Science.gov

Sample records for oil agglomeration techniques

  1. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  2. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  3. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  4. Selective oil agglomeration of lignite

    SciTech Connect

    Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder

    2009-01-15

    In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

  5. Factors affecting the oil agglomeration of Sivas-Divrigi Ulucayir lignite

    SciTech Connect

    Unal, I.; Gorgun Ersan, M.

    2007-07-01

    In the coal industry, the coal particles need to be decreased to a very fine size because of the need of removing inorganic materials from coal. Oil agglomeration is a kind of coal cleaning technique that is used for separation of organic and inorganic parts of fine sized coal. In this study, the oil agglomeration of Sivas-Divrigi (S-D) Ulucayir lignite was carried out by using kerosene, diesel oil, fuel oil, poppy oil, and sunflower oil. The amount of bridging oil was varied from 5% to 25% of the amount of lignite. The effect of oil amount, oil type, solid content, agitation rate and time, pH on agglomeration performance was investigated. Maximum recovery value of 98.18% was observed by using poppy oil. In order to investigate the effect of pH on agglomeration NaOH and HCl is added to the slurry in various amounts. It is decided that the best agglomeration condition is obtained at low pH values. The effect of nonionic surface active agent (Igepal-CA 630) on agglomeration is investigated by adding to the slurry and it is observed that the grade is increased with the amount of surface active agent.

  6. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    C. Nelson; F. Zhang; J. Drzymala; M. Shen; R. Abbott; T. D. Wheelock

    1997-11-01

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During a batch agglomeration test the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspensions or by observing changes in turbidity in the case of dilute suspensions. Dilute suspensions were employed for investigating the kinetics of agglomeration, whereas concentrated suspensions were used for determining parameters that characterize the process of agglomeration. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. Each tank was enclosed to control the amount of air present. A variable speed agitator fitted with a six blade turbine impeller was used for agitation. Tests were conducted with moderately hydrophobic Pittsburgh No. 8 coal and with more hydrophobic Upper Freeport coal using either n-heptane, i-octane, or hexadecane as an agglomerant.

  7. Adapting agglomeration techniques to today's needs

    SciTech Connect

    Brown, D.C.

    1984-07-01

    New industries and economic trends have created new problems and opportunities for which applications of agglomeration have been developed. These applications are presented and discussed briefly. The areas include sintering of finely divided ores, briquetting feed stocks, agglomerate forms for air pollution control, hazardous waste immobilization, briquetting solid fuels for energy conservation, manufacturing synfuel charges, biomass densification, and agglomerate forms for metallurgical coke.

  8. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing. Technical report number 2, October 1--December 31, 1995

    SciTech Connect

    1996-07-01

    The objective of this project is to develop and demonstrate a Proof-of-Concept (POC) scale oil agglomeration technology capable of increasing the recovery and improving the quality of fine coal streams. Two distinct agglomeration devices will be tested, namely, a conventional high shear mixer and a tubular (jet) processor. To meet the overall objective an 11 task work plan has been designed. The work will range from batch and continuous bench-scale testing through the design, commissioning and field testing of POC-scale agglomeration equipment. The project includes the following tasks: Project planning and management; host site selection and plan formulation; preliminary engineering and design of POC equipment; coal characterization and laboratory (batch) and bench-scale testing; final engineering and design of POC equipment; proof-of-concept (POC) equipment procurement and fabrication; POC equipment inspection; POC equipment installation, shakedown and operation; process evaluation; dismantling of the system; final report. Accomplishments to date are described on the site selection, a work plan for bench-scale testing, preliminary engineering and design of POC equipment, and coal characterization.

  9. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  10. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  11. Column oil agglomeration of fly ash with ultrasonics

    SciTech Connect

    Gray, M.L.; Champagne, K.J.; Soong, Y.; Finseth, D.H.

    1999-07-01

    A promising oil agglomeration process has been developed for the beneficiation of fly ash using a six-foot agglomeration column. Carbon concentrates have been separated from fly ash with yields greater than 60 % and purities of 55 to 74 %. The parameters examined in the study include ultrasonic exposure, pulse rate, frequency, agitation speed, and blade configuration. The effects of the experimental variables on the quality of separation are discussed.

  12. Basic principles and mechanisms of selective oil agglomeration

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.C.; Tyson, D.; Ziaoping, Qiu, Lessa, A.

    1990-04-01

    The overall objective is to determine the basic principles and mechanisms which underlie a number of selective oil agglomeration processes that have been proposed for beneficiating fine-size coal. An understanding of the basic principles and mechanisms will greatly facilitate technical development and application of such processes to various types of coal. 5 refs., 16 figs., 2 tabs.

  13. Basic principles and mechanisms of selective oil agglomeration

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1990-01-01

    Numerous measurements of the heat of immersion of coal were conducting using several different particle size fractions of No. 2 Gas Seam coal from Raleigh County, West Virginia. The heat of immersion was determined in water, methanol, heptane, hexadecane and neohexane (2,2-dimethybutane). A comparison of the results with those determined previously for Illinois No. 6 coal is discussed. A number of potential pyrite depressants for use in oil agglomeration of coal were screened by testing the response of sulfidized mineral pyrite to agglomeration with heptane in the presence of the potential depressant. The following were tested; sodium dithionite, sodium thiosulfate, ferrous sulfate, ferric sulfate, titanous chloride, hydrogen peroxide, Oxone (a form of potassium monopersulfate), pyrogallol, quebracho (colloidal dispersant derived from tree bark), milk whey, and several organic thiols. Ferric chloride was applied to mixtures of Upper Freeport coal and sulfidized mineral pyrite before subjecting the mixtures to agglomeration with heptane. 7 refs., 23 figs., 3 tabs.

  14. Development of a full scale selective oil agglomeration plant

    SciTech Connect

    Donnelly, J.C.; Cooney, B.; Hoare, I.; Waugh, B.; Robinson, R.

    1998-12-31

    A research and development program managed by Australian Mining Investments Limited (AMI) on behalf of an investment syndicate was conducted with the objective of improving the efficiency and economy of the Selective Oil Agglomeration Process (SOAP), and developing viable commercial sized operating plants. Fewer than half the coal preparation plants in Australia beneficiate fine coal by froth flotation, the only viable alternative to SOAP for the recovery of low ash, fine and ultra fine coal. Those plants without flotation generally dispose of the ultra fine material, approximately {minus}100{micro}m in size, as tailings to waste. In the majority of cases this ultra fine waste contains more than 50% relatively low ash coal of saleable quality. It is believed that this coal constitutes a loss of 8--10 million tonnes per annum and that the coal mining industry would welcome a recovery process which has low capital and operating costs and will function automatically with minimal operator attention. The authors carried out a comprehensive literature study of selective oil agglomeration in order to gain a full understanding of the process and to plan the research program. Extensive studies were then undertaken on oil dispersion in the water phase, formation of oil water emulsions with surfactants and the optimization of surfactant selection. Oil and emulsion properties were investigated including stability, viscosity, temperature, concentration of components, time of formation, and cost. This work was followed by characterization studies on coals from the Gunnedah Basin and agglomeration test work on these coals. These agglomeration studies were performed firstly at bench level and then by using a small, 200 kg/hr continuous process development unit. The results were sufficiently encouraging to justify the design and construction of a fully instrumented, PLC controlled, 2 tph pilot plant at Gunnedah Colliery Coal Preparation Plant. Extensive trials were carried out on

  15. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  16. Development of a gas-promoted oil agglomeration process: Air-promoted oil agglomeration of moderately hydrophobic coals. 2: Effect of air dosage in a model mixing system

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1996-07-01

    In a selective oil agglomeration process for cleaning coal, fine-size particles are suspended in water and treated with a water-immiscible hydrocarbon which can range from pentane to heavy fuel oil. Vigorous agitation is applied to disperse the oil and to produce frequent contacts between oil-coated particles. In Part 1 of this series of papers, it was shown that a definite amount of air had to be present in a laboratory mixing unit which produced a moderate shear rate in order to form compact, spherical agglomerates in an aqueous suspension of moderately hydrophobic coal using heptane or hexadecane as an agglomerate. In this paper, the effects of different amounts of air including dissolved air are discussed. The results indicate that a small amount of air will trigger the process of agglomeration, and even the air dissolved in water under equilibrium conditions at room temperature and pressure is sufficient to promote agglomeration provided it is released from solution.

  17. Development of a gas-promoted oil agglomeration process. Technical progress report, October 1, 1993--September 30, 1994

    SciTech Connect

    Wheelock, T.D.

    1994-10-01

    During the first year of the project two model mixing systems, which differed in size but were similar in design, were constructed and tested. The systems were equipped for measuring agitator speed and torque and for measuring the turbidity of coal particle suspensions undergoing agglomeration. Preliminary measurements of aqueous suspensions of coal particles showed that the Beer-Lambert law applies to such suspensions at least for low concentrations. Therefore, the measured turbidity can be used as an indicator of particle concentration and a means for monitoring the progress of oil agglomeration. However, the method is not applicable for large particle concentrations so a different technique was tested for monitoring the agglomeration of large concentrations. This technique involves measuring agitator torque and observing changes in torque while agitator speed is held constant. The results of preliminary tests of the technique were encouraging. In these tests significant changes in agitator torque were observed when particle agglomeration took place as long as solids concentration of 25 w/v % or more were utilized. A number of agglomeration tests were conducted using either one or the other of the two monitoring techniques. Both methods showed that even very small amounts of air can promote the oil agglomeration of coal particles suspended in water. Even the amount of air dissolved in water at room temperature and pressure can affect the process providing the air is displaced from the solution by a slightly soluble agglomerant such as heptane. The apparent rate of agglomeration was observed to increase as more air was introduced and also as agitator speed was increased.

  18. Nearshore dynamics of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  19. Desulfurization and deashing of Hazro coal by selective oil agglomeration in various water mediums

    SciTech Connect

    Halime Abakay Temel; Fatma Deniz Ayhan

    2006-10-15

    The aim of this study was to study the effects of various water mediums on desulfurization and deashing of Hazro coal by the agglomeration method. For this purpose, three groups of agglomeration experiments were made. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, bridging liquid concentration, and pH, on the agglomeration were investigated in the first group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the second group of experiments. The effects of lake water and sea water on the agglomeration were investigated in the third group of experiments. The influences of the Mediterranean Sea water and Aegean Sea water on the removal of ash and total sulfur were found to be important. 22 refs., 7 figs., 6 tabs.

  20. APPLICATION OF OIL AGGLOMERATION FOR EFFLUENT CONTROL FROM COAL CLEANING PLANTS

    EPA Science Inventory

    The report discusses the potential applicability of oil agglomeration for the control of black water effluents from coal cleaning plants processing four different coals. Removal and recovery of the coal from each of the black waters produced aqueous suspensions of mineral matter ...

  1. Development of a gas-promoted oil agglomeration process. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Wheelock, T.D.

    1995-12-31

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal advanced in three major research areas. One area of research resulted in the development of a method for measuring the rate of agglomeration of dilute particle suspensions and using the method to relate the rate of agglomeration of coal particles to various key parameters. A second area of research led to the development of a method for monitoring a batch agglomeration process by measuring changes in agitator torque. With this method it was possible to show that the agglomeration of a concentrated coal particle suspension is triggered by the introduction of a small amount of gas. The method was also used in conjunction with optical microscopy to study the mechanism of agglomeration. A third area of research led to the discovery that highly hydrophobic particles in an aqueous suspension can be agglomerated by air alone.

  2. Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  3. Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  4. Mechanisms for selective agglomeration of coals

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1989-05-01

    Work continued on the basic mechanisms which underlie various processes for beneficiating aqueous suspensions of coal by selective agglomeration with oil. A new method was demonstrated for characterizing the agglomerability of coal suspensions. This method utilizes a photometric dispersion analyzer to monitor changes in the turbidity of a particle suspension as increasing amounts of oil are added to the suspension in a batch agglomeration test. Agglomeration of the particles leads to a marked decrease in the turbidity of the suspension. Another experimental technique was also demonstrated for characterizing oil agglomeration. This technique involves measuring the rate of growth of agglomerates in a continuous flow system operating under stead-state conditions. The data are analyzed by means of a population balance. The results of a preliminary set of experiments in which Indiana V seam coal was agglomerated with tetralin seemed to fit a particular growth model very well. Equipment was also constructed for studying the kinetics of agglomeration in a batch process. While earlier work showed that quebracho (a commercially available dispersant) is a strong agglomeration depressant for pyrite, recent experiments with mixtures of Upper Freeport coal and mineral pyrite showed that quebracho does not appear to be sufficiently selective. Further consideration was given to the separation of mixtures of coal and pyrite agglomeration with heptane. 2 refs., 17 figs., 1 tab.

  5. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone.

    PubMed

    Dalyander, P Soupy; Long, Joseph W; Plant, Nathaniel G; Thompson, David M

    2014-03-15

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these "surface residual balls" (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results. PMID:24503377

  6. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone

    USGS Publications Warehouse

    Dalyander, P. Soupy; Long, Joesph W.; Plant, Nathaniel G.; Thompson, David M.

    2014-01-01

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3 years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these “surface residual balls” (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results.

  7. Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration

    SciTech Connect

    Ayhan, F.D.

    2009-11-15

    The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

  8. Basic principles and mechanisms of selective oil agglomeration. Fossil energy interim report, October 1, 1983--September 30, 1992

    SciTech Connect

    Wheelock, T.D.

    1992-12-31

    Numerous agglomeration tests were conducted with several types of low-ash coal and graphite, high grade mineral pyrite, and other materials. Relatively pure hydrocarbons, including heptane and hexadecane, were used as agglomerants. Access of air to the system was controlled. Particle recovery by agglomeration was observed to depend on a number of system parameters. Among the most important parameters are the hydrophobicity of the particles and the oil dosage, so that the, recovery of solids per unit of oil administered is proportional to the hydrophobicity. The pH and ionic strength of the aqueous suspension affect particle recovery in different ways depending on the surface properties of the particles. On the other hand, the presence of air in the system generally improves particle recovery. The greatest effect of air was observed in a closely related study which showed that air had to be present to produce good agglomerates from a moderately hydrophobic coal in a mixer producing a lower shear rate. The rate of agglomeration was found to be much greater for a strongly hydrophobic coal than for a moderately hydrophobic coal, and the rate was observed to be proportional to the oil dosage. Also the rate was enhanced by the presence of air in the, system. For hydrophobic coals, the rate increased with increasing ionic strength of the aqueous medium, but it was not affected greatly by pH over a wide range. The separation of coal and pyrite particles by selective agglomeration was found to depend on the relative hydrophobicity of the materials, the oil dosage, and the properties of the aqueous medium.

  9. The use of starch to enhance sulfur and ash removal from coal by selective oil agglomeration

    SciTech Connect

    Good, R.J.; Badgujar, M.N.

    1990-01-01

    We have found that the use of starch or gelatin, as an additive in the Otisca T-Process of selective oil agglomeration of coal, leads to a considerable improvement in the reduction of pyritic sulfur and of ash-forming minerals. A patent application has been filed; (Good Badgugar). Improvement in rejection of pyritic sulfur by up to 55% has been found, and improvement in ash rejection by up to 28%. Carbon recovery of 97.5 to 99.1% was obtained when the starch concentration was in the range, 30 to 200 ppM in the water. Three different bituminous coals were used: Upper Freeport, Kentucky No. 9, and Illinois No. 6.

  10. Development of a gas-promoted oil agglomeration process. Technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Zhang, F.; Nelson, C.

    1994-09-01

    The overall purpose of this research project is to carry out the preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal using model mixing systems. The design and construction of a model mixing system for conducting oil agglomeration tests were reported previously as well as the results of a series of calibration and shakedown tests. The system consists of a flat bottom tank which is fitted with four vertical baffles, a cover, and a turbine agitator. The tank has an inside diameter of 15.24 cm (6.0 in.), height of 15.24 cm (6.0 in.), and net volume of 2.87 L. The tank is connected to a photometric dispersion analyzer so that the turbidity of a coal particle suspension undergoing agglomeration can be monitored. Measuring the turbidity of a particle suspension requires application of the Beer-Lambert law. However, since this law applies for dilute suspensions, it is questionable whether or not it applies to the somewhat more concentrated coal suspensions required for the present project. Therefore, to determine the law`s applicability, a series of turbidity measurements was conducted on particle suspensions which varied in particle concentration over a wide range, and the results were analyzed to see how well they agreed with the law. To determine the effect of air in promoting the oil agglomeration of coal particles in an aqueous suspension, a number of agglomeration tests were conducted with the model mixing system. Finely ground Pittsburgh No. 8 coal was used for these tests, and the amount of air present was controlled carefully. The agglomeration process was monitored by observing the change in turbidity of the system.

  11. Diffusion mediated agglomeration of CdS nanoparticles via Langmuir–Blodgett technique

    SciTech Connect

    Das, Nayan Mani Roy, Dhrubojyoti; Gupta, P.S.

    2013-10-15

    Graphical abstract: - Highlights: • Diffusion mediated agglomeration of CdS nanoparticles are discussed. • Formation of CdS nanoparticles are confirmed by the change of chain length in XRD. • AFM shows the agglomeration of particles with a film swelling of about 5 Å. • UV–vis absorbance suggests that the grown particles show quantum confinement. • Hexagonal form of particle was confirmed by UV–vis reflectivity. - Abstract: We have reported a diffusion mediated agglomeration of cadmium sulphide (CdS) nanoparticles within cadmium arachidate (CdA{sub 2}) film matrix. The structural morphology and formation of CdS nanoparticles are characterized by X-ray diffraction (XRD), X-ray reflectivity (XRR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy techniques. X-ray diffraction (XRD) results show a change in bilayer difference from 53.04 Å to 43 Å after the sulphidation. An epitaxial growth of the films by ∼5 Å after sulphidation is confirmed from atomic force microscopy studies. The particle size calculated form UV–vis absorption edges are found to be varying from 2.6 nm to 3.3 nm for the different layers. A lateral dimension of 72–80 nm from AFM measurements and a size of 2.6–3.3 nm have confirmed one side flat pseudo two-dimensional disk-like nanoparticles. UV–vis reflectivity peak at E{sub 1} (A) confirms the formation of hexagonal CdS nanoparticles along the c-axis.

  12. Mechanisms for selective agglomeration of coals

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1989-10-01

    Measurement and control of the surface properties of coal and pyrite are important in the application of selective oil agglomeration for coal beneficiation and both received further study and consideration. One method of surface characterization involves measuring the heat of immersion of coal in water or other liquids. To develop a useful and consistent measurement technique, numerous measurements were conducted with Illinois No. 6 coal to study the effects of coal particle size and moisture content on the heat of immersion in heptane, water, hexadecane and methanol. The effect of particle size was also studied. Also, ground mineral pyrite was pretreated with dilute solutions of sodium sulfide at various Ph and then agglomerated with heptane. To achieve better control over the oil agglomeration process, oil agglomeration experiments were conducted with aqueous suspensions of graphite which were first degassed with a vacuum pump. 7 refs., 16 figs., 2 tabs.

  13. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  14. Observational Data Analysis and Numerical Model Assessment of the Seafloor Interaction and Mobility of Sand and Weathered Oil Agglomerates (Surface Residual Balls) in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Dalyander, S.; Long, J.; Plant, N. G.; Penko, A.; Calantoni, J.; Thompson, D.; Mclaughlin, M. K.

    2014-12-01

    When weathered oil is transported ashore, such as during the Deepwater Horizon oil spill, it can mix with suspended sediment in the surf zone to create heavier-than-water sand and oil agglomerates in the form of mats several centimeters thick and tens of meters long. Broken off pieces of these mats and smaller agglomerates formed in situ (called Surface Residual Balls, SRBs) can cause beach re-oiling months to years after the initial spill. The physical dynamics of these SRBs in the nearshore, where they are larger (cm-scale) and less dense than natural sediment, are poorly understood. In the current study, SRB mobility and seafloor interaction is investigated through a combination of laboratory and field experiments with pseudo-SRBs developed to be physically stable proxies for genuine agglomerates. Formulations for mobility prediction based on comparing estimated shear stress to the critical Shields and modified Shields parameters developed for mixed sediment beds are assessed against observations. Processes such as burial, exhumation, and interaction with bedforms (e.g., migrating ripples) are also explored. The observations suggest that incipient motion estimates based on a modified Shields parameter have some skill in predicting SRB movement, but that other forcing mechanisms such as pressure gradients may be important under some conditions. Additionally, burial and exhumation due to the relatively high mobility of sand grains are confirmed as key processes controlling SRB dynamics in the surf zone. This work has broad implications for understanding surf zone sediment transport at the short timescale associated with mobilizing sand grains and SRBs as well as at the longer timescales associated with net transport patterns, sediment budgets, and bed elevation changes.

  15. Unstructured multigrid through agglomeration

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.; Berger, M. J.

    1993-01-01

    In this work the compressible Euler equations are solved using finite volume techniques on unstructured grids. The spatial discretization employs a central difference approximation augmented by dissipative terms. Temporal discretization is done using a multistage Runge-Kutta scheme. A multigrid technique is used to accelerate convergence to steady state. The coarse grids are derived directly from the given fine grid through agglomeration of the control volumes. This agglomeration is accomplished by using a greedy-type algorithm and is done in such a way that the load, which is proportional to the number of edges, goes down by nearly a factor of 4 when moving from a fine to a coarse grid. The agglomeration algorithm has been implemented and the grids have been tested in a multigrid code. An area-weighted restriction is applied when moving from fine to coarse grids while a trivial injection is used for prolongation. Across a range of geometries and flows, it is shown that the agglomeration multigrid scheme compares very favorably with an unstructured multigrid algorithm that makes use of independent coarse meshes, both in terms of convergence and elapsed times.

  16. New production techniques for alberta oil sands.

    PubMed

    Carrigy, M A

    1986-12-19

    Low world oil prices represent a serious threat to expanded commercial development of the Canadian oil sands in the near term, as they do to all of the higher cost alternatives to crude oil such as oil shales and coal liquefaction. Nonetheless, research and field testing of new technology for production of oil from oil sands are being pursued by industry and government in Alberta. New production technology is being developed in Canada to produce synthetic oil from the vast resources of bitumen trapped in the oil sands and bituminous carbonates of northern Alberta. This technology includes improved methods of mining, extraction, and upgrading of bitumen from near-surface deposits as well as new drilling and production techniques for thermal production of bitumen from the more deeply buried reservoirs. Of particular interest are the cluster drilling methods designed to reduce surface disturbance and the techniques for horizontal drilling of wells from underground tunnels to increase the contact of injection fluids with the reservoir. PMID:17816505

  17. Liquid bridge agglomeration: A fundamental approach to toner deinking

    SciTech Connect

    Snyder, B.A.; Berg, J.C. . Chemical Engineering Dept.)

    1994-05-01

    An alternative agglomeration technique for deinking toner-printed furnishes has been investigated. This technique requires only the addition of an immiscible hydrocarbon oil dispersed in water at dosages of approximately 1% by weight on fiber. The addition is made during repulping: the process appears to be effective at all temperatures of interest (23 C and 70 C are tested) and requires no surfactants or additional chemicals. The result of the oil addition is the agglomeration of the toner particles into spheres of 1 mm to 1 cm in size. These spheres contain the added oil which acts as a binder, holding the toner particles together by liquid bridges. The process is ineffective when the furnish contains highly sized fibers or starched paper, and future work seeks to address these crucial problems.

  18. Mining technique finds applications in oil exploration

    SciTech Connect

    Deliac, E.P.; Messines, J.P. ); Thierree, B.A. )

    1991-03-06

    This paper reports that oil exploration companies have taken increased interest in slim hole drilling as practiced by the mining drilling industry in small diameter coring. In addition to providing cores for the entire well, the core hole drilling technique is an attractive exploration method because a well can typically be drilled for approximately 30% less than the cost of a conventionally drilled well. These savings increase even further for remote locations because the smaller core hole rig package reduces logistics and transportation expenses. The worldwide status of slim hole drilling and its applications to the oil industry were surveyed by Exploservices. Based on this survey of slim hole drilling, part of which is documented here, a major research and development project was recently launched by Elf Aquitaine. This multidisciplinary project joined explorationists with drilling and reservoir engineers to analyze existing slim hole techniques and improve them for oil field applications.

  19. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.

    PubMed

    Mehta, Shyam B; Carpenter, John F; Randolph, Theodore W

    2016-08-01

    In this study, we investigated the effect of ionic strength (1.25-231 mM) on viscoelastic interfacial gels formed by a monoclonal antibody at silicone oil-water interfaces, and the formation of subvisible particles due to rupture of these gels. Rates of gel formation and their elastic moduli did not vary significantly with ionic strength. Likewise, during gel rupture no significant effects of ionic strength were observed on particle formation and aggregation as detected by microflow imaging, resonance mass measurement, and size exclusion chromatography. Subvisible particles formed by mechanical rupturing of the gels agglomerated over time, even during quiescent incubation, due to the colloidal instability of the particles. PMID:27422087

  20. The use of starch to enhance sulfur and ash removal from coal by selective oil agglomeration. Quarterly technical progress report No. 12, July 1--September 30, 1990

    SciTech Connect

    Good, R.J.; Badgujar, M.N.

    1990-12-31

    We have found that the use of starch or gelatin, as an additive in the Otisca T-Process of selective oil agglomeration of coal, leads to a considerable improvement in the reduction of pyritic sulfur and of ash-forming minerals. A patent application has been filed; (Good & Badgugar). Improvement in rejection of pyritic sulfur by up to 55% has been found, and improvement in ash rejection by up to 28%. Carbon recovery of 97.5 to 99.1% was obtained when the starch concentration was in the range, 30 to 200 ppM in the water. Three different bituminous coals were used: Upper Freeport, Kentucky No. 9, and Illinois No. 6.

  1. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  2. Fuel agglomerates and method of agglomeration

    DOEpatents

    Wen, Wu-Wey

    1986-01-01

    Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.

  3. Spatio-temporal variability of surface water quality of fresh water resources in Ranchi Urban Agglomeration, India using geospatial techniques

    NASA Astrophysics Data System (ADS)

    Pandey, Arvind Chandra; Kumar, Amit

    2015-03-01

    Study was conducted in Ranchi Urban Agglomeration (RUA) to assess the surface water quality of major rivers and reservoirs during pre- and post-monsoon periods. Study indicated increase in chemical contaminants and decrease in biological contaminants during monsoon periods and a positive correlation with built-up land within the catchment of surface water sources. The remote sensing-based approach indicated Swarnrekha river and tributaries as more encroached by built-up land (0.73 km2 within 50 m buffer) than Jumar river and its tributaries (0.21 km2). For the proper management of the surface water sources in RUA, government attention and interventions are required to minimize the contamination and safeguard the health of local residents.

  4. Authentication of vegetable oils by chromatographic techniques.

    PubMed

    Aparicio, R; Aparicio-Ruíz, R

    2000-06-01

    Food authentication has been evolving continually to situations that were basically governed by a global market trend. Analytical techniques have been developed or modified to give plausible solutions to the devious adulterations at each moment. Classical tests have largely been replaced with newer technical procedures, most of which are based on gas chromatography, with some being based on high-performance liquid chromatography. Determination of trans-fatty acid and sterolic composition, together with sterol-dehydration products, have been used most frequently used to detect contamination and adulteration. Sophisticated new adulterations, e.g., olive oil with hazelnut oil, represent a new challenge for the next millennium, although suggestive proposals for detecting these kinds of adulterations are emerging with the contribution of databases and mathematical algorithms. PMID:10905696

  5. Remediation of Sucarnoochee soil by agglomeration with fine coal

    SciTech Connect

    Narayanan, P.S.; Arnold, D.W.; Rahnama, M.B. )

    1994-01-01

    Fine-sized Blue Creek coal was used to remove high molecular weight hydrocarbons from Sucarnoochee soil, a fine-sized high-organic soil. Fine coal in slurry form was blended with Sucarnoochee soil contaminated with 15.0% by wt of crude oil, and agglomerates were removed in a standard flotation cell. Crude oil in the remediated soil was reduced from the original 15.0% to less than a tenth of a wt% by a two-step process. Oil removal of approx. 99.3% was obtained. An added benefit was that the low-grade coal used in the process was simultaneously upgraded. The final level of cleaning was not affected by initial oil concentration. The process compared favorably with a hot water wash technique used to recovery oils from contaminated soil.

  6. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  7. Multidimensional nature of fluidized nanoparticle agglomerates.

    PubMed

    de Martín, Lilian; Bouwman, Wim G; van Ommen, J Ruud

    2014-10-28

    We show that fluidized nanoparticle agglomerates are hierarchical fractal structures with three fractal dimensions: one characterizing sintered aggregates formed during nanoparticle synthesis, one that is also found in stored agglomerates and represents unbroken agglomerates, and one describing the large agglomerates broken during fluidization. This has been possible by using spin-echo small-angle neutron scattering-a relatively novel technique that, for the first time, allowed to characterize in situ the structure of fluidized nanoparticle agglomerates from 21 nm to ∼20 μm. The results show that serial agglomeration mechanisms in the gas phase can generate nanoparticle clusters with different fractal dimensions, contradicting the common approach that considers fluidized nanoparticle agglomerates as single fractals, in analogy to the agglomerates formed by micron-sized particles. This work has important implications for the fluidization field but also has a wider impact. Current studies deal with the formation and properties of clusters where the building blocks are particles and the structure can be characterized by only one fractal dimension. However, fluidized nanoparticle agglomerates are low-dimensional clusters formed by higher-dimensional clusters that are formed by low-dimensional clusters. This multifractality demands a new type of multiscale model able to capture the interplay between different scales. PMID:25313446

  8. Secondary oil recovery techniques improve remediation projects

    SciTech Connect

    Aminian, K.; Ameri, S.

    1996-01-01

    The petroleum industry has successfully developed sophisticated oil recovery technologies that could be used for effective contaminant removal from soil and/or groundwater. In enhanced recovery, the residual oil is mobilized through injection of a solvent that is miscible with oil. Soil vapor extraction takes advantage of the highly volatile nature of VOCs in air and the relative ease of moving air through the unsaturated zone to effectively remove VOCs from the soil. A similar approach can be used for groundwater decontamination.

  9. Transfer-free graphene synthesis on sapphire by catalyst metal agglomeration technique and demonstration of top-gate field-effect transistors

    SciTech Connect

    Miyoshi, Makoto Arima, Yukinori; Kubo, Toshiharu; Egawa, Takashi; Mizuno, Masaya; Soga, Tetsuo

    2015-08-17

    Transfer-free graphene synthesis was performed on sapphire substrates by using the catalyst metal agglomeration technique, and the graphene film quality was compared to that synthesized on sputtered SiO{sub 2}/Si substrates. Raman scattering measurements indicated that the graphene film on sapphire has better structural qualities than that on sputtered SiO{sub 2}/Si substrates. The cross-sectional transmission microscopic study also revealed that the film flatness was drastically improved by using sapphire substrates instead of sputtered SiO{sub 2}/Si substrates. These quality improvements seemed to be due the chemical and thermal stabilities of sapphire. Top-gate field-effect transistors were fabricated using the graphene films on sapphire, and it was confirmed that their drain current can be modulated with applied gate voltages. The maximum field-effect mobilities were estimated to be 720 cm{sup 2}/V s for electrons and 880 cm{sup 2}/V s for holes, respectively.

  10. New technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1993-01-01

    Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination in the Space Power Facility (SPF) near Sandusky, Ohio, the largest space simulation vacuum test chamber in the U.S.A. was measured. Small size clean silicon wafers as contamination sensors placed at all desired measurement sites were used. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet uniformly the silicon substrate, two analysis models were developed to measure the oil film: continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models for our case shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on samples exposed to the same vacuum runs.

  11. Agglomeration of Dust

    SciTech Connect

    Annaratone, B. M.; Arnas, C.; Elskens, Y.

    2008-09-07

    The agglomeration of the matter in plasma, from the atomic level up to millimetre size particles, is here considered. In general we identify a continuous growth, due to deposition, and two agglomeration steps, the first at the level of tens of nanometres and the second above the micron. The agglomeration of nano-particles is attributed to electrostatic forces in presence of charge polarity fluctuations. Here we present a model based on discrete currents. With increasing grain size the positive charge permanence decreases, tending to zero. This effect is only important in the range of nanometre for dust of highly dispersed size. When the inter-particle distance is of the order of the screening length another agglomeration mechanism dominates. It is based on attractive forces, shadow forces or dipole-dipole interaction, overcoming the electrostatic repulsion. In bright plasma radiation pressure also plays a role.

  12. A new shock wave assisted sandalwood oil extraction technique

    NASA Astrophysics Data System (ADS)

    Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.

    A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.

  13. Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique

    NASA Astrophysics Data System (ADS)

    Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.

    2014-10-01

    Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.

  14. Bioremediation Techniques of Oil Contaminated Soils in Ohio

    SciTech Connect

    Hodges, David

    1996-10-03

    The objective of this project is to develop environmentally sound and cost-effective remediation techniques for crude oil contaminated soils. By providing a guidance manual to oil and gas operators, the Ohio Division of Oil and Gas regulatory authority hopes to reduce remediation costs while improving voluntary compliance with soil clean-up requirements. This shall be accomplished by conducting a series of field tests to define the optimum range for nutrient and organic enhancement to biologically remediate soils contaminated with brines and crude oil having a wide rage of viscosity.

  15. TECHNIQUES FOR MIXING DISPERSANTS WITH SPILLED OIL

    EPA Science Inventory

    The effective use of some oil spill dispersants requires the addition of mixing energy to the dispersant-treated slick. Various methods of energy application have included the use of fire hose streams directed to the water surface, outboard motors mounted on work boats, and the f...

  16. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  17. Agglomeration of ceramic powders

    NASA Technical Reports Server (NTRS)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  18. Detecting Oil on Water: A Comparison of Known Techniques

    NASA Technical Reports Server (NTRS)

    Klemas, Vytautas

    1971-01-01

    This paper reviews new developments in oil pollution detection and compares available techniques according to their effectiveness. Emphasis is on in situ and remote sensing techniques, with a potential for real-time, automated operation. No mention is made of traditional methods, requiring that a sample be taken to a laboratory for tests of solubility, chemical reactions, or other properties.

  19. Wintergreen oil: a novel method in Wheatley's trichrome staining technique.

    PubMed

    Salleh, Fatmah Md; Anuar, Tengku Shahrul; Yasin, Azlin Mohd; Moktar, Norhayati

    2012-10-01

    Permanent staining of faecal smears by Wheatley's trichrome technique has been used by many scientists for the detection of parasites in the past and it was found to be highly sensitive. This study was conducted to evaluate the use of Wintergreen oil in comparison with xylene in Wheatley's trichrome staining technique, as the reference technique. In a blind comparison study, 500 collected faecal samples from aboriginal communities were examined. Wintergreen oil was found to be more superior than xylene as a clearing agent in the Wheatley's trichrome staining of polyvinyl alcohol-fixed faecal smears for the identification of intestinal protozoa. Elimination of toxic, carcinogenic, and fire hazards makes Wintergreen oil the preferred choice in routine parasitology examinations. PMID:22986100

  20. Technique for the determination of asphaltenes in crude oil residues

    SciTech Connect

    Pearson, C.D.; Huff, G.S.; Gharfeh, S.G.

    1986-12-01

    Recently, the authors reported a method for the determination of saturates, aromatics, and resins in deasphaltened crude oil residues by high-performance liquid chromatography using a flame ionization detector. The present work describes a filtration technique for the determination of asphaltenes in crude oil residues using disposable Millex filters. This technique reduces the filtration, washing, and equilibration time needed for asphaltene determination. Six crude oil residues that varied widely in asphaltene content were used to evaluate the precision of this technique. The values obtained by Millex filters were compared to the values obtained by a conventional method using filter papers. Agreement between the two methods was very good. Several methods have been reported for the separation and determination of asphaltenes. Speight et al. made a survey of the different asphaltene procedures and conducted the experimental work to determine the optimum conditions for asphaltene separation and determination. The operating parameters recommended by Speight were used in this work.

  1. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  2. Thermal properties measurements in biodiesel oils using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.

    2005-08-01

    In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.

  3. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    NASA Astrophysics Data System (ADS)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  4. Influence of excipients and processing conditions on the development of agglomerates of racecadotril by crystallo-co-agglomeration

    PubMed Central

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Raval, Mihir; Dharamsi, Abhay

    2012-01-01

    Purpose: The purpose of the present investigation was to improve the flow and mechanical properties of racecadotril by a crystallo-co-agglomeration (CCA) technique. Direct tableting is a requirement of pharmaceutical industries. Poor mechanical properties of crystalline drug particles require wet granulation which is uneconomical, laborious, and tedious. Materials and Methods: The objective of this work was to study the influence of various polymers/excipients and processing conditions on the formation of directly compressible agglomerates of the water-insoluble drug, racecadotril, an antidiarrheal agent. The agglomerates of racecadotril were prepared using dichloromethane (DCM)–water as the crystallization system. DCM acted as a good solvent for racecadotril as well as a bridging liquid for the agglomeration of the crystallized drug and water as the nonsolvent. The prepared agglomerates were tested for micromeritic and mechanical properties. Results: The process yielded ~90 to 96% wt/ wt spherical agglomerates containing racecadotril with the diameter between 299 and 521 μ. A higher rotational speed of crystallization system reduces the size of the agglomerates and disturbs the sphericity. Spherical agglomerates were generated with a uniform dispersion of the crystallized drug. CCA showed excellent flowability and crushing strength. Conclusion: Excipients and processing conditions can play a key role in preparing spherical agglomerates of racecadotril by CCA, an excellent alternative to the wet granulation process to prepare intermediates for direct compression. PMID:23580935

  5. Laboratory techniques for investigating recovery in heavy oil reservoirs

    SciTech Connect

    Maini, B.; Sayegh, S.

    1983-01-01

    Although general guidelines have been published in the literature for selecting the most suitable tertiary recovery technique for a given reservoir, the actual design of a commercial enhanced recovery scheme is a time- consuming and expensive process requiring computer simulations, experimental field pilots, and extensive laboratory tests. The objective of this work is to review laboratory testing procedures related to heavy oil recovery and to provide reservoir and production engineers with an insight into such procedures so that they may better appreciate their potentials and limitations. The topics discussed include characterization of stock tank oils, phase behavior measurements of oil/gas systems, measurements of relative permeability, and its temperature dependence and core tests for evaluation of CO/sub 2/ stimulation. 22 references.

  6. Thermal Stability of Oil Palm Empty Fruit Bunch (OPEFB) Nanocrystalline Cellulose: Effects of post-treatment of oven drying and solvent exchange techniques

    NASA Astrophysics Data System (ADS)

    Indarti, E.; Marwan; Wanrosli, W. D.

    2015-06-01

    Nanocrystallinecellulose (NCC) from biomass is a promising material with huge potentials in various applications. A big challenge in its utilization is the agglomeration of the NCC's during processing due to hydrogen bonding among the cellulose chains when in close proximity to each other. Obtaining NCC's in a non-agglomerated and non-aqueous condition is challenging. In the present work NCC's was isolated from oil palm empty fruit bunch (OPEFB) using TEMPO-oxidation reaction method. To obtain non-agglomerated and non-aqueous products, the NCC's underwent post-treatment using oven drying (OD) and solvent exchanged (SE) techniques. The thermal stability of all samples was determined from TGA and DTG profiles whilst FTIR was used to analyzethe chemical modifications that occurred under these conditions. NCC-SE has better thermal stability than the NCC-OD and its on-set degradation temperature and residue are also higher. FTIR analysis shows that NCC-SE has a slightly different chemical composition whereby the absorption band at 1300 cm-1 (due to C-O symmetric stretching) is absent as compared to NCC-OD indicating that in NCC-SE the carboxylate group is in acid form which contribute to its thermal stability

  7. Spectral Element Agglomerate AMGe

    SciTech Connect

    Chartier, T; Falgout, R; Henson, V E; Jones, J E; Vassilevski, P S; Manteuffel, T A; McCormick, S F; Ruge, J W

    2005-05-20

    The purpose of this note is to describe an algorithm resulting from the uniting of two ideas introduced and applied elsewhere. For many problems, AMG has always been difficult due to complexities whose natures are difficult to discern from the entries of matrix A alone. Element-based interpolation has been shown to be an effective method for some of these problems, but it requires access to the element matrices on all levels. One way to obtain these has been to perform element agglomeration to form coarse elements, but in complicated situations defining the coarse degrees of freedom (dofs) is not easy. The spectral approach to coarse dof selection is very attractive due to its elegance and simplicity. The algorithm presented here combines the robustness of element interpolation, the ease of coarsening by element agglomeration, and the simplicity of defining coarse dofs through the spectral approach. As demonstrated in the numerical results, the method does yield a reasonable solver for the problems described. It can, however, be an expensive method due to the number and cost of the local, small dense linear algebra problems; making it a generally competitive method remains an area for further research.

  8. Agglomeration multigrid for the three-dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.

    1994-01-01

    A multigrid procedure that makes use of coarse grids generated by the agglomeration of control volumes is advocated as a practical approach for solving the three dimensional Euler equations on unstructured grids about complex configurations. It is shown that the agglomeration procedure can be tailored to achieve certain coarse grid properties such as the sizes of the coarse grids and aspect ratios of the coarse grid cells. The agglomeration is done as a preprocessing step and runs in linear time. The implications for multigrid of using arbitrary polyhedral coarse grids are discussed. The agglomeration multigrid technique compares very favorably with existing multigrid procedures both in terms of convergence rates and elapsed times. The main advantage of the present approach is the ease with which coarse grids of any desired degree of coarseness may be generated in three dimensions, without being constrained by considerations of geometry. Inviscid flows over a variety of complex configurations are computed using the agglomeration multigrid strategy.

  9. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  10. Oil combatting in a cold environment using bioremediation techniques

    SciTech Connect

    Rytkoenen, J.; Liukkonen, S.; Levchenko, A.; Worthington, T.; Matishov, G.; Petrov, V.

    1995-12-31

    The clean-up of oil spills in the Arctic environment is often limited by severe and cold environmental conditions. Mechanical methods are usually considered to be most favorable for oil spill combatting. However, remote spill sites, long distances, severe environmental conditions and sensitive ecosystems mean that more advanced combatting techniques are also needed to back up conventional recovery and clean-up measures. This paper describes the results of macro-scale tests conducted by VTT Manufacturing Technology to study the effectiveness of biosorbent technology against marine oil spills. The use of biosorbents was studied as a joint research project involving VTT (Finland) and the Murmansk Marine Biological Institute (Russia). Selected biosorbent products of Marine Systems, U.S.A., and the Bios Group, Russia, were used in macro-scale tests conducted in a basin measuring 15.0 {times} 3.0 m in length and width, respectively. This paper outlines the macro-scale test project, including microbiological and chemical studies, supported by toxicity tests and various analyses to understand better the fate of oil, especially the degree of biodegradation during the test.

  11. Fiber optic remote inspecting technique for caverned large oil tanks

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Jiang, Desheng; Cao, He

    2000-12-01

    In the management of caverned fuel oil inventory, a strict rule of fire control has always been the first priority due to the special conditions. It is always a challenge to perform automatic measurement by means of conventional electrical devices for inspecting oil tank level there. Introduced in this paper is a fiber optic gauging technique with millimeter precision for automatic measurement in caverned tanks. Instead of using any electrical device, it uses optical encoders and optical fibers for converting and transmitting signals. Its principle, specifications, installation and applications are discussed in detail. Theoretical analysis of the factors affecting its accuracy, stability, and special procedures adopted in the installation of the fiber optic gauge are also discussed.

  12. Fragmentation and bond strength of airborne diesel soot agglomerates

    PubMed Central

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  13. Experimental research on No-oil ignition technique of pulverized coal/coal-water-slurry

    SciTech Connect

    Zhou Zhijun; Fan Haojie; Tu Jianhua

    1997-07-01

    With new coal-fired boilers going into operation and widespread application of substitute-oil fuel such as Coal-Water-Slurry, many oil-fired boiler may stop firing oil. But the ignition of coal-fired boilers stabilizing combustion under low load also need a large amount of oil. Information show that it will consume 5t for a 50MW unit boiler to start one time and for a 125NM unit, 15t oil will be consumed. It will consume 50t oil for a 200NM unit boiler to start one time and 1000t/year on stabilizing combustion. A 600MW unit, according to information from USA, will consume 300t oil to start one time, and 23300t oil are needed for one year. So, the amount of oil used to ignite coal and stabilize combustion are very considerable. Due to attaching importance to conserving oil, novel ignition and stabilizing techniques (such as pulverized coal pre-combustion chamber technique, blunt body burner, boat-shaped burner, great-velocity-difference combustion stabilizing technique, dense-thin phase combustion stabilizing technique and plasma ignition technique) are come out these ten years, and oil consumption for ignition and stabilizing are decreased greatly. Among them, only plasma ignition technique is a kind of ignition technique without oil. Although the others can conserve a large amount of oil during ignition and low load condition, total oil consumption are still very considerable. And plasma ignition technique is not adapt to coal-water-slurry ignition. Therefore, this paper presents a novel ignition technique: electrical thermal chamber ignition technique adapting pulverized coal (PC) and coal-water-slurry (CWS), which absorbs the advantage of pre-combustion chamber technique and does not consume oil.

  14. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  15. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  16. Hydrophobic Agglomeration of Mineral Fines in Aqueous Suspensions and its Application in Flotation: a Review

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Song, Shaoxian

    2014-05-01

    Hydrophobic agglomeration is originated from the hydrophobic attraction between particles, which is essentially different from electrolyte coagulation and polymer flocculation. It is applied to mineral processing in floc-flotation process to improve the recovery of mineral fines. In this paper, the applications of this phenomenon in mineral fines were summarized, including the origin of hydrophobic agglomeration, the main factors affect hydrophobic agglomeration (particle hydrophobicity, shear rate and duration, nonpolar oil and tank geometry), as well as hydrophobic agglomeration based separation processes (carrier flotation and floc-flotation).

  17. Coal Cleaning by Gas Agglomeration

    SciTech Connect

    Meiyu Shen; Royce Abbott; T. D. Wheelock

    1998-03-01

    The gas agglomeration method of coal cleaning was demonstrated with laboratory scale mixing equipment which made it possible to generate microscopic gas bubbles in aqueous suspensions of coal particles. A small amount of i-octane was introduced to enhance the hydrophobicity of the coal. Between 1.0 and 2.5 v/w% i-octane was sufficient based on coal weight. Coal agglomerates or aggregates were produced which were bound together by small gas bubbles.

  18. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  19. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  20. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  1. Development and scale-up of particle agglomeration processes for coal beneficiation

    NASA Astrophysics Data System (ADS)

    Shen, Meiyu

    The development of two modified agglomeration processes for coal beneficiation is presented separately in Parts I and II of this dissertation. Part I is based on research which was conducted to study the mechanism and characteristics of a gas-promoted oil agglomeration process. Part II is based on research which was carried out to develop a newer and more innovative method for agglomerating coal particles with microscopic gas bubbles in aqueous suspensions. In Part I, the development of a gas-promoted oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During batch agglomeration tests the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspension. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. It was shown that gas bubbles trigger the process of agglomeration and participate in a very complex mechanism involving the interaction of particles, oil droplets, and gas bubbles. The process takes place in stages involving dispersion of oil and gas, flocculation, coagulation, and agglomerate building. Numerous agglomeration tests were conducted with two kinds of coal in concentrated suspensions to determine the important characteristics of the process and to study the effects of the following operating parameters: i-octane concentration, air concentration, particle concentration, tank diameter, impeller diameter, and impeller speed

  2. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    NASA Astrophysics Data System (ADS)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  3. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  4. Characterization of used mineral oil condition by spectroscopic techniques.

    PubMed

    Vanhanen, Jarmo; Rinkiö, Marcus; Aumanen, Jukka; Korppi-Tommola, Jouko; Kolehmainen, Erkki; Kerkkänen, Tuula; Törmä, Päivi

    2004-08-20

    Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use. PMID:15352397

  5. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  6. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  7. Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques.

    PubMed

    Chekli, L; Roy, M; Tijing, L D; Donner, E; Lombi, E; Shon, H K

    2015-08-15

    Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most prolifically used nanomaterials, resulting in an increasing likelihood of release to the environment. This is of concern as the potential toxicity of TiO2 NPs has been investigated in several recent studies. Research into their fate and behaviour once entering the environment is urgently needed to support risk assessment and policy development. In this study, we used a multi-method approach combining light scattering and field-flow fractionation techniques to assess both the aggregation behaviour and aggregate structure of TiO2 NPs in different river waters. Results showed that both the aggregate size and surface-adsorbed dissolved organic matter (DOM) were strongly related to the initial DOM concentration of the tested waters (i.e. R(2) > 0.90) suggesting that aggregation of TiO2 NPs is controlled by the presence and concentration of DOM. The conformation of the formed aggregates was also found to be strongly related to the surface-adsorbed DOM (i.e. R(2) > 0.95) with increasing surface-adsorbed DOM leading to more compact structures. Finally, the concentration of TiO2 NPs remaining in the supernatant after sedimentation of the larger aggregates was found to decrease proportionally with both increasing IS and decreasing DOM concentration, resulting in more than 95% sedimentation in the highest IS sample. PMID:26067894

  8. An analysis of oil and gas supply modeling techniques and a survey of offshore supply models

    SciTech Connect

    Walls, M.A.

    1990-01-01

    This report surveys the literature on empirical oil and gas supply modeling techniques. These techniques are categorized as either geologic/engineering, econometric, or hybrid - the last being a combination of geologic and econometric techniques. The geologic/ engineering models are further disaggregated into play analysis models and discovery process models. The strengths and weaknesses of each of the models are discussed. The report concludes with a discussion of how these techniques have been applied to offshore oil and gas supply.

  9. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    SciTech Connect

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizations of subsurface flow problems.

  10. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    Energy Science and Technology Software Center (ESTSC)

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less

  11. Suitability of online 3D visualization technique in oil palm plantation management

    NASA Astrophysics Data System (ADS)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  12. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  13. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  14. Preparation and evaluation of agglomerated crystals by crystallo-co-agglomeration: an integrated approach of principal component analysis and Box-Behnken experimental design.

    PubMed

    Garala, Kevin C; Patel, Jaydeep M; Dhingani, Anjali P; Dharamsi, Abhay T

    2013-08-16

    Poor mechanical properties of crystalline drug particles require wet granulation technique for tablet production which is uneconomical, laborious, and tedious. The present investigation was aimed to improve flow and mechanical properties of racecadotril (RCD), a poorly water soluble antidiarrheal agent, by a crystallo-co-agglomeration (CCA) technique. The influence of various excipients and processing conditions on formation of directly compressible agglomerates of RCD was evaluated. Principal component analysis and Box-Behnken experimental design was implemented to optimize the agglomerates with good micromeritics and mechanical properties. The overall yield of the process was 88-98% with size of agglomerates between 351 and 1214 μm. Further, higher rotational speed reduced the size of agglomerates and disturbed sphericity. The optimized batch of agglomerates exhibited excellent flowability and crushing strength. The optimized batch of RCD agglomerates was characterized by fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffractometry and gas chromatography which illustrated absence of drug-excipient interaction with minimal entrapment of residual solvent. Hence, it may be concluded that both excipients and processing conditions played a vital role to prepare spherical crystal agglomerates of RCD by CCA and it can be adopted as an excellent alternative to wet granulation. PMID:23684660

  15. A new technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1991-01-01

    Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination was measured in the Space Power Facility (SPF) near Sandusky, OH, the largest space simulation vacuum test chamber in the U.S.. Small clean silicon wafers placed at all desired measurement sites were used as contamination sensors. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet the silicon substrate uniformly, two analysis models were developed to measure the oil film: (1) continuous, homogeneous film; and (2) islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x-ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on examples exposed to the same vacuum runs.

  16. [Bio-remediation techniques of crude oil contaminated soils].

    PubMed

    Li, Peijun; Guo, Shuhai; Sun, Tieheng; Tai, Peidong; Zhang, Chungui; Bai, Yuxing; Sun, Qiang; Sheng, Ping

    2002-11-01

    The bioremediation of soils contaminated by different types of petroleum were carried out with composting process in a prepared bed. By the measures of nutrient- and microbiological agent addition, and moisture- and pH control, an ideal environment for microbes were obtained. When total petroleum hydrocarbons, which consist of thin oil, high condensation oil, special viscous oil, and viscous oil, were in the range of 25.8-77.2 g.kg-1 dry soil, the petroleum removal rate could reach 38.37-56.74% by 2 months operation. The contents of aromatic hydrocarbon, asphaltum and resin were important factors controlling the degradation of petroleum. 6 fungi, 6 bacteria and 1 actinomyces were found to be the dominant strains for petroleum degradation. The results could provide theoretical bases for remediation of soil contaminated by petroleum. PMID:12625007

  17. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied. PMID:27332828

  18. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  19. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Chander, S.; Hogg, R.

    1995-01-01

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. It is generally recognized that surface-based separation processes such as froth flotation or selective agglomeration offer considerable potential for such applications but there remain many problems in obtaining the required selectivity with acceptable recovery of combustible matter. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. The addition of larger amounts of oil can yield large, strong agglomerates which are easily separated but the selectivity is reduced and reagent costs can become excessive. We are investigating the use of a hybrid process - micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30-50 mm in size) rather than individual coal particles (1-10 mm) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale.

  20. Tests of absorbents and solidification techniques for oil wastes

    SciTech Connect

    Lin, M.; MacKenzie, D. R.

    1983-11-01

    A representative of each of six classes of commonly used adsorbents was chosen for a series of tests. After reviewing ASTM and other related standard tests, uncomplicated procedures were developed for carrying out specific tests to determine absorbency for simulated oil waste and for water, under static and simulated transportation (repetitive shock) conditions. The tests were then applied to the six representative absorbents. Solidification tests were performed using these absorbents saturated with oil and loaded to 50% of saturation. The binders used were Portland I cement and Delaware Custom Material (DCM) cement shale silicate. Samples were checked for proper set, and the amounts of free liquid were measured. Another series of tests was performed on samples of simulated oil waste without absorbent, using Portland cement and DCM cement shale silicate. Samples were checked for proper set, free liquid was measured, and compressive strengths were determined. The state-of-the-art parameters were identified which satisfy NRC disposal criteria for solidified radioactive waste. The literature was reviewed for alternative methods of managing oil wastes. Conclusions are drawn on the relative utility of the various methods. 17 references, 3 tables.

  1. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.

    PubMed

    Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir

    2014-02-01

    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation

  2. Study of Oil spill in Norwegian area using Decomposition Techniques on RISAT-1 Hybrid Polarimetric Data.

    NASA Astrophysics Data System (ADS)

    Jayasri, P. V.; Usha Sundari, H. S. V.; Kumari, E. V. S. Sita; Prasad, A. V. V.

    2014-11-01

    Over past few years Synthetic Aperture Radar(SAR) has received a considerable attention for monitoring and detection of oil spill due to its unique capabilities to provide wide-area surveillance and day and night measurements, almost independently from atmospheric conditions. The critical part of the oil spill detection is to distinguish oil spills from other natural phenomena. Stokes vector analysis of the image data is studied to estimate the polarized circular and linear components of the backscatter signal which essentially utilize the degree of polarization(m) and relative phase (δ) of the target. In a controlled oil spill experiment conducted at Norwegian bay during 17th to 22nd June 2014, RISAT-1 hybrid polarimetry images were utilized to study the characteristics of oil spill in the sea. The preliminary results obtained by using polarimetric decomposition technique on hybrid polarimetric data to decipher the polarimetric characteristics of oil spills from natural waters are discussed in the paper.

  3. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  4. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging fkin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced proportional to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  5. Improved techniques for fluid diversion in oil recovery. Final report

    SciTech Connect

    Seright, R.

    1996-01-01

    This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

  6. Agglomeration multigrid for viscous turbulent flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1994-01-01

    Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.

  7. Powder agglomeration in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  8. Non-thermal plasma as preparative technique to evaluate olive oil adulteration.

    PubMed

    Van Durme, Jim; Vandamme, Jeroen

    2016-10-01

    In recent years adulteration of pure extra virgin olive oil (EVOO) with other types of vegetable oils has become an important issue. In this study, non-thermal plasma (NTP) is investigated as an innovative preparative analytical technique enabling classification of adulterated olive oil from an ascertained authentic batch of olive oil in a more sensitive manner. Non-thermal plasma discharges are a source of highly oxidative species such as singlet oxygen, and atomic oxygen. It was assumed that NTP-induced oxidation triggers unique lipid oxidation mechanisms depending on the specific composition of the oil matrix and minor constituents. In this work EVOO samples were adulterated with sunflower oil (1-3%) and submitted to NTP treatment. Results showed that while untreated samples could not be classified from the authentic olive oil reference, NTP treatments of 60min (Ar/O2 0.1%) on the oil batches resulted in the formation of a unique set of secondary volatile lipid oxidation products enabling classification of adulterated oil samples. PMID:27132839

  9. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale.

    PubMed

    Sokolov, Stanislav V; Tschulik, Kristina; Batchelor-McAuley, Christopher; Jurkschat, Kerstin; Compton, Richard G

    2015-10-01

    Nanoparticles are prone to clustering either via aggregation (irreversible) or agglomeration (reversible) processes. It is exceedingly difficult to distinguish the two via conventional techniques such as dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), or electron microscopy imaging (scanning electron microscopy (SEM), transmission electron microscopy (TEM)) as such techniques only generally confirm the presence of large particle clusters. Herein we develop a joint approach to tackle the issue of distinguishing between nanoparticle aggregation vs agglomeration by characterizing a colloidal system of Ag NPs using DLS, NTA, SEM imaging and the electrochemical nanoimpacts technique. In contrast to the conventional techniques which all reveal the presence of large clusters of particles, electrochemical nanoimpacts provide information regarding individual nanoparticles in the solution phase and reveal the presence of small nanoparticles (<30 nm) even in high ionic strength (above 0.5 M KCl) and allow a more complete analysis. The detection of small nanoparticles in high ionic strength media evidence the clustering to be a reversible process. As a result it is concluded that agglomeration rather than irreversible aggregation takes place. This observation is of general importance for all colloids as it provides a feasible analysis technique for a wide range of systems with an ability to distinguish subtly different processes. PMID:26352558

  10. Micro-agglomerate flotation for deep cleaning of coal. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Chander, S.; Hogg, R.

    1995-07-01

    The development, of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. This project is concerned with a hydrid process, micro-agglomerate flotation, which is a combination of oil agglomeration and froth flotation.

  11. Development of Promising Insulating Oil and Applied Techniques of EHD, ER·MR

    NASA Astrophysics Data System (ADS)

    Hanaoka, Ryoichi

    The development of an environment-friendly insulating liquid has been noticed for a new design of oil-filled power apparatus such as transformer from viewpoints of the protection of the environment. The dielectric liquids can also widely be applied to various fields which are concerned in the electromagnetic field. This article introduces the recent trend on promising new vegetable based oil as an electrical insulation, and EHD pumping, ER fluid and MR fluid as the applied techniques of dielectric liquids.

  12. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Chander, S.; Hogg, R.

    1995-04-01

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. The addition of larger amounts of oil can yield large, strong agglomerates which are easily separated but the selectivity is reduced and reagent costs can become excessive. We are investigating the use of a hybrid process - Micro-agglomerate flotation which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30-50 mm in size) rather than individual coal particles (1-10 mm) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  13. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, 1 April--30 June 1994

    SciTech Connect

    Chander, S.; Hogg, R.

    1994-07-01

    The authors are investigating the use of a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation. The basic concepts is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 {mu}m in size) rather than individual coal particles (1--10 {mu}m) the problems of froth overload water/mineral carryover should be significantly alleviated. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response. The research program has been organized into several specific tasks: Task 1, interfacial studies; Task 2, emulsification; Task 3, agglomerate growth and structure; and Task 4, agglomerate flotation. This report summarizes the status of Tasks 2, 3, and 4.

  14. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  15. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  16. Micro-agglomerate flotation for deep cleaning of coal. Final report

    SciTech Connect

    Chander, S.; Hogg, R.

    1997-01-15

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {micro}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. In this investigation a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation was studied. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles and to use froth flotation to separate these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units will be relatively large agglomerates (30--50 {micro}m in size) rather than fine coal particles (1--10 {micro}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is demonstrated in this study that the process is very sensitive to fluctuations in operating parameters. It is necessary to maintain precise control over the chemistry of the liquid phases as well as the agitation conditions in order to promote selectivity. Both kinetics as well as thermodynamic factors play a critical role in determining overall system response.

  17. Engineering development of selective agglomeration. Final report

    SciTech Connect

    Not Available

    1993-04-01

    This report presents the findings of the project entitled ``Engineering Development of Selective Agglomeration.`` The purpose is to develop selective agglomeration technology to a commercially acceptable level by 1993. Engineering development included bench-scale process development, component development adaptation or modification of existing unit operations, proof-of-concept (POC) module design, fabrication, testing, data evaluation, and conceptual design of a commercial facility. The information obtained during POC operation resulted in a technical and economic design base sufficient to support construction and operation of a commercial plant. Throughout this project performance targets for the engineering development of selective agglomeration process were to achieve 85% or greater Btu recovery at 85% or greater pyritic sulfur rejection (PSR). Additional objectives included producing a final clean-coal product with an ash content of 6% or less which is suitable for conventional coal handling systems. The selective agglomeration process, as applied to coal cleaning, is based on differences in the surface chemistry of coal and its associated impurities. Coal particles are hydrophobic (i.e., repel water) while the majority of its impurities are hydrophilic (i.e., stabilized in water). During selective agglomeration, a liquid (the agglomerant) that is immiscible with water is introduced into a coal-water slurry and agitated to disperse it in the slurry, thereby allowing it to come into contact with all particles in the slurry. The coal particles, due to their hydrophobic nature, are attracted to the agglomerant phase. The hydrophilic mineral impurities remain in the water phase. Continued agitation of the agglomerant-coated coal particles causes them to coalesce to form agglomerates. Once the agglomerates are formed, they are separated from the mineral matter-bearing aqueous phase by subsequent processing steps.

  18. Oil and Gas Exploration Planning using VOI Technique

    NASA Astrophysics Data System (ADS)

    Peskova, D. N.; Sizykh, A. V.; Rukavishnikov, V. S.

    2016-03-01

    Paper deals with actual problem about making decisions during field development. The main aim was to apply method “Value of information” in order to estimate the necessity of field exploration works and show the effectiveness of this method. The object of analysis - field X, which is located in the Eastern Siberia. The reservoir is B13 formation of Vend age. The Field has complex structure, and divided into blocks by faults. During evaluation of the project, main uncertainties and oil in place were obtained for three blocks of the field. According to uncertainty analysis, it was suggested to drill a new exploration well, and value of information method was applied to estimate results from this exploration works. Economic evaluation of the value of information method was made by choosing optimal development strategy. According to the obtained results, drilling of the exploration wells for blocks 1 and 3 of the field X is a good decision, while drilling a well in the second block is risky and not recommended. Also using the value of information, optimal well locations were advised - well l_le for the first block, and well 33 for the third block.

  19. Investigation of self-help oil-spill response techniques and equipment

    SciTech Connect

    Enderlin, W I; Downing, J P; Enderlin, C W; Sanquist, T F; Pope, W S

    1992-06-01

    The US Coast Guard commissioned Pacific Northwest Laboratory (PNL) to conduct this study of 45 self-help oil-spill response techniques and equipment for oceangoing tankers and inland tank barges to assess the potential effectiveness of the proposed countermeasure categories. This study considers the hypothetical outflow of oil in the case of side damage and bottom damage to single-hull designs. The results will be considered by the Coast Guard in drafting regulations pertaining to the requirement for tanker vessels to carry oil pollution response equipment (i.e., in response to the oil Pollution Act of 1990). PNL's approach to this investigation included: assessing time-dependent oil outflow in the cases of collision and grounding of both tankers and barges; identifying environmental constraints on self-help countermeasure operation; identifying human factor issues, such as crew performance, safety, and training requirements for the self-help countermeasures considered; and assessing each self-help countermeasure with respect to its potential for minimizing oil loss to the environment. Results from the time-dependent oil outflow, environmental limitations, and human factors requirements were input into a simulation model.

  20. Modeling of particle agglomeration in nanofluids

    NASA Astrophysics Data System (ADS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-03-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.

  1. Effect of particle agglomeration in nanotoxicology.

    PubMed

    Bruinink, Arie; Wang, Jing; Wick, Peter

    2015-05-01

    The emission of engineered nanoparticles (ENPs) into the environment in increasing quantity and variety raises a general concern regarding potential effects on human health. Compared with soluble substances, ENPs exhibit additional dimensions of complexity, that is, they exist not only in various sizes, shapes and chemical compositions but also in different degrees of agglomeration. The effect of the latter is the topic of this review in which we explore and discuss the role of agglomeration on toxicity, including the fate of nanomaterials after their release and the biological effects they may induce. In-depth investigations of the effect of ENP agglomeration on human health are still rare, but it may be stated that outside the body ENP agglomeration greatly reduces human exposure. After uptake, agglomeration of ENPs reduces translocation across primary barriers such as lungs, skin or the gastrointestinal tract, preventing exposure of "secondary" organs. In analogy, also cellular ENP uptake and intracellular distribution are affected by agglomeration. However, agglomeration may represent a risk factor if it occurs after translocation across the primary barriers, and ENPs are able to accumulate within the tissue and thus reduce clearance efficiency. PMID:25618546

  2. Modeling of particle agglomeration in nanofluids

    SciTech Connect

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-03-07

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.

  3. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  4. New technique for collecting ambient diesel particles for bioassays

    SciTech Connect

    Hallock, M.F.; Smith, T.J.; Hammond, S.K.; Beck, B.D.; Brain, J.D.

    1987-05-01

    This paper describes a new application of viable aerosol sampler, the Liquid electrostatic Aerosol Precipitator (LEAP), for the collection of diesel particles for bioassays of pulmonary toxicity and mutagenicity or carinogenicity. Currently used methods (filtration, dry electrostatic precipitation) cause agglomeration of particles and increases in particle size up to twenty-fold, which may alter particle toxicity significantly. Collection of diesel particles with the LEAP preserved submicronic particle size. Differences in chemical composition of extracts of surface adsorbents as compared to particles collected on filters also were observed. This technique may be applicable for collection other types of combustion products or oil mists that agglomerate when collected by filtration.

  5. A new technique for collecting ambient diesel particles for bioassays.

    PubMed

    Hallock, M F; Smith, T J; Hammond, S K; Beck, B D; Brain, J D

    1987-05-01

    This paper describes a new application of a viable aerosol sampler, the Liquid Electrostatic Aerosol Precipitator (LEAP), for the collection of diesel particles for bioassays of pulmonary toxicity and mutagenicity or carcinogenicity. Currently used methods (filtration, dry electrostatic precipitation) cause agglomeration of particles and increases in particle size up to twenty-fold, which may alter particle toxicity significantly. Collection of diesel particles with the LEAP preserved submicronic particle size. Differences in chemical composition of extracts of surface adsorbents as compared to particles collected on filters also were observed. This technique may be applicable for collection of other types of combustion products or oil mists that agglomerate when collected by filtration. PMID:2438921

  6. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, January 1--March 31, 1994

    SciTech Connect

    Chander, S.; Hogg, R.

    1994-04-01

    We are investigating the use of a hybrid process -- Micro-agglomerate flotation which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 {mu}m in size) rather than individual coal particles (1--10 {mu}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases- two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  7. Micro-agglomerate location flotation for deep cleaning of coal. Quarterly progress report, October 1--December 31, 1993

    SciTech Connect

    Chander, S.; Hogg, R.

    1994-01-01

    We are investigating the use of a hybrid process -- Micro-agglomerate flotation which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 {mu}m in size) rather than individual coal particles (1--10 {mu}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  8. Modeling of Particle Agglomeration in Nanofluids

    NASA Astrophysics Data System (ADS)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (<100nm in diameter) in dispersion mediums. They are of great interest in industrial applications as heat transfer fluids owing to their enhanced thermal conductivities. Stability of nanofluids is a major problem hindering their industrial application. Agglomeration and then sedimentation are some reasons, which drastically decrease the shelf life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  9. State-of-the-art report summarizing techniques to determine residual oil saturation and recommendations on the requirements for residual oil saturation research and development

    SciTech Connect

    Chang, M.M.; Maerefat, N.L.

    1986-05-01

    An investigation was conducted on the residual oil saturation (ROS) measurement techniques developed during the last fifteen years. Knowledge of precise ROS measurements is required for EOR project planning. The advantages, limitations, and problems of each one of the techniques are presented in tabulated form. Also, some of the possible improvements in the measurement techniques for the residual oil saturation are summarized. The following residual oil saturation techniques are discussed: core analyses, well logging, backflow tracer tests, material balance and well testing, newly developed gravity log methods, and interwell residual oil saturation measurements. Several aspects left to be improved in both instrumentations and data interpretation on pressure coring, back-flow tracer tests, well logging, material balance calculations, well testing, and interwell ROS measurements are presented. A nuclear magnetism log-inject-log method is proposed in which the need for porosity measurement for determining residual oil saturation is eliminated. 91 refs., 3 tabs.

  10. Percolative fragmentation and spontaneous agglomeration

    SciTech Connect

    Hurt, R.; Davis, K.

    1999-03-01

    Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.

  11. Oil spill removal techniques and equipment. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  12. Oil spill removal techniques and equipment. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  13. Oil spill removal techniques and equipment. (Latest citations from Fluidex). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning equipment and techniques for the control, dispersal, cleanup, and disposal of oil spills. Topics include chemical dispersants, booms, and mechanical skimmers. The citations emphasize spill removal for harbors, estuaries, and shorelines, and examine spill impact on water birds and marine life. (Contains a minimum of 195 citations and includes a subject term index and title list.)

  14. Oil-spill removal techniques and equipment. (Latest citations from Fluidex data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning equipment and techniques for the control, dispersal, cleanup, and disposal of oil spills. Topics include chemical dispersants, booms, and mechanical skimmers. The citations emphasize spill removal for harbors, estuaries, and shorelines, and examine spill impact on water birds and marine life. (Contains a minimum of 180 citations and includes a subject term index and title list.)

  15. Oil spill removal techniques and equipment. (Latest citations from Oceanic Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  16. Oil-spill removal techniques and equipment. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  17. Oil spill removal techniques and equipment. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning equipment and techniques for the control, dispersal, cleanup, and disposal of oil spills. Topics include chemical dispersants, booms, and mechanical skimmers. The citations emphasize spill removal for harbors, estuaries, and shorelines, and examine spill impact on water birds and marine life. (Contains a minimum of 195 citations and includes a subject term index and title list.)

  18. Development of methods to predict agglomeration and disposition in FBCs

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.K.; Erickson, T.A.

    1995-11-01

    This 3-year, multiclient program is providing the information needed to determine the behavior of inorganic components in FBC units using advanced methods of analysis coupled with bench-scale combustion experiments. The major objectives of the program are as follows: (1) To develop further our advanced ash and deposit characterization techniques to quantify the effects of the liquid-phase components in terms of agglomerate formation and ash deposits, (2) To determine the mechanisms of inorganic transformations that lead to bed agglomeration and ash deposition in FBC systems, and (3) To develop a better means to predict the behavior of inorganic components as a function of coal composition, bed material characteristics, and combustion conditions.

  19. Agglomeration of microparticles in complex plasmas

    SciTech Connect

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-11-15

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  20. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  1. Successfully use agglomeration for size enlargement

    SciTech Connect

    Pietsch, W.

    1996-04-01

    The processing of fine and ultrafine particles by size enlargement finds an ever increasing application. At the same time, undesirable agglomeration such as buildup, caking, bridging, and uncontrolled aggregation of fine particles can occur during processing and handling of these particulate solids. This article will provide a survey of the phenomena of agglomeration and discuss the unit operation of size enlargement by agglomeration. This article is also an invitation, particularly to young engineers, to become interested in agglomeration. Considering that mechanical process technologies are requiring more energy every year than any other group of consumers and efficiencies are typically in the single digits or teens at best, considerable rewards can be expected from the development of scientifically modified, more energy-efficient methods and equipment.

  2. Advances in food powder agglomeration engineering.

    PubMed

    Cuq, B; Gaiani, C; Turchiuli, C; Galet, L; Scher, J; Jeantet, R; Mandato, S; Petit, J; Murrieta-Pazos, I; Barkouti, A; Schuck, P; Rondet, E; Delalonde, M; Dumoulin, E; Delaplace, G; Ruiz, T

    2013-01-01

    Food powders are used in everyday life in many ways and offer technological solutions to the problem of food production. The natural origin of food powders, diversity in their chemical composition, variability of the raw materials, heterogeneity of the native structures, and physicochemical reactivity under hydrothermal stresses contribute to the complexity in their behavior. Food powder agglomeration has recently been considered according to a multiscale approach, which is followed in the chapter layout: (i) at the particle scale, by a presentation of particle properties and surface reactivity in connection with the agglomeration mechanisms, (ii) at the mechanisms scale, by describing the structuration dynamics of agglomerates, (iii) at the process scale, by a presentation of agglomeration technologies and sensors and by studying the stress transmission mode in the powder bed, and finally (iv) by an integration of the acquired knowledge, thanks to a dimensional analysis carried out at each scale. PMID:23522795

  3. Good techniques optimize control of oil-based mud and solids

    SciTech Connect

    Phelps, J.; Hoopingarner, J.

    1989-02-13

    Effective techniques have been developed from work on dozens of North Sea Wells to minimize the amount of oil-based mud discharged to the sea while maintaining acceptable levels of solids. Pressure to reduce pollution during the course of drilling prompted the development of these techniques. They involve personnel and optimization of mud system and procedures. Case histories demonstrate that regulations may be met with economical techniques using existing technology. The benefits of low solids content are widely known, and are a key part of any successful mud program. Good solids control should result in lower mud costs and better drilling performance. Operators have specified high-performance shakers to accomplish this and have revised their mud programs with lower and lower allowable drilled solids percentages. This will pay off in certain areas. But with the U.K. Department of Energy regulations requiring cuttings oil discharge content (CODC) to be less than 150 g of oil/kg of dry solids discharge that went into effect Jan. 1, 1989, oil-loss control has a higher profile in the U.K. sector of the North Sea.

  4. The extraction and chromatographic determination of the essentials oils from Ocimum basilicum L. by different techniques

    NASA Astrophysics Data System (ADS)

    Loredana Soran, Maria; Codruta Cobzac, Simona; Varodi, Codruta; Lung, Ildiko; Surducan, Emanoil; Surducan, Vasile

    2009-08-01

    Three different techniques (maceration, sonication and extraction in microwave field) were used for extraction of essential oils from Ocimum basilicum L. The extracts were analyzed by TLC/HPTLC technique and the fingerprint informations were obtained. The GC-FID was used to characterized the extraction efficiency and for identify the terpenic bioactive compounds. The most efficient extraction technique was maceration followed by microwave and ultrasound. The best extraction solvent system was ethyl ether + ethanol (1:1, v/v). The main compounds identified in Ocimum basilicum L. extracts were: α and β-pinene (mixture), limonene, citronellol, and geraniol.

  5. Proceedings, volume 17, Institute for Briquetting and Agglomeration

    SciTech Connect

    Not Available

    1982-01-01

    Papers presented discussed pelletizing of coal fines, graphite manufacture, compacting of coal, use of computers in agglomeration, HYL-III process, briquetting of iron ore fines, RECLAFORM, INMETCO process, binders for agglomeration, acoustic agglomeration, pelletizing of lime-fly ash mixtures, extrusion of aluminas for catalysts, and agglomeration of wastes. Seven papers have been abstracted separately.

  6. An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations

    NASA Astrophysics Data System (ADS)

    Iskandarani, Mohamed; Wang, Shitao; Srinivasan, Ashwanth; Carlisle Thacker, W.; Winokur, Justin; Knio, Omar M.

    2016-04-01

    We give an overview of four different ensemble-based techniques for uncertainty quantification and illustrate their application in the context of oil plume simulations. These techniques share the common paradigm of constructing a model proxy that efficiently captures the functional dependence of the model output on uncertain model inputs. This proxy is then used to explore the space of uncertain inputs using a large number of samples, so that reliable estimates of the model's output statistics can be calculated. Three of these techniques use polynomial chaos (PC) expansions to construct the model proxy, but they differ in their approach to determining the expansions' coefficients; the fourth technique uses Gaussian Process Regression (GPR). An integral plume model for simulating the Deepwater Horizon oil-gas blowout provides examples for illustrating the different techniques. A Monte Carlo ensemble of 50,000 model simulations is used for gauging the performance of the different proxies. The examples illustrate how regression-based techniques can outperform projection-based techniques when the model output is noisy. They also demonstrate that robust uncertainty analysis can be performed at a fraction of the cost of the Monte Carlo calculation.

  7. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  8. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the

  9. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  10. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  11. Oil spill removal techniques and equipment. (Latest citations from fluidex). Published Search

    SciTech Connect

    1995-06-01

    The bibliography contains citations concerning the development and assessment of techniques and equipment used to control and remove oil spills. Chemical dispersants, booms, and mechanical skimmers are reviewed. Topics include recovery operations, emergency response, frogmat systems, bioremediation, and environmental monitoring. The effects of spills on marine life and fishing industries are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  12. Effects of dietary fish oil and vitamin E supplementation on canine lymphocyte proliferation evaluated using a flow cytometric technique.

    PubMed

    LeBlanc, Casey J; Dietrich, Marilyn A; Horohov, David W; Bauer, John E; Hosgood, Giselle; Mauldin, Glenna E

    2007-10-15

    Lymphocyte proliferation and peripheral blood mononuclear cell (PBMC) production of PGE(2) were assayed in 15 healthy dogs fed a basal diet supplemented with either sunflower oil (Group Sunflower oil), sunflower oil and menhaden fish oil (Group Fish oil), or sunflower oil and menhaden fish oil plus alpha-tocopherol acetate for 12 weeks (Group Fish oil + E). Lymphocyte proliferation was determined by a flow cytometric technique utilizing the fluorochrome carboxyfluorescein diacetate succinimidyl ester (CFSE). The PBMC supernatant PGE(2) concentration was assayed using a competitive enzyme-linked immunoassay. Group Fish oil had a significant decrease in lymphocyte proliferation at week 12. PBMC production of PGE(2) was decreased in all three groups but only significantly reduced in groups receiving fish oil supplementation. Based on these results, this level of fish oil supplementation appears to suppress the lymphoproliferative response in healthy, young dogs but this response can be attenuated by high levels of dietary vitamin E supplementation. Furthermore, fish oil-induced reduction in lymphocyte proliferation appears to manifest through a PGE(2)-independent mechanism and is not associated with increased lipid peroxidation. PMID:17658617

  13. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    PubMed

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. PMID:22531845

  14. Integrated Analysis of the Wood Oil from Xanthocyparis vietnamensis Farjon & Hiep. by Chromatographic and Spectroscopic Techniques.

    PubMed

    Bazzali, Ophélie; Thai, Tran Huy; Hoi, Tran Minh; Khang, Nguyen Sinh; Hien, Nguyen Thi; Casanova, Joseph; Bighelli, Ange; Tomi, Félix

    2016-01-01

    In order to get better knowledge about the volatiles produced by Xanthocyparis vietnamensis, a species recently discovered in Vietnam, its wood oil has been analyzed by a combination of chromatographic (GC, CC) and spectroscopic (GC-MS, (13)C-NMR) techniques. Forty components that accounted for 87.9% of the oil composition have been identified. The composition is dominated by nootkatene (20.7%), 11,12,13-tri-nor-eremophil-1(10)-en-7-one (17.2%), γ-eudesmol (5.1%), nootkatone (4.7%), valencene (3.5%) and 13-nor-eremophil-1(10)-en-11-one (2.6%). The structure of two new compounds-10-epi-nor-γ-eudesmen-11-one and 12-hydroxy-isodihydroagarofuran-has been elucidated, while 11,12,13-tri-nor-eremophil-1(10)-en-7-ol is reported as a natural product for the first time. The composition of X. vietnamensis wood oil varied drastically from those of leaf oils, dominated by hedycaryol (34.4%), phyllocladene (37.8%) or by pimara-6(14)-15-diene (19.4%). PMID:27355937

  15. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images

  16. DETERMINATION OF STOKES SHAPE FACTOR FOR SINGLE PARTICLES AND AGGLOMERATES

    SciTech Connect

    Matyas, Josef; Schaible, Micah J.; Vienna, John D.

    2011-09-01

    The large octahedral crystals of spinel can precipitate from glass during the high-level waste vitrification process and potentially block the glass discharge riser of electrically heated ceramic melters. To help predict the settling behavior of spinel in the riser, the settling of single particles and agglomerates was studied in stagnant and transparent viscosity oils at room temperature with developed optical particle-dynamics-analyzer. Determined dimensions and terminal settling velocities of particles were used for calculation of their Stokes shape factors. Calculated shape factor for the glass beads was almost identical with the theoretical shape factor of 2/9 for a perfect sphere. The shape factor for single spinel crystal was about 7.6 % higher compare to the theoretically predicted value for octahedron. Stokes shape factor of irregularly shaped multi-particle agglomerates was lower than that of the glass beads and individual spinel crystals because of the higher surface drag caused by the larger surface area to volume ratio.

  17. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques.

    PubMed

    Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios

    2015-12-15

    European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. PMID:26190602

  18. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    PubMed

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. PMID:27374508

  19. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  20. The seismic method in the search for oil and gas: Current techniques and future developments

    SciTech Connect

    Berkhout, A.J.

    1986-08-01

    In applying seismic echo techniques to oil and gas exploration, the underground is ''illuminated'' from the surface by acoustic waves. The incident wavefield is reflected at the geologic layer boundaries and is registered at the surface, yielding detailed information on earth's upper structure. An important aspect of the seismic method is that an unprocessed seismic image does not represent the actual picture. Each reflection has been distorted during its propagation through earth. These distortions have to be corrected before an accurate picture can be developed. This is in most cases accomplished by ''seismic inversion.'' In this paper, current seismic techniques for oil and gas search, and their further development, are reviewed, with emphasis on seismic inversion. It is shown that important new developments in theory, software, and hardware have yielded significant improvements in wave theory solutions. Most research results presented are general and apply equally well to other echo technique applications, such as ultrasonic medical imaging, nondestructive testing, acoustic microscopy, sonar, and ground radar.

  1. The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization

    NASA Technical Reports Server (NTRS)

    Loving, Donald L.; Katzoff, S.

    1959-01-01

    A flow-visualization technique, known as the fluorescent-oil film method, has been developed which appears to be generally simpler and to require less experience and development of technique than previously published methods. The method is especially adapted to use in the large high-powered wind tunnels which require considerable time to reach the desired test conditions. The method consists of smearing a film of fluorescent oil over a surface and observing where the thickness is affected by the shearing action of the boundary layer. These films are detected and identified, and their relative thicknesses are determined by use of ultraviolet light. Examples are given of the use of this technique. Other methods that show promise in the study of boundary-layer conditions are described. These methods include the use of a temperature-sensitive fluorescent paint and the use of a radiometer that is sensitive to the heat radiation from a surface. Some attention is also given to methods that can be used with a spray apparatus in front of the test model.

  2. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1999-04-28

    The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration well (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.

  3. Chemical and physicochemial properties of submicron aerosol agglomerates

    SciTech Connect

    Scripsick, R.C.; Ehrman, S.; Friedlander, S.K.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The formation of nanometer-sized aerosol particles in a premixed methane flame from both solid-phase aerosol precursors and gas-phase precursors was investigated. Techniques were developed to determine the distribution of the individual chemical species as a function of agglomerate size by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine the distribution of chemical species both from particle to particle and within the particles on a nanometer scale, we used the analytical electron microscopy techniques of energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS) coupled with transmission electron microscopy (TEM). The observed distribution of individual chemical species as a function of agglomerate size was linked to the material properties of the solid-phase precursors. For aerosol formed from gas-phase precursors by gas-to-particle conversion, the distribution of species on a manometer scale was found to correspond to the equilibrium phase distribution expected from equilibrium for the system at the flame temperatures.

  4. Analysis of Urban Agglomeration and Its Meaning for Rural People.

    ERIC Educational Resources Information Center

    Spiegelman, Robert G.

    Agglomeration--the clustering of people, businesses, or structures within an area--is investigated for two purposes: (1) defining the nature of agglomeration and erecting a suitable agglomeration theory, and (2) suggesting further research. These two objectives are seen as being vital to help improve the economic well-being of rural people by…

  5. Method for providing improved solid fuels from agglomerated subbituminous coal

    DOEpatents

    Janiak, Jerzy S.; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.

    1989-01-01

    A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.

  6. Effect of temperature on wet agglomeration of crystals

    PubMed Central

    Maghsoodi, Maryam; Yari, Zahra

    2014-01-01

    Objective(s): This study dealt with the wet agglomeration process in which a small quantity of binder liquid was added into a suspension of crystals, directly in the stirring vessel where the crystallization took place. The purpose of this investigation was evaluation of the effect of temperature on the agglomeration process in order to gain insight into the mechanism of the formation of the agglomerates. Materials and Methods: Carbamazepine was used as a model drug and water/ethanol and isopropyl acetate were used as crystallization system and binder liquid, respectively. The agglomeration of crystals was carried out at various temperatures and the agglomerates were characterized in terms of size, morphology, density and mechanical strength. Results: Evaluation of the agglomerates along the course of agglomeration shows that the properties of the particles change gradually but substantially. Higher temperature of the system during agglomeration process favors the formation of more regular agglomerates with mechanically stronger and denser structure; this can be explained by the promotion effect of temperature on the agglomeration process. Conclusion: With optimized wet agglomeration temperature, spherical, dense, and strong agglomerates can be obtained. PMID:24967063

  7. Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.

  8. Modeling Agglomeration of Dust Particles in Plasma

    SciTech Connect

    Matthews, Lorin S.; Land, Victor; Ma Qianyu; Perry, Jonathan D.; Hyde, Truell W.

    2011-11-29

    The charge on an aggregate immersed in a plasma environment distributes itself over the aggregate's surface; this can be approximated theoretically by assuming a multipole distribution. The dipole-dipole (or higher order) charge interactions between fractal aggregates lead to rotations of the grains as they interact. Other properties of the dust grains also influence the agglomeration process, such as the monomer shape (spherical or ellipsoidal) or the presence of magnetic material. Finally, the plasma and grain properties also determine the morphology of the resultant aggregates. Porous and fluffy aggregates are more strongly coupled to the gas, leading to reduced collisional velocities, and greater collisional cross sections. These factors in turn can determine the growth rate of the aggregates and evolution of the dust cloud. This paper gives an overview of the numerical and experimental methods used to study dust agglomeration at CASPER and highlights some recent results.

  9. Engineering development of selective agglomeration. Final report

    SciTech Connect

    Not Available

    1993-10-01

    This report presents the findings of the project entitled {open_quotes}Engineering Development of Selective Agglomeration.{close_quotes} In 1989 the US Department of Energy contracted with Southern Company Services, Inc. (DOE Contract No. DE-AC22-89PC88879) to develop selective agglomeration technology to a commercially acceptable level by 1993. This project is part of DOE`s program to advance the state of physical coal cleaning technologies in order to accelerate the utilization of high-sulfur coals while complying with environmental regulations. Such projects assume added importance in light of the 1990 Clean Air Act Amendments. Appropriate utilization of the abundant reserves of high-sulfur coal in the United States can make a significant contribution to achieving the goal of energy independence.

  10. Compression behavior of porous dust agglomerates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Speith, R.; Kley, W.

    2012-05-01

    Context. The early planetesimal growth proceeds through a sequence of sticking collisions of dust agglomerates. Very uncertain is still the relative velocity regime in which growth rather than destruction can take place. The outcome of a collision depends on the bulk properties of the porous dust agglomerates. Aims: Continuum models of dust agglomerates require a set of material parameters that are often difficult to obtain from laboratory experiments. Here, we aim at determining those parameters from ab initio molecular dynamics simulations. Our goal is to improve on the existing model that describe the interaction of individual monomers. Methods: We use a molecular dynamics approach featuring a detailed micro-physical model of the interaction of spherical grains. The model includes normal forces, rolling, twisting and sliding between the dust grains. We present a new treatment of wall-particle interaction that allows us to perform customized simulations that directly correspond to laboratory experiments. Results: We find that the existing interaction model by Dominik & Tielens leads to a too soft compressive strength behavior for uni- and omni-directional compression. Upon making the rolling and sliding coefficients stiffer we find excellent agreement in both cases. Additionally, we find that the compressive strength curve depends on the velocity with which the sample is compressed. Conclusions: The modified interaction strengths between two individual dust grains will lead to a different behavior of the whole dust agglomerate. This will influences the sticking probabilities and hence the growth of planetesimals. The new parameter set might possibly lead to an enhanced sticking as more energy can be stored in the system before breakup.

  11. Agglomeration and Sedimentation of MWCNTS in Chloroform

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. S.; Kolesnikova, A. A.; Grekhov, A. M.

    The kinetics of agglomeration of multiwalled carbon nanotubes dispersed in chloroform has been studied by the methods of optical spectroscopy and dynamic light scattering. With the use of the models of the diffusion of cylindrical particles, the sizes of particles obtained by this method can be recalculated to the DLS data and the concentration at which the dispersion of individual МWCNTs occurs can be determined.

  12. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  13. Best available techniques (BATs) for oil spill response in the Mediterranean Sea: calm sea and presence of economic activities.

    PubMed

    Guidi, Giambattista; Sliskovic, Merica; Violante, Anna Carmela; Vukic, Luka

    2016-01-01

    An oil spill is the accidental or intentional discharge of petroleum products into the environment due to human activities. Although oil spills are actually just a little percent of the total world oil pollution problem, they represent the most visible form of it. The impact on the ecosystems can be severe as well as the impact on economic activities. Oil spill cleanup is a very difficult and expensive activity, and many techniques are available for it. In previous works, a methodology based on different kinds of criteria in order to come to the most satisfactory technique was proposed and the relative importance of each impact criterion on the basis of the Saaty's Analytic Hierarchy Process (AHP) was also evaluated. After a review of the best available techniques (BATs) available for oil spill response, this work suggests criteria for BATs' selection when oil spills occur in the Mediterranean Sea under well-defined circumstances: calm sea and presence of economic activities in the affected area. A group of experts with different specializations evaluated the alternative BATs by means of AHP method taking into account their respective advantages and disadvantages. PMID:26498811

  14. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion.

    PubMed

    Wei, Feng; Zhang, Jun-ying; Zheng, Chu-guang

    2005-01-01

    In order to remove efficiently haled-particles emissions from coal combustions, a new way was used to put forward the process of agglomeration and the atomization was produced by the nozzle and then sprayed into the flue before precipitation devices of power station boiler in order to make inhaled-particles agglomerate into bigger particles, which can be easily removed but not change existing running conditions of boiler. According to this idea, a model is set up to study agglomeration rate and effect forces between fly ash inhaled-particles and atomized agglomerator particles. The developed agglomeration rate was expressed by relative particle number decreasing speed per unit volume. The result showed that viscosity force and flow resistance force give main influences on agglomeration effect of inhaled-particles, while springiness force and gravity have little effect on agglomeration effect of theirs. Factors influencing the agglomeration rate and effect forces are studied, including agglomerator concentration, agglomerator flux and agglomerator density, atomized-particles diameters and inhaled-particles diameter and so on. PMID:16295917

  15. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE PAGESBeta

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; Padmaperuma, Asanga B.; Connatser, Raynella M.; Stankovikj, Filip; Meier, Dietrich; Paasikallio, Ville

    2016-07-05

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  16. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect

    D`Alessio, G.; Lu, W.K.

    1996-12-31

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  17. Radiations and biodegradation techniques for detoxifying Carica papaya seed oil for effective dietary and industrial use.

    PubMed

    Afolabi, Israel Sunmola; Bisi-Adeniyi, Tolulope Dorcas; Adedoyin, Toluwalase Ronke; Rotimi, Solomon Oladapo

    2015-10-01

    Benzyl isothiocyanate (BITC) is toxic in high concentration. The capacity of Aspergillus niger, microwave and ultraviolet radiations to reduce the BITC levels in Carica papaya Linn seed oil were assessed in vitro. BITC at different concentrations were periodically exposed to microwave and ultraviolet radiations for 30 min and 10 h, respectively; and to identify Aspergillus niger for 4 days. Microwave radiation significantly reduced (p < 0.05) BITC levels (0.0272, 0.0544, and 0.0816 μmol) to 12.19, 8.99 and 27.5 % respectively within 15 min. Ultraviolet radiation significantly reduced (p < 0.05) BITC levels at all the concentrations. A. niger significantly increased (p < 0.05) BITC degradation on days 2 and 4 at 0.816, 1.36 and 2.72 nmol. Glutathione activity was significantly increased (p < 0.05) while glutathione S-transferase activity significantly reduced (p < 0.05) at all concentrations on days 3 and 4 respectively. The three techniques are possible models for improving the dietary consumption of the oil. PMID:26396392

  18. Oil whip instability control using μ-synthesis technique on a magnetic actuator

    NASA Astrophysics Data System (ADS)

    Riemann, Bernd; Araujo Perini, Efrain; Lucchesi Cavalca, Katia; Fiori de Castro, Helio; Rinderknecht, Stephan

    2013-02-01

    Rotating machines have a wide application range and since those machines have high trust levels, several rotor vibrations control methods are investigated in order to avoid sudden cracks, improve rotor performance or even to reach higher operation speeds by controlling some instabilities, critical speeds resonances or oil whip effect. Rotor instabilities are associated to the operation speed and can have structural or dynamic sources from the shaft, bearings and foundation or even from an actuator external force. This work focuses on a strategy that uses the μ-synthesis control technique to attenuate the oil whip instability effect of flexible hydrodynamically supported rotors and allows the rotor to operate in higher speeds. For the identified rotor model and the synthesized controller applied on a magnetic actuator, the control system stability and performance specifications are analyzed with regard to the model uncertainties and μ-synthesis controlled vibration levels are compared to PID controller in vertical and horizontal directions. The performance specifications within the μ-synthesis are optimized to suppress unbalance vibration and, in order to contribute to industrial acceptance, the controller design is presented as a strategy which focuses on a design at reduced effort.

  19. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more

  20. Olive oil sensory defects classification with data fusion of instrumental techniques and multivariate analysis (PLS-DA).

    PubMed

    Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga

    2016-07-15

    Three instrumental techniques, headspace-mass spectrometry (HS-MS), mid-infrared spectroscopy (MIR) and UV-visible spectrophotometry (UV-vis), have been combined to classify virgin olive oil samples based on the presence or absence of sensory defects. The reference sensory values were provided by an official taste panel. Different data fusion strategies were studied to improve the discrimination capability compared to using each instrumental technique individually. A general model was applied to discriminate high-quality non-defective olive oils (extra-virgin) and the lowest-quality olive oils considered non-edible (lampante). A specific identification of key off-flavours, such as musty, winey, fusty and rancid, was also studied. The data fusion of the three techniques improved the classification results in most of the cases. Low-level data fusion was the best strategy to discriminate musty, winey and fusty defects, using HS-MS, MIR and UV-vis, and the rancid defect using only HS-MS and MIR. The mid-level data fusion approach using partial least squares-discriminant analysis (PLS-DA) scores was found to be the best strategy for defective vs non-defective and edible vs non-edible oil discrimination. However, the data fusion did not sufficiently improve the results obtained by a single technique (HS-MS) to classify non-defective classes. These results indicate that instrumental data fusion can be useful for the identification of sensory defects in virgin olive oils. PMID:26948620

  1. APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS

    SciTech Connect

    M.L. Korphage; Bruce G. Langhus; Scott Campbell

    2003-03-01

    Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more

  2. Comparison of oil refining and biodiesel production process between screw press and n-hexane techniques from beauty leaf feedstock

    NASA Astrophysics Data System (ADS)

    Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.

    2016-07-01

    The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.

  3. Assessment of surfactants for efficient droplet PCR in mineral oil using the pendant drop technique.

    PubMed

    Pandit, Kunal R; Rueger, Paul E; Calabrese, Richard V; Raghavan, Srinivasa R; White, Ian M

    2015-02-01

    Amplification and detection of nucleic acid sequences within integrated microsystems is routinely conducted using the technique of droplet PCR, wherein the polymerase chain reaction (PCR) is performed in microscale water-in-oil droplets (nanoliter to picoliter volumes). During droplet PCR, interactions at the interface of the droplet tend to dominate. Specifically, adsorption of the polymerase at the droplet interface leads to inefficient amplification. To reduce polymerase adsorption, surfactants such as the silicone-based ABIL EM90 have been commonly used. However, these surfactants have been selected largely through trial and error, and have been only somewhat effective. For example, when using ABIL EM90, 8 times (8 ×) the manufacturer prescribed concentration of polymerase was necessary for amplification. In this report, we use the pendant drop technique to measure adsorption and loss of enzyme at droplet interfaces for various surfactant-oil combinations. Dynamic interfacial tension and surface pressure measurements showed that significant polymerase adsorption occurs when using ABIL EM90. In contrast, much lower polymerase adsorption is observed when using Brij L4, a nonionic surfactant with a C12 tail and an oxyethylene headgroup, which has not yet been reported for droplet PCR. These results correlate strongly with droplet PCR efficiency. Brij L4 enables highly efficient PCR at 2 × polymerase concentration, and still enables effective PCR at 1 × polymerase concentration. Overall, this work introduces a methodology for quantitatively assessing surfactants for use with droplet microreactors, and it demonstrates the practical value of this new approach by identifying a surfactant that can dramatically improve the efficiency of droplet PCR. PMID:25620443

  4. Agglomeration defects on irradiated carbon nanotubes

    SciTech Connect

    Steini Moura, Cassio; Balzaretti, Naira Maria; Amaral, Livio; Gribel Lacerda, Rodrigo; Pimenta, Marcos A.

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  5. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, July 1--September 30, 1993

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-10-01

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 1 {mu}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. It is generally recognized that surface-based separation processes such as froth flotation or selective agglomeration offer considerable potential for such applications but there remain many problems in obtaining the required selectivity with acceptable recovery of combustible matter. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. The addition of larger amounts of oil can yield large, strong agglomerates which are easily separated but the selectivity is reduced and reagent costs can become excessive.

  6. Engineering development of selective agglomeration: Trace element removal study. Final report

    SciTech Connect

    Not Available

    1994-01-01

    Cosponsored by EPRI; DOE; Praxis Engineers, Inc.; and Southern Company Services, Inc., this project was an effort to scale up a selective agglomeration concept that EPRI and the Alberta Research Council jointly developed. So that as-mined high-sulfur coals can meet environmental regulations, investigators defined, tested, scaled up the selective agglomeration physical coal cleaning technology for rejecting pyritic sulfur while maintaining high Btu recoveries. Among the project`s goals was 85% recovery or greater of Btu recoveries. Among the project`s goals was 85% recovery or greater of Btu values with 85% pyritic sulfur rejection based on run-of-mine coal, creating a product with ash content of 6% or less that is usable in conventional coal handling systems. To achieve these goals, researchers divided the project into two phases. In Phase 1, they performed more than 1000 bench-scale continuous and batch tests and product forming component development. Proof-of-concept testing in Phase II used the most promising configurations from Phase I with diesel oil as the agglomerate and pelletization product forming. Research estimates for cleaning the entire product from conventional cleaning circuits with selective agglomeration was approximately $25/ton product or $490/ton SO{sub 2} removed. These figures suggest that precombustion sulfur removal is competitive with postcombustion strategies. The project also demonstrated that the degree of trace element reduction is coal specific and that significant reductions are possible using conventional coal cleaning and selective agglomeration. Since many of the trace elements in coal are hazardous air pollutants, removal of the elements before burning will eliminate their release into the atmosphere.

  7. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. PMID:25403494

  8. Apparatus and method for compacting, degassing and carbonizing carbonaceous agglomerates

    SciTech Connect

    Theodore, F.W.

    1980-08-19

    An apparatus for compacting, degassing and carbonizing carbonaceous agglomerates is described. The apparatus comprises a rotary kiln having an agglomerate inlet means for introducing green agglomerates into the kiln near the inlet of the kiln and a heating medium inlet for introducing a heating medium comprising a finely divided solid into the kiln at a preselected location intermediate the inlet end of the kiln and the outlet end of the kiln to produce a mixture at a temperature above the carbonizing temperature of the agglomerates and a sieve positioned to receive the products from the rotary kiln and separate the heating medium and the compacted, degassed, carbonized agglomerate product. A method for producing compacted, degassed, carbonized carbonaceous agglomerates by the use of the apparatus is also disclosed.

  9. General concepts of hydrargillite Al(OH) 3, agglomeration

    NASA Astrophysics Data System (ADS)

    Veesler, S.; Roure, S.; Boistelle, R.

    1994-02-01

    Agglomeration is an important stage of the Bayer process aiming at increasing the initial size of Al(OH) 3 particles. In the present work, we investigate the effects of supersaturation, seed charge and stirring rate on the agglomeration of hydrargillite crystallites, the size of which ranges from about 2 to 10 μm. The experiments are carried out in a batch crystallizer at constant temperature and caustic concentration. It is shown that the agglomeration rate increases with increasing seed charge, but rapidly reaches a plateau before decreasing when the seed charge is too high. On the other hand, agglomeration continuously decreases with increasing stirring rate, while it is favoured by increasing supersaturation. In the latter case, growth of the crystallites contributes to coarsening the agglomerates. We propose the general outlines of an agglomeration model taking collision and disagglomeration probabilities into account.

  10. Analysis and synthesis of solutions for the agglomeration process modeling

    NASA Astrophysics Data System (ADS)

    Babuk, V. A.; Dolotkazin, I. N.; Nizyaev, A. A.

    2013-03-01

    The present work is devoted development of model of agglomerating process for propellants based on ammonium perchlorate (AP), ammonium dinitramide (ADN), HMX, inactive binder, and nanoaluminum. Generalization of experimental data, development of physical picture of agglomeration for listed propellants, development and analysis of mathematical models are carried out. Synthesis of models of various phenomena taking place at agglomeration implementation allows predicting of size and quantity, chemical composition, structure of forming agglomerates and its fraction in set of condensed combustion products. It became possible in many respects due to development of new model of agglomerating particle evolution on the surface of burning propellant. Obtained results correspond to available experimental data. It is supposed that analogical method based on analysis of mathematical models of particular phenomena and their synthesis will allow implementing of the agglomerating process modeling for other types of metalized solid propellants.

  11. Process and formulation variables in the preparation of wax microparticles by a melt dispersion technique. I. Oil-in-water technique for water-insoluble drugs.

    PubMed

    Bodmeier, R; Wang, J; Bhagwatwar, H

    1992-01-01

    Ibuprofen-wax (carnauba, paraffin, beeswax, and the semisynthetic glyceryl esters--Gelucire 64/02 and Precirol ATO5) microparticles were prepared without organic solvents as an alternative to polymeric microparticles. In the melt dispersion technique, the drug-wax melt was emulsified into a heated aqueous phase followed by cooling to form the microparticles. The microparticles were characterized with respect to their drug loading, and morphological and release properties. They were spherical and non-agglomerated and drug loading close to 60 per cent were achieved. The more hydrophilic waxes (Gelucire 64/02 or Precirol ATO5) could be prepared without the use of surfactants. With the other waxes, increasing amounts of sodium lauryl sulphate in the external aqueous phase decreased the drug loading because of drug solubilization when compared to the polymeric stabilizer, poly(vinyl alcohol). The type of wax, the rate of cooling, and the temperature of the aqueous phase had no significant effect on the drug loading because of the low solubility of the drug in the external aqueous phase. The drug release was controlled by the hydrophobicity of the wax. Besides ibuprofen, other water-soluble drugs (ketoprofen, indomethacin, hydrocortisone) were also encapsulated by this method. The wax microparticles could be formulated into an aqueous sustained-release oral suspension dosage form. PMID:1613647

  12. Skin friction measurement in complex flows using thin oil film techniques

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Grant NAG2-261 was initiated to support a program of research to study complex flows that occur in flight and laboratory experiments by building, testing and optimizing an on-board technique for direct measurement of surface shear stress using thin oil film techniques. The program of research has proceeded under the supervision of the NASA Ames Research Center and with further cooperation from the NASA Ames-Dryden and NASA Langley Research Centers. In accordance with the original statement of work, the following research milestones were accomplished: (1) design and testing of an internally mounted one-directional skin friction meter to demonstrate the feasibility of the concept; (2) design and construction of a compact instrument capable of measuring skin friction in two directions; (3) study of transitional and fully turbulent boundary layers over a flat plate with and without longitudinal pressure gradients utilizing the compact two-directional skin friction meter; (4) study of the interaction between a turbulent boundary layer and a shock wave generated by a compression corner using the two-directional meter; and (5) flight qualification of the compact meter and accompanying electronic and pneumatic systems, preliminary installation into flight test fixture.

  13. [Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis].

    PubMed

    Yang, Yu-wei; Chen, Guo; Yang, Yu-wei; Chen, Guo

    2005-08-01

    The spectrometric oil analysis (SOA) is an important technique for machine state monitoring and fault diagnosis, and forecasting machine state through SOA results has an advantage of finding out machine system wear fault early. Because Artificial Neural Network (ANN) possesses obvious advantages over traditional forecasting models for identifyingnon-linear model and forecasting non-even signal, the ANN forecasting approach was applied to monitoring technique by SOA, and the monitoringtechnique by SOA based on ANN forecasting was put forward. In the forecasting model, a 3-layer BP network structure was adopted.Aiming at the problem that ANN structure has a great effect on forecasting precision, the authors utilized the Genetic Algorithm (GA) to optimize the node number of input layer, the node number of hidden layer, and MSE (Mean of Squared Error) target value which was required for ANN training, and obtained the optimum forecasting model of ANN. Finally, the practical SOA data of some engine was analyzed and forecasted by ANN, and the forecasting result was compared with that of traditional ARMA model. The result fully showsthe superiority and effectivity of the new method. PMID:16329517

  14. Method for producing ceramic particles and agglomerates

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  15. Method for recovering light hydrocarbons from coal agglomerates

    DOEpatents

    Huettenhain, Horst; Benz, August D.; Getsoian, John

    1991-01-01

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  16. Rapid determination of plasmonic nanoparticle agglomeration status in blood.

    PubMed

    Jenkins, Samir V; Qu, Haiou; Mudalige, Thilak; Ingle, Taylor M; Wang, Rongrong; Wang, Feng; Howard, Paul C; Chen, Jingyi; Zhang, Yongbin

    2015-05-01

    Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood. Here, we establish novel methods using darkfield microscopy with hyperspectral detection (hsDFM), single particle inductively-coupled plasma mass spectrometry (spICP-MS), and confocal Raman microscopy (cRM) to discriminate gold nanoparticles (AuNPs) and their agglomerates in blood. Rich information about nanoparticle agglomeration in situ is provided by hsDFM monitoring of the plasmon resonance of primary nanoparticles and their agglomerates in whole blood; cRM is an effective complement to hsDFM to detect AuNP agglomerates in minimally manipulated samples. The AuNPs and the particle agglomerates were further distinguished in blood for the first time by quantification of particle mass using spICP-MS with excellent sensitivity and specificity. Furthermore, the agglomeration status of synthesized and commercial NPs incubated in blood was successfully assessed using the developed methods. Together, these complementary methods enable rapid determination of the agglomeration status of plasmonic nanomaterials in biological systems, specifically blood. PMID:25771013

  17. Rapid Determination of Plasmonic Nanoparticle Agglomeration Status in Blood

    PubMed Central

    Jenkins, Samir V.; Qu, Haiou; Mudalige, Thilak; Ingle, Taylor; Wang, RongRong; Wang, Feng; Howard, Paul C.; Chen, Jingyi; Zhang, Yongbin

    2015-01-01

    Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood. Here, we establish novel methods using darkfield microscopy with hyperspectral detection (hsDFM), single particle inductively-coupled plasma mass spectrometry (spICP-MS), and confocal Raman microscopy (cRM) to discriminate gold nanoparticles (AuNPs) and their agglomerates in blood. Rich information about nanoparticle agglomeration in situ is provided by hsDFM monitoring of the plasmon resonance of primary nanoparticles and their agglomerates in whole blood; cRM is an effective complement to hsDFM to detect AuNP agglomerates in minimally manipulated samples. The AuNPs and the particle agglomerates were further distinguished in blood for the first time by quantification of particle mass using spICP-MS with excellent sensitivity and specificity. Furthermore, the agglomeration status of synthesized and commercial NPs incubated in blood was successfully assessed using the developed methods. Together, these complementary methods enable rapid determination of the agglomeration status of plasmonic nanomaterials in biological systems, specifically blood. PMID:25771013

  18. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J. ); Kothari, M.; Hariri, H.; Arastoopour, H. )

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  19. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J.; Kothari, M.; Hariri, H.; Arastoopour, H.

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  20. Application of Lipschitz Regularity and Multiscale Techniques for the Automatic Detection of Oil Spills in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.; Tello, M.

    2015-12-01

    This research presents a promising new method for the detection and tracking of oil spills from Synthetic Aperture Radar (SAR) data. The method presented here combines a number of advanced image processing techniques in order to overcome some common performance limitations of SAR-based oil spill detection. Principal among these limitations are: (1) the radar cross section of the ocean surface strongly depends on wind and wave activities and is therefore highly variable; (2) the radar cross section of oil covered waters is often indistinguishable from other dark ocean features such as low wind areas or oil lookalikes, leading to ambiguities in oil spill detection. In this paper, we introduce two novel image analysis techniques to largely mitigate the aforementioned performance limitations, namely Lipschitz regularity (LR) and Wavelet transforms. We used LR, an image texture parameter akin to the slope of the local power spectrum, in our approach to mitigate these limitations. We show that the LR parameter is much less sensitive to variations of wind and waves than the original image amplitude, lending itself well for normalizing image content. Beyond its benefit for image normalization, we also show that the LR transform enhances the contrast between oil-covered and oil-free ocean surfaces and therefore improves overall spill detection performance. To calculate LR, the SAR images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), which are furthermore transformed into Holder space to measure LR. Finally, we demonstrate that the implementation of wavelet transforms provide additional benefits related to the adaptive reduction of speckle noise. We show how LR and CWT are integrated into our image analysis workflow for application to oil spill detection. To describe the performance of this approach under controlled conditions, we applied our method to simulated SAR data of wind driven oceans containing oil spills of various properties. We also

  1. Recent improvements in optimizing use of dispersants as a cost-effective oil spill countermeasure technique

    SciTech Connect

    Daling, P.S.; Indrebo, G.

    1996-12-31

    Several oil spill incidents during recent years have demonstrated that the physico-chemical properties of spilled oil and the effectiveness of available combat methods are, in addition to the prevailing environmental and weather conditions, key factors that determine the consequences of an oil spill. Pre-spill analyses of the feasibility and effectiveness of different response strategies, such as mechanical recovery and dispersants, for actual oils under various environmental conditions should therefore be an essential part of any oil spill contingency planning to optimize the overall {open_quotes}Net Environmental Benefit{close_quotes} of a combat operation. During the four-year research program ESCOST ({open_quotes}ESSO-SINTEF Coastal Oil Spill Treatment Program{close_quotes}), significant improvements have been made in oil spill combat methods and in tools for use in contingency planning and decision-making during oil spill operations. This paper will present an overview of the main findings obtained with respect to oil weathering and oil spill dispersant treatment.

  2. Bioremediation techniques on crude oil contaminated soils in Ohio. First quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    Hodges, D.

    1996-03-27

    The objective of this project is to develop environmentally-sound and cost-effective remediation techniques for crude oil contaminated soils. By providing a guidance manual to oil and gas operators, the Ohio Division of Oil and Gas regulatory authority hopes to reduce remediation costs while improving voluntary compliance with soil clean-up requirements. This shall be accomplished by conducting a series of field tests to define the optimum range for nutrient, oxygen and organic enhancement to biologically remediate soils contaminated with brines and crude oil having a wide range of viscosity. Task one of the bioremediation project began on July 3, 1995 with the selection and preparation of a site in Smith township. Mahoning County. The plots were arranged and parameters were varied. Plots, 1, 3, 5, 7, 9 and 11 were contaminated with 159 liters (42 gal. ) of Corning grade crude oil and plots 2, 4, 6, 8 and 12 were contaminated with 159 liters (42 gal.) of Pennsylvania grade crude oil. Plots 13 through 21 were contaminated with 159 liters (42 gal.) of Pennsylvania grade crude oil and 477 liters (126 gal.) of Clinton sandstone brine with a 160,000 mg/liter concentration of chloride. Treatment and administration of variables were conducted from August 17, 1995 to October 26, 1995. During this period samples were collected twice from each plot and analyzed for the parameters specified in the contract. Results from both sampling events of total petroleum hydrocarbons suggest that crude oil spread on surface is not easily mixed into soils as tillage depth, resulting in considerably variable composite samples from plot to plot.

  3. Interaction between magnetic agglomerates and an extended free radicals network studied by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Zolnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Berczynski, Pawel; Petridis, Dimitri

    2012-02-01

    Solids containing an extended network of free radicals have been prepared and studied by magnetic resonance techniques in the 4-290 K temperature range. One solid contained additionally a small amount of magnetic γ-Fe2O3 in the form of nanoparticle agglomerates. The solid without agglomerates displayed only a narrow, single resonance line centered at g eff = 2.0043. The magnetic resonance measurements of the solid with γ-Fe2O3 agglomerates gave a spectrum composed of two lines attributed to two different magnetic centers: a narrow line due to free radicals and a broad line arising from magnetic iron oxide agglomerates. In the high temperature range the integrated intensities of both lines decreased with decreasing temperature. The resonance field of the broad line shifted to lower magnetic fields upon lowering the temperature with the gradient ΔH r/ΔT = 2.3 G/K, while the narrow line shifted towards higher magnetic fields. The linewidth of the broader line increased with decreasing temperature while for the narrow lines in both samples this change was small. The magnetic iron oxide clusters produce a magnetic field which acts on the free radicals network and its strength depends essentially on the concentration of clusters. The reorientation process in the free radicals network is more intense in the sample without magnetic clusters.

  4. Interaction between magnetic agglomerates and an extended free radicals network studied by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Zolnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Berczynski, Pawel; Petridis, Dimitri

    2012-02-01

    Solids containing an extended network of free radicals have been prepared and studied by magnetic resonance techniques in the 4-290 K temperature range. One solid contained additionally a small amount of magnetic γ-Fe2O3 in the form of nanoparticle agglomerates. The solid without agglomerates displayed only a narrow, single resonance line centered at g eff = 2.0043. The magnetic resonance measurements of the solid with γ-Fe2O3 agglomerates gave a spectrum composed of two lines attributed to two different magnetic centers: a narrow line due to free radicals and a broad line arising from magnetic iron oxide agglomerates. In the high temperature range the integrated intensities of both lines decreased with decreasing temperature. The resonance field of the broad line shifted to lower magnetic fields upon lowering the temperature with the gradient Δ H r /Δ T = 2.3 G/K, while the narrow line shifted towards higher magnetic fields. The linewidth of the broader line increased with decreasing temperature while for the narrow lines in both samples this change was small. The magnetic iron oxide clusters produce a magnetic field which acts on the free radicals network and its strength depends essentially on the concentration of clusters. The reorientation process in the free radicals network is more intense in the sample without magnetic clusters.

  5. Simple techniques to increase the production yield and enhance the quality of organic rice bran oils.

    PubMed

    Srikaeo, Khongsak; Pradit, Maythawinee

    2011-01-01

    This study develops simple techniques for increasing production yield and refining of crude RBO (CRBO). It was found that pre-heating of rice bran by hot air oven to reach 60°C before being extracted by screw press machine increased the yield from 4.8 to 8.3%w/w. This paper suggested three simple steps for refining of organic CRBO: (1) filtering using filter papers (2) sedimentation by adding 4%w/v fuller's earth and (3) bleaching by running through a packed column of activated carbon. These steps significantly enhanced the qualities of RBO when compared to CRBO before treatment. It was found that the lightness of oil as indicated by color value (L*) increased from 22.8 to 28.7, gum and wax decreased from 3.6 to 1.3%w/w. However, the simple refining method had no effect on peroxide value and free fatty acid content. Moreover, it slightly induced the loss of oryzanol content from 2.8 to 2.2%w/w. PMID:21178310

  6. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  7. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.; Chandran, Ravi

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  8. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  9. Development and trial of microwave techniques for measurement of multiphase flow of oil, water and gas

    SciTech Connect

    Ashton, S.L.; Cutmore, N.G.; Roach, G.J.; Watt, J.S.; Zastawny, H.W.; McEwan, A.J.

    1994-12-31

    A prototype microwave and gamma-ray MFM has been developed for measurement of oil, water and gas flowrates on production pipelines and has been successfully trialed at the Thevenard island oil production facility. The microwave and gamma-ray MFM determined the oil and water flow rates with errors of 5.4 and 5.9% relative respectively for the wide range of wells and flow conditions during the trial period. A prototype non-intrusive microwave MFM is being developed for measurement of oil, water and gas flow rates on production pipelines. The microwave MFM will be trialed on the West Kingfish platform in Bass Strait in late 1994.

  10. Comparison Between Different Flavored Olive Oil Production Techniques: Healthy Value and Process Efficiency.

    PubMed

    Clodoveo, Maria Lisa; Dipalmo, Tiziana; Crupi, Pasquale; Durante, Viviana; Pesce, Vito; Maiellaro, Isabella; Lovece, Angelo; Mercurio, Annalisa; Laghezza, Antonio; Corbo, Filomena; Franchini, Carlo

    2016-03-01

    Three different flavoring methods of olive oil were tested employing two different herbs, thyme and oregano. The traditional method consist in the infusion of herbs into the oil. A second scarcely diffused method is based on the addition of herbs to the crushed olives before the malaxation step during the extraction process. The third innovative method is the implementation of the ultrasound before the olive paste malaxation. The objective of the study is to verify the effect of the treatments on the quality of the product, assessed by means of the chemical characteristics, the phenol composition and the radical scavenging activity of the resulting oils. The less favorable method was the addition of herbs directly to the oil. A positive effect was achieved by the addition of herbs to the olive paste and other advantages were attained by the employment of ultrasound. These last two methods allow to produce oils "ready to sell", instead the infused oils need to be filtered. Moreover, the flavoring methods applied during the extraction process determine a significant increment of phenolic content and radical scavenging activity of olive oils. The increments were higher when oregano is used instead of thyme. Ultrasound inhibited the olive polyphenoloxidase, the endogenous enzyme responsible for olive oil phenol oxidation. This treatment of olive paste mixed with herbs before malaxation was revealed as the most favorable method due to the best efficiency, reduced time consumption and minor labor, enhancing the product quality of flavored olive oil. PMID:26852311

  11. Biological effects of agglomerated multi-walled carbon nanotubes.

    PubMed

    Song, Zheng-Mei; Wang, Lin; Chen, Ni; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-06-01

    The physicochemical properties of nanomaterials play crucial roles in determining their biological effects. Agglomeration of nanomaterials in various systems is a common phenomenon, however, how agglomeration affects the biological consequence of nanomaterials has not been well investigated because of its complexity. Herein, we prepared variable sized agglomerates of oxidized multi-walled carbon nanotubes (O-MWCNTs) by using Ca(2+) and studied their cellular uptake and cytotoxicity in HeLa cells. We found the altered property of O-MWCNTs agglomerates could be controlled and adjusted by the amount of Ca(2+). Agglomeration remarkably facilitated the cellular uptake of O-MWCNTs at the initial contact stage, due to the easy contact of agglomerates with cells. But agglomeration did not induce evident cytotoxicity when the concentration of O-MWCNTs was less than 150μg/mL. That was assayed by cell proliferation, membrane integrity, apoptosis and ROS generation. This study suggests us that the biological behaviors of nanomaterials could be altered by their states of agglomeration. PMID:26930035

  12. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.

    PubMed

    Zook, Justin M; Rastogi, Vinayak; Maccuspie, Robert I; Keene, Athena M; Fagan, Jeffrey

    2011-10-25

    Agglomeration of nanoparticles during measurements in relevant biological and environmental media is a frequent problem in nanomaterial property characterization. The primary problem is typically that any changes to the size distribution can dramatically affect the potential nanotoxicity or other size-determined properties, such as the absorbance signal in a biosensor measurement. Herein we demonstrate analytical ultracentrifugation (AUC) as a powerful method for measuring two critical characteristics of nanoparticle (NP) agglomerates in situ in biological media: the NP agglomerate size distribution, and the localized surface plasmon resonance (LSPR) absorbance spectrum of precise sizes of gold NP agglomerates. To characterize the size distribution, we present a theoretical framework for calculating the hydrodynamic diameter distribution of NP agglomerates from their sedimentation coefficient distribution. We measure sedimentation rates for monomers, dimers, and trimers, as well as for larger agglomerates with up to 600 NPs. The AUC size distributions were found generally to be broader than the size distributions estimated from dynamic light scattering and diffusion-limited colloidal aggregation theory, an alternative bulk measurement method that relies on several assumptions. In addition, the measured sedimentation coefficients can be used in nanotoxicity studies to predict how quickly the agglomerates sediment out of solution under normal gravitational forces, such as in the environment. We also calculate the absorbance spectra for monomer, dimer, trimer, and larger gold NP agglomerates up to 600 NPs, to enable a better understanding of LSPR biosensors. Finally, we validate a new method that uses these spectra to deconvolute the net absorbance spectrum of an unknown bulk sample and approximate the proportions of monomers, dimers, and trimers in a polydisperse sample of small agglomerates, so that every sample does not need to be measured by AUC. These results

  13. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah, Class I

    SciTech Connect

    Morgan, Craig D.; Gwynn, Wallace; Deo, Milind D.; Jarrard, Richard; Curtice, Richard; Morris, Thomas H.; Smouse, DeForrest; Tripp, Carol N.

    2000-01-20

    The objective of this project was to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Unita Basin Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that staged-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance.

  14. AMG by element agglomeration and constrained energy minimization interpolation

    SciTech Connect

    Kolev, T V; Vassilevski, P S

    2006-02-17

    This paper studies AMG (algebraic multigrid) methods that utilize energy minimization construction of the interpolation matrices locally, in the setting of element agglomeration AMG. The coarsening in element agglomeration AMG is done by agglomerating fine-grid elements, with coarse element matrices defined by a local Galerkin procedure applied to the matrix assembled from the individual fine-grid element matrices. This local Galerkin procedure involves only the coarse basis restricted to the agglomerated element. To construct the coarse basis, one exploits previously proposed constraint energy minimization procedures now applied to the local matrix. The constraints are that a given set of vectors should be interpolated exactly, not only globally, but also locally on every agglomerated element. The paper provides algorithmic details, as well as a convergence result based on a ''local-to-global'' energy bound of the resulting multiple-vector fitting AMG interpolation mappings. A particular implementation of the method is illustrated with a set of numerical experiments.

  15. New techniques on oil spill modelling applied in the Eastern Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Kokinou, Eleni; Alves, Tiago; Lardner, Robin

    2016-04-01

    Small or large oil spills resulting from accidents on oil and gas platforms or due to the maritime traffic comprise a major environmental threat for all marine and coastal systems, and they are responsible for huge economic losses concerning the human infrastructures and the tourism. This work aims at presenting the integration of oil-spill model, bathymetric, meteorological, oceanographic, geomorphological and geological data to assess the impact of oil spills in maritime regions such as bays, as well as in the open sea, carried out in the Eastern Mediterranean Sea within the frame of NEREIDs, MEDESS-4MS and RAOP-Med EU projects. The MEDSLIK oil spill predictions are successfully combined with bathymetric analyses, the shoreline susceptibility and hazard mapping to predict the oil slick trajectories and the extend of the coastal areas affected. Based on MEDSLIK results, oil spill spreading and dispersion scenarios are produced both for non-mitigated and mitigated oil spills. MEDSLIK model considers three response combating methods of floating oil spills: a) mechanical recovery using skimmers or similar mechanisms; b) destruction by fire, c) use of dispersants or other bio-chemical means and deployment of booms. Shoreline susceptibility map can be compiled for the study areas based on the Environmental Susceptibility Index. The ESI classification considers a range of values between 1 and 9, with level 1 (ESI 1) representing areas of low susceptibility, impermeable to oil spilt during accidents, such as linear shorelines with rocky cliffs. In contrast, ESI 9 shores are highly vulnerable, and often coincide with natural reserves and special protected areas. Additionally, hazard maps of the maritime and coastal areas, possibly exposed to the danger on an oil spill, evaluate and categorize the hazard in levels from low to very high. This is important because a) Prior to an oil spill accident, hazard and shoreline susceptibility maps are made available to design

  16. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  17. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.

    PubMed

    Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis

    2012-01-01

    The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules. PMID:22292966

  18. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  19. Effect of drug content and agglomerate size on tabletability and drug release characteristics of bromhexine hydrochloridetalc agglomerates prepared by crystallo-co-agglomeration.

    PubMed

    Jadhav, Namdeo; Pawar, Atmaram; Paradkar, Anant

    2010-03-01

    The objective of the investigation was to study the effect of bromhexine hydrochloride (BXH) content and agglomerate size on mechanical, compressional and drug release properties of agglomerates prepared by crystallo-co-agglomeration (CCA). Studies on optimized batches of agglomerates (BXT1 and BXT2) prepared by CCA have showed adequate sphericity and strength required for efficient tabletting. Trend of strength reduction with a decrease in the size of agglomerates was noted for both batches, irrespective of drug loading. However, an increase in mean yield pressure (14.189 to 19.481) with an increase in size was observed for BXT2 having BXH-talc (1:15.7). Surprisingly, improvement in tensile strength was demonstrated by compacts prepared from BXT2, due to high BXH load, whereas BXT1, having a low amount of BXH (BXH-talc, 1:24), showed low tensile strength. Consequently, increased tensile strength was reflected in extended drug release from BXT2 compacts (Higuchi model, R(2) = 0.9506 to 0.9981). Thus, it can be concluded that interparticulate bridges formed by BXH and agglomerate size affect their mechanical, compressional and drug release properties. PMID:20228039

  20. Oil spill removal techniques and equipment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning methods and equipment used for the containment and removal of oil as a result of oil spill mishaps. Dispersants, separators, skimmers and absorbants are discussed. Related studies regarding film spreading and dispersion are presented. Studies pertaining to shipboard ballast and bilgewater cleaning are excluded. (Contains 250 citations and includes a subject term index and title list.)

  1. Determination and structural elucidation of triacylglycerols in krill oil by chromatographic techniques.

    PubMed

    Araujo, Pedro; Zhu, Han; Breivik, Joar Fjørtoft; Hjelle, Jan Idar; Zeng, Yingxu

    2014-02-01

    The content of triacylglycerols (TAG) in krill oil is generally omitted from the labels of commercial supplements and unacknowledged in studies aimed at proving its health benefits. The present study demonstrates that TAG compounds, in addition to phospholipids and lysophospholipids, are an important lipid class in pure krill oil. The fatty acid composition of TAG molecules from krill oil and their distribution on the backbone of TAG structures were determined by gas chromatography and liquid chromatography tandem mass spectrometric, respectively. The content of omega 3 polyunsaturated fatty acids (n-3 PUFA) was similar to those reported in the literature for fish oil. It was estimated that 21 % of n-3 PUFA were at the sn-2 position of TAG structures. To our knowledge, this is the first determination and structural characterization of TAG in pure krill oil supplements. PMID:24190513

  2. Authentication and traceability of Italian extra-virgin olive oils by means of stable isotopes techniques.

    PubMed

    Portarena, S; Gavrichkova, O; Lauteri, M; Brugnoli, E

    2014-12-01

    Authentication of food origin is relevant to avoid food fraud. This work aimed to explore the variation of isotopic compositions (δ(13)C, δ(18)O) of extra-virgin olive oils from Italy growing in different environmental conditions. A total of 387 oil samples from nine different regions (from North to South), produced on 2009, 2010 and 2011, were analysed. Statistical analysis showed correlations among oil isotope compositions and latitude, mean annual temperature, mean annual precipitation and xerothermic index. No correlation was found comparing isotope compositions with elevation and longitude. An observed shift of the oil δ(18)O per centigrade degree of the mean annual temperature is congruent with literature. The year effect was significant for both δ(18)O and δ(13)C. Samples from Sicilia and Sardegna were higher in (13)C and (18)O than oils from northern regions. PMID:24996298

  3. Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: a metabolomic approach.

    PubMed

    Mehl, Florence; Marti, Guillaume; Boccard, Julien; Debrus, Benjamin; Merle, Philippe; Delort, Estelle; Baroux, Lucie; Raymo, Vilfredo; Velazco, Maria Inés; Sommer, Horst; Wolfender, Jean-Luc; Rudaz, Serge

    2014-01-15

    Due to the importance of citrus lemon oil for the industry, fast and reliable analytical methods that allow the authentication and/or classification of such oil, using the origin of production or extraction process, are necessary. To evaluate the potential of volatile and non-volatile fractions for classification purposes, volatile compounds of cold-pressed lemon oils were analyzed, using GC-FID/MS and FT-MIR, while the non-volatile residues were studied, using FT-MIR, (1)H-NMR and UHPLC-TOF-MS. 64 Lemon oil samples from Argentina, Spain and Italy were considered. Unsupervised and supervised multivariate analyses were sequentially performed on various data blocks obtained by the above techniques. Successful data treatments led to statistically significant models that discriminated and classified cold-pressed lemon oils according to their geographic origin, as well as their production processes. Studying the loadings allowed highlighting of important classes of discriminant variables that corresponded to putative or identified chemical functions and compounds. PMID:24054247

  4. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  5. Operational source receptor calculations for large agglomerations

    NASA Astrophysics Data System (ADS)

    Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael

    2016-04-01

    For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission

  6. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  7. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  8. Engineering development of selective agglomeration. Executive summary: Final report

    SciTech Connect

    Not Available

    1993-04-01

    Project performance targets for the selective agglomeration process were to achieve 85% or greater Btu recovery at 85% or greater pyritic sulfur rejection (PSR) on a run-of-mine (ROM) coal basis, while producing a final clean-coal product with an ash content of 6% or less which is handleable by conventional coal handling systems. Engineering development of selective agglomeration included: (1) Batch and continuous bench-scale precess development testing; (2) Continuous pilot-scale (3-t/h) component development testing to evaluate the adaptation and/or modification of existing unit operations for selective agglomeration; (3) Continuous pilot-scale (2-t/h) POC testing to optimize the selective agglomeration process and demonstrate precess reliability; (4) Vendor testing to evaluate pelletization and thermal drying precesses as applied to selective agglomeration; (5) Conceptual design of a commercial-scale (200-V/h) selective agglomeration facility; (6) Economic analysis of the selective agglomeration precess at a commercial (200-t/h) scale. The information obtained from the various modes of testing and analysis, particularly POC operations, resulted in a technical and economic design base sufficient to support construction and operation of a commercial plant.

  9. Analysis of atmospheric fluidized bed combustion agglomerates. Final report

    SciTech Connect

    Perkins, D. III; Brekke, D.W.; Karner, F.R.

    1984-04-01

    Chemical and textural studies of AFBC agglomerates have revealed detailed information regarding the mechanisms of agglomeration. The formation of agglomerates in a silica sand bed can be described by a four step process: initial ash coatings of quartz grains; thickening of ash coatings and the formation of nodules; cementation of nodules to each other by a sulfated aluminosilicate matrix; and partial or complete melting of eutectic compositions to produce a sticky glass phase between grains and along fractures. Once agglomeration has begun, large scale solidification and restricted flow within the bed will lead to hot spots, wholesale melting and further agglomeration which ultimately forces a shutdown. Standard operating temperatures during normal AFBC runs come quite close to, or may actually exceed, the minimum temperatures for eutectic melting of the silicate phases in the coal and standard bed materials. The partially melted material may be expected to lead to the formation of dense, sticky areas within the bed, and the formation of hot spots which further exacerbate the problem. Ultimately, large scale bed agglomeration will result. Attempts to eliminate agglomeration by removal of sodium via an ion exchange process have yielded encouraging results. A second approach, used to raise melting temperatures within the bed, has been to use bed materials that may react with low-temperature minerals to produce high-temperature refractory phases such as mullite or other alkali and alkali-earth alumino-silicates.

  10. Giant retinal tears. Surgical techniques and results using perfluorodecalin and silicone oil tamponade.

    PubMed

    Mathis, A; Pagot, V; Gazagne, C; Malecaze, F

    1992-01-01

    Intraoperative use of perfluorocarbon liquids in the management of giant retinal tears was introduced about 4 years ago. Twenty-four patients were operated on for giant retinal tears using perfluorodecalin and silicone oil tamponade. All patients underwent pars plana vitrectomy, unfolding of the giant retinal tears by perfluorodecalin, perfluorodecalin-silicone oil exchange, and endophotocoagulation. The lens was removed in 10 of 14 phakic patients, and encircling scleral buckle was placed in 18 cases. Twenty-three of 24 retinas remained successfully attached with a minimum of 6 months of follow-up. Short-term results of intraoperative use of perfluorodecalin and silicone oil tamponade in the management of giant retinal tears are encouraging. Perfluorodecalin offers the advantage of low cost compared with other perfluoro-carbon liquids like perfluoro-n-octane. The exchange with silicone oil offers the advantages of easy removal of perfluorodecalin and absence of posterior slippage of the retinal tear. PMID:1455087

  11. A technique to measure fuel oil viscosity in a fuel power plant.

    PubMed

    Delgadillo, Miguel Angel; Ibargüengoytia, Pablo H; García, Uriel A

    2016-01-01

    The viscosity measurement and control of fuel oil in power plants is very important for a proper combustion. However, the conventional viscometers are only reliable for a short period of time. This paper proposes an on-line analytic viscosity evaluation based on energy balance applied to a piece of tube entering the fuel oil main heater and a new control strategy for temperature control. This analytic evaluation utilizes a set of temperature versus viscosity graphs were defined during years of analysis of fuel oil in Mexican power plants. Also the temperature set-point for the fuel oil main heater output is obtained by interpolating in the corresponding graph. Validation tests of the proposed analytic equations were carried out in the Tuxpan power plant in Veracruz, Mexico. PMID:26652127

  12. An improved technique for modeling initial reservoir hydrocarbon saturation distributions: Applications in Illinois (USA) aux vases oil reservoirs

    USGS Publications Warehouse

    Udegbunam, E.; Amaefule, J.O.

    1998-01-01

    An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, S(wir), P(d), and ??, derived from the Brooks and Corey (1966) model [Brooks, R.H., Corey, A.T., 1966. Hydraulic properties of porous media, Hydrology Papers, Colorado State Univ., Ft. Collins, No. 3, March.], are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to

  13. Review of ash agglomeration in fluidized bed gasifiers

    SciTech Connect

    Matulevicius, E.S.; Golan, L.P.

    1984-07-01

    The purpose of this study is to review the data and mathematical models which describe the phenomena involved in the agglomeration of ash in fluidized bed coal gasifiers (FBG). Besides highlighting the data and theoretical models, this review lists areas where there is a lack of information regarding the actual mechanisms of agglomeration. Also, potential areas for further work are outlined. The work is directed at developing models of agglomeration which could be included in computer codes describing fluidized bed gasifier phenomena, e.g., FLAG and CHEMFLUB which have been developed for the US Department of Energy. 134 references, 24 figures, 13 tables.

  14. Agglomeration of proteins in acoustically levitated droplets.

    PubMed

    Delissen, Friedmar; Leiterer, Jork; Bienert, Ralf; Emmerling, Franziska; Thünemann, Andreas F

    2008-09-01

    An ultrasonic trap (acoustic levitator) was used as an analytical tool to allow container-free handling of proteins in small sample volumes. This trap was combined for the first time with synchrotron small-angle X-ray scattering (SAXS) for structure analysis of biological macromolecules in a solution. The microfocus beamline at BESSY was used as a source of intense X-ray radiation. Apoferritin (APO) was used as a model protein, and its aggregation behavior in a levitator was followed from a diluted solution to the solid state. Different stages of APO agglomeration were observed without solid container walls, which may influence aggregation behavior and produce a parasitic scattering background. Starting with a volume of 5 microL we analyzed the concentration dependence of APO structure factors in the range from 5 to 1,200 mg/mL (solid protein). The solution was stirred automatically due to convection inside the droplet caused by the ultrasonic field. SAXS data recording of APO was performed in time intervals of 60 s during an aggregation experiment of 30 to 60 min. PMID:18607573

  15. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy.

    PubMed

    Wang, Chunyan; Shi, Xiaofeng; Li, Wendong; Wang, Lin; Zhang, Jinliang; Yang, Chun; Wang, Zhendi

    2016-03-15

    Concentration-synchronous-matrix-fluorescence (CSMF) spectroscopy was applied to discriminate the oil species by characterizing the concentration dependent fluorescence properties of petroleum related samples. Seven days weathering experiment of 3 crude oil samples from the Bohai Sea platforms of China was carried out under controlled laboratory conditions and showed that weathering had no significant effect on the CSMF spectra. While different feature extraction methods, such as PCA, PLS and Gabor wavelet analysis, were applied to extract discriminative patterns from CSMF spectra, classifications were made via SVM to compare their respective performance of oil species recognition. Ideal correct rates of oil species recognition of 100% for the different types of oil spill samples and 92% for the closely-related source oil samples were achieved by combining Gabor wavelet with SVM, which indicated its advantages to be developed to a rapid, cost-effective, and accurate forensic oil spill identification technique. PMID:26795119

  16. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    NASA Astrophysics Data System (ADS)

    Brown, Philip S.; Bhushan, Bharat

    2015-03-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised.

  17. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  18. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  19. Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique.

    PubMed

    Yu, Xiuzhu; van de Voort, F R; Sedman, J

    2007-11-30

    Spectral reconstitution (SR), a technique that has been developed to facilitate mid-FTIR transmission analysis of inherently viscous samples, was applied to simplify and automate a previously reported FTIR method for the determination of peroxide value (PV) of edible oils. The basis of the PV determination is the rapid reaction of triphenylphosphine (TPP) with the hydroperoxides present in an oil to produce triphenylphosphine oxide (TPPO), which exhibits a readily measurable absorption band at 542 cm(-1). In the SR procedure, the viscosity of oil samples is reduced by mixing them with a diluent, which allows them to be readily loaded into a flow-through transmission cell. The spectra of the neat oil samples are then reconstituted from those of the diluted samples by using the absorption of a spectral marker present in the diluent to determine the dilution ratio. For the SR-based PV method, the TPP reagent was added to the diluent, which consisted of odorless mineral spirits (OMS) containing methylcyclopentadienyl manganese tricarbonyl (MMT) as the spectral marker. Sample preparation for PV analysis involved mixing approximately 10 ml of oil with approximately 25 ml of the TPP-containing diluent; accurate weighing or delivery of precise volumes was not required because the dilution ratio was determined spectroscopically from the intensity of the nu(CO) absorption of MMT at 1942 cm(-1) in the spectrum of the diluted sample relative to that in the spectrum of the diluent. Calibration standards, prepared by gravimetric addition of TPPO to a peroxide-free oil, were handled in the same manner, and a linear calibration equation relating the concentration of TPPO (expressed as the equivalent PV) to the absorbance of TPPO at 542 cm(-1) relative to a baseline at 530 cm(-1) in the reconstituted spectra was obtained, with a regression S.D. of +/-0.15 meq/kg oil. PV determinations on two sets of validation samples, spanning PV ranges of 0-20 and 0-2 meq/kg oil, were carried out

  20. Potential of spectroscopic techniques and chemometric analysis for rapid measurement of docosahexaenoic acid and eicosapentaenoic acid in algal oil.

    PubMed

    Wu, Di; He, Yong

    2014-09-01

    Developing rapid methods for measuring long-chain ω-3 (n-3) poly-unsaturated fatty acid (LCPUFA) contents has been a crucial request from the algal oil industry. In this study, four spectroscopy techniques, namely visible and short-wave near infra-red (Vis-SNIR), long-wave near infra-red (LNIR), mid-infra-red (MIR) and nuclear magnetic resonance (NMR) spectroscopy, were exploited for determining the docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents in algal oil. The best prediction for both DHA and EPA were achieved by NMR spectroscopy, in which the determination coefficients of cross-validation (rCV(2)) values were 0.963 and 0.967 for two LCPUFAs. The performances of Vis-SNIR and LNIR spectroscopy were also accepted. The variable selection was proved as an efficient and necessary step for the spectral analysis in this study. The results were promising and implied that spectroscopy techniques have a great potential for assessment of DHA and EPA in algal oil. PMID:24731319

  1. DEVELOPMENT OF A VIRTUAL INTELLIGENCE TECHNIQUE FOR THE UPSTREAM OIL INDUSTRY

    SciTech Connect

    Iraj A. Salehi; Shahab D. Mohaghegh; Samuel Ameri

    2004-09-01

    The objective of the research and development work reported in this document was to develop a Virtual Intelligence Technique for optimization of the Preferred Upstream Management Practices (PUMP) for the upstream oil industry. The work included the development of a software tool for identification and optimization of the most influential parameters in upstream common practices as well as geological, geophysical and reservoir engineering studies. The work was performed in cooperation with three independent producing companies--Newfield Exploration, Chesapeake Energy, and Triad Energy--operating in the Golden Trend, Oklahoma. In order to protect data confidentiality, these companies are referred to as Company One, Two, Three in a randomly selected order. These producing companies provided geological, completion, and production data on 320 wells and participated in frequent technical discussions throughout the project. Research and development work was performed by Gas Technology Institute (GTI), West Virginia University (WVU), and Intelligent Solutions Inc. (ISI). Oklahoma Independent Petroleum Association (OIPA) participated in technology transfer and data acquisition efforts. Deliverables from the project are the present final report and a user-friendly software package (Appendix D) with two distinct functions: a characterization tool that identifies the most influential parameters in the upstream operations, and an optimization tool that seeks optimization by varying a number of influential parameters and investigating the coupled effects of these variations. The electronic version of this report is also included in Appendix D. The Golden Trend data were used for the first cut optimization of completion procedures. In the subsequent step, results from soft computing runs were used as the guide for detailed geophysical and reservoir engineering studies that characterize the cause-and-effect relationships between various parameters. The general workflow and the main

  2. Dispersion of TiO₂ nanoparticle agglomerates by Pseudomonas aeruginosa.

    PubMed

    Horst, Allison M; Neal, Andrea C; Mielke, Randall E; Sislian, Patrick R; Suh, Won Hyuk; Mädler, Lutz; Stucky, Galen D; Holden, Patricia A

    2010-11-01

    Engineered nanoparticles are increasingly incorporated into consumer products and are emerging as potential environmental contaminants. Upon environmental release, nanoparticles could inhibit bacterial processes, as evidenced by laboratory studies. Less is known regarding bacterial alteration of nanoparticles, including whether bacteria affect physical agglomeration states controlling nanoparticle settling and bioavailability. Here, the effects of an environmental strain of Pseudomonas aeruginosa on TiO₂ nanoparticle agglomerates formed in aqueous media are described. Environmental scanning electron microscopy and cryogenic scanning electron microscopy visually demonstrated bacterial dispersion of large agglomerates formed in cell culture medium and in marsh water. For experiments in cell culture medium, quantitative image analysis verified that the degrees of conversion of large agglomerates into small nanoparticle-cell combinations were similar for 12-h-growth and short-term cell contact experiments. Dispersion in cell growth medium was further characterized by size fractionation: for agglomerated TiO₂ suspensions in the absence of cells, 81% by mass was retained on a 5-μm-pore-size filter, compared to only 24% retained for biotic treatments. Filtrate cell and agglomerate sizes were characterized by dynamic light scattering, revealing that the average bacterial cell size increased from 1.4 μm to 1.9 μm because of nano-TiO₂ biosorption. High-magnification scanning electron micrographs showed that P. aeruginosa dispersed TiO₂ agglomerates by preferential biosorption of nanoparticles onto cell surfaces. These results suggest a novel role for bacteria in the environmental transport of engineered nanoparticles, i.e., growth-independent, bacterially mediated size and mass alterations of TiO₂ nanoparticle agglomerates. PMID:20851981

  3. Acoustic agglomeration of power plant fly ash. Final report

    SciTech Connect

    Reethof, G.; McDaniel, O.H.

    1982-01-01

    The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.

  4. Variation in the volatile oil composition of Eucalyptus citriodora produced by hydrodistillation and supercritical fluid extraction techniques.

    PubMed

    Mann, Tavleen S; Babu, G D Kiran; Guleria, Shailja; Singh, Bikram

    2013-04-01

    This work reports variations in the yields and quality of volatiles produced from Eucalyptus citriodora leaves by different hydrodistillation (HD) and supercritical carbon dioxide extraction (SCE) techniques. HD techniques (1.5%) produced higher yields compared to SCE (0.7%). Citronellal, the major component, was maximum in the extract produced by SCE (79%) followed by oil produced by water-steam distillation (WSD) (72.6%) and water distillation (WD) (62.4%) techniques. Chemical composition of glycoside-bound volatiles produced by acid hydrolysis during HD was found to be very different from free volatiles, although in a minor quantity. The extent of artefact formation and release of aglycones was more profound in the bound volatile oil produced by WD than WSD. Highest oxygenated monoterpenes were found in SCE and WSD (93% each) followed by WD (91.4%). Although the SCE produced lower yields than the HD techniques, its extract is superior in quality in terms of higher concentration of citronellal. PMID:22559719

  5. Microbatch crystallization under oil — a new technique allowing many small-volume crystallization trials

    NASA Astrophysics Data System (ADS)

    Chayen, Naomi E.; Shaw Stewart, Patrick D.; Blow, David M.

    1992-08-01

    An approach to rapid protein crystallization using very small samples is described. A computer controlled microdispenser is used to make crystallization samples as microbatch droplets under oil. Samples of 1-2 μl are dispensed ready-mixed and with good precision. The samples are protected from evaporation, contamination and physical shock by the oil. When favourable conditions for crystallization have been found using one mode of the system, the size and quantity of crystals are optimized by a second program which generates a set of conditions throughout the area of interest. Crystals of diffraction size and quality have been grown in 1 μl drops.

  6. Optimization study of Chromalaena odorata essential oil extracted using solventless extraction technique

    NASA Astrophysics Data System (ADS)

    Nasshorudin, Dalila; Ahmad, Muhammad Syarhabil; Mamat, Awang Soh; Rosli, Suraya

    2015-05-01

    Solventless extraction process of Chromalaena odorata using reduced pressure and temperature has been investigated. The percentage yield of essential oil produce was calculated for every experiment with different experimental condition. The effect of different parameters, such as temperature and extraction time on the yield was investigated using the Response Surface Methodology (RSM) through Central Composite Design (CCD). The temperature and extraction time were found to have significant effect on the yield of extract. A final essential oil yield was 0.095% could be extracted under the following optimized conditions; a temperature of 80 °C and a time of 8 hours.

  7. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  8. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.

  9. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; K. Lewandowski

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.

  10. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  11. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. Skin friction measurements by a new nonintrusive double-laser-beam oil viscosity balance technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1980-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low-speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a 'law-of-the-wall' coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.

  14. Anesthesia and liver biopsy techniques for pigeon guillemots (Cepphus columba) suspected of exposure to crude oil in marine environments

    USGS Publications Warehouse

    Degernes, L.A.; Harms, C.A.; Golet, G.H.; Mulcahy, D.M.

    2002-01-01

    This paper reports on the anesthesia and liver biopsy techniques used in adult and nestling pigeon guillemots (Cepphus columba) to test for continued exposure to residual crude oil in the marine environment. Populations of pigeon guillemots have declined significantly in Prince William Sound, Alaska, USA, possibly because of residual effects of crude oil in the environment after the Exxon Valdez oil spill in March 1989. Measurement of hepatic cytochrome P450 1A (CYP1A) is currently the best way to assess crude oil exposure from food sources; however, lethal sampling to obtain adequate liver tissue was not desirable in this declining population of birds. As part of a larger study to identify factors limiting the recovery of pigeon guillemots and other seabird populations, we surgically collected liver samples from adult and nestling guillemots to provide samples for measurement of hepatic CYP1A concentrations. Results from the larger study were reported elsewhere. Liver samples were taken from 26 nestling (1998) and 24 adult (1999) guillemots from a previously oiled site (Naked Island; 12 chicks, 13 adults) and from a nonoiled site (Jackpot Island/Icy Bay; 14 chicks, 11 adults). The birds were anesthetized with isoflurane. No surgical complications occurred with any of the birds and all adult and nestling birds survived after surgery to the point of release or return to the nest. Thirteen out of 14 chicks from the Jackpot Island/Icy Bay and 8 out of 12 chicks from Naked Island fledged. Four chicks at Naked Island were depredated before fledging. All adults abandoned their nests after surgery, so the study sites were revisited the following summer (2000) in an attempt to assess overwinter survival of the adults. All but 1 adult biopsied bird at the nonoiled site (Icy Bay) was found renesting, whereas only 2 birds at the previously oiled site (Naked Island) were similarly observed. The percent of 1999 breeders at Naked Island that returned to their nest sites to breed

  15. Boron Particles Agglomeration and Slag Formation During Combustion of Energetic Condensed Systems

    NASA Astrophysics Data System (ADS)

    Meerov, D.; Monogarov, K.; Bragin, A.; Frolov, Yu.; Nikiforova, Anna

    Boron is a promising component of energetic condensed systems due to its high gravimetric heat value, which is significantly higher than that one of aluminum. In the present work, two non-equilibrium processes, i.e., boron particles agglomeration and framework (slag) formation during combustion of high-energy compositions were investigated experimentally. The quench particle collection bomb technique was used to collect the condensed combustion products formed under nitrogen pressures of 0.1 - 4 MPa. The formation of a framework was visualized using high-speed video registration (1200 fps). Particle size, morphology, and surface structure of collected condensed products were evaluated using laser diffractometry and scanning electron microscopy. In the experiments, the weight of the collected condensed combustion products was about 30% of the initial sample weight, where 26% belonged to the products collected from the gas phase and 4% were remained in a highly-porous framework. The initial amorphous boron powder consisted of 1-micron particles, whereas agglomerated particles, which were collected from the gas phase, were 10 μm in diameter. The burning rate of compositions without binder was 4 times higher and the diameter of collected agglomerates was 10 times larger than those for compositions with binder.

  16. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the

  17. Colloidal stability of coal-simulated suspensions in selective agglomeration

    SciTech Connect

    Schurger, M.L.

    1989-01-01

    A coal suspension was simulated by using graphite to simulate the carbonaceous fraction and kaolinite clay to simulate the ash fraction. Separate studies on each material established their response to additions of oxidized pyrite (ferrous sulfate) and a humic acid simulate (salicylic acid) in terms of zeta potentials profiles with pH and Ionic strength. Concentrations of iron and salicylic acid evaluated were 4.5 {times} 10{sup {minus}3} M and 2.0 {times} 10{sup {minus}4} M, respectively. The zeta potentials profiles of graphite, clay and hexadecane were negative throughout the pH ranges studied. The addition of iron lowered the zeta potentials all of the suspensions under all pH and ionic strength conditions. Salicylic acid decreased the graphite and hexadecane zeta potentials but had no effect on the clay zeta potential profiles. Agglomeration of graphite with bridging liquid shows distinct time dependent rate mechanisms, a initial growth of graphite agglomerates followed by consolidation phase. Graphite agglomeration was rapid with the maximum amount of agglomerate volume growth occurring in under 2-4 minutes. Agglomeration in the first two minutes was characterized by a 1st order rate mechanism. The presence of either Iron and salicylic acid generally improved the first order rates. The addition of clay also improved the first order rates except in the presence of salicylic acid. Heteroagglomeration of graphite with clay was found by hydrodynamic arguments to be unfavored. A multicomponent population balance model which had been developed for evaluating collision efficiencies of coal, ash and pyrite selective agglomeration was evaluated to explain these results. The growth and consolidation characteristics of graphite agglomeration for the experimental conditions examined herein revealed the limitations of such as model for this application.

  18. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil.

    PubMed

    Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A

    2015-04-01

    Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration. PMID:25829628

  19. Model for coal ash agglomeration based on two-particle dynamics

    SciTech Connect

    Moseley, J.L.; O'Brien, T.J.

    1986-01-01

    The agglomeration of coal and coal ash in fluidized-bed gasifiers (FBG's) is of great interest in coal conversion. However, only limited work has been done to develop analytical models in order to understand ash agglomeration in FBG's. This paper focuses on two-particle collision dynamics, which is then used to develop a criterion for the agglutination of the two particles. The main assumption of this mechanism is that the binding force can be modeled as ''piecewise'' conservative. This makes it possible to compute the maximum energy that can be dissipated by the system. Comparison of this quantity with the initial kinetic energy provides the agglutination criteria. A specific version of this model is obtained by making specific choices for the contact force and the binding force. An analytic formula for the critical velocity, the relative collision velocity below which agglutination takes place, is obtained for head-on collisions; a numerical technique is developed for collisions which are not head-on. A process change which increases the critical velocity increases the likelihood of agglutination of particles with random relative velocities. To examine the critical velocity as a function of temperature, the model requires correlations for the shear modulus and surface adhesiveness coefficient of the particles. Although these correlations are derived from limited experimental information, they lead to reasonable results and agreement with existing experimental data on agglomeration and defluidization. By considering the agglutination of particles of average size and temperature, a measure of the agglomeration tendency of a FBG can be obtained. Finally, the sensitivity of the model to system parameters is also investigated and an assessment of needed additional work is made. 35 refs., 12 figs.

  20. Oil palm fresh fruit bunch ripeness classification based on rule- based expert system of ROI image processing technique results

    NASA Astrophysics Data System (ADS)

    Alfatni, M. S. M.; Shariff, A. R. M.; Abdullah, M. Z.; Marhaban, M. H.; Shafie, S. B.; Bamiruddin, M. D.; Saaed, O. M. B.

    2014-06-01

    There is a processing need for a fast, easy and accurate classification system for oil palm fruit ripeness. Such a system will be invaluable to farmers and plantation managers who need to sell their oil palm fresh fruit bunch (FFB) for the mill as this will avoid disputes. In this paper,a new approach was developed under the name of expert rules-based systembased on the image processing techniques results of thethree different oil palm FFB region of interests (ROIs), namely; ROI1 (300x300 pixels), ROI2 (50x50 pixels) and ROI3 (100x100 pixels). The results show that the best rule-based ROIs for statistical colour feature extraction with k-nearest neighbors (KNN) classifier at 94% were chosen as well as the ROIs that indicated results higher than the rule-based outcome, such as the ROIs of statistical colour feature extraction with artificial neural network (ANN) classifier at 94%, were selected for further FFB ripeness inspection system.

  1. Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast

    NASA Astrophysics Data System (ADS)

    Sugumar, Saranya; Singh, Sanjay; Mukherjee, Amitava; Chandrasekaran, N.

    2016-01-01

    In recent years, food industries have shown great interest in developing nanoemulsion (NE) using essential oils (EOs) to prevent food spoilage caused by microorganisms. The hydrophobic properties of EOs have lead to reduced solubilization effect of food, which in turn, created a negative impact on the quality of food and its antimicrobial efficacy. Focusing this issue, we attempted a unique NE preparation using orange oil, Tween 80 (organic phase) and water (aqueous phase) by sonication technique. Based on thermodynamic stability studies, the effective diameter was reported to be in the size range from 20 to 30 nm. Saccharomyces cerevisiae was used in testing the anti-yeast effect. Their activity was studied in both growth medium and apple juice. The minimum inhibitory concentration of this NE was determined using broth dilution method. At 2 μl/ml, orange oil NE demonstrated inhibition of tested microorganisms. The kinetics of killing curve, have shown that the NE treated cells had lost its viability within 30 min of interaction. Also, SEM image revealed that the treated cells became distorted in comparison to their control cells. NE treated apple juice showed complete loss of viability even on dilution as compared to their controls.

  2. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  3. Theranostic potential of gold nanoparticle-protein agglomerates.

    PubMed

    Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun

    2015-11-28

    Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as 'self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here. PMID:26508277

  4. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  5. Theranostic potential of gold nanoparticle-protein agglomerates

    NASA Astrophysics Data System (ADS)

    Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun

    2015-11-01

    Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as `self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here.

  6. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    PubMed

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar

  7. Active Components of Essential Oils as Anti-Obesity Potential Drugs Investigated by in Silico Techniques.

    PubMed

    Costa, Giosuè; Gidaro, Maria Concetta; Vullo, Daniela; Supuran, Claudiu T; Alcaro, Stefano

    2016-07-01

    In this study, for the first time, we have considered essential oils (EOs) as possible resources of carbonic anhydrase inhibitors (CAIs), in particular against the mitochondrial isoform VA that, actually, represents an innovative target for the obesity treatment. In silico structure-based virtual screening was performed in order to speed up the identification of promising antiobesity agents. The potential hit compounds were submitted to in vitro assays and experimental results, corroborated by molecular modeling studies, showed EOs components as a new class of CAIs with a competitive mechanism of action due to the zinc ion coordination within the active sites of these metallo-enzymes. PMID:27268752

  8. Ultrasonic de-agglomeration of barium titanate powder.

    PubMed

    Marković, S; Mitrić, M; Starcević, G; Uskoković, D

    2008-01-01

    BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders. PMID:17845864

  9. Effect of calcium ions on agglomeration of bayer aluminium trihydroxide

    NASA Astrophysics Data System (ADS)

    Brown, N.

    1988-10-01

    Small amounts of calcium ions in caustic aluminate solution can lead to enhanced agglomeration of aluminium trihydroxide [Al(OH) 3] particles in the crystallization step of the Bayer process. The present study shows that the magnitude of the effect is strongly dependent on the nature and polycrystallinity of the Al(OH) 3 seed crystals. The more irregular and polycrystalline the seed crystals, the smaller is the optimum amount of added calcium for maximum coarsening ( ≈ 50 mg/l, expressed as CaO). While the same degree of agglomeration can be achieved using well-rounded, smooth-surfaced seed crystals of the same overall size, more calcium is required (75-100 mg/l, expressed as CaO) and the agglomerated particles formed are weaker and less resistant to size reduction on handling.

  10. A numerical/empirical technique for history matching and predicting cyclic steam performance in Canadian oil sands reservoirs

    NASA Astrophysics Data System (ADS)

    Leshchyshyn, Theodore Henry

    The oil sands of Alberta contain some one trillion barrels of bitumen-in-place, most contained in the McMurray, Wabiskaw, Clearwater, and Grand Rapids formations. Depth of burial is 0--550 m, 10% of which is surface mineable, the rest recoverable by in-situ technology-driven enhanced oil recovery schemes. To date, significant commercial recovery has been attributed to Cyclic Steam Stimulation (CSS) using vertical wellbores. Other techniques, such as Steam Assisted Gravity Drainage (SAGD) are proving superior to other recovery methods for increasing early oil production but at initial higher development and/or operating costs. Successful optimization of bitumen production rates from the entire reservoir is ultimately decided by the operator's understanding of the reservoir in its original state and/or the positive and negative changes which occur in oil sands and heavy oil deposits upon heat stimulation. Reservoir description is the single most important factor in attaining satisfactory history matches and forecasts for optimized production of the commercially-operated processes. Reservoir characterization which lacks understanding can destroy a project. For example, incorrect assumptions in the geological model for the Wolf Lake Project in northeast Alberta resulted in only about one-half of the predicted recovery by the original field process. It will be shown here why the presence of thin calcite streaks within oil sands can determine the success or failure of a commercial cyclic steam project. A vast amount of field data, mostly from the Primrose Heavy Oil Project (PHOP) near Cold Lake, Alberta, enabled the development a simple set of correlation curves for predicting bitumen production using CSS. A previously calibtrated thermal numerical simulation model was used in its simplist form, that is, a single layer, radial grid blocks, "fingering" or " dilation" adjusted permeability curves, and no simulated fracture, to generate the first cycle production

  11. Applying monitoring, verification, and accounting techniques to a real-world, enhanced oil recovery operational CO2 leak

    USGS Publications Warehouse

    Wimmer, B.T.; Krapac, I.G.; Locke, R.; Iranmanesh, A.

    2011-01-01

    The use of carbon dioxide (CO2) for enhanced oil recovery (EOR) is being tested for oil fields in the Illinois Basin, USA. While this technology has shown promise for improving oil production, it has raised some issues about the safety of CO2 injection and storage. The Midwest Geological Sequestration Consortium (MGSC) organized a Monitoring, Verification, and Accounting (MVA) team to develop and deploy monitoring programs at three EOR sites in Illinois, Indiana, and Kentucky, USA. MVA goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. This paper focuses on the use of MVA techniques in monitoring a small CO2 leak from a supply line at an EOR facility under real-world conditions. The ability of shallow monitoring techniques to detect and quantify a CO2 leak under real-world conditions has been largely unproven. In July of 2009, a leak in the pipe supplying pressurized CO2 to an injection well was observed at an MGSC EOR site located in west-central Kentucky. Carbon dioxide was escaping from the supply pipe located approximately 1 m underground. The leak was discovered visually by site personnel and injection was halted immediately. At its largest extent, the hole created by the leak was approximately 1.9 m long by 1.7 m wide and 0.7 m deep in the land surface. This circumstance provided an excellent opportunity to evaluate the performance of several monitoring techniques including soil CO2 flux measurements, portable infrared gas analysis, thermal infrared imagery, and aerial hyperspectral imagery. Valuable experience was gained during this effort. Lessons learned included determining 1) hyperspectral imagery was not effective in detecting this relatively small, short-term CO2 leak, 2) even though injection was halted, the leak remained dynamic and presented a safety risk concern

  12. A pocket model for aluminum agglomeration in composite propellants

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.

    1981-01-01

    This paper presents a model for the purpose of estimating the fraction of aluminum powder that will form agglomerates at the surface of deflagrating composite propellants. The basic idea is that the fraction agglomerated depends upon the amount of aluminum that melts within effective binder pocket volumes framed by oxidizer particles. The effective pocket depends upon the ability of ammonium perchlorate modals to encapsulate the aluminum and provide a local temperature sufficient to ignite the aluminum. Model results are discussed in the light of data showing effects of propellant formulation variables and pressure.

  13. Agglomeration behavior of solid nickel on polycrystalline barium titanate

    SciTech Connect

    Weil, K Scott; Mast, Eric S; Sprenkle, Vince

    2007-11-01

    This letter describes the phenomenon that takes place between nickel/barium titanate couples when heated under conditions employed in multilayer ceramic capacitor manufacturing practice: a 4hr, 1300°C isothermal anneal in 1% H2 – 99% N2. Dense, sputtered nickel films were observed to dewet the titanate and agglomerate into discrete or interconnected islands via a solid-state process. Up to a critical film thickness value of ~1.4 μm, the degree of agglomeration was found to display an exponential dependence on the thickness of the original nickel film.

  14. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    SciTech Connect

    Kasza, K.; Hayashi, Kanetoshi

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  15. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOEpatents

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  16. Continuous air Agglomeration Method for high Carbon fly ash Beneficiation

    SciTech Connect

    Gray, McMahan L.; Champagne, Kenneth J.; Finseth, Dennis H.

    1998-09-29

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carbon-free mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  17. A new technique for visualizing the distribution of oil, water, and quartz grains in a transparent, three-dimensional, porous medium

    SciTech Connect

    Chen, J.D.; Wada, N.

    1986-04-01

    A new technique for visualizing the distribution and structure of oil, water, and quartz particles in a transparent, three-dimensional (3D), porous medium is presented. A laser light sheet illuminates a slice of a rectangular cell containing a mixture of oil, water, and quartz particles. All three phases have the same refractive index. The quartz particles do not fluoresce. From the different fluorescence colors of water and oil, the cross-sectional distribution of the three phases can be visualized. Photographs of different cross sections are presented that show both the solid grain structure and trapped oil blobs. This technique can be used to study two-phase flow in porous media.

  18. Monitoring North Sea oil production discharges using passive sampling devices coupled with in vitro bioassay techniques.

    PubMed

    Harman, Christopher; Farmen, Eivind; Tollefsen, Knut Erik

    2010-09-01

    Semipermeable membrane devices (SPMDs) and polar organic integrative chemical samplers (POCIS) were deployed in vicinity of an offshore oil production platform discharging production water (produced water) to the North Sea. Extracts from SPMDs and POCIS were subjected to chemical analysis for polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs) respectively, and also assessed for acute toxicity (cytotoxicity), estrogen receptor (ER)-mediated production of vitellogenin (Vtg) and induction of 7-ethoxyresorufin-O-deethylase (EROD) activity in primary hepatocytes from rainbow trout (Oncorhynchus mykiss). Chemical analysis of the extracts revealed a gradient of exposure away from the platform for low molecular weight PAH and AP, whereas no exposure gradient was apparent for high molecular weight PAH, as expected. These data coupled with earlier work allowed a tentative general exposure scenario to be determined. The passive sampler extracts also caused modulation of the bioassay toxicity endpoints, although a clear gradient of response relative to the discharge point could not be identified. PMID:20683536

  19. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    PubMed

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry. PMID:26024206

  20. Identification of potential antioxidant compounds in the essential oil of thyme by gas chromatography with mass spectrometry and multivariate calibration techniques.

    PubMed

    Masoum, Saeed; Mehran, Mehdi; Ghaheri, Salehe

    2015-02-01

    Thyme species are used in traditional medicine throughout the world and are known for their antiseptic, antispasmodic, and antitussive properties. Also, antioxidant activity is one of the interesting properties of thyme essential oil. In this research, we aim to identify peaks potentially responsible for the antioxidant activity of thyme oil from chromatographic fingerprints. Therefore, the chemical compositions of hydrodistilled essential oil of thyme species from different regions were analyzed by gas chromatography with mass spectrometry and antioxidant activities of essential oils were measured by a 1,1-diphenyl-2-picrylhydrazyl radical scavenging test. Several linear multivariate calibration techniques with different preprocessing methods were applied to the chromatograms of thyme essential oils to indicate the peaks responsible for the antioxidant activity. These techniques were applied on data both before and after alignment of chromatograms with correlation optimized warping. In this study, orthogonal projection to latent structures model was found to be a good technique to indicate the potential antioxidant active compounds in the thyme oil due to its simplicity and repeatability. PMID:25403421

  1. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  2. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  3. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques.

    PubMed

    Ramírez-Anaya, Jessica Del Pilar; Samaniego-Sánchez, Cristina; Castañeda-Saucedo, Ma Claudia; Villalón-Mir, Marina; de la Serrana, Herminia López-García

    2015-12-01

    Potato, tomato, eggplant and pumpkin were deep fried, sautéed and boiled in Mediterranean extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O). We determined the contents of fat, moisture, total phenols (TPC) and eighteen phenolic compounds, as well as antioxidant capacity in the raw vegetables and compared these with contents measured after cooking. Deep frying and sautéing led to increased fat contents and TPC, whereas both types of boiling (in water and W/O) reduced the same. The presence of EVOO in cooking increased the phenolics identified in the raw foods as oleuropein, pinoresinol, hydroxytyrosol and tyrosol, and the contents of vegetable phenolics such as chlorogenic acid and rutin. All the cooking methods conserved or increased the antioxidant capacity measured by DPPH, FRAP and ABTS. Multivariate analyses showed that each cooked vegetable developed specific phenolic and antioxidant activity profiles resulting from the characteristics of the raw vegetables and the cooking techniques. PMID:26041214

  4. Frequency comparative study of coal-fired fly ash acoustic agglomeration.

    PubMed

    Liu, Jianzhong; Wang, Jie; Zhang, Guangxue; Zhou, Junhu; Cen, Kefa

    2011-01-01

    Particulate pollution is main kind of atmospheric pollution. The fine particles are seriously harmful to human health and environment. Acoustic agglomeration is considered as a promising pretreatment technology for fine particle agglomeration. The mechanisms of acoustic agglomeration are very complex and the agglomeration efficiency is affected by many factors. The most important and controversial factor is frequency. Comparative studies between high-frequency and low-frequency sound source to agglomerate coal-fired fly ash were carried out to investigate the influence of frequency on agglomeration efficiency. Acoustic agglomeration theoretical analysis, experimental particle size distributions (PSDs) and orthogonal design were examined. The results showed that the 20 kHz high-frequency sound source was not suitable to agglomerate coal-fired fly ash. Only within the size ranging from 0.2 to 0.25 microm the particles agglomerated to adhere together, and the agglomerated particles were smaller than 2.5 microm. The application of low-frequency (1000-1800 Hz) sound source was proved as an advisable pretreatment with the highest agglomeration efficiency of 75.3%, and all the number concentrations within the measuring range decreased. Orthogonal design L16 (4)3 was introduced to determine the optimum frequency and optimize acoustic agglomeration condition. According to the results of orthogonal analysis, frequency was the dominant factor of coal-fired fly ash acoustic agglomeration and the optimum frequency was 1400 Hz. PMID:22432309

  5. Engineering development of selective agglomeration. Site closeout report

    SciTech Connect

    Not Available

    1993-04-01

    The Selective Agglomeration POC facility consisted of a coal crushing and grinding circuit, followed by an agglomeration circuit and product dewatering. (A plot plan of the facility is shown in Figure 1-2.) The coal crushing and grinding system consisted of a hammermill coal crusher, weigh-belt feeder, two ball mills (primary and secondary), and necessary hoppers, pumps, and conveyors. The mills were capable of providing coal over a range of grinds from a d{sub 50} of 125 to 25 microns. Slurry discharged from the ball mills was pumped to the agglomeration circuit. The agglomeration circuit began with a high-shear mixer, where diesel was added to the slurry to begin the formation of microagglomerates. The high-shear mixer was followed by two stages of conventional flotation cells for microagglomerate recovery. The second-stage-flotation-cell product was pumped to either a rotary-drum vacuum filter or a high-G centrifuge for dewatering. The dewatered product was then convoyed to the product pad from which dump trucks were used to transfer it to the utility plant located next to the facility. Plant tailings were pumped to the water clarifier for thickening and then dewatered in plate-and-frame filter presses. These dewatered tailings were also removed to the utility via dump truck. Clarified water (thickener overflow) was recycled to the process via a head tank.

  6. Universities' Entrepreneurial Performance: The Role of Agglomeration Economies

    ERIC Educational Resources Information Center

    Chen, Ping Penny

    2011-01-01

    In spite of the extensive research on universities' entrepreneurship, whether research strength fosters or dampens their entrepreneurial performance remains controversial. Much research claims an influential role of research universities in regional economy, however, little has been said about what a part that the agglomeration economies may play…

  7. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  8. Experimental study on static and impact strength of sintered agglomerates

    NASA Astrophysics Data System (ADS)

    Machii, Nagisa; Nakamura, Akiko M.

    2011-01-01

    Porous internal structure is common among small bodies in the planetary systems and possible range of porosity, strength, and scale of in-homogeneity is wide. Icy agglomerates, such as icy dust aggregates in the proto-planetary disks or icy re-accumulated bodies of fragments from impact disruption beyond snow-line would have stronger bulk strength once the component particles physically connect each other due to sintering. In this study, in order to get better understanding of impact disruption process of such bodies, we first investigated the critical tensile (normal) and bending (tangential) forces to break a single neck, the connected part of the sintered particles, using sintered dimer of macro glass particles of ˜5 mm in diameter. We found that the critical tensile force is proportional to the cross-section of the neck when the neck grows sufficiently larger than the surface roughness of the original particles. We also found that smaller force is required to break a neck when the force is applied tangentially to the neck than normally applied. Then we measured the bulk tensile strength of sintered glass agglomerates consisting of 90 particles and showed that the average tensile stress to break a neck of agglomerates in static loading is consistent with the measured value for dimers. Impact experiments with velocity from 40 to 280 m/s were performed for the sintered agglomerates with ˜40% porosity, of two different bulk tensile strengths. The size ratio of the beads to the target was 0.19. The energy density required to catastrophically break the agglomerate was shown to be much less than those required for previously investigated sintered glass beads targets with ˜40% porosity, of which the size of component bead is 10 -2 times smaller and the size ratio of the bead to target is also ˜10 -2 times smaller than the agglomerates in this study. This is probably due to much smaller number of necks for the stress wave to travel through the agglomerates and

  9. Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques.

    PubMed

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-01-01

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. PMID:25226536

  10. Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques

    PubMed Central

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A.; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-01-01

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. PMID:25226536

  11. Measuring emissions from oil and natural gas well pads using the mobile flux plane technique.

    PubMed

    Rella, Chris W; Tsai, Tracy R; Botkin, Connor G; Crosson, Eric R; Steele, David

    2015-04-01

    We present a study of methane emissions from oil and gas producing well pad facilities in the Barnett Shale region of Texas, measured using an innovative ground-based mobile flux plane (MFP) measurement system, as part of the Barnett Coordinated Campaign.1 Using only public roads, we measured the emissions from nearly 200 well pads over 2 weeks in October 2013. The population of measured well pads is split into well pads with detectable emissions (N = 115) and those with emissions below the detection limit of the MFP instrument (N = 67). For those well pads with nonzero emissions, the distribution was highly skewed, with a geometric mean of 0.63 kg/h, a geometric standard deviation of 4.2, and an arithmetic mean of 1.72 kg/h. Including the population of nonemitting well pads, we find that the arithmetic mean of the well pads sampled in this study is 1.1 kg/h. This distribution implies that 50% of the emissions is due to the 6.6% highest emitting well pads, and 80% of the emissions is from the 22% highest emitting well pads. PMID:25806837

  12. Improved techniques for fluid diversion in oil recovery. First annual report

    SciTech Connect

    Seright, R.S.

    1993-12-01

    This three-year project has two general objectives. The first objective is to compare the effectiveness of gels in fluid diversion with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application, and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. Another objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. This report describes work performed during the first year of the project. Following the introduction, Chapters 2 through 5 present several surveys concerning field applications of gel treatments. Based on the results of the surveys, guidelines are proposed in Chapter 5 for the selection of candidates for gel treatments (both injection wells and production wells). Chapters 6, 7, 8, and 11 discuss theoretical work that was performed during the project. Chapter 6 examines whether Hall plots indicated selectivity during gelant placement. Chapter 7 discusses several important theoretical aspects of gel treatments in production wells with water-coning problems. Chapter 8 considers exploitation of density differences during gelant placement. Chapter 11 presents a preliminary consideration of the use of precipitates as blocking agents. Chapters 9 and 10 detail the experimental work for the project. Chapter 9 describes an experimental investigation of gelant placement in fractured systems. Chapter 10 describes experiments that probe the mechanisms for disproportionate permeability reduction by gels.

  13. Proceedings of the 19 biennial conference of the institute for briquetting and agglomeration

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on the briquetting and agglomeration of materials. Topics considered at the conference included the pelletizing of carbon black, the agglomeration of hard coal, the selection of a coal agglomerate for gasification, the briquetting of soft lignite, fiber addition for increased pellet strength, properties of granules, compaction, the Iowa agglomeration process, land disposal restrictions, the disposal of hazardous materials and industrial wastes, and the compaction of sludges from municipal waste treatment plants.

  14. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  15. Oscillatory Dynamics of Single Bubbles and Agglomeration in a Sound Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Trinh, Eugene H.; Depew, Jon; Asaki, Thomas J.

    1994-01-01

    A dual-frequency acoustic levitator containing water was developed for studying bubble and drop dynamics in low gravity. It was flown on USML-1 where it was used in the Glovebox facility. High frequency (21 or 63 kHz) ultrasonic waves were modulated by low frequencies to excite shape oscillations on bubbles and oil drops ultrasonically trapped in the water. Bubble diameters were typically close to 1 cm or larger. When such large bubbles are acoustically trapped on the Earth, the acoustic radiation pressure needed to overcome buoyancy tends to shift the natural frequency for quadrupole (n = 2) oscillations above the prediction of Lamb's equation. In low gravity, a much weaker trapping force was used and measurements of n = 2 and 3 mode frequencies were closer to the ideal case. Other video observations in low gravity include: (i) the transient reappearance of a bulge where a small bubble has coalesced with a large one, (ii) observations of the dynamics of bubbles coated by oil indicating that shape oscillations can shift a coated bubble away from the oil-water interface of the coating giving a centering of the core, and (iii) the agglomeration of bubbles induced by the sound field.

  16. Dispersion and Filtration of Carbon Nanotubes (CNTs) and Measurement of Nanoparticle Agglomerates in Diesel Exhaust

    PubMed Central

    Wang, Jing; Pui, David Y.H.

    2012-01-01

    Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors. PMID:23355749

  17. Modified extrusion-spheronization as a technique of microencapsulation for stabilization of choline bitartrate using hydrogenated soya bean oil

    PubMed Central

    Gangurde, Avinash Bhaskar; Sav, Ajay Kumar; Javeer, Sharadchandra Dagadu; Moravkar, Kailas K; Pawar, Jaywant N; Amin, Purnima D

    2015-01-01

    Introduction: Choline bitartrate (CBT) is a vital nutrient for fetal brain development and memory function. It is hygroscopic in nature which is associated with stability related problem during storage such as development of fishy odor and discoloration. Aim: Microencapsulation method was adopted to resolve the stability problem and for this hydrogenated soya bean oil (HSO) was used as encapsulating agent. Materials and Methods: Industrially feasible modified extrusion-spheronization technique was selected for microencapsulation. HSO was used as encapsulating agent, hydroxypropyl methyl cellulose E5/E15 as binder and microcrystalline cellulose as spheronization aid. Formulated pellets were evaluated for parameters such as flow property, morphological characteristics, hardness-friability index (HFI), drug content, encapsulation efficiency, and in vitro drug release. The optimized formulations were also characterized for particle size (by laser diffractometry), differential scanning calorimetry, powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy, and scanning electron microscopy. Results and Discussions: The results from the study showed that coating of 90% and 60% CBT was successful with respect to all desired evaluation parameters. Optimized formulation was kept for 6 months stability study as per ICH guidelines, and there was no change in color, moisture content, drug content, and no fishy odor was observed. Conclusion: Microencapsulated pellets of CBT using HSO as encapsulating agent were developed using modified extrusion spheronization technique. Optimized formulations, CBT 90% (F5), and CBT 60% (F10), were found to be stable for 4M and 6M, respectively, at accelerated conditions. PMID:26682198

  18. A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean

    NASA Astrophysics Data System (ADS)

    Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.

    2013-10-01

    With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.

  19. Prediction of [3-(14)C]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques.

    PubMed

    Dew, Nadia M; Paton, Graeme I; Semple, Kirk T

    2005-11-01

    This study investigated the use of an aqueous hydroxypropyl-beta-cyclodextrin (HPCD) shake extraction in predicting microbial mineralisation and total loss of [3-(14)C]phenyldodecane associated activity in soils spiked with cable insulating oil; phenyldodecane represents a major constituent of cable insulating oil. Direct comparisons were made between freshly spiked and aged soils, and following composting. Soil was spiked with [3-(14)C]phenyldodecane (10mg kg(-1)) and stored in microcosms and aged for 1, 23, 44, 65, 90 and 153 d. At each sample time point, a variety of analyses were performed to assess the relationship between chemical and biological techniques in determining mineralisation and loss of (14)C-activity in soils under composting and non-composting conditions. Methods included determination of total (14)C-activity remaining, dichloromethane (DCM) and HPCD extractions. Mineralisation assays were also carried out to quantify the fraction of (14)C-phenyldodecane associated activity available for degradation in the soil at each time point. DCM and HPCD extractability were compared to contaminant mineralisation and to total loss of (14)C-phenyldodecane associated activity from the microcosms, after 153 d incubation. Poor relationships were found between (i) the amount of (14)C-activity mineralised and the fraction removed from the soils using DCM extraction and (ii) DCM extraction and total loss of [(14)C]phenyldodecane associated activity from the soil systems. Good relationships were observed between (i) the amount of (14)C-activity mineralised and the fraction removed from the soils using the HPCD extraction and (ii) HPCD extraction and total loss of [(14)C]phenyldodecane associated activity from the soil systems. The results of this study indicate that an aqueous HPCD extraction may be a useful tool in assessing the microbial availability of phenyldodecane in freshly and aged spiked soils. PMID:15949878

  20. Exploring Oil Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)

  1. On Some Versions of the Element Agglomeration AMGe Method

    SciTech Connect

    Lashuk, I; Vassilevski, P

    2007-08-09

    The present paper deals with element-based AMG methods that target linear systems of equations coming from finite element discretizations of elliptic PDEs. The individual element information (element matrices and element topology) is the main input to construct the AMG hierarchy. We study a number of variants of the spectral agglomerate element based AMG method. The core of the algorithms relies on element agglomeration utilizing the element topology (built recursively from fine to coarse levels). The actual selection of the coarse degrees of freedom (dofs) is based on solving large number of local eigenvalue problems. Additionally, we investigate strategies for adaptive AMG as well as multigrid cycles that are more expensive than the V-cycle utilizing simple interpolation matrices and nested conjugate gradient (CG) based recursive calls between the levels. The presented algorithms are illustrated with an extensive set of experiments based on a matlab implementation of the methods.

  2. Preventing ash agglomeration during gasification of high-sodium lignite

    SciTech Connect

    Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand

    2009-01-15

    Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

  3. Engineering development of selective agglomeration: Trace element removal study

    SciTech Connect

    Not Available

    1993-09-01

    Southern Company Services, Inc., (SCS) was contracted in 1989 by the US Department of Energy (DOE) to develop a commercially acceptable selective agglomeration technology to enhance the use of high-sulfur coals by 1993. The project scope involved development of a bench-scale process and components, as well as the design, testing, and evaluation of a proof-of-concept (POC) facility. To that end, a two-ton-per-hour facility was constructed and tested near Wilsonville, Alabama. Although it was not the primary focus of the test program, SCS also measured the ability of selective agglomeration to remove trace elements from coal. This document describes the results of that program.

  4. Functionally graded porous scaffolds made of Ti-based agglomerates.

    PubMed

    Nazari, Keivan A; Hilditch, Tim; Dargusch, Matthew S; Nouri, Alireza

    2016-10-01

    Mono- and double-layer porous scaffolds were successfully fabricated using ball-milled agglomerates of Ti and Ti-10Nb-3Mo alloy. For selectively controlling the level of porosity and pore size, the agglomerates were sieved into two different size fractions of 100-300μm and 300-500μm. Compressive mechanical properties were measured on a series of cylindrical sintered compacts with different ratios of solid core diameter to porous layer width. The graded porous scaffolds exhibited stress-strain curves typical for metallic foams with a defined plateau region after yielding. The compressive strengths and elastic moduli ranged from 300 to 700MPa and 14 to 55GPa, respectively, depending on the core diameter and the material used. The obtained properties make these materials suitable for load-bearing implant applications. PMID:27389321

  5. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    Energy Science and Technology Software Center (ESTSC)

    2015-02-19

    ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  6. Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques.

    PubMed

    Ornelas, Mariana; Loureiro, Dianne; Araújo, Maria João; Marques, Eduardo; Dias-Cabral, Cristina; Azenha, Manuel; Silva, Fernando

    2013-07-01

    Sol-gel molecularly imprinted materials (MIMs) are traditionally obtained by grinding and sieving of a monolith formed by bulk polymerization. However, this process has several drawbacks that can be overcome if these materials are synthesized directly in the spherical format. This work aimed at the development of two efficient methods to prepare spherical glycylglycine-templated silica ("whole-imprinted" and surface-imprinted) through a combination of sol-gel and emulsion techniques. The synthesis of the microspheres was optimized regarding emulsion and sol-gel parameters. Imprinting efficiency of the prepared materials was studied by solid phase extraction and flow microcalorimetry. The particles prepared with glycylglycine and functional monomer, in basic medium (using cyclohexane as non-polar continuous medium) presented the highest imprinting factor - 2.5 - and the respective surface-imprinted material presented an imprinting factor of 1.5. The results of flow microcalorimetry confirmed the action of different mechanisms of glycylglycine adsorption: entropically-controlled interactions were present for the "whole-imprinted" material, indicating adsorption inside small imprinted pores; enthalpically-controlled interactions were observed for the surface-imprinted material, a behaviour more compatible with a template/surface-only interaction. Globally, the two approaches allowed for a successful imprinting effect which was more extensive for the "whole-imprinted" material, whereas the surface-imprinting feature confers to the surface-imprinted xerogel advantages regarding mass transfer kinetics. Overall, the spherical particles obtained by both approaches presented characteristics, such as sphericity, mesoporosity, easy/fast accessibility to imprinted sites, important indicators that these materials may be candidates for stationary phases for efficient, selective chromatographic separation. PMID:23706547

  7. Nifedipine Nanoparticle Agglomeration as a Dry Powder Aerosol Formulation Strategy

    PubMed Central

    Plumley, Carl; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory

    2009-01-01

    Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1–5 µm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension. PMID:19015016

  8. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  9. Study of ink paper sensor based on aluminum/carbon nanotubes agglomerated nanocomposites.

    PubMed

    dos Reis, Marcos A L; Saraiva, Augusto F; Vieira, Manuel F G; Del Nero, Jordan

    2012-09-01

    Agglomerated nanocomposites based on Aluminum/Carbon Nanotubes (AI/CNT) were produced by an arc discharge technique under argon/acetone atmosphere and ultrasonically dispersed in distilled water to form an ink-like composite. This ink was spread onto commercial paper to produce a conductive thick film. Experimental results show that the electrical resistance of Al/CNT nanocomposite on paper changes when a mechanical stress and/or heat is applied. The multi-sensory properties obtained are the following: (i) piezoresistive effect, electrical resistance shows linear dependence with pressure intensity at room temperature; (ii) polynomial relationship between electrical resistance and temperature; and (iii) high accuracy thermal sensor compared to a K type thermocouple at 25 degrees C. The nanocomposite and paper morphology was analyzed by Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM/EDS) and a favorable surface for physisorption was observed. Transmission Electron Microscopy (TEM) was utilized for Al/CNT agglomerated indicating that the ink paper based on nanocomposite shows good performance as a thermo-piezoresistive sensor. PMID:23035420

  10. Wear Characterizations of Polyoxymethylene (POM) Reinforced with Carbon Nanotubes (POM/CNTs) Using the Paraffin Oil Dispersion Technique

    NASA Astrophysics Data System (ADS)

    Yousef, Samy; Visco, A. M.; Galtieri, G.; Njuguna, James

    2016-01-01

    The wear of polyoxymethylene (POM) is considered a key design parameter of polymer gears and some mechanical applications, and it determines the service time span. This work investigates the influence of carbon nanotubes (CNTs) on the specific wear rate of POM/CNT nanocomposites by using a pin-on-disk test rig (sliding only). The CNTs were synthesized with a fully automatic machine via the arc-discharge multi-electrode technique and subsequently dispersed in a POM matrix to manufacture test specimens. The CNT weight percentages were varied within the range 0-0.03 wt.% in three different operating media (air, distilled water, and mineral oil). The wear mechanism was examined by microscopy. The mechanical and thermal properties of POM/CNT were studied by using calorimetric analysis and by mechanical tensile testing. In addition, the thermal and mechanical properties were improved to an optimum CNT ratio of 0.02 wt.% due to the improvement in crystallinity of POM and a decrease in the fusion defects. The crystallinity degree increased by 7%, and the melting temperature also increased. The results further indicate that the specific wear rate (Ws) for POM/CNT containing 0.03 wt.% CNT in air and water media was improved by 73% and 66%, respectively, compared with virgin POM. In addition, the tensile strength of the mechanical properties and Young's modulus increased by 31% and 29%, respectively.

  11. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.

    PubMed

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2016-01-01

    The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources. PMID:26386446

  12. The application of hyperspectral image techniques on MODIS data for the detection of oil spills in the RSA

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad; Amos, Carl; Byfield, Valborg; Petrov, Peter

    2008-10-01

    Oil spills pose a serious threat to the sensitive marine ecosystem of the RSA. The study aims to detect and identify oil spills using remote sensing data provided by ROPME MODIS receiving station. MODIS data of confirmed incidents of oil spills via in-situ observations were processed to produce radiometrically corrected L1B data. Algal mats were further eliminated as look-alike, when the distinct oil pattern was not visible in the standard MODIS algorithm for Chlorophyll a. Shape analysis based on the operators' prior knowledge of the region was also used as a method for discriminating oil from other look-alikes. Oil spills exhibit different levels of contrast in relation to the viewing angle geometry and sun position. The Spectral Contrast Shift (SCS) is an empirical relationship that was derived to identify sea surface patterns including oil spills using the maximum and minimum spectral radiance values at the 250m spatial resolution bands. Results were combined with GIS based information of oil platform locations and daily tanker routes to aid interpretation and improve the probability for an accurate identification of oil spills, and avoiding false positives.

  13. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  14. Extraction of oil slicks on the sea surface from optical satellite images by using an anomaly detection technique

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Farn; Chang, Li-Yu

    2010-12-01

    Many methods for the detection of oil pollution on the sea surface from remotely sensed images have been developed in recent years. However, because of the diverse physical properties of oil on the sea surface in the visible wavelengths, such images are easily affected by the surrounding environment. This is a common difficulty encountered when optical satellite images are used as data sources for observing oil slicks on the sea surface. However, provided the spectral interference generated by the surrounding environment can be regarded as noise and properly modeled, the spectral anomalies caused by an oil slick on normal sea water may be observed after the suppression of this noise. In this study, sea surface oil slicks are extracted by detecting spectral anomalies in multispectral optical satellite images. First, assuming that the sea water and oil slick comprise the dominant background and target anomaly, respectively, an RX algorithm is used to enhance the oil slick anomaly. The oil slick can be distinguished from the sea water background after modeling and suppression of inherent noise. Next, a Gaussian mixture model is used to characterize the statistical distributions of the background and anomaly, respectively. The expectation maximization (EM) algorithm is used to obtain the parameters needed for the Gaussian mixture model. Finally, according to the Bayesian decision rule of minimum error, an optimized threshold can be obtained to extract the oil slick areas from the source image. Furthermore, with the obtained Gaussian distributions and optimized threshold, a theoretical false alarm level can be established to evaluate the quality of the extracted oil slicks. Experimental results show that the proposed method can not only successfully detect oil slicks from multispectral optical satellite images, but also provide a quantitative accuracy evaluation of the detected image.

  15. Agglomeration processes sustained by dust density waves in Ar/C{sub 2}H{sub 2} plasma: From C{sub 2}H{sub 2} injection to the formation of an organized structure

    SciTech Connect

    Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal; Lacroix, David

    2013-03-15

    In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.

  16. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. PMID:23957416

  17. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique.

    PubMed

    Vimolmangkang, Sornkanok; Sitthithaworn, Worapan; Vannavanich, Danai; Keattikunpairoj, Sunisa; Chittasupho, Chuda

    2010-01-01

    The purpose of this study was to determine the differences between spearmint (Mentha spicata L.) and Japanese mint (M. arvensis L. var. piperascens Malinv.) cultivated in either soil or nutrient solution using the deep flow technique (DFT). The differences were measured in terms of harvest period (full bloom period) and quantity and chemical components of volatile oils. The spearmint and Japanese mint were cultivated in four different nutrient formulas: plant standard nutrient, plant standard nutrient with an amino acid mixture, plant standard nutrient with a sulphur compound, and a combination of plant standard nutrient with an amino acid mixture and a sulphur compound. We observed that cultivation of spearmint and Japanese mint in nutrient solution using DFT is an effective method to provide high production of volatile oil, since it results in an earlier harvest period and higher quantity of volatile oil. We determined that for spearmint an amino acid mixture is an appropriate nutrient supplement to enhance production of volatile oil with optimum carvone content. Finally, we observed high menthol content in Japanese mint grown in all four nutrient formulas; however, supplementation with a combination of sulphur fertilisation and amino acid mixture yields the highest quantity of volatile oil. PMID:19763744

  18. Fabrication, characterization and pharmacokinetic evaluation of doxorubicin-loaded water-in-oil-in-water microemulsions using a membrane emulsification technique.

    PubMed

    Pradhan, Roshan; Kim, Yong-Il; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2014-01-01

    Doxorubicin (DOX)-loaded water-in-oil-in-water (W/O/W) microemulsions were produced using a shirasu-porous-glass (SPG) membrane emulsification technique. Soybean oil was used as the oil phase; polyglycerol polyricinoleate (PGPR) or tetraglycerol polyricinoleate (TGPR) was used as the surfactant to stabilize the feed W/O emulsions, while Tween 20 was used in the external water phase to stabilize oil droplets containing water droplets. Increasing the feed pressure from 50 to 90 kPa increased the particle size of W/O/W emulsions, whereas it was decreased by increasing the agitator speed. The smallest particle sizes of multiple emulsions were obtained at the feed pressure of 50 kPa and agitator speed of 350 rpm. Under this set of conditions, the increase in the concentration of PGPR or TGPR showed a decrease in the particle size of DOX-loaded W/O/W emulsions. The optimized formulation comprising of 5% w/v PGPR and 3% w/v Tween 20 in the oil phase and external water phase, respectively, with 0.5% w/v of DOX had a particle size of 0.440±0.007 µm and polydispersity index of 0.220±0.087, which was supported by the transmission electron microscopy image. The formulations showed a sustained release profile in phosphate buffer solution (pH 7.4). The plasma concentrations of DOX after intravenous administration to rats were prolonged and gave approximately 17-fold higher area under the drug concentration-time curve (AUC) compared to free DOX solution. Thus, these results demonstrated that the SPG membrane emulsification technique could be used as a promising technique to prepare W/O/W microemulsions for delivering DOX with sustained release characteristics and better bioavailability. PMID:25177016

  19. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory.

    PubMed

    Espinosa-Torres, Néstor D; la Luz, David Hernández-de; Flores-Gracia, José Francisco J; Luna-López, José A; Martínez-Juárez, Javier; Vázquez-Valerdi, Diana E

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  20. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory

    PubMed Central

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  1. Intra-metropolitan migration in the Warsaw agglomeration.

    PubMed

    Rykiel, Z

    1984-01-01

    "Two questions of intra-metropolitan migration are analyzed in the paper, intra-metropolitan hierarchy and intra-metropolitan spatial barriers. The former embraces four detailed questions: ranking of centers; spatial pattern of hierarchical subordination; degree of unequivocalness of the subordinations, or degree of dominance; and degree of hierarchicality of interrelationships. Two specialties of the Warsaw [Poland] agglomeration are discussed, the influence of the present crisis, and the administrative restrictions to migration to the city, or the spatial barriers. Social connotations of the latter are also presented." PMID:12312885

  2. Investigations on a Novel Inductive Concept Frequency Technique for the Grading of Oil Palm Fresh Fruit Bunches

    PubMed Central

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Ahmad, Desa; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2013-01-01

    From the Malaysian harvester's perspective, the determination of the ripeness of the oil palm (FFB) is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated to determine their inductance and resonant characteristics. Sixteen samples from two categories, namely ripe oil palm fruitlets and unripe oil palm fruitlets, are tested from 100 Hz up to 100 MHz frequency. The results showed the inductance and resonant characteristics of the air coil sensors display significant changes among the samples of each category. The investigations on the frequency characteristics of the sensor air coils are studied to observe the effect of variations in the coil diameter. The effect of coil diameter yields a significant 0.02643 MHz difference between unripe samples to air and 0.01084 MHz for ripe samples to air. The designed sensor exhibits significant potential in determining the maturity of oil palm fruits. PMID:23435051

  3. Investigations on a novel inductive concept frequency technique for the grading of oil palm fresh fruit bunches.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Ahmad, Desa; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2013-01-01

    From the Malaysian harvester's perspective, the determination of the ripeness of the oil palm (FFB) is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated to determine their inductance and resonant characteristics. Sixteen samples from two categories, namely ripe oil palm fruitlets and unripe oil palm fruitlets, are tested from 100 Hz up to 100 MHz frequency. The results showed the inductance and resonant characteristics of the air coil sensors display significant changes among the samples of each category. The investigations on the frequency characteristics of the sensor air coils are studied to observe the effect of variations in the coil diameter. The effect of coil diameter yields a significant 0.02643 MHz difference between unripe samples to air and 0.01084 MHz for ripe samples to air. The designed sensor exhibits significant potential in determining the maturity of oil palm fruits. PMID:23435051

  4. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. First quarterly technical progress report, September 30, 1993--December 31, 1993

    SciTech Connect

    Morgan, C.D.

    1994-01-10

    The objective of this project is to increase the oil production and reserves in the Uinta Basin, Utah, by demonstration of improved completion techniques in the Bluebell field. Low productivity is attributed to gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Tertiary Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This phase will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress is described for: outcrop studies of the Green River Formation; subsurface studies of the Bluebell field; and engineering studies of the reservoirs in the Green River Formation and the Wasatch Formation.

  5. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  6. Generalized flooded agglomerate model for the cathode catalyst layer of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kamarajugadda, Sai; Mazumder, Sandip

    2012-06-01

    The flooded agglomerate model has found prolific usage in modeling the oxygen reduction reaction within the cathode catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC). The assumption made in this model is that the ionomer-coated carbon-platinum agglomerate is spherical in shape and that the spheres are non-overlapping. This assumption is convenient because the governing equations lend themselves to closed-form analytical solution when a spherical shape is assumed. In reality, micrographs of the catalyst layer show that the agglomerates are best represented by sets of overlapping spheres of unequal radii. In this article, the flooded agglomerate is generalized by considering overlapping spheres of unequal radii. As a first cut, only two overlapping spheres are considered. The governing reaction-diffusion equations are solved numerically using the unstructured finite-volume method. The volumetric current density is extracted for various parametric variations, and tabulated. This sub-grid-scale generalized flooded agglomerate model is first validated and finally coupled to a computational fluid dynamics (CFD) code for predicting the performance of the PEMFC. Results show that when the agglomerates are small (<200 nm equivalent radius), the effect of agglomerate shape on the overall PEMFC performance is insignificant. For large agglomerates, on the other hand, the effect of agglomerate shape was found to be critical, especially for high current densities for which the mass transport resistance within the agglomerate is strongly dependent on the shape of the agglomerate, and was found to correlate well with the surface-to-volume ratio of the agglomerate.

  7. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    NASA Astrophysics Data System (ADS)

    Brown, Philip S.; Bhushan, Bharat

    2015-09-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised.

  8. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  9. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  10. Agglomeration of soot particles in diffusion flames under microgravity

    SciTech Connect

    Ito, H.; Fujita, O.; Ito, K.

    1994-11-01

    Experiments have been conducted to investigate the behavior of soot particles in diffusion flames under microgravity conditions using a 490-m drop shaft (10-s microgravity duration) in Hokkaido, Japan. Flames from the combustion of paper sheets and butane jet diffusion flames are observed under microgravity. The oxygen concentration of the surroundings, the butane flow rate,and the burner diameter are varied as experimental parameters. The generated soot particles are sampled under microgravity and observed using scanning electron and transmission electron microscopes. The flames with a residual convection or forced convection are also observed to examine the influence of flow field on soot particle generation under microgravity. From these results, it is found that a number of large luminous spots appear in diffusion flames under microgravity. From the observation of TEM images, the luminous spots are the result of agglomerated soot particles and the growth of their diameters to a discernible level. The diameter of the agglomerated particles measure about 0.1 mm, 200 to 500 times as large as those generated under normal gravity. It is suggested that these large soot particles are generated in the limited areas where the conditions for the formation of these particles, such as gas velocity (residence time) and oxygen concentration, are satisfied.

  11. Mechanism of nanoparticle agglomeration during the combustion synthesis

    NASA Astrophysics Data System (ADS)

    Altman, Igor S.; Agranovski, Igor E.; Choi, Mansoo

    2005-08-01

    The mechanism of agglomeration of nanoparticles generated during combustion synthesis is discussed. This is based on the analysis of the transmission electron microscope images of probes collected at different heights. Although direct temperature measurements were not available, the qualitative temperature dependence of the particle formation streamlines is taken into account. It is demonstrated that agglomeration of the MgO nanoparticles, which are formed during a Mg particle combustion, occurs as the result of bonding the mature nanoparticles by the supercritical clusters existing in the system. Accumulation of these supercritical clusters in the flame has been revealed and their nature has been explained in our recent paper [I.S. Altman, I.E. Agranovski, and M. Choi, Phys. Rev E 70, 062603 (2004)]. Also, some inspection of the previously published experimental data on the nanoparticle generation shows that the similar supercritical clusters may exist in another flame reactor generating titania nanopaprticles. If this is the case, the cluster-based process of nanoparticle bonding we suggest can be considered to be general.

  12. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    PubMed

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells. PMID:27541815

  13. Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration

    PubMed Central

    El-Gendy, Nashwa; Berkland, Cory

    2014-01-01

    Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471

  14. Numerical derivation of forces on particles and agglomerates in a resonant acoustic field

    NASA Astrophysics Data System (ADS)

    Knoop, Claas; Fritsching, Udo

    2013-10-01

    Particles and agglomerates are investigated in gaseous acoustic flow fields. Acoustic fields exert forces on solid objects, which can influence the shape of the exposed bodies, even to the point of breakage of the structures. Motivated by experimentally observed breakage of agglomerates in an acoustic levitator (f = 20 kHz), a numerical study is presented that derives the acoustic forces on a complex model agglomerate from the pressure and velocity fields of a resonant standing ultrasound wave, calculated by computational fluid dynamics (CFD). It is distinguished between the drag and lift/lateral forces on the overall agglomerate and on the different primary particles of the model.

  15. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    PubMed

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  16. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    PubMed Central

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  17. Evaluation of zidovudine encapsulated ethylcellulose microspheres prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion technique.

    PubMed

    Das, Malay Kumar; Rao, Kalakuntala Rama

    2006-01-01

    The preparation of zidovudine-loaded ethylcellulose microspheres by w/o/o double emulsion solvent diffusion method with high entrapment capacity and sustained release is described. A mixed solvent system (MSS) consisting of acetonitrile and dichloromethane in a 1:1 ratio and light liquid paraffin was selected as primary and secondary oil phases, respectively. Span 80 was used as the secondary surfactant for stabilizing the external oil phase. Spherical free flowing microspheres were obtained. The prepared microspheres were characterized by entrapment efficiency, in vitro release behavior, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The drug-loaded microspheres showed 32 - 55% entrapment capacity. The in vitro release profile could be altered significantly by changing various processing and formulation parameters to give sustained release of drug from the microspheres. The DSC thermograms confirmed the absence of any drug-polymer interaction. SEM studies showed that the microspheres were spherical and porous in nature. The in vitro release profiles from microspheres of different polymer-drug ratios were best fitted to Higuchi model with high correlation coefficient and the n value obtained from Korsmeyer-Peppas model was ranged between 0.23 - 0.54. The drug release was found to be diffusion controlled mechanism. PMID:17514878

  18. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers. PMID:12638742

  19. The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method

    PubMed Central

    Kamali, Hossein; Aminimoghadamfarouj, Noushin; Golmakani, Ebrahim; Nematollahi, Alireza

    2015-01-01

    Aim: The aim of this study was to examine and evaluate crucial variables in essential oils extraction process from Lavandula hybrida through static-dynamic and semi-continuous techniques using response surface method. Materials and Methods: Essential oil components were extracted from Lavandula hybrida (Lavandin) flowers using supercritical carbon dioxide via static-dynamic steps (SDS) procedure, and semi-continuous (SC) technique. Results: Using response surface method the optimum extraction yield (4.768%) was obtained via SDS at 108.7 bar, 48.5°C, 120 min (static: 8×15), 24 min (dynamic: 8×3 min) in contrast to the 4.620% extraction yield for the SC at 111.6 bar, 49.2°C, 14 min (static), 121.1 min (dynamic). Conclusion: The results indicated that a substantial reduction (81.56%) solvent usage (kg CO2/g oil) is observed in the SDS method versus the conventional SC method. PMID:25598636

  20. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    PubMed

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds. PMID:24694702

  1. A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Marvriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.

  2. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    PubMed

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. PMID:23796831

  3. Identification of micro parameters for discrete element simulation of agglomerates

    NASA Astrophysics Data System (ADS)

    Palis, Stefan; Antonyuk, Sergiy; Dosta, Maksym; Heinrich, Stefan

    2013-06-01

    The mechanical behaviour of solid particles like agglomerates, granules or crystals strongly depends on their micro structure, e.g. structural defects and porosity. In order to model the mechanical behaviour of these inhomogeneous media the discrete element method has been proven to be an appropriate tool. The model parameters used are typically micro parameters like bond stiffness, particle-particle contact stiffness, strength of the bonds. Due to the lack of general methods for a direct micro parameter determination, normally laborious parameter adaptation has to be done in order to fit experiment and simulation. In this contribution a systematic and automatic way for parameter adaptation using real experiments is proposed. Due to the fact, that discrete element models are typically systems of differential equations of very high order, gradient based methods are not suitable. Hence, the focus will be on derivative free methods.

  4. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  5. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  6. Which Microbial Communities Are Present? Using Fluorescence In Situ Hybridisation (FISH): Microscopic Techniques for Enumeration of Troublesome Microorganisms in Oil and Fuel Samples

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Østergaard, Jette Johanne; Skovhus, Torben Lund

    Enumeration of microbes involved in souring of oil fields and microbiologically influenced corrosion (MIC) with culture-based methods, usually yield inadequate and contradictory results. Any cultivation step will almost certainly alter the population structure of the sample and thus the results of cultivation analysis are not a good basis for mitigation decisions. The need for methods that are cultivation independent has over the past 10 years facilitated the development of several analytical methods for determination of bacterial identity, quantity, and to some extent function, applied directly to samples of the native population. In this chapter, we demonstrate the features and benefits of applying microscopic techniques to a situation often encountered in the oil and petroleum industry: Control of microbial growth in fuel storage tanks. The methods described in this chapter will focus on direct counts of specific groups of microorganisms with microscopy and these are based on the detection of genetic material and not on culturing.

  7. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined ‘geometric surface area’ of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60–350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility–mass measurement and microscopy. Our results indicate that the tandem mobility–mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility–mass and microscopy method by a factor of 3–10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3. PMID:26692585

  8. Simulation of acoustic agglomeration processes of poly-disperse solid particles

    SciTech Connect

    Changdong Sheng; Xianglin Shen

    2007-01-15

    This article presents the simulation of acoustic agglomeration of poly-disperse solid particles with the direct simulation Monte Carlo method. The modelled processes include the agglomeration due to the orthokinetic and hydrodynamic mechanisms, Brownian coagulation and wall deposition. The aggregates formed during the agglomeration process were characterised as mass fractal aggregates with an equivalent radius to estimate the average radius of the primary particles in individual aggregates. Acoustic agglomeration of fly ash with a lognormal size distribution and TiO{sub 2} particles with a bimodal size distribution was simulated and validated against the experimental data in the literature. It was found that the acoustic agglomeration process of solid particles could be represented with a modified version of Song's orthokinetic model and Koenig's hydrodynamic equation that account for the fractal-like morphology of the aggregates. The fractal dimensions of around 1.8 and 2.2 were obtained for the fly ash and TiO{sub 2} particles, respectively, consistent with the values reported for the aggregates in the literature. The poly-disperse nature of the primary particles is essential to the simulation; assuming mono-disperse primary particles leads to a significant underestimation of the agglomeration rate and the particle size growth particularly during the early stages of the acoustic agglomeration process. Particle deposition on the chamber walls also has some effect on acoustic agglomeration.

  9. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  10. Agglomeration characteristics of river sand and wheat stalk ash mixture at high temperatures

    NASA Astrophysics Data System (ADS)

    Shang, Linlin; Li, Shiyuan; Lu, Qinggang

    2013-02-01

    The agglomeration characteristics of river sand and wheat stalk ash mixture at various temperatures are investigated using a muffle furnace. The surface structural changes, as well as the elemental makeup of the surface and cross-section of the agglomerates, are analyzed by polarized light microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). Multi-phase equilibrium calculation is performed with FactSage in identifying the melting behavior of the river sand-wheat stalk ash mixture at high temperatures. No indication of agglomeration is detected below 850°C. At a temperature of 900-1000°C, however, obvious agglomeration is observed and the agglomerates solidify further as temperature increases. The presence of potassium and calcium enrichment causes the formation of a sticky sand surface that induces agglomeration. The main component of the agglomerate surface is K2O-CaO-SiO2, which melts at low temperatures. The formation of molten silicates causes particle cohesion. The main ingredient of the binding phase in the cross-section is K2O-SiO2-Na2O-Al2O3-CaO; the agglomeration is not the result of the melting behavior of wheat stalk ash itself but the comprehensive results of chemical reaction and the melting behavior at high temperatures. The multi-phase equilibrium calculations agree well with the experimental results.

  11. Acoustic agglomeration of power-plant fly ash. A comprehensive semi-annual progress report

    SciTech Connect

    Reethof, G.

    1980-02-01

    Results obtained during the reporting period are presented. The agglomeration of submicron fly ash particles has been studied as a function of sound pressure level, sound frequency, loading, and exposure time. A second generation model of the agglomeration process is being developed. A high-frequency, high-intensity variable speed siren delivering at least 600 W at frequencies up to 4000 Hz has been developed and tested. Details on the design and operation are presented. The agglomeration chamber has been completely cleaned and the aerosol generating system has been rebuilt. A mathematical model of the acoustics of agglomeration is being developed. Preliminary results of computerized electron microscopic scanning of fly ash particles during agglomeration are presented. (DMC)

  12. Influence of primary-particle density in the morphology of agglomerates.

    PubMed

    Camejo, M D; Espeso, D R; Bonilla, L L

    2014-07-01

    Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental works. PMID:25122302

  13. Influence of primary-particle density in the morphology of agglomerates

    NASA Astrophysics Data System (ADS)

    Camejo, M. D.; Espeso, D. R.; Bonilla, L. L.

    2014-07-01

    Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental works.

  14. Application of a new preparative pyrolysis technique for the determination of source-rock types and oil/source-rock correlations

    NASA Astrophysics Data System (ADS)

    Lafargue, E.; Behar, F.

    1989-11-01

    A new preparative pyrolysis technique enabling the recovery and fractionation (into saturated hydrocarbons, unsaturated hydrocarbons, and aromatic hydrocarbons) of the total C 6+ hydrocarbon fraction (instead of the C 13+ fraction usually recovered) has been applied to different types of source-rocks. The composition of the C 7-C 13 hydrocarbon fraction in the pyrolysate, particularly the amount of aromatic hydrocarbons as compared to alkanes, was found to be characteristic of each type of kerogen, with the alkane/aromatic ratio consistently decreasing in the progression from Type I to Type III kerogens. While the C 13+ fraction is useful in kerogen typing, it was found that the C 7-C 13 hydrocarbon fraction, which represents 40 to 50% of the total recovered pyrolysate, was the most signficant in emphasizing differences between kerogen types, allowing a rapid and precise estimation of the source-rock type. This new technique was applied to potential source-rocks of the Viking Graben, North Sea (Draupne formation, Heather formation, Brent coals, and Dunlin group). In each case, the pyrolysates allowed us to determine whether the organic matter was Type II, Type III, or a mixture of both. Pyrolysis of asphaltenes from crude oils from the various regions was conducted and potential applications of our technique to studies of oil/source-rock correlations were examined.

  15. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  16. Successful field evaluation of the efficiency of a gas gravity drainage process by applying recent developments in Sponge coring technique in a major oil field

    SciTech Connect

    Durandeau, M.; El-Emam, M.; Anis, A.H.; Fanti, G.

    1995-11-01

    This paper describes the application and integration of new technologies and recent developments in Sponge coring and presents the methodology used to carry out successfully the various phases of well designed Sponge coring project, including the coring phase, the on-site measurements and the full evaluation of the Sponge core samples. A field case is presented where a Sponge coring project was accomplished to obtain accurate fluids distribution and evaluate the gas gravity drainage efficiency in one of the Arab D sub-reservoirs of a major oil field offshore Abu Dhabi. A Sponge coring technology team was created to optimize the methodology used during Sponge coring an minimize the uncertainties which persisted on some of the previous operations. The effectiveness of the technique is discussed, with comparison to open hole logs and SCAL data. Realistic petrophysical parameters were obtained from non-invaded, native-state core samples. The effective oil saturation obtained from the Sponge core analysis results showed that the gravity segregation mechanism has been very active and efficient to recover the oil in the reservoir.

  17. Effect of extraction technique on the content and antioxidant activity of crude extract of Anacyclus clavatus flowers and their essential oil composition.

    PubMed

    Aliboudhar, Hamza; Tigrine-Kordjani, Nacéra

    2014-01-01

    Anacyclus clavatus is a plant used as food and remedy. The objective of this work was to study the effect of extraction technique on the antioxidant property, total phenol and flavonoid contents of crude extracts from A. clavatus flowers and their essential oil composition. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing power, β-carotene and total antioxidant capacity assays have demonstrated the significant antioxidant ability of different crude extracts obtained by using the following extraction methods: Soxhlet, microwave heating, heat reflux (HRE) and maceration. The activity of the extract obtained by HRE was the highest (112.06 ± 2.89 μg/mL) evaluated by the DPPH assay. Extraction of essential oil was performed by microwave-assisted hydro-distillation (MAHD) and by hydro-distillation (HD). A significant difference was observed in both essential oils, despite the common main family and major constituents, such as artemisia ketone (10.0 ± 0.8% for MAHD vs. 6.5 ± 0.5 for HD) and pinocarvone (4.1 ± 0.4% for MAHD vs. 1.1 ± 0.1% for HD). PMID:25115624

  18. Getty: producing oil from diatomite

    SciTech Connect

    Zublin, L.

    1981-10-01

    Getty Oil Company has developed unconventional oil production techniques which will yield oil from diatomaceous earth. They propose to mine oil-saturated diatomite using open-pit mining methods. Getty's diatomite deposit in the McKittrick field of California is unique because it is cocoa brown and saturated with crude oil. It is classified also as a tightly packed deposit, and oil cannot be extracted by conventional oil field methods.

  19. Heliophrya sp. , a new protozoan biomonitor of pollution: culture techniques, toxin uptake and elimination, and field studies in an oil-polluted stream

    SciTech Connect

    Sayre, P.G.

    1984-01-01

    The stalkless suctorian Heliophyra sp., a sessile ciliated protozoan, was used as a pollution biomonitor. The research objectives were to determine: (1) optimal culture conditions and techniques for biotoxicity testing; (2) ability of Helipophrya to incorporate and eliminate a /sup 14/C oil component and other organic toxins; (3) suitability of Heliophrya as a biomonitor of oil pollution. Selection of culture conditions for Heliophrya were based on survival over a three week period and ability to divide when fed after three weeks. The LC50 (lethal concentration for 50% of the population) for 96 h was 12.4 ppt salinity. Heliophrya were exposed to /sup 14/C toxins for 48 h, then organisms were transferred to nonradioactive water for 96 h. The uptake rate of /sup 14/C octachlorostyrene was higher than /sup 14/C phenanthrene or /sup 14/C diisononyl phthalate. Elimination rates were comparable to other test organisms. Heliophrya and d. pulex were placed at three stations, in a stream which received chronic oil pollution, for periods of 48 h and seven days. A 48 h lab test with dilutions of field water was performed. Water samples were analyzed by gas chromatography and mass spectrometry. Death of Heliophrya at the three polluted stations over 48 h was not significantly greater than at a less polluted tributary; however, all the Daphnia in the polluted stream stations were killed. In the seven day field study, Heliophrya had an estimated LC50 of 1 ppm for the aromatic and 29 ppm for the total hydrocarbons. Compared to other species, Heliophrya is moderately sensitive to oil pollution, and is a good companion biomonitor to the more sensitive Daphnia.

  20. Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler

    PubMed Central

    Salem, HF; Abdelrahim, ME; Eid, K Abo; Sharaf, MA

    2011-01-01

    Background: Nanosized dry powder inhalers provide higher stability for poorly water-soluble drugs as compared with liquid formulations. However, the respirable particles must have a diameter of 1–5 μm in order to deposit in the lungs. Controlled agglomeration of the nanoparticles increases their geometric particle size so they can deposit easily in the lungs. In the lungs, they fall apart to reform nanoparticles, thus enhancing the dissolution rate of the drugs. Theophylline is a bronchodilator with poor solubility in water. Methods: Nanosized theophylline colloids were formed using an amphiphilic surfactant and destabilized using dilute sodium chloride solutions to form the agglomerates. Results: The theophylline nanoparticles thus obtained had an average particle size of 290 nm and a zeta potential of −39.5 mV, whereas the agglomerates were 2.47 μm in size with a zeta potential of −28.9 mV. The release profile was found to follow first-order kinetics (r2 > 0.96). The aerodynamic characteristics of the agglomerated nanoparticles were determined using a cascade impactor. The behavior of the agglomerate was significantly better than unprocessed raw theophylline powder. In addition, the nanoparticles and agglomerates resulted in a significant improvement in the dissolution of theophylline. Conclusion: The results obtained lend support to the hypothesis that controlled agglomeration strategies provide an efficient approach for the delivery of poorly water-soluble drugs into the lungs. PMID:21383856

  1. Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes

    NASA Astrophysics Data System (ADS)

    Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan

    2013-01-01

    Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

  2. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Federal Lands - A Field Evaluation At Big South Fork National River And Recreation Area, Scott County, Tennessee

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2000-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands so that sites may be prioritized for further, more formal assessment or remediation. These techniques should allow the field investigator to extend the assessment beyond the surface disturbances documented by simple observation and mapping using field-portable instruments and expendable materials that provide real-time data. The principal contaminants of current concern are hydrocarbons, produced water, and naturally occurring radioactive materials (NORM). Field investigators can examine sites for the impacts of hydrocarbon releases using a photoionization detector (PID) and a soil auger. Volatile organic carbon (VOC) in soil gases in an open auger hole or in the head space of a bagged and gently warmed auger soil sample can be measured by the PID. This allows detection of hydrocarbon movement in the shallow subsurface away from areas of obvious oil-stained soils or oil in pits at a production site. Similarly, a field conductivity meter and chloride titration strips can be used to measure salts in water and soil samples at distances well beyond areas of surface salt scarring. Use of a soil auger allows detection of saline subsoils in areas where salts may be flushed from the surface soil layers. Finally, a microRmeter detects the presence of naturally occurring radioactive materials (NORM) in equipment and soils. NORM often goes undetected at many sites although regulations limiting NORM in equipment and soils are being promulgated in several States and are being considered by the USEPA. With each technique, background sampling should be done for comparison with impacted areas. The authors examined sites in the Big South Fork National River and Recreation Area in November of 1999. A pit at one site at the edge of the flood plain of a small stream had received crude oil releases from a nearby tank. Auger holes down

  3. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1998-05-01

    Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical ft, them stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more beds for stimulation. These recompletion will show which logs are most effective in identifying productive beds and what scale of completion is most cost effective. The third demonstration will be the logging and completion of a new well using the logs and completion scale or technique most effective in the previous demonstrations.

  4. Agglomeration and defluidization in FBC of biomass fuels -- Mechanisms and measures for prevention

    SciTech Connect

    Nordin, A.; Oehman, M.; Skrifvars, B.J.; Hupa, M.

    1996-12-31

    The use of biomass fuels in fluidized bed combustion (FBC) and gasification (FBG) is becoming more important because of the environmental benefits associated with these fuel and processes. However, severe bed agglomeration and defluidization have been reported due to the special ash forming constituents of some biomass fuels. Previous results have indicated that this could possibly be prevented by intelligent fuel mixing. In the present work the mechanisms of bed agglomeration using two different biomass fuels as well as the mechanism of the prevention of agglomeration by co-combustion with coal (50/50 %{sub w}) were studied. Several repeated combustion tests with the two biomass fuels, alone (Lucerne and olive flesh), all resulted in agglomeration and defluidization of the bed within less than 30 minutes. By controlled defluidization experiments the initial cohesion temperatures for the two fuels were determined to be as low as 670 C and 940 C, respectively. However, by fuel mixing the initial agglomeration temperature increased to 950 C and more than 1050 C, respectively. When co-combusted with coal during ten hour extended runs, no agglomeration was observed for either of the two fuel mixtures. The agglomeration temperatures were compared with results from a laboratory method, based on compression strength measurements of ash pellets, and results from chemical equilibrium calculations. Samples of bed materials, collected throughout the experimental runs, as well as the produced agglomerated beds, were analyzed using SEM EDS and X-ray diffraction. The results showed that loss of fluidization resulted from formation of molten phases coating the bed materials; a salt melt in the case of Lucerne and a silicate melt in the case of the olive fuel. By fuel mixing, the in-bed ash composition is altered, conferring higher melting temperatures, and thereby agglomeration and defluidization can be prevented.

  5. Development and application of Fourier transform infrared spectroscopic techniques to the characterization of coal and oil shale

    SciTech Connect

    Snyder, R.W.

    1982-01-01

    The development of application programs for infrared spectroscopy has been an ongoing proposition for a number of years. This development, however, was accelerated with the advent of Fourier transform infared (FT-IR) instruments and their built-in mini-computers. The uses and pitfalls of several of these routines are discussed in this thesis. A least-squares curve resolving program has been developed and the use of this program is also discussed. The analysis of complex, multicomponent polymeric materials, such as coal and oil shale, by conventional infrared spectroscopy has been a difficult problem. The use of FT-IR spectroscopy for the qualitative and quantitative analysis of these types of materials is discussed. A characterization of oil shale from the Mahogany Zone of the Green River Formation has been obtained by FT-IR. A quantitative analysis of the mineral component by FT-IR spectroscopy is shown to be comparable to that obtained by x-ray diffraction when considering broad mineral types, i.e., carbonates. Methods for the FT-IR analysis of the organic component, both from the whole shale and from kerogen specimens, have been refined. There is a good correlation between the intensity of alkyl bands and Fisher assay yields. An assessment is made of the applicability of extinction coefficients obtained from paraffins to their use in quantitative analysis in oil shales. A quantitative analysis of OH content in coal by FT-IR is comparable to that done by other methods (i.e., chemical and NMR). An analysis is also made of the various types of OH groups in coal.

  6. Improved techniques for fluid diversion in oil recovery. Second annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    Seright, R.S.

    1995-03-01

    This project is directed at reducing water production and increasing oil recovery efficiency. Today, the cost of water disposal is typically between $0.25 and $0.50 per bbl. Therefore, there is a tremendous economic incentive to reduce water production if that can be accomplished without sacrificing hydrocarbon production. Environmental considerations also provide a significant incentive to reduce water production during oilfield operations. This three-year project has two technical objectives. The first objective is to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. Topics covered in this report include (1) comparisons of the use of gels, foams, emulsions, and particulates as blocking agents; (2) propagation of aluminum-citrate-HPAM gels through porous rock; (3) gel properties in fractured systems; (4) gel placement in unfractured anisotropic flow systems; and (5) an investigation of why some gels can reduce water permeability more than oil permeability.

  7. Oil concentrator

    SciTech Connect

    Wolde-Michael, G.

    1983-12-27

    In an apparatus for efficiently and thoroughly cleaning tramp oil and contaminants from machine coolant; a tank 12 having three compartments 32, 52 and 66 with a quietener baffle 58 located between the first compartment 32 and the main compartment 52, a torturous path between the main compartment 52 and the clean coolant storage compartment 66, and an agglomeration baffle 76 between the main and storage compartments 52, 66, respectively, is provided. Further, the flow quietener baffle 76 is arranged within the tank 12 so that material flowing from the first compartment 32 to the main compartment 52 will flow generally down the quietener baffle 58 and arrive in the main compartment 52, substantially at the level of the interface 46 between the floating light material 42 and the heavy material 44 with a minimum of disturbance to interface 46. Rapid and complete floatation of oily material containing heavy contaminants is achieved by the addition of aeration bubbles 62 within the first compartment 32.

  8. Diffusion-Limited Agglomeration and Defect Generation during Chemical Mechanical Planarization

    SciTech Connect

    Biswas, R.; Han, Y.; Karra, P.; Sherman, P.; Chandra, A.

    2008-06-06

    Chemical mechanical planarization (CMP) of copper involves removal of surface asperities with abrasive particles and polishing processes. This leads to copper-containing nanoparticles extruded into the solution. We model the diffusion-limited agglomeration (DLA) of such nanoparticles which can rapidly grow to large sizes. These large particles are detrimental because they can participate in polishing, causing scratches and surface defects during CMP. The agglomeration is much slower in the reaction-limited agglomeration process. Under realistic conditions the defect generation probability can increase significantly over time scales of {approx}10 to 20 min from DLA, unless prevented by slurry rejuvenation or process modification measures.

  9. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  10. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  11. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L.

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  12. Constraints on chondrule agglomeration from fine-grained chondrule rims

    NASA Technical Reports Server (NTRS)

    Metzler, K.; Bischoff, A.

    1994-01-01

    Fine-grained rims around chondrules, Ca,Al-rich inclusions, and other coarse-grained components occur in most types of unequilibrated chondrites, most prominently in carbonaceous chondrites of the CM group. Based on mineralogical and petrographic investigations, it was suggested that rim structures in unequilibrated ordinary chondrites could have formed in the solar nebula by accretion of dust on the surfaces of the chondrules. Dust mantles in CM chondrites seem to have formed by accretion of dust on the surfaces of chondrules and other components during their passage through dust-rich regions in the solar nebula. Concentric mantles with compositionally different layers prove the existence of various distinct dust reservoirs in the vicinity of the accreting parent body. Despite mineralogical and chemical differences, fine-grained rims from other chondrite groups principally show striking similarities to dust mantle textures in CM chondrite. This implies that the formation of dust mantles was a cosmically significant event like the chondrule formation itself. Dust mantles seem to have formed chronologically between chondrule-producing transient heating events and the agglomeration of chondritic parent bodies. For this reason the investigation of dust mantle structures may help to answer the question of how a dusty solar nebula was transformed into a planetary system.

  13. Capillary condensation onto titania (TiO2) nanoparticle agglomerates.

    PubMed

    Kim, Seonmin; Ehrman, Sheryl H

    2007-02-27

    A capillary condensation process was developed for the purpose of forming interconnections between nanoparticles at low temperatures. The process was performed in a temperature-controlled flow chamber on nanoparticle agglomerates deposited at submonolayer coverage on a transmission electron microscope grid. The partial pressure of the condensing species, tetraethyl orthosilicate, and the temperature of the chamber were adjusted in order to obtain the various saturation conditions for capillary condensation. The modified samples were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, BET surface area method, and scanning transmission electron microscopy with electron energy-loss spectrometry. Experimental results show that bridge-shaped layers were dominantly formed in the neck region between particles and were composed of amorphous silica. The analysis of TEM micrographs verified that the coverage of the layers is strongly dependent on the saturation ratio. Image analysis of TEM micrographs shows that this dependency is qualitatively in agreement with theoretical predictions based on the classical Kelvin equation for the specific geometries in our system. PMID:17243733

  14. Reducing adhesion and agglomeration within a cloud of combustible particles

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.

    1988-01-01

    The study of combustible particle clouds inside flame tubes is of fundamental scientific interest as well as a practical concern. Only the suspended concentration is important to the combustion process, so that assurances must be provided that a minimum of particles adheres to the tube wall. This paper demonstrates experimentally the ability to minimize adhesion and agglomeration of acoustically-mixed lycopodium particles within a 5-cm diameter lexan flame tube. The area density of particles (ADP) adhering to the wall of bare lexan tubes was measured at greater than 100 particles/sq mm. The nature of adhesion was found to be clearly electrostatic, with the ADP level aggravated by increased mixing time, vigor, and the concentration of particles. Increases in the conductivity of the air and the tube wall did not affect ADP levels substantially. However, the observed adhesion was reduced to less than 10 p/sq mm when the air was ionized by use of an alpha emitter mounted on the inner walls of the flame tube.

  15. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  16. Assessment of Traffic Noise on Highway Passing from Urban Agglomeration

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Kori, Chandan; Kumar, Manoj; Chakrabarti, T.; Gupta, Rajesh

    2014-09-01

    Assessment of traffic noise pollution in developing countries is complex due to heterogeneity in traffic conditions like traffic volume, road width, honking, etc. To analyze the impact of such variables, a research study was carried out on a national highway passing from an urban agglomeration. Traffic volume and noise levels (L10, Lmin, Lmax, Leq and L90) were measured during morning and evening peak hours. Contribution of noise by individual vehicle was estimated using passenger car noise unit. Extent of noise pollution and impact of noisy vehicles were estimated using noise pollution level and traffic noise index, respectively. Noise levels were observed to be above the prescribed Indian and International standards. As per audio spectrum analysis of traffic noise, honking contributed an additional 3-4 dB(A) noise. Based on data analysis, a positive relationship was observed between noise levels and honking while negative correlation was observed between noise levels and road width. The study suggests that proper monitoring and analysis of traffic data is required for better planning of noise abatement measures.

  17. The Physics of Protoplanetesimal Dust Agglomerates. V. Multiple Impacts of Dusty Agglomerates at Velocities Above the Fragmentation Threshold

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Güttler, Carsten; Blum, Jürgen

    2010-12-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s^{-1}. The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing

  18. Fast and effective low-temperature freezing extraction technique to determine organotin compounds in edible vegetable oil.

    PubMed

    Liu, Yingxia; Ma, Yaqian; Wan, Yiqun; Guo, Lan; Wan, Xiaofen

    2016-06-01

    Most organotin compounds that have been widely used in food packaging materials and production process show serious toxicity effects to human health. In this study, a simple and low-cost method based on high-performance liquid chromatography with inductively coupled plasma mass spectrometry for the simultaneous determination of four organotins in edible vegetable oil samples was developed. Four organotins including dibutyltin dichloride, tributyltin chloride, diphenyltin dichloride, and triphenyltin chloride were simultaneously extracted with methanol using the low-temperature precipitation process. After being concentrated, the extracts were purified by matrix solid-phase dispersion using graphitized carbon black. The experimental parameters such as extraction solvent and clean-up material were optimized. To evaluate the accuracy of the new method, the recoveries were investigated. In addition, a liquid chromatography with tandem mass spectrometry method was also proposed for comparison. The procedures of extracting and purifying samples for the analysis were simple and easy to perform batch operations, also showed good efficiency with lower relative standard deviation. The limits of detection of the four organotins were 0.28-0.59 μg/L, and the limits of quantification of the four organotins were 0.93-1.8 μg/L, respectively. The proposed method was successfully applied to the simultaneous analysis of the four organotins in edible vegetable oil. Some analytes were detected at the level of 2.5-28.8 μg/kg. PMID:27138689

  19. Remediation technologies for oil-contaminated sediments.

    PubMed

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable. PMID:26414316

  20. Shale oil stabilization with a hydroprocessor

    SciTech Connect

    York, E. D.; Johnson, D. M.; Miller, P. B.

    1985-10-22

    A process is provided to produce, stabilize, dedust and upgrade synthetic oil, such as shale oil. In the process, synthetic fuels, such as oil shale, tar sands and diatomite are retorted with heat carrier material to liberate an effluent product stream comprising hydrocarbons and entrained particulates of dust. In order to minimize polymerization of the product stream and agglomerate the dust, the product stream is stabilized, upgraded, and pretreated prior to dedusting, in a hydroprocessor, such as an ebullated bed reactor, with a hydroprocessing gas in the presence of a catalyst. The hydroprocessing gas can be hydrogen, scrubbed fractionator gases, or hydrocarbon-enriched hydroprocessor off gases.

  1. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VII. THE LOW-VELOCITY COLLISION BEHAVIOR OF LARGE DUST AGGLOMERATES

    SciTech Connect

    Schraepler, Rainer; Blum, Juergen; Seizinger, Alexander; Kley, Wilhelm

    2012-10-10

    We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm s{sup -1} to 0.5 m s{sup -1}, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular-dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. This work is an extension to the previous work of our group and gives new insight into the velocity dependency of the coefficient of restitution due to improved measurements, better statistics, and a theoretical approach.

  2. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes

    PubMed Central

    2012-01-01

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide. PMID:23140103

  3. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  4. Role of Solvents in Improvement of Dissolution Rate of Drugs: Crystal Habit and Crystal Agglomeration

    PubMed Central

    Maghsoodi, Maryam

    2015-01-01

    Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214

  5. Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols

    PubMed Central

    El-Gendy, Nashwa; Pornputtapitak, Warangkana; Berkland, Cory

    2015-01-01

    Particle engineering strategies remain at the forefront of aerosol research for localized treatment of lung diseases and represent an alternative for systemic drug therapy. With the hastily growing popularity and complexity of inhalation therapy, there is a rising demand for tailor-made inhalable drug particles capable of affording the most proficient delivery to the lungs and the most advantageous therapeutic outcomes. To address this formulation demand, nanoparticle agglomeration was used to develop aerosols of the asthma therapeutics, fluticasone or albuterol. In addition, a combination aerosol was formed by drying agglomerates of fluticasone nanoparticles in the presence of albuterol in solution. Powders of the single drug nanoparticle agglomerates or of the combined therapeutics possessed desirable aerodynamic properties for inhalation. Powders were efficiently aerosolized (~75% deposition determined by cascade impaction) with high fine particle fraction and rapid dissolution. Nanoparticle agglomeration offers a unique approach to obtain high performance aerosols from combinations of asthma therapeutics. PMID:21964203

  6. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    PubMed

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. PMID:24152872

  7. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

    PubMed Central

    Galla, Hans-Joachim; Kirkpatrick, C James; Stauber, Roland H

    2014-01-01

    Summary Due to the recent widespread application of nanomaterials to biological systems, a careful consideration of their physiological impact is required. This demands an understanding of the complex processes at the bio–nano interface. Therefore, a comprehensive and accurate characterization of the material under physiological conditions is crucial to correlate the observed biological impact with defined colloidal properties. As promising candidates for biomedical applications, two SiO2-based nanomaterial systems were chosen for extensive size characterization to investigate the agglomeration behavior under physiological conditions. To combine the benefits of different characterization techniques and to compensate for their respective drawbacks, transmission electron microscopy, dynamic light scattering and asymmetric flow field-flow fractionation were applied. The investigated particle systems were (i) negatively charged silica particles and (ii) poly(organosiloxane) particles offering variable surface modification opportunities (positively charged, polymer coated). It is shown that the surface properties primarily determine the agglomeration state of the particles and therefore their effective size, especially under physiological conditions. Thus, the biological identity of a nanomaterial is clearly influenced by differentiating surface properties. PMID:25383289

  8. Optimization and comparison of miniaturized extraction techniques for PAHs from crude oil exposed Atlantic cod and haddock eggs.

    PubMed

    Sørensen, Lisbet; Silva, Marta S; Booth, Andy M; Meier, Sonnich

    2016-02-01

    Two miniaturized extraction methods for a wide range of 2-6 ring polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues in small lipid-rich biota samples (≤100 mg) have been developed. Both methods utilize liquid extraction (LE) prior to a clean-up step using either normal phase solid phase extraction (SPE) or mixed-phase dispersive SPE (dSPE). Optimization of the methods was achieved by comparing the type and amount of sorbents, drying agents, and solvents used. In order to improve the limits of detection (LOD) of target PAHs under high sensitivity gas chromatography-tandem mass spectrometry analysis, specific emphasis was given to minimizing lipid co-extraction. The optimized LE-SPE method comprised extraction with dichloromethane/n-hexane (1:1, v/v) and clean-up by silica SPE, whereas the optimized LE-dSPE method comprised extraction with acetonitrile and clean-up with PSA and C18 sorbents. The methods were validated and directly compared through the analysis of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) eggs exposed to oil. The LE-SPE method resulted in lower levels of co-extracted lipids (14.1 ± 1.7 ng/μL) than the LE-dSPE method (60 ± 14 ng/μL). Achieved PAH LODs for the LE-SPE method were typically an order of magnitude lower (<5 ng/g) than for the LE-dSPE method (<125 ng/g). The LE-SPE method offers the possibility for PAH analysis of small samples of fish eggs (~100 mg) exposed to small quantities of crude oil (~1-10 μg/L total PAHs). PMID:26677025

  9. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed

    SciTech Connect

    Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem

    2005-12-01

    Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

  10. 1D versus 3D quantum confinement in 1-5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices.

    PubMed

    El-Atab, Nazek; Nayfeh, Ammar

    2016-07-01

    ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1-5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV-vis-NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C-V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole-Frenkel charge-emission mechanism. PMID:27232717

  11. 1D versus 3D quantum confinement in 1–5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices

    NASA Astrophysics Data System (ADS)

    El-Atab, Nazek; Nayfeh, Ammar

    2016-07-01

    ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1–5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV–vis–NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C–V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole–Frenkel charge-emission mechanism.

  12. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    PubMed

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler. PMID:23250711

  13. Engineering development of selective agglomeration: Task 7, Evaluation of bench-scale and component tests

    SciTech Connect

    Not Available

    1991-11-01

    This report presents the Task 7 findings of the project entitled Engineering Development of Selective Agglomeration'' to develop selective agglomeration technology to a commercially acceptable level by 1992. The objectives of this report are to summarize the work completed as a part of Task 7, which includes engineering analysis of process deficiencies, analysis of all project test results, and evaluation and selection of an agglomeration process for further development in Phase II. Other objectives of this task included evaluation of the selective agglomeration technology and analysis of all the major deficiencies remaining at the conclusion of Phase I of the project. An overview of the agglomeration processes that were under consideration is presented, along with a discussion of the various test parameters that were found to be important during project testing. This report includes a comprehensive evaluation of all test data and a summary of the major findings; it also provides characterization data for all the project coals and presents the agglomeration process selected for Phase II along with a discussion of the criteria and rationale for the selection.

  14. Two-level hierarchical structure in nano-powder agglomerates in gas media

    NASA Astrophysics Data System (ADS)

    de Martin, Lilian; Bouwman, Wim G.; van Ommen, J. Ruud

    2012-11-01

    Nanoparticles in high concentration in a gas form agglomerates due to the interparticle van der Waals forces. The size and the internal structure of these nanoparticles agglomerates strongly influence their dynamics and their interaction with other objects. This information is crucial, for example, when studying inhalation of nanoparticles. It is common to model the structure of these agglomerates using a fractal approach and to compare their dimension with the dimension obtained from aggregation models, such diffusion limited aggregation (DLA). In this work we have analyzed the structure of nanoparticles agglomerates in situ by means of Spin-Echo Small-Angle Neutron Scattering (SESANS), while they were fluidized in a gas stream. The advantage of SESANS over conventional SANS is that SESANS can measure scales up to 20 microns, while SANS does not exceed a few hundred of nanometers. We have observed that when agglomerates interact, their structure cannot be characterized by using only one scaling parameter, the fractal dimension. We have found that there are at least two structure levels in the agglomerates and hence, we need at least two parameters to describe the autocorrelation function in each level.

  15. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization

    NASA Astrophysics Data System (ADS)

    Yu, Z. Q.; Tan, R. B. H.; Chow, P. S.

    2005-06-01

    Effects of agitation speed and feeding rate on agglomeration and habit of paracetamol crystals in anti-solvent crystallization from water-acetone mixture are reported. Water is used as anti-solvent and is added in a semi-batch manner to a baffled 1-l crystallizer equipped with a marine-type impeller. A simple new method to characterize agglomeration degree has been proposed. Results show that agglomeration degree of crystals depends on particle size and elevated agitation reduces agglomeration degree of big particles. Particle mean size exhibits a maximum with increasing agitation intensity in the range of 200-600 rpm, which is explained from the perspective of anti-solvent dispersion and crystal agglomeration/disruption. Agglomeration degree of products deteriorates with increasing feeding rate ranging from 1 to 20 g/min due to enhanced nucleation. Crystal habit changes when feeding rate is altered, mainly in the faces of [0 0 1] and [1 1 0]. Focused beam reflectance measurement (FBRM) was used to monitor indirectly the particle size distribution in situ. The data demonstrated that FBRM may potentially be used as a tool to control crystallization process.

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  2. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  3. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

    2001-11-26

    The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

  4. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2001-04-19

    The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

  5. OIL SLICK DISPERSAL MECHANICS

    EPA Science Inventory

    This study investigates the spreading and dissolution behavior of small oil slicks formed from spills of 12 oils. The increases in area covered by the oils during spreading experiments were determined using photographic techniques. Spreading equations were derived and used to cor...

  6. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  7. Advanced analytical mass spectrometric techniques and bioassays to characterize untreated and ozonated oil sands process-affected water.

    PubMed

    Sun, Nian; Chelme-Ayala, Pamela; Klamerth, Nikolaus; McPhedran, Kerry N; Islam, Md Shahinoor; Perez-Estrada, Leonidas; Drzewicz, Przemysław; Blunt, Brian J; Reichert, Megan; Hagen, Mariel; Tierney, Keith B; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2014-10-01

    Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs. Despite its lower resolution, UPLC-TOF MS was shown to offer a comparable level of reliability and precision as the high resolution FT-ICR MS. Additionally, the impacts of ozonation (35 mg/L utilized ozone dose) and subsequent NAs degradation on OSPW toxicity were assessed via a collection of organisms and toxicity end points using Vibrio fischeri (nonspecific), specific fish macrophage antimicrobial responses, and fish olfactory responses. Fish macrophages exposed to ozonated OSPW for 1 week showed higher production of reactive oxygen and nitrogen intermediates; however, after 12 weeks the responses were reduced significantly. Fish olfactory tests suggested that OSPW interfered with their perception of odorants. Current results indicate that the quantification of NAs species, using novel analytical methods, can be combined with various toxicity methods to assess the efficiency of OSPW treatment processes. PMID:25211339

  8. Improved techniques for fluid diversion in oil recovery. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Seright, R.S.

    1994-01-01

    This three-year project has two general objectives. The first objective is to compare the effectiveness of gels in fluid diversion with those of other types of processes. Several different types of fluid-diversion processes will be compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application, and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses will be performed to assess where the various diverting agents will be most effective (e.g., in fractured vs. unfractured wells, deep vs. near-wellbore applications, reservoirs with vs. without crossflow, or injection wells vs. production wells). Experiments will be performed to verify which materials are the most effective in entering and blocking high-permeability zones. Another objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. In addition to establishing why this occurs, our research will attempt to identify materials and conditions that maximize this phenomenon.

  9. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: influence of formulation variables and modelling of agglomerate growth.

    PubMed

    Pauli-Bruns, Anette; Knop, Klaus; Lippold, Bernhard C

    2010-03-01

    The one-step preparation of sustained release matrix pellets, using a melting procedure in a fluidized bed apparatus, was tested in a 2(3) full factorial design of experiments, using microcrystalline wax as lipophilic binder, theophylline as model drug and talc as additional matrix forming agent. The three influence parameters were (A) size of binder particles, (B) fraction of theophylline in solid particles and (C) fraction of microcrystalline wax in formulation. The response variables were agglomerate size and size distribution, dissolution time, agglomerate crush resistance, sphericity, yield and porosity. Nearly spherical pellets comprising a smooth, closed surface could be obtained with the used method, exhibiting the hollow core typical for the immersion and layering mechanism. The reproducibility was very good concerning all responses. The size of agglomerates is proportional to the size of the binder particles, which serve as cores for pellet formation in the molten state in the fluidized bed. Additionally, the agglomerate size is influenced by the volume of the solid particles in relation to the binder particles, with more solid particles leading to larger agglomerates and vice versa. Dissolution times vary in a very wide range, resulting from the interplay between amount of drug in relation to the meltable matrix substance microcrystalline wax and the non-meltable matrix substance talc. The change of binder particle size does not lead to a structural change of the matrix; both dissolution times and porosity are not significantly altered. Agglomerate crush resistance is low due to the hollow core of the pellets. However, it is significantly increased if the volume fraction of microcrystalline wax in the matrix is high, which means that the matrix is mechanically better stabilized. A theoretical model has been established to quantitatively explain agglomerate growth and very good accordance of the full particle size distributions between predicted and

  10. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  11. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    PubMed

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-01

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption. PMID:26069936

  12. Cation effects during aggregation and agglomeration of gibbsite particles under synthetic Bayer crystallisation conditions

    NASA Astrophysics Data System (ADS)

    Prestidge, Clive A.; Ametov, Igor

    2000-02-01

    Rheological methods have been used to study the influence of the liquor cation (sodium versus potassium) on the time-dependent gibbsite particle interactions that occur during Bayer process crystallisation. The temperature, supersaturation and seeding levels investigated simulate those experienced in industrial crystallisers. Gibbsite agglomeration was shown to occur by reversible aggregation followed by irreversible cementation. These two sub-steps were individually characterised by careful choice of seed surface area and liquor supersaturation during batch crystallisation. At seed loading levels less than 10% w/w aggregates are rapidly cemented into agglomerates, this is more pronounced in sodium- than potassium-based liquors. These suspensions were Newtonian and the extent of agglomeration correlated with their viscosity. At seed loading levels greater than 20% w/w particle aggregation resulted in extensively time-dependent and non-Newtonian rheology. However, the aggregates did not undergo cementation into agglomerates and no irreversible size enlargement was evident. Yield stress development with time was used to probe the kinetics of aggregation and quantify the particle interaction behaviour. The rate and extent of the particle network formation is more pronounced in sodium rather than potassium-based liquors, supersaturation dependent, alkali concentration dependent, but only weakly temperature dependent. These findings are discussed with respect to the chemical and physical mechanisms of agglomeration in Bayer crystallisation and the role of cation.

  13. Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique

    NASA Astrophysics Data System (ADS)

    Vicari, L.

    2002-11-01

    We present a new pump probe laser beams configuration for the nonlinear optical characterization of microemulsions. We detect the variation of the on-axis optical intensity of the probe beam as generated by the concentration profile induced in an optically thin film of microemulsion by the pump beam. A mathematical model has been introduced to describe the phenomenon. The technique allows the determination of both Kerr-like optical nonlinearity and time constants and, therefore, it gives information both on cluster dimension and their shape. We discuss its application to WAD (water/AOT/decane, where AOT denotes sodium-bis-di-ethyl-sulfosuccinate) with the application of a strong electric field of optical source. Comparison between theoretical predictions and experimental results confirms the presence of giant optical nonlinearity in the absence of turbidity divergence. Chainlike shape of clusters, of the kind already reported with the application of strong electric field, could justify this result.

  14. Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique.

    PubMed

    Vicari, L

    2002-11-01

    We present a new pump probe laser beams configuration for the nonlinear optical characterization of microemulsions. We detect the variation of the on-axis optical intensity of the probe beam as generated by the concentration profile induced in an optically thin film of microemulsion by the pump beam. A mathematical model has been introduced to describe the phenomenon. The technique allows the determination of both Kerr-like optical nonlinearity and time constants and, therefore, it gives information both on cluster dimension and their shape. We discuss its application to WAD (water/AOT/decane, where AOT denotes sodium-bis-di-ethyl-sulfosuccinate) with the application of a strong electric field of optical source. Comparison between theoretical predictions and experimental results confirms the presence of giant optical nonlinearity in the absence of turbidity divergence. Chainlike shape of clusters, of the kind already reported with the application of strong electric field, could justify this result. PMID:15010903

  15. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    NASA Astrophysics Data System (ADS)

    Serkov, A. A.; Shcherbina, M. E.; Kuzmin, P. G.; Kirichenko, N. A.

    2015-05-01

    Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 1014 particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  16. Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer-filler interphase.

    PubMed

    Zare, Yasser

    2016-04-01

    In this paper, some models for yield strength of polymer nanocomposites are developed to determine the properties of interphase and agglomerated nanoparticles. In this regard, "Bagg" parameter is defined assuming the agglomerates size (Dagg) and interphase properties. Additionally, the influences of "Bagg" and "Dagg" on the thickness and strength of interphase are evaluated by the developed equations. The agglomeration of nanoparticles causes contradictory effects on interphase properties in samples with different levels of interfacial bonding. Also, "Bagg" more depends to interphase properties compared to "Dagg". It is found that upon increasing in "Bagg" and "Dagg", the strength of interphase improves and reaches the most level at the highest values of "Bagg" and "Dagg". Therefore, controlling the levels of "Bagg" and "Dagg" is crucial to obtain a strong interphase. PMID:26802275

  17. Direct observation of nanoscale Pt electrode agglomeration at the triple phase boundary.

    PubMed

    Yu, Chen-Chiang; Kim, Sanwi; Baek, Jong Dae; Li, Yong; Su, Pei-Chen; Kim, Taek-Soo

    2015-03-25

    Nanoporous platinum electrode thin films were delaminated from yttria-stabilized zirconia (YSZ) substrates via double cantilever beam delamination to reveal the structure located at the interface between electrode and electrolyte. The thermally driven morphological evolution between the electrode top surface and the substrate contact interface of agglomerated nanoporous platinum thin films were compared. We found the temperature required for significant agglomeration to occur was approximately 100 °C higher at the electrolyte contact interface side than at the top surface side. Judging the reaction active site from the electrode top surface could be inaccurate because higher resistance of thermal agglomeration at the interface could retain the reaction active site during fuel cell operation. PMID:25756949

  18. On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Kudryashova, Olga; Vorozhtsov, Sergey

    2016-05-01

    One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported.

  19. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids

    NASA Astrophysics Data System (ADS)

    Sui, Jize; Zheng, Liancun; Zhang, Xinxin; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    We propose a multilevel equivalent agglomeration (MEA) model in which all particles in an irregular cluster are treated as a new particle with equivalent volume, the liquid molecules wrapping the cluster and in the gaps are considered to assemble on the surface of new particle as mixing nanolayer (MNL), the thermal conductivity in MNL is assumed to satisfy exponential distribution. Theoretical predictions for thermal conductivity enhancement are highly in agreement with the classical experimental data. Also, we first try to employ TEM information quantitatively to offer probable reference agglomeration ratio (not necessary a very precise value) to just test rational estimations range by present model. The comparison results indicate the satisfactory priori agglomeration ratio estimations range from renovated model.

  20. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids

    PubMed Central

    Sui, Jize; Zheng, Liancun; Zhang, Xinxin; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    We propose a multilevel equivalent agglomeration (MEA) model in which all particles in an irregular cluster are treated as a new particle with equivalent volume, the liquid molecules wrapping the cluster and in the gaps are considered to assemble on the surface of new particle as mixing nanolayer (MNL), the thermal conductivity in MNL is assumed to satisfy exponential distribution. Theoretical predictions for thermal conductivity enhancement are highly in agreement with the classical experimental data. Also, we first try to employ TEM information quantitatively to offer probable reference agglomeration ratio (not necessary a very precise value) to just test rational estimations range by present model. The comparison results indicate the satisfactory priori agglomeration ratio estimations range from renovated model. PMID:26777389

  1. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  2. Mitigation of copper corrosion and agglomeration in APS process water systems.

    SciTech Connect

    Dortwegt, R.; Putnam, C.; Swetin, E.

    2002-10-10

    Copper corrosion has been observed in process water (PW) systems at the Advanced Photon Source (APS) dating to the early postcommissioning phase of the project. In time, copper corrosion products agglomerated significantly in certain preferred locations. Significant agglomerations (or deposits) can occur in copper cooling passages such as magnet conductors and x-ray absorbers having relatively large length-to-diameter ratios and where heat is removed by water cooling. Such agglomerations also occur at restrictions found in noncopper system components such as valve seats, fixed orifices, pump seal faces, etc. Modifications to the APS process water system that significantly reduce the rate of copper corrosion are discussed. These modifications have not prevented corrosion altogether. Other means used to prevent component clogging and malfunction as a result of current copper corrosion rates are listed.

  3. Bio-Friendly Alternatives for Xylene – Carrot oil, Olive oil, Pine oil, Rose oil

    PubMed Central

    Nandan, Surapaneni Rateesh Kumar; Kulkarni, Pavan G.; Rao, Thokala Madhusudan; Palakurthy, Pavan

    2015-01-01

    Background Xylene is a flammable liquid with characteristic petroleum or aromatic odours, it is miscible with most of the organic solvents and paraffin wax. Xylene clears tissues rapidly and renders transparency, facilitating clearing endpoint determination, this made it to be used as a clearing agent in routine histopathological techniques. Even though it is a good clearing agent, it causes damage to the tissues by its hardening effect particularly those fixed in non-protein coagulant fixatives. Apart from these tissue effects, it has severe, long lasting ill effects on health of technicians and pathologists when exposed to longer duration. Hence in order to overcome these effects and replace xylene with a safe alternative agent, the present study was carried out to assess the clearing ability and bio-friendly nature of four different natural oils i.e., Carrot oil, Olive oil, Pine oil and Rose oil in comparison with that of Xylene. According to Bernoulli’s principle of fluid dynamics, to decrease viscosity of these oils and increase penetration into tissues for rapid clearing hot-air oven technique was used. Aims To assess:1) Clearing ability and bio-friendly nature of four different oils i.e., Carrot oil, Olive oil, Pine oil, Rose oil in comparison with that of xylene, 2) Application of Bernoulli’s principle of fluid dynamics in rapid clearing of tissues by using hot-air oven. Materials and Methods Forty different formalin fixed tissue samples were taken. Each sample of tissue was cut into 5 bits (40x5=200 total bits) which were subjected for dehydration in differential alcohol gradients. Later, each bit is kept in 4 different oils such as Carrot oil, Olive oil, Pine oil, Rose oil and xylene and transferred into hot-air oven. Further routine steps of processing, sectioning and staining were done. Individual sections cleared in four different oils were assessed for cellular architecture, staining quality and a comparison was done between them. Results Results

  4. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles.

    PubMed

    Mortuza, S M; Kariyawasam, Lahiru K; Banerjee, Soumik

    2015-07-01

    We present a multiscale model, based on molecular dynamics (MD) and kinetic Monte Carlo (kMC), to study the aggregation driven growth of colloidal particles. Coarse-grained molecular dynamics (CGMD) simulations are employed to detect key agglomeration events and calculate the corresponding rate constants. The kMC simulations employ these rate constants in a stochastic framework to track the growth of the agglomerates over longer time scales and length scales. One of the hallmarks of the model is a unique methodology to detect and characterize agglomeration events. The model accounts for individual cluster-scale effects such as change in size due to aggregation as well as local molecular-scale effects such as changes in the number of neighbors of each molecule in a colloidal cluster. Such definition of agglomeration events allows us to grow the cluster to sizes that are inaccessible to molecular simulations as well as track the shape of the growing cluster. A well-studied system, comprising fullerenes in NaCl electrolyte solution, was simulated to validate the model. Under the simulated conditions, the agglomeration process evolves from a diffusion limited cluster aggregation (DLCA) regime to percolating cluster in transition and finally to a gelation regime. Overall the data from the multiscale numerical model shows good agreement with existing theory of colloidal particle growth. Although in the present study we validated our model by specifically simulating fullerene agglomeration in electrolyte solution, the model is versatile and can be applied to a wide range of colloidal systems. PMID:26274304

  5. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  6. Detailed analysis of a quench bomb for the study of aluminum agglomeration in solid propellants

    NASA Astrophysics Data System (ADS)

    Gallier, S.; Kratz, J.-G.; Quaglia, N.; Fouin, G.

    2016-07-01

    A standard quench bomb (QB) - widely used to characterize condensed phase from metalized solid propellant combustion - is studied in detail. Experimental and numerical investigations proved that collected particles are mostly unburned aluminum (Al) agglomerates despite large quenching distances. Particles are actually found to quench early as propellant surface is swept by inert pressurant. Further improvements of the QB are proposed which allow measuring both Al agglomerates and alumina residue with the same setup. Finally, the results obtained on a typical aluminized ammonium perchlorate (AP) / hydroxyl-terminated polybutadiene (HTPB) propellant are briefly discussed.

  7. In-Situ Agglomeration and De-agglomeration by Milling of Nano-Engineered Lubricant Particulate Composites for Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Neshastehriz, M.; Smid, I.; Segall, A. E.

    2014-10-01

    Nano-engineered self-lubricating particles comprised of hexagonal-boron-nitride powder (hBN) encapsulated in nickel have been developed for cold spray coating of aluminum components. The nickel encapsulant consists of several nano-sized layers, which are deposited on the hBN particles by electroless plating. In the cold spray deposition, the nickel becomes the matrix in which hBN acts as the lubricant. The coating demonstrated a very promising performance by reducing the coefficient of friction by almost 50% and increasing the wear resistance more than tenfold. The coatings also exhibited higher bond strength, which was directly related to the hardenability of the particles. During the encapsulation process, the hBN particles agglomerate and form large clusters. De-agglomeration has been studied through low- and high-energy ball milling to create more uniform and consistent particle sizes and to improve the cold spray deposition efficiency. The unmilled and milled particles were characterized with Scanning Electron Microscopy, Energy-Dispersive X-Ray Spectroscopy, BET, and hardness tests. It was found that in low-energy ball milling, the clusters were compacted to a noticeable extent. However, the high-energy ball milling resulted in breakup of agglomerations and destroyed the nickel encapsulant.

  8. Toxicity study of the oil dispersant Corexit 9527 on Macrobrachium rosenbergii (de Man) egg hatchability by using a flow-through bioassay technique.

    PubMed

    Law, A T

    1995-01-01

    The effect of the oil-spill dispersant Corexit 9527 on egg-hatching rate of Macrobrachium rosenbergii (de Man) was studied by using an innovated flow-through bioassay technique. This bioassay method relies on the fact that M. rosenbergii fertilized eggs when detached from the mother prawn were able to hatch artificially. The flow-through system generated a stable and good water quality environment for hatching the eggs successfully. The Corexit 9527 had a pronounced effect on hatching rate of the M. rosenbergii eggs. In the control, the hatching rate of the eggs was 95.55% +/- 1.74%. However, it was reduced drastically with increasing concentrations of Corexit 9527. A 100% inhibition of egg hatchability was found when the level of Corexit 9527 was higher than 250 mg litre(-1). The EC(50) and the EC(95) values estimated by the probit method were 80.4 +/- 5.5 mg litre(-1) and 193.5 +/- 39.9 mg litre(-1) respectively (P = 0.05). The recommended safety level of Corexit 9527 for M. rosenbergii in Malaysian estuarine waters is below 40 mg litre(-1). PMID:15091547

  9. Survey and evaluation of instream habitat and stock restoration techniques for wild pink and chum salmon. Restoration study number 105-1 (restoration project 93063). Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Willette, T.M.; Dudiak, N.C.; Honnold, S.G.; Carpenter, G.; Dickson, M.

    1995-08-01

    This project is the result of a three-year survey of the Exxon Valdez oil spill impact area to identify appropriate and cost-effective instream habitat restoration techniques for salmon, including spawning channels and improvement of fish passage through fish ladders or step-pool structures to overcome physical or hydrological barriers. Additional wild salmon stock rehabilitation measures include stream-side incubation boxes, remote egg-taking, incubation at existing hatcheries for fry stocking in oil-impacted streams, and fry rearing. Study results include the identification of the most promising instream habitat restoration projects in each of the spill-impacted areas.

  10. Composite propellant aluminum agglomeration reduction using tailored Al/PTFE particles

    NASA Astrophysics Data System (ADS)

    Sippel, Travis R.

    can be ignited via optical flash. Propellant aluminum agglomeration is assessed through replacement of reference aluminum powders (spherical, flake, or nanoscale) with Al/PTFE (90/10 or 70/30 wt.%) particles. The effects on burning rate, pressure dependence, and aluminum ignition, combustion, and agglomeration are quantified. Microscopic imaging shows tailored particles promptly ignite at the burning surface and appear to breakup into smaller particles. Replacement of spherical aluminum with Al/PTFE 70/30 wt.% also increases the pressure exponent from 0.36 to 0.58, which results in a 50% increase in propellant burning rate at 13.8 MPa. Combustion products were quench collected using a liquid-free technique at 2.1 and 6.9 MPa. Sizing of products indicates that composite particles result in nominally 25 μm coarse products, which are smaller than the original, average particle size and are also 66% smaller in diameter (96% by volume) than the 76 μm products collected from reference spherical aluminized propellant. Smaller diameter condensed phase products and more gaseous products will likely decrease two-phase flow loss and reduce slag accumulation in solid rocket motors.

  11. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  12. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.

  13. Sonic Enhanced Ash Agglomeration and Sulfur Capture. Technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1992-12-31

    A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. Much research and development has been sponsored on methods for particulate emissions control and the direct injection of calcium-based sorbents to reduce SO{sub 2} emission levels. The results of this research and development indicate that both acoustic agglomeration of particulates and direct injection of sorbents have the potential to become a significant emissions control strategy. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Invention Disclosure filed) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a ``hot flue gas cleanup`` subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which slagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process.

  14. Do Universities Generate Agglomeration Spillovers? Evidence from Endowment Value Shocks. NBER Working Paper No. 15299

    ERIC Educational Resources Information Center

    Kantor, Shawn; Whalley, Alexander

    2009-01-01

    In this paper we quantify the extent and magnitude of agglomeration spillovers from a formal institution whose sole mission is the creation and dissemination of knowledge--the research university. We use the fact that universities follow a fixed endowment spending policy based on the market value of their endowments to identify the causal effect…

  15. Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank.

    PubMed

    Lin, Po Yen; Lee, Hung Lin; Chen, Chih Wei; Lee, Tu

    2015-11-30

    To pave the way for technology transfer and scale up of the spherical agglomeration (SA) process for dimethyl fumarate, effects of the US, European and Kawashima type baffles and 0.5, 2.0 and 10 L-sized common stirred tank were studied. It was found that the particle size distribution varied significantly. However, the size-related properties such as dissolution profile and flowability of agglomerates from the same size cut after sieving could remain unchanged. The interior structure-related properties such as particle density and mechanical property of agglomerates upon baffle change and scale up from the same size cut were decayed and the agglomerates could become denser and stronger by prolonged maturation time. To maintain the same size distribution, agglomerates from any batch could have been separated and classified by sieving and then blended back together artificially by the desired weight% of each cut. PMID:26417848

  16. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    PubMed Central

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  17. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  18. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.

    PubMed

    Nur, Y; Lead, J R; Baalousha, M

    2015-12-01

    The dynamic nature of nanoparticle (NP) agglomeration behavior is of paramount interest to many current studies in environmental nanoscience and nano(eco)toxicology because agglomeration affects the NP bioavailability and toxicity. The present study investigates the surface charge and agglomeration behavior of TiO2 NPs in four different ecotoxicological media (OECD algae, OECD L_variegatus, hardwater and plant media) and two different electrolytes KCl (200 mM) and CaCl2 (50 mM). TiO2 NPs were positively charged, and the zeta potential varied from +1.9 mV in hardwater (at pH7.1) to +24.5 mV in CaCl2 electrolyte (at pH7.4) in all media except algae media, where the zeta potential was -6.7 mV (at pH7.7). Despite the differences in the pH and the surface charge of TiO2 NPs in the different media, an immediate agglomeration of the NPs in all standard ecotoxicological media was observed with aggregate sizes in the micrometer scale, as the measured zeta potentials were insufficient to prevent TiO2 NP agglomeration. The isoelectric point (pHiep) of TiO2 NPs in the studied media varied in the range (6.8-7.6), which was attributed to preferential association of anions and cations to TiO2; that is the pHiep decreases with the increased concentration of Cl and increases with the increased concentrations of Na and Mg. Despite the complexity of the ecotoxicological media and the presence of a mixture of different monovalent and divalent electrolytes, the agglomeration kinetics in the media follows the DVLO theory where two distinct agglomeration rates (slow, reaction limited regime and fast, diffusion limited regime) were observable. The critical coagulation concentration (CCC) of TiO2 NPs in the ecotoxicological media varied from 17.6 to 54.0% v/v standard media in UHPW, due to differences in media pH and TiO2 NP surface charge. In the ecotoxicological media (hardwater, L-variegatus and plant), where TiO2 NPs are positively charged, the CCC decrease with the increased divalent

  19. Evaluation of preservative engine oil containing vapor-phase corrosion inhibitor and a simplified engine-preservation technique. Interim report, Jul 85-Sep 90

    SciTech Connect

    Frame, E.A.

    1990-12-01

    The objectives of this project were: (1) to determine the feasibility of adding a vapor-phase corrosion inhibitor (VCI) component to improve the preservation performance of MIL-L-21260 and (2) to evaluate a less complicated engine preservation procedure. A simultaneous two-phase approach was conducted. Phase 1 involved the formulation and evaluation of experimental VCI oils, while Phase 2 was the evaluation of a simplified engine preservation procedure. VCI oil formulation was conducted by Ronco Laboratory under subcontract. Compatibility of the experimental VCI oils with metal coupons, elastomers, and fuel filters was determined. Effectiveness of the experimental VCI oil was evaluated in a 3-year outdoor engine storage test. The engines were preserved using an experimental, simplified preservation procedure. The simplified engine preservation procedure proved to be acceptable as engines stored for 3 years in a very severe environment were judged to have been adequately preserved. Engine oil meeting specification MIL-L-21260 provided satisfactory protection during the 3-year storage test. The experimental VCI oil also provided satisfactory storage protection during this test; however, there was no observable advantage for the VCI oil. The VCI oil had acceptable compatibility with an elastomeric flex ring, metal coupons (except lead), and fuel filters.

  20. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    SciTech Connect

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  1. Use of remote sensing techniques and aeromagnetic data to study episodic oil seep discharges along the Gulf of Suez in Egypt.

    PubMed

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2013-07-15

    Four successive oil discharges were observed during the last 2 years following the recording of the earthquake events. Oil slicks were clearly observed in the thermal band of the Enhanced Thematic Mapper images acquired during the discharge events. Lineaments were extracted from the ETM+ image data and SRTM (DEM). The seismic activity is conformable in time and spatially related to active major faults and structural lineaments. The concerned site was subjected to a numerous earthquakes with magnitudes ranging from 3 to 5.4 Mb. Aeromagnetic field data analyses indicated the existence of deep major faults crossing the Gebel El-Zeit and the Mellaha basins (oil reservoirs). The magnetic field survey showed major distinctive fault striking NE-SW at 7000 m depth. Occurrence of these faults at great depth enables the crude oil to migrate upward and appear at the surfaces as oil seeps onshore and as offshore slicks in the Gemsa-Hurghada coastal zone. PMID:23688834

  2. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  3. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  4. A new stochastic approach for the simulation of agglomeration between colloidal particles.

    PubMed

    Henry, Christophe; Minier, Jean-Pierre; Pozorski, Jacek; Lefèvre, Grégory

    2013-11-12

    This paper presents a stochastic approach for the simulation of particle agglomeration, which is addressed as a two-step process: first, particles are transported by the flow toward each other (collision step) and, second, short-ranged particle-particle interactions lead either to the formation of an agglomerate or prevent it (adhesion step). Particle collisions are treated in the framework of Lagrangian approaches where the motions of a large number of particles are explicitly tracked. The key idea to detect collisions is to account for the whole continuous relative trajectory of particle pairs within each time step and not only the initial and final relative distances between two possible colliding partners at the beginning and at the end of the time steps. The present paper is thus the continuation of a previous work (Mohaupt M., Minier, J.-P., Tanière, A. A new approach for the detection of particle interactions for large-inertia and colloidal particles in a turbulent flow, Int. J. Multiphase Flow, 2011, 37, 746-755) and is devoted to an extension of the approach to the treatment of particle agglomeration. For that purpose, the attachment step is modeled using the DLVO theory (Derjaguin and Landau, Verwey and Overbeek) which describes particle-particle interactions as the sum of van der Waals and electrostatic forces. The attachment step is coupled with the collision step using a common energy balance approach, where particles are assumed to agglomerate only if their relative kinetic energy is high enough to overcome the maximum repulsive interaction energy between particles. Numerical results obtained with this model are shown to compare well with available experimental data on agglomeration. These promising results assert the applicability of the present modeling approach over a whole range of particle sizes (even nanoscopic) and solution conditions (both attractive and repulsive cases). PMID:24111685

  5. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.

    PubMed

    Tantra, Ratna; Tompkins, Jordan; Quincey, Paul

    2010-01-01

    This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion. PMID:19775871

  6. CONSOLIDATION OF K BASIN SLUDGE DATA AND EXPERIENCES ON AGGLOMERATE FORMATION

    SciTech Connect

    HILL SR

    2010-06-10

    The formation of high sludge strength agglomerates is a key concern to the Sludge Treatment Project (STP) to ensure the sludge can be retrieved after planned storage for up to 10 years in Sludge Transport and Storage Containers (STSC) at T Plant. This report addresses observations of agglomerate formation, conditions that the data shows lead to agglomeration, the frequency of agglomerate formation and postulated physiochemical mechanisms that may lead to agglomeration. Although the exact underlying chemistry of K Basin sludge agglomerate formation is not known, the factors that lead to agglomeration formation, based on observations, are as follows: (1) High Total Uranium Content (i.e., sample homogeneity and influence from other constituents); (2) Distribution of Uranium Phases (i.e., extent of conversion from uraninite to uranium oxide hydroxide compounds); (3) Sample Dry-out (loss of cover water); (4) Elevated temperature; (5) Solubility ofU(IV) phases vs. U(VI) phases; and (6) Long storage times. Agglomerated sludge has occurred infrequently and has only been observed in four laboratory samples, five samples subjected to hydrothermal testing (performed for 7 to 10 hours at {approx}185 C and 225 psig), and indirectly during six sampling events in the KE Basin. In the four laboratory samples where agglomerates were observed, the agglomerates exhibited high shear strength and the sample container typically had to be broken to remove the solids. The total uranium content (dry basis) for the four samples (KE Pit, KC-2/3 SS, KC-2/3 M250 and 96-13) were {approx}8 wt%, {approx}59.0 wt%, 68.3 wt% and 82 wt%. The agglomerates that were present during the six sampling events were undoubtedly disturbed and easily broken apart during sample collection, thus no agglomerates were observed in subsequent laboratory analyses. The highest shear strengths measured for K Basin sludge samples were obtained after hydrothermal treatment (7 to 10 hr at 185 C) of high-uranium-content KE

  7. Formulation techniques for nanofluids.

    PubMed

    Rivera-Solorio, Carlos I; Payán-Rodríguez, Luis A; García-Cuéllar, Alejandro J; Ramón-Raygoza, E D; L Cadena-de-la-Peña, Natalia; Medina-Carreón, David

    2013-11-01

    Fluids with suspended nanoparticles, commonly known as nanofluids, may be formulated to improve the thermal performance of industrial heat transfer systems and applications. Nanofluids may show enhanced thermal and electrical properties such as thermal conductivity, viscosity, heat transfer coefficient, dielectric strength, etc. However, stability problems may arise as nanoparticles usually have the tendency to agglomerate and sediment producing deterioration in the increment of these properties. In this review, we discuss patents that report advances in the formulation of nanofluids including: production methods, selection of components (nanoparticles, base fluid and surfactants), their chemical compositions and morphologies, and characterization techniques. Finally, current and future directions in the development of nanofluid formulation are discussed. PMID:24330043

  8. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  9. Palm Oil

    MedlinePlus

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  10. Diesel oil

    MedlinePlus

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  11. Techniques for mapping the types, volumes, and distribution of clays in petroleum reservoirs and for determining their effects on oil production

    SciTech Connect

    Sharma, B.

    1993-05-01

    This report presents the results of correlation of log signatures with information on distribution of the types and volumes of clays in sandstone pore spaces determined from detailed CT-scan, XRD, SEM, and thin section analyses of core samples from three sandstone reservoirs. The log signatures are then analyzed to determine if suitable mathematical/statistical parameter(s) could be calculated from the logs to determine their effects on permeability and oil production. The variability measures obtained from power spectral analysis of permeability and wireline log data in clayey formations have been correlated with oil production from two oil fields. Compared with the conventional measures of permeability variations like the Dykstra-Parsons coefficients, the new measure appears to correlate better with oil production.

  12. Techniques for mapping the types, volumes, and distribution of clays in petroleum reservoirs and for determining their effects on oil production. Final report

    SciTech Connect

    Sharma, B.

    1993-05-01

    This report presents the results of correlation of log signatures with information on distribution of the types and volumes of clays in sandstone pore spaces determined from detailed CT-scan, XRD, SEM, and thin section analyses of core samples from three sandstone reservoirs. The log signatures are then analyzed to determine if suitable mathematical/statistical parameter(s) could be calculated from the logs to determine their effects on permeability and oil production. The variability measures obtained from power spectral analysis of permeability and wireline log data in clayey formations have been correlated with oil production from two oil fields. Compared with the conventional measures of permeability variations like the Dykstra-Parsons coefficients, the new measure appears to correlate better with oil production.

  13. Green bio-oil extraction for oil crops

    NASA Astrophysics Data System (ADS)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  14. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  15. Chromatographic techniques for the determination of alkyl-phenols, tocopherols and other minor polar compounds in raw and roasted cold pressed cashew nut oils.

    PubMed

    Gómez-Caravaca, Ana María; Verardo, Vito; Caboni, Maria Fiorenza

    2010-11-19

    Anacardium occidentale belongs to the family Anacardiaceae and is principally grown in tropical America (Mexico, Peru, Brazil, etc.) and India. Cashew nuts contain low amounts of hydroxy alkyl phenols that come from an oily liquid present in their shell and that is known as cashew-nut shell liquid. This paper reports the alkyl phenols composition of cold pressed raw and roasted cashew nut oil. First of all, cashew nut shell liquid was used for a basic fractionation of the alkyl phenol classes by preparative TLC and definitively identified by GC-MS and GC-FID. Anacardic acids were the major alkylphenols contained in both oils followed by cardol, cardanol and 2-methylcardol compounds, respectively. Raw and roasted oils did not show different compositions except for cardanols. The oil produced from roasted cashew nut reported a higher concentration of cardanols. Furthermore, tocopherols and other minor polar compounds were determined by HPLC-FLD and HPLC-DAD-MS, respectively. Tocopherol content varied in a range of 171.48-29.56mg/100g from raw to roasted cashew nut oil, being β-tocopherol the one which presented a higher decrease (93.68%). Also minor polar compounds in cashew oil decreased after roasting from 346.52 to 262.83mg/kg. PMID:20961547

  16. In-Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Sen, S.; Juretzko, F.; Stefanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.

    1999-01-01

    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/1) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub ct),, for agglomerates depends not only on their effective size but also their orientation with respect to the s/l interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  17. In Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Sen, S.; Juretzko, F.; Stafanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.

    1999-01-01

    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/l) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub cr) for agglomerates depends not only on their effective size but also their orientation with respect to the s,1 interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  18. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    EPA Science Inventory

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  19. Effect of Drying Phase on the Agglomerates Prepared by Spherical Crystallization

    PubMed Central

    Maghsoodi, Maryam; Yari, Zahra

    2015-01-01

    In this paper, differences in porosity, compressive strength and tablet- forming ability of carbamazepine crystals agglomerated under similar condition, but subjected to different drying temperatures are reported. The agglomerates were prepared by spherical crystallization method and thereafter dried without agitation at different temperature. An increased drying temperature did not affect the shape and structure texture of dried particles and did not cause them to fracture. Drying of particles at higher temperature suppressed the particle contraction as a consequence of fast evaporation and hence produced particles of larger mean diameter, higher porosity and thus lower compressive strength than those dried at lower temperature. Through a relationship with particle porosity, the drying rate also affected the ability of particles to form tablets. PMID:25561911

  20. Multivariate analysis applied to agglomerated macrobenthic data from an unpolluted estuary.

    PubMed

    Conde, Anxo; Novais, Júlio M; Domínguez, Jorge

    2013-01-01

    We agglomerated species into higher taxonomic aggregations and functional groups to analyse environmental gradients in an unpolluted estuary. We then applied non-metric Multidimensional Scaling and Redundancy Analysis (RDA) for ordination of the agglomerated data matrices. The correlation between the ordinations produced by both methods was generally high. However, the performance of the RDA models depended on the data matrix used to fit the model. As a result, salinity and total nitrogen were only found significant when aggregated data matrices were used rather than species data matrix. We used the results to select a RDA model that explained a higher percentage of variance in the species data set than the parsimonious model. We conclude that the use of aggregated matrices may be considered complementary to the use of species data to obtain a broader insight into the distribution of macrobenthic assemblages in relation to environmental gradients. PMID:23684322

  1. Colloidal nanoparticles produced from Cu metal in water by laser ablation and their agglomeration

    NASA Astrophysics Data System (ADS)

    Im, Hee-Jung; Jung, Euo Chang

    2016-01-01

    Colloidal nanoparticles were prepared from Cu metal in water without any surfactant using a simple one-step laser ablation process with 532 nm Nd-YAG beam irradiation. A surface plasmon band of Cu nanoparticles near 580 nm was not observed; instead, oxidation of the Cu colloidal nanoparticles was noticed. This seems to be due to the partially oxidized copper oxides through the route Cu→Cu2O→CuO. Around 10-nm sized colloidal nanoparticles were agglomerated as a result of oxidation according to the time elapsed, and their sizes were increased to near 200 nm. The agglomeration was confirmed by not only images from transmission electron microscopy but also the long-term observation of the particle size distribution using photon correlation spectroscopy, laser-induced breakdown detection, and field flow fractionation.

  2. Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Shan, Jerry W.; Weng, George J.

    2015-08-01

    The dispersion state or degree of agglomeration of graphene is known to have a significant influence on the percolation threshold and electrical conductivity of graphene-based polymer nanocomposites. In addition, an imperfectly conducting interface and tunneling-assisted interfacial conductivity can also affect the overall conductivity. In this paper, a continuum theory is developed that considers all these factors. We first present a two-scale composite model consisting of graphene-rich regions serving as the agglomerates and a graphene-poor region as the matrix. We then introduce the effective-medium theory to determine the percolation threshold and electrical conductivity of the agglomerate and the composite. To account for the effect of imperfect interfaces, a thin layer of interphase with low conductivity is introduced to build a thinly coated graphene, while to account for the contribution of electron hopping from one graphene to another, Cauchy's statistical function which can reflect the increased tunneling activity near the percolation threshold is introduced. It is shown that the percolation threshold of the nanocomposite is controlled by two dispersion parameters, a and b, and the aspect ratio of agglomerates, αR . It is also shown that the overall conductivity of the nanocomposite mainly depends on the intrinsic conductivity of graphene and polymer matrix, the intrinsic interfacial resistivity, and the tunneling-assisted hopping process. We highlight the conceived theory by demonstrating that a set of recently measured data on the percolation threshold and electrical conductivity of graphene/polystyrene nanocomposites can be well captured by it.

  3. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2014-09-01

    Trends in tropospheric nitrogen dioxide (NO2) concentrations over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5 % yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend value of 3.04 (±0.47) × 1015 molecules cm-2 yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide.

  4. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2015-02-01

    Trends in tropospheric nitrogen dioxide (NO2) columns over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a~linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5% yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend of 3.04 (±0.47) × 1015 molecules cm-2yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide, and indicates that changes in urban NO2 levels are subject to substantial regional differences as well as influenced by economic and demographic factors.

  5. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    PubMed

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation. PMID:25542679

  6. Acoustic agglomeration of fine particles based on a high intensity acoustical resonator

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Zeng, Xinwu; Tian, Zhangfu

    2015-10-01

    Acoustic agglomeration (AA) is considered to be a promising method for reducing the air pollution caused by fine aerosol particles. Removal efficiency and energy consuming are primary parameters and generally have a conflict with each other for the industry applications. It was proved that removal efficiency is increased with sound intensity and optimal frequency is presented for certain polydisperse aerosol. As a result, a high efficiency and low energy cost removal system was constructed using acoustical resonance. High intensity standing wave is generated by a tube system with abrupt section driven by four loudspeakers. Numerical model of the tube system was built base on the finite element method, and the resonance condition and SPL increase were confirmd. Extensive tests were carried out to investigate the acoustic field in the agglomeration chamber. Removal efficiency of fine particles was tested by the comparison of filter paper mass and particle size distribution at different operating conditions including sound pressure level (SPL), and frequency. The experimental study has demonstrated that agglomeration increases with sound pressure level. Sound pressure level in the agglomeration chamber is between 145 dB and 165 dB from 500 Hz to 2 kHz. The resonance frequency can be predicted with the quarter tube theory. Sound pressure level gain of more than 10 dB is gained at resonance frequency. With the help of high intensity sound waves, fine particles are reduced greatly, and the AA effect is enhanced at high SPL condition. The optimal frequency is 1.1kHz for aerosol generated by coal ash. In the resonace tube, higher resonance frequencies are not the integral multiplies of the first one. As a result, Strong nonlinearity is avoided by the dissonant characteristic and shock wave is not found in the testing results. The mechanism and testing system can be used effectively in industrial processes in the future.

  7. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    SciTech Connect

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  8. Separating wax from hydrocarbon mixture boiling in the lubricating oil range

    SciTech Connect

    Ryan, D.G.; Cerkanowicz, A.E.; Chimenti, R.J.L.; Mintz, D.J.

    1986-12-09

    A method is described of pretreating a hydrocarbon oil mixture bailing in the lubricating oil range and containing dissolved wax, comprising the steps of reducing the solubility for the wax so as to cause dissolved wax in the oil to form a dispersion of wax particles in the oil mixture and introducing free excess charge which is net unipolar into the oil mixture, whereby wax particle agglomeration and particle size growth occurs. A method is also described wherein a first oil solvent liquid is added to the waxy oil mixture to form an admixture, the admixture is cooled to the cloud point of the admixture in the absence of any introduced free excess charge. Then a second oil solvent liquid is added to the admixture. The second oil solvent liquid a lower solubility for wax than for the admixture, so as to cause the wax to precipitate as wax particles. The free excess charge is introduced into the admixture of waxy oil mixture and first and second oil solvents, to bring about agglomeration and growth of the precipitated wax particles.

  9. Application of linear multivariate calibration techniques to identify the peaks responsible for the antioxidant activity of Satureja hortensis L. and Oliveria decumbens Vent. essential oils by gas chromatography-mass spectrometry.

    PubMed

    Samadi, Naser; Masoum, Saeed; Mehrara, Bahare; Hosseini, Hossein

    2015-09-15

    Satureja hortensis L. and Oliveria decumbens Vent. are known for their diverse effects in drug therapy and traditional medicine. One of the most interesting properties of their essential oils is good antioxidant activity. In this paper, essential oils of aerial parts of S. hortensis L. and O. decumbens Vent. from different regions were obtained by hydrodistillation and were analyzed by gas chromatography-mass spectrometry (GC-MS). Essential oils were tested for their free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to identify the peaks potentially responsible for the antioxidant activity from chromatographic fingerprints by numerous linear multivariate calibration techniques. Because of its simplicity and high repeatability, orthogonal projection to latent structures (OPLS) model had the best performance in indicating the potential antioxidant compounds in S. hortensis L. and O. decumbens Vent. essential oils. In this study, P-cymene, carvacrol and β-bisabolene for S. hortensis L. and P-cymene, Ç-terpinen, thymol, carvacrol, and 1,3-benzodioxole, 4-methoxy-6-(2-propenyl) for O. decumbens Vent. are suggested as the potentially antioxidant compounds. PMID:26262598

  10. Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates.

    PubMed

    Shigemoto-Mogami, Yukari; Hoshikawa, Kazue; Hirose, Akihiko; Sato, Kaoru

    2016-01-01

    Although carbon nanotubes (CNTs) are used in many fields, including energy, healthcare, environmental technology, materials, and electronics, the adverse effects of CNTs in the brain are poorly understood. In this study, we investigated the effects of CNTs on cultured microglia, as microglia are the first responders to foreign materials. We compared the effects of sonicated suspensions of 5 kinds of CNTs and their flow-through filtered with a 0.22 µm membrane filter on microglial viability. We found that sonicated suspensions caused microglial cell damage, but their flow-through did not. The number of microglial aggregates was well correlated with the extent of the damage. We also determined that the CNT agglomerates consisted of two groups: one was phagocytosed by microglia and caused microglial cell damage, and the other caused cell damage without phagocytosis. These results suggest that phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by CNT agglomerates and it is important to conduct studies about the relationships between physical properties of nanomaterial-agglomerates and cell damage. PMID:27432236

  11. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. PMID:20980143

  12. The impact of solution agglomeration on the deposition of self-assembled monolayers

    SciTech Connect

    BUNKER,BRUCE C.; CARPICK,ROBERT W.; ASSINK,ROGER A.; THOMAS,MICHAEL L.; HANKINS,MATTHEW G.; VOIGT,JAMES A.; SIPOLA,DIANA L.; DE BOER,MAARTEN P.; GULLEY,GERALD L.

    2000-04-17

    Self-assembled monolayers (SAMS) are commonly produced by immersing substrates in organic solutions containing trichlorosilane coupling agents. Unfortunately, such deposition solutions can also form alternate structures including inverse micelles and lamellar phases. The formation of alternate phases is one reason for the sensitivity of SAM depositions to factors such as the water content of the deposition solvent. If such phases are present, the performance of thin films used for applications such as minimization of friction and stiction in micromachines can be seriously compromised. Inverse micelle formation has been studied in detail for depositions involve 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS) in isooctane. Nuclear magnetic resonance experiments have been used to monitor the kinetics of hydrolysis and condensation reactions between water and FDTS. Light scattering experiments show that when hydrolyzed FDTS concentrations reach a critical concentration, there is a burst of nucleation to form high concentrations of spherical agglomerates. Atomic force microscopy results show that the agglomerates then deposit on substrate surfaces. Deposition conditions leading to monolayer formation involve using deposition times that are short relative to the induction time for agglomeration. After deposition, inverse micelles can be converted into lamellar or monolayer structures with appropriate heat treatments if surface concentrations are relatively low.

  13. Particle Trajectories and Agglomeration/Accumulation in Branching Arteries subjected to Orbital Atherectomy

    PubMed Central

    Helgeson, Zach L; Jenkins, Jed S; Abraham, John P; Sparrow, Ephraim M

    2011-01-01

    Background: The transport of particles in surrogate and actual arterial geometries has been investigated synergistically by experimentation and numerical simulation. The motivating application for this work is orbital atherectomy which spawns a particle cloud in the process of debulking plaque from arterial walls. Methods: Paired simulations and experiments were performed to prove the capability of the simulation model to predict both fluid and particle motions in branched arterial geometries. The verified model was then employed to predict the pattern of fluid flow in an actual multi-branched arterial geometry, including the flowrates passing through each of the individual branches. These predictions are in very good agreement with experimental data. Focus was then shifted to the issues of particle agglomeration within the flowing fluid and particle accumulation on the vessel walls. Once again, a synergistic approach was used. Flow visualization was employed to track the particle motions and to identify possible particle agglomeration within the fluid. Results and Conclusions: Accumulation of particles on walls was identified by measuring size distributions of effluent and residue within the artery. Scanning Electron Microscopy (SEM) evaluation showed evidence of a size-based sorting as the particles passed through vessels. It was found that plaque-facsimile particles resisted particle-particle agglomeration. They also did not accumulate to the wall of the facsimile artery. In addition, simulations showed that if particle-wall accumulation were to occur, it would be limited to very small regions in the artery branches. PMID:21643425

  14. Combination of GC/FID/Mass spectrometry fingerprints and multivariate calibration techniques for recognition of antimicrobial constituents of Myrtus communis L. essential oil.

    PubMed

    Ebrahimabadi, Ebrahim H; Ghoreishi, Sayed Mehdi; Masoum, Saeed; Ebrahimabadi, Abdolrasoul H

    2016-01-01

    Myrtus communis L. is an aromatic evergreen shrub and its essential oil possesses known powerful antimicrobial activity. However, the contribution of each component of the plant essential oil in observed antimicrobial ability is unclear. In this study, chemical components of the essential oil samples of the plant were identified qualitatively and quantitatively using GC/FID/Mass spectrometry system, antimicrobial activity of these samples against three microbial strains were evaluated and, these two set of data were correlated using chemometrics methods. Three chemometric methods including principal component regression (PCR), partial least squares (PLS) and orthogonal projections to latent structures (OPLS) were applied for the study. These methods showed similar results, but, OPLS was selected as preferred method due to its predictive and interpretational ability, facility, repeatability and low time-consuming. The results showed that α-pinene, 1,8 cineole, β-pinene and limonene are the highest contributors in antimicrobial properties of M. communis essential oil. Other researches have reported high antimicrobial activities for the plant essential oils rich in these compounds confirming our findings. PMID:26625337

  15. Study on spatial variation of land subsidence over Minagish-Umm Gudair oil fields of Kuwait using synthetic aperture radar interferometry technique

    NASA Astrophysics Data System (ADS)

    Rao, Kota S.; Al Jassar, Hala K.; Kodiyan, Nevil J.; Daniel, Viju P.

    2016-01-01

    Land subsidence can be a major problem where there are large-scale underground activities such as oil extraction. This paper addresses the spatial variability of land subsidence over Minagish and Umm Gudair oil fields of Kuwait. Synthetic aperture radar interferometry (InSAR) with multiple reference scenes using a persistent scatterer InSAR toolchain was employed in this study. Twenty-nine scenes of advanced synthetic aperture radar data (for the period January 2005 to August 2009) were used to make 20 pairs of interferograms (with high coherence and low noise) of stable point-like reflectors. The output of this study is the land subsidence maps of Minagish and Umm Gudair oil fields with a spatial resolution of 40 m. The results indicate that there is land subsidence of 29.9 mm/year in the southern part of the oil field (Umm Gudair). This is the first detailed assessment of land subsidence in the Minagish-Umm Gudair oil fields; therefore, no ground-truth data are available to compare the subsidence results. The results were consistent, indicating their validity.

  16. BIOREMEDIATION TECHNIQUES ON CRUDE OIL CONTAMINATED SOILS IN OHIO. Final report includes the quarterly report that ended 12/31/1996

    SciTech Connect

    David A. Hodges; Richard J. Simmers

    1997-05-30

    The purpose of this study is to define the optimum limits of chemical and physical conditions that reduce soil salinity and maximize indigenous aerobic microbiological populations in the bioremediation of oil field waste solids. Specifically, the study centers around treatment of surface contained oily waste having low density and limited solubility in water. Successful remediation is defined by total petroleum hydrocarbon (TPH) reduction to 1% and no hydrocarbon or salinity impact on ground water resources. The Department of Energy, the US Environmental Protection Agency and the Interstate Oil and Gas Compact Commission have encouraged oil and gas producing states to identify and develop improved methods such as this to reduce, recycle or treat solid waste generated with the exploration and development of domestic petroleum resources (IOGCC, 1995). With encouragement and funding assistance through the Department of Energy, Ohio is developing these bioremediation practices to protect soil and water resources. Ohio produced 8,300,000 barrels of crude oil in 1996 from wells operated by 4310 registered owners (ODNR, 1996). Good well site housekeeping can minimize spills, however accidental spills inevitably occur with oil production of this magnitude. Development of sound environmental and economical clean-up procedures is essential.

  17. Larvae of Hydropsyche angustipennis (Trichoptera, Hydropsychidae) as indicators of stream contamination by heavy metals in Łódź agglomeration.

    PubMed

    Tszydel, Mariusz; Markowski, Marcin; Majecki, Janusz

    2016-01-01

    A biomonitoring technique was employed to assess metal contamination of several degraded urban streams in the Łódź agglomeration. Presence of heavy metals (Zn, Cu, Fe, Cd, Pb, Cr, was determined in whole bodies of Hydropsyche angustipennis larvae. Larvae of H. angustipennis were the only caddisflies living in most of  investigated streams. These metals as well as other environmental variables were investigated in sediments or free waters of urban streams and in a stretch of a similar size of the Grabia River (reference site), outside the city but still in the vicinity of the Łódź agglomeration. The results of our research demonstrated different levels of contamination of urban streams as well as a correlation between environmental and larval tissue concentrations of heavy metals. Significant differences among sites were observed for metal concentrations in H. angustipennis larval bodies and larval responses to metals were time specific. The highest concentration of heavy metals was observed during the spring months. Differences were evident among various heavy metal levels in the bodies of larvae collected from different streams and at different sampling stations in the same stream. PMID:27470755

  18. 3D RVE models able to capture and quantify the dispersion, agglomeration and orientation state of CNT in CNT/PP nanocomposites

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md; Pucha, Raghuram; Kalaitzidou, Kyriaki

    2016-02-01

    The focus of this study is to investigate the capabilities of 3D RVE models in predicting the tensile modulus of carbon nanotube polypropylene (CNT/PP) composites which differ slightly in the dispersion, agglomeration and orientation states of CNT within the PP matrix. The composites are made using melt mixing followed by either injection molding or melt spinning of fibers. The dispersion, agglomeration and orientation of CNT within the PP are experimentally altered by using a surfactant and by forcing the molten material to flow through a narrow orifice (melt spinning) that promotes alignment of CNT along the flow/drawing direction. An elaborate image analysis technique is used to quantify the CNT characteristics in terms of probability distribution functions (PDF). The PDF are then introduced to the 3D RVE models which also account for the CNT-PP interfacial interactions. It is concluded that the 3D RVE models can accurately distinguish among the different cases (dispersion, distribution, geometry and alignment of CNT) as the predicted tensile modulus is in good agreement with the experimentally determined one.

  19. Oil degradation in soil.

    PubMed Central

    Raymond, R L; Hudson, J O; Jamison, V W

    1976-01-01

    . These increases were usually sustained throughout the year. Significant increases in hydrocarbon-utilizing fungi were not demonstrated by the plating technique used. The concentrations of residual oils or their oxidation products were of sufficient magnitude in the treated plots, 9 months after application, to cause significant inhibition of plant growth. From the data obtained, it was not possible to determine the type of compounds causing this inhibition or their long-term environmental effects. PMID:1267448

  20. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil.

    PubMed

    Prince, Roger C; Butler, Josh D

    2014-01-01

    Dispersants are important tools in oil spill response. Taking advantage of the energy in even small waves, they disperse floating oil slicks into tiny droplets (<70 μm) that entrain in the water column and drift apart so that they do not re-agglomerate to re-form a floating slick. The dramatically increased surface area allows microbial access to much more of the oil, and diffusion and dilution lead to oil concentrations where natural background levels of biologically available oxygen, nitrogen, and phosphorus are sufficient for microbial growth and oil consumption. Dispersants are only used on substantial spills in relatively deep water (usually >10 m), conditions that are impossible to replicate in the laboratory. To date, laboratory experiments aimed at following the biodegradation of dispersed oil usually show only minimal stimulation of the rate of biodegradation, but principally because the oil in these experiments disperses fairly effectively without dispersant. What is needed is a test protocol that allows comparison between an untreated slick that remains on the water surface during the entire biodegradation study and dispersant-treated oil that remains in the water column as small dispersed oil droplets. We show here that when this is accomplished, the rate of biodegradation is dramatically stimulated by an effective dispersant, Corexit 9500. Further development of this approach might result in a useful tool for comparing the full benefits of different dispersants. PMID:23943003

  1. An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid

    SciTech Connect

    Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned

    2015-03-10

    Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ) potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.

  2. Agglomerated oral dosage forms of artemisinin/β-cyclodextrin spray-dried primary microparticles showing increased dissolution rate and bioavailability.

    PubMed

    Balducci, Anna Giulia; Magosso, Enrico; Colombo, Gaia; Sonvico, Fabio; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay; Bettini, Ruggero; Colombo, Paolo; Rossi, Alessandra

    2013-09-01

    Artemisinin, a poorly water-soluble antimalarial drug, presents a low and erratic bioavailability upon oral administration. The aim of this work was to study an agglomerated powder dosage form for oral administration of artemisinin based on the artemisinin/β-cyclodextrin primary microparticles. These primary microparticles were prepared by spray-drying a water-methanol solution of artemisinin/β-cyclodextrin. β-Cyclodextrin in spray-dried microparticles increased artemisinin water apparent solubility approximately sixfold. The thermal analysis evidenced a reduction in the enthalpy value associated with drug melting, due to the decrease in drug crystallinity. The latter was also evidenced by powder X-ray diffraction analysis, while (13)C-NMR analysis indicated the partial complexation with β-cyclodextrin. Agglomerates obtained by sieve vibration of spray-dried artemisinin/β-cyclodextrin primary microparticles exhibited free flowing and close packing properties compared with the non-flowing microparticulate powder. The in vitro dissolution rate determination of artemisinin from the agglomerates showed that in 10 min about 70% of drug was released from the agglomerates, whereas less than 10% of artemisinin was dissolved from raw material powder. Oral administration of agglomerates in rats yielded higher artemisinin plasma levels compared to those of pure drug. In the case of the agglomerated powder, a 3.2-fold increase in drug fraction absorbed was obtained. PMID:23703233

  3. Engineering development of selective agglomeration: Task 7, Evaluation of bench-scale and component tests. Final report

    SciTech Connect

    Not Available

    1991-11-01

    This report presents the Task 7 findings of the project entitled ``Engineering Development of Selective Agglomeration`` to develop selective agglomeration technology to a commercially acceptable level by 1992. The objectives of this report are to summarize the work completed as a part of Task 7, which includes engineering analysis of process deficiencies, analysis of all project test results, and evaluation and selection of an agglomeration process for further development in Phase II. Other objectives of this task included evaluation of the selective agglomeration technology and analysis of all the major deficiencies remaining at the conclusion of Phase I of the project. An overview of the agglomeration processes that were under consideration is presented, along with a discussion of the various test parameters that were found to be important during project testing. This report includes a comprehensive evaluation of all test data and a summary of the major findings; it also provides characterization data for all the project coals and presents the agglomeration process selected for Phase II along with a discussion of the criteria and rationale for the selection.

  4. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  5. One-step multiple component isolation from the oil of Crinitaria tatarica (Less) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  6. Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils.

    PubMed

    Siegel, David; Andrae, Karsten; Proske, Matthias; Kochan, Cindy; Koch, Matthias; Weber, Marcus; Nehls, Irene

    2010-04-01

    A novel, cost-efficient method for the analytical extraction of the Fusarium mycotoxin zearalenone (ZON) from edible oils by dynamic covalent hydrazine chemistry (DCHC) was developed and validated for its application with high performance liquid chromatography-fluorescence detection (HPLC-FLD). ZON is extracted from the edible oil by hydrazone formation on a polymer resin functionalised with hydrazine groups and subsequently released by hydrolysis. Specifity and precision of this approach are superior to liquid partitioning or gel permeation chromatography (GPC). DCHC also extracts zearalanone (ZAN) but not alpha-/beta-zearalenol or -zearalanol. The hydrodynamic properties of ZON, which were estimated using molecular simulation data, indicate that the compound is unaffected by nanofiltration through the resin pores and thus selectively extracted. The method's levels of detection and quantification are 10 and 30 microg/kg, using 0.2g of sample. Linearity is given in the range of 10-20,000 microg/kg, the average recovery being 89%. Bias and relative standard deviations do not exceed 7%. In a sample survey of 44 commercial edible oils based on various agricultural commodities (maize, olives, nuts, seeds, etc.) ZON was detected in four maize oil samples, the average content in the positive samples being 99 microg/kg. The HPLC-FLD results were confirmed by HPLC-tandem mass spectrometry and compared to those obtained by a liquid partitioning based sample preparation procedure. PMID:20207360

  7. Inoculation of Bacillus sphaericus UPMB-10 to Young Oil Palm and Measurement of Its Uptake of Fixed Nitrogen Using the 15N Isotope Dilution Technique

    PubMed Central

    Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul

    2012-01-01

    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306

  8. Oil Spills

    MedlinePlus

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil spills ...

  9. Coconut Oil

    MedlinePlus

    ... a moisturizer, for neonatal health, and to treat eczema and a skin condition called psoriasis. Coconut oil ... effectiveness ratings for COCONUT OIL are as follows: Eczema. Research suggests that applying virgin coconut oil to ...

  10. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  11. A Novel Plasma-Sprayed Nanostructured Coating with Agglomerated-Unsintered Feedstock

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhao, Yan; Yang, Deming; Gao, Jianyi

    2016-01-01

    In this article, an unusual agglomerated powder of Y2O3-stabilized ZrO2 (YSZ) that did not undergo calcination was introduced as a feedstock for thermal spray deposition using internal injection atmospheric plasma spray (APS) and the very-low-pressure plasma spray (VLPPS) methods at an ambient pressure of 100-150 Pa. The results show that the microstructure of the coating is influenced not only by the spray parameters (such as arc gas composition, ambient pressure, and arc current) but also by the manufacture process of the agglomerates particularly the sintering process. The microstructure of the coating exhibited a bimodal structure if the APS method was used; in this case, the microstructure resembles that of other nanostructured coatings using regular agglomerated-sintered feedstock. A coating having a novel fully nano-equiaxed structure with a microporosity of 10-15% was first successfully deposited using VLPPS with 20Ar-30He SLPM plasma gas flows at a current of 500 A. The experimental results suggest that the nano-scale equiaxed structure in the coating is directly formed from original nanoparticles that had undergone melting, while inside the nozzle they were subsequently solidified on the substrate. The VLPPS method, which offers some unique advantages over the conventional plasma spray process, is generic in nature and can potentially be used to deposit a wide variety of ceramic coatings for diverse applications. The thermal conductivity values of the fully nanostructured and bimodal structured coatings were measured, and the microstructures of the coating both in the as-sprayed state and after heat treatment for 10 h at 1300 °C were investigated.

  12. Population amalgamation and genetic variation: observations on artificially agglomerated tribal populations of Central and South America.

    PubMed

    Chakraborty, R; Smouse, P E; Neel, J V

    1988-11-01

    The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well. PMID:3189334

  13. Water quality studied in areas of unconventional oil and gas development, including areas where hydraulic fracturing techniques are used, in the United States

    USGS Publications Warehouse

    Susong, David D.; Gallegos, Tanya J.; Oelsner, Gretchen P.

    2012-01-01

    The U.S. Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis is hosting an interdisciplinary working group of USGS scientists to conduct a temporal and spatial analysis of surface-water and groundwater quality in areas of unconventional oil and gas development. The analysis uses existing national and regional datasets to describe water quality, evaluate water-quality changes over time where there are sufficient data, and evaluate spatial and temporal data gaps.

  14. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  15. Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils.

    PubMed

    Liu, Shuhui; Xie, Qilong; Chen, Jie; Sun, Janzhi; He, Hui; Zhang, Xiaoke

    2013-06-21

    In this study, two novel sample extraction methods for the analysis of bisphenol A (BPA) in edible oils were developed by using liquid-liquid extraction followed by a dispersive liquid-liquid microextraction (LLE-DLLME) and reversed-phase dispersive liquid-liquid microextraction (RP-DLLME). RP-DLLME showed a superior characteristic over LLE-DLLME and other previously reported procedures because of its easy operation, short extraction time, high sensitivity, low organic solvent consumption and waste generation. The optimized extraction conditions of RP-DLLME for 1.0 g of edible oil diluted in 4 mL of n-hexane were: extractant, 100 μL 0.2 M sodium hydroxide solution (80% methanol, v/v); extraction time, 1 min; centrifugation, 3 min. The determination of BPA was carried out by high performance liquid chromatography coupled with a DAD detector. The method offered excellent linearity over a range of 0.010-0.5 μg g(-1) with a correlation coefficient of r>0.997. Intra-day and inter-day repeatability values expressed as relative standard deviation were 1.9% and 5.9%, respectively. The quantitation limit and detection limit were 6.3 and 2.5 ng g(-1). The target analyte was detected in 5 out of 16 edible oil samples. The recovery rates in real samples ranged from 89.5 to 99.7%. PMID:23683892

  16. Comparison of Essential Oils Obtained from Different Extraction Techniques as an Aid in Identifying Aroma Significant Compounds of Nutmeg (Myristica fragrans).

    PubMed

    Chatterjee, Suchandra; Gupta, Sumit; Variyar, S Prasad

    2015-08-01

    Distribution of volatile constituents in the essential oil of nutmeg obtained by simultaneous distillation extraction (SDE), high vacuum distillation (HVD) and super critical fluid extraction (SFE) was compared with reduced pressure distillation (RPD) and head space (HS) analysis. HS and RPD volatiles were characterized by a high content of sabinene, followed by α-pinene and β-pinene. Interestingly, unlike the SDE, HVD and SFE oils, distillates from HS and RPD were marked by the absence of phenolic ethers namely myristicin, elemicin and safrole. The HS and RPD volatiles possessed a pleasant nutmeg aroma indicating a significant role of terpenic constituents in contributing to the top aroma note. GC-olfactometry (GC-O) of the oils aided in establishing the role of sabinene, α-pinene and β-pinene in contributing to the distinctive note of the spice. A high odor activity value (OAV) of sabinene and α-pinene established the role of these two constituents in imparting the characteristic nutmeg odor. PMID:26434138

  17. Saltation threshold reduction due to the electrostatic agglomeration of fine particles

    NASA Technical Reports Server (NTRS)

    Leach, Rodman N.; Greeley, Ronald

    1991-01-01

    Particles between 80 and 110 microns in diameter are the most easily moved by the wind. As the particle size decreases below 60 microns, they are increasingly more difficult to move by surface winds, and a number of experiments were performed in an attempt to reduce the required wind velocity. These include: (1) the bombardment of a bed of fine particles by particles near the optimum size, the larger particles kicking the fine particles into the windstream where they are entrained; and (2) the electrostatic agglomeration of fine particles into sizes more easily saltated. The results of these experiments are discussed.

  18. Microstructural evolution and macroscopic shrinkage in the presence of density gradients and agglomeration

    NASA Astrophysics Data System (ADS)

    Lu, Peizhen

    X-ray computed tomography (CT) can characterize internal density gradients. An in-situ laser dilatometry has been constructed to track dimensional change at different positions of a sample during binder removal and sintering. This combination of tools not only allows us to better understand how microscopic change affects macroscopic dimensions, but also provides guidance for a variety of ceramic processes. Non-uniform agglomerate packing and deformation provide density gradients which drive binder migration during binder removal. Simultaneously, density undergoes a slight decrease accompanied by a 1.0% loss in dimensional tolerance. This and CT difference images suggest that capillary forces generated during binder melting can change the density distribution. During sintering, nonuniformities present in the green state persist into the fired state and become exaggerated. Regions of different initial density can occupy different stages sintering. At ˜88% sintered density, CT clearly showed that open porosity follows the distribution of low density areas. Mercury porosimetry detected three distinct levels of porosity. Microstructural examination correlated the porosity level with the coordination of (i) two to three or (ii) multiple grains around pores. Microstructural packing controls both the observed macroscopic expansion at T ≤ 1000°C and the onset of shrinkage. Neck formation initiates during expansion and not exclusively during shrinkage. Inter- and intra-agglomerate expansion/shrinkage proceed simultaneously but the effective 'transmission' of particle-level behavior to the macroscopic level appears to be controlled by the initial agglomerate bonding and internal agglomerate densities. Discrete element modeling provides corroborating evidence regarding the importance of compact continuity. Following the expansion-shrinkage transition, the higher the zone density the faster the initial shrinkage. The 25% RH sample shrank more rapidly than the same zone in

  19. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    NASA Astrophysics Data System (ADS)

    Chaudhuri, M.; Semenov, I.; Nosenko, V.; Thomas, H. M.

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  20. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    SciTech Connect

    Lorite, I.; Romero, J. J.; Fernandez, J. F.

    2015-03-15

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.