supply Vessels (OSVs), and floating Outer Continental Shelf (OCS) facilities. This revision would update industry standards incorporated by reference with more recent versions, which are used by industry and incorporated in Bureau of Safety and Environmental Enforcement regulations. Additionally, the Coast Guard proposes to revise regulations regarding certification, inspection, and testing of cranes by allowing use of additional organizations to act in lieu of Coast Guard marine inspectors.

  17. Measuring Interfacial Tension Between Immiscible Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.

    1995-01-01

    Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.

  18. Peripheral artery disease - legs

    MedlinePlus

    ... flow, which can injure nerves and other tissues. Causes PAD is caused by "hardening of the arteries." ... small arteries Coronary artery disease Impotence Open sores (ischemic ulcers on the lower legs) Tissue death (gangrene) ...

  19. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov Websites

    . Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource

  20. Mentoring Preservice Teachers: Identifying Tensions and Possible Resolutions

    ERIC Educational Resources Information Center

    Hudson, Peter; Hudson, Sue

    2018-01-01

    Tensions can occur in the mentor-mentee relationship during school-based professional experiences that require problem solving. What are the tensions for mentor teachers in preservice teacher education and how might these tensions be resolved? This qualitative study collected data from 31 high school mentor teachers about tensions experienced with…

  1. Shift work at a modern offshore drilling rig.

    PubMed

    Rodrigues, V F; Fischer, F M; Brito, M J

    2001-12-01

    The oil and gas exploration and production offshore units are classified as hazardous installations. Work in these facilities is complex, confined and associated with a wide range of risks. The continuous operation is secured by various shift work patterns. The objective of this study was to evaluate how offshore drilling workers perceived shift work at high seas and its impacts on their life and working conditions. The main features of the studied offshore shift work schedules are: long time on board (14 to 28 days), extended shifts (12 hours or more per day), slow rotation (7 to 14 days in the same shift), long sequence of days on the night shift (7 to 14 days in a row) and the extra-long extended journey (18 hours) on shift change and landing days. Interviews revealed a wide range of stressors caused by the offshore shift work, as well as difficulties to conciliate work with family life. It was observed that changes of the family model, leading to role conflicts and social isolation, work in a hazardous environment, perceiving poor sleep when working at night shifts and the imbalance between the expected and actual rewards are the major stressors for the offshore drilling workers.

  2. Tension-dependent structural deformation alters single-molecule transition kinetics.

    PubMed

    Sudhanshu, B; Mihardja, S; Koslover, E F; Mehraeen, S; Bustamante, C; Spakowitz, A J

    2011-02-01

    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension.

  3. Leg lengthening and shortening

    MedlinePlus

    ... to match its length. Proper timing of this treatment is important for best results. Certain health conditions can lead to very unequal leg lengths. They include: Poliomyelitis Cerebral palsy Small, weak muscles or short, tight ( ...

  4. Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees

    DTIC Science & Technology

    2016-10-01

    upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the

  5. Aeroelastic Modeling of Offshore Turbines and Support Structures in Hurricane-Prone Regions (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, R.

    US offshore wind turbines (OWTs) will likely have to contend with hurricanes and the associated loading conditions. Current industry standards do not account for these design load cases (DLCs), thus a new approach is required to guarantee that the OWTs achieve an appropriate level of reliability. In this study, a sequentially coupled aero-hydro-servo-elastic modeling technique was used to address two design approaches: 1.) The ABS (American Bureau of Shipping) approach; and 2.) The Hazard Curve or API (American Petroleum Institute) approach. The former employs IEC partial load factors (PSFs) and 100-yr return-period (RP) metocean events. The latter allows setting PSFsmore » and RP to a prescribed level of system reliability. The 500-yr RP robustness check (appearing in [2] and [3] upcoming editions) is a good indicator of the target reliability for L2 structures. CAE tools such as NREL's FAST and Bentley's' SACS (offshore analysis and design software) can be efficiently coupled to simulate system loads under hurricane DLCs. For this task, we augmented the latest FAST version (v. 8) to include tower aerodynamic drag that cannot be ignored in hurricane DLCs. In this project, a 6 MW turbine was simulated on a typical 4-legged jacket for a mid-Atlantic site. FAST-calculated tower base loads were fed to SACS at the interface level (transition piece); SACS added hydrodynamic and wind loads on the exposed substructure, and calculated mudline overturning moments, and member and joint utilization. Results show that CAE tools can be effectively used to compare design approaches for the design of OWTs in hurricane regions and to achieve a well-balanced design, where reliability levels and costs are optimized.« less

  6. Oil rigs and offshore sport fishing in Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugas, R.; Guillory, V.; Fischer, M.

    1979-11-01

    The environmental effects of Louisiana's offshore oil platforms are discussed with regard to an increase in sport-fishing. The effects upon fish populations, species diversity, underwater habitats, and food chains from the offshore platforms are obtained from several summaries of studies undertaken between 1970-1979. (DS)

  7. Measuring Surface Tension of a Flowing Soap Film

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  8. Atmospheric Characterization of the US Offshore Sites and Impact on Turbine Performance (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Dhiraj; Ehrmann, Robert; Zuo, Delong

    Reliable, long term offshore atmospheric data is critical to development of the US offshore wind industry. There exists significant lack of meteorological, oceanographic, and geological data at potential US offshore sites. Assessment of wind resources at heights in the range of 25-200m is needed to understand and characterize offshore wind turbine performance. Data from the US Department of Energy owned WindSentinel buoy from two US offshore sites and one European site is analyzed. Low Level Jet (LLJ) phenomena and its potential impact on the performance of an offshore wind turbine is investigated.

  9. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

    PubMed

    Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia

    2012-12-15

    The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.

  10. Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles

    NASA Astrophysics Data System (ADS)

    Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko

    2017-07-01

    Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.

  11. Mapping seabird sensitivity to offshore wind farms.

    PubMed

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.

  12. 77 FR 54908 - TC Offshore, LLC; Notice Establishing Deadline for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RP12-908-000] TC Offshore, LLC; Notice Establishing Deadline for Comments On August 29, 2012, TC Offshore, LLC (TC Offshore... is hereby given that participants in the captioned proceedings may file comments to TC Offshsore's...

  13. The causes of skin damage and leg ulceration in chronic venous disease.

    PubMed

    Smith, Philip Coleridge

    2006-09-01

    Chronic venous disease with skin changes of the leg is a common condition affecting up to 1 in 20 people in westernized countries. The causes of this problem are not fully understood, although research in recent years has revealed a number of important mechanisms that contribute to the disease process. Patients with chronic venous disease suffer persistently raised pressures in their deep and superficial veins in the lower limb. Leucocytes become "trapped" in the circulation of the leg during periods of venous hyper-tension produced by sitting or standing. Studies of the plasma levels of neutrophil granule enzymes shows that these are increased during periods of venous hypertension, suggesting that this causes activation of the neutrophils. Investigation of the leucocyte surface ligands CD11b and CD62L shows that the more activated neutrophils and monocytes are sequestered during venous hypertension. Measurement of plasma levels of the soluble parts of the endothelial adhesion molecules VCAM, ICAM, and ELAM show that these are all elevated in patients with chronic venous disease compared to controls. Following 30 minutes of venous hypertension produced by standing, these levels are further increased. These data suggest that venous hypertension causes neutrophil and monocyte activation, which in turn causes injury to the endothelium. Chronic injury to the endothelium leads to a chronic inflammatory condition of the skin that we know clinically as lipodermatosclerosis. This is mediated by perivascular inflammatory cells, principally macrophages, in the skin microcirculation. These stimulate fibroblasts in the skin leading to tissue remodeling and laying down of fibrous tissue. Vascular endothelial growth factor stimulates proliferation of capillaries within the skin. Skin in this state has the potential to ulcerate in response to minor injury.

  14. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    PubMed

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  15. Tension waves in tethered satellite cables

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1984-01-01

    A one-degree-of-freedom simulation of the Tethered Satellite System (TSS) was programmed using a distributed system model of the tether based on the one-dimensional wave equation. This model represents the time varying tension profile along the tether as the sum of two traveling waves of tension moving in opposite directions. A control loop was devised which combines a deployment rate command with the measured tension at the deployer to produce a smooth, stable rate of deployment of the subsatellite. Simulation results show a buildup of periodic bursts of high frequency oscillation in tension. This report covers the mathematical modelling and simulation results and explains the reason for the observed oscillations. The design of a possible vibration damping device is discussed.

  16. Surface tension of flowing soap films

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Mandre, Shreyas; Kim, Ildoo

    2018-04-01

    The surface tension of flowing soap films is measured with respect to the film thickness and the concentration of soap solution. We perform this measurement by measuring the curvature of the nylon wires that bound the soap film channel and use the measured curvature to parametrize the relation between the surface tension and the tension of the wire. We find the surface tension of our soap films increases when the film is relatively thin or made of soap solution of low concentration, otherwise it approaches an asymptotic value 30 mN/m. A simple adsorption model with only two parameters describes our observations reasonably well. With our measurements, we are also able to measure Gibbs elasticity for our soap film.

  17. National Offshore Wind Energy Grid Interconnection Study Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  18. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  19. The effect of spinal manipulation on imbalances in leg strength.

    PubMed

    Chilibeck, Philip D; Cornish, Stephen M; Schulte, Al; Jantz, Nathan; Magnus, Charlene R A; Schwanbeck, Shane; Juurlink, Bernhard H J

    2011-09-01

    We hypothesized that spinal manipulation (SM) would reduce strength imbalances between legs. Using an un-blinded randomized design, 28 males and 21 females (54 ± 19y) with at least a 15% difference in isometric strength between legs for hip flexion, extension, abduction, or knee flexion were randomized to treatment or placebo (mock spinal manipulation). Strength of the stronger and weaker legs for hip flexion, extension, abduction, and/or knee flexion was assessed before and after the intervention. SM reduced the relative strength difference between legs for knee flexion (mean ± SD 57 ± 53 to 5 ± 14%) and hip flexion (24 ± 12 to 11 ± 15%) compared to placebo (34 ± 29 to 24 ± 36%, and 20 ± 18 to 22 ± 26%, respectively) (p = 0.05). SM also improved strength in the weak leg for hip abduction (104 ± 43 to 116 ± 43 Nm) compared to placebo (84 ± 24 to 85 ± 31 Nm) (p = 0.03). This study suggests that spinal manipulation may reduce imbalances in strength between legs for knee and hip flexion.

  20. Tension-dependent structural deformation alters single-molecule transition kinetics

    PubMed Central

    Sudhanshu, B.; Mihardja, S.; Koslover, E. F.; Mehraeen, S.; Bustamante, C.; Spakowitz, A. J.

    2011-01-01

    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension. PMID:21245354

  1. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer

    DOE PAGES

    Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; ...

    2015-08-05

    In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less

  2. Proceedings of the Conference Arctic '85; Civil Engineering in the Artic offshore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, F.L.; Machemehl, J.L.

    1985-01-01

    Topics of the 1985 Conference included: Arctic construction, Arctic foundation, Arctic structures, and ocean effects. Arctic terminals and coastal offshore bases, protecting the Arctic environment, and probabilistic methods in Arctic offshore engineering were also discussed. Ice mechanics, marine pipelines in the Arctic, and the role of universities in training civil engineers for Arctic offshore development were highlighted. Sessions on remote sensing, surveying, and mapping were included, and offshore installations in the Bering Sea were discussed. Another topic of discussion was research in Civil Engineering for development of the Arctic offshore. The overall thrust of the conference was the application ofmore » Arctic offshore engineering principles and research in the field of oil and gas exploration and exploitation activity.« less

  3. Offshore teleradiology.

    PubMed

    Bradley, William G

    2004-04-01

    Radiologists are responsible for providing prompt emergency radiology interpretations 24 hours a day, every day of the year. As a result of the increasing use of multidetector computed tomography, emergency radiology has increased significantly in volume over the past 5 years. Simultaneously, radiologists are working harder during the day because of the workforce shortage. Although teleradiology services located in the continental United States have been providing efficient coverage until recently, they are now having increasing difficulty recruiting radiologists who are willing to work at night. Addressing this problem is "offshore teleradiology." With the increasing use of several enabling technologies--Digital Imaging and Communication in Medicine, the picture archiving and communication system, and the Internet-it is now possible to cover a domestic radiology practice at night from any location in the world where it is daytime. Setting up such a practice is nontrivial, however. The radiologists must all be American trained and certified by the American Board of Radiology. They must have medical licenses in every state and privileges at every hospital they cover. This article describes some of the details involved in setting up an offshore teleradiology practice. It also attempts to make a financial case for using such a practice, particularly in the current economic environment.

  4. Rational-spline approximation with automatic tension adjustment

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Kerr, P. A.

    1984-01-01

    An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline.

  5. 46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...

  6. 46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...

  7. 46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...

  8. 46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...

  9. A springy pendulum could describe the swing leg kinetics of human walking.

    PubMed

    Song, Hyunggwi; Park, Heewon; Park, Sukyung

    2016-06-14

    The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. The swing leg was modeled as a spring-loaded pendulum hinged at the hip joint, which is under forward motion. The model parameters of the loaded mass were adopted from body parameters and anthropometric tables, whereas the free model parameters for the rest length of the spring and its stiffness were estimated to best match the data for the swing leg joint forces. The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of Exercise Intensity on Percent Body Fat Determined by Leg-to-Leg and Segmental Bioelectrical Impedance Analyses in Adults

    ERIC Educational Resources Information Center

    Andreacci, Joseph L.; Nagle, Trisha; Fitzgerald, Elise; Rawson, Eric S.; Dixon, Curt B.

    2013-01-01

    Purpose: We examined the impact that cycle ergometry exercise had on percent body fat (%BF) estimates when assessed using either leg-to-leg or segmental bioelectrical impedance analysis (LBIA; SBIA) and whether the intensity of the exercise bout impacts the %BF magnitude of change. Method: Seventy-four college-aged adults participated in this…

  11. A comparison of cation sampling in forest soils by tension and tension-free lysimeters

    Treesearch

    James H. Miller

    1981-01-01

    Field tests conducted in two soils with ceramic cup, ceramic plate, and tension-free lysimeters showed no concentration differences in collected cations (Ca, Mg, K, Na) between cups and plates, except for the hydrogen ion. Mean pH was 0.6 lower in cup collected samples for a sandy loam profile. Tension-free lysimeters of the design tested had persistent contamination...

  12. Tension headache

    MedlinePlus

    ... often associated with muscle tightness in these areas. Causes Tension headaches occur when neck and scalp muscles become tense, or contract. The muscle contractions can be a response to stress, depression, head injury, or anxiety. They may occur at ...

  13. Assessment of Ports for Offshore Wind Development in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkinton, Chris; Blatiak, Alicia; Ameen, Hafsa

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carryingmore » out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion

  14. 2014 Offshore Wind Market and Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Bruce

    2014-08-25

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the report's underlying data.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueydon, Sebastien; Jonkman, Jason

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less

  16. New perspectives in offshore wind energy.

    PubMed

    Failla, Giuseppe; Arena, Felice

    2015-02-28

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Leg lengthening - series (image)

    MedlinePlus

    ... as Legg-Perthes disease Previous injuries or bone fractures that may stimulate excessive bone growth Abnormal spinal ... in the bone to be lengthened; usually the lower leg bone (tibia) or upper ... small steps, usually over the course of several months.

  18. Globalization of environmental regulations for offshore E & P operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon, B.E.

    1995-12-31

    One of the enduring legacies of the Rio Environmental Summit of 1992 (United Nations Conference on Environment and Development, UNCED) is Agenda 21 (Chapter 17 - Protection of the Oceans), which among other things called for the assessment of the need for a global authority to regulate offshore Exploration & Production (E&P) discharges, emissions and safety. Despite advice to the contrary from the International Maritime Organization (IMO), interest is building within the European community for the standardization of regulations for offshore E&P activities. Several international of regulations for offshore E&P activities. Several international frameworks or forums have been mentioned asmore » possible candidates. These include the United Nations Convention on the Law of the Sea, 1982 (UNCLOS); London Convention 1972 (LC 1972) and the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 (MARPOL) 73/78. International offshore oil and gas operators operate within requirements of regional conventions under the United Nations Environmental Program`s (UNEP) - Regional Seas Program. Domestic offshore operations are undertaken under the auspices of the U.S. Environmental Protection Agency and Minerals Management Service.« less

  19. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-06-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages.

  20. Review of literature surface tension data for molten silicon

    NASA Technical Reports Server (NTRS)

    Hardy, S.

    1981-01-01

    Measurements of the surface tension of molten silicon are reported. For marangoni flow, the important parameter is the variation of surface tension with temperature, not the absolute value of the surface tension. It is not possible to calculate temperature coefficients using surface tension measurements from different experiments because the systematic errors are usually larger than the changes in surface tension because of temperature variations. The lack of good surface tension data for liquid silicon is probably due to its extreme chemical reactivity. A material which resists attack by molten silicon is not found. It is suggested that all of the sessile drip surface tension measurements are probably for silicon which is contaminated by the substrate materials.

  1. Leg ulceration as a long-term complication of deep vein thrombosis.

    PubMed

    Walker, Natalie; Rodgers, Anthony; Birchall, Nicholas; Norton, Robyn; MacMahon, Stephen

    2003-12-01

    To evaluate the role of deep vein thrombosis as a cause of leg ulcers. A population-based, case-control study was conducted in Central and North Auckland, New Zealand. Cases comprised 241 people aged 40 to 99 years and on the electoral roll, with current leg ulcers (all types). Cases were identified by means of notification from health professionals and by self-referral. Controls were 224 people in the same age group, without leg ulcers, who were selected from the electoral roll by using a stratified random sampling process. The occurrence of leg ulceration as a consequence of exposure to deep vein thrombosis or being at high risk of deep vein thrombosis (that is, people with a family history of deep vein thrombosis, and/or a history of leg fracture and/or hip, leg, or foot surgery). After adjustment for age, sex, and other potential confounding factors, people who had a diagnosed thromboembolism were at almost three times higher risk of having a leg ulcer (odds ratio, 2.92; 95% confidence interval (CI), 1.47 to 6.08). In addition, people who had been at high risk of a venous thrombosis but were not diagnosed with this condition (eg, people with a history of major leg surgery) were also at increased risk of ulceration (odds ratio, 2.25; 95% CI, 1.49-3.42). Overall, 56% (95% CI, 33% - 71%) of leg ulcers were attributed to being at high risk of deep vein thrombosis. Deep vein thrombosis and factors that place people at high risk of deep vein thrombosis are an important cause of leg ulcers in older people. This finding strengthens the rationale for the routine and long-term use of thromboprophylaxis, particularly in high-risk patients.

  2. Multi-leg heat pipe evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  3. Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.

    1985-01-01

    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.

  4. Mapping Seabird Sensitivity to Offshore Wind Farms

    PubMed Central

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N.; Caldow, Richard W. G.; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739

  5. Speaker and Observer Perceptions of Physical Tension during Stuttering.

    PubMed

    Tichenor, Seth; Leslie, Paula; Shaiman, Susan; Yaruss, J Scott

    2017-01-01

    Speech-language pathologists routinely assess physical tension during evaluation of those who stutter. If speakers experience tension that is not visible to clinicians, then judgments of severity may be inaccurate. This study addressed this potential discrepancy by comparing judgments of tension by people who stutter and expert clinicians to determine if clinicians could accurately identify the speakers' experience of physical tension. Ten adults who stutter were audio-video recorded in two speaking samples. Two board-certified specialists in fluency evaluated the samples using the Stuttering Severity Instrument-4 and a checklist adapted for this study. Speakers rated their tension using the same forms, and then discussed their experiences in a qualitative interview so that themes related to physical tension could be identified. The degree of tension reported by speakers was higher than that observed by specialists. Tension in parts of the body that were less visible to the observer (chest, abdomen, throat) was reported more by speakers than by specialists. The thematic analysis revealed that speakers' experience of tension changes over time and that these changes may be related to speakers' acceptance of stuttering. The lack of agreement between speaker and specialist perceptions of tension suggests that using self-reports is a necessary component for supporting the accurate diagnosis of tension in stuttering. © 2018 S. Karger AG, Basel.

  6. Brief: Field measurements of casing tension forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, M.S.; Lewis, D.B.; Boswell, R.S.

    1995-02-01

    Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less

  7. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE PAGES

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of T iC jT j type. T iC i+1T i+1 (or T iC i–1T i–1) variants are observed more frequently than T iC i+2T i+2 (or T iC i–2T i–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  8. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    PubMed Central

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  9. Rembrandt's 'Beggar with a wooden leg' and other comparable prints.

    PubMed

    ten Kate, J J; Jennekens, F G I; Vos-Niël, J M E

    2009-02-01

    Rembrandt's etching of a beggar with a wooden leg is notable because the two lower limbs of the presumed beggar are present and not deformed. Using the facilities of four specialised Dutch art institutes, we carried out a systematic investigation to find other etchings and engravings of subjects with artificial legs supporting non-amputated limbs, from the period 1500 to 1700 AD. We discovered 28 prints produced by at least 18 artists. Several offered clues to a disorder of a knee, the lower leg or the foot. All individuals were adult males, suggesting the probability of traumatic lesions. We conclude that in this period artificial legs were not only used in the case of absence of part of a lower limb, but also for other reasons, notably disorders of the knee, lower leg or foot. They may also have been used to attract compassion.

  10. Risk analysis of maintenance ship collisions with offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Presencia, Carla E.; Shafiee, Mahmood

    2018-07-01

    A large number of offshore wind farms are planned to be built in remote deep-sea areas over the next five years. Though offshore wind sites are often located away from commercial ship traffic, the increased demand for repair or replacement services leads to high traffic densities of "maintenance ships". To date, the risk analysis of collision between maintenance ship vessels and offshore wind turbines has received very little attention. In this paper, we propose a methodology to evaluate and prioritise the collision risks associated with various kinds of ships used for carrying out maintenance tasks on different subassemblies of wind turbines in an offshore wind farm. It is also studied how the risks of ship collision with wind turbines are distributed between two main types of maintenance tasks, namely corrective and preventative. The proposed model is tested on an offshore wind turbine with seventeen components requiring five kinds of ships to perform the maintenance tasks. Our results indicate that collision risks are mostly associated with maintenance of few components of the wind turbine and in particular, those undergoing a corrective maintenance (replacement). Finally, several mitigation strategies are introduced to minimise the risk of maintenance ship collisions with offshore wind turbines.

  11. Towards active capsular endoscopy: preliminary results on a legged platform.

    PubMed

    Menciassi, Arianna; Stefanini, Cesare; Orlandi, Giovanni; Quirini, Marco; Dario, Paolo

    2006-01-01

    This paper illustrates the problem of active locomotion in the gastrointestinal tract for endoscopic capsules. Authors analyze the problem of locomotion in unstructured, flexible and tubular environments and explain the reasons leading to the selection of a legged system. They present a theoretical simulation of legged capsule locomotion, which is used to define the optimal parameters for capsule design and gait selection. Finally, a legged capsule--about 3 cm3 in volume--is presented; it consists of 4 back legs whose actuation is achieved thanks to a miniaturized DC brushless motor. In vitro tests demonstrate good performance in terms of achievable speed (92 mm/min).

  12. [Offshore work and the work of nurses on board: an integrative review].

    PubMed

    Antoniolli, Silvana Aline Cordeiro; Emmel, Suzel Vaz; Ferreira, Gímerson Erick; Paz, Potiguara de Oliveira; Kaiser, Dagmar Elaine

    2015-08-01

    To know the production of theoretical approaches on issues related to offshore work and the work of offshore nurses. Integrative literature review conducted in the databases of LILACS, BDENF, MEDLINE, SciELO and Index PSI. We selected 33 studies published in national and international journals between 1997 and 2014. The thematic analysis corpus resulted in four central themes: offshore work environment; amid work adversities, an escape; structuring of offshore health and safety services; in search of safe practices. This study contributes to the offshore work of nurses in relation to the nature of work, acting amid adversities and the restless search for safe practices in the open sea.

  13. Interpreting expressive performance through listener judgments of musical tension

    PubMed Central

    Farbood, Morwaread M.; Upham, Finn

    2013-01-01

    This study examines listener judgments of musical tension for a recording of a Schubert song and its harmonic reduction. Continuous tension ratings collected in an experiment and quantitative descriptions of the piece's musical features, include dynamics, pitch height, harmony, onset frequency, and tempo, were analyzed from two different angles. In the first part of the analysis, the different processing timescales for disparate features contributing to tension were explored through the optimization of a predictive tension model. The results revealed the optimal time windows for harmony were considerably longer (~22 s) than for any other feature (~1–4 s). In the second part of the analysis, tension ratings for the individual verses of the song and its harmonic reduction were examined and compared. The results showed that although the average tension ratings between verses were very similar, differences in how and when participants reported tension changes highlighted performance decisions made in the interpretation of the score, ambiguity in tension implications of the music, and the potential importance of contrast between verses and phrases. Analysis of the tension ratings for the harmonic reduction also provided a new perspective for better understanding how complex musical features inform listener tension judgments. PMID:24416024

  14. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  15. [Physical treatment modalities for chronic leg ulcers].

    PubMed

    Dissemond, J

    2010-05-01

    An increasing numbers of physical treatment options are available for chronic leg ulcer. In this review article, compression therapy, therapeutic ultrasound, negative pressure therapy, extracorporeal shock wave therapy, electrostimulation therapy, electromagnetic therapy, photodynamic therapy, water-filtered infrared-A-radiation and hydrotherapy are discussed in terms of their practical applications and the underlying evidence. With the exception of compression therapy for most of these treatments, good scientific data are not available. However this is a widespread problem in the treatment of chronic wounds. Nevertheless, several of the described methods such as negative pressure therapy represent one of the gold standards in practical treatment of patients with chronic leg ulcers. Although the use of physical treatment modalities may improve healing in patients with chronic leg ulcers, the diagnosis and treatment of the underlying causes are essential for long-lasting success.

  16. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  17. On-and offshore tephrostratigraphy and -chronology of the southern Central American Volcanic Arc (CAVA)

    NASA Astrophysics Data System (ADS)

    Schindlbeck, J. C.; Kutterolf, S.; Hemming, S. R.; Wang, K. L.

    2015-12-01

    Including the recently drilled CRISP sites (IODP Exp. 334&344) the deep sea drilling programs have produced 69 drill holes at 29 Sites during 9 Legs at the Central American convergent margin, where the Cocos plate subducts beneath the Caribbean plate. The CAVA produced numerous plinian eruptions in the past. Although abundant in the marine sediments, information and data regarding large late Cenozoic explosive eruptions from Costa Rica, Nicaragua, Honduras, El Salvador, and Guatemala remain very sparse and discontinuous on land. We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offshore Central America in which we identify tephra source regions by geochemical fingerprinting using major and trace element glass shard compositions. Here we present first order correlations of ­~500 tephra layers between multiple holes at a single site as well as between multiple sites. We identified ashes supporting Costa Rican (~130), Nicaraguan (17) and Guatemalan (27) sources as well as ~150 tephra layers from the Galápagos hotspot. Within our marine record we also identified well-known marker beds such as the Los Chocoyos tephra from Atitlán Caldera in Guatemala and the Tiribi Tuff from Costa Rica but also correlations to 15 distinct deposits from known Costa Rican and Nicaraguan eruptions within the last 4.1 Ma. These correlations, together with new radiometric age dates, provide the base for an improved tephrochronostratigraphy in this region. Finally, the new marine record of explosive volcanism offshore southern CAVA provides insights into the eruptive history of long-living volcanic complexes (e.g., Barva, Costa Rica) and into the distribution and frequency of large explosive eruptions from the Galápagos hotspot. The integrated approach of Ar/Ar age dating, correlations with on land deposits from CAVA, biostratigraphic ages and sediment accumulation rates improved the age models for the drilling sites.

  18. Assessment and reduction of diaphragmatic tension during hiatal hernia repair.

    PubMed

    Bradley, Daniel Davila; Louie, Brian E; Farivar, Alexander S; Wilshire, Candice L; Baik, Peter U; Aye, Ralph W

    2015-04-01

    During hiatal hernia repair there are two vectors of tension: axial and radial. An optimal repair minimizes the tension along these vectors. Radial tension is not easily recognized. There are no simple maneuvers like measuring length that facilitate assessment of radial tension. The aims of this project were to: (1) establish a simple intraoperative method to evaluate baseline tension of the diaphragmatic hiatal muscle closure; and, (2) assess if tension is reduced by relaxing maneuvers and if so, to what degree. Diaphragmatic characteristics and tension were assessed during hiatal hernia repair with a tension gage. We compared tension measured after hiatal dissection and after relaxing maneuvers were performed. Sixty-four patients (29 M:35F) underwent laparoscopic hiatal hernia repair. Baseline hiatal width was 2.84 cm and tension 13.6 dag. There was a positive correlation between hiatal width and tension (r = 0.55) but the strength of association was low (r (2) = 0.31). Four different hiatal shapes (slit, teardrop, "D", and oval) were identified and appear to influence tension and the need for relaxing incision. Tension was reduced by 35.8 % after a left pleurotomy (12 patients); by 46.2 % after a right crural relaxing incision (15 patients); and by 56.1 % if both maneuvers were performed (6 patients). Tension on the diaphragmatic hiatus can be measured with a novel device. There was a limited correlation with width of the hiatal opening. Relaxing maneuvers such as a left pleurotomy or a right crural relaxing incision reduced tension. Longer term follow-up will determine whether outcomes are improved by quantifying and reducing radial tension.

  19. Bilateral asymmetries in max effort single-leg vertical jumps.

    PubMed

    Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F

    2005-01-01

    While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.

  20. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  1. Arm to leg coordination in elite butterfly swimmers.

    PubMed

    Chollet, D; Seifert, L; Boulesteix, L; Carter, M

    2006-04-01

    This study proposed the use of four time gaps to assess arm-to-leg coordination in the butterfly stroke at increasing race paces. Fourteen elite male swimmers swam at four velocities corresponding to the appropriate paces for, respectively, the 400-m, 200-m, 100-m, and 50-m events. The different stroke phases of the arm and leg were identified by video analysis and then used to calculate four time gaps (T1: time gap between entry of the hands in the water and the high break-even point of the first undulation; T2: time gap between the beginning of the hands' backward movement and the low break-even point of the first undulation; T3: time gap between the hands' arrival in a vertical plane to the shoulders and the high break-even point of the second undulation; T4: time gap between the hands' release from the water and the low break-even point of the second undulation), the values of which described the changing relationship of arm to leg movements over an entire stroke cycle. With increases in pace, elite swimmers increased the stroke rate, the relative duration of the arm pull, the recovery and the first downward movement of the legs, and decreased the stroke length, the relative duration of the arm catch phase and the body glide with arms forward (measured by T2), until continuity in the propulsive actions was achieved. Whatever the paces, the T1, T3, and T4 values were close to zero and revealed a high degree of synchronisation at key motor points of the arm and leg actions. This new method to assess butterfly coordination could facilitate learning and coaching by situating the place of the leg undulation in relation with the arm stroke.

  2. Risks to offshore installations in Europe due to natural hazards

    NASA Astrophysics Data System (ADS)

    Necci, Amos; Krausmann, Elisabeth

    2017-04-01

    Natural hazards, such as storms, earthquakes, or lightning are a major threat to industry. In particular, chemical plants, storage facilities, pipelines, and offshore oil and gas facilities are vulnerable to natural events which can cause hazardous materials releases and thereby endanger workers, the population and the environment. These technological accidents are commonly referred to as Natech accidents. Recent events have increased concerns about safety in the offshore oil and gas sector, and the need for improving knowledge on the matter has become evident. With those premises, we analyzed accidents, near misses and accident precursors at offshore facilities in Europe caused by natural events using both a statistical and a qualitative approach. For this purpose, we screened the World Offshore Accident Database (WOAD) to identify all incidents that featured natural events as causes or aggravating factors. A dataset of 1,085 global Natech events was built for the statistical analysis. Among those, a subset composed of 303 European records was selected. The results of the analysis showed that offshore Natech events in Europe are frequent; they resulted, however, in low consequences. The main threat to offshore facilities resulted from bad weather, such as strong winds and heavy seas. Storms can put intense loads on the structural parts of offshore installations, eventually exceeding design resistance specifications. Several incidents triggered by lightning strikes and earthquakes were also recorded. Substantial differences in terms of vulnerability, damage modality and consequences emerged between fixed and floating offshore structures. The main damage mode for floating structures was the failure of station keeping systems due to the rupture of mooring or anchors, mainly caused by adverse meteorological conditions. Most of the incidents at fixed offshore structures in Europe involved falling loads for both metal jacket and concrete base platforms due to storms. In

  3. Offshore Wind Energy Systems

    ERIC Educational Resources Information Center

    Musgrove, P.

    1978-01-01

    Explores the possibility of installing offshore windmills to provide electricity and to save fuel for the United Kingdom. Favors their deployment in clusters to facilitate supervision and minimize cost. Discusses the power output and the cost involved and urges their quick development. (GA)

  4. Determination of muscle mass changes in legs from K-40 measurements

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.

    1979-01-01

    The K-40 content of the upper legs was periodically measured in several subjects whose injured legs had been in a cast for 6 weeks or more. As the subjects began using the leg again, the K-40 content increased as the muscle tissue was replaced. A 25% increase in K-40 content in 6 months is typical for a normal leg use and recovery. This is equivalent to an original muscle mass loss of 20%. By measuring specific body regions, such as arms or legs, with a high-efficiency detector system, muscle mass changes which exceed a few percent can be measured. These methods could be used in space flight and bedrest studies, and in studying nutritional deficiencies due to disease or diet.

  5. The crossed leg sign indicates a favorable outcome after severe stroke

    PubMed Central

    Rémi, J.; Pfefferkorn, T.; Owens, R.L.; Schankin, C.; Dehning, S.; Birnbaum, T.; Bender, A.; Klein, M.; Adamec, J.; Pfister, H.-W.; Straube, A.

    2011-01-01

    Objective: We investigated whether crossed legs are a prognostic marker in patients with severe stroke. Methods: In this controlled prospective observational study, we observed patients with severe stroke who crossed their legs during their hospital stay and matched them with randomly selected severe stroke patients who did not cross their legs. The patients were evaluated upon admission, on the day of leg crossing, upon discharge, and at 1 year after discharge. The Glasgow Coma Scale, the NIH Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel Index (BI) were obtained. Results: Patients who crossed their legs (n = 34) and matched controls (n = 34) did not differ in any scale upon admission. At the time of discharge, the GCS did not differ, but the NIHSS was better in crossed legs patients (6.5 vs 10.6; p = 0.0026), as was the mRS (3.4 vs 5.1, p < 0.001), and the BI (34.0 vs 21.1; p = 0.0073). At 1-year follow-up, mRS (2.9 vs 5.1, p < 0.001) and the BI (71.3 vs 49.2; p = 0.045) were also better in the crossed leg group. The mortality between the groups differed grossly; only 1 patient died in the crossing group compared to 18 in the noncrossing group (p < 0.001). Conclusion: Leg crossing is an easily obtained clinical sign and is independent of additional technical examinations. Leg crossing within the first 15 days after severe stroke indicates a favorable outcome which includes less neurologic deficits, better independence in daily life, and lower rates of death. PMID:21987641

  6. Automatic Tension Adjuster For Flexible-Shaft Grinder

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1990-01-01

    Flexible shaft of grinding tool automatically maintained in tension by air pressure. Probelike tool bent to reach hard-to-reach areas for grinding and polishing. Unless shaft held in tension, however, it rubs against its sheath, overheating and wearing out quickly. By taking up slack in flexible cable, tension adjuster reduces friction and enables tool to operate more efficiently, in addition to lengthening operating life.

  7. Work, eat and sleep: towards a healthy ageing at work program offshore.

    PubMed

    Riethmeister, Vanessa; Brouwer, Sandra; van der Klink, Jac; Bültmann, Ute

    2016-02-09

    Health management tools need to be developed to foster healthy ageing at work and sustain employability of ageing work-forces. The objectives of this study were to 1) perform a needs assessment to identify the needs of offshore workers in the Dutch Continental Shelf with regard to healthy ageing at work and 2) to define suitable program objectives for a future healthy ageing at work program in the offshore working population. A mixed methods design was used applying an intervention mapping procedure. Qualitative data were gathered in N = 19 semi-structured interviews and six focus-group sessions (N = 49). Qualitative data were used to develop a questionnaire, which was administered among N = 450 offshore workers. Subgroup analyses were performed to investigate age-related differences relating to health status and work-related factors. The importance of good working environments, food, as well as sleep/fatigue management was identified by the qualitative data analysis. A total of 260 offshore workers completed the questionnaire. Significant differences in work ability were found between offshore workers aged <45 and 45-54 years (mean 8.63 vs. 8.19; p = 0.005) and offshore workers aged <45 and >55 years (mean 8.63 vs. 8.22; p = 0.028). Offshore workers had a high BMI (M = 27.06, SD = 3.67), with 46 % classified as overweight (BMI 25-30) and 21 % classified as obese (BMI >30). A significant difference in BMI was found between offshore workers aged <45 and ≥55 years (mean 26.3 vs. 28.6; p <0.001). In total, 73 % of offshore workers reported prolonged fatigue. A significant difference in fatigue scores was found between offshore workers aged <45 and ≥55 years (mean 36.0 vs. 37.6; p = 0.024). Further, a "dip" was reported by 41 % of offshore workers. Dips were mainly experienced at day 10 or 11 (60 %), with 45 % experiencing the dip both as physical and mental fatigue, whereas 39 % experienced the dip as only mental fatigue. Both qualitative and quantitative analyses

  8. Soy undecapeptide induces Drosophila hind leg grooming via dopamine receptor.

    PubMed

    Karim, M Rezaul; Yanagawa, Aya; Ohinata, Kousaku

    2018-05-15

    β-Conglycinin α subunit (323-333) [βCGα(323-333)] is an exogenous neuromodulating undecapeptide found from enzymatic digest of β-conglycinin, a soy major storage protein by mice behavior tests. We investigated effect of βCGα(323-333) on Drosophila behavior. Oral administration of βCGα(323-333) in Drosophila increased hind leg grooming, which may act through specific sets of neurons. It was reported that dopamine receptor (DopR) meditates hind leg grooming, and we tested involvement of DopR in βCGα(323-333)-induced hind leg grooming by using DopR knockout flies. In the wild type but not in the DopR-knockout flies, βCGα(323-333) increased hind leg grooming. These results suggest that βCGα(323-333) induces hind leg grooming via activating the DopR. This is the first report showing that exogenously administered peptide changes fly behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. 77 FR 71607 - Mobile Offshore Drilling Unit (MODU) Electrical Equipment Certification Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0839] Mobile Offshore Drilling... hazardous areas on foreign-flagged Mobile Offshore Drilling Units (MODUs) that have never operated, but... International Maritime Organization (IMO) Code for the Construction and Equipment of Mobile Offshore Drilling...

  10. Nonconsensual clinical trials: a foreseeable risk of offshoring under global corporatism.

    PubMed

    Spielman, Bethany

    2015-03-01

    This paper explores the connection of offshoring and outsourcing to nonconsensual global pharmaceutical trials in low-income countries. After discussing reasons why the topic of nonconsensual offshored clinical trials may be overlooked in bioethics literature, I suggest that when pharmaceutical corporations offshore clinical trials today, nonconsensual experiments are often foreseeable and not simply the result of aberrant ethical conduct by a few individuals. Offshoring of clinical trials is structured so that experiments can be presented as health care in a unique form of outsourcing from the host country to pharmaceutical corporations. Bioethicists' assessments of the risks and potential benefits of offshore corporate pharmaceutical trials should therefore systematically include not only the hoped for benefits and the risks of the experimental drug but also the risk that subjects will not have consented, as well as the broader international consequences of nonconsensual experimentation.

  11. Flying in, Flying out: Offshore Teaching in Higher Education

    ERIC Educational Resources Information Center

    Seah, Wee Tiong; Edwards, Julie

    2006-01-01

    This paper discusses the relatively new phenomenon of university education faculties offering offshore education. The analogy, "flying in, flying out" captures the intensity of such offshore experiences for visiting academics, and contrasts their professional experiences against expatriate academics. This paper reports on case studies of…

  12. Headache (chronic tension-type)

    PubMed Central

    2009-01-01

    Introduction Chronic tension-type headache (CTTH) is a disorder that evolves from episodic tension-type headache, with daily or very frequent episodes of headache lasting minutes to days. It affects 4.1% of the general population in the USA, and is more prevalent in women (up to 65% of cases). Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for chronic tension-type headache? What are the effects of non-drug treatments for chronic tension-type headache? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2007 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 50 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: acupuncture; amitriptyline; analgesics; anticonvulsant drugs; benzodiazepines; botulinum toxin; chiropractic and osteopathic manipulations; cognitive behavioural therapy (CBT); Indian head massage; mirtazapine; relaxation and electromyographic biofeedback; selective serotonin reuptake inhibitor antidepressants (SSRIs); and tricyclic antidepressants (other than amitriptyline). PMID:21696647

  13. Leg injuries and wound repair among cosmetid harvestmen (Arachnida, Opiliones, Laniatores).

    PubMed

    Townsend, Victor R; Schaus, Maynard H; Zvonareva, Tatyana; Illinik, Jeffrey J; Evans, John T

    2017-01-01

    Previous studies of leg injuries in harvestmen have focused on the fitness consequences for individuals that use autospasy (voluntary detachment of the leg) as a secondary defense mechanism. Leg damage among non-autotomizing species of laniatorean harvestmen has not been investigated. Under laboratory conditions, we damaged femur IV of Cynorta marginalis and observed with scanning electron microscopy (SEM) the changes in these wounds over ten days. We also used SEM to examine leg damage from individuals of three species of cosmetid harvestmen that were collected in the field. On the basis of changes in the external surface of the hemolymph coagulum, we classified these wounds as fresh (coagulum forming), recent (coagulum with smooth surface), older (coagulum is scale-like with visible cell fragments), and fully healed (scale replaced by new cuticle growth on the terminal stump). Our observations indicate that wound healing in harvestmen occurs in a manner comparable to that of other chelicerates. Leg injuries exhibited interspecific variation with respect to the overall frequency of leg wounds and the specific legs that were most commonly damaged. In addition, we measured walking and climbing speeds of adult C. marginalis and found that individuals with fresh injuries (lab-induced) to femur IV walked at speeds significantly slower than uninjured adults or individuals collected from the field that had fully healed wounds to a single leg. J. Morphol. 278:73-88, 2017. ©© 2016 Wiley Periodicals,Inc. © 2016 Wiley Periodicals, Inc.

  14. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  15. Investigation on installation of offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bai, Yong

    2010-06-01

    Wind power has made rapid progress and should gain significance as an energy resource, given growing interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resources, offshore wind energy resources are more promising candidates for development. Sea winds are generally stronger and more reliable and with improvements in technology, the sea has become a hot spot for new designs and installation methods for wind turbines. In the present paper, based on experience building offshore wind farms, recommended foundation styles have been examined. Furthermore, wave effects have been investigated. The split installation and overall installation have been illustrated. Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed. This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.

  16. The Dynamic Surface Tension of Water

    PubMed Central

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  17. The Dynamic Surface Tension of Water.

    PubMed

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-04-06

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  18. Lower Extremity Limb Salvage with Cross Leg Pedicle Flap, Cross Leg Free Flap, and Cross Leg Vascular Cable Bridge Flap.

    PubMed

    Manrique, Oscar J; Bishop, Sarah N; Ciudad, Pedro; Adabi, Kian; Martinez-Jorge, Jorys; Moran, Steven L; Huang, Tony; Vijayasekaran, Aparna; Chen, Shih-Heng; Chen, Hung-Chi

    2018-05-16

     Lower extremity salvage following significant soft tissue loss can be complicated by lack of recipient vessel for free tissue transfer. We describe our experience in lower limb salvage for patients with no recipient vessels with the use of pedicle, free and cable bridge flaps.  A retrospective review from 1985 to 2017 of patients undergoing lower limb salvage using a contralateral pedicle cross leg (PCL) flaps, free cross leg (FCL) flaps, or free cable bridge (FCB) flaps was conducted. Demographics, etiology of the reconstruction, type of flap used, donor-site vessels, defect size, operating time, time of pedicle division, length of hospital stay, time to ambulation, and complications were analyzed.  A total of 53 patients (48 males and 5 females) with an average age of 35 years (range, 29-38 years) were identified. The etiology for the reconstruction was trauma in 52 patients and oncological resection in 1 patient. There were 18 PCL, 25 FCL, and 10 FCB completed. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operating room times for PCL, FCL, and FCB flaps were 4, 9, and 10 hours, respectively. The average length of hospital stay was 5 weeks and average time to ambulation was 4 weeks. The average follow-up time was 7.5 years (range, 3-12 years). Complications encountered were hematoma (six), prolonged pain (six), total flap loss (two), reoperation (five), and infection (four). Limb salvage rates were 96.2%.  When ipsilateral limb vessels are not available, and other reconstructive options have been exhausted, cross leg flaps can be a viable option for limb salvage in the setting of extensive defects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Nested Tensions in Care.

    PubMed

    Visse, Merel

    2017-04-01

    This project presents research-based art works that inquire into the tensions in everyday life from an ethical viewpoint of care, which sees people as embedded, "nested" in care-based relationships. Trust is the glue that holds these "nests" together. Care is the air that lifts them up, but tensions exist as well-between dependency and autonomy, vulnerability and strength, for example. The pull of these ideas exist in a kind of "check" and run through our relations and being. © 2017 American Medical Association. All Rights Reserved.

  20. Roll type conducting polymer legs for rigid-flexible thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Park, Teahoon; Lim, Hanwhuy; Hwang, Jong Un; Na, Jongbeom; Lee, Hyunki; Kim, Eunkyoung

    2017-07-01

    A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT) between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG). The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.

  1. Accord near for offshore California oil shipments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    There are faint glimmers of hope again for offshore California operators. After more than a decade of often bitter strife over offshore oil and gas development and transportation issues, state officials and oil producers may be moving toward compromise solutions. One such solution may be forthcoming on offshore development. But the real change came with the turnabout of the California Coastal Commission (CCC), which last month approved a permit for interim tankering of crude from Point Arguello oil field in the Santa Barbara Channel to Los Angeles. The dispute over how to ship offshore California crude to market has draggedmore » on since before Point Arguelo development plans were unveiled. The project's status has become a flashpoint in the U.S. debate over resource use and environmental concerns. The controversy flared anew in the wake of the 1989 Exxon Valdez tanker spill off Alaska, when CCC voided a Santa Barbara County permit for interim tankering, a move project operator Chevron Corp. linked to the Exxon Valdez accident. Faced with litigation, the state's economic devastation, and acrimonious debate over transporting California crude, Gov. Pete Wilson and other agencies approved the CCC permit. But there's a catch: A permanent pipeline must be built to handle full production within 3 years. The paper discusses permit concerns, the turnaround decision, the anger of environmental groups, and pipeline proposals.« less

  2. Tension pneumothorax, is it a really life-threatening condition?

    PubMed Central

    2013-01-01

    Background Tension pneumothorax is a life-threatening occurrence that is infrequently the consequence of spontaneous pneumothorax. The aim of this study was to identify the risk factors for the development of tension pneumothorax and its effect on clinical outcomes. Methods We reviewed patients who were admitted with spontaneous pneumothorax between August 1, 2003 and December 31, 2011. Electronic medical records and the radiological findings were reviewed with chest x-ray and high-resolution computed tomography scans that were retrieved from the Picture Archiving Communication System. Results Out of the 370 patients included in this study, tension pneumothorax developed in 60 (16.2%). The bullae were larger in patients with tension pneumothorax than in those without (23.8 ± 16.2 mm vs 16.1 ± 19.1 mm; P = 0.007). In addition, the incidence of tension pneumothorax increased with the lung bulla size. Fibrotic adhesion was more prevalent in the tension pneumothorax group than in that without (P = 0.000). The bullae were large in patients with fibrotic adhesion than in those without adhesion (35.0 ± 22.3 mm vs 10.4 ± 11.5 mm; P = 0.000). On multivariate analysis, the size of bullae (odds ratio (OR) = 1.03, P = 0.001) and fibrotic adhesion (OR = 10.76, P = 0.000) were risk factors of tension pneumothorax. Hospital mortality was 3.3% in the tension pneumothorax group and it was not significantly different from those patients without tension pneunothorax (P = 0.252). Conclusions Tension pneumothorax is not uncommon, but clinically fatal tension pneumothorax is extremely rare. The size of the lung bullae and fibrotic adhesion contributes to the development of tension pneumothorax. PMID:24128176

  3. High day-to-day reliability in lower leg volume measured by water displacement.

    PubMed

    Pasley, Jeffrey D; O'Connor, Patrick J

    2008-07-01

    The day-to-day reliability of lower leg volume is poorly documented. This investigation determined the day-to-day reliability of lower leg volume (soleus and gastrocnemius) measured using water displacement. Thirty young adults (15 men and 15 women) had their right lower leg volume measured by water displacement on five separate occasions. The participants performed normal activities of daily living and were measured at the same time of day after being seated for 30 min. The results revealed a high day-to-day reliability for lower leg volume. The mean percentage change in lower leg volume across days compared to day 1 ranged between 0 and 0.37%. The mean within subjects coefficient of variation in lower leg volume was 0.72% and the coefficient of variation for the entire sample across days ranged from 5.66 to 6.32%. A two way mixed model intraclass correlation (30 subjects x 5 days) showed that the lower leg volume measurement was highly reliable (ICC = 0.972). Foot and total lower leg volumes showed similarly high reliability. Water displacement offers a cost effective and reliable solution for the measurement of lower leg edema across days.

  4. Responses of two marine top predators to an offshore wind farm.

    PubMed

    Vallejo, Gillian C; Grellier, Kate; Nelson, Emily J; McGregor, Ross M; Canning, Sarah J; Caryl, Fiona M; McLean, Nancy

    2017-11-01

    Quantifying the likely effects of offshore wind farms on wildlife is fundamental before permission for development can be granted by any Determining Authority. The effects on marine top predators from displacement from important habitat are key concerns during offshore wind farm construction and operation. In this respect, we present evidence for no significant displacement from a UK offshore wind farm for two broadly distributed species of conservation concern: common guillemot ( Uria aalge ) and harbor porpoise ( Phocoena phocoena ). Data were collected during boat-based line transect surveys across a 360 km 2 study area that included the Robin Rigg offshore wind farm. Surveys were conducted over 10 years across the preconstruction, construction, and operational phases of the development. Changes in guillemot and harbor porpoise abundance and distribution in response to offshore wind farm construction and operation were estimated using generalized mixed models to test for evidence of displacement. Both common guillemot and harbor porpoise were present across the Robin Rigg study area throughout all three development phases. There was a significant reduction in relative harbor porpoise abundance both within and surrounding the Robin Rigg offshore wind farm during construction, but no significant difference was detected between the preconstruction and operational phases. Relative common guillemot abundance remained similar within the Robin Rigg offshore wind farm across all development phases. Offshore wind farms have the potential to negatively affect wildlife, but further evidence regarding the magnitude of effect is needed. The empirical data presented here for two marine top predators provide a valuable addition to the evidence base, allowing future decision making to be improved by reducing the uncertainty of displacement effects and increasing the accuracy of impact assessments.

  5. Leg symptoms associated with sacroiliac joint disorder and related pain.

    PubMed

    Murakami, Eiichi; Aizawa, Toshimi; Kurosawa, Daisuke; Noguchi, Kyoko

    2017-06-01

    The symptoms of sacroiliac joint (SIJ) disorders are usually detected in the buttock and groin, and occasionally referred to the thigh and leg. However, lumbar disorders also cause symptoms in these same body regions. The presence of a characteristic, symptomatic pattern in the legs would be useful for diagnosing SIJ disorders. This study aimed to identify specific leg symptoms in patients with SIJ pain originating from the posterior sacroiliac ligament and determine the rate of occurrence of these symptoms. The source population consisted of 365 consecutive patients from February 2005 to December 2007. One hundred patients were diagnosed with SIJ pain by a periarticular SIJ injection (42 males and 58 females, average age 46 years, age range, 18-75 years). A leg symptom map was made by subtracting the symptoms after a periarticular SIJ injection from the initial symptoms, and evaluating the rate of each individual symptom by area. Ninety-four patients reported pain at or around the posterior-superior iliac spine (PSIS). Leg symptoms comprised pain and a numbness/tingling sensation; ≥60% of the patients had these symptoms. Pain was mainly detected in the back, buttock, groin, and thigh areas, while numbness/tingling was mainly detected in the lateral to posterior thigh and back of the calf. Leg symptoms associated with SIJ pain originating from the posterior sacroiliac ligament include both pain and numbness, which do not usually correspond to the dermatome. These leg symptoms in addition to pain around the PSIS may indicate SIJ disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rapid cable tension estimation using dynamic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.

    2016-04-01

    Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.

  7. Evaluation of offshore stocking of Lake Trout in Lake Ontario

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.; Strang, T.G.; Lantry, J.R.; Connerton, M.J.; Schanger, T.

    2011-01-01

    Restoration stocking of hatchery-reared lake trout Salvelinus namaycush has occurred in Lake Ontario since 1973. In U.S. waters, fish stocked through 1990 survived well and built a large adult population. Survival of yearlings stocked from shore declined during 1990–1995, and adult numbers fell during 1998–2005. Offshore stocking of lake trout was initiated in the late 1990s in response to its successful mitigation of predation losses to double-crested cormorants Phalacrocorax auritus and the results of earlier studies that suggested it would enhance survival in some cases. The current study was designed to test the relative effectiveness of three stocking methods at a time when poststocking survival for lake trout was quite low and losses due to fish predators was a suspected factor. The stocking methods tested during 2000–2002 included May offshore, May onshore, and June onshore. Visual observations during nearshore stockings and hydroacoustic observations of offshore stockings indicated that release methods were not a direct cause of fish mortality. Experimental stockings were replicated for 3 years at one site in the southwest and for 2 years at one site in the southeast. Offshore releases used a landing craft to transport hatchery trucks from 3 to 6 km offshore out to 55–60-m-deep water. For the southwest site, offshore stocking significantly enhanced poststocking survival. Among the three methods, survival ratios were 1.74 : 1.00 : 1.02 (May offshore : May onshore : June onshore). Although not statistically significant owing to the small samples, the trends were similar for the southeast site, with survival ratios of 1.67 : 1.00 : 0.72. Consistent trends across years and sites indicated that offshore stocking of yearling lake trout during 2000–2002 provided nearly a twofold enhancement in survival; however, this increase does not appear to be great enough to achieve the 12-fold enhancement necessary to return population abundance to restoration

  8. The second leg home advantage: evidence from European football cup competitions.

    PubMed

    Page, Lionel; Page, Katie

    2007-12-01

    The home advantage is a widely acknowledged sporting phenomenon, especially in association football. Here, we examine the second leg home advantage, an effect that is discussed in the public domain but which has received very little scientific attention. The second leg home advantage effect occurs when on average teams are more likely to win a two-stage knock-out competition when they play at home in the second leg. That is, both teams have a home advantage but this advantage is significantly greater for the team that plays at home second. Examining data from three different European Cup football competitions spanning 51 years, we show that the second leg home advantage is a real phenomenon. The second leg home team has more than a 50% probability to qualify for the next round in the competition even after controlling for extra time and team ability as possible alternative explanations. The second leg home advantage appears, however, to have decreased significantly over the past decade. Possible reasons for its existence and subsequent decline are presented.

  9. Effects of Offshore Wind Turbines on Ocean Waves

    NASA Astrophysics Data System (ADS)

    Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter

    2014-11-01

    Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.

  10. Profiling Isokinetic Strength by Leg Preference and Position in Rugby Union Athletes.

    PubMed

    Brown, Scott R; Brughelli, Matt; Bridgeman, Lee A

    2016-05-01

    Muscle imbalances aid in the identification of athletes at risk for lower-extremity injury. Little is known regarding the influence that leg preference or playing position may have on lower-extremity muscle strength and asymmetry. To investigate lower-extremity strength profiles in rugby union athletes and compare isokinetic knee- and hip-strength variables between legs and positions. Thirty male academy rugby union athletes, separated into forwards (n = 15) and backs (n = 15), participated in this cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque, angle of peak torque, and strength ratios of the preferred and nonpreferred legs during seated knee extension/flexion and supine hip extension/flexion at 60°/s. Backs were older (ES = 1.6) but smaller in stature (ES = -0.47) and body mass (ES = -1.3) than the forwards. The nonpreferred leg was weaker than the preferred leg for forwards during extension (ES = -0.37) and flexion (ES = -0.21) actions and for backs during extension (ES = -0.28) actions. Backs were weaker at the knee than forwards in the preferred leg during extension (ES = -0.50) and flexion (ES = -0.66) actions. No differences were observed in strength ratios between legs or positions. Backs produced peak torque at longer muscle lengths in both legs at the knee (ES = -0.93 to -0.94) and hip (ES = -0.84 to -1.17) than the forwards. In this sample of male academy rugby union athletes, the preferred leg and forwards displayed superior strength compared with the nonpreferred leg and backs. These findings highlight the importance of individualized athletic assessments to detect crucial strength differences in male rugby union athletes.

  11. How performing a repetitive one-legged stance modifies two-legged postural control.

    PubMed

    Burdet, Cyril; Vuillerme, Nicolas; Rougier, Patrice R

    2011-10-01

    The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.

  12. Variable-Tension-Cord Suspension/Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Villemarette, Mark L.; Boston, Joshua; RInks, Judith; Felice, Pat; Stein, Tim; Payne, Patrick

    2006-01-01

    A system for mechanical suspension and vibration isolation of a machine or instrument is based on the use of Kevlar (or equivalent aromatic polyamide) cord held in variable tension between the machine or instrument and a surrounding frame. The basic concept of such a tensioned-cord suspension system (including one in which the cords are made of aromatic polyamide fibers) is not new by itself; what is new here is the additional provision for adjusting the tension during operation to optimize vibration- isolation properties. In the original application for which this system was conceived, the objective is to suspend a reciprocating cryocooler aboard a space shuttle and to prevent both (1) transmission of launch vibrations to the cryocooler and (2) transmission of vibrations from the cryocooler to samples in a chamber cooled by the cryocooler. The basic mechanical principle of this system can also be expected to be applicable to a variety of other systems in which there are requirements for cord suspension and vibration isolation. The reciprocating cryocooler of the original application is a generally axisymmetric object, and the surrounding frame is a generally axisymmetric object with windows (see figure). Two cords are threaded into a spoke-like pattern between attachment rings on the cryocooler, holes in the cage, and cord-tension- adjusting assemblies. Initially, the cord tensions are adjusted to at least the level necessary to suspend the cryocooler against gravitation. Accelerometers for measuring vibrations are mounted (1) on the cold tip of the cryocooler and (2) adjacent to the cage, on a structure that supports the cage. During operation, a technician observes the accelerometer outputs on an oscilloscope while manually adjusting the cord tensions in an effort to minimize the amount of vibration transmitted to and/or from the cryocooler. A contemplated future version of the system would include a microprocessor-based control subsystem that would include cord-tension

  13. Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco

    2014-01-01

    Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249

  14. Surface tension of undercooled liquid cobalt

    NASA Astrophysics Data System (ADS)

    Yao, W. J.; Han, X. J.; Chen, M.; Wei, B.; Guo, Z. Y.

    2002-08-01

    This paper provides the results on experimentally measured and numerically predicted surface tensions of undercooled liquid cobalt. The experiments were performed by using the oscillation drop technique combined with electromagnetic levitation. The simulations are carried out with the Monte Carlo (MC) method, where the surface tension is predicted through calculations of the work of cohesion, and the interatomic interaction is described with an embedded-atom method. The maximum undercooling of the liquid cobalt is reached at 231 K (0.13Tm) in the experiment and 268 K (0.17Tm) in the simulation. The surface tension and its relationship with temperature obtained in the experiment and simulation are σexp = 1.93 - 0.000 33 (T - T m) N m-1 and σcal = 2.26 - 0.000 32 (T - T m) N m-1 respectively. The temperature dependence of the surface tension calculated from the MC simulation is in reasonable agreement with that measured in the experiment.

  15. Surface tension of evaporating nanofluid droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe 2O 3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower valuesmore » of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.« less

  16. Rotational joint assembly for the prosthetic leg

    NASA Technical Reports Server (NTRS)

    Owens, L. J.; Jones, W. C. (Inventor)

    1977-01-01

    A rotational joint assembly for a prosthetic leg has been devised, which enables an artificial foot to rotate slightly when a person is walking, running or turning. The prosthetic leg includes upper and lower tubular members with the rotational joint assembly interposed between them. The assembly includes a restrainer mechanism which consists of a pivotably mounted paddle element. This device applies limiting force to control the rotation of the foot and also restores torque to return the foot back to its initial position.

  17. CT angiography - arms and legs

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007675.htm CT angiography - arms and legs To use the sharing features on this page, please enable JavaScript. CT angiography combines a CT scan with the injection ...

  18. [Restless Legs Syndrome : A Threat to the quality of life].

    PubMed

    Castaño-Cárcamo, Mauricio; Escobar-Cordoba, Franklin; Rey de Castro, Jorge

    2014-01-01

    Restless legs syndrome is a disorder associated with the imperative need to move the legs, starting at different times of day and it gets worse at night, relieved by activity, affecting the quality of life and sleep who sufferers it. Despite being a common disorder at any age, in adults with a prevalence of up to 10%, is not diagnosed by doctors and first level specialists that is why diagnostic and therapeutic interventions get delayed contributing to the perpetuation of symptoms and worsening quality of life. Since its diagnosis is purely clinical, getting familiar with this disorder is essential to ensure proper focus and thus rule out other diseases commonly confused with this one. Restless legs syndrome has a multi-factorial etiology that ranges from a genetic and hereditary, which are called primary restless legs syndrome, to its association with multiple pathologies, known as secondary restless legs syndrome. As for its management, drug therapy and non-drug therapy is aimed at symptom control, as its cure is not possible, although occasionally the condition can refer to later repeat in months or years.

  19. Haemoglobin saturation during incremental arm and leg exercise.

    PubMed Central

    Powers, S. K.; Dodd, S.; Woodyard, J.; Beadle, R. E.; Church, G.

    1984-01-01

    There are few reports concerning the alterations in the percent of haemoglobin saturated with oxygen (%SO2) during non-steady state incremental exercise. Further, no data exist to describe the %SO2 changes during arm exercise. Therefore, the purpose of this study was made to assess the dynamic changes in %SO2 during incremental arm and leg work. Nine trained subjects (7 males and 2 females) performed incremental arm and leg exercise to exhaustion on an arm crank ergometer and a cycle ergometer, respectively. Ventilation and gas exchange measurements were obtained minute by minute via open circuit spirometry and changes in %SO2 were recorded via an ear oximeter. No significant difference (p greater than 0.05) existed between arm and leg work in end-tidal oxygen (PETO2), end-tidal carbon dioxide (PETCO2), or %SO2 when compared as a function of percent VO2 max. These results provide evidence that arterial O2 desaturation occurs in a similar fashion in both incremental arm and leg work with the greatest changes in %SO2 occurring at work rates greater than 70% VO2 max. PMID:6435715

  20. Lower cost offshore field development utilizing autonomous vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisbie, F.R.; Vie, K.J.; Welch, D.W.

    1996-12-31

    The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less

  1. Measurement and simulation of thermoelectric efficiency for single leg

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka

    2015-04-01

    Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150 °C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.

  2. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  3. Tensions of Teaching Media Literacy in Teacher Education

    ERIC Educational Resources Information Center

    Ngomba-Westbrook, Nalova Elaine

    2013-01-01

    This study investigates the tensions a teacher educator faces in facilitating a media literacy teacher education course at the university level. Teaching tensions are conceptualized as a three-tier framework. At the first level, tensions may arise in the selection and application of pedagogies associated with critical and new/21st century…

  4. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  5. Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography

    PubMed Central

    Umut, İlhan; Çentik, Güven

    2016-01-01

    The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present. PMID:27213008

  6. Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography.

    PubMed

    Umut, İlhan; Çentik, Güven

    2016-01-01

    The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present.

  7. Canadian Offshore Schools in China: A Comparative Policy Analysis

    ERIC Educational Resources Information Center

    Wang, Fei

    2017-01-01

    Internationalisation is no longer a well-recognised feature unique to higher education. It has permeated K-12 education. However, little research has been done on internationalisation at the K-12 level, particularly on offshore schools. This study examines how Canadian and Chinese policies regarding offshore schools have developed over the years,…

  8. Study on optimized decision-making model of offshore wind power projects investment

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Yang, Shangdong; Gao, Guowei; Ma, Li

    2018-02-01

    China’s offshore wind energy is of great potential and plays an important role in promoting China’s energy structure adjustment. However, the current development of offshore wind power in China is inadequate, and is much less developed than that of onshore wind power. On the basis of considering all kinds of risks faced by offshore wind power development, an optimized model of offshore wind power investment decision is established in this paper by proposing the risk-benefit assessment method. To prove the practicability of this method in improving the selection of wind power projects, python programming is used to simulate the investment analysis of a large number of projects. Therefore, the paper is dedicated to provide decision-making support for the sound development of offshore wind power industry.

  9. Loss of legs: is it or not a handicap for an orb-weaving spider?

    NASA Astrophysics Data System (ADS)

    Pasquet, Alain; Anotaux, Mylène; Leborgne, Raymond

    2011-07-01

    Leg loss is a common phenomenon in spiders, and according to the species 5% to 40% of the adults can present at least one missing leg. There is no possibility of regeneration after adult moult and the animal must manage with its missing appendages until its death. With the loss of one or more legs, female orb-weaving spiders can be penalized twice: firstly, because the legs are necessary for web construction and secondly, the legs are essential for the control of the prey after its interception by the web. During development, spiders may be also penalized because regeneration has energetic costs that take away resources for survival, growth and reproduction. All these consequences should influence negatively the development of the spider and thus its fitness. We investigated the impact of leg loss in the orb-weaving spider, Zygiella x-notata by studying its frequency in a natural population and web building and prey capture behaviours in laboratory. In field populations, 9.5% to 13%, of the adult females presented the loss of one or more legs; the majority of individuals had lost only one leg (in 48% of cases, a first one). Leg loss seems to affect all the adult spiders, as there is no difference of mass between intact spiders and those with missing leg. Data obtained with laboratory-reared spiders, showed that the loss of legs due to the moult is rare (less than 1%). Considering changes in web design, spiders with missing legs decreased their silk investment, increased the distance between spiral turns but did not change the capture surface of the web. Under our laboratory experimental conditions, spiders with one or two lost legs did not present any difference in prey capture efficiency. In laboratory conditions, spiders with lost leg(s) did not show any difference in egg sac production or in longevity (adult lifespan) compared to intact spiders.

  10. Muscle trigger point therapy in tension-type headache.

    PubMed

    Alonso-Blanco, Cristina; de-la-Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César

    2012-03-01

    Recent evidence suggests that active trigger points (TrPs) in neck and shoulder muscles contribute to tension-type headache. Active TrPs within the suboccipital, upper trapezius, sternocleidomastoid, temporalis, superior oblique and lateral rectus muscles have been associated with chronic and episodic tension-type headache forms. It seems that the pain profile of this headache may be provoked by referred pain from active TrPs in the posterior cervical, head and shoulder muscles. In fact, the presence of active TrPs has been related to a higher degree of sensitization in tension-type headache. Different therapeutic approaches are proposed for proper TrP management. Preliminary evidence indicates that inactivation of TrPs may be effective for the management of tension-type headache, particularly in a subgroup of patients who may respond positively to this approach. Different treatment approaches targeted to TrP inactivation are discussed in the current paper, focusing on tension-type headache. New studies are needed to further delineate the relationship between muscle TrP inactivation and tension-type headache.

  11. Leg orientation as a clinical sign for pusher syndrome

    PubMed Central

    Johannsen, Leif; Broetz, Doris; Karnath, Hans-Otto

    2006-01-01

    Background Effective control of (upright) body posture requires a proper representation of body orientation. Stroke patients with pusher syndrome were shown to suffer from severely disturbed perception of own body orientation. They experience their body as oriented 'upright' when actually tilted by nearly 20° to the ipsilesional side. Thus, it can be expected that postural control mechanisms are impaired accordingly in these patients. Our aim was to investigate pusher patients' spontaneous postural responses of the non-paretic leg and of the head during passive body tilt. Methods A sideways tilting motion was applied to the trunk of the subject in the roll plane. Stroke patients with pusher syndrome were compared to stroke patients not showing pushing behaviour, patients with acute unilateral vestibular loss, and non brain damaged subjects. Results Compared to all groups without pushing behaviour, the non-paretic leg of the pusher patients showed a constant ipsiversive tilt across the whole tilt range for an amount which was observed in the non-pusher subjects when they were tilted for about 15° into the ipsiversive direction. Conclusion The observation that patients with acute unilateral vestibular loss showed no alterations of leg posture indicates that disturbed vestibular afferences alone are not responsible for the disordered leg responses seen in pusher patients. Our results may suggest that in pusher patients a representation of body orientation is disturbed that drives both conscious perception of body orientation and spontaneous postural adjustment of the non-paretic leg in the roll plane. The investigation of the pusher patients' leg-to-trunk orientation thus could serve as an additional bedside tool to detect pusher syndrome in acute stroke patients. PMID:16928280

  12. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Oxygen tension level and human viral infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr; Université Denis Diderot, Sorbonne Paris Cité Paris, Paris; Casetti, Luana

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections andmore » Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.« less

  14. Patients with tension-type headaches feel stigmatized.

    PubMed

    Prakash, Sanjay

    2016-01-01

    The author, a sufferer of tension-type headache (TTH), believes that the word "tension" in "tension-type headache" carries a social stigma and that patients do not accept a diagnosis of TTH readily. TTH is the most common primary headache disorder. The disability of TTH as a burden of society is greater than that of migraine. Absenteeism because of TTH is higher than that due to migraine. However, patients with TTH do not go for consultation. Even the prevalence of new daily persistent headache (NDPH) is 12 times higher at the headache clinic than that of chronic TTH (CTTH). These points hint that TTH patients probably do not want to visit the clinic. The author believes that it could be because of the stigma attached to "tension." Herein, the author has noted the first responses given by 50 consecutive patients with TTH when they were told that they had been suffering from TTH. The first answer of 64% of patients with TTH was "I do not have any tension/stress." This denial is similar to the denial declared by patients with depression. Depression and tension are similar in the sense that both are considered as a signs of personal weakness. Such a preconception in the society creates a stigma, and patients deny the diagnosis, conceal symptoms, and become reluctant to seek help and treatment.

  15. Oil rigs and offshore sport fishing in Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugas, R.; Guillory, V.; Fischer, M.

    Forty years ago, offshore sport fishing in Louisiana was almost nonexistent. Offshore oil drilling platforms are the primary cause of the present increase in sport fishing in this area. Algae and other organisms forming the first step in the food chain cluster around the subsurface structures of the rigs, attracting fish that seek food and shelter. Major game species frequenting these rigs are identified. (3 photos, 22 references, 2 tables)

  16. Genetic analysis of feet and leg conformation traits in Nelore cattle.

    PubMed

    Vargas, G; Neves, H H R; Cardoso, V; Munari, D P; Carvalheiro, R

    2017-06-01

    Feet and leg conformation scores are important traits in beef cattle because they encompass a wide range of locomotion disorders that can lead to productive and reproductive losses. Thus, the study of feet and legs in beef cattle is essential for evaluating possible responses to selection focusing on minimizing economic losses caused by the occurrence of feet and leg problems. The aim of this study was to estimate variance components for feet and leg conformation traits in Nelore cattle. The data set contained records of approximately 300,000 animals that were born between 2000 and 2013. These animals belonged to the commercial beef cattle breeding program of the CRV Lagoa (). Feet and legs were evaluated by assigning visual scores at 2 different time points: feet and leg evaluated as a binary trait (FL1), measured at yearling (about 550 d of age) to identify whether (or not) an animal has feet and leg defects, and feet and leg score (FL2), ranging from 1 (less desirable) to 5 (more desirable) was assigned to the top 20% of animals according to the selection index adopted by the beef cattle breeding program, which was measured 2 to 5 mo after the yearling evaluation. The FL1 and FL2 traits were analyzed together with yearling weight (YW). The (co)variance components and breeding values were estimated by Bayesian inference using 2-trait animal models. The posterior means (standard errors) of the heritabilities for FL1, FL2, and YW were 0.18 (0.04), 0.39 (0.07), and 0.47 (0.01), respectively. The results indicate that the incidence of feet and leg problems in this population might be reduced by selection. The genetic correlation between FL1 and FL2 (-0.47) was moderate and negative as expected because the classification score that holds up each trait has opposite numerical values. The genetic trends estimated for FL1 and FL2 (-0.042 and 0.021 genetic standard deviations per year, respectively) were favorable and they indicate that the independent culling strategy for

  17. Oblique Collision of the Leeward Antilles, Offshore Venezuela: Linking Onshore and Offshore Data from BOLIVAR

    NASA Astrophysics Data System (ADS)

    Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.

    2006-12-01

    The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between

  18. Work and health: A comparison between Norwegian onshore and offshore employees.

    PubMed

    Bjerkan, Anne Mette

    2011-01-01

    The effect of work-related variables on self reported health complaints were examined among Norwegian onshore and offshore oil workers. Differences in work and health perceptions were also examined as part of the paper. Employees working onshore and offshore in the maintenance and modification division of a large contractor company took part in the study (N=414, response rate 47.1%). The design of the study was a cross-sectional survey. A questionnaire was distributed to onshore personnel while at work - in cooperation with the personnel safety representative - and sent to the home addresses of the offshore personnel. Offshore workers perceived significantly more hazards associated with the work and experienced less control over the work pace compared to onshore workers. Onshore workers experienced significantly more pressure at work and their work tasks as more repetitive. Differences in health perceptions were identified in terms of job type in the onshore and offshore groups respectively. Different work-related factors influenced the self-reported health complaints among onshore and offshore workers. Workers in different work environments and in different job types encounter different type of threats to employee health, indicating that job type must be taken into account when studying the relationship between work-related factors and employee health.

  19. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Maples, B.; Meadows, B.

    2012-09-01

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on themore » new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.« less

  20. The ARGO Project: assessing NA-TECH risks on off-shore oil platforms

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Basco, Anna; Di Ruocco, Angela; Esposito, Simona; Fusco, Giannetta; Garcia-Aristizabal, Alexander; Mercogliano, Paola; Salzano, Ernesto; Solaro, Giuseppe; Teofilo, Gianvito; Scandone, Paolo; Gasparini, Paolo

    2017-04-01

    ARGO (Analysis of natural and anthropogenic risks on off-shore oil platforms) is a 2 years project, funded by the DGS-UNMIG (Directorate General for Safety of Mining and Energy Activities - National Mining Office for Hydrocarbons and Georesources) of Italian Ministry of Economic Development. The project, coordinated by AMRA (Center for the Analysis and Monitoring of Environmental Risk), aims at providing technical support for the analysis of natural and anthropogenic risks on offshore oil platforms. In order to achieve this challenging objective, ARGO brings together climate experts, risk management experts, seismologists, geologists, chemical engineers, earth and coastal observation experts. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore oil platforms in the Italian seas, including extreme events related to climate changes. Furthermore the environmental effect of offshore activities has been investigated, including: changes on seismicity and on the evolution of coastal areas close to offshore platforms. Then a probabilistic multi-risk framework has been developed for the analysis of NA-TECH events on offshore installations for hydrocarbon extraction.

  1. [Fractures of the lower leg in professional skiers].

    PubMed

    Mückley, T; Kruis, C; Schütz, T; Brucker, P; Bühren, V

    2004-03-01

    Fractures of the lower leg due to skiing accidents remain an important concern. Few studies have focussed on the special demands of professional athletes who sustain these injuries. We present our experience with three cases of lower leg fractures in competitive professional downhill skiers and discuss management and treatment concepts. We performed limited reamed compression nailing in all the patients presented because it offers the advantages of high mechanical stability and optimized fragment apposition. Plate osteosynthesis of the fibula is not required in most typical fractures. All patients resumed ski training. Two of them returned to World Cup. Only one achieved her pre-injury World Cup level of performance and success. In conclusion, a successful return for professional skiers with lower leg fractures is feasible using an optimized treatment strategy.

  2. Experiments in balance with a 2D one-legged hopping machine

    NASA Astrophysics Data System (ADS)

    Raibert, M. H.; Brown, H. B., Jr.

    1984-03-01

    The ability to balance is important to the mobility obtained by legged creatures found in nature, and may someday lead to versatile legged vehicles. In order to study the role of balance in legged locomotion and to develop appropriate control strategies, a 2D hopping machine was constructed for experimentation. The machine has one leg on which it hops and runs, making balance a prime consideration. Control of the machine's locomotion was decomposed into three separate parts: a vertical height control part, a horizontal velocity part, and an angular attitude control part. Experiments showed that the three part control scheme, while very simple to implement, was powerful enough to permit the machine to hop in place, to run at a desired rate, to translate from place to place, and to leap over obstacles. Results from modeling and computer simulation of a similar one-legged device are described by Raibert (1983).

  3. 76 FR 78938 - Carpinteria Offshore Field Redevelopment Project-Developmental Drilling Into the Carpinteria...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Carpinteria Offshore Field Redevelopment Project--Developmental Drilling Into the Carpinteria Offshore Field Oil and Gas Reserves... Lands Commission (CSLC) intend to jointly review a proposal to develop offshore oil and gas resources...

  4. 11. NORTH VIEW OF INNER FACING OF SOUTHEASTERN LEG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. NORTH VIEW OF INNER FACING OF SOUTHEASTERN LEG OF SEA WALL. SOUTHERN END OF NORTHEASTERN LEG OF SEA WALL IN BACKGROUND. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  5. 77 FR 70172 - Lifesaving and Fire-Fighting Equipment, Training and Drills Onboard Offshore Facilities and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Equipment, Training and Drills Onboard Offshore Facilities and Mobile Offshore Drilling Units (MODUs... lifesaving and fire-fighting equipment, training and drills on board offshore facilities and MODUs operating... guidance concerning lifesaving and fire-fighting equipment, training, and drills onboard manned offshore...

  6. [Offshore substation workers' exposure to harmful factors - Actions minimizing risk of hazards].

    PubMed

    Piotrowski, Paweł Janusz; Robak, Sylwester; Polewaczyk, Mateusz Maksymilian; Raczkowski, Robert

    2016-01-01

    The current development of electric power industry in Poland, especially in the field of renewable energy sources, including wind power, brings about the need to introduce legislation on new work environment. The development of occupational safety and health (OSH) regulations that must be met by new workplaces, such as offshore substations becomes necessary in view of the construction of modern offshore wind power plants - offshore wind farms. Staying on offshore substation is associated with an increased exposure to harmful health factors: physical, chemical, biological and psychophysical. The main sources of health risks on offshore substations are: temperature, electromagnetic field, noise from operating wind turbines, direct and alternating current, chemicals, Legionella bacteria and social isolation of people. The aim of this article is to draw attention to the problem of offshore substation workers' exposure to harmful factors and to present methods of preventing and reducing the risk-related adverse health effects. In this paper, there are identified and described risks occurring on offshore substations (fire, explosion, lightning, accidents at work). Some examples of the means and the methods for reducing the negative impact of exposure on the human health are presented and discussed. The article also highlights the need to develop appropriate laws and health and safety regulations concerning the new working environment at the offshore substations. The review of researches and international standards shows that some of them can be introduced into the Polish labor market. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. Design of self-contained sensor for monitoring of deep-sea offshore platform

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping

    2013-04-01

    Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic

  8. Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg

    PubMed Central

    Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej

    2015-01-01

    The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the

  9. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  10. Parental smoking during pregnancy shortens offspring's legs.

    PubMed

    Żądzińska, E; Kozieł, S; Borowska-Strugińska, B; Rosset, I; Sitek, A; Lorkiewicz, W

    2016-12-01

    One of the most severe detrimental environmental factors acting during pregnancy is foetal smoke exposure. The aim of this study was to assess the effect of maternal, paternal and parental smoking during pregnancy on relative leg length in 7- to 10-year-old children. The research conducted in the years 2001-2002 included 978 term-born children, 348 boys and 630 girls, at the age of 7-10 years. Information concerning the birth weight of a child was obtained from the health records of the women. Information about the mother's and the father's smoking habits during pregnancy and about the mothers' education level was obtained from a questionnaire. The influence of parental smoking on relative leg length, controlled for age, sex, birth weight and the mother's education, as a proxy measure of socioeconomic status, and controlled for an interaction between sex and birth weight, was assessed by an analysis of covariance, where relative leg length was the dependent variable, smoking and sex were the independent variables, and birth weight as well as the mother's education were the covariates. Three separate analyses were run for the three models of smoking habits during pregnancy: the mother's smoking, the father's smoking and both parents' smoking. Only both parents' smoking showed a significant effect on relative leg length of offspring. It is probable that foetal hypoxia caused by carbon monoxide contained in smoke decelerated the growth of the long bones of foetuses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    NASA Astrophysics Data System (ADS)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  12. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.

    PubMed

    Liew, Bernard; Netto, Kevin; Morris, Susan

    2017-10-01

    Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s -1 ), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s -1 , but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.

  13. Front-to-rear membrane tension gradient in rapidly moving cells.

    PubMed

    Lieber, Arnon D; Schweitzer, Yonatan; Kozlov, Michael M; Keren, Kinneret

    2015-04-07

    Membrane tension is becoming recognized as an important mechanical regulator of motile cell behavior. Although membrane-tension measurements have been performed in various cell types, the tension distribution along the plasma membrane of motile cells has been largely unexplored. Here, we present an experimental study of the distribution of tension in the plasma membrane of rapidly moving fish epithelial keratocytes. We find that during steady movement the apparent membrane tension is ∼30% higher at the leading edge than at the trailing edge. Similar tension differences between the front and the rear of the cell are found in keratocyte fragments that lack a cell body. This front-to-rear tension variation likely reflects a tension gradient developed in the plasma membrane along the direction of movement due to viscous friction between the membrane and the cytoskeleton-attached protein anchors embedded in the membrane matrix. Theoretical modeling allows us to estimate the area density of these membrane anchors. Overall, our results indicate that even though membrane tension equilibrates rapidly and mechanically couples local boundary dynamics over cellular scales, steady-state variations in tension can exist in the plasma membranes of moving cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. "It's still a great adventure" - exploring offshore employees' working conditions in a qualitative study.

    PubMed

    Mette, Janika; Velasco Garrido, Marcial; Harth, Volker; Preisser, Alexandra M; Mache, Stefanie

    2017-01-01

    Despite the particular demands inherent to offshore work, little is known about the working conditions of employees in the German offshore wind industry. To date, neither offshore employees' job demands and resources, nor their needs for improving the working conditions have been explored. Therefore, the aim of this study was to conduct a qualitative analysis to gain further insight into these topics. Forty-two semi-structured telephone interviews with German offshore employees ( n  = 21) and offshore experts ( n  = 21) were conducted. Employees and experts were interviewed with regard to their perceptions of their working conditions offshore. In addition, employees were asked to identify areas with potential need for improvement. The interviews were analysed in a deductive-inductive process according to Mayring's qualitative content analysis. Employees and experts reported various demands of offshore work, including challenging physical labour, long shifts, inactive waiting times, and recurrent absences from home. In contrast, the high personal meaning of the work, regular work schedule (14 days offshore, 14 days onshore), and strong comradeship were highlighted as job resources. Interviewees' working conditions varied considerably, e.g. regarding their work tasks and accommodations. Most of the job demands were perceived in terms of the work organization and living conditions offshore. Likewise, employees expressed the majority of needs for improvement in these areas. Our study offers important insight into the working conditions of employees in the German offshore wind industry. The results can provide a basis for further quantitative research in order to generalize the findings. Moreover, they can be utilized to develop needs-based interventions to improve the working conditions offshore.

  15. Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

    Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

  16. Offshore oil spill response practices and emerging challenges.

    PubMed

    Li, Pu; Cai, Qinhong; Lin, Weiyun; Chen, Bing; Zhang, Baiyu

    2016-09-15

    Offshore oil spills are of tremendous concern due to their potential impact on economic and ecological systems. A number of major oil spills triggered worldwide consciousness of oil spill preparedness and response. Challenges remain in diverse aspects such as oil spill monitoring, analysis, assessment, contingency planning, response, cleanup, and decision support. This article provides a comprehensive review of the current situations and impacts of offshore oil spills, as well as the policies and technologies in offshore oil spill response and countermeasures. Correspondingly, new strategies and a decision support framework are recommended for improving the capacities and effectiveness of oil spill response and countermeasures. In addition, the emerging challenges in cold and harsh environments are reviewed with recommendations due to increasing risk of oil spills in the northern regions from the expansion of the Arctic Passage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ultrasound Findings in Tension Pneumothorax: A Case Report.

    PubMed

    Inocencio, Maxine; Childs, Jeannine; Chilstrom, Mikaela L; Berona, Kristin

    2017-06-01

    Delayed recognition of tension pneumothorax can lead to a mortality of 31% to 91%. However, the classic physical examination findings of tracheal deviation and distended neck veins are poorly sensitive in the diagnosis of tension pneumothorax. Point-of-care ultrasound is accurate in identifying the presence of pneumothorax, but sonographic findings of tension pneumothorax are less well described. We report the case of a 21-year-old man with sudden-onset left-sided chest pain. He was clinically stable without hypoxia or hypotension, and the initial chest x-ray study showed a large pneumothorax without mediastinal shift. While the patient was awaiting tube thoracostomy, a point-of-care ultrasound demonstrated findings of mediastinal shift and a dilated inferior vena cava (IVC) concerning for tension physiology, even though the patient remained hemodynamically stable. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case demonstrates a unique clinical scenario of ultrasound evidence of tension physiology in a clinically stable patient. Although this patient was well appearing without hypotension, respiratory distress, tracheal deviation, or distended neck veins, point-of-care ultrasound revealed mediastinal shift and a plethoric IVC. Given that the classic clinical signs of tension pneumothorax are not uniformly present, this case shows how point-of-care ultrasound may diagnose tension pneumothorax before clinical decompensation. Published by Elsevier Inc.

  18. Endogenous pro-thrombotic biomarkers from the arm and leg may not have the same value.

    PubMed

    Lattimer, Christopher R; Kalodiki, Evi; Geroulakos, George; Hoppensteadt, Debra; Fareed, Jawed

    2016-05-01

    Assessments of endogenous pro-thrombotic biomarkers are performed invariably on arm blood. However, the commonest site for thrombosis is in the leg. A leg blood sample may reflect local pro-thrombotic processes more accurately than systemic arm blood. The aim was to determine whether pro-thrombotic biomarkers from standard venous arm samples differed significantly from leg samples. Concurrent blood samples were taken from an ankle/lower calf varicose vein and an ante-cubital vein in 24 patients awaiting laser treatment as well as age approximated and sex matched healthy controls without venous disease. The following assays were performed: thrombin-antithrombin (ng/ml), antithrombin (%) activity, microparticles (nM), fibrinogen (mg/dl), prothrombin fragment 1.2 (F1.2) (pM) and P-selectin (ng/ml). Expressed as median (inter-quartile range). Significant arm/leg differences were observed in thrombin-antithrombin, antithrombin, prothrombin fragment 1.2 and P-selectin. The legs of patients had significantly reduced antithrombin activity and P-selectin concentrations compared to their arms (leg: 101 (90-108) versus arm: 112 (99-126), P = 0.001 and leg: 42 (26-52) versus 45 (27-52), P = 0.044, respectively). Control leg samples had significantly increased thrombin-antithrombin and P-selectin compared to control arm samples (leg: 2.1 (0.9-3.2) versus arm: 0.8 (0.5-1.7), P = 0.015 and leg: 36 (24-50) versus arm: 30 (23-41), P = 0.007, respectively). However, the control legs had significantly reduced F1.2 (leg: 265 (230-333) versus arm: 299 (236-361), P = 0.028). No significant arm/leg differences were detected in the microparticle or fibrinogen levels. These findings indicate that venous arm blood is significantly different from venous leg blood in four out of six biomarkers studied. Recognition of local venous leg sampling as a site for investigation may unravel why the leg has a greater predisposition to thrombosis and lead the way towards an arm/leg

  19. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.

    PubMed

    Ting, L H; Raasch, C C; Brown, D A; Kautz, S A; Zajac, F E

    1998-09-01

    The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling was chosen as the locomotor task to study because interlimb mechanics can be significantly altered, as pedaling can be executed with the use of either one leg or two legs (cf. walking) and because the load on the limb can be well-controlled. Subjects pedaled a modified bicycle ergometer in a two-legged (bilateral) and a one-legged (unilateral) pedaling condition. The loading on the leg during unilateral pedaling was designed to be identical to the loading experienced by the leg during bilateral pedaling. This loading was achieved by having a trained human "motor" pedal along with the subject and exert on the opposite crank the torque that the subject's contralateral leg generated in bilateral pedaling. The human "motor" was successful at reproducing each subject's one-leg crank torque. The shape of the motor's torque trajectory was similar to that of subjects, and the amount of work done during extension and flexion was not significantly different. Thus the same muscle coordination pattern would allow subjects to pedal successfully in both the bilateral and unilateral conditions, and the afferent signals from the pedaling leg could be the same for both conditions. Although the overall work done by each leg did not change, an 86% decrease in retarding (negative) crank torque during limb flexion was measured in all 11 subjects during the unilateral condition. This corresponded to an increase in integrated electromyography of tibialis anterior (70%), rectus femoris (43%), and biceps femoris (59%) during flexion. Even given visual torque feedback in the unilateral condition

  20. Tension and relaxation in the individual.

    PubMed

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  1. 40 CFR 435.10 - Applicability; description of the offshore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the offshore subcategory. 435.10 Section 435.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Offshore...

  2. 40 CFR 435.10 - Applicability; description of the offshore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the offshore subcategory. 435.10 Section 435.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Offshore...

  3. [Contact eczema in patients with leg ulcers].

    PubMed

    Degreef, H; Dooms-Goossens, A; Gladys, K

    1986-01-01

    Patients with leg ulcers or varicose eczema suffer much more often from contact eczema due to the local application of pharmaceutical preparations than patients suffering from other dermatological problems (even those of eczematous origin). This contact allergy may concern not only the active ingredient but also the excipient, the preservative, or even the perfume. In all cases of leg ulcers, of varicose eczema, but also of badly healed ulcers, epicutaneous tests should be carried out with all the components of the pharmaceutical preparations concerned. Moreover, the pharmaceutical industry really must perfect non-allergenic preparations.

  4. Surface tension profiles in vertical soap films

    NASA Astrophysics Data System (ADS)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  5. Proceedings of the fifth international offshore mechanics and Arctic engineering (OMAE) symposium. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunardini, V.J.; Wang, Y.S.; Ayorinde, O.A.

    1986-01-01

    This book presents the papers given at a symposium on offshore platforms. Topics considered at the symposium included climates, Arctic regions, hydrate formation, the buckling of heated oil pipelines in frozen ground, icebergs, concretes, air cushion vehicles, mobile offshore drilling units, tanker ships, ice-induced dynamic loads, adfreeze forces on offshore platforms, and multiyear ice floe collision with a massive offshore structure.

  6. 2014–2015 Offshore Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-30

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  7. Ultrasonography of Skin Changes in Legs with Chronic Venous Disease.

    PubMed

    Caggiati, A

    2016-10-01

    In daily practice, ultrasonography (US) is used only to designate the location and pattern of venous lesions. Skin US is not performed between routine venous investigations. Skin morphology is evaluated by the same probes used for routine Duplex evaluation of superficial veins. US findings from evident skin lesions are comparatively evaluated with those from the surrounding apparently normal skin and from the contralateral leg. Inflammation and dermal edema can be found in the apparently normal skin of C2 legs. Swollen legs show thickening of the subcutaneous layer as a result of diffuse soaking or anechoic cavities, with or without dermal edema. Chronic hypodermitis is characterized by inflammatory edema in initial phases, and by liposclerosis in advanced cases. Recrudescence of inflammation provokes focal rarefactions of the subcutaneous layer, possibly related to ulcer opening. In legs with venous disorders, sonography refines clinical evaluation of the skin and may reveal changes not highlighted by inspection. Some of these changes could require further investigation because they have not yet been explained or described. Skin sonography should improve knowledge of the natural history of skin changes, as well as contribute to a better grading of venous diseases severity In particular, US evidence of cutaneous and subcutaneous changes in C2 legs should be considered to stratify the treatment in C2 legs, by identifying those in which varicose veins are not simply a cosmetic problem. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Offshore survey provides answers to coastal stability and potential offshore extensions of landslides into Abalone Cove, Palos Verdes peninsula, Calif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, R.F.; Slosson, J.E.

    1993-04-01

    The configuration and stability of the present coast line near Abalone Cove, on the south side of Palos Verdes Peninsula, California is related to the geology, oceanographic conditions, and recent and ancient landslide activity. This case study utilizes offshore high resolution seismic profiles, side-scan sonar, diving, and coring, to relate marine geology to the stability of a coastal region with known active landslides utilizing a desk top computer and off-the-shelf software. Electronic navigation provided precise positioning that when applied to computer generated charts permitted correlation of survey data needed to define the offshore geology and sea floor sediment patterns. Amore » mackintosh desk-top computer and commercially available off-the-shelf software provided the analytical tools for constructing a base chart and a means to superimpose template overlays of topography, isopachs or sediment thickness, bottom roughness and sediment distribution patterns. This composite map of offshore geology and oceanography was then related to an extensive engineering and geological land study of the coastal zone forming Abalone Cove, an area of active landslides. Vibrocoring provided ground sediment data for high resolution seismic traverses. This paper details the systems used, present findings relative to potential landslide movements, coastal erosion and discuss how conclusions were reached to determine whether or not onshore landslide failures extend offshore.« less

  9. On the representation of subsea aquitards in models of offshore fresh groundwater

    NASA Astrophysics Data System (ADS)

    Solórzano-Rivas, S. C.; Werner, A. D.

    2018-02-01

    Fresh groundwater is widespread globally in offshore aquifers, and is particularly dependent on the properties of offshore aquitards, which inhibit seawater-freshwater mixing thereby allowing offshore freshwater to persist. However, little is known of the salinity distribution in subsea aquitards, especially in relation to the offshore freshwater distribution. This is critical for the application of recent analytical solutions to subsea freshwater extent given requisite assumptions about aquitard salinity. In this paper, we use numerical simulation to explore the extent of offshore freshwater in simplified situations of subsea aquifers and overlying aquitards, including in relation to the upward leakage of freshwater. The results show that available analytical solutions significantly overestimate the offshore extent of upwelling freshwater due to the presumption of seawater in the aquitard, whereas the seawater wedge toe is less sensitive to the assumed aquitard salinity. We also explore the use of implicit, conductance-based representations of the aquitard (i.e., using the popular SEAWAT code), and find that SEAWAT's implicit approach (i.e., GHB package) can represent the offshore distance of upwelling freshwater using a novel parameterization strategy. The results show that an estimate of the upward freshwater flow that is required to freshen the aquitard is associated with the dimensionless Rayleigh number, whereby the critical Rayleigh number that distinguishes fresh and saline regions (based on the position of the 0.5 isochlor) within the aquitard is approximately 2.

  10. Directionally compliant legs influence the intrinsic pitch behaviour of a trotting quadruped

    PubMed Central

    Lee, David V; Meek, Sanford G

    2005-01-01

    Limb design is well conserved among quadrupeds, notably, the knees point forward (i.e. cranial inclination of femora) and the elbows point back (i.e. caudal inclination of humeri). This study was undertaken to examine the effects of joint orientation on individual leg forces and centre of mass dynamics. Steady-speed trotting was simulated in two quadrupedal models. Model I had the knee and elbow orientation of a quadruped and model II had a reversed leg configuration in which knees point back and elbows point forward. The model's legs showed directional compliance determined by the orientation of the knee/elbow. In both models, forward pointing knees/elbows produced a propulsive force bias, while rearward pointing knees/elbows produced a braking force bias. Hence, model I showed the same pattern of hind-leg propulsion and fore-leg braking observed in trotting animals. Simulations revealed minimal pitch oscillations during steady-speed trotting of model I, but substantially greater and more irregular pitch oscillations of model II. The reduced pitch oscillation of model I was a result of fore-leg and hind-leg forces that reduced pitching moments during early and late stance, respectively. This passive mechanism for reducing pitch oscillations was an emergent property of directionally compliant legs with the fore–hind configuration of model I. Such intrinsic stability resulting from mechanical design can simplify control tasks and lead to more robust running machines. PMID:15817430

  11. Offshore training in navy personnel is associated with uninvestigated dyspepsia.

    PubMed

    Li, Fan; Sun, Gang; Yang, Yun-sheng; Cui, Li-hong; Peng, Li-hua; Guo, Xu; Wang, Wei-feng; Yan, Bin; Zhang, Lanjing

    2014-12-01

    To investigate the known and new factors associated with uninvestigated dyspepsia (UD), we surveyed 8600 Chinese navy personnel with offshore training shorter than 1 month or longer than 9 months per year. All respondents were required to complete a questionnaire covering demographics, the Chinese version of the Rome III survey, eating habits, life styles, and medical and family history. The response rate was 94.3% (8106/8600) with 4899 respondents qualified for analysis, including 1046 with offshore training and 3853 with onshore training. The prevalence of UD was higher in the offshore group than in the onshore group (12.6% vs. 6.9%, P<0.001), with a general prevalence of 8.1%. The subjects with offshore training were more likely to suffer from UD and postprandial distress syndrome (OR=1.955, 95% CI 1.568-2.439, P<0.001 and OR=1.789, 95% CI 1.403-2.303, P<0.001, respectively). The multivariate logistic regression analysis showed UD was associated with offshore training (OR=1.580, 95% CI 1.179-2.118, P=0.002), family history (OR=1.765, 95% CI 1.186-2.626, P=0.005) and smoking (OR=1.270, 95% CI 1.084-1.488, P=0.003), but not with alcohol drinking. The association between dysentery history and UD was undetermined/borderline (P=0.056-0.069). In conclusion, we identified offshore training as a new factor associated with UD, and also confirmed 2 known associated factors, family history and smoking.

  12. Review of technology for Arctic offshore oil and gas recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleummore » production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.« less

  13. Are differences in leg length predictive of lateral patello-femoral pain?

    PubMed

    Carlson, Mary; Wilkerson, Jerry

    2007-03-01

    Lateral patello-femoral pain can shorten an athletic career and generally decrease an individual's physical activity and functional level, such as preventing stair climbing and reducing the ability to rise from a chair. Leg length inequality is associated with patello-femoral pain. A leg length test that best distinguishes the difference between people who have lateral patello-femoral pain and those who do not would have clinical utility. The purpose of the present study was, first, to determine if unilateral, lateral patello-femoral pain was associated with the longer leg when inequality of leg lengths existed and, second, to determine if leg length direct measurement, indirect measurement or quadriceps angle (Q angle) could correctly classify participants according to the presence or absence of patello-femoral pain. The study used an ex post facto, two-group quasi-experimental design. A volunteer sample of 52 participants (14 males, 38 females), ranged in age from 18 to 52 years. Three methods were used to measure leg lengths: palpation meter (PALM) on anterior superior iliac spines (ASIS) while participants maintained centred weight-bearing position on a high resolution pressure mat; tape measurement from ASIS to medial malleolus (supine); tape measurement from ASIS to lateral malleolus (supine). Additionally, Q angle was measured in supine position. Patellar grind test, medial retinacular and lateral patellar palpation screened for patello-femoral pain. Logistic regression analysis determined correctness of membership in painful and non-painful patello-femoral groups. The PALM method of indirect measurement of leg length differences overall correctly classified approximately 83 % of the participants. Tape measure to medial and lateral malleoli as well as Q angle did not yield significant results. The results suggested that the PALM method of measuring leg length differences may have clinical utility in differentiating between patients who are likely to sustain

  14. Towards a mature offshore wind energy technology - guidelines from the opti-OWECS project

    NASA Astrophysics Data System (ADS)

    Kühn, M.; Bierbooms, W. A. A. M.; van Bussel, G. J. W.; Cockerill, T. T.; Harrison, R.; Ferguson, M. C.; Göransson, B.; Harland, L. A.; Vugts, J. H.; Wiecherink, R.

    1999-01-01

    The article reviews the main results of the recent European research project Opti-OWECS (Structural and Economic Optimisation of Bottom-Mounted Offshore Wind Energy Converters'), which has significantly improved the understanding of the requirements for a large-scale utilization of offshore wind energy. An integrated design approach was demonstrated for a 300 MW offshore wind farm at a demanding North Sea site. Several viable solutions were obtained and one was elaborated to include the design of all major components. Simultaneous structural and economic optimization took place during the different design stages. An offshore wind energy converter founded on a soft-soft monopile was tailored with respect to the distinct characteristics of dynamic wind and wave loading. The operation and maintenance behaviour of the wind farm was analysed by Monte Carlo simulations. With an optimized maintenance strategy and suitable hardware a high availability was achieved. Based upon the experience from the structural design, cost models for offshore wind farms were developed and linked to a European database of the offshore wind energy potential. This enabled the first consistent estimate of cost of offshore wind energy for entire European regions.

  15. Monocoque structure for the SKITTER three-legged walker

    NASA Astrophysics Data System (ADS)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-06-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  16. Monocoque structure for the SKITTER three-legged walker

    NASA Technical Reports Server (NTRS)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-01-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  17. The development of marital tension: Implications for divorce among married couples.

    PubMed

    Birditt, Kira S; Wan, Wylie H; Orbuch, Terri L; Antonucci, Toni C

    2017-10-01

    Marriages are often characterized by their positive and negative features in terms of whether they elicit feelings of satisfaction and happiness or conflict and negativity. Although research has examined the development of marital happiness, less is known about the development of negativity among married couples. We examined how marital tension (i.e., feelings of tension, resentment, irritation) develops within couples over time and whether marital tension has unique implications for divorce. Specifically, we examined marital tension among husbands and wives within the same couples from the first to the sixteenth year of marriage, as well as links between marital tension and divorce. Participants included 355 couples assessed in years 1, 2, 3, 4, 7, and 16 of marriage. Multilevel models revealed that wives reported greater marital tension than husbands. Marital tension increased over time among both husbands and wives, with a greater increase among husbands. Couples were more likely to divorce when wives reported higher marital tension, a greater increase in marital tension, and greater cumulative marital tension. Findings are consistent with the emergent distress model of marriage, but indicate that despite the greater increases in marital tension among husbands, wives' increased marital tension over the course of marriage is more consistently associated with divorce. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Interventions for varicose veins and leg oedema in pregnancy.

    PubMed

    Smyth, Rebecca M D; Aflaifel, Nasreen; Bamigboye, Anthony A

    2015-10-19

    Pregnancy is presumed to be a major contributory factor in the increased incidence of varicose veins in women, which can in turn lead to venous insufficiency and leg oedema. The most common symptom of varicose veins and oedema is the substantial pain experienced, as well as night cramps, numbness, tingling, the legs may feel heavy, achy, and possibly be unsightly. Treatments for varicose veins are usually divided into three main groups: surgery, pharmacological and non-pharmacological treatments. Treatments of leg oedema comprise mostly symptom reduction rather than cure and use of pharmacological and non-pharmacological approaches. To assess any form of intervention used to relieve the symptoms associated with varicose veins and leg oedema in pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015) and reference lists of retrieved studies. Randomised trials of treatments for varicose veins or leg oedema, or both, in pregnancy. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We included seven trials (involving 326 women). The trials were largely unclear for selection bias and high risk for performance and detection bias.Two studies were placebo-controlled trials. The first one compared a phlebotonic (rutoside) with placebo for the reduction in symptoms of varicose veins; the second study evaluated the efficacy of troxerutin in comparison to placebo among 30 pregnant women in their second trimester with symptomatic vulvar varicosities and venous insufficiency in their lower extremities. Data from this study were not in useable format, so were not included in the analysis. Two trials compared either compression stockings with resting in left lateral position or reflexology with rest for 15 minutes for the reduction of leg oedema. One trial compared standing water immersion for 20 minutes with sitting upright in a chair with legs elevated for 20

  19. California State Waters Map Series: offshore of San Francisco, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    Circulation over the continental shelf in the Offshore of San Francisco map area is dominated by the southward-flowing California Current, an eastern limb of the North Pacific Gyre that flows from Oregon to Baja California. At its midpoint offshore of central California, the California Current transports subarctic surface waters southeastward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. Ocean temperatures offshore of central California have increased over the past 50 years, driving an ecosystem shift from the productive subarctic regime towards a depopulated subtropical environment.

  20. 75 FR 32803 - Certificate of Alternative Compliance for the Offshore Supply Vessel JONCADE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... Compliance for the Offshore Supply Vessel JONCADE AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that a Certificate of Alternative Compliance was issued for the offshore supply... offshore supply vessel JONCADE, O.N. 1224528. Full compliance with 72 COLREGS and Inland Rules Act would...

  1. The contribution of timbre attributes to musical tension.

    PubMed

    Farbood, Morwaread M; Price, Khen C

    2017-01-01

    Timbre is an auditory feature that has received relatively little attention in empirical work examining musical tension. In order to address this gap, an experiment was conducted to explore the contribution of several specific timbre attributes-inharmonicity, roughness, spectral centroid, spectral deviation, and spectral flatness-to the perception of tension. Listeners compared pairs of sounds representing low and high degrees of each attribute and indicated which sound was more tense. Although the response profiles showed that the high states corresponded with increased tension for all attributes, further analysis revealed that some attributes were strongly correlated with others. When qualitative factors, attribute correlations, and listener responses were all taken into account, there was fairly strong evidence that higher degrees of roughness, inharmonicity, and spectral flatness elicited higher tension. On the other hand, evidence that higher spectral centroid and spectral deviation corresponded to increases in tension was ambiguous.

  2. [Diagnostic and therapy of tension-type headache].

    PubMed

    Straube, A

    2014-08-01

    Episodic headache of the tension type is the most prevalent primary headache with a lifetime prevalence of about 78 %. Clinical characteristics are a dull, moderate, holocephalic headache without accompanying autonomic or vegetative symptoms. The episodic tension-type headache often lasts only 30 min up to a maximum of a few days. In contrast to this clinically often undemanding headache, chronic tension-type headache can cause considerable disability in patients. The 1-year prevalence is 1-3 % of the population. All therapy strategies combine nonpharmaceutical therapy such as education of the patient, regular aerobic exercise, and psychological treatment (e.g., Jacobson's progressive muscle relaxation etc.) with pharmaceutical treatment such as tricyclic antidepressants or combined serotonergic and noradrenergic antidepressants. Combination therapy has been proven to be more effective than singular strategies; however, the chronic tension-type headache still poses a therapeutic problem.

  3. Modification of Upper Thread Tensioner of Sewing Machine

    NASA Astrophysics Data System (ADS)

    Klouček, P.; Škop, P.

    Standard mechanical upper thread tensioner of sewing machines is more and more limited in use for industrial sewing machines due to increasing requests for quality and raising velocity of machines. If we omit mostly manual settings of force made only by sense, the most problematic things are influence of different friction coefficient of the different batch of threads and strong relation between thread tension and sewing machine velocity. The article describes the development focused to the elimination of the most significant disadvantages of a standard tensioner and mainly finding of new conception of the tensioner with electromagnetic brake, development and testing of its prototype.

  4. Mechanical evaluation of anastomotic tension and patency in arteries.

    PubMed

    Zhang, F; Lineaweaver, W C; Buntic, R; Walker, R

    1996-02-01

    This study quantified arterial anastomotic tension, evaluated subsequent patency rates, and examined the degree of tension reduction with vessel mobilization. The study was divided into two components. In part I, a mechanical analysis was undertaken to evaluate tension, based on the determination of the force required to deflect a cable (vessel) laterally, and its resulting lateral displacement. Six Sprague-Dawley rats with 12 femoral arteries were divided into two subgroups: 1) no mobilization; and 2) axial mobilization by ligation and transection of superficial epigastric and gracilis muscular branches. The tension of femoral arterial anastomoses was calculated in vessels with no segmental defect and with 1.5-, 3-, 4.5-, 6-, and 7.5-mm defects. In part II, patency was evaluated. Fifty-five rats with 110 femoral arteries were divided into two sub-groups as defined in part I: 1) no mobilization; and 2) axial mobilization by ligation and transection of superficial epigastric and gracilis muscular branches. Microvascular anastomoses were performed with no segmental defect and with 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-mm segmental vessel defects. Patency was evaluated 24 hr postoperatively. Part I of the study revealed that anastomotic tension gradually increased along with an increase in the length of the vessel defect, from 1.9 to 11.34 g in the no-mobilization group and from 1.97 to 8.44 g in the axial-mobilization group. Comparison of tension linear regression coefficient showed a significant difference between the two groups (p < 0.05). In part II of the study, the maximum length of femoral artery defects still able to maintain 100 percent patency of anastomoses was 4 mm (tension approximately 6 g) in the no-mobilization group and 6 mm in the axial-mobilization group (tension approximately 6.48 g). Microanastomotic tension was related to the size of the vessel defect, with increasing tension leading to thrombosis. Axial mobilization significantly reduced

  5. Fatal pox infection in a rough-legged hawk

    USGS Publications Warehouse

    Pearson, G.L.; Pass, D.A.; Beggs, E.C.

    1975-01-01

    Natural pox infection occurred in a free-living rough-legged hawk (Buteo lagopus) in northeastern North Dakota. Gross, histological and electron microscopic findings were typical of pox infection, and characteristic lesions developed in red-tailed hawks (Buteo jamaicensis) but not in great horned owls (Bubo virginianus) following inoculation with case material. Death of the rough-legged hawk was attributed to starvation resulting from inability to capture prey and to blood loss from foot lesions.

  6. Variability of single-leg versus double-leg stance radiographs in the varus knee.

    PubMed

    Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I

    2009-07-01

    We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.

  7. The offshore benthic fish community

    USGS Publications Warehouse

    Lantry, Brian F.; Lantry, Jana R.; Weidel, Brian C.; Walsh, Maureen; Hoyle, James A.; Schaner, Teodore; Neave, Fraser B.; Keir, Michael

    2014-01-01

    The offshore benthic fish community will be composed of self-sustaining native fishes characterized by lake trout as the top predator, a population expansion of lake whitefish from northeastern waters to other areas of the lake, and rehabilitated native prey fishes.

  8. Common Leg Injuries of Long-Distance Runners

    PubMed Central

    Gallo, Robert A.; Plakke, Michael; Silvis, Matthew L.

    2012-01-01

    Context Long-distance running (greater than 3000 m) is often recommended to maintain a healthy lifestyle. Running injury rates increase significantly when weekly mileage extends beyond 40 miles cumulatively. With the development of running analysis and other diagnostic tests, injuries to the leg secondary to bone, musculotendinous, and vascular causes can be diagnosed and successfully managed. Evidence Acquisition Searches used the terms running, injuries, lower extremity, leg, medial tibial stress syndrome, compartment syndrome, stress fractures, popliteal artery entrapment, gastrocnemius soleus tears, and Achilles tendinopathy. Sources included Medline, Google Scholar, and Ovid from 1970 through January 2012. Results Tibial stress fractures and medial tibial stress syndrome can sometimes be prevented and/or treated by correcting biomechanical abnormalities. Exertional compartment syndrome and popliteal artery entrapment syndrome are caused by anatomic abnormalities and are difficult to treat without surgical correction. Conclusion Leg pain due to bone, musculotendinous, and vascular causes is common among long-distance runners. Knowledge of the underlying biomechanical and/or anatomic abnormality is necessary to successfully treat these conditions. PMID:24179587

  9. Energy absorption as a predictor of leg impedance in highly trained females.

    PubMed

    Kulas, Anthony S; Schmitz, Randy J; Schultz, Sandra J; Watson, Mary Allen; Perrin, David H

    2006-08-01

    Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.

  10. Surface tension and long range corrections of cylindrical interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourasseau, E.; Malfreyt, P.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential,more » (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.« less

  11. Effect of Gravity on Surface Tension

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.

    1998-01-01

    Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.

  12. Surface tension measurements with a smartphone

    NASA Astrophysics Data System (ADS)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-11-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept of surface tension through simple experiments.

  13. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    PubMed Central

    2012-01-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  14. Rotational joint for prosthetic leg

    NASA Technical Reports Server (NTRS)

    Jones, W. C.; Owens, L. J.

    1977-01-01

    Device is installed in standard 30 millimeter tubing used for lower leg prosthetics. Unit allows proper rotation (about 3 degrees) of foot relative to the hip, during normal walking or running. Limited rotational movement with restoring force results in a more natural gait.

  15. Connecting onshore and offshore near-surface geology: Delaware's sand inventory project

    USGS Publications Warehouse

    Ramsey, K.W.; Jordan, R.R.; Talley, J.H.

    1999-01-01

    Beginning in 1988, the Delaware Geological Survey began a program to inventory on-land sand resources suitable for beach nourishment. The inventory included an assessment of the native beach textures using existing data and developing parameters of what would be considered suitable sand textures for Delaware's Atlantic beaches. An assessment of the economics of on-land sand resources was also conducted, and it was determined that the cost of the sand was competitive with offshore dredging costs. In addition, the sand resources were put into a geologic context for purposes of predicting which depositional environments and lithostratigraphic units were most likely to produce suitable sand resources. The results of the work identified several suitable on-land sand resource areas in the Omar and Beaverdam formations that were deposited in barrier-tidal delta and fluvial-estuarine environments, respectively. The identified on-land resources areas have not been utilized due to difficulties of truck transport and development pressures in the resource areas. The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from Cape Henlopen to Fenwick. This cross section identified the geologic units and potential sand resource bodies as found immediately along the coast. These units and resources are currently being extended offshore and tied to known and

  16. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  17. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  18. 33 CFR 100.728 - Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Hurricane Offshore Classic, St. Petersburg, FL. 100.728 Section 100.728 Navigation and Navigable Waters... WATERS § 100.728 Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL. (a) Regulated..., from 10 a.m. to 6 p.m. EDT. (3) All vessel traffic, not involved in the Hurricane Offshore Classic...

  19. 33 CFR 100.728 - Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Hurricane Offshore Classic, St. Petersburg, FL. 100.728 Section 100.728 Navigation and Navigable Waters... WATERS § 100.728 Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL. (a) Regulated..., from 10 a.m. to 6 p.m. EDT. (3) All vessel traffic, not involved in the Hurricane Offshore Classic...

  20. 33 CFR 100.728 - Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Hurricane Offshore Classic, St. Petersburg, FL. 100.728 Section 100.728 Navigation and Navigable Waters... WATERS § 100.728 Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL. (a) Regulated..., from 10 a.m. to 6 p.m. EDT. (3) All vessel traffic, not involved in the Hurricane Offshore Classic...

  1. 33 CFR 100.728 - Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Hurricane Offshore Classic, St. Petersburg, FL. 100.728 Section 100.728 Navigation and Navigable Waters... WATERS § 100.728 Special Local Regulations; Hurricane Offshore Classic, St. Petersburg, FL. (a) Regulated..., from 10 a.m. to 6 p.m. EDT. (3) All vessel traffic, not involved in the Hurricane Offshore Classic...

  2. Experimental research on pedestrian lower leg impact

    NASA Astrophysics Data System (ADS)

    Constantin, B. A.; Iozsa, D. M.; Stan, C.

    2017-10-01

    The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

  3. 2014-2015 Offshore Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities. Title page contains link to associated data tables posted at http://www.nrel.gov/docs/fy15osti/64283_data_tables.xlsx.

  4. Reproducibility and day time bias correction of optoelectronic leg volumetry: a prospective cohort study.

    PubMed

    Engelberger, Rolf P; Blazek, Claudia; Amsler, Felix; Keo, Hong H; Baumann, Frédéric; Blättler, Werner; Baumgartner, Iris; Willenberg, Torsten

    2011-10-05

    Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC). A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P < .001). A therefore determined time-correction formula permitted further improvement of CVW. Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula.

  5. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

    PubMed Central

    Geyer, Hartmut

    2016-01-01

    Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935

  6. Space Station Freedom Solar Array tension mechanism development

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Haugen, Bert

    1994-01-01

    A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.

  7. Estimating intercellular surface tension by laser-induced cell fusion.

    PubMed

    Fujita, Masashi; Onami, Shuichi

    2011-12-01

    Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30-90 µN m(-1) range. Our estimate was in close agreement with cell-medium surface tensions measured at single-cell resolution.

  8. 76 FR 77223 - Enbridge Offshore Pipelines (UTOS); Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AC12-20-000] Enbridge Offshore Pipelines (UTOS); Notice of Filing Take notice that on November 30, 2011, Enbridge Offshore Pipelines (UTOS) submitted a request for a waiver of the reporting requirement to file the FERC Form 2 CPA...

  9. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls.

    PubMed

    Yamazaki, J; Muneta, T; Ju, Y J; Sekiya, I

    2010-01-01

    Seventy to eighty percent of all anterior cruciate ligament (ACL) injuries are due to non-contact injury mechanisms. It has been reported that the majority of injuries due to single leg landing come from valgus positioning of the lower leg. Preventing valgus positioning during single leg landing is expected to help reduce the number of ACL injuries. We found that many ACL-deficient patients cannot perform stable single leg squatting. Therefore, we performed 3D motion analysis of the single-legged half squat for ACL-injured patients to evaluate its significance as a risk factor for ACL injuries. We evaluated the relative angles between the body, thigh, and lower leg using an electromagnetic device during single leg half squatting performed by 63 ACL-injured patients (32 males, 31 females) the day before ACL reconstruction and by 26 healthy control subjects with no knee problems. The uninjured leg of ACL-injured male subjects demonstrated significantly less external knee rotation than that of the dominant leg of the male control. The uninjured leg of ACL-injured female subjects demonstrated significantly more external hip rotation and knee flexion and less hip flexion than that of the dominant leg of the female control. Comparing injured and uninjured legs, the injured leg of male subjects demonstrated significantly less external knee and hip rotation, less knee flexion, and more knee varus than that of the uninjured leg of male subjects. The injured leg of female subjects demonstrated more knee varus than that of the uninjured leg of female subjects. Regarding gender differences, female subjects demonstrated significantly more external hip rotation and knee valgus than male subjects did in both the injured and uninjured legs (P < 0.05). The current kinematic study exhibited biomechanical characteristics of female ACL-injured subjects compared with that of control groups. Kinematic correction during single leg half squat would reduce ACL reinjury in female ACL

  10. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    NASA Astrophysics Data System (ADS)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  11. Tension in Chemistry and Its Contents

    PubMed Central

    Hoffmann, Roald

    2015-01-01

    This article makes a case for a positive role of tension in the creative process in chemistry. I begin with an argument that there is an inherent tension in what makes molecules interesting—their positioning along various polar axes. One of these, the age-old differentiation between useful (to society and for personal profit) commercialization and pure understanding of molecules and their reactions is characteristic. The question of whether there are any bad molecules then leads me to ethical concerns in chemistry, and a particular working out of these in interactions of chemists in the Middle East. An analysis is made of the special tensions involved in publishing, especially in citation ethics; chemists publish a lot, so this is situation ethics worked out on a daily basis. I then find in the literature of psychology good evidence for the positive value of moderate stress in stimulating creativity. It is obvious that too much tension leads to distress, and there are some institutional aspects of chemistry that do not come out well here. But all in all, the dynamic middle is alive, and it leads to good new science. PMID:26155730

  12. Two-legged walking robot prescribed motion on a rough cylinder

    NASA Astrophysics Data System (ADS)

    Golubev, Yury; Melkumova, Elena

    2018-05-01

    The motion of a walking robot with n legs, that ensure the desired motion of the robot body, is described using general dynamics theoretical framework. When each of the robot legs contacts the surface in a single foothold, the momentum and angular momentum theorems yield a system of six differential equations that form a complete description of the robot motion. In the case of two-leg robot (n = 2) the problem of the existence of the solution can be reduced to a system of algebraic inequalities. Using numerical analysis, the classification of footholds positions for different values of the friction coefficient is obtained.

  13. 76 FR 24813 - Safety Zone; Fourth Annual Offshore Challenge, Sunny Isles Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Annual Offshore Challenge will consist of a series of high-speed boat races. The boat races are scheduled... Events, LLC is hosting the Fourth Annual Offshore Challenge, a series of high-speed boat races. The Fourth Annual Offshore Challenge will commence on June 17, 2011 and conclude on June 19, 2011. The boat...

  14. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  15. STRUCTURE OF PROMINENCE LEGS: PLASMA AND MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levens, P. J.; Labrosse, N.; Schmieder, B.

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are stronglymore » absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s{sup −1} in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.« less

  16. Structure of Prominence Legs: Plasma and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Levens, P. J.; Schmieder, B.; Labrosse, N.; López Ariste, A.

    2016-02-01

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca II (SOT), are not visible in the IRIS Mg II slit-jaw images. This is explained by the large optical thickness of the structures in Mg II, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s-1 in the tornado-like structure. Between the two legs we see loops in Mg II, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.

  17. Bioinspired legged-robot based on large deformation of flexible skeleton.

    PubMed

    Mayyas, Mohammad

    2014-11-11

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.

  18. H:q ratios and bilateral leg strength in college field and court sports players.

    PubMed

    Cheung, Roy T H; Smith, Andrew W; Wong, Del P

    2012-06-01

    One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.

  19. The Interday Measurement Consistency of and Relationships Between Hamstring and Leg Musculo-articular Stiffness.

    PubMed

    Waxman, Justin P; Schmitz, Randy J; Shultz, Sandra J

    2015-10-01

    Hamstring stiffness (K(HAM)) and leg stiffness (K(LEG)) are commonly examined relative to athletic performance and injury risk. Given these may be modifiable, it is important to understand day-to-day variations inherent in these measures before use in training studies. In addition, the extent to which K(HAM) and K(LEG) measure similar active stiffness characteristics has not been established. We investigated the interday measurement consistency of K(HAM) and K(LEG), and examined the extent to which K(LEG) predicted K(HAM) in 6 males and 9 females. K(HAM) was moderately consistent day-to-day (ICC(2,5) = .71; SEM = 76.3 N·m(-1)), and 95% limits of agreement (95% LOA) revealed a systematic bias with considerable absolute measurement error (95% LOA = 89.6 ± 224.8 N·m(-1)). Day-to-day differences in procedural factors explained 59.4% of the variance in day-to-day differences in K(HAM). Bilateral and unilateral K(LEG) was more consistent (ICC(2,3) range = .87-.94; SEM range = 1.0-2.91 kN·m(-1)) with lower absolute error (95% LOA bilateral= -2.0 ± 10.3; left leg = -0.36 ± 3.82; right leg = -1.05 ± 3.61 kN·m(-1)). K(LEG) explained 44% of the variance in K(HAM) (P < .01). Findings suggest that procedural factors must be carefully controlled to yield consistent and precise K(HAM) measures. The ease and consistency of K(LEG), and moderate correlation with K(HAM), may steer clinicians toward K(LEG) when measuring lower-extremity stiffness for screening studies and monitoring the effectiveness of training interventions over time.

  20. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirnivas, Senu; Musial, Walt; Bailey, Bruce

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certificationmore » requirements.« less

  1. Tension Structure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The fabric structure pictured is the Campus Center of La Verne College, La Verne, California. Unlike the facilities shown on the preceding pages, it is not air-supported. It is a "tension structure," its multi-coned fabric membrane supported by a network of cables attached to steel columns which function like circus tent poles. The spider-web in the accompanying photo is a computer graph of the tension pattern. The designers, Geiger-Berger Associates PC, of New York City, conducted lengthy computer analysis to determine the the best placement of columns and cables. The firm also served as structural engineering consultant on the Pontiac Silverdome and a number of other large fabric structures. Built by Birdair Structures, Inc., Buffalo, New York, the La Verne Campus Center was the first permanent facility in the United States enclosed by the space-spinoff fabric made of Owens-Corning Beta fiber glass coated with Du Pont Teflon TFE. The flexible design permits rearrangement of the interior to accommodate athletic events, student activities, theatrical productions and other recreational programs. Use of fabric covering reduced building cost 30 percent below conventional construction.

  2. Handheld magnetic sensor for measurement of tension

    NASA Astrophysics Data System (ADS)

    Singal, K.; Rajamani, R.

    2012-04-01

    This letter develops an analytical formulation for measurement of tension in a string using a handheld sensor. By gently pushing the sensor against the string, the tension in the string can be obtained. An experimental sensor prototype is constructed to verify the analytical formulation. The centimeter-sized prototype utilizes three moving pistons and magnetic field based measurements of their positions. Experimental data show that the sensor can accurately measure tension on a bench top rig. The developed sensor could be useful in a variety of orthopedic surgical procedures, including knee replacement, hip replacement, ligament repair, shoulder stabilization, and tendon repair.

  3. Relationships between maximal anaerobic power of the arms and legs and javelin performance.

    PubMed

    Bouhlel, E; Chelly, M S; Tabka, Z; Shephard, R

    2007-06-01

    The aim of this study was to examine relationships between maximal anaerobic power, as measured by leg and arm force-velocity tests, estimates of local muscle volume and javelin performance. Ten trained national level male javelin throwers (mean age 19.6+/- 2 years) participated in this study. Maximal anaerobic power, maximal force and maximal velocity were measured during leg (Wmax-L) and arm (Wmax-A) force-velocity tests, performed on appropriately modified forms of Monark cycle ergometer. Estimates of leg and arm muscle volume were made using a standard anthropometric kit. Maximal force of the leg (Fmax-L) was significantly correlated with estimated leg muscle volume (r=0.71, P<0.05). Wmax-L and Wmax-A were both significantly correlated with javelin performance (r=0.76, P<0.01; r=0.71, P <0.05, respectively). Maximal velocity of the leg (Vmax-L) was also significantly correlated with throwing performance (r=0.83; P<0.001). Wmax of both legs and arms were significantly correlated with javelin performance, the closest correlation being for Wmax-L; this emphasizes the importance of the leg muscles in this sport. Fmax-L and Vmax-L were related to muscle volume and to javelin performance, respectively. Force-velocity testing may have value in regulating conditioning and rehabilitation in sports involving throwing.

  4. Rein tension acceptance in young horses in a voluntary test situation.

    PubMed

    Christensen, J W; Zharkikh, T L; Antoine, A; Malmkvist, J

    2011-03-01

    During riding, horses are frequently exposed to pressure from the rider, e.g. through the bit and reins, but few studies have investigated at which point rein tension becomes uncomfortable for the horse. To investigate how much rein tension young inexperienced horses are willing to accept in order to obtain a food reward; whether the tension acceptance changes during 3 consecutive test days; and whether rein tension correlates with the expression of conflict behaviour and heart rate. Pressure-naïve horses will apply only little rein tension in the first voluntary trial, but their acceptance will gradually increase. High levels of rein tension will lead to expression of conflict behaviour and increases in heart rate. Fifteen 2-year-old, bridle-naïve mares were encouraged to stretch their head forward (across a 0.95 m high metal bar) to obtain a food reward in a voluntary test situation. On each test day, each horse was exposed to 2 control sessions (loose reins), an intermediate and a short rein session (1 min/session). Rein tension, heart rate and behaviour were recorded. The horses applied significantly more tension on the first day (mean rein tension: 10.2 N), compared to the second and third test day (Day 2: 6.0 and Day 3: 5.7 N). The horses showed significantly more conflict behaviour in the short rein treatment. There was no treatment effect on heart rate. The horses applied the highest rein tension on the first day, and apparently learned to avoid the tension, rather than habituate to it. Rein tension correlated with expression of conflict behaviour, indicating that the horses found the tension aversive. Further studies should focus on the correlation between rein tension and conflict behaviour in ridden horses. © 2010 EVJ Ltd.

  5. 75 FR 4547 - High Island Offshore System, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Offshore System, L.L.C.; Notice of Application January 21, 2010. Take notice that on January 12, 2010, High Island Offshore System, L.L.C. (HIOS), 1100 Louisiana St., Houston, Texas 77002, filed in Docket No. CP10... directed to Jeff Molinaro, High Island Offshore System, L.L.C., 1100 Louisiana St., Houston, Texas 77002...

  6. Dynamic postural stability for double-leg drop landing.

    PubMed

    Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping

    2013-01-01

    Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.

  7. Loss of butt-end leg bands on male wild turkeys

    USGS Publications Warehouse

    Diefenbach, Duane R.; Casalena, Mary Jo; Schiavone, Michael V.; Swanson, David A.; Reynolds, Michael; Boyd, Robert C.; Eriksen, Robert; Swift, Bryan L.

    2009-01-01

    We estimated loss of butt-end leg bands on male wild turkeys (Meleagris gallapavo) captured in New York, Ohio, and Pennsylvania (USA) during December–March, 2006–2008. We used aluminum rivet leg bands as permanent marks to estimate loss of regular aluminum, enameled aluminum, anodized aluminum, and stainless steel butt-end leg bands placed below the spur. We used band loss information from 887 turkeys recovered between 31 days and 570 days after release (x¯  =  202 days). Band loss was greater for turkeys banded as adults (>1 yr old) than juveniles and was greater for aluminum than stainless steel bands. We estimated band retention was 79–96%, depending on age at banding and type of band, for turkeys recovered 3 months after release. Band retention was <50% for all age classes and band types 15 months after banding. We concluded that use of butt-end leg bands on male wild turkeys is inappropriate for use in mark–recapture studies.

  8. New Norwegian HSE standard for the offshore industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huse, J.R.

    1996-12-31

    NORSOK (The competitive standing of the Norwegian offshore sector) is the Norwegian industry initiative to add value, reduce cost and lead time and remove unnecessary activities in offshore field developments and operations. The NORSOK standards are developed by the Norwegian petroleum industry as a part of the NORSOK initiative and are jointly issued by the Norwegian Oil Industry Association and the Federation of Norwegian Engineering Industries. The purpose of the industry standard is to replace the individual oil company specifications for use in existing and future petroleum industry developments, subject to the individual company`s review and application. The NORSOK Health,more » Safety and Environment (HSE) standards covers: Technical Safety, Working Environment, Environmental Care, HSE during Construction. The standards are now being used in ongoing offshore development projects, and the experience with standards shows that the principle aim is being met. The development of standards continues, implementing experience gained.« less

  9. Embracing Tensions in Feminist Organizational Communication Pedagogies

    ERIC Educational Resources Information Center

    Linabary, Jasmine R.; Long, Ziyu; Mouton, Ashton; Rao, Ranjani L.; Buzzanell, Patrice M.

    2017-01-01

    Feminist pedagogies hold potential to create more inclusive and transformative classrooms. Adopting a tension-centered approach, we draw on our individual and collective reflections on the design and instruction of a multi-section undergraduate organizational communication course to build an autoethnographic account of the tensions associated with…

  10. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  11. Effects of leg dominance on performance of ballet turns (pirouettes) by experienced and novice dancers.

    PubMed

    Lin, Chia-Wei; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng

    2013-01-01

    Turns (pirouettes) are an important movement in ballet and may be affected by "lateral bias". This study investigated physiological differences exhibited by experienced and novice dancers, respectively, when performing pirouette with dominant and non-dominant leg supports, respectively. Thirteen novice and 13 experienced dancers performed turns on dominant or non-dominant legs. The maximum ankle plantarflexion, knee extension and hip extension were measured during the single-leg support phase. The inclination angle of rotation axis is the angle between instantaneous rotation axis and global vertical axis in the early single-leg support phase. Both groups exhibited a greater hip extension, knee extension, and ankle plantarflexion when performing a turn on the non-dominant leg. For experienced dancers, the inclination angle of rotation axis during the pre-swing phase was generally smaller for dominant leg support than non-dominant leg. However, no significant difference was found in inclination angle of rotation axis of novice dancers. For experienced dancers, an improved performance is obtained when using the dominant leg for support. By contrast, for novice dancers, the performance is independent of choice of support leg. The significant lateral bias in experienced dancers indicates the possible influence of training. That is, repetitive rehearsal on the preferred leg strengthens the impact of side dominance in experienced dancers.

  12. Why a mosquito leg possesses superior load-bearing capacity on water: Experimentals

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Qing; Liu, Jian-Lin; Wu, Cheng-Wei

    2016-04-01

    Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force (WSF) that is 23 times their body weight. Aiming at a full understanding of the origins of this extremely large force, in this study, we concentrate on two aspects of it: the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg. Using a measurement system that we developed ourselves, the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness. The results show that leg flexibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force. Moreover, we discuss the dependence relationship between the maximum WSF and the initial stepping angle, which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff. These findings are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids, miniature boats, biomimetic robots, and microsensors.

  13. New Approaches for Responsible Management of Offshore Springs in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Shaban, Amin; de Jong, Carmen; Al-Sulaimani, Zaher

    2017-04-01

    In arid and semi-arid regions, such as the Mediterranean and Gulf Region where water is scarce water demand has been exacerbated and become a major environmental challenge. Presently there is massive pressure to develop new water sources to alleviate existing water stress. In the quest for more freshwater even groundwater discharge into the sea in the form of "off-shore freshwater springs" (or submarine groundwater discharge) has been contemplated as a potential source of unconventional water in coastal zones. Offshore-springs are derived from aquifers with complex geological controls mainly in the form of faults and karst conduits. Representing a border-line discipline, they have been poorly studied with only few submarine groundwater monitoring sites existing worldwide. Recently, innovative techniques have been developed enabling springs to be detected via remote sensing such as airborne surveys or satellite images. "Thermal Anomalies" can be clearly identified as evidence for groundwater discharge into the marine environment. A diversity of groundwater routes along which off-shore springs are fed from land sources can be recognized and near-shore and offshore springs differentiated and classified according to their geometry. This is well pronounced along the coast of Lebanon and offshore of Oman. Offshore springs play an important role in the marine ecosystem as natural sources of mercury, metals, nutrients, dissolved carbon species and in cooling or warming ocean water. However, they are extremely sensitive to variations in qualitative and quantitative water inputs triggered by climate change and anthropogenic impacts especially in their recharge zones. Pollutants such as sewage, detergents, heavy metals or herbicides that negatively affect water quality of offshore springs can transit the groundwater rapidly. Recently these springs have also been severely affected by uncontrolled water abstraction from land aquifers. In Bahrain, overpumping combined with

  14. California Red-legged Frog - Stipulated Injunction

    EPA Pesticide Factsheets

    EPA will make effects determinations and initiate consultation with the U.S. Fish and Wildlife Service, regarding the potential effects of 66 pesticide active ingredient registrations on the California red-legged frog.

  15. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running.

    PubMed

    Liew, Bernard X W; Morris, Susan; Masters, Ashleigh; Netto, Kevin

    2017-11-07

    Direct kinematic-kinetic modelling currently represents the "Gold-standard" in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual's bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P < .001), and multiplanar method by 24.2%BW/LL (P < .001). Leg stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P < .001). The inclusion of medial-lateral components significantly increased leg deformation magnitude, accounting for the reduction in leg stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Offshore wind development research (technical brief).

    DOT National Transportation Integrated Search

    2014-04-01

    The study addresses all aspects of Offshore Wind (OSW) development. This includes identifying : vessel types, vessel installation methods, needs and operating characteristics through all phases : of OSW installation, construction, operations and main...

  17. Where is the ideal location for a US East Coast offshore grid?

    NASA Astrophysics Data System (ADS)

    Dvorak, Michael J.; Stoutenburg, Eric D.; Archer, Cristina L.; Kempton, Willett; Jacobson, Mark Z.

    2012-03-01

    This paper identifies the location of an “ideal” offshore wind energy (OWE) grid on the U.S. East Coast that would (1) provide the highest overall and peak-time summer capacity factor, (2) use bottom-mounted turbine foundations (depth ≤50 m), (3) connect regional transmissions grids from New England to the Mid-Atlantic, and (4) have a smoothed power output, reduced hourly ramp rates and hours of zero power. Hourly, high-resolution mesoscale weather model data from 2006-2010 were used to approximate wind farm output. The offshore grid was located in the waters from Long Island, New York to the Georges Bank, ≈450 km east. Twelve candidate 500 MW wind farms were located randomly throughout that region. Four wind farms (2000 MW total capacity) were selected for their synergistic meteorological characteristics that reduced offshore grid variability. Sites likely to have sea breezes helped increase the grid capacity factor during peak time in the spring and summer months. Sites far offshore, dominated by powerful synoptic-scale storms, were included for their generally higher but more variable power output. By interconnecting all 4 farms via an offshore grid versus 4 individual interconnections, power was smoothed, the no-power events were reduced from 9% to 4%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms ≈450 km apart, in regions with offshore wind energy resources driven by both synoptic-scale storms and mesoscale sea breezes, substantial reductions in low/no-power hours and hourly ramp rates can be made.

  18. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  19. Prosthetic leg powered by MR brake and SMA wires

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Munguia, Vicente; Calderon, Jose

    2014-04-01

    Current knee designs for prosthetic legs rely on electric motors for both moving and stationary states. The electric motors draw an especially high level of current to sustain a fixed position. The advantage of using magnetorheological (MR) fluid is that it requires less current and can have a variable braking torque. Besides, the proposed prosthetic leg is actuated by NiTinol wire, a popular shape memory alloy (SMA). The incorporation of NiTinol gives the leg more realistic weight distribution with appropriate arrangement of the batteries and wires. The prosthesis in this research was designed with MR brake as stopping component and SMA wire network as actuating component at the knee. The MR brake was designed with novel non-circular shape for the rotor that improved the braking torque while minimizing the power consumption. The design also helped simplify the control of braking process. The SMA wire network was design so that the knee motion was actively rotated in both directions. The SMA wires were arranged and played very similar role as the leg's muscles. The study started with the overall solid design of the knee including both MR and SMA parts. Theoretical models were derived and programmed in Simulink for both components. The simulation was capable of predicting the power required for moving the leg or hold it in a fixed position for a certain amount of time. Subsequently, the design was prototyped and tested to validate the theoretical prediction. The theoretical models were updated accordingly to correlate with the experimental data.

  20. Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.

    PubMed

    Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C

    2018-04-01

    Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p < 0.001] respectively). Changes in period 2 compared with period 1 were smaller for leg BMD (p = 0.001), leg BMC (p < 0.001), leg fat mass (p = 0.028), and total BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.