Science.gov

Sample records for oil based lubricants

  1. LUBRICANT BASE STOCKS FROM MODIFIED SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Lubricant Base Stocks from Modified Soybean Oil" discusses a variety of potential lubricant base fluids prepared by chemical modification of epoxidized soybean oil. The opening of the epoxy-ring structure allows for the addition of substituents to enhance low-temperature properties and improve the...

  2. Modified vegetable oils-based lubricant emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lubricants made from vegetable oils represent only a small section of the market today. Recent legislation, however, in both the United States and Europe, could begin to brighten their prospects due to their eco-friendly and biodegradable character, unlike petroleum oil-based products. In order to u...

  3. VEGETABLE OIL-BASED BIODEGRADABLE INDUSTRIAL LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uncertainty in petroleum supply along with pollution and environmental health concerns is making a way for vegetable oils to be used as fuel and lubricants. The vegetable oils have some advantages like naturally renewable resource, environmentally safe, good lubricity and viscosity-temperature ...

  4. Soybean oil-based lubricants: a search for synergistic antioxidants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can contribute towards the goal of energy independence and security due to their naturally renewable resource. They are promising candidates as base fluid for eco-friendly lubricants because of their excellent lubricity, biodegradability, superior viscosity-temperature characteristic...

  5. Automotive gear oil lubricant from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  6. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    SciTech Connect

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-05-04

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  7. VEGETABLE OIL BASED BIODEGRADABLE LUBRICANTS FOR INDUSTRIAL APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, mineral oil had a significant cost advantage over vegetable oils and so petroleum has been the base oil of economic choice. A recent rise in oil prices along with the low vegetable oil prices has narrowed the price difference to close to $0.05/lb, and there is now more interest in v...

  8. Lubrication from mixture of boric acid with oils and greases

    DOEpatents

    Erdemir, Ali (Naperville, IL)

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  9. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  10. Natural oils as lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is currently an availability of vegetable oil lubricants, with the exception of engine oils. Vegetable oils are environmentally friendly, renewable, contribute to the reduction of our dependence on imported petroleum, and add value to the farmer. However, there are inherent weaknesses in veg...

  11. Solid Lubricants for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  12. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  13. Impact of an oil-based lubricant on the effectiveness of the sterilization processes .

    PubMed

    Rutala, William A; Gergen, Maria F; Weber, David J

    2008-01-01

    Surgical instruments, including hinged instruments, were inoculated with test microorganisms (ie, methicillin-resistant Staphylococcus aureus, approximately 2 x 10(6) colony-forming units [cfu]; Pseudomonas aeruginosa, approximately 3 x 10(6) cfu; Escherichia coli, approximately 2 x 10(5) cfu; vancomycin-resistant enterococci, 1 x 10(5) cfu; Geobacillus stearothermophilus spores, 2 x 10(5) cfu or more; or Bacillus atrophaeus spores, 9 x 10(4) cfu or more), coated with an oil-based lubricant (hydraulic fluid), subjected to a sterilization process, and then samples from the instruments were cultured. We found that the oil-based lubricant did not alter the effectiveness of the sterilization process because high numbers of clinically relevant bacteria and standard test spores (which are relatively resistant to the sterilization process) were inactivated. PMID:18171191

  14. Lubricants based on renewable resources--an environmentally compatible alternative to mineral oil products.

    PubMed

    Willing, A

    2001-04-01

    The development of lubricants like, e.g. engine and hydraulic oils was traditionally based on mineral oil as a base fluid. This fact is related to the good technical properties and the reasonable price of mineral oils. The Report to the Club of Rome (W.W. Behrens III, D.H. Meadows, D.I. Meadows, J. Randers, The limits of growth, A Report to the Club of Rome, 1972) and the two oil crises of 1979 and 1983, however, elucidated that mineral oil is on principle a limited resource. In addition, environmental problems associated with the production and use of chemicals and the limited capacity of nature to tolerate pollution became obvious (G.H. Brundtland, et al., in: Hauff, Volker (Ed.), World Commission on Environment and Development (WCED), Report of the Brundtland-Commission, Oxford, UK, 1987), and the critical discussion included besides acid rain, smog, heavy metals, and pesticides also mineral oil (especially oil spills like the case Exxon Valdes). A disadvantage of mineral oil is its poor biodegradability and thus its potential for long-term pollution of the environment. From the early development of lubricants for special applications (e.g. turbojet engine oils) it was known, that fatty acid polyol esters have comparable or even better technical properties than mineral oil. Subsequently, innumerable synthetic esters have been synthesized by systematic variation of the fatty acid and the alcohol components. Whereas the alcohol moiety of the synthetic esters are usually of petrochemical origin, the fatty acids are almost exclusively based on renewable resources. The physico-chemical properties of oleochemical esters can cover the complete spectrum of technical requirements for the development of high-performance industrial oils and lubricants (e.g. excellent lubricating properties, good heat stability, high viscosity index, low volatility and superior shear stability). For a comprehensive review of their technical properties see F. Bongardt, in: Jahrbuchfür Praktiker, H. Ziolkowsky (Ed.), Verlag für chemische Industrie GmbH, 1996, pp. 348-361. This article will focus on the ecological properties of oleochemical (synthetic) esters. The environmental relevance of oleochemicals in comparison to petrochemicals is discussed, and then the principles of an ecological assessment are described. The ecotoxicological properties and the biodegradability of oleochemical esters are presented. Finally, the ecological properties of the oleochemical esters are discussed with regard to existing environmental classification and labeling systems. PMID:11233830

  15. Engine lubrication oil aeration

    E-print Network

    Baran, Bridget A. (Bridget Anne)

    2007-01-01

    The lubrication system of an internal combustion engine serves many purposes. It lubricates moving parts, cools the engine, removes impurities, supports loads, and minimizes friction. The entrapment of air in the lubricating ...

  16. Surface roughness effects with solid lubricants dispersed in mineral oils

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Goglia, P. R.; Sliney, H. E.

    1983-01-01

    The lubricating effectiveness of solid-lubricant dispersions are investigated in both point and line contacts using surfaces with both random and directional roughness characteristics. Friction and wear data obtained at relatively low speeds and at room temperature, indicate that the existence of solid lubricants such as graphite, MoS2, and PTFE in a plain mineral oil generally will not improve the effectiveness of the oil as a lubricant for such surfaces. Under boundary lubrication conditions, the friction force, as a function of time, initially depends upon the directional roughness properties of the contacting surfaces irrespective of whether the base oil or dispersions are used as lubricants.

  17. Lubricant Properties of Modified Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lubricants made from vegetable oils represent a small section of the market today, but recent legislation in both the United States and Europe could begin to brighten their prospects due to their eco-friendly and biodegradable character unlike petroleum oil based products. In order to understand th...

  18. New Method to Produce an Industrial Lubrication Fluid from Vegetable Oil-based Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The projected demand for industrial and automotive lubricants in the U.S. is ~2.6 billion gallons by 2017, where bio-based lubricants will play an increasing role, from a share of 0.6% today to a possible 1.2% by 2017. This is accompanied by the expected price increase to >$7.00/gallon which will g...

  19. Acute, subchronic, and developmental toxicological properties of lubricating oil base stocks.

    PubMed

    Dalbey, Walden E; McKee, Richard H; Goyak, Katy Olsavsky; Biles, Robert W; Murray, Jay; White, Russell

    2014-01-01

    Lubricating oil base stocks (LOBs) are substances used in the manufacture of finished lubricants and greases. They are produced from residue remaining after atmospheric distillation of crude oil that is subsequently fractionated by vacuum distillation and additional refining steps. Initial LOB streams that have been produced by vacuum distillation but not further refined may contain polycyclic aromatic compounds (PACs) and may present carcinogenic hazards. In modern refineries, LOBs are further refined by multistep processes including solvent extraction and/or hydrogen treatment to reduce the levels of PACs and other undesirable constituents. Thus, mildly (insufficiently) refined LOBs are potentially more hazardous than more severely (sufficiently) refined LOBs. This article discusses the evaluation of LOBs using statistical models based on content of PACs; these models indicate that insufficiently refined LOBs (potentially carcinogenic LOBs) can also produce systemic and developmental effects with repeated dermal exposure. Experimental data were also obtained in ten 13-week dermal studies in rats, eight 4-week dermal studies in rabbits, and seven dermal developmental toxicity studies with sufficiently refined LOBs (noncarcinogenic and commonly marketed) in which no observed adverse effect levels for systemic toxicity and developmental toxicity were 1000 to 2000 mg/kg/d with dermal exposures, typically the highest dose tested. Results in both oral and inhalation developmental toxicity studies were similar. This absence of toxicologically relevant findings was consistent with lower PAC content of sufficiently refined LOBs. Based on data on reproductive organs with repeated dosing and parameters in developmental toxicity studies, sufficiently refined LOBs are likely to have little, if any, effect on reproductive parameters. PMID:24567344

  20. Evaluation of PS 212 Coatings Under Boundary Lubrication Conditions with an Ester-based Oil to 300 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Loomis, William R.; Dellacorte, Christopher

    1994-01-01

    High friction and wear of turbine engine components occur during high temperature excursions above the oxidation threshold of the liquid lubricant. This paper reports on research to study the use of a high temperature self lubricating coating, PS 212 for back-up lubrication in the event of failure of the liquid lubricant. Pin on disk tests were performed under dry and boundary-lubricated conditions at disk temperatures up to 300 C. The liquid lubricant was a formulated polyol ester qualified under MIL L-23699. At test temperatures above the oil's thermal degradation level, the use of PS 212 reduced wear, providing a back-up lubricant effect.

  1. Ecotoxicological study of used lubricating oil

    SciTech Connect

    Wong, P.K.; Chan, W.L.; Wang, J.; Wong, C.K.

    1995-12-31

    Used lubricating oil is more toxic than crude oil and fuel oil since it contains comparatively high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). No detail toxicological study has been conducted to evaluate the hazards of used lubricating oil to the environment. This study reports a battery of bioassays using bacteria (Microtox test and Mutatox test), algae, amphipod and shrimp larvae to determine the toxicity of water soluble fraction of used lubricating oil. The results will be used to formulate a complete and extensive ecotoxicological assessment of the impacts of used lubricating oil on aquatic environment.

  2. Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication.

    PubMed

    Yamada, Shinji; Fujihara, Ami; Yusa, Shin-Ichi; Tanabe, Tadao; Kurihara, Kazue

    2015-11-10

    The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(?-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is effective at forming low-friction adsorbed layers in oil-based lubrication. PMID:26479685

  3. Bio-based lubricants for numerical solution of elastohydrodynamic lubrication

    NASA Astrophysics Data System (ADS)

    Cupu, Dedi Rosa Putra; Sheriff, Jamaluddin Md; Osman, Kahar

    2012-06-01

    This paper presents a programming code to provide numerical solution of elastohydrodynamic lubrication problem in line contacts which is modeled through an infinite cylinder on a plane to represent the application of roller bearing. In this simulation, vegetable oils will be used as bio-based lubricants. Temperature is assumed to be constant at 40°C. The results show that the EHL pressure for all vegetable oils was increasing from inlet flow until the center, then decrease a bit and rise to the peak pressure. The shapes of EHL film thickness for all tested vegetable oils are almost flat at contact region.

  4. INVESTIGATION OF THE MECHANISM OF LUBRICATION BY STARCH-OIL COMPOSITE DRY FILM LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The boundary coefficient of friction (COF) of FanteskTM starch-oil composite dry film lubricants was investigated as a function of starch chemistry (waxy vs. normal purified food grade corn starch), oil chemistry (hexadecane vs. oleic acid and various vegetable oils), and starch-to-oil ratio. Based...

  5. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Lubricating oil and test fuels. 89.330 Section 89.330 ...COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil....

  6. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2013-07-01 true Lubricating oil and test fuels. 89.330 Section 89.330 ...COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil....

  7. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets the marine engine manufacturer's requirements for a particular...

  8. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets the marine engine manufacturer's requirements for a particular...

  9. ESTOLIDES OVERCOME TRADITIONAL VEGETABLE BASED LUBRICANT SHORTFALLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable based lubricants face many challenges in their development as potential lubricants. The three biggest hurdles are cost, oxidative stability and cold temperature properties (pour point, cloud point and cold temperature storage). Distinct advantages of vegetable oils are their excellent lu...

  10. Lubricant Basestock Potential of Chemically Modified Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, and total loss applications. This threat to the environment...

  11. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species.

    PubMed

    Mercurio, Philip; Burns, Kathryn A; Cavanagh, Joanne

    2004-05-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg(-1) and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg(-1), the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant > or =2 mg kg(-1). There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. PMID:14987804

  12. Characterization of the lubricating action of oils under boundary lubrication conditions

    NASA Astrophysics Data System (ADS)

    de Gee, A. W. J.; Lossie, C. M.; Stoop, W.

    1995-07-01

    Polyalphaolefin (PAO) and polypropylene glycol (PPG)-based lubricants as well as mineral oils were tested to characterize their wear reducing performance under boundary lubrication conditions, using the ISO 7148 test method, which was originally developed for the characterization of bearing materials. This test method has practical value with respect to developing lubricants for use in sliding contacts, such as occur in worm gear drives. It is found that the wear reducing action of PAO-based lubricants is significantly better than that of mineral oils. PPG fluids perform equally well or slightly better than PAOs. Provided that viscosities are in line and additives are compatible, contamination of PAOs with mineral oils has no or only marginal effect on wear reduction.

  13. Anti-friction additives for lubricating oils

    SciTech Connect

    Karol, T.J.; Magaha, H.S.; Schlicht, R.C.

    1987-03-03

    A lubricating oil composition is described comprising (i) a major portion of lubricant oil; and (ii) from about 0.05 to about 10.0 wt.% of, as an additive, a product prepared by reacting a natural oil selected from the group consisting of coconut, babassu, palm, palm kernel, olive, castor, peanut, beef tallow and lard, with a (C/sub 2/-C/sub 10/) hydroxy acid and a polyamine.

  14. Modified vegetable oils for environmentally friendly lubricant applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic lubricant base oils offer improved stability and performance characteristics over refined petroleum oils, but at a price. Most of the biodegradable synthetic oils are chemical esters that offer superior thermal and oxidative stability [8.9]. Prices for these niche products are higher tha...

  15. Formation of carbonaceous nano-layers under high interfacial pressures during lubrication with mineral and bio-based oils

    SciTech Connect

    Baltrus, John P.

    2014-01-01

    In order to better protect steel surfaces against wear under high loads, understanding of chemical reactions between lubricants and metal at high interfacial pressures and elevated temperatures needs to be improved. Solutions at 5 to 20 wt. % of zinc di-2-ethylhexyl dithio phosphate (ZDDP) and chlorinated paraffins (CP) in inhibited paraffinic mineral oil (IPMO) and inhibited soy bean oil (ISBO) were compared on a Twist Compression Tribotester (TCT) at 200 MPa. Microscopy of wear tracks after 10 seconds tribotesting showed much smoother surface profiles than those of unworn areas. X-ray photoelectron spectroscopy (XPS) coupled with Ar-ion sputtering demonstrated that additive solutions in ISBO formed 2–3 times thicker carbon-containing nano-layers compared to IPMO. The amounts of Cl, S or P were unexpectedly low and detectable only on the top surface with less than 5 nm penetration. CP blends in IPMO formed more inorganic chlorides than those in ISBO. It can be concluded that base oils are primarily responsible for the thickness of carbonaceous nano-layers during early stages of severe boundary lubrication, while CP or ZDDP additive contributions are important, but less significant.

  16. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ?4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence. PMID:21090602

  17. STARCH-LUBRICANT COMPOSITION FOR IMPROVED LUBRICITY AND FLUID LOSS IN WATER-BASED DRILLING MUDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-based mud systems that approach the performance of oil-based muds are an ongoing effort. Starch-lubricant compositons were developed as environmentally safe, non-toxic, stable dispersions in water-based drilling muds. Starch-lubricant compositions were prepared by jet cooking mixtures of wat...

  18. STARCH-LUBRICANT COMPOSITIONS FOR IMPROVED LUBRICITY AND FLUID LOSS IN WATER-BASED DRILLING MUDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of water-based mud systems that approach the performance of oil-based muds in lubricity, rate of penetration and borehole stability is an ongoing effort. The use of starch-lubricant compositions as environmentally safe, non-toxic, stable dispersions in water-based drilling muds was ...

  19. Screening of natural oil basestocks for lubricant applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural oils offer significant advantages, such as resource renewability, biodegradability, and performance properties, compared to petroleum-based products. Their amphiphilic character makes them excellent lubricant candidates. The wide use of vegetable oils is restricted due to low thermo-oxidativ...

  20. Modification of Vegetable Oils for Lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current talk deals with a partial review of research for developing improved lubricants from vegetable oils through modifications of the chemical structure. The typical vegetable oil is a mixture of triesters of glycerin with linear fatty acids, most of them with one or more double bonds. The ...

  1. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Lubricating-oil systems. 56.50-80 Section 56.50-80 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-80 Lubricating-oil systems. (a) The lubricating oil system shall be...

  2. Production of lubricating oils by hydrocracking

    SciTech Connect

    Kirker, G.W.; Varghese, P.

    1989-03-14

    A process is described for producing a lubricating oil base stock from a hydrocarbon feedstock which comprises: a hydrocracking a hydrocarbon feedstock having a boiling point above about 343/sup 0/C (650/sup 0/F) and containing polycyclic aromatic hydrocarbons in the presence of a catalyst having cracking and hydrogenation activity and comprising a layered silicate having a framework composed essentially of only tetrahedral sheets. The sheets contain interspathic polymeric silica and interspathic polymeric oxide of an element selected from the group consisting of Al, B, Cr, Ga, In, Mo, No, Ni, Ti, Tl, W and Zr. The process produces a hydrocrackate having a boiling point above about 343/sup 0/C (650/sup 0/F) which contains a lesser proportion of polycyclics than the charge stock.

  3. Engine wear and lubricating oil contamination from plant oil fuels

    SciTech Connect

    Darcey, C.L.; LePori, W.A.; Yarbrough, C.M.

    1982-12-01

    Engine disassembly with wear measurements, and lubricating oil analysis were used to determine wear rates on a one cylinder diesel engine. Results are reported from short duration tests on the wear rates of various levels of processed sunflower oil, a 25% blend with diesel fuel, and processed cottonseed oil.

  4. Reduced Need of Lubricity Additives in Soybean Oil Blends Under Boundary Lubrication Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Converging prices of vegetable oils and petroleum, along with increased focus on renewable resources, gave more momentum to vegetable oil lubricants. Boundary lubrication properties of four Extreme Pressure (EP) additive blends in conventional Soy Bean Oil (SBO) and Paraffinic Mineral Oil (PMO) of ...

  5. SYNTHETIC LUBRICANTS FROM EPOXIDIZED SOYBEAN OIL AND 2-ETHYLHEXYL ALCOHOL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically adaptable bio-based synthetic lubricant basestocks were prepared from epoxidized soybean oil (ESO) and 2-ethylhexyl alcohol in the presence of catalytic sulfuric acid. 1H NMR has shown that the ring-opening reaction occurs first and then transesterification follows under the given rea...

  6. SPRAYABLE WATER-BASED DRY FILM LUBRICANTS FROM STARCH-OIL COMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent technology developed at NCAUR can be used to produce highly stable aqueous starch-oil composites from abundant renewable resources by excess steam jet-cooking an aqueous slurry of starch and vegetable oils or other hydrophobic materials. The resulting aqueous starch oil composites typically ...

  7. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June...

  8. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June...

  9. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June...

  10. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June...

  11. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June...

  12. Oil soluble antioxidant polymetharylates for lubricants

    SciTech Connect

    Shirodkar, S.M.; Benfaremo, N.; Skarlos, L.

    1994-08-01

    The evaluation of oil soluble, antioxidant bound polymethacrylates used as viscosity index improver lubricant additives, is described herein. They were synthesized by copolymerization of the antioxidant-dispersant monomer and alkyl methacrylates. Oxidative stability was determined by oxidative pressure differential scanning calorimetry, thin film oxidation uptake test and aluminum beaker oxidation text. These tests show that lubricants containing these polymers show performance advantages over commercial polymethacrylates, with additional benefits in other viscometric properties such as shear stability and Brookfield viscosity. The antioxidant monomer also serves as a dispersant moiety, thus improving the polymer disperancy. Binding the antioxidant to the polymer ensures the solubility of the antioxidant while eliminating the possibility of its volatilization in high temperature environments. The current results suggest that antioxidant-dispersant polymethacrylates have excellent potential as additives in lubricants such as automatic transmission fluids. 13 refs., 5 figs., 3 tabs.

  13. Vegetable oil based grease formulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental concerns have brought forward vegetable oils as alternatives to more expensive synthetic lubricant base oils and less environmental friendly petroleum base stocks, in moderate operating conditions. Vegetable oils are becoming an obvious choice for potential replacement of petroleum ba...

  14. An integrated lubricant oil conditioning sensor using signal multiplexing

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Du, Li; Zhe, Jiang

    2015-01-01

    One effective approach to detect signs of potential failure of a rotating or reciprocating machine is to examine the conditions of its lubrication oil. Here we present an integrated oil condition sensor for detecting both wear debris and lubricant properties. The integrated sensor consists of miniature multiplexed sensing elements for detection of wear debris and measurements of viscosity and moisture. The oil debris sensing element consists of eight sensing channels to detect wear debris in parallel; the elements for measuring oil viscosity and moisture, based on interdigital electrode sensing, were fabricated using micromachining. The integrated sensor was installed and tested in a laboratory lubricating system. Signal multiplexing was applied to the outputs of the three sensing elements such that responses from all sensing elements were obtained within two measurements, and the signal-to-noise ratio was improved. Testing results show that the integrated sensor is capable of measuring wear debris (>50?µm), moisture (>50?ppm) and viscosity (>12.4?cSt) at a high throughput (200?ml?min-1). The device can be potentially used for online health monitoring of rotating machines.

  15. MODIFICATION OF VEGETABLE OILS FOR USE AS INDUSTRIAL LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a lot of interest in using vegetable oils (particularly soybean oil) as renewable raw materials for new industrial products including lubricants. This emphasis on environmentally friendly lubricants is largely due to the rapid depletion of world fossil fuel reserves and increasing co...

  16. Amine Hydroxy Derivative of Soybean Oil as Lubricant Additive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amphiphilic character of vegetable oils makes them an excellent candidate as lubricants and as specialty chemicals. Additional advantages of vegetable oils are that they are renewable resources, environmentally friendly non toxic fluids, and readily biodegradable. Industrial application of veg...

  17. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  18. Krytox Lubrication Tape Study. [fluorinated lubricating oil for video tape recorders

    NASA Technical Reports Server (NTRS)

    Lee, F.

    1978-01-01

    The use of Krytox, a fluorinated oil, as a tape surface lubricant was studied for a wideband video tape recorder. In spite of the 5 to 1 head wear reduction credited to the surface lubricant, the resultant head life fell short of the 1500 hour goal.

  19. Thermoreversible gel lubricants through universal supramolecular assembly of a nonionic surfactant in a variety of base lubricating liquids.

    PubMed

    Yu, Qiangliang; Fan, Mingjin; Li, Dongmei; Song, Zenghong; Cai, Meirong; Zhou, Feng; Liu, Weimin

    2014-09-24

    The present paper investigates a new type of thermoreversible gel lubricant obtained by supramolecular assembly of low-molecular-weight organic gelator (LMWG) in different base oils. The LMWG is a nonionic surfactant with polar headgroup and hydrophobic tail that can self-assemble through collective noncovalent intermolecular interactions (H-bonding, hydrophobic interaction) to form fibrous structures and trap base oils (mineral oils, synthetic oils, and water) in the as-formed cavities. The gel lubricants are fully thermoreversible upon heating-up and cooling down and exhibit thixotropic characteristics. This makes them semisolid lubricants, but they behave like oils. The tribological test results disclosed that the LMWG could also effectively reduce friction and wear of sliding pairs compared with base oils without gelator. It is expected that when being used in oil-lubricated components, such as gear, rolling bearing, and so on, gel lubricant may effectively avoid base oil leak and evaporation loss and so is a benefit to operation and lubrication failure for a long time. PMID:25111146

  20. Engineered silica nanoparticles as additives in lubricant oils

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol–gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  1. DETAIL VIEW OF OIL CONTAINER DESIGNED AS PART OF LUBRICATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OIL CONTAINER DESIGNED AS PART OF LUBRICATING SYSTEM FOR UNIT #3. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  2. Detail view of oil container designed as part of lubricating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of oil container designed as part of lubricating system for unit 43. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  3. Detail view of lubricating oil pumps used in maintenance of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of lubricating oil pumps used in maintenance of the engines and compressors. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  4. Improved biobased lubricants from chemically modified vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils possess a number of desirable properties for lubricant application such as excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Unfortunately, they also have a number of weaknesses that make them less desira...

  5. An experimental investigation into oil mist lubrication 

    E-print Network

    Kannan, Krishna

    2000-01-01

    in the generator. The best performing lube oil formulations are identified based on performance at different bearing speeds and the temperature of the lube oil in the generator. The second approach is based on the design of a better bearing casing to maximize...

  6. Surfactant effects on bio-based emulsions used as lubrication fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful formulation of a lubricating emulsion requires carefully balancing the mixture of base oil, water and a plethora of additives. The factors that affect the performance of lubrication emulsions range from the macroscopic stability to the microscopic surface properties of the base oil. ...

  7. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters. PMID:15607199

  8. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-01

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%. PMID:22870990

  9. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2 2014-07-01 2014-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155...DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...

  10. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2 2012-07-01 2012-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155...DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...

  11. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2 2011-07-01 2011-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155...DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...

  12. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2 2010-07-01 2010-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155...DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...

  13. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2 2013-07-01 2013-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155...DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...

  14. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  15. Current Uses of Vegetable Oil in the Surfactant, Fuel, and Lubrication Industries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New developments in the surfactant, bio-diesel, and lubricant industries are discussed in a review with 46 references on the recent use of vegetable oil for non-food applications. Highlighted in the surfactant section, is the development of a glycerol and vegetable oil based surfactant which disp...

  16. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  17. Emulsification of chemically modified vegetable oils for lubricant use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several previously uncharacterized emulsions were studied in this paper, including those made form epoxidized vegetable oils. A series of different surfactants were studied in order to obtain emulsions suitable for lubrication applications. The epoxidized oils were found to form stable emulsions i...

  18. Status of New Direction of Liquid Lubricants

    NASA Technical Reports Server (NTRS)

    Klaus, E. E.

    1984-01-01

    The status of liquid lubricants is discussed. Liquid lubricants which continue to be the predominant form of lubrication for machinery are discussed. Petroleum base lubricants comprise a very high percentage of the liquid lubricants in use today. There is a significant movement toward synthetic lubricants driven by crude oil problems coupled with improved additive response, and low temperature performance for the synthetics. Lubricant degradation mechanisms are included for guidance in the selection of lubricant and additive types.

  19. Lubricant oil production: The proper marriage of process and catalyst technologies

    SciTech Connect

    Everett, G.L.; Suchanek, A.

    1996-12-01

    As the industry moves into the next millennium, higher product quality demands to meet the higher performance needs of modern engine technology and rising costs of traditional good quality lube crudes are driving lubricant base oil manufacturers to select hydroprocessing options versus traditional solvent refining techniques. This paper discusses how to properly select the best economic hydroprocessing technology necessary to produce high quality lubricant base oils and waxes. The economic success of such operations depends on the proper combination of process and catalyst technologies that maximizes yields of high quality products with minimum consumption of hydrogen resources and process utilities. This is particular true on the extreme end of the quality spectrum, namely, Very High Viscosity Index (VHVI) base oils and food grade white oils and waxes where there is no room for marginal product quality. Multiplicity of operations is also becoming more important as refiners try to upgrade their facilities with as little capital expense as possible, while at the same time, broaden their high valued product slate to recoup these expenses in the shortest possible payback period. Lyondell Licensing and Criterion Catalyst have put together an effective alliance based on years of development and commercial experience in both the process and catalyst areas to assist lubricant oil manufacturers in meeting these future challenges using as much existing equipment and infrastructure as is practical. Their experience will permit the proper fitting of the chemistry of hydroprocessing to make lubricant base oils to existing or new operations.

  20. Determination of zinc (II) in lubricant oils by stripping chronopotentiometry.

    PubMed

    Lo Coco, Filippo; Rizzotti, Silvia; Locatelli, Clinio; Novelli, Veronica; Ceccon, Luciano

    2003-03-01

    A method for the determination of zinc (II) in lubricant oils by stripping chronopotentiometry is described. The only necessary sample pretreatment was the extraction of zinc (II) from the corresponding alkyl derivatives by hot concentrated hydrochloric acid in a suitable extractor. The metal ions were concentrated as the corresponding metals on a glassy carbon working electrode and then stripped by a suitable oxidant. Quantitative analysis was carried out by the method of standard additions; a good linearity was obtained in the range of concentrations examined. Recoveries of 94% were obtained from a lubricant oil spiked at different levels. The detection limit was 0.02 mg g(-1) and the coefficient of variation (mean of nine determinations) was 5.2%. Results obtained on commercial lubricant oils were not significantly different from those obtained by atomic absorption spectrometry. PMID:12737491

  1. Recycling used lubricating oil at the deep space stations

    NASA Technical Reports Server (NTRS)

    Koh, J. L.

    1981-01-01

    A comparison is made of the lubricating oil recycling methods used in the Deep Space Station 43 test and the basic requirements which could favor recycling of oil for continuous reuse. The basic conditions for successful recycling are compared to the conditions that exist in the Deep Space Network (DSN). This comparison shows that to recycle used oil in the DSN would not only be expensive but also nonproductive.

  2. Boundary lubrication of stainless steel and CoCrMo alloy based on phosphorous and boron compounds in oil-in-water emulsion

    NASA Astrophysics Data System (ADS)

    Yan, Jincan; Zeng, Xiangqiong; Ren, Tianhui; van der Heide, Emile

    2014-10-01

    Emulsion lubrication is widely used in metal forming operations and has potential applications in the biomedical field, yet the emulsion lubrication mechanism is not well understood. This work explores the possibilities of three different oil-in-water (O/W) emulsions containing dibutyl octadecylphosphoramidate (DBOP), 6-octadecyl-1,3,6,2-dioxazaborocan-2-ol calcium salt (ODOC) and 2-(4-dodecylphenoxy)-6-octadecyl-1,3,6,2-dioxazaborocane (DOB) to generate boundary films on stainless steel AISI 316 and CoCrMo alloy surfaces. Experimental results show lower friction values for the emulsions in combination with CoCrMo compared to AISI 316. The different performance of the additives is related to the composition of the adsorption and reaction film on the interacting surfaces, which was shown to be dependent on the active elements and molecular structure of the additives. The friction profile of the emulsions indicates that the emulsion appears to be broken during the rubbing process, then the additives adsorb onto the metal surface to form protecting boundary layers. The XPS analysis shows that for boundary lubrication conditions, the additive molecules in the emulsion first adsorb on the metal surface after the droplet is broken, and then decompose and react with the metal surface during the rubbing process to form stable lubricating films on the rubbed surfaces.

  3. [Acidity and temperature effect on the fluorescence characteristics of hydraulic oils and lubricants].

    PubMed

    Deng, Hu; Zhou, Xun; Shang, Li-ping; Zhang, Ze-lin; Wang, Shun-li

    2014-12-01

    By analyzing HyJet V phosphate ester hydraulic oil environmental impacts (oil, etc.) and confounding factors (pH, temperature, etc.), the feasibility was studied for the fluorescence detection of aircraft hydraulic oil leaks. By using the fluorescence spectrophotometer at various acidities and temperatures, the fluorescence properties of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant were gained. The experimental results are shown as following: The fluorescence peaks of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant are at 362, 405 and 456 nm, respectively. The impact of temperature on HyJet V phosphate ester hydraulic oil is less effective; Jet Oil II lubricant and 2197 lubricant fluorescence intensity decreases with increasing temperature. When acidity increases, the fluorescence peak of HyJet V phosphate ester hydraulic oil gradient shifts from 370 to 362 nm, and the fluorescence intensity decreases; the fluorescence peak of Jet Oil II lubricant is always 405 nm, while the fluorescence intensity decreases; the fluorescence peak of 2197 lubricant at 456 nm red shifts to 523 nm, and double fluorescence peaks appeare. The results are shown as following: under the influence of the environment and interference factors, the fluorescence characteristics of HyJet V phosphate ester hydraulic oil remain unchanged, and distinguish from Jet Oil II lubricant and 2197 lubricant. Therefore, the experiments indicate that the detection of HyJet V phosphate ester hydraulic oil leak is feasible by using fluorescence method. PMID:25881425

  4. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. Oil-air mist lubrication for helicopter gearing

    NASA Technical Reports Server (NTRS)

    Mcgrogan, F.

    1976-01-01

    The applicability of a once-through oil mist system to the lubrication of helicopter spur gears was investigated and compared to conventional jet spray lubrication. In the mist lubrication mode, cooling air was supplied at 366K (200 F) to the out of mesh location of the gear sets. The mist air was also supplied at 366K (200 F) to the radial position mist nozzle at a constant rate of 0.0632 mol/s (3 SCFM) per nozzle. The lubricant contained in the mist air varied between 32 - 44 cc/hour. In the recirculating jet spray mode, the flow rate was varied between 1893 - 2650 cc/hour. Visual inspection revealed the jet spray mode produced a superior surface finish on the gear teeth but a thermal energy survey showed a 15 - 20% increase in heat generated. The gear tooth condition in the mist lubrication mode system could be improved if the cooling air and lubricant/air flow ratio were increased. The test gearbox and the procedure used are described.

  6. Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives

    SciTech Connect

    Yu, Bo; Bansal, Dinesh G; Qu, Jun; Sun, Xiaoqi; Luo, Huimin; Dai, Sheng; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

  7. Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method

    E-print Network

    Chen, Haijie

    2008-01-01

    Twin-land oil control ring is widely used in the automotive diesel engines, and is gaining more and more applications in the modern designs of gasoline engines. Its interaction with the cylinder liner surface accounts for ...

  8. Analysis of Oil Lubricated Thrust Collars for Application in Integrally Geared Compressors 

    E-print Network

    Cable, Travis Alexander

    2015-07-15

    -wetted regions. A numerical model, based on classical thin film lubrication theory, predicts the force response of lubricated thrust collars for use in integrally geared compressors. The predictive model determines performance parameters such as lubricant flow...

  9. Palm oil derived trimethylolpropane triesters synthetic lubricants and usage in industrial metalworking fluid.

    PubMed

    Chang, Teck-Sin; Yunus, Robiah; Rashid, Umer; Choong, Thomas S Y; Awang Biak, Dayang Radiah; Syam, Azhari M

    2015-01-01

    Trimethylolpropane triesters are biodegradable synthetic lubricant base oil alternative to mineral oils, polyalphaolefins and diesters. These oils can be produced from trimethylolpropane (TMP) and fatty acid methyl esters via chemical or enzymatic catalyzed synthesis methods. In the present study, a commercial palm oil derived winter grade biodiesel (ME18) was evaluated as a viable and sustainable methyl ester source for the synthesis of high oleic trimethylolpropane triesters (HO-TMPTE). ME18 has fatty acid profile containing 86.8% oleic acid, 8.7% linoleic acid with the remaining minor concentration of palmitic acid, stearic acid and linolenic acid. It's high oleic property makes it superior to produce synthetic lubricant base oil that fulfills both the good low temperature property as well as good oxidative stability. The synthetic base oil produced had a viscosity of 44.3 mm(2)/s at 40°C meeting the needs for ISO 46 oils. It also exhibited an excellent viscosity index of 219 that is higher than some other commercial brands of trimethylolpropane trioleate. Properties of base oil such as cloud point, density, acid value, demulsibility and soap content were also examined. The oil was then used in the formulation of tapping oil and appraised in term of adaptability, stability and field test performance. PMID:25748374

  10. Mixed film lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most tribological processes (e.g. metalworking), occur in the mixed film regime where the boundary and hydrodynamic properties of the oils play critical roles. In the work described here, the boundary and hydrodynamic properties of various biobased oils were evaluated. The oils were then investiga...

  11. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS...

  12. Tribological performance of NFC coatings under oil lubrication[Near Frictionless Carbon

    SciTech Connect

    Ajayi, O. O.; Alzoubi, M.; Erdemir, A.; Fenske, G. R.; Eryilmaz, O. L.; Zimmerman, S.

    2000-01-20

    An increase in engine and vehicle efficiency usually requires an increase in the severity of contact at the interfaces of many critical components. Examples of such components include piston rings and cylinder liners in the engine, gears in the transmission and axle, bearings, etc. These components are oil-lubricated and require enhancement of their tribological performance. Argonne National Laboratory (ANL) recently developed a carbon-based coating with very low friction and wear properties. These near-frictionless-carbon (NFC) coatings have potential for application in various engine components for performance enhancement. This paper presents the study of the tribological performance of NFC-coated steel surfaces when lubricated with fully formulated and basestock synthetic oils. The NFC coatings reduced both the friction and wear of lubricated steel surfaces. The effect of the coating was much more pronounced in tests with basestock oil. This suggests that NFC-coated parts may not require heavily formulated lubricant oils to perform satisfactorily in terms of reliability and durability.

  13. Lubricants and functional fluids from lesquerella oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella fendleri is an oilseed crop belonging to the Brassicaceae (mustard) family that is native to the desert of the southwestern United States. The interest in this crop is due to the high level of hydroxy fatty acids (HFA) in the oil. The seed contains 33% oil, 23% protein, and 15% gums. The...

  14. The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry

    PubMed Central

    Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S

    2013-01-01

    RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm2 additive on spot with relative standard deviations in the range 3–14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24097398

  15. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  16. Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact.

    PubMed

    Otero, Inés; López, Enriqueta R; Reichelt, Manuela; Villanueva, María; Salgado, Josefa; Fernández, Josefa

    2014-08-13

    After doing several miscibility essays with eight ionic liquids (ILs) and four base oils, the ILs tri(butyl)ethylphosphonium diethylphosphate [P4,4,4,2][C2C2PO4] and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate [P6,6,6,14][(C2F5)3PF3] were selected to be studied as lubricant additives. The neat IL [P4,4,4,2][C2C2PO4], the base oils, and several blends were characterized in terms of density, viscosity, and thermal stability. The tribological performance of the miscible base oil/IL blends (1 wt %) and the neat [P4,4,4,2][C2C2PO4] were evaluated for the lubrication of an AISI 420 steel-100Cr6 steel contact pair. The friction coefficients and wear volumes obtained are also compared with those corresponding to the pure base oils and their mixtures with conventional additive zinc dialkyldithiophosphate (ZDDP). As neat lubricants, [P4,4,4,2][C2C2PO4] showed the best antifriction ability, whereas in terms of wear, better results were obtained with [P6,6,6,14][(C2F5)3PF3]. However, higher improvements in both friction and wear were found for blends containing [P4,4,4,2][C2C2PO4]. XPS analyses of the worn surfaces lubricated with these mixtures indicated the presence of phosphorus in the tribofilm formed on the wear track. However, this compound was slightly detected on tribosamples lubricated with blends containing [P6,6,6,14][(C2F5)3PF3]. PMID:25046076

  17. Development and application of a lubricant composition model to study effects of oil transport, vaporization, fuel dilution, and soot contamination on lubricant rheology and engine friction

    E-print Network

    Gu, Grace Xiang

    2014-01-01

    Engine oil lubricants play a critical role in controlling mechanical friction in internal combustion engines by reducing metal-on-metal contact. This implies the importance of understanding lubricant optimization at the ...

  18. Polymerization of sunflower oil diesel fuel: Copper catalysis in contaminated lubrication oil

    SciTech Connect

    Jette, S.J.; Shaffer, D.L.

    1988-01-01

    Diesel lubrication oil contaminated with sunflower oil fuel was exposed to conditions simulating an engine crankcase environment to study the role of copper catalysts in oil mixture thickening. Trace levels of dissolved copper species appear to dominate catalysis of triglyceride autooxidative polymerization with metallic copper surface seemingly only functioning as a dissolution interface. The importance of soluble copper forms was confirmed by replacing copper foil catalysts with a soluble complex, cupric acetylacetonate, to yield equivalent viscosity increases.

  19. Lubricants for CFC alternates

    SciTech Connect

    Spauschus, H.O.

    1995-12-01

    With the recent development and introduction of environmentally preferred refrigerants as substitutes for HCFC`s, a number of new classes of companion compressor lubricants also have been offered. In contrast to the former compressor lubricants which were derived from petroleum based stocks, the new lubricants are synthetic products, initially designed to provide miscibilities and solubilities similar to the CFC/mineral oil predecessors. Rather than review the classes of lubricants being evaluated and used for different types of refrigeration machinery, this paper will address longer term benefits and challenges related to the introduction of synthetic compressor lubricants such as polyesters, polyolesters, polyalkalene glycols and polycarbonates. Within these families of synthetic fluids, large selections of chemical structures are available, each with unique physical and chemical properties. Of course all of the lubricants must meet general requirements of compressor oils with respect to flammability, pour point, volatility, toxicity, etc., but beyond these minimum requirements, there are technical options for tailoring lubricant structures to optimize certain lubricant (and thus lubricant/refrigerant) properties such as vapor pressure, solubility, viscosity, viscosity index, miscibility, moisture absorption, additive response and biodegradability. Basic studies to predict lubricant/refrigerant mixture properties based on chemical structure of the components are recommended. A number of practical challenges in the selection and application of new lubricants and new working fluids will be discussed including standards for bench screening tests and compressor tests, guidelines for lubricant handling during recovery and servicing of equipment and the potential for reprocessing compressor lubricants.

  20. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  1. Alkyl Polyglucosides as Components of Water Based Lubricants.

    PubMed

    Su?ek, Marian W?odzimierz; Ogorza?ek, Marta; Wasilewski, Tomasz; Klimaszewska, Emilia

    2013-05-01

    Water can be used as an ecological lubricant base if it is possible to select additives which can beneficially modify its tribological and corrosion properties. Additionally, those additives should not be harmful to human health and the natural environment. These conditions limit or even eliminate the possibility for the application of the additives used in traditional oil bases as they are insoluble in water and often toxic. Alkyl polyglucosides (APGs) have been suggested as additives improving lubricating properties of water. They are biodegradable and do not have to be recycled. They exhibit surface activity. They produce micelles at low concentration and lyotropic liquid crystals at high concentration. Two types of alkyl polyglucosides differing in alkyl chain lengths and degrees of polymerization were used in this investigation. Tribological tests were carried out using a ball-on-disc T-11 tester. The balls were made of steel, whereas the discs were made of steel, aluminium oxide, zirconium oxide, polyamide and poly(methyl methacrylate). The description of the device and the methods has been given in the literature (Szczerek and Tuszy?ski in TriboTest 8:273-284, 2002). The addition of APGs improves the lubricating properties of water. The relative decrease in motion resistance and wear depends both on the type of friction couple and on the kind of alkyl polyglucoside used. The tribological test results obtained were correlated with the activity of APGs measured as wettability of friction couples by their solutions. PMID:23606804

  2. Lubricating oil dominates primary organic aerosol emissions from motor vehicles.

    PubMed

    Worton, David R; Isaacman, Gabriel; Gentner, Drew R; Dallmann, Timothy R; Chan, Arthur W H; Ruehl, Christopher; Kirchstetter, Thomas W; Wilson, Kevin R; Harley, Robert A; Goldstein, Allen H

    2014-04-01

    Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (?80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline. PMID:24621254

  3. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  4. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  5. The filling of powdered herbs into two-piece hard capsules using hydrogenated cotton seed oil as lubricant.

    PubMed

    Aling, Joanna; Podczeck, Fridrun

    2012-11-20

    The aim of this work was to investigate the plug formation and filling properties of powdered herbal leaves using hydrogenated cotton seed oil as an alternative lubricant. In a first step, unlubricated and lubricated herbal powders were studied on a small scale using a plug simulator, and low-force compression physics and parameterization techniques were used to narrow down the range in which the optimum amount of lubricant required would be found. In a second step these results were complemented with investigations into the flow properties of the powders based on packing (tapping) experiments to establish the final optimum lubricant concentration. Finally, capsule filling of the optimum formulations was undertaken using an instrumented tamp filling machine. This work has shown that hydrogenated cotton seed oil can be used advantageously for the lubrication of herbal leaf powders. Stickiness as observed with magnesium stearate did not occur, and the optimum lubricant concentration was found to be less than that required for magnesium stearate. In this work, lubricant concentrations of 1% or less hydrogenated cotton seed oil were required to fill herbal powders into capsules on the instrumented tamp-filling machine. It was found that in principle all powders could be filled successfully, but that for some powders the use of higher compression settings was disadvantageous. Relationships between the particle size distributions of the powders, their flow and consolidation as well as their filling properties could be identified by multivariate statistical analysis. The work has demonstrated that a combination of the identification of plug formation and powder flow properties is helpful in establishing the optimum lubricant concentration required using a small quantity of powder and a powder plug simulator. On an automated tamp-filling machine, these optimum formulations produced satisfactory capsules in terms of coefficient of fill weight variability and capsule weight. PMID:22960627

  6. Anti-Wear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive

    SciTech Connect

    Qu, Jun; Bansal, Dinesh G; Yu, Bo; Howe, Jane Y; Luo, Huimin; Dai, Sheng; Li, Huaqing; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential anti-wear lubricant additive. Unlike most other ILs that have very low solubility in non-polar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 oC, showed no corrosive attack to cast iron in ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron <8o). Most importantly, this phosphonium-based IL has demonstrated effective anti-scuffing and anti-wear characteristics when blended with lubricating oils. For example, a 5 wt.% addition into a synthetic base oil eliminated the scuffing failure experienced by the neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by three orders of magnitude. A synergistic effect on wear protection was observed with the current anti-wear additive when added into a fully-formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL s anti-scuffing and anti-wear functionality.

  7. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    PubMed

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. PMID:23618159

  8. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  9. Lubricating oil compositions containing poly(oxyalkylene) aminoether carbamates as dispersing agents

    SciTech Connect

    Plavac, F.

    1988-03-01

    This patent describes a lubricating oil composition comprising a major portion of oil of lubrication viscosity, and a minor amount of poly(oxyalkylene) aminohydrocarbyloxyhydrocarbyl carbamate having a molecular weight of about 500 to 10,000; wherein the poly(oxyalkylene) moiety of the carbamate is comprised of oxyalkylene units selected from C/sub 2/-C/sub 5/ oxyalkylene units which a sufficient number are branched-chain oxyalkylene units to render the carbamates soluble in lubricating oil; and the aminohydrocarbyloxyhydrocarbyl moiety of the carbamate being derived from a diaminoether having from 2 to 60 carbon atoms.

  10. Comparison of Extreme Pressure Additive Treat Rates in Soybean and Mineral Oils Under Boundary Lubrication Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, it is considered that, under boundary lubrication conditions, the reduction in friction and wear is mostly dependent on Extreme Pressure (EP) additives, rather than the basestock. However, several studies indicate that vegetable oils also contribute to the lubricity under this regime...

  11. Effects of soybean oil esters on the performance, lubricating oil, and water of diesel engines

    SciTech Connect

    Wagner, L.E.; Clark, S.J.; Schrock, M.D.

    1984-01-01

    The primary problems associated with straight soybean oil as a fuel in a compression ignition engine are due to high fuel viscosity. Transesterification provides a significant reduction in viscosity, thereby enhancing the physical properties of the fuel to improve engine performance. Methyl, ethyl, and butyl esters of sobybean oil revealed fuel properties similar to diesel fuel. Engine wear, deposits, performance, and emissions are reported for each of the ester fuel's and reference diesel fuel's 200-hour engine tests. Analysis of lubricating oil samples are also presented as well as complete fuel injection system test results.

  12. Oil-air mist lubrication as an emergency system and as a primary lubrication system. [for helicopter engines

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1976-01-01

    The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours.

  13. Observations of Spacecraft Bearing Lubricant Redistribution Based on Thermal Conductance Measurements

    NASA Technical Reports Server (NTRS)

    Takeuchi, Yoshimi R.; Frantz, Peter P.; Hilton, Michael R.

    2014-01-01

    The performance and life of precision ball bearings are critically dependent on maintaining a quantity of oil at the ball/race interface that is sufficient to support a robust protective film. In space applications, where parched conditions are intentionally the norm, harsh operating conditions can displace the small reserves of oil, resulting in reduced film thickness and premature wear. In the past, these effects have proven difficult to model or to measure experimentally. This paper describes a study addressing this challenge, where bearing thermal conductance measurements are employed to infer changes in lubricant quantity at the critical rolling interfaces. In the first part of the paper, we explain how the lubricant's presence and its quantity impacts bearing thermal conductance measurements. For a stationary bearing, we show that conductance is directly related to the lubricant quantity in the ball/race contacts. Hence, aspects of bearing performance related to oil quantity can be understood and insights improved with thermal conductance data. For a moving bearing, a different mechanism of heat transfer dominates and is dependent on lubricant film thickness on the ball. In the second part of the report, we discuss lubricant quantity observations based on bearing thermal conductance measurements. Lubricant quantity, and thus bearing thermal conductance, depends on various initial and operating conditions and is impacted further by the run-in process. A significant effect of maximum run-in speed was also observed, with less oil remaining after obtaining higher speeds. Finally, we show that some of the lubricant that is displaced between the ball and race during run-in operation can be recovered during rest, and we measure the rate of recovery for one example.

  14. Lubricant oil condition monitoring using a scattering-free single-wavelength optical scheme

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, Andrea A.; Adriani, G.; Paccagnini, A.; Campatelli, M.; Ottevaere, H.; Thienpont, H.

    2014-05-01

    A simple and low-cost optical setup can be used for monitoring online the condition of lubricant oil in big machineries, as an action of preventive maintenance. The total acid number and the water content, as indicators of the lubricant oil quality, can be assessed by means of an integrating sphere for achieving scattering-free absorption measurements. For each indicator, spectroscopy showed that a peculiar wavelength is enough for predicting with good accuracy the value of the indicator.

  15. Lubricating oil compositions containing overbased calcium sulfonates and metal salts of alkyl catechol dithiophosphoric acid

    SciTech Connect

    Yamaguchi, E.S.; Cerrito, E.; Liston, T.V.

    1987-05-26

    This patent describes a lubricating oil composition containing an overbased calcium hydrocarbyl sulfonate. The improvement wherein the lubricating oil composition additionally comprises an effective amount to reduce wear of a metal salt of an alkyl catechol dithiophosphoric acid ester of the formula: wherein R is alkyl containing 10 to 18 carbon atoms, or mixtures thereof, M is an alkali or alkaline earth metal or transition metal and n corresponds to the valence of the metal M.

  16. STRUCTURE INDUCED THERMO-OXIDATIVE BEHAVIOR OF BIO-BASED SYNTHETIC LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental awareness has led to new generation of lubricants and fluids based on renewable resources that are nontoxic and eco-friendly. These fluids are potential replacements for mineral oil in various agricultural, marine, forestry and industrial equipment and therefore prevent polluting the ...

  17. WASTE LUBRICATING OIL DISPOSAL PRACTICES IN PROVIDENCE, RHODE ISLAND: POTENTIAL SIGNIFICANCE TO COASTAL WATER QUALITY

    EPA Science Inventory

    A 1979-80 survey of Providence, R.I., residents indicated that approximately 35 percent changed their own automotive lubricating oil, disposing of this oil by a variety of methods. The most popular method of disposal reported by the respondents was putting the oil in the garbage ...

  18. Lubricating properties of molybdenum disulfide. Part 3: Performance of molybdenum disulfide-containing oils in fluid lubrication

    NASA Technical Reports Server (NTRS)

    Soda, Norimune; Miyahara, Yoshinori

    1988-01-01

    The lubricating properties of a straight mineral oil with and without MoS2 powder were studied. Bearing testers of thrust-collar type and of journal bearing type were used for thin- and fluid-film conditions, respectively. The effectiveness of the MoS2 powder in the oil differed depending on the conditions of the rubbing surfaces. For fluid film conditions, considerable effects of the MoS2 were observed, in contrast to the thin-film cases. The addition of MoS2 powder was effective only when the lubricant film was formed between surfaces thickly enough to allow the inflow of MoS2 particles.

  19. Lubrication characteristics of nano-oil with different degrees of surface hardness of sliding members.

    PubMed

    Ku, Boncheol; Han, Youngcheol; Lee, Kwangho; Choi, Youngmin; Koo, Bonyoung; Hwang, Yujin; Lee, Jaekeun

    2011-01-01

    In this study, the lubrication characteristics of sliding members were compared with the changes in the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35 and AISI 60) and nickel chromium molybdenum steel (AISI 4320). The friction coefficients and the temperature variations of the frictional surfaces were measured with a disk-on-disk tribotester under a fixed rotation speed. The friction surfaces were observed with a scanning electron microscope (SEM). The friction coefficients of the plate surface increased as the hardness difference increased. The friction coefficient after the lubrication with nano-oil was less than that after lubrication with mineral oil. This is because a spherical nanoparticle plays the role of a tiny ball bearing between the frictional surfaces that improve the lubrication characteristics. PMID:21446459

  20. Quantitative Analysis for Monitoring Formulation of Lubricating Oil Using Terahertz Time-Domain Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Lu; Zhao, Kun; Zhou, Qing-Li; Shi, Yu-Lei; Zhang, Cun-Lin

    2012-04-01

    The quantitative analysis of zinc isopropyl-isooctyl-dithiophosphate (T204) mixed with lube base oil from Korea with viscosity index 70 (T204-Korea70) is presented by using terahertz time-domain spectroscopy (THz-TDS). Compared with the middle-infrared spectra of zinc n-butyl-isooctyl-dithiophosphate (T202) and T204, THz spectra of T202 and T204 show the weak broad absorption bands. Then, the absorption coefficients of the T204-Korea70 system follow Beer's law at the concentration from 0.124 to 4.024%. The experimental absorption spectra of T204-Korea70 agree with the calculated ones based on the standard absorption coefficients of T204 and Korea70. The quantitative analysis enables a strategy to monitor the formulation of lubricating oil in real time.

  1. Tribological Characterization of Carbon Based Solid Lubricants 

    E-print Network

    Sanchez, Carlos Joel

    2012-10-19

    graphenes. Each graphene structure is covalently bonded to the adjacent structures. The graphene layers are bonded parallel to one another by weak Van der Waal bonds. Graphite is an effective lubricant due to the strength of the layered graphene rings... lubricating effects are highly dependent on ambient water vapor. When water vapor is present, it gets absorbed into the crystal structure. The water interacts chemically with the graphite and causes a degradation of the bonds holding the graphene layers...

  2. Simulated aging of lubricant oils by chemometric treatment of infrared spectra: potential antioxidant properties of sulfur structures.

    PubMed

    Amat, Sandrine; Braham, Zeineb; Le Dréau, Yveline; Kister, Jacky; Dupuy, Nathalie

    2013-03-30

    Lubricant oils are complex mixtures of base oils and additives. The evolution of their performance over time strongly depends on its resistance to thermal oxidation. Sulfur compounds revealed interesting antioxidant properties. This study presents a method to evaluate the lubricant oil oxidation. Two samples, a synthetic and a paraffinic base oils, were tested pure and supplemented with seven different sulfur compounds. An aging cell adapted to a Fourier Transform InfraRed (FT-IR) spectrometer allows the continuous and direct analysis of the oxidative aging of base oils. Two approaches were applied to study the oxidation/anti-oxidation phenomena. The first one leads to define a new oxidative spectroscopic index based on a reduced spectral range where the modifications have been noticed (from 3050 to 2750 cm(-1)). The second method is based on chemometric treatments of whole spectra (from 4000 to 400 cm(-1)) to extract underlying information. A SIMPLe-to-use Interactive Self Modeling Analysis (SIMPLISMA) method has been used to identify more precisely the chemical species produced or degraded during the thermal treatment and to follow their evolution. Pure spectra of different species present in oil were obtained without prior information of their existence. The interest of this tool is to supply relative quantitative information reflecting evolution of the relative abundance of the different products over thermal aging. Results obtained by these two ways have been compared to estimate their concordance. PMID:23598215

  3. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  4. Properties of dry film lubricants prepared by spray application of aqueous starch-oil composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous dispersions of starch-soybean oil (SBO) and starch-jojoba oil (JO) composites, prepared by excess steam jet cooking, form effective dry film lubricants when applied as thick coatings to metal surfaces by doctor blade. This application method necessitates long drying times, is wasteful, requ...

  5. Effect of temperature on lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is an important parameter affecting the performance of lubricant ingredients. It affects such important tribological characteristics as viscosity, film thickness, adsorption, desorption, friction, and wear. Temperature also promotes oxidation, polymerization, and degradation which nega...

  6. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  7. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  8. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  9. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas.

    PubMed

    Agamuthu, P; Abioye, O P; Aziz, A Abdul

    2010-07-15

    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil. PMID:20392562

  10. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    SciTech Connect

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. It has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.

  11. Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars

    NASA Astrophysics Data System (ADS)

    Brandenberger, Sandro; Mohr, Martin; Grob, Koni; Neukom, Hans Peter

    In this study we determined particle-bound paraffins in the exhaust of six light-duty diesel vehicles on a chassis dynamometer for different driving cycles and ambient temperatures. The filters containing particulate matter were extracted with dichloromethane in a Soxhlet apparatus, and the paraffin analysis was performed using two-dimensional normal phase high-pressure liquid chromatography (HPLC) coupled on-line to gas chromatography-flame ionization detection (GC-FID). The different molecular mass of lubricant and diesel paraffins facilitated the distinction between diesel and lubricant contribution to the emission. Although all vehicles were certified according to the same emission class, there were considerable variations between vehicles. The study showed that under cold-start conditions the organic mass fraction ranged from 10% to 30% with respect to particle mass and the paraffins from 30% to 60% with respect to the organic mass. With cold engine, falling ambient temperature increased the emission of unburned diesel fuel, whereas that from unburned lubricating oil was less affected. Under warm-start conditions, the ambient temperature had less impact on the emission of paraffins. The emissions were also affected by the operating conditions of the engine: driving cycles with higher mean load tend towards higher emissions of lubricant. The operating conditions also affected the distribution of paraffins: the emission of light paraffins seemed to be lower with higher load in the driving cycle. With an urban and a highway cycle, roughly 40% and 80% w/w, respectively, of unburned paraffins were contributed by the lubricant. Measurements of polycyclic aromatic hydrocarbons (PAH) in lubricating oil showed lubricant to be a sink for PAHs. As lubricant significantly contributes to the organic emission, as shown in this study, it can be assumed that it is also a significant source of PAH emissions.

  12. Monitoring of the molecular structure of lubricant oil using a FT-Raman spectrometer prototype

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Javahiraly, Nicolas; Meyrueis, Patrick

    2014-05-01

    The determination of the physical state of the lubricant materials in complex mechanical systems is highly critical from different points of view: operative, economical, environmental, etc. Furthermore, there are several parameters that a lubricant oil must meet for a proper performance inside a machine. The monitoring of these lubricants can represent a serious issue depending on the analytical approach applied. The molecular change of aging lubricant oils have been analyzed using an all-standard-components and self-designed FT-Raman spectrometer. This analytical tool allows the direct and clean study of the vibrational changes in the molecular structure of the oils without having direct contact with the samples and without extracting the sample from the machine in operation. The FT-Raman spectrometer prototype used in the analysis of the oil samples consist of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling has been accomplished by using a conventional 62.5/125?m multi-mode fiber coupler. The FT-Raman arrangement has been able to extract high resolution and frequency precise Raman spectra, comparable to those obtained with commercial FT-Raman systems, from the lubricant oil samples analyzed. The spectral information has helped to determine certain molecular changes in the initial phases of wearing of the oil samples. The proposed instrument prototype has no additional complex hardware components or costly software modules. The mechanical and thermal irregularities influencing the FT-Raman spectrometer have been removed mathematically by accurately evaluating the optical path difference of the Michelson interferometer. This has been achieved by producing an additional interference pattern signal with a ?= 632.8 nm helium-neon laser, which differs from the conventional zero-crossing sampling (also known as Connes advantage) commonly used by FT-devices. It enables the FT-Raman system to perform reliable and clean spectral measurements from the analyzed oil samples.

  13. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Diesel engine lubrication systems shall be so arranged that vapors from the sump tank may not be... the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... to any vessel below 300 gross tons. Where the size and design of an engine is such that...

  14. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Diesel engine lubrication systems shall be so arranged that vapors from the sump tank may not be... the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... to any vessel below 300 gross tons. Where the size and design of an engine is such that...

  15. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Diesel engine lubrication systems shall be so arranged that vapors from the sump tank may not be... the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... to any vessel below 300 gross tons. Where the size and design of an engine is such that...

  16. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Diesel engine lubrication systems shall be so arranged that vapors from the sump tank may not be... the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... to any vessel below 300 gross tons. Where the size and design of an engine is such that...

  17. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... discharged back into the engine crank case of engines of the dry sump type. (g) Steam turbine driven... and a permanent 5° trim. (b) When pressure or gravity-forced lubrication is employed for the steam... coolers on steam driven machinery shall be provided with two separate means of circulating water...

  18. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... discharged back into the engine crank case of engines of the dry sump type. (g) Steam turbine driven... and a permanent 5° trim. (b) When pressure or gravity-forced lubrication is employed for the steam... coolers on steam driven machinery shall be provided with two separate means of circulating water...

  19. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... discharged back into the engine crank case of engines of the dry sump type. (g) Steam turbine driven... and a permanent 5° trim. (b) When pressure or gravity-forced lubrication is employed for the steam... coolers on steam driven machinery shall be provided with two separate means of circulating water...

  20. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... discharged back into the engine crank case of engines of the dry sump type. (g) Steam turbine driven... and a permanent 5° trim. (b) When pressure or gravity-forced lubrication is employed for the steam... coolers on steam driven machinery shall be provided with two separate means of circulating water...

  1. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... discharged back into the engine crank case of engines of the dry sump type. (g) Steam turbine driven... and a permanent 5° trim. (b) When pressure or gravity-forced lubrication is employed for the steam... coolers on steam driven machinery shall be provided with two separate means of circulating water...

  2. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  3. CHARACTERIZATION AND TRIBOLOGICAL EVALUATION OF 1-BENZYL-3-METHYLIMIDAZOLIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE AS NEAT LUBRICANT AND OIL ADDITIVE

    SciTech Connect

    Bansal, Dinesh G; Qu, Jun; Yu, Bo; Luo, Huimin; Dai, Sheng; Bunting, Bruce G; Blau, Peter Julian; Mordukhovich, Gregory; Smolenski, Donald

    2011-01-01

    Selected physical and chemical properties and tribological data for a newly-developed, imidazolium-based ionic liquid (IL) are presented. The IL is soluble in the SAE 5W-30 oil up to a certain weight percentage, and is as a promising candidate for use in lubrication applications, either in its neat version or as an oil additive. Characterization of the IL included dynamic viscosity at different temperatures, corrosion effects on cast iron cylinder liners, and thermal stability analysis. The tribological performance was evaluated using a reciprocating ring-on-liner test arrangement. When used in neat version this IL demonstrated friction coefficient comparable to a fully formulated engine oil, and when used as an oil additive it produced less wear.

  4. NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine

    NASA Technical Reports Server (NTRS)

    Weaver, Harold F.

    2003-01-01

    In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

  5. Synthesis of epoxy jatropha oil and its evaluation for lubricant properties.

    PubMed

    Sammaiah, Arukali; Padmaja, Korlipara Venkata; Prasad, Rachapudi Badari Narayna

    2014-01-01

    Vegetable oils are being investigated as potential source of environmentally favorable lubricants over synthetic products. Jatropha curcas L. oil (JO) identified as a potential raw material for biodiesel was explored for its use as a feedstock for biolubricants. Epoxidized jatropha oil (EJO) was prepared by peroxyformic acid generated in situ by reacting formic acid and hydrogen peroxide in the presence of sulfuric acid as catalyst. Almost complete conversion of unsaturated bonds in the oil into oxirane was achieved with oxirane value 5.0 and iodine value of oil reduced from 92 to 2 mg I2/g. EJO exhibited superior oxidative stability compared to JO. This study employed three antioxidants such as butylated hydroxy toluene (BHT), zinc dimethyl dithiocarbamate (ZDDC), and diphenyl amine (DPA) and found that DPA antioxidant performed better than ZDDC and BHT over EJO compared to JO. The lubricating properties of EJO and epoxy soybean oil (ESBO) are comparable. Hence, EJO can be projected as a potential lubricant basestock for high temperature applications. PMID:24829128

  6. Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus.

    PubMed

    Abioye, O P; Agamuthu, P; Abdul Aziz, A R

    2012-04-01

    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil. PMID:21870160

  7. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  8. The detection of lubricating oil viscosity changes in gearbox transmission systems driven by sensorless variable speed drives using electrical supply parameters

    NASA Astrophysics Data System (ADS)

    Abusaad, S.; Brethee, K.; Assaeh, M.; Zhang, R.; Gu, F.; Ball, A. D.

    2015-07-01

    Lubrication oil plays a decisive role to maintain a reliable and efficient operation of gear transmissions. Many offline methods have been developed to monitor the quality of lubricating oils. This work focus on developing a novel online method to diagnose oil degradation based on the measurements from power supply system to the gearbox. Experimental studies based on an 10kW industrial gearbox fed by a sensorless variable speed drive (VSD) shows that measurable changes in both static power and dynamic behaviour are different with lube oils tested. Therefore, it is feasible to use the static power feature to indicate viscosity changes at low and moderate operating speeds. In the meantime, the dynamic feature can separate viscosity changes for all different tested cases.

  9. Synthesis of lubrication fluids and surfactant precursors from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting with soybean oil or soybean oil derived methyl oleate, a variety of compounds have been synthesized. The epoxidation of oleochemicals is a simple way to use the unsaturation naturally available in the vegetable oil and convert it into a variety of other useful chemicals. Epoxidized methyl...

  10. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils

    NASA Astrophysics Data System (ADS)

    Zheng, Lijuan; Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent; Gilon, Nicole; Zeng, Heping; Yu, Jin

    2014-09-01

    Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined.

  11. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    NASA Astrophysics Data System (ADS)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  12. Analysis of chain saw lubricating oils commonly used in Thailand's southern border provinces for forensic science purpose.

    PubMed

    Choodum, Aree; Tripuwanard, Kijja; Daeid, Niamh Nic

    2014-08-01

    In recent years, Thailand's southern border provinces (Malay-Muslim-majority border provinces) have become the scene of violence and insurgency. One of the attack patterns is the blocking of roads with perennial plants followed by planned attacks using improvised explosive devices (IEDs) or weapons on first responders. Containers of viscous dark lubricating oil and traces of lubricants on the felled trees were usually found at the scene. These were suspected to be chain oil lubricant from the chainsaws used to cut down the trees used for the roadblock. This work aimed to differentiate the chromatographic patterns of used lubricating oils available in automobile repair shops from various locations across Thailand's southern border provinces. Lubricating oils were analyzed using gas chromatography/flame ionization detector (GC/FID) every two weeks to study their variation in chemical compositions over time. The results obtained from GC/FID were normalized for differentiation. This included four two-stroke, six four-stroke, and three recycled oils. Two lubricating oils found at an incident scene were also analyzed and the results compared with the chain oil from five seized chainsaws. PMID:24875837

  13. Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011

    SciTech Connect

    Carroll, J. N.; Khalek, I. A.; Smith, L. R.; Fujita, E.; Zielinska, B.

    2011-10-01

    The Collaborative Lubricating Oil Study on Emissions (CLOSE) project was a pilot investigation of how fuels and crankcase lubricants contribute to the formation of particulate matter (PM) and semi-volatile organic compounds (SVOC) in vehicle exhaust. As limited vehicles were tested, results are not representative of the whole on-road fleet. Long-term effects were not investigated. Pairs of vehicles (one normal PM emitting, one high-PM emitting) from four categories were selected: light-duty (LD) gasoline cars, medium-duty (MD) diesel trucks, heavy-duty (HD) natural-gas-fueled buses, and HD diesel buses. HD vehicles procured did not exhibit higher PM emissions, and thus were labeled high mileage (HM). Fuels evaluated were non-ethanol gasoline (E0), 10 percent ethanol (E10), conventional low-sulfur TxLED diesel, 20% biodiesel (B20), and natural gas. Temperature effects (20 degrees F, 72 degrees F) were evaluated on LD and MD vehicles. Lubricating oil vintage effects (fresh and aged) were evaluated on all vehicles. LD and MD vehicles were operated on a dynamometer over the California Unified Driving Cycle, while HD vehicles followed the Heavy Duty Urban Dynamometer Driving Schedule. Regulated and unregulated emissions were measured. Chemical markers from the unregulated emissions measurements and a tracer were utilized to estimate the lubricant contribution to PM.

  14. Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study.

    PubMed

    Bhattacharya, Munna; Guchhait, Sugata; Biswas, Dipa; Datta, Sriparna

    2015-11-01

    The growth kinetics and biodegradation of two waste lubricating oil samples including waste engine oil (WEO) and waste transformer oil (WTO) were studied using pure isolates and mixed culture of Ochrobactrum sp. C1 and Bacillus sp. K1. The mixed culture significantly influenced degradation efficiency of the pure isolates through bioaugmentation process. In particular, the mixed culture was capable of growing on various n-alkanes and polycyclic aromatic hydrocarbons and was able to tolerate unusually high concentrations of waste lubricants (WEO-86.0 g/L and WTO-81.5 g/L). The initial concentration of waste lubricating oils has been varied in the range of 1-10 % (v/v). Under this experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: ? max = 0.078 h(-1), K S = 23.101 g/L, K i = 43.844 g/L for WEO; and ? max = 0.044 h(-1), K S = 10.662 g/L, K i = 58.310 g/L for WTO. The values of intrinsic kinetic parameters, like specific growth rate ? max, half saturation constant, K S, inhibition constant, K i and the maximum substrate concentration, S max and growth yield coefficient Y x/s , have been determined using each model hydrocarbon and their mixture as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of carbon atoms present in n-alkanes. The metabolites from degradation of model hydrocarbon compounds have been identified by GC-MS to elucidate the possible pathway of waste lubricating oil degradation process. PMID:26271337

  15. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  16. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM. PMID:17547199

  17. Thermally stable derivatives or propylenepolyamines as protective additives for lubricating oils used in compressors handling hydrogen sulfide-containing gas

    SciTech Connect

    Trofimov, V.A.; Panidi, I.S.; Spirkin, V.G.

    1995-09-01

    In the transmission of natural, associated, and petroleum gases containing hydrogen sulfide, carbon dioxide, water, and other corrosive impurities, problems are created by the saturation of the compressor lubricating oil with these impurities and failure of components of the lubricating and sealing system. Hydrogen sulfide is distinguished by the greatest affinity for oil and the highest corrosivity. Its solubility in oils may be as high as 10 g/liter under standard conditions. In the work reported here, we investigated the protective properties of salts and amides based on higher aliphatic, alkylaromatic, and unsaturated carboxylic acids with certain substituted propylenepolyamines. In synthesizing the additives, we used the following: a commercial C{sub 17} - C{sub 20} fraction of synthetic fatty acids (SFA): C{sub 25+} still bottoms; technical alkyl (C{sub 16} - C {sub 18}) salicylic acids; and oleic acid. From these materials, we obtained salts and amides of N,N-dimethylpropanediamine, N-benzylpropanediamine, N-cyanoethylpropanediamine, N,N,N`,N`-tetramethyldipropylenetriamine, and N,N-dimethyldipropylenetriamine.

  18. Ionic Liquid Adsorption and Nanotribology at the Silica-Oil Interface: Hundred-Fold Dilution in Oil Lubricates as Effectively as the Pure Ionic Liquid.

    PubMed

    Li, Hua; Cooper, Peter K; Somers, Anthony E; Rutland, Mark W; Howlett, Patrick C; Forsyth, Maria; Atkin, Rob

    2014-12-01

    The remarkable physical properties of ionic liquids (ILs) make them potentially excellent lubricants. One of the challenges for using ILs as lubricants is their high cost. In this article, atomic force microscopy (AFM) nanotribology measurements reveal that a 1 mol % solution of IL dissolved in an oil lubricates the silica surface as effectively as the pure IL. The adsorption isotherm shows that the IL surface excess need only be approximately half of the saturation value to prevent surface contact and effectively lubricate the sliding surfaces. Using ILs in this way makes them viable for large-scale applications. PMID:26278938

  19. Determination of phosphorus in lubricating oils by cool-flame emission spectroscopy.

    PubMed

    Elliott, W N; Heathcote, C; Mostyn, R A

    1972-03-01

    The phosphorus content of lubricating oils is determined by measurement of the emission from the HPO molecular species at 528 nm in a cool hydrogen-nitrogen diffusion flame. The oil is ashed in the presence of potassium hydroxide and an aqueous extract of the melt is treated with ion-exchange resin to remove interferents, before aspiration into the flame. Analytical results are presented on samples containing phosphorus in the range 0.009-0.2%. The precision of the method is +/- 5% at the 0.04% phosphorus level. PMID:18961057

  20. Recycling of the used automotive lubricating oil by ionizing radiation process

    NASA Astrophysics Data System (ADS)

    Scapin, M. A.; Duarte, C.; Sampa, M. H. O.; Sato, I. M.

    2007-11-01

    The recycling process of the used mineral oils has been gaining a very important gap in the context of environmental protection. Among mineral oils from petroleum, the lubricating oils are not entirely consumed during their use; therefore, it is necessary to apply a treatment for recuperation seeking their reuse. Moreover, the environmental legislation of countries does not allow their discard in any type of soils, rivers, lakes, oceans or sewerage systems. The conventional treatment has shown certain difficulties in the recuperation process for used oils. The ionizing radiation process is renowned in the industrial effluents treatments due to its high efficiency in the degradation of organic compounds and in the removal of metals by the action of OH rad , rad H and e aq radicals. In this work, used automotive lubricating oil was treated by the ionizing radiation process for metal removal and degradation of organic compounds. The samples were irradiated with 100 and 200 kGy irradiation doses. Determination of the elements Mg, Al, P, S, Cl, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Mo, Nb, Cd, Sn, Ba, Bi and Pb, before and after the irradiation, was done by X-ray fluorescence technique and the organic profile was obtained by infrared spectroscopy.

  1. Recycling and re-refining used lubricating oils

    SciTech Connect

    Pyziak, T.; Brinkman, D.W.

    1993-05-01

    This article will point out the advantages and disadvantages of current oil and oily water disposal techniques in operation today. The emphasis will be on the environmental (long- and short-term) ramifications which may be encountered by each disposal technique.

  2. Biobased lubricants and functional products from Cuphea oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea (Lythraceae) is an annual plant that produces a small seed rich in saturated medium-chain triacylglycerols (TAGs). With the need for higher seed yields, oil content, and less seed shattering, Oregon State University began developing promising cuphea crosses. Cuphea PSR23 is a hybrid between C...

  3. Synthesis and evaluation of novel acyl derivatives from jatropha oil as potential lubricant basestocks.

    PubMed

    Sammaiah, Arukali; Padmaja, Korlipara V; Prasad, Rachapudi B N

    2014-05-21

    A novel class of jatropha oil-based acylated derivatives from hydroxy alkyl esters of jatropha fatty acids (C1, C3, C4, and C8) and various anhydrides (C2, C3, C4, and C6) were synthesized and their physicochemical and lubricant properties reported. Jatropha fatty acid alkyl esters were dihydroxylated using the in situ performic acid method and further acylated with different anhydrides to produce acylated derivatives. Acylated derivatives of dihydroxy jatropha fatty acid alkyl esters were charaterized by NMR, FTIR, GC, and GC-MS analysis and were evaluated for their viscosity, viscosity index, pour and flash points, and oxidation stability. Most of the derivatives are either in ISO VG 22 or 32 viscosity grade with good viscosity index. It was observed that increase in acyl chain length and branching in the end-chain ester improved the pour point of the diacyl derivatives. All of the hexanoylated esters exhibited better oxidation stability compared to other acylated products, and their pour points are comparable to those of synthetic esters such as TMP trioleates. In general, isoalcohol esters with longer acyl chains showed promise as potential candidates for hydraulic fluids and metal-working fluids in ISO VG 22 and 32 viscosity range. PMID:24798988

  4. Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process

    SciTech Connect

    Compere, A L; Griffith, William {Bill} L

    2009-04-01

    This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

  5. Study of Additive for Aluminum Cold Rolling Lubrication

    NASA Astrophysics Data System (ADS)

    Fang, Li

    The performance of lubricants and additives was studied through simulated ball on disc experiments on aluminum alloys AA3003 and AA5182. Experiments covered five lubricant base oils with two additives at two additive concentrations. Comparison of lubricants was carried out based on measurements of the coefficient of friction (COF), surface damage and lubrication failure temperature. With lubricant applied during the cold rolling process, a protective layer containing carbon and oxygen forms on the alloy surface; the performance of lubricants is affected by both additive type and additive concentration. Lubricants' anti-wear property is sensitive to changes in additive concentration; that is with an increase in additive concentration, the wear decreases. For lubricants' anti-friction properties, only fatty alcohol shows a decrease in coefficient of friction when the additive concentration increases. With lower concentration of additive, higher lubrication critical temperature was observed. Generally, coefficient of friction is insensitive to aluminum material changing.

  6. Consider synthetic lubricants for process machinery

    SciTech Connect

    Bloch, H.P. , Montgomery, TX ); Pate, A.R. Jr. )

    1995-01-01

    Judicious application of properly formulated synthetic lubricants can benefit a wide spectrum of process machinery. This informed usage is very likely to drive down overall maintenance and downtime expenditures and can markedly improve plant efficiency. The paper describes the origin of synthetic lubricants, then explains the principal features and attributes of the six base fluids: synthetic hydrocarbon fluids; organic esters; polyglycols; phosphate esters; silicones; and blends of the synthetic lubricants. The paper discusses the properties and advantages and gives brief highlights of successful case histories of the use of synthetic lubricants. These include: circulating oil system for furnace air preheaters; Right angle gear drives for fin fan coolers; plant-wide oil mist systems; and pulverizing mills in coal-fired generating plant. In the last case, an economic analysis is done to point out the savings possible in lubricant consumption cost, reduced maintenance cost, lubricant disposal cost, and reduction in power consumption.

  7. Tribological Properties of Nanoparticle-Based Lubrication Systems 

    E-print Network

    Kheireddin, Bassem

    2013-08-02

    New nanomaterials and nanoparticles are currently under investigation as lubricants or lubricant additives due to their unusual properties compared to traditional materials. One of the objectives of this work is to investigate ...

  8. Application of Carbon Based Nano-Materials to Aeronautics and Space Lubrication

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Miyoshi, Kazuhisa; Wal, Randy L. Vander

    2007-01-01

    The tribology program at NASA Glenn Research Center in Cleveland, Ohio, is investigating carbon based nano-particles for their potential in advanced concept lubrication products. Service conditions range from high temperature atmospheric to low temperature vacuum. Some of the lubricants and surface coatings of tribological significance that we have evaluated include neat nano-particles, both grown in-situ and as bulk material deposited on the substrate, and nano-particles dispersed in oils which are all highly substrate interactive. We discuss results of testing these systems in a spiral orbit tribometer (SOT) and a unidirectional pin-on-disc (PoD) tribometer. A nano-onions/Krytox mixture evaluated as a lubricant for angular contact bearings in air caused a marked lowering of the coefficient of friction (CoF) (0.04 to 0.05) for the mixture with an eight-fold improvement in lifetime over that of the Krytox alone. In vacuum, no effect was observed from the nano-onions. Multi-walled nanotubes (MWNT) and graphitized MWNT were tested under sliding friction in both air and vacuum. The MWNT which were grown in-situ oriented normal to the sliding surface exhibited low CoF (0.04) and long wear lives. Bulk MWNT also generate low CoF (0.01 to 0.04, vacuum; and 0.06, air) and long wear life (>1 million orbits, vacuum; and >3.5 million, air). Dispersed graphitized MWNT were superior to MWNT and both were superior to aligned MWNT indicating that orientation is not an issue for solid lubrication. Single-walled nanotubes (SWNT) were modified by cutting into shorter segments and by fluorination. All SWNTs exhibited low CoF in air, with good wear lives. The SWNT with slight fluorination yielded an ultra-low CoF of 0.002 although the best wear life was attributed to the nascent SWNT.

  9. Biobased, environmentally friendly lubricants for processing plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil based lubricants have excellent lubricity, biodegradability, good viscosity temperature characteristics and low evaporation loss, but poor thermos-oxidative stability and cold flow properties. This paper presents a systematic approach to improve the oxidative and cold flow behavior of...

  10. Antioxidants and stabilizers for lubricants and fuels. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-03-01

    The bibliography contains citations concerning antioxidants and stabilizing additives for lubricants, oils, and fuels, including jet engine fuels and mineral oils. The synthesis, properties, and thermal and storage stabilities of these additives are considered. (Contains a minimum of 124 citations and includes a subject term index and title list.)

  11. Experimental investigations about the influence of oil lubricant between teeth on the gear rattle phenomenon

    NASA Astrophysics Data System (ADS)

    Russo, Riccardo; Brancati, Renato; Rocca, Ernesto

    2009-04-01

    The article describes an experimental investigation into the "gear rattle" phenomenon in automotive manual transmissions with a special focus on the influence that lubricant oil may have in reducing this undesirable event. The experimental analysis has been conducted in order to validate a theoretical model developed by the authors that accounts for the presence of oil between the meshing gear teeth of unloaded gear pairs during the no-contact phase. An original measurement technique has been adopted for the tests that consist of the acquisition of the angular relative motion of a gear pair by two high resolution encoders. The experimental test rig designed for this analysis offers the possibility of varying the distance between the wheel axes so that the influence of the backlash variation on the rattle phenomenon can be investigated. The paper presents the results of a series of experiments conducted on helical gear pairs from an automotive gear box in the "idle gear rattle" condition by varying the lubrication mechanism. The experimental results show good agreement with the expectations provided by the theoretical model.

  12. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    PubMed

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process. PMID:17969702

  13. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil.

    PubMed

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-04-01

    This study aimed at investigating the application of biosurfactant from Sphingobacterium spiritivorum AS43 using molasses as a substrate and fertilizer to enhance the biodegradation of used lubricating oil (ULO). The cell surface hydrophobicity of bacteria, the emulsification activity, and the biodegradation efficiency of ULO were measured. The bacterial adhesion in the hydrocarbon test was used to denote the cell surface hydrophobicity of the used bacterial species. The results indicate a strong correlation between cell surface hydrophobicity, emulsification activity, and the degree of ULO biodegradation. The maximum degradation of ULO (62 %) was observed when either 1.5 % (w/v) of biosurfactant or fertilizer was added. The results also revealed that biosurfactants alone are capable of promoting biodegradation to a large extent without added fertilizer. The data indicate the potential for biosurfactant production by using low-cost substrate for application in the bioremediation of soils contaminated with petroleum hydrocarbons or oils. PMID:24590892

  14. Design of Oil-Lubricated Machine for Life and Reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2007-01-01

    In the post-World War II era, the major technology drivers for improving the life, reliability, and performance of rolling-element bearings and gears have been the jet engine and the helicopter. By the late 1950s, most of the materials used for bearings and gears in the aerospace industry had been introduced into use. By the early 1960s, the life of most steels was increased over that experienced in the early 1940s, primarily by the introduction of vacuum degassing and vacuum melting processes in the late 1950s. The development of elastohydrodynamic (EHD) theory showed that most rolling bearings and gears have a thin film separating the contacting bodies during motion and it is that film which affects their lives. Computer programs modeling bearing and gear dynamics that incorporate probabilistic life prediction methods and EHD theory enable optimization of rotating machinery based on life and reliability. With improved manufacturing and processing, the potential improvement in bearing and gear life can be as much as 80 times that attainable in the early 1950s. The work presented summarizes the use of laboratory fatigue data for bearings and gears coupled with probabilistic life prediction and EHD theories to predict the life and reliability of a commercial turboprop gearbox. The resulting predictions are compared with field data.

  15. Lubrication with solids.

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.

    1972-01-01

    Brief discussion of the historical background, variety range, chemistry, physics, and other properties of solid lubricants, and review of their current uses. The widespread use of solid lubricants did not occur until about 1947. At present, they are the object of such interest that a special international conference on their subject was held in 1971. They are used at temperatures beyond the useful range of conventional lubricating oils and greases. Their low volatility provides them with the capability of functioning effectively in vacuum and invites their use in space applications. Their high load carrying ability makes them useful with heavily loaded components. Solid lubricants, however, do lack some of the desirable properties of conventional lubricants. Unlike oils and greases, which have fluidity and can continuously be carried back into contact with lubricated surfaces, solid lubricants, because of their immobility, have finite lives. Also, oils and greases can carry away frictional heat from contacting surfaces, while solid lubricants cannot.

  16. Lubrication System 1. Check and Change the Engine Oil. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on checking and changing the engine oil is the second of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  17. THE USE AND FATE OF LUBRICANTS, OILS, GREASES, AND HYDRAULIC FLUIDS IN THE IRON AND STEEL INDUSTRY

    EPA Science Inventory

    The report gives results of an investigation of the use and fate of lubricants, oils, greases, and hydraulic fluids in the iron and steel industry. Data from nine integrated steel plants and two consultants with extensive steel industry experience were used to: develop correlatio...

  18. Influence of ion-implanted Mo on the tribological behavior of iron lubricated with oil containing antiwear additives

    NASA Astrophysics Data System (ADS)

    Yang, D. H.; Xue, Q. J.; Zhang, X. S.; Wang, H. Q.

    1994-04-01

    Wear tests of the unimplanted and Mo ion-implanted pure iron specimens were made on an SRV fretting wear machine under lubricating condition. The lubricants were liquid paraffin with or without additives containing one or more of the active elements Cl, S, P and Zn. After wear tests, the worn surfaces of the specimens were analyzed by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The results showed that Mo ion implantation had a marked effect on friction, wear and tribochemical behavior of the specimen. When the specimens were lubricated with oil containing different additives, the increase in wear resistance due to ion implantation showed different values. This is because the physical and mechanical strengthening caused by Mo ion implantation only is one factor influencing wear behavior. Another wear-effect factor will be the lubricating film which is composed of adsorbed additive and reacted products when the wear specimen is lubricated with oil containing additive. However, Mo in the specimen decreased the chemical reactivity of the specimen surface and obstructed its formation.

  19. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation

    PubMed Central

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-01-01

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes. PMID:26295402

  20. NEW LUBRICANTS VIA MONO-ESTOLIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been an increased interest in vegetable oil based lubricants and functional fluids over the past few years. Vegetable based oil derivatives have many advantages over petroleum based products, such as wear properties and biodegradability. Some of the main problems with current vegetable b...

  1. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    PubMed

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-01-01

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 ?m in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil. PMID:25470295

  2. High-Efficient Production of Boron Nitride Nanosheets via an Optimized Ball Milling Process for Lubrication in Oil

    NASA Astrophysics Data System (ADS)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M.; Hait, Samik K.; Hodgson, Peter; Chen, Ying

    2014-12-01

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 ?m in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  3. Condoms and condiments: compatibility and safety of personal lubricants and their use in Africa.

    PubMed

    Geibel, Scott

    2013-01-01

    Previous research on the use of personal lubricants for sexual intercourse is limited and has primarily focused on condom compatibility and breakage, with only recent limited assessment of lubricant safety and possible epidemiologic implications. This article discusses the global evidence of lubricant compatibility with latex condoms and biological safety of lubricants, as well as documentation of lubricant use and current guidelines for HIV prevention programming in Africa. Data on lubricant compatibility with condoms are less available than commonly realized, and many lubricant products may not have been thoroughly tested for safety due to flexible regulatory environments. Recent laboratory and study findings from microbicides research also suggest that some water-based lubricants may have safety issues. Some African populations are using several types of lubricants, especially oil-based petroleum jellies, and receive little evidence-based guidance. More research is needed from the medical community to guide prevention programming. PMID:23841994

  4. Low-Cost Oil Quality Sensor Based on Changes in Complex Permittivity

    PubMed Central

    Pérez, Angel Torres; Hadfield, Mark

    2011-01-01

    Real time oil quality monitoring techniques help to protect important industry assets, minimize downtime and reduce maintenance costs. The measurement of a lubricant’s complex permittivity is an effective indicator of the oil degradation process and it can be useful in condition based maintenance (CBM) to select the most adequate oil replacement maintenance schedules. A discussion of the working principles of an oil quality sensor based on a marginal oscillator to monitor the losses of the dielectric at high frequencies (>1 MHz) is presented. An electronic design procedure is covered which results in a low cost, effective and ruggedized sensor implementation suitable for use in harsh environments. PMID:22346666

  5. The investigation of different particle size magnesium-doped zinc oxide (Zn0.92Mg0.08O) nanoparticles on the lubrication behavior of paraffin oil

    NASA Astrophysics Data System (ADS)

    Kalyani; Jaiswal, V.; Rastogi, R. B.; Kumar, D.

    2015-06-01

    Magnesium-doped zinc oxide (Zn0.92Mg0.08O) (ZMO) nanoparticles of 23 nm particle size have been synthesized by auto-combustion method. The variation in particle size of these nanoparticles has been performed by their further calcination at 800 and 1000 °C for 2 h and the corresponding calcined particles are designated as ZMO-1 and ZMO-2, respectively. The nanoparticles have been characterized by powder-XRD, scanning electron microscopy (SEM), energy dispersive X-ray and transmission electron microscope. The effect of particle size on the antiwear lubrication behavior of paraffin base oil has been investigated on four-ball lubricant tester. The tribological tests of these nanoparticles as antiwear additives have been studied at an optimized concentration (0.5 %w/v) by varying load for 30 min test duration and by varying the test durations at 392 N load. Various tribological parameters such as mean wear scar diameter, friction coefficient (µ), mean wear volume, running-in and steady-state wear rates show that these nanoparticles act as efficient antiwear additives and possess high load-carrying ability. From these tribological tests it has been observed that the lubrication behavior of studied nanoparticles is strongly size-dependent. The best tribological behavior is shown by nanoparticles of the smallest size, ZMO. Being sulfur, halogen and phosphorous free, ZMO nanoparticles have potential to be used as low SAPS lubricant additives. The SEM and atomic force microscopy analysis of the worn surfaces lubricated with ZMO nanoparticles at 392 N applied load for 60 min test duration show drastic decrease in surface roughness. The values of surface roughness of different additives are in good agreement with their observed tribological behavior.

  6. Tribological Properties of WC-Reinforced Ni-Based Coatings Under Different Lubricating Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhu, Lufa; Zhou, Zhiming; Liu, Gang; Liu, Eryong; Zeng, Zhixiang; Wu, Xuedong

    2015-10-01

    In order to improve the tribological properties of aluminum alloy cylinders and cylinder bore walls, WC-reinforced Ni-WC coatings were deposited on an aluminum substrate by atmospheric plasma spraying. The composition and microstructure of Ni-WC coatings with different WC contents were investigated and the tribological properties were tested under oil lubrication, lean oil lubrication and dry friction. The results showed that Ni-WC coatings consisted of a lamellar structure. Friction and wear testing results demonstrated that Ni-WC coatings had much better tribological performance than gray cast iron under different lubricating conditions. These Ni-WC composite coatings exhibited excellent mechanical properties and tribological properties due to the strengthening effect of the WC phase.

  7. Elastohydrodynamic properties of blends of plant-based and petroleum-based oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based oils are mostly triglycerides but can also be esters of long chain fatty acids and fatty alcohols. They are renewable and biodegradable materials, and display certain lubrication characteristics that are superior to petroleum-based products. However, for some applications, plant-based ...

  8. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    PubMed

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants. PMID:25766933

  9. Tribology and energy efficiency: from molecules to lubricated contacts to complete machines.

    PubMed

    Taylor, Robert Ian

    2012-01-01

    The impact of lubricants on energy efficiency is considered. Molecular details of base oils used in lubricants can have a great impact on the lubricant's physical properties which will affect the energy efficiency performance of a lubricant. In addition, molecular details of lubricant additives can result in significant differences in measured friction coefficients for machine elements operating in the mixed/boundary lubrication regime. In single machine elements, these differences will result in lower friction losses, and for complete systems (such as cars, trucks, hydraulic circuits, industrial gearboxes etc.) lower fuel consumption or lower electricity consumption can result. PMID:23285639

  10. Automated acid and base number determination of mineral-based lubricants by fourier transform infrared spectroscopy: commercial laboratory evaluation.

    PubMed

    Winterfield, Craig; van de Voort, F R

    2014-12-01

    The Fluid Life Corporation assessed and implemented Fourier transform infrared spectroscopy (FTIR)-based methods using American Society for Testing and Materials (ASTM)-like stoichiometric reactions for determination of acid and base number for in-service mineral-based oils. The basic protocols, quality control procedures, calibration, validation, and performance of these new quantitative methods are assessed. ASTM correspondence is attained using a mixed-mode calibration, using primary reference standards to anchor the calibration, supplemented by representative sample lubricants analyzed by ASTM procedures. A partial least squares calibration is devised by combining primary acid/base reference standards and representative samples, focusing on the main spectral stoichiometric response with chemometrics assisting in accounting for matrix variability. FTIR(AN/BN) methodology is precise, accurate, and free of most interference that affects ASTM D664 and D4739 results. Extensive side-by-side operational runs produced normally distributed differences with mean differences close to zero and standard deviations of 0.18 and 0.26 mg KOH/g, respectively. Statistically, the FTIR methods are a direct match to the ASTM methods, with superior performance in terms of analytical throughput, preparation time, and solvent use. FTIR(AN/BN) analysis is a viable, significant advance for in-service lubricant analysis, providing an economic means of trending samples instead of tedious and expensive conventional ASTM(AN/BN) procedures. PMID:25271046

  11. Influence of boric acid additive size on green lubricant performance.

    PubMed

    Lovell, Michael R; Kabir, M A; Menezes, Pradeep L; Higgs, C Fred

    2010-10-28

    As the industrial community moves towards green manufacturing processes, there is an increased demand for multi-functional, environmentally friendly lubricants with enhanced tribological performance. In the present investigation, green (environmentally benign) lubricant combinations were prepared by homogeneously mixing nano- (20 nm), sub-micrometre- (600 nm average size) and micrometre-scale (4 ?m average size) boric acid powder additives with canola oil in a vortex generator. As a basis for comparison, lubricants of base canola oil and canola oil mixed with MoS(2) powder (ranging from 0.5 to 10 ?m) were also prepared. Friction and wear experiments were carried out on the prepared lubricants using a pin-on-disc apparatus under ambient conditions. Based on the experiments, the nanoscale (20 nm) particle boric acid additive lubricants significantly outperformed all of the other lubricants with respect to frictional and wear performance. In fact, the nanoscale boric acid powder-based lubricants exhibited a wear rate more than an order of magnitude lower than the MoS(2) and larger sized boric acid additive-based lubricants. It was also discovered that the oil mixed with a combination of sub-micrometre- and micrometre-scale boric acid powder additives exhibited better friction and wear performance than the canola oil mixed with sub-micrometre- or micrometre-scale boric acid additives alone. PMID:20855323

  12. Solubility of Carbon Dioxide in Pentaerythritol Hexanoate: Molecular Dynamics Simulation of a Refrigerant-Lubricant Oil System.

    PubMed

    Sugii, Taisuke; Ishii, Eiji; Müller-Plathe, Florian

    2015-09-17

    We have investigated the solubility and the solvation structure between a refrigerant (carbon dioxide, CO2) and a lubricant oil (pentaerythritol hexanoate, PEC6) by molecular dynamics simulations. First, to investigate the solubility, we calculated the vapor-liquid equilibrium pressure. The chemical potential of the liquid phase and the gas phase were calculated, and the equilibrium state was obtained from the crossing point of these chemical potentials. The equilibrium pressures agreed well with experimental data over a wide range of temperatures and mole fractions of CO2. Second, the solvation structure was also investigated on a molecular scale. We found the following characteristics. First, the tails of the lubricant oil are relatively rigid inside the ester groups but flexible beyond. Second, CO2 molecules barely enter the lubricant core as delimited by the ester groups. Third, the double-bonded oxygen atoms of the ester groups are good sorption sites for CO2. Fourth, only a few CO2 molecules are attached to more than one carbonyl oxygen simultaneously. Finally, there is also significant unspecific sorption of CO2 in the alkane tail region. These results indicate that increasing the size of the rigid lubricant core would probably decrease the solubility, whereas increasing the number of polar groups would increase it. PMID:26287696

  13. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    PubMed

    Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%. PMID:25679531

  14. Lubrication of Nitinol 60

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; DellaCorte, Christopher; Glennon, Glenn

    2010-01-01

    The mechanical properties of Nitinol 60, 60 wt% Ni, 40 wt% Ti (55 at.% Ni, 45 at.% Ti) are sufficiently attractive to warrant its consideration as a lubricated triboelement. Triboelements are always run lubricated. The ability to lubricate Nitinol 60 by the oils usually used on spacecraft mechanisms--Pennzane 2001A, Krytox 143AC and Castrol 815Z--was experimentally determined. These oils were run in the boundary lubrication regime for Nitinol 60 balls running against Nitinol 60 counterfaces in the vacuum spiral orbit tribometer. Test results consisting of the coefficient of friction versus time (friction traces) and relative degradation rates of the oils are presented. Contrary to the inability to successfully lubricate other metal alloys with high titanium content, it was found that Nitinol 60 is able to be lubricated by these oils. Overall, the results presented here indicate that Nitinol 60 is a credible candidate material for bearing applications.

  15. Determination of insolubles in diesel lubricating oil by FIA-visible spectrometry.

    PubMed

    Knochen, M; Sixto, A; Pignalosa, G; Domenech, S; Garrigues, S; de la Guardia, M

    2004-12-15

    Insolubles determination is one of the parameters usually recommended to evaluate the residual life of oil because their presence at elevated levels in diesel lubricating oil changes the viscosity, prematurely clogs filters and is one of the major factors in causing abrasive engine wear. The proposed method employs visible spectrophotometric detection in association with flow injection analysis. The results obtained by this method were compared with the ones obtained by Fourier transform infrared spectrometry (FT-IR) since this is the most employed method for insolubles determination. The proposed method presented a linear response from 0 to 3% (w/w) of insolubles in pentane (ASTM D-893). The sampling frequency was about 30 samplesh(-1), with a relative standard deviation (n=5) of 2.4% or better. Accuracy was evaluated analysing 98 real samples and the results obtained with the FIA-spectrophotometric method were plotted against those obtained by the FT-IR method by means of linear regression. Slope and intercept of the straight line obtained were compared with the theoretical values of 1 and 0 by means of the joint-confidence ellipse F-test. At the confidence level of 95% no evidence of a difference was found between both methods. PMID:18969754

  16. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  17. Novel acyloxy derivatives of branched mono- and polyol esters of sal fat: multiviscosity grade lubricant base stocks.

    PubMed

    Kamalakar, Kotte; Sai Manoj, Gorantla N V T; Prasad, Rachapudi B N; Karuna, Mallampalli S L

    2014-12-10

    Sal fat, a nontraditional seed oil, was chemically modified to obtain base stocks with a wide range of specifications that can replace mineral oil base stocks. Sal fatty acids were enriched to 72.6% unsaturation using urea adduct method and reacted with branched mono alcohol, 2-ethylhexanol (2-EtH), and polyols namely neopentyl glycol (NPG) and trimethylolpropane (TMP) to obtain corresponding esters. The esters were hydroxylated and then acylated using propionic, butyric, and hexanoic anhydrides to obtain corresponding acylated derivatives. The acylated TMP esters exhibited very high viscosities (427.35-471.93 cSt at 40 °C) similar to those of BS 150 mineral oil base stock range, ISO VG 460, while the acylated NPG esters (268.81-318.84 cSt at 40 °C) and 2-EtH esters viscosities (20.94-24.44 cSt at 40 °C) exhibited viscosities in the range of ISO VG 320 and 22 respectively with good viscosity indices. Acylated NPG esters were found suitable for high temperature and acylated 2-ethylhexyl esters for low viscosity grade industrial applications. It was observed that the thermo-oxidative stabilities of all acylated products were found better compared to other vegetable oil based base stocks. Overall, all the sal fat based lubricant base stocks are promising candidates with a wide range of properties, which can replace most of the mineral oil base stocks with appropriate formulations. PMID:25416127

  18. Lubrication Handbook For The Space Industry

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, Ernest L.

    1988-01-01

    A 458-page handbook covers many of solid and liquid lubricants used in space industry. Also useful reference in industrial and military applications of lubricants. Part A of handbook compilation of data on chemical and physical properties of over 250 solid lubricants, including bonded solid lubricants, dispersions, and composites. Part B covers over 250 liquid lubricants, greases, oils, compounds, and fluids.

  19. Boundary friction in liquid and dry film biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm-based raw materials such as fats, seed oils, starches, proteins, and gums can be subjected to various degrees of processing to make them suitable for use in lubrication. The resulting biobased ingredients are then blended with each other and/or with synthetic ingredients to formulate lubricant...

  20. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  1. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  2. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  3. Optofluidic multi-measurement system for the online monitoring of lubricant oil

    NASA Astrophysics Data System (ADS)

    Verschooten, Tom; Callewaert, Manly; Ciaccheri, Leonardo; Vervaeke, Michael; Van Erps, Jürgen; De Malsche, Wim; Grazia Mignani, Anna; Thienpont, Hugo; Ottevaere, Heidi

    2016-01-01

    We show a detection system that simultaneously allows absorbance (ABS), laser-induced fluorescence (LIF) and scattering detection excited by two different laser sources at 405?nm and 450?nm. The heart of the system consists of a mass manufacturable polymer optofluidic chip. The chip is mounted in an optical detection assembly that aligns the chip to the rest of the system, seals the chip from leakage, fixes the position and connects the channels to the rest of the fluidic system. The fluidics exhibit a reduced susceptibility to perturbations caused by air bubbles, this is accomplished by making use of a serpentine channel layout. For coumarin 480, detection limits of 100?nM and 10 pM are observed for ABS and LIF respectively. An effective detection range of 4000 down to 1 nephelometric turbidity units is shown for the detection of scattered light. The viscous behaviour of the sample is analysed by a secondary FFT processing step of which the result is further processed by multivariate data analysis. This allows the identification of samples and prediction of their quality parameters. We apply this system for the monitoring of lubricant oil, demonstrating its ability to compete with spectroscopic detection techniques. The low-cost approach and multi-measurement architecture shown in this paper pave the way for miniaturized on-line monitoring of liquids in an industrial environment.

  4. Contribution of lubricating oil to particulate matter emissions from light-duty gasoline vehicles in Kansas City.

    PubMed

    Sonntag, Darrell B; Bailey, Chad R; Fulper, Carl R; Baldauf, Richard W

    2012-04-01

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline using aerosol-phase chemical markers measured in PM samples obtained from 99 vehicles tested on the California Unified Driving Cycle. The oil contribution to fleet-weighted PM emission rates is estimated to be 25% of PM emission rates. Oil contributes primarily to the organic fraction of PM, with no detectable contribution to elemental carbon emissions. Vehicles are analyzed according to pre-1991 and 1991-2004 groups due to differences in properties of the fitting species between newer and older vehicles, and to account for the sampling design of the study. Pre-1991 vehicles contribute 13.5% of the KC vehicle population, 70% of oil-derived PM for the entire fleet, and 33% of the fuel-derived PM. The uncertainty of the contributions is calculated from a survey analysis resampling method, with 95% confidence intervals for the oil-derived PM fraction ranging from 13% to 37%. The PM is not completely apportioned to the gasoline and oil due to several contributing factors, including varied chemical composition of PM among vehicles, metal emissions, and PM measurement artifacts. Additional uncertainties include potential sorption of polycyclic aromatic hydrocarbons into the oil, contributions of semivolatile organic compounds from the oil to the PM measurements, and representing the in-use fleet with a limited number of vehicles. PMID:22369074

  5. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  6. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  7. Dynamics of solid dispersions in oil during the lubrication of point of contacts. Part 2: Molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Sliney, H. E.

    1981-01-01

    A Hertzian contact consisting of a steel ball in contact with a glass disk is lubricated with MoS2 dispersions and observed by optical microscopy at various slide/roll conditions. In general the behavior of MoS2 and graphite are similar. That is, the solids tend to enter the contact and form a film on the contacting surfaces whenever a rolling component of motion is used, but solid particles seldom enter the contact during pure sliding. The MoS2 has more pronounced plastic flow behavior than graphite. However, the polished steel ball is more readily scratched by MoS2 than by graphite. Under the conditions of these studies, lower friction and wear are observed with pure oil rather than with the dispersions. However under other conditions (such as different contact geometry or rougher surfaces) the solid lubricant dispersions might be beneficial.

  8. Oil film thickness measurement and analysis for an angular contact ball bearing operating in parched elastohydrodynamic lubrication. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Hunter, Scott D.

    1986-01-01

    The capacitance method is used to estimate the oil film thickness in the Hertzian contact zone of an angular contact ball bearing operating in parched elastohydrodynamic lubrication. The parched elastohydrodynamic lubrication regime is characterized by a transient film thickness and basic speed ratio (ball spin rate over combined race speed) and the formation of a friction polymer. The experimental apparatus tests 40 mm 108 H ball bearings in the counter rotating race mode at loads of 200 and 300 lb, a film parameter of 1.6 and nominal inner and outer race speeds of 38 and 26 rps, respectively. Experimental results are presented for the capacitance, thickness, and conductance of the oil film as functions of elapsed time and for the basic speed ratios as a function of elapsed time, load, and amount of lubricant applied to the test bearing. Results indicate that a friction polymer formed from the initial lubricant has an effect on the capacitance and basic speed ratio measurements.

  9. Into Mesh Lubrication of Spur Gears with Arbitrary Offset Oil Jet. 2: for Jet Velocities Equal to or Greater than Great Velocity

    NASA Technical Reports Server (NTRS)

    Akin, L. S.; Townsend, D. P.

    1982-01-01

    An analysis was conducted for into mesh oil jet lubrication with an arbitrary offset and inclination angle from the pitch point for the case where the oil jet velocity is equal to or greater than gear pitch line velocity. Equations were developed for minimum and maximum oil jet impingement depth. The analysis also included the minimum oil jet velocity required to impinge on the gear or pinion and the optimum oil jet velocity required to obtain the best lubrication condition of maximum impingement depth and gear cooling. It was shown that the optimum oil jet velocity for best lubrication and cooling is when the oil jet velocity equals the gear pitch line velocity. When the oil jet velocity is slightly greater than the pitch line velocity the loaded side of the driven gear and the unloaded side of the pinion receive the best lubrication and cooling with slightly less impingement depth. As the jet velocity becomes much greater than the pitch line velocity the impingement depth is considerably reduced and may completely miss the pinion.

  10. Heat- and Radiation-Resistant Lubricants for Metals

    NASA Technical Reports Server (NTRS)

    Lawton, E. A.

    1986-01-01

    Protective and lubricating coatings formed in situ. Orthophthalonitrile reacts with metal-surface asperities at high frictional temperatures to form lubricating films of metal phthalocyanine. Compounds also formed with hot metal fragments torn from asperities. Bearing surfaces better protected from scoring, and fragments rendered less harmful to base fluids. Lubricants useful as additives to oils and greases in gears, transmissions, motors, and other machines where rubbing loads between metal parts may be severe. Because of their low volatility and lack of requirement for air or moisture, lubricants also useful in vacuums.

  11. Oil-based paint poisoning

    MedlinePLUS

    Paint - oil based - poisoning ... Hydrocarbons are the primary poisonous ingredient in oil paints. Some oil paints have heavy metals such as lead, mercury, cobalt, and barium added as pigment. These heavy metals can cause additional ...

  12. Experimental and analytical determination of gear tooth temperatures with oil jet lubrication

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1982-01-01

    Gear tooth average and instantaneous surface temperatures were measured with a fast response infrared radiometric microscope, while operating at arious speeds, loads and oil jet pressures. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at all test conditions, increasing the speed at constant load and increasing the load at constant speed causes a significant rise in average and peak surface temperatures of gear teeth. A gear tooth temperature analysis was conducted by a finite element method combined with a calculated heat input and oil jet impingment depth with estimated heat transfer coefficients based on the experimental data. It is concluded that oil jet pressures required for adequate cooling at high load and speed conditions must be high enough to get full penetration depth of the teeth.

  13. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

  14. Into Mesh Lubrication of Spur Gears with Arbitrary Offset Oil Jet. I: For Jet Velocity Less than or Equal to Gear Velocity

    NASA Technical Reports Server (NTRS)

    Akin, L. S.; Townsend, D. P.

    1982-01-01

    An analysis was conducted for into mesh oil jet lubrication with an arbitrary offset and inclination angle from the pitch point for the case where the oil jet velocity is equal to or less than pitch line velocity. The analysis includes the case for the oil jet offset from the pitch point in the direction of the pinion and where the oil jet is inclined to intersect the common pitch point. Equations were developed for the minimum oil jet velocity required to impinge on the pinion or gear and the optimum oil jet velocity to obtain the maximum impingement depth.

  15. Into mesh lubrication of spur gears with arbitrary offset oil jet. I - For jet velocity less than or equal to gear velocity

    NASA Technical Reports Server (NTRS)

    Akin, L. S.; Townsend, D. P.

    1983-01-01

    An analysis was conducted for into mesh oil jet lubrication with an arbitrary offset and inclination angle from the pitch point for the case where the oil jet velocity is equal to or less than pitch line velocity. The analysis includes the case for the oil jet offset from the pitch point in the direction of the pinion and where the oil jet is inclined to intersect the common pitch point. Equations were developed for the minimum oil jet velocity required to impinge on the pinion or gear and the optimum oil jet velocity to obtain the maximum impingement depth.

  16. New nanotechnology solid lubricants for superior dry lubrication

    NASA Astrophysics Data System (ADS)

    Fleischer, N.; Genut, M.; Rapoport, L.; Tenne, R.

    2003-09-01

    This paper presents a new commercial breakthrough for advanced anti-friction materials based on unique inorganic nanospheres that can be used as dry lubricants, coatings, and for impregnating parts. The new material reduces friction and wear significantly better than other layered solid lubricants and is especially useful in self-lubricating, maintenance-free, and oil-free applications of the types encountered in aerospace markets. The material, NanoLubTM, is the world's first commercial lubricant based on spherical inorganic nanoparticles. NanoLub's particles have a unique structure of hollow nested spheres of about only 0.1 micron in diameter. This paper presents tribological evaluations of tungsten and molybdenum disulphide NanoLubTM. The material reduces friction and wear under conditions that are especially relevant for space such as ultra-high vacuum, UV radiation, and high loads. Suitable applications could include rotors, bearings, robots, planetary rovers, space vehicles and transport devices. Extensive testing by a number of independent groups clearly shows that these special nanoparticles improve considerably the tribological properties of different contact pairs in comparison to other solid lubricants.

  17. Mineral oils

    NASA Technical Reports Server (NTRS)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  18. Effect of five lubricants on life of AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1985-01-01

    Spur-gear surface fatigue tests were conducted with five lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The lot of gears was divided into five groups, each of which was tested with a different lubricant. The test lubricants are classified as either a synthetic hydrocarbon, mineral oil, or ester-based lubricant. All five lubricants have imilar viscosity and pressure-viscosity coefficients. A pentaerythritol base stock without sufficient antiwear additives produced a surface fatigue life pproximately 22 percent that of the same base stock with chlorine and phosphorus type additives. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears tested. No statistical difference in the 10-percent surface fatigue life was produced with four of the five lubricants.

  19. Advanced airbreathing engine lubricants study with a tetraester fluid and a synthetic paraffinic oil at 492 K (425 F)

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Bamberger, E. N.

    1972-01-01

    Groups of 120-mm-bore angular-contact ball bearings made from AISI M-50 steel were fatigue tested with a tetraester and a synthetic paraffinic oil at a bearing temperature of 492 K (425 F) in an air environment. Bearing life exceeded AFBMA-predicted (catalog) life by factors in excess of 4 and 10 for the tetraester and synthetic paraffinic fluids, respectively. The final viscosities after 500 hours of operation were 14 and 6 times the initial values, respectively. During the same time period, when the test oil is replaced at a rate approximating the replenishment rate in actual commerical engine usage, no significant increase in lubricant viscosity with time was observed.

  20. Process for the preparation of superalkalinized metallic detergent-dispersants for lubricating oils and products obtained therefrom

    SciTech Connect

    Demoures, B.; Le Coent, J.L.

    1983-11-01

    A process is provided for preparing detergent-dispersant compositions of high alkalinity by: 1. Carbonation, at a temperature of between about 100/sup 0/ C. and 250/sup 0/ C., with carbon dioxide of a reaction medium comprising a sulfurized alkylphenate of an alkaline-earth metal having a TBN of between about 1 and 170, an alkaline-earth metal alkylbenzene sulfonate having a molecular weight of more than about 300 and a TBN of less than or equal to about 150, an alkaline-earth metal compound, an alkylene glycol, and a dilution oil; 2. Removal of the alkylene glycol; and 3. Separation of the superalkalinized metallic detergent-dispersant thus obtained. The metallic detergent-dispersant compositions obtained are useful in improving the detergent-dispersant power of lubricating oils.

  1. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1998-01-01

    This paper describes the friction and wear performance of PS304, a modified chrome oxide based coating, for foil gas bearings. PS304 contains 60 wt% NiCr binder, 20 wt% Cr2O3 hardener, and 10 wt% each Ag, and BaF2/CaF2 lubricants. For evaluation, the coating is plasma spray deposited onto test journals which are slid against a superalloy partial arc foil bearing. The test load was 10 KPa (1.5 psi) and the bearings were run under start/stop cyclic conditions. The data show good wear performance of the bearing, especially at temperatures above 25 deg. C. Bearing friction was moderate (micron approx. or equal to 0.4) over the entire temperature range. Based upon the results obtained, the PS304 coating has promise for high temperature, oil-free turbomachinery applications.

  2. Interdisciplinary Approach to Liquid Lubricant Technology

    NASA Technical Reports Server (NTRS)

    Ku, P. M. (editor)

    1973-01-01

    The proceedings of a conference of liquid lubricant technology are presented. The subjects discussed are: (1) requirements and functions of liquid lubricants, (2) mineral oils, (3) greases, (4) theory of rheology, (5) mechanics and thermodynamics in lubrication, (6) environmental capability of liquid lubricants, and (7) wear corrosion and erosion.

  3. Indium-Tin-Oxide coated optical fibers for temperature-viscosity sensing applications in synthetic lubricant oils

    NASA Astrophysics Data System (ADS)

    Sanchez, P.; Mendizabal, D.; R. Zamarreño, C.; Arregui, F. J.; Matias, I. R.

    2015-09-01

    In this work, is presented the fabrication and characterization of optical fiber refractometer based on lossy mode resonances (LMR). Indium-Tin-Oxide (ITO) thin films deposited on optical fibers are used as the LMR supporting coatings. These resonances shift to the red as a function of the external refractive index. The refractometer has been used to characterize temperature variations related to the viscosity of synthetic industrial gear lubricant.

  4. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  5. Overview of liquid lubricants for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.

  6. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  7. A Novel Methodology for the Synthesis of Acyloxy Castor Polyol Esters: Low Pour Point Lubricant Base Stocks.

    PubMed

    Kamalakar, Kotte; Mahesh, Goli; Prasad, Rachapudi B N; Karuna, Mallampalli S L

    2015-12-01

    Castor oil, a non-edible oil containing hydroxyl fatty acid, ricinoleic acid (89.3 %) was chemically modified employing a two step procedure. The first step involved acylation (C2-C6 alkanoic anhydrides) of -OH functionality employing a green catalyst, Kieselguhr-G and solvent free medium. The catalyst after reaction was filtered and reused several times without loss in activity. The second step is esterification of acylated castor fatty acids with branched mono alcohol, 2-ethylhexanol and polyols namely neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) to obtain 16 novel base stocks. The base stocks when evaluated for different lubricant properties have shown very low pour points (-30 to -45°C) and broad viscosity ranges 20.27 cSt to 370.73 cSt, higher viscosity indices (144-171), good thermal and oxidative stabilities, and high weld load capacities suitable for multi-range industrial applications such as hydraulic fluids, metal working fluids, gear oil, forging and aviation applications. The study revealed that acylated branched mono- and polyol esters rich in monounsaturation is desirable for developing low pour point base stocks. PMID:26582154

  8. PEEK (Polyether-ether-ketone) Based Cervical Total Disc Arthroplasty: Contact Stress and Lubrication Analysis.

    PubMed

    Xin, H; Shepherd, Det; Dearn, Kd

    2012-01-01

    This paper presents a theoretical analysis of the maximum contact stress and the lubrication regimes for PEEK (Polyether-ether-ketone) based self-mating cervical total disc arthroplasty. The NuNec(®) cervical disc arthroplasty system was chosen as the study object, which was then analytically modelled as a ball on socket joint. A non-adhesion Hertzian contact model and elastohydrodynamic lubrication theory were used to predict the maximum contact stress and the minimum film thickness, respectively. The peak contact stress and the minimum film thickness between the bearing surfaces were then determined, as the radial clearance or lubricant was varied. The obtained results show that under 150 N loading, the peak contact stress was in the range 5.9 - 32.1 MPa, well below the yield and fatigue strength of PEEK; the calculated minimum film thickness ranged from 0 to 0.042 µm and the corresponding lambda ratio range was from 0 to 0.052. This indicates that the PEEK based cervical disc arthroplasty will operate under a boundary lubrication regime, within the natural angular velocity range of the cervical spine. PMID:22670159

  9. Estolides: A bioderived synthetic base oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of the estolide technology developed by NCAUR scientists is given in this book chapter. The goal was to synthesize a class of new lubricant compounds that would have better physical properties than normal vegetable oil. Estolides were developed, characterized, and tested in wide range of...

  10. Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil

    SciTech Connect

    Evans, Ryan D.; Doll, Gary L.; Hager, C H; Howe, Jane Y

    2010-01-01

    Tribochemical wear may occur at the interface between a surface and a lubricant as a result of chemical and mechanical interactions in a tribological contact. Understanding the onset of tribochemical wear damage on component surfaces requires the use of high resolution techniques such as transmission electron microscopy (TEM). In this study, two steel types, case carburized AISI 3310 and through-hardened AISI 52100, were wear tested using a ball-on-disk rolling/sliding contact tribometer in fully formulated commercial wind turbine gearbox oil under boundary lubrication conditions with 10% slip. With the exception of steel type, all other test conditions were held constant. Conventional tribofilm analysis in the wear tracks was performed using X-ray photoelectron spectroscopy, and no significant composition differences were detected in the tribofilms for the different steel disk types. However, TEM analysis revealed significant tribochemical wear differences between the two steel types at multiple length scales, from the near-surface material microstructure (depth < 500 nm) to the tribofilm nanostructure. Nanometer-scale interfacial cracking and surface particle detachment was observed for the AISI 52100 case, whereas the tribofilm/substrate interface was abrupt and undamaged for the AISI 3310 case. Differences in tribofilm structure, including the location and orientation of MoS{sub 2} single sheet inclusions, were observed as a function of steel type as well. It is suggested that the tribochemical wear modes observed in these experiments may be origins of macroscopic surface-initiated damage such as micropitting in bearings and gears.

  11. Mechanics of a gaseous film barrier to lubricant wetting of elastohydrodynamically lubricated conjunctions

    NASA Technical Reports Server (NTRS)

    Prahl, J. M.; Hamrock, B. J.

    1985-01-01

    Two analytical models, one based on simple hydrodynamic lubrication and the other on soft elastohydrodynamic lubrication, are presented and compared to delineate the dominant physical parameters that govern the mechanics of a gaseous film between a small droplet of lubricant and the outer race of a ball bearing. Both models are based on the balance of gravity forces, air drag forces, and air film lubrication forces and incorporate a drag coefficient C sub D and a lubrication coefficient C sub L to be determined from experiment. The soft elastohydrodynamic lubrication (EHL) model considers the effects of droplet deformation and solid-surface geometry; the simpler hydrodynamic lubrication (HL) model assumes that the droplet remains essentially spherical. The droplet's angular position depended primarily on the ratio of gas inertia to droplet gravity forces and on the gas Reynolds number and weakly on the ratio of droplet gravity forces to surface tension forces (Bond number) and geometric ratios for the soft EHL. An experimental configuration in which an oil droplet is supported by an air film on the rotating outer race of a ball bearing within a pressure-controlled chamber produced measurements of droplet angular position as a function of outer-race velocity droplet size and type, and chamber pressure.

  12. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most industrial lubricants are derived from non-renewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of our environment as a result of the very slow degradation of the spent materials. Native seed oils, on the other hand, are renewa...

  13. Capabilities and limitations of a cone penetrometer deployed fiber optic laser induced fluorescence (LIF) petroleum, oil, and lubricant (POL) sensor

    SciTech Connect

    McGinnis, W.C.; Davey, M.; Wu, K.D.; Lieberman, S.H.

    1995-12-31

    Data from a new field screening technique using a fiber optic laser induced fluorescence (LIF) petroleum, oil, and lubricant (POL) chemical sensor deployed from a truck mounted cone penetrometer is presented. The system provides real-time, in situ measurement of petroleum hydrocarbon contamination and soil type to a maximum depth of 150 feet with a vertical spacing of two inches. Each depth measurement records the fluorescent spectrum from 350 to 720 nm. Spectral signatures can be used to track a single or multiple contaminants across a site. Real-time measurement permits on site interpretation and plume chasing. Field data from SCAPS (Navy) field operations is presented to show how the system can be used for rapid three-dimensional delineation of a POL contaminant plume.

  14. BIODIESEL AND THE ISSUE OF DIESEL FUEL LUBRICITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advent of (ultra-)low sulfur diesel fuels based on petroleum has caused changes in the properties of these fuels. One of the major changes is the loss of previously inherent lubricity. Biodiesel, a diesel fuel derived from vegetable oils, animal fats, or used frying oils, is miscible with petr...

  15. One-pot synthesis of chemically modified vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils are promising candidates as substitutes for petroleum-base oils in lubricants applications, such as total loss lubrication, military applications and outdoor activities. Although vegetable oils have some advantages, they also have poor oxidation and low temperature stability. One of...

  16. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-print Network

    Plumley, Michael J

    2005-01-01

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  17. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...engine, aircraft, or auxiliary power unit (APU) operating limitations. It also provides...fuels and oils as engine, aircraft, or APU operating limitations. These established...fuels and oils as engine, aircraft, or APU operating limitations in lieu of the...

  18. MICROWAVE IRRADIATION EFFECTS ON THE STRUCTURE, VISCOSITY, THERMAL PROPERTIES AND LUBRICITY OF SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil (SBO) was heat-bodied (HB) or microwave-irradiated (MI). HB oil with Gardner bubble viscosity in the B-C range was studied as its viscosity was similar to oil MI at 200-250 deg C for 20-60 min. SBO that was HB had increased viscosity and MI further increased viscosity compared with unt...

  19. Chemicals derived from pyrolysis bio-oils as antioxidants in fuels and lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Softwood and hardwood lignins and hardwood were pyrolyzed to produce bio-oils to produce lignin-derived bio-oils of which phenols were the major component. These bio-oils were extracted with alkali to yield a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. When tested...

  20. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication

    NASA Astrophysics Data System (ADS)

    Ren, Jiaqi; Zhao, Jinsheng; Dong, Zeguang; Liu, Pinkuan

    2015-08-01

    The atomic force microscopy (AFM) based direct nanoscratching has been thoroughly studied but the mechanism of nanoscratching with water-layer lubrication is yet to be well understood. In current study, three-dimensional molecular dynamics (MD) simulations are conducted to evaluate the effects of the water-layer lubrication on the AFM-based nanoscratching process on monocrystalline copper. Comparisons of workpiece deformation, scratching forces, and friction coefficients are made between the water-lubricated and dry scratching under various thickness of water layer, scratching depth and scratching velocity. Simulation results reveal that the water layer has positive impact on the surface quality and significant influence on the scratching forces (normal forces and tangential forces). The friction coefficients of the tip in water-lubricated nanoscratching are significantly bigger than those in the dry process. Our simulation results shed lights on a promising AFM-based nanofabrication method, which can assist to get nanoscale surface morphologies with higher quality than traditional approaches.

  1. In-situ, On-demand Lubrication System for Space Mechanisms

    NASA Technical Reports Server (NTRS)

    Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark J.; Predmore, Roamer E.

    2002-01-01

    Many of today's spacecraft have long mission lifetimes. Whatever the lubrication method selected, the initial lubricant charge is required to last the entire mission. Fluid lubricant losses are mainly due to evaporation, tribo-degradation, and oil creep out of the tribological regions. In the past, several techniques were developed to maintain the appropriate amount of oil in the system. They were based on oil reservoirs (cartridges, impregnated porous parts), barrier films, and labyrinth seals. Nevertheless, all these systems have had limited success or have not established a proven record for space missions. The system reported here provides to the ball-race contact fresh lubricant in-situ and on demand. The lubricant is stored in a porous cartridge attached to the inner or the outer ring of a ball bearing. The oil is released by heating the cartridge to eject oil, taking advantage of the greater thermal expansion of the oil compared to the porous network. The heating may be activated by torque increases that signal the depletion of oil in the contact. The low surface tension of the oil compared to the ball bearing material is utilized and the close proximity of the cartridge to the moving balls allows the lubricant to reach the ball-race contacts. This oil resupply system can be used to avoid a mechanism failure or reduce torque to an acceptable level and extend the life of the component.

  2. Synthesis of new high performance lubricants and solid lubricants

    SciTech Connect

    Lagow, R.J.

    1993-04-01

    Synthesis and testing was begun on a number of new classes of lubricants: perfluoropolyethers (branching effects), perfluoromethylene oxide ethers, chlorine-substituted fluorocarbon polyethers, fluorine-containing branched ether lubricants, glycerine- based perfluoropolyesters, perfluoro epoxy ether chains, etc.

  3. Estolides: biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides were originally developed as a cost effective derivative from vegetable oil sources to overcome the problems associated with standard vegetable oils as lubricants. Classic estolides are formed by the formation of a carbocation at the site of unsaturation that can undergo nucleophilic addi...

  4. Experimental study on transmission rattle noise behaviour with particular regard to lubricating oil

    NASA Astrophysics Data System (ADS)

    Baumann, Axel; Bertsche, Bernd

    2015-04-01

    This article presents an experimental study on the gear rattle noise phenomenon of automotive transmissions. A single-stage gear transmission has been designed and applied to a gear rattle noise test bench. The gear transmission allows the variation of several parameters affecting the rattle noise level, e.g. tooth backlash variation. High resolution incremental encoders on the transmission input and output shaft, as well as on the idler gear, enable the acquisition of the angular relative motion of the gear pair within the range of tooth backlash. The angular relative motion evaluates the sequence of meshing gear teeth along the path of contact under rattling conditions. The analysis of the angular relative motion indicates that gear tooth impacts during rattling lead to elastic deformation of meshing gear pairs. High contact forces during impacts cause Hertzian flattening of gear tooth flanks and rising fluid viscosity with pressure in the contact zone (elastohydrodynamic lubrication regime). The elastic deformation of meshing gear pairs lead to deviations from the angular velocity ratio between two gears of a gear pair and thus from the Law of Gearing. The main source for the gear rattle noise level is the additional presence of meshing impacts at the beginning of each gear pair meshing. Gear rattle noise reduction can be achieved by avoiding meshing impacts, e.g. by using low traction gear lubricants.

  5. Deposit information in gasoline engines: Part I. Base oil effects in sequence VE deposits

    SciTech Connect

    Supp, J.A.; Kornbrekke, R.E.; Roby, S.H.

    1994-12-01

    Base oil effects on sludge and deposit formation in the ASTM Sequence VE were studied with blends made using the same American Petroleum Institute (API) SG performance package and the same viscosity improver. One percent of the dispersant was removed from the formulation to accentuate base oil effects. Nine tests on six different 100N base oils were run. Sequence VE test lubricant drain analyses show differences in insolubles, viscosity, and particle size with base stock variations. The most significant base oil factors which can be used to predict Sequence VE sludge ratings are the base oil saturate content, polar content, and volatility. While all oils studied passed the Sequence VE API SG engine varnish and piston varnish requirements, higher levels of poly-nuclear aromatics (PNA`s) are shown to increase the severity of these ratings.

  6. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

  7. VEGETABLE OIL-BASED BASE STOCKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Vegetable Oil-Based Base Stocks" is a study of a series of vegetable oils selected for potential use as base fluids for industrial and automotive applications. Their thermal-oxidative stabilities and low-temperature properties are evaluated. Effects of diluents and additives on selected vegetable...

  8. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... adding fuels and oils to type certificates as engine, aircraft, or auxiliary power unit (APU) operating... adding fuels and oils as engine, aircraft, or APU operating limitations. These established methods..., aircraft, or APU operating limitations in lieu of the methods described in the AC. However, the EPD...

  9. Determination of lubricant selection based on elastohydrodynamic film thickness and traction measurement

    NASA Technical Reports Server (NTRS)

    Dow, T. A.; Kannel, J. W.

    1979-01-01

    The project was conducted to aid in the development of an elastohydrodynamic specification for military lubricants. Experiments were conducted with a rolling disk apparatus designed to simulate a bearing or gear type contact. Measurements included lubricant film thickness, lubricant breakdown and traction for a range of loads, speeds, temperatures, and surface roughnesses. Several lubricants were used in the investigations including a traction fluid, two synthetic paraffinic lubricants and several lubricants conforming to MIL-L 7808 and 23699 specifications. Recommendations regarding an EHD specification are included.

  10. Lubrication handbook for the space industry. Part A: Solid lubricants. Part B: Liquid lubricants

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, E. L.

    1985-01-01

    This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel can conveniently locate data needed for their work. This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property of data of more than 250 solid lubricants, bonded solid lubricants, dispersions, and composites. Part B is a compilation of chemical and physical porperty data of more then 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

  11. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of chlorine in the lubricant and that emissions did not change in response to a much greater step change in the total chlorine entering the combustion chamber due to a change in the level of chlorine in the fuel. Emissions when the engine was configured with a diesel oxidation catalyst showed a consistent pattern that appears to be unique in the experience of the authors. PMID:17254630

  12. Thermo-chemical extraction of fuel oil from waste lubricating grease.

    PubMed

    Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul

    2013-06-01

    This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. PMID:23490355

  13. Study on a Miniature Mixed-gases Joule-Thomson Cooler Driven by an Oil-lubricated Mini-compressor for 120 K Temperature Ranges

    NASA Astrophysics Data System (ADS)

    Gong, M. Q.; Wu, J. F.; Yan, B.; Zou, X.; Zhuang, X. R.; Hu, Q. G.

    In this paper, a miniature J-T cooler using multicomponent mixtures was developed and tested, in which an oil-lubricated mini-compressor was used. Experimental tests on the performance of the miniature J-T cooler were carried out with two kinds of recuperative heat exchangers. One is a shell-and-tube heat exchanger, and the other is a plate-fin type recuperative heat exchanger with whereas a micro-channel configuration fabricated by the wire-electrode cutting method. The former one gave a no-load minimum temperature of 140 K, while the later one showsbetter performance. No-load minimum temperature of 110 K and about 4 W cooling capacity at 118 K were achieved with the plate-fin micro J-T cooler. Such miniature J-T coolers driven by oil-lubricated mini-compressors show good prospects in many applications.

  14. Geophysical investigation using resistivity and GPR methods: a case study of a lubricant oil waste disposal area in the city of Ribeirão Preto, São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Lago, Alexandre Lisboa; Elis, Vagner Roberto; Borges, Welitom Rodrigues; Penner, Giovanni Chaves

    2009-07-01

    Geophysics has been shown to be effective in identifying areas contaminated by waste disposal, contributing to the greater efficiency of soundings programs and the installation of monitoring wells. In the study area, four trenches were constructed with a total volume of about 25,000 m3. They were almost totally filled with re-refined lubricating oil waste for approximately 25 years. No protection liners were used in the bottoms and laterals of the disposal trenches. The purpose of this work is to evaluate the potential of the resistivity and ground penetrating radar (GPR) methods in characterizing the contamination of this lubricant oil waste disposal area in Ribeirão Preto, SP, situated on the geological domain of the basalt spills of the Serra Geral Formation and the sandstones of the Botucatu Formation. Geophysical results were shown in 2D profiles. The geophysical methods used enabled the identification of geophysical anomalies, which characterized the contamination produced by the trenches filled with lubricant oil waste. Conductive anomalies (smaller than 185 ?m) immediately below the trenches suggest the action of bacteria in the hydrocarbons, as has been observed in several sites contaminated by hydrocarbons in previously reported cases in the literature. It was also possible to define the geometry of the trenches, as evidenced by the GPR method. Direct sampling (chemical analysis of the soil and the water in the monitoring well) confirmed the contamination. In the soil analysis, low concentrations of several polycyclic aromatic hydrocarbons (PAHs) were found, mainly naphthalene and phenanthrene. In the water samples, an analysis verified contamination of the groundwater by lead (Pb). The geophysical methods used in the investigation provided an excellent tool for environmental characterization in this study of a lubricant oil waste disposal area, and could be applied in the study of similar areas.

  15. Environmental liability and life-cycle management of used lubricating oils.

    PubMed

    Guerin, Turlough F

    2008-12-30

    Used oil handling, as a business, requires an extensive understanding by management that environmental liabilities exist through its supply chain. Findings from a review of the legal requirements of operating a used oil handling business were: understanding the transfer of ownership of used petroleum hydrocarbons is critical to any such business and how this is documented; used oil handlers are responsible for providing training to their staff, including site personnel and any third party waste contractors, and for communicating best practice procedures relating to the management of used petroleum hydrocarbons to all those individuals and organisations involved in business relationships that the used oil handling companies have; used oil handlers should audit the performance of any third party contractors that it engages to conduct work on behalf of its customers. Hypothetical situations of a company planning to enter the used oil handling market are described in relation to petroleum hydrocarbon wastes it handles to illustrate the range of potential liabilities. Companies proposing to establish a used oil handling business should ensure that they provide accurate advice to its employees, its customer's employees and to its third party contractors, all of which may be responsible for handling used petroleum hydrocarbons as part of the service it intends to provide, and that it has a well documented system addressing how environmental issues are managed. PMID:18423855

  16. Study on the applicability of a precise, accurate method for rapid evaluation of engine and lubricant performance. [determination of wear metal in used lubricating oils

    NASA Technical Reports Server (NTRS)

    Kinard, J. T.

    1975-01-01

    The development of a procedure for obtaining data related to wear metal determinations in used lubricants is discussed. The procedure makes it possible to obtain rapid, simultaneous determinations of a number of wear metals at levels of parts per thousand to low parts per billion using a small amount of sample. The electrode assembly and instrumentation used in the process are described. Samples of data obtained from tests conducted under controlled conditions are tabulated.

  17. Lubricant Rheology in Concentrated Contacts

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.

    1984-01-01

    Lubricant behavior in highly stressed situtations shows that a Newtonian model for lubricant rheology is insufficient for explanation of traction behavior. The oil film build up is predicted by using a Newtonian lubricant model except at high slide to roll ratios and at very high loads, where the nonNewtonian behavior starts to be important already outside the Hertzian contact area. Static and dynamic experiments are reported. In static experiments the pressure is applied to the lubricant more than a million times longer than in an EHD contact. Depending on the pressure-temperature history of the experiment the lubricant will become a crystallized or amorphous solid at high pressures. In dynamic experiments, the oil is in an amorphous solid state. Depending on the viscosity, time scale, elasticity of the oil and the bearing surfaces, the oil film pressure, shear strain rate and the type of lubricant, different properties of the oil are important for prediction of shear stresses in the oil. The different proposed models for the lubricant, which describe it to a Newtonian liquid, an elastic liquid, a plastic liquid and an elastic-plastic solid.

  18. Design and prototype of dual loop lubricant system to improve engine fuel economy, emissions, and oil drain interval

    E-print Network

    Plumley, Michael J

    2015-01-01

    Regulations aimed at improving fuel economy and reducing harmful emissions from internal combustion engines place constraints on lubricant formulations necessary for controlling wear and reducing friction. Viscosity reduction ...

  19. Hydrodynamic optimization of trust ring pump and lubricating oil system for large hydroelectric units thrust bearing

    NASA Astrophysics Data System (ADS)

    Lai, X.; Lu, Z.; Zhang, X.; Yang, S.

    2014-03-01

    Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions form thrust bearing and operation conditions of hydro turbine generator unit. Because the oil circulating and cooling system with thrust-ring- pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump, additionally, the head and discharge are varying with the operation conditions of hydro-generator unit and characteristic of the oil circulating and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulating and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization of both the oil circulating and cooling system and thrust-ring-pump is purposed in this paper. Firstly, the head and discharge required at different conditions are decided by 1D flow numerical simulation of the oil circulating and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and discharge from the simulation. Thirdly, the flow passage geometry matching optimization between holes inside the thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulating and cooling system are collaborative hydrodynamic optimized with predicted head- discharge curve and the efficiency-discharge curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown that can effectively improve and guarantee the performance of the oil circulating and cooling system.

  20. Status and New Directions for Solid Lubricant Coatings and Composite Materials

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1984-01-01

    At one time, solid lubricants were used almost entirely in aerospace applications. Today there is a pronounced trend to use them over a much broader range of applications. For example, self-lubricating polymer-based composites have displaced traditional oil-lubricated, metallic composites for many journal bearings and thrust washers in applications as diverse as earth-moving machinery and snow blowers to aircraft applications. For moderate temperatures below 200 C, glass filament-wound epoxy bearings with PTFE lubricating liners are usefl; for temperatures up to 350 C, graphite fiber reinforced polyimide bearing materials are finding applications. Advanced technology engines have severe lubrication and wear problems at temperatures beyond the capabilities of any of these lubricants. Here, self-lubricating ceramics and inorganic composites for use at 1000 C or higher are of interest. However, perhaps the most significant new direction for solid lubricant coatings and self-lubricating composites is their steadily increasing use in dry bearings for large volume, moderate temperature applications. This can be attributed to their simplicity of use (no supporting lubricant system needed), light weight, convenience, and general cost effectiveness.

  1. Succinimide complexes of borated alkyl catechols and lubricating oil compositions containing same

    SciTech Connect

    Liston, T.V.

    1986-12-16

    A composition is described comprising a complex prepared by reacting a borated alkyl catechol and an oil soluble alkyl or alkenyl succinimide wherein the weight percent ratio of the alkyl or alkenyl succinimide to the borated alkyl catechol ranges from 3:1 to 16:1.

  2. KSC lubricant testing program. [lubrication characteristics and corrosion resistance

    NASA Technical Reports Server (NTRS)

    Lockhart, B. J.; Bryan, C. J.

    1973-01-01

    A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.

  3. Mineral Oils: Untreated and Mildly Treated

    Cancer.gov

    The name mineral oil has been used to describe many colorless, odorless liquids. Most often, the term refers to a liquid by-product of the distillation of petroleum to produce gasoline and other petroleum-based products from crude oil. These oils, including lubricant base oils and products derived from them, are used in manufacturing, mining, construction, and other industries.

  4. Diffusion pump oils based on neutral oil

    SciTech Connect

    Artem'eva, V.P.; Gorbacheva, S.G.; Kucheryavaya, N.N.; Orlova, S.N.; Potanina, V.A.

    1983-09-01

    VM-1 and VM-5 mineral oils used as working fluids in high vacuum pumps are obtained by high-vacuum distillation of a pharmaceutical white oil produced in Balkhany lube crude which is in limited supply and therefore must be replaced by a new raw material. An investigation of a napthenic neutral oil containing 90% saturated hydrocarbons demonstrated the feasibility of this oil as a raw material for the production of diffusion oil pumps. The characteristics of the diffusion pump oil VM-8 obtained by this processing scheme are listed. The oil was tested on NVD-015 pumps. The favorable results have made it possible to develop and approve specifications for diffusion pump oils in VM-8 and VM-9.

  5. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOEpatents

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  6. Sporting Good Lubricants

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sun Coast Chemicals was originally contracted by Lockheed Martin Space Operations to formulate a spray lubricant free of environmental drawbacks for the Mobile Launch Platform used to haul the Space Shuttle from the Kennedy Space Center Vehicle Assembly Building to a launch pad. From this work, Sun Coast introduced Train Track Lubricant, Penetrating Spray Lube, and Biodegradable Hydraulic Fluid. Based on the original lubricant work, two more products have also been introduced. First, the X-1R Super Gun Cleaner and Lubricant protects guns from rust and corrosion caused by environmental conditions. Second, the X-1R Tackle Pack, endorsed by both fresh and saltwater guides and certain reel manufacturers, penetrates, cleans, reduces friction, lubricates, and provides extra protection against rust and corrosion.

  7. Full Life Wind Turbine Gearbox Lubricating Fluids

    SciTech Connect

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

  8. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  9. Lubrication handbook for use in the space industry. Part A: Solid lubricants. Part B: Liquid lubricants

    NASA Technical Reports Server (NTRS)

    Campbell, M. E.; Thompson, M. B.

    1972-01-01

    This handbook provides a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel in the space industry can conveniently locate data needed for their work. The handbook is divided into two major parts. Part A is a compilation of chemical and physical property data of more than 250 solid lubricants, bonded solid lubricants, dispersions and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds and fluids. The listed materials cover a broad spectrum, from manufacturing and ground support to hardware applications for missiles and spacecraft.

  10. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    DOE PAGESBeta

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore »this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less

  11. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    SciTech Connect

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.

  12. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  13. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  14. Lubricants in conveyor applications

    SciTech Connect

    Paton, C.G.; Bland, S.B.; Melley, R.E.

    1995-01-01

    This paper looks at four critical lubricants used in the conveyor systems of the northern Albertan oil sand facility. The requirements for the lubricants used in the electric motors and gear boxes of the drive systems, the pulley bearings and the idler bearings are discussed in terms of the application and the environment. A number of developments that have occurred in recent years are presented. Data from the field and from custom designed testing in the laboratory are used to support the role of simulation testing in problem solving in this area of technology. 9 refs., 21 figs.

  15. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  16. Magnetorheology of suspensions based on graphene oxide coated or added carbonyl iron microspheres and sunflower oil

    NASA Astrophysics Data System (ADS)

    Chen, Kaikai; Zhang, Wen Ling; Shan, Lei; Zhang, Xiangjun; Meng, Yonggang; Choi, Hyoung Jin; Tian, Yu

    2014-10-01

    Magnetorheological (MR) fluids based on carbonyl iron (CI) particles coated with graphene oxide (GO) and sunflower oils were studied and compared with MR fluids (MRFs) prepared with CI particles added with GO sheets. Adding GO sheets into CI had a negligible effect on the rheological properties of the MRF. Coating the spheres with GO markedly decreased the shear strength at high shear rates due to the remarkable lubricating function of the GO surface. Different behaviors were observed in the shear thickening phenomenon when the GO surface changed the mechanical interaction between particles. The results demonstrated the importance of the role of interparticle friction for MRF in shear mode and discussed the weak shear thickening phenomenon with fine lubricating coating layers and oils.

  17. FRICTION PROPERTIES OF VEGETABLE OILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils are renewable and environmentally friendly alternative to petroleum-based oils in lubrication and other important application areas. Vegetable oils comprise a mixture of compounds that fall into two broad chemical categories: triesters (or triglycerides) and monoesters. Most vegeta...

  18. The effect of lubricant traction of scuffing

    NASA Astrophysics Data System (ADS)

    Jackson, A.; Webster, M. N.; Enthoven, J. C.

    1994-04-01

    This paper presents the results of a disc machine gear simulation investigating the influence of lubricant traction characteristics and formulation on the load at which scuffing occurs. Scuffing theories in general link the onset of scuffing to the amount of heat generated in the contact and the authors hypothesized that reduced heat generation with low traction lubricants should lead to an increase in scuffing load. The study compared low traction poly alpha olefin (PAO)-based lubricants with mineral oils in basestock, antiwear and EP formulations and at both high (greater than 6) and moderate (approximately 1.2) specific film thickness, lambda. At lambda greater than 6, the benefits of the synthetics over their mineral counterparts ranged from 25 percent to 220 percent and at lambda approximately = 1.2, the benefits were a uniform 40 percent. It was particularly interesting to observe that the antiwear PAO-based oil gave a similar scuff load per unit contact width to an EP mineral gear oil. In addition, it was shown that scuffing load decreased with increasing traction coefficient to the power of approximately -1.85, close to the -2.00 power predicted by the frictional power intensity concept. The agreement with flash temperature theory, with a predicted power of -1.33, was less close.

  19. STARCH-OIL INTERACTION IN DRY FILM LUBRICANTS WITH CHEMICALLY MODIFIED STARCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is one of the most abundant farm-based raw materials. It is a significant component of such high volume commodity crops as corn, potato, rice, wheat, and barley. Because of the large surplus of these crops over demand, there is a great deal of interest in developing new uses for starch-base...

  20. Canola-Based Automotive Oil Research and Development

    SciTech Connect

    Pierce, Ira N.; Kammerman, Steven B.

    2009-12-07

    This research project establishes data on the ability of the bioindustry to provide sufficient production of Canola/rapeseed, functioning as a biolubricant, to replace petroleum-based automotive lubricants at competitive prices. In 2005 total sales for lubricants amounted to 2.5 billion gallons. Research was also conducted to determine the attitudes toward adoption of bioproducts, specifically among industries that are large-scale users of automotive lubricants, including government and private industry users. The green technology industry, or bioindustry, uses a variety of plant- and crop-based resources, known as biomass, to produce energy, fuel and many different bioproducts. Rapeseed is categorized as a lignocellulosic biomass. High erucic acid rapeseed is not intended for human consumption thereby negating the food vs. fuel issue that arose with the increased production of corn as a feedstock for use in ethanol. Key findings show that the oil from Canola/rapeseed provides about twice the yield than soybean oil. These seeds also have significantly higher natural lubricity than petroleum, enabling Canola/rapeseed to function in many different capacities where oxidation issues are critical. It also has the most positive energy balance of all common vegetable oils, making it an excellent potential replacement for petroleum-based fuels as well. As a rotating crop, it enhances farm lands, thereby increasing subsequent yields of barley and wheat, thus increasing profit margins. Petroleum-based bioproducts negatively impact the environment by releasing greenhouse gases, sulfur, heavy metals and other pollutants into the air, ground and water. Replacing these products with bio-alternatives is a significant step toward preserving the country’s natural resources and the environment. Further to this, promoting the growth of the green biotechnology industry will strengthen the nation’s economy, creating jobs in the agriculture, science and engineering sectors, while reducing dependency on unstable foreign oil products. The result of this research benefits the public by proving that Canola/rapeseed is another viable source from which the government, private industry and consumers can choose to reduce their reliance on petroleum products. Research found that our country is not utilizing our capabilities including, land, labor and equipment to its fullest potential. A commercial-scale fully-integrated biorefinery, such as the one outlined in this research project, produces little to no waste and the by-products are also consumable. This model allows for economies of scale that make it possible to produce biolubricants in sufficient quantities and at prices that are competitive with petroleum products. Integrated biorefinery operations and large-scale production levels are necessary to sustain profitability of the entire biorefinery model. It is a practical solution that can be implemented in less than 18 months, and replicated throughout the country. There is ample, viable land available as acreage from the Conservation Reserve Program will soon be increasing as land is being released from this program, meaning that it no longer will be kept fallow while the owners accept subsidies. The 2008 Farm Bill reduced the total number of acres allowed in the CRP program, leaving several million acres of land available over the next few years. All of the necessary technology exists to operate the farming and production of this type of biorefinery project. This is a here and now project that can serve to create jobs in several locations throughout the country. There are experts ready, willing and able to participate, all of whom have vast knowledge in the areas of chemical and oil product manufacturing, farm production, and marketing. Two of the biggest barriers to advancing a commercial-scale biorefinery project are the need for financial support for green technology producers and financial incentives for industrial and private consumers to convert to bio-based products. The U.S. needs closer cooperation between the producers of agricult

  1. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties.

    PubMed

    Gupta, Bhavana; Kumar, N; Panda, Kalpataru; Dash, S; Tyagi, A K

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication. PMID:26725334

  2. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    SciTech Connect

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  3. Lubrication background

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Surface topography, including the various physical methods of measuring surfaces, and the various lubrication regimes (hydrodynamic, elastohydrodynamic, boundary, and mixed) are discussed. The historical development of elastohydrodynamic lubrication is outlined. The major accomplishments in four periods, the pre-1950's, the 1950's, the 1960's, and the 1970's are presented.

  4. Tribological composition optimization of chromium-carbide-based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.

  5. Properties of Canadian re-refined base oils

    SciTech Connect

    Strigner, P.L.

    1980-11-01

    The Fuels and Lubricants Laboratory of NRC (Canada) has been examining for over 10 years, as a service, the properties of base stocks made by Canadian re-refiners. Nineteen samples of acid/clay processed base stocks from six Canadian re-refiners were examined. When well re-refined, the base stocks have excellent properties including a good response to anti-oxidants and a high degree of cleanliness. Since traces of additives and/or polar compounds do remain, the quality of the base stocks is judged to be slightly inferior to that of comparable virgin refined base stocks. Some suggested specification limits for various properties and some indication of batch-to-batch consistency were obtained. Any usage of the limits should be done with caution, e.g., sulfur, bearing in mind the rapidly changing crude oil picture and engine and machine technology leading to oil products of differing compositions. Certainly modifications are in order; it may even be desirable to have grades of base stocks.

  6. New Generation of MoSx Based Solid Lubricant Coatings: Recent Developments and Applications

    SciTech Connect

    Haider, Julfikar; Hashmi, M. S. J.

    2011-01-17

    In recent times, there is a growing interest in applying Molybdenum disulphide (MoS{sub x}) solid lubricant coatings on components to improve the tribological performance (i.e. lower friction coefficient and wear rate). The tribological performance of MoS{sub x} coating is strongly dependent on coating properties and tribological environment. MoS{sub x} coatings are highly successful in certain applications such as in space/vacuum technology, but its effectiveness is questioned in other terrestrial applications such as in cutting tool industry due to its lower hardness and poor oxidation resistance leading to shorter life. In order to circumvent this drawback, the paper identifies that current research is being concentrated on developing MoS{sub x} based coatings using three different approaches: (1) Metal or compound addition in MoS{sub x} coating (2)MoS{sub x} layer on hard coating and (3)MoS{sub x} addition in hard coating matrix. Although the primary objective is same in all three cases, the third approach is considered to be more effective in improving the tribological properties of the coating. Finally, the potential applications of MoS{sub x} based coatings in different industrial sectors have been briefly outlined.

  7. Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils

    E-print Network

    Mandelis, Andreas

    of vegetable oils. The thermal diffusivity of six commercial vegetable oils olive, corn, soybean, canola century as base lubricants, vegetable oils were gradually replaced by mineral oils mainly for economic in environmental issues.2 A vegetable oil is a complex mixture of chemical substances3 with fatty acids among

  8. Lubrication Properties of Ammonium-Based Ionic Liquids Confined between Silica Surfaces Using Resonance Shear Measurements.

    PubMed

    Kamijo, Toshio; Arafune, Hiroyuki; Morinaga, Takashi; Honma, Saika; Sato, Takaya; Hino, Masaya; Mizukami, Masashi; Kurihara, Kazue

    2015-12-15

    To evaluate the friction properties of new lubrication systems, two types of ammonium-based ionic liquids (ILs), N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate ([DEME][BF4]) and N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]), were investigated by resonance shear measurements (RSM) and reciprocating type tribotests between silica (glass) surfaces. RSM revealed that an IL layer of ca. 2 nm in thickness was maintained between the silica surfaces under an applied load of 0.40 mN ? 1.2 mN. The relative intensity of the RMS signal indicated that the friction of the system was lower for [DEME][BF4], 0.12, than that of [DEME][TFSI], 0.18. On the other hand, the friction coefficients ?k obtained from the tribotests of [DEME][BF4] were lower than that of [DEME][TFSI] for sliding velocities in the range of 5.0 × 10(-4) m s(-1) to 3.0 × 10(-2) m s(-1) under applied loads of 196-980 mN. The friction coefficients obtained by the tribotest are discussed with reference to the RSM results. PMID:26602172

  9. Tribological properties of self-lubricating NiAl/Mo-based composites containing AgVO{sub 3} nanowires

    SciTech Connect

    Liu, Eryong; Gao, Yimin; Bai, Yaping; Yi, Gewen; Wang, Wenzhen; Zeng, Zhixiang; Jia, Junhong

    2014-11-15

    Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 °C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over a wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 °C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 °C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 °C, and AgVO{sub 3} and molybdate for 900 °C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: • NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. • AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. • NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. • Phase composition on the worn surface was varied with temperatures. • Self-adjusted action was responsible for the improvement of tribological properties.

  10. Research on Liquid Lubricants for Space Mechanisms

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Shogrin, Bradley A.; Jansen, Mark J.

    1999-01-01

    Four research areas at the NASA Glenn Research Center involving the tribology of space mechanisms are highlighted. These areas include: soluble boundary lubrication additives for perfluoropolyether liquid lubricants, a Pennzane dewetting phenomenon, the effect of ODC-free bearing cleaning processes on bearing lifetimes and the development of a new class of liquid lubricants based on silahydrocarbons.

  11. 7 CFR 2902.47 - Gear lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2011-01-01 2011-01-01 false Gear lubricants. 2902.47 Section 2902.47 Agriculture... Gear lubricants. (a) Definition. Products, such as greases or oils, that are designed to...

  12. 7 CFR 2902.47 - Gear lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2010-01-01 2010-01-01 false Gear lubricants. 2902.47 Section 2902.47 Agriculture... Gear lubricants. (a) Definition. Products, such as greases or oils, that are designed to...

  13. 7 CFR 3201.47 - Gear lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2013-01-01 2013-01-01 false Gear lubricants. 3201.47 Section 3201.47 Agriculture... Items § 3201.47 Gear lubricants. (a) Definition. Products, such as greases or oils, that are designed...

  14. 7 CFR 3201.47 - Gear lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gear lubricants. 3201.47 Section 3201.47 Agriculture... Items § 3201.47 Gear lubricants. (a) Definition. Products, such as greases or oils, that are designed...

  15. 7 CFR 3201.47 - Gear lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2012-01-01 2012-01-01 false Gear lubricants. 3201.47 Section 3201.47 Agriculture... Items § 3201.47 Gear lubricants. (a) Definition. Products, such as greases or oils, that are designed...

  16. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operate. In wet sump engines, this requirement must be met when only one-half of the maximum lubricant... allow installing a means of cooling the lubricant. (c) The crankcase must be vented to the atmosphere to preclude leakage of oil from excessive pressure in the crankcase....

  17. Thermal and Oxidative Stabilities of Liquid Lubricants

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1984-01-01

    The fundamental processes which occur during the thermal and oxidation degradation of hydrocarbons is reviewed. Various classes of liquid lubricants such as mineral oils, esters, polyphenyl ethers, C-ethers, and fluorinated polyethers are emphasized. Techniques to determine thermal and oxidative stabilities of lubricants are discussed. The role of inhibitors and catalysis is examined.

  18. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operate. In wet sump engines, this requirement must be met when only one-half of the maximum lubricant... allow installing a means of cooling the lubricant. (c) The crankcase must be vented to the atmosphere to preclude leakage of oil from excessive pressure in the crankcase....

  19. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operate. In wet sump engines, this requirement must be met when only one-half of the maximum lubricant... allow installing a means of cooling the lubricant. (c) The crankcase must be vented to the atmosphere to preclude leakage of oil from excessive pressure in the crankcase....

  20. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operate. In wet sump engines, this requirement must be met when only one-half of the maximum lubricant... allow installing a means of cooling the lubricant. (c) The crankcase must be vented to the atmosphere to preclude leakage of oil from excessive pressure in the crankcase....

  1. Lubricity studies with biodiesel and related compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, the alkyl esters of vegetable oils or animal fats, possesses excellent lubricity. This feature has rendered biodiesel of special interest for blending with ultra-low sulfur diesel fuels with poor lubricity. However, some minor components, mainly free fatty acids and monoacylglycerols, of ...

  2. VOLATILIZED LUBRICANT EMISSIONS FROM STEEL ROLLING OPERATIONS

    EPA Science Inventory

    The report gives results of a study of the volatilization of lubricants used in steel rolling. Data from nine steel mills were used to: define the volatilized portion of lubricants used in rolling; and prepare total oil, grease, and hydraulic material balances for actual and typi...

  3. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2). PMID:26313584

  4. Synthesis of new high performance lubricants and solid lubricants. Progress report, April 1992--March 1993

    SciTech Connect

    Lagow, R.J.

    1993-04-01

    Synthesis and testing was begun on a number of new classes of lubricants: perfluoropolyethers (branching effects), perfluoromethylene oxide ethers, chlorine-substituted fluorocarbon polyethers, fluorine-containing branched ether lubricants, glycerine- based perfluoropolyesters, perfluoro epoxy ether chains, etc.

  5. Lubricating Properties of Lead-Monoxide-Base Coatings of Various Compositions at Temperatures to 1250 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1959-01-01

    A number of ceramic coatings of different compositions containing lead monoxide (PbO) were studied to determine their relative merits as dry-film lubricants. Lead monoxide is known to be an effective solid lubricant at elevated temperatures, and this oxide was the main component in all compositions studied. Friction and wear properties were determined at temperatures from 750 to 1250 F, at a sliding velocity of 430 feet per minute, and at a normal load of 1 kilogram. In all of the coatings, PbO was the component primarily responsible for the lubricating properties. Oxides other than PbO had an indirect effect on lubrication by influencing such properties as adhesion, hardness, vitrifying or glaze-forming tendency, melting or softening point, and chemical stability of the coatings. Notable among these oxides were magnetite (Fe3O4.), which had generally a beneficial influence on ceramic- to-metal adhesion, and silica (SiO2), which inhibited the oxidation of PbO and enhanced the tendency for glaze formation on the sliding surfaces. Several of the compositions studied provided protection against metal-to-metal adhesive wear, galling, or seizure at test temperatures from 750 to 1250 F. Coating friction coefficients ranged from 0.20 to 0.37 at 75 F but were around 0.08 to 0.20 at temperatures of 1250 F.

  6. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...applications including frozen nuts and bolts, power tools, gears, valves, chains, and cables. (b) Minimum biobased content...lubricating oil products. Under the Resource Conservation and Recovery Act of 1976, section 6002, the U.S. Environmental...

  7. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...applications including frozen nuts and bolts, power tools, gears, valves, chains, and cables. (b) Minimum biobased content...lubricating oil products. Under the Resource Conservation and Recovery Act of 1976, section 6002, the U.S. Environmental...

  8. Solid lubrication design methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.

    1986-01-01

    The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.

  9. Lubrication Flows.

    ERIC Educational Resources Information Center

    Papanastasiou, Tasos C.

    1989-01-01

    Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…

  10. Boron-based Additives in Oil and Grease for Wind Turbine Applications 

    E-print Network

    Kim, Jun-Hyeok

    2013-06-25

    This research investigates the tribological performance of crystalline and amorphous powders of boron as additives in lubricants: grease and mineral oil for potential applications of wind turbine. This research is focused ...

  11. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  12. Tetrasulfide extreme pressure lubricant additives

    SciTech Connect

    Gast, L.E.; Kenney, H.E.; Schwab, A.W.

    1980-08-19

    A novel class of compounds has been prepared comprising the tetrasulfides of /sup 18/C hydrocarbons, /sup 18/C fatty acids, and /sup 18/C fatty and alkyl and triglyceride esters. These tetrasulfides are useful as extreme pressure lubricant additives and show potential as replacements for sulfurized sperm whale oil.

  13. Elastohydrodynamic film thickness formula based on X-ray measurements with a synthetic paraffinic oil

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.

  14. Cost-Cutting Powdered Lubricant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Scientists at NASA's Glenn Research Center developed a high-temperature, solid lubricant coating material that is saving the manufacturing industry millions of dollars. The material came out of 3 decades of tribological research, work studying high-temperature friction, lubrication, and the wearing of interacting surfaces that are in relative motion. It was developed as a shaft coating deposited by thermal spraying to protect foil air bearings used in oil-free turbomachinery, like gas turbines, and is meant to be part of a larger project: an oil-free aircraft engine capable of operating at high temperatures with increased reliability, lowered weight, reduced maintenance requirements, and increased power. This advanced coating, PS300, is a self-lubricating bearing material containing chromium oxide, with additions of a low-temperature start up lubricant (silver) and a high-temperature lubricant, making it remarkably stable at high temperatures, and better suited than previously available materials for high-stress conditions. It improves efficiency, lowers friction, reduces emissions, and has been used by NASA in advanced aeropropulsion engines, refrigeration compressors, turbochargers, and hybrid electrical turbogenerators. PS300 is ideal in any application where lowered weight and reduced maintenance are desired, and high-temperature uses and heavy operating speeds are expected. It has notable uses for the Space Agency, but it has even further-reaching potential for the industrial realm.

  15. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating.

    PubMed

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-01-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440?C stainless steel (SS) ball and a 440?C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants. PMID:26593645

  16. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    PubMed Central

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-01-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440?C stainless steel (SS) ball and a 440?C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants. PMID:26593645

  17. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid.

    PubMed

    Ozbay, Salih; Yuceel, Cigdem; Erbil, H Yildirim

    2015-10-01

    Slippery liquid-infused porous surfaces were developed recently for icephobic surface applications. Perfluorinated liquids, silicone oil, hydrocarbon, and water were used as lubricating liquids to form a continuous layer on a suitable substrate to prevent icing. However, ice accretion performances of these surfaces have not been reported previously depending on the type of the lubricant. In this work, fluorinated aliphatics, polyalphaolefin, silicone oil, and decamethylcyclopenta siloxane were used as hydrophobic lubricants; water, ethylene glycol, formamide, and water-glycerine mixture were used as hydrophilic lubricants to be impregnated by hydrophobic polypropylene and hydrophilic cellulose-based filter paper surfaces; ice accretion, drop freezing delay time, and ice adhesion strength properties of these surfaces were examined; and the results were compared to those of the reference surfaces such as aluminum, copper, polypropylene, and polytetrafluoroethylene. An ice accretion test method was also developed to investigate the increase of the mass of formed ice gravimetrically by spraying supercooled water onto these surfaces at different subzero temperatures ranging between -1 and -5 °C. It was determined that hydrophilic solvents (especially a water-glycerine mixture) that impregnated hydrophilic porous surfaces would be a promising candidate for anti-icing applications at -2 °C and 56-83% relative humidity because ice accretion and ice adhesion strength properties of these surface decreased simultaneously in these conditions. PMID:26375386

  18. Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis

    E-print Network

    Jitesh Barman; Arun Kumar Nagarajan; Krishnacharya Khare

    2015-07-09

    Low voltage electrowetting on dielectrics on substrates with thin layer of lubricating fluid to reduce contact angle hysteresis is reported here. On smooth and homogeneous solid surfaces, it is extremely difficult to reduce contact angle hysteresis (contact angle difference between advancing and receding drop volume cycle) and the electrowetting hysteresis (contact angle difference between advancing and receding voltage cycle) below 10{\\deg}. On the other hand, electrowetting hysteresis on rough surfaces can be relatively large (>30{\\deg}) therefore they are of no use for most of the fluidic devices. In the present report we demonstrate that using a thin layer of dielectric lubricating fluid on top of the solid dielectric surface results in drastic reduction in contact angle hysteresis as well as electrowetting hysteresis (electrowetting equation to the experimental electrowetting data reveal that the dielectric lubricating fluid layer is only responsible for smooth movement of the three phase contact line of the liquid drop and does not affect the effective specific capacitance of the system.

  19. Synthetic metallic dialkydithiocarbamates as antiwear and extreme-pressure additives for lubricating oils: Role of metal on their effectiveness

    SciTech Connect

    Tuli, D.K.; Sarin, R.; Gupta, A.K.

    1995-04-01

    Dialkydithiocarbamates of five metals have been synthesized in pure form by following a simple general method. The alkyl chain in each of these compounds has been kept the same so as to observe the performance variations due to metal ions. The EP properties expressed as load wear index and weld load indicated the highest performance by Bi followed by Pb, Sb, Zn and Mo. The antiwear properties in terms of wear scar diameter, relative anti-wear effectiveness and mean average wear scar diameter show a performance order of Bi > Pb > Sb > Zn > Mo. The large ionic radius metals (Bi, Pb & Sb) had the best overall load-carrying performance and their effectiveness increased substantially when the additive concentration was more than 0.004 gm atom/Kg. The results suggest that Bi has good potential to replace toxic Pb and Sb from existing lubrication systems. 18 refs., 7 refs., 1 tab.

  20. Investigation of slippery behaviour of lubricating fluid coated smooth hydrophilic surfaces

    E-print Network

    Reeta Pant; Pritam Kumar Roy; Arun Kumar Nagarajan; Krishnacharya Khare

    2015-08-04

    In the recent years many research groups have studied slippery properties on lubricating fluid infused rough surfaces using hydrophobic substrates. These surfaces show excellent slippery behaviour for water and other liquids. Here we demonstrate a simple method to fabricate stable slippery surfaces based on silicone oil coated hydrophilic samples. At room temperature, as prepared samples exhibit non-slippery behaviour due to sinking of water drops inside silicone oil layer because of inherently hydrophilic silicon substrate. Subsequent annealing at higher temperatures provides covalent bonding of silicone molecules at silicon surface making the surface hydrophobic which was confirmed by lubricant wash tests. So the silicone oil coated annealed samples show excellent water repellency, very low contact angle hysteresis and very good slippery behavior. But these surfaces show poor oil stability against drops flow due to cloaking of the oil around water drops which can be prevented by using drops of larger volume or continuous flow of water.

  1. Tethered Lubricants

    SciTech Connect

    Archer, Lynden

    2010-09-15

    We have performed extensive experimental and theoretical studies of interfacial friction, relaxation dynamics, and thermodynamics of polymer chains tethered to points, planes, and particles. A key result from our tribology studies using lateral force microscopy (LFM) measurements of polydisperse brushes of linear and branched chains densely grafted to planar substrates is that there are exceedingly low friction coefficients for these systems. Specific project achievements include: (1) Synthesis of three-tiered lubricant films containing controlled amounts of free and pendent PDMS chains, and investigated the effect of their molecular weight and volume fraction on interfacial friction. (2.) Detailed studies of a family of hairy particles termed nanoscale organic hybrid materials (NOHMs) and demonstration of their use as lubricants.

  2. Liquid lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Khonsari, Michael M.

    1992-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  3. Characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial lubricants are derived from non-renewable petroleum-based resources that can cause pollution due to poor degradation. Seed oils, however, are both renewable and readily biodegradable, but have lower thermal stability and shorter shelf-life. This drawback can be overcome and yet retain the...

  4. Castor Oil-Based Biodegradable Polyesters.

    PubMed

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ?90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible. PMID:26301922

  5. Vegetable oil-based new materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils are renewable natural materials and can serve as environmentally friendly alternatives to petroleum-based products. For several years, we have explored the chemistry of vegetable oils and carried out derivatization reactions in order to generate new compounds and polymers. In this p...

  6. 7 CFR 3201.86 - Pneumatic equipment lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... found in the Comprehensive Procurement Guideline, 40 CFR 247.17. ... with EPA-designated re-refined lubricating oil products and which product should be afforded the... designated product category can compete with similar re-refined lubricating oil products with...

  7. 7 CFR 3201.86 - Pneumatic equipment lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... found in the Comprehensive Procurement Guideline, 40 CFR 247.17. ... with EPA-designated re-refined lubricating oil products and which product should be afforded the... designated product category can compete with similar re-refined lubricating oil products with...

  8. Lubrication fluids from branched fatty acid methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have invented a new method for the synthesis of lubrication fluids using natural vegetable oils. Ordinary vegetable oils are good lubricants, but in their native form, they lack the stability necessary for many applications. Materials made using this new technology display significantly increas...

  9. Biobased oil structure on amphiphilic and tribological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased oils are those derived from farm-based renewable raw materials. Most are vegetable oils (such as soybean, canola, corn, etc.) or chemical modifications of vegetable oils. They have a number of interesting structural features that impact their amphiphilic and lubrication properties. The basi...

  10. Compressor lubrication and noise reduction system

    SciTech Connect

    Bayyouk, J.A.; Waser, M.P.

    1988-06-14

    An oil lubrication and noise suppression system is described comprising: an oil sump: a crankshaft rotatable about an axis and defining a centrifugal oil pump: an oil pickup tube extending into the oil sump and secured to the crankshaft coaxial with the axis and rotatable with the crankshaft about the axis as a unit; and an impeller axially asymmetrically mounted on the pickup tube within the oil sump whereby upon rotation of the crankshaft, the oil pickup tube and the impeller as a unit causes the production of froth and the pumping of oil while preventing the formation of a stable vortex.

  11. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics

    NASA Astrophysics Data System (ADS)

    Singhal, Shrawan; Meissl, Mario J.; Bonnecaze, Roger T.; Sreenivasan, S. V.

    2013-09-01

    Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

  12. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application

    NASA Astrophysics Data System (ADS)

    Yang, Shengsheng; Qiu, Ri; Song, Hongqing; Wang, Peng; Shi, Zhiqiang; Wang, Yanfang

    2015-02-01

    Corrosion and fouling have been two major enemies for materials immersed in seawater. Fluid including gas and liquid as coating for marine corrosion protection has attracted much attention, since it can also exert antifouling capability in seawater environment. Combining gas and solid phases, superhydrophobic surface is promising to protect the underlying metal from corrosion. However, the intrinsically short sustainability in underwater environment has hindered its practical application, so that its corrosion protection ability is only temporary. Originated from liquid and solid phases, slippery liquid-infused porous surface (SLIPS) has spurred wide interest due to its prominent performance in different fields. However, the exploration of corrosion protection efficiency from SLIPS remains rare. In this research, SLIPS is constructed onto steel surface via a facile two-step protocol. First, based on a dissolution-deposition strategy, iron tetradecanoate is formed by an electrochemical route. After that, fluid lubricant is infused onto the deposit, whose rough surface acts as the reservoir to entrap the fluid to form a static liquid coating. Compared to the bare and hydrophobic deposit covering low alloy steel, the SLIPS composed perfluorinated lubricant and iron tetradecanoate endows good corrosion protection property.

  13. The effect of environmental conditions on the persistence of common lubricants on skin for cases of sexual assault investigation.

    PubMed

    Tonkin, Megan; Yeap, Li Foong; Bartle, Emma K; Reeder, Anthony

    2013-01-01

    The potential for lubricant trace evidence to be used as associative evidence is often overlooked in forensic investigations. Published studies in this area have focused on the identification of analytical techniques suitable for the detection of this evidence type. However, detection of trace lubricant is also dependent on the length of time it persists on skin and mucosal surfaces. The objective of this study was to investigate the effect of environmental conditions on the persistence of oil- and glycerol-based lubricants on skin surfaces. Lubricated skin samples exposed to three different test environments were swabbed at regular intervals over a 24-h period. Compounds of interest were extracted from the swabs and analyzed using gas chromatography-mass spectrometry (GC-MS). The effect of glycerol derivatization prior to GC-MS analysis was also investigated. In general, oil-based lubricants persisted longer than glycerol-based. Persistence on skin was greatest in lower temperature conditions away from direct sunlight exposure. The results of this investigation are relevant in the context of sexual assault investigations given the possible detection of lubricant on the skin of the external genitalia. PMID:23181597

  14. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  15. Synthesis of new high performance lubricants and solid lubricants

    SciTech Connect

    Lagow, Richard J.

    1993-04-08

    In our second year of funding we began the testing phase of a number of new classes of lubricants. Three different testing collaborations have already begun and a fourth one is In the works with Dr. Stephen Hsu of the National Institute of Standards and Technology. Dr. Hsu also plans to test some of the same materials for us that Shell Development is studying. With Dr. Bill Jones of NASA, we are studying the effects of branching an high temperature lubricant properties in perfluoropolyethers, Initially Bill Jones is comparing the lubrication and physical properties of perfluorotetraglyme and the following two spherical perfluoropolyethers, Note that one contains a fluorocarbon chain and the other one contains a fluorocarbon ether chain. The synthesis of these was reported in the last progress report. With Professor Patricia Thiel of Iowa State University, we are working on studies of perfluoromethylene oxide ethers and have prepared a series of four of these polyethers to study in collaboration with her research group. These perfluoromethylene oxide ethers have the best low temperature properties of any known lubricants. Thiel's group is studying their interactions with metals under extreme conditions. Thirdly, we have also begun an Interaction with W. August Birke of Shell Development Company in Houston for whom we have already prepared samples of the chlorine-substituted fluorocarbon polyether lubricants whose structures appear on page 54 of our research proposal. Each of these four structures is thought to have potential as lubricant additives to motor oils. We also have underway syntheses of other fluorine-containing branched ether lubricants. These new materials which are also promising as antifriction additives for motor oils appear ahead of the perfluoro additives as Appendix I to the progress report. Additionally for Birke and Shell Development we have at their request prepared the novel compound perfluoro salicylic acid. This synthesis was suggested by the Shell staff who thought that esters of perfluoro salicylic acid might be an excellent antifriction additive for motor oil fuels. One of the best additives currently used in motor oils is the hydrocarbon ester of salicylic acid.

  16. Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions

    E-print Network

    Tracey, Ian P

    2015-01-01

    Numerical and experimental studies were performed on an internal combustion engine power cylinder wall's lubricating oil film in order to assess the possibility of tailoring engine lubricants to specific engine configurations ...

  17. Comparing the Lubricity of Biofuels Obtained from Pyrolysis and Alcoholysis of Soybean Oil and their Blends with Petroleum Diesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diesel-like fuel was synthesized by a pyrolysis method using only an edible soybean oil as starting material (PD). Some physical properties of the material were studied, neat, and in blends with both high sulfur (HSD) and low sulfur (LSD) diesel fuels, and compared with blends of biodiesel (BD) w...

  18. Lubrication of space systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1994-01-01

    NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.

  19. VEGETABLE OIL-BASED SUNSCREENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an environmentally friendly method for making ultraviolet (UV) absorbing lipids by enzymatically esterifying vegetable oil with ferulic acid. Ferulic acid is a compound of the cinnamon family that is found in oat, rice, and corn bran, and occurs naturally in our food supply. The ...

  20. Composition optimization of self-lubricating chromium carbide-based composite coatings for use to 760 deg C

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Sliney, H. E.

    1986-01-01

    This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.

  1. Composition optimization of self-lubricating chromium-carbide-based composite coatings for use to 760 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Chris; Sliney, Harold E.

    1987-01-01

    This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.

  2. Improved boundary lubrication with formulated C-ethers

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    A comparison of five recently developed C-ether-formulated fluids with an advanced formulated MIL-L-27502 candidate ester is described. Steady state wear and friction measurements were made with a sliding pin on disk friction apparatus. Conditions included disk temperatures up to 260 C, dry air test atmosphere, 1 kilogram load, 50 rpm disk speed, and test times to 130 minutes. Based on wear rates and coefficients of friction, three of the C-ether formulations as well as the C-ether base fluid gave better boundary lubrication than the ester fluid under all test conditions. The susceptibility of C-ethers to selective additive treatment (phosphinic esters or acids and other antiwear additives) was demonstrated when two of the formulations gave somewhat improved lubrication over the base fluid. The increased operating potential for this fluid was shown in relationship to bulk oil temperature limits for MIL-L-23699 and MIL-L-27502 type esters.

  3. Physical and chemical properties of refrigeration lubricants

    SciTech Connect

    Sunami, Motoshi

    1999-07-01

    The physical and chemical properties of refrigeration lubricants are discussed. Although much attention has been focused on the performance of candidate lubricants for use with hydrofluorocarbons (HFCs) in order to obtain satisfactory lubrication performance in compressors, the properties of the lubricants themselves have not been well discussed. In this paper, the properties of refrigeration lube base stocks and of lube-refrigerant mixtures are described, specifically the viscosity, density, and refrigerant solubility, the change in viscosity and density due to solution with HFCs, and the insulation properties of the base stocks and the refrigerant mixture.

  4. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  5. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  6. Unique gear design provides self-lubrication

    NASA Technical Reports Server (NTRS)

    Winiarski, F. J.

    1965-01-01

    Composite gear configuration provides a reliable automatic means for replenishing gear mechanism lubricants that dissipate in the harsh environment of space. The center or hub section of the gear consists of a porous, oil impregnated material, and the outer or toothed section has radially drilled passages to cause the oil to gradually flow to the gear teeth surface.

  7. Full-scale transmission testing to evaluate advanced lubricants

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Decker, Harry J.; Shimski, John T.

    1992-01-01

    Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500 hp helicopter transmission test stand. The testing was part of a lubrication program. The objectives are to develop and show a separate lubricant for gearboxes with improved performance in life and load carrying capacity. The goal was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 based reference oil and then to run identical tests with improved lubricants and show improved performance. The tests were directed at parts that failed due to marginal lubrication from Navy field experience. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hrs of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.

  8. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  9. Advances in bio-lubricant development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-lubricants are those based on natural sources such as those harvested from farms. There is a great deal of interest in bio-lubricants because of their potential to provide a number of environmental, health, safety, and economic benefits over petroleum-based products. It is anticipated that wid...

  10. Enhanced oil recovery projects data base

    SciTech Connect

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  11. Estimation of refractive index and density of lubricants under high pressure by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Fujishiro, I.; Kawakami, H.

    1994-07-01

    Employing a diamond-anvil cell, Brillouin scattering spectra of 90° and 180° angles for synthetic lubricants (paraffinic and naphthenic oils) were measured and sound velocity, density, and refractive index under high pressure were obtained. The density obtained from the thermodynamic relation was compared with that from Lorentz-Lorentz's formula. The density was also compared with Dowson's density-pressure equation of lubricants, and density-pressure characteristics of the paraffinic oil and naphthenic oil were described considering the molecular structure for solidified lubricants. The effect of such physical properties of lubricants on the elastohydrodynamic lubrication of ball bearings, gears and traction drives was considered.

  12. High performance solid and liquid lubricants: An industrial guide

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, Ernest L.

    1987-01-01

    This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel can conveniently locate data needed for their work. This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property of data of more than 250 solid lubricants, bonded solid lubricants, dispersions, and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

  13. Anti-wear additive derived from soybean oil and boron utilized in a gear oil formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of lubricant additives based on boron and epoxidized soybean oil are presented. These additives are made from a simple patent pending method involving a ring opening reaction and addition of the borate. A pair of different additives were tested in soybean oil, polyalpha olefin basestoc...

  14. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines

    SciTech Connect

    Wiczynski, T.A.; Marolewski, T.A.

    1993-03-01

    Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

  15. Steady State Performance Characteristics of Micropolar Lubricated Hydrodynamic Journal Bearings with Flexible Liner

    NASA Astrophysics Data System (ADS)

    Bansal, Pikesh; Chattopadhyay, Ajit Kumar; Agrawal, Vishnu Prakash

    2015-11-01

    The aim of the present study is to theoretically determine the steady state characteristics of hydrodynamic oil journal bearings considering the effect of deformation of liner and with micropolar lubrication. Modified Reynolds equation based on micropolar lubrication theory is solved using finite difference method to obtain steady state film pressures. Minimum film thickness is calculated taking into consideration the deformation of the liner. Parametric study has been conducted and steady state characteristics for journal bearing with elasticity of bearing liner are plotted for various values of eccentricity ratio, deformation factor, characteristic length and coupling number.

  16. Migration of mineral hydrocarbons into foods. 6. Press lubricants used in food and beverage cans.

    PubMed

    Jickells, S M; Nichol, J; Castle, L

    1994-01-01

    Unused food and beverage cans were supplied by manufacturers together with two typical samples of press lubricants used to facilitate stamping of can ends. The lubricants were based on mineral hydrocarbon fractions. The cans were of aluminium two-piece construction (two sizes) and tin-plate steel three-piece construction (two sizes) and of four representative types. Gas chromatographic analysis was used to distinguish the two press lubricants from one another by their n-alkane profiles. Analysis of solvent extracts of the cans indicated that one of the two press lubricants had been used in the manufacture of the three-piece cans and the other lubricant for the two-piece cans. Residual levels of hydrocarbons were between 0.05 and 1.1 mg per can. Based on the capacity of the cans and assuming all the mineral hydrocarbon transferred to the contents, maximum levels in foods and beverages could be between 0.1 and 4.4 mg/kg. A limited number of retail products were also analysed. For the 35 samples covering 18 retail brands of canned foods and beverages, press lubricants were considered to be present in 50% of the products at levels ranging from 0.05 to 1.0 mg per can, equivalent to 0.1 to 3.6 mg/kg of food. Additionally mineral oil of unknown origin was detected in 10 of the retail products at levels of 0.1 to 4.7 mg/kg. Analysis of a sparkling apple juice packed in a glass bottle showed mineral oil at 0.3 mg/kg compared with 0.7 mg/kg for the same canned product, indicating that although mineral oils may be used in can manufacture they may also be derived from other parts of the food processing chain. PMID:7835472

  17. Analysis of Lubricant Jet Flow

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1986-01-01

    Computer program, IMPOUT 2, developed using newly-established "limit formulas" to prevent lubricant non-impingement on pinion. Program used to analyze impingement depth on gear teeth for oil jet located at out-of-mesh position with arbitrary offset and inclination angles and with arbitrary addendum and center-distance modification. IMPOUT 2 program written in ANSI FORTRAN IV for use on CDC 750.

  18. Polymer Grafted Nanoparticle-based Oil Dispersants

    NASA Astrophysics Data System (ADS)

    Kim, Daehak; Krishnamoorti, Ramanan

    2015-03-01

    Particle-based oil dispersants mainly composed of inorganic nanoparticles such as silica nanoparticles are considered as environmentally friendly oil dispersants due to their biocompatibility and relatively low toxicity. The oil-water interfacial tension is reduced when nanoparticles segregate to the oil-water interface and this segregation is improved by grafting interfacially active polymer brushes. In this study, surfactant-like amphiphilic block copolymers were grafted from silica nanoparticles using an atom transfer radical polymerization (ATRP) method in order to increase their interfacial activity. We have studied the interfacial activity of such hybrid nanoparticles using pendant drop interfacial tension measurements, and their structure using small angle X-ray scattering. Amphiphilic copolymer grafted nanoparticles significantly reduced oil-water interfacial tension compared to the interfacial tension reduction induced by homopolymer grafted nanoparticles or the corresponding free ungrafted copolymer. Moreover, hard and stable oil-water emulsions were formed by applying the block copolymer grafted nanoparticles due to the formation of interparticle network structures, which were observed by cryo-scanning electron microscopy (SEM) and small angle neutron scattering (SANS)

  19. Preparation and properties evaluation of biolubricants derived from canola oil and canola biodiesel.

    PubMed

    Sharma, Rajesh V; Somidi, Asish K R; Dalai, Ajay K

    2015-04-01

    This study demonstrates the evaluation and comparison of the lubricity properties of the biolubricants prepared from the feed stocks such as canola oil and canola biodiesel. Biolubricant from canola biodiesel has a low cloud and pour point properties, better friction and antiwear properties, low phase transition temperature, is less viscous, and has the potential to substitute petroleum-based automotive lubricants. Biolubricant from canola oil has high thermal stability and is more viscous and more effective at higher temperature conditions. This study elucidates that both the biolubricants are attractive, renewable, and ecofriendly substitutes for the petroleum-based lubricants. PMID:25773747

  20. Rapid analysis of lubricants by atmospheric solid analysis probe-ion mobility mass spectrometry.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Afonso, Carlos; Racaud, Amandine

    2014-08-01

    Formulated lubricants are complex mixtures composed of base oil(s) and additives with various functions (detergents, corrosion inhibiter, antioxidant, viscosity modifiers, etc.). Because of the aliphatic nature of base oil and the chemical diversity of additives, the characterization of lubricant is currently a long and complex process. The comprehensive analysis of lubricant samples involves several techniques such as nuclear magnetic resonance, mass spectrometry, chromatography and infrared spectroscopy. The coupling of atmospheric solid analysis probe (ASAP) with ion mobility-mass spectrometry (IM-MS) has been shown to be an efficient tool for the characterization of complex mixture containing vaporizable polar to non-polar compounds. This approach affords the coupling of a direct ionization technique that does not require sample preparation, with a bi-dimensional separation method with high peak capacity. In this work, we show that ASAP-IM-MS is a suitable method for rapid and direct characterization of lubricant samples. Indeed, base oil and additives yielded, by ASAP, ions series which could be separated by IM-MS. Molecular additives such as Zn-dithiocarbamate, phosphite, thiophosphate and Alkyl diphenylamine were ionized as molecular ions [M](+•) or protonated molecules [M?+?H](+), depending of their polarity. In some cases, fragment ions were observed, confirming the additive identification. In addition, high molecular weight polymeric additives such as poly(alkyl methacrylate) (PAM) were pyrolized in the ASAP source leading to characteristic fragment ions. ASAP-IM-MS is shown to be a powerful tool for studying complex mixtures, allowing the first comprehensive analysis of lubricants in just a few minutes. PMID:25044898

  1. Modified Cobalt Drills With Oil Passages

    NASA Technical Reports Server (NTRS)

    Hutchison, E.; Richardson, D.

    1986-01-01

    Oil forced through drill shanks to lubricate cutting edges. Drill bits cooled and lubricated by oil forced through drill shanks and out holes adjacent to bits. This cooling technique increases drillbit life and allows increased drill feed rates.

  2. Progress in environmentally friendly lubricant development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmentally friendly lubricants comprise ingredients derived from natural raw materials such as those harvested from farms, forests, etc. There is a great deal of interest in such lubricants because of their potential economic, environmental, health, and safety benefits over petroleum-based prod...

  3. Study on Effect of Hydroxyl Group on Lubrication Properties of Palm Based Trimethylolpropane Esters: Development of Synthesis Method

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Anita; Yunus, Robiah; Luqman Chuah, A.; Fakhru`L-Razi, A.

    Some concerns have been raised regarding the oxidative stability of vegetable oil-base fluids. Thus, wide ranges of palm-based trimethylolpropane esters, which contain different percentages of partial esters, were synthesized. The palm-based TMP were esterified from Palm Oil Methyl Esters (POME) with trimethylolpropane [2-ethyl-2-(hydroxymethyl)-1,3-propanediol;TMP] and sodium methoxide (CH3ONa) as catalyst. Quantification of methyl esters, mono, di- and tri-TMP esters were performed using a gas chromatography (GC), with a high temperature capillary column (SGE HT5), operated at a temperature gradient of 6°C min-1 starting from 80 to 340°C. The influence of operating variables (temperature, pressure, molar ratio of palm methyl esters to TMP and catalyst amount) on diesters formation was studied and analyzed. Palm oil TMP ester containing 10-30% partial esters (monoesters and diesters) was successfully synthesized.

  4. High temperature solid lubricants: When and where to use them

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1973-01-01

    The state of the art of solid lubrication for moderate to extremely high temperature lubrication (to 1600 F) is reviewed. Lubricating characteristics, stability in various environments, and relevant machine design considerations are discussed. Lubricating materials discussed include the layer lattice compounds: MoS2, WS2, graphite and graphite fluoride, the high temperature polyimide polymer, and calcium fluoride based coating and composites. The scope of the information includes results from wear testers, ball bearing, and journal bearings.

  5. SAE fuels and lubricants standards manual. 1995 Edition

    SciTech Connect

    1995-12-31

    This manual serves as a single-source of all SAE fuels and lubricants Standards, Recommended Practices, and Information Reports. In addition to including these documents, HS-23 also contains recent SAE technical papers that discuss the Oil Labeling Assessment Program (OLAP). A comprehensive bibliography of fuels and lubricants technical papers published by SAE is also included.

  6. A review of liquid lubricant thermal/oxidative degradation

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    The fundamental processes occurring during the thermal and oxidative degradation of hydrocarbons are reviewed. Particular emphasis is given to various classes of liquid lubricants such as mineral oils, esters, polyphenyl ethers, C-ethers, and fluorinated polyethers. Experimental techniques for determining thermal and oxidative stabilities of lubricants are discussed. The role of inhibitors and catalysis is also covered.

  7. Dry lubricant films for aluminum forming.

    SciTech Connect

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  8. Wormgear geometry adopted for implementing hydrostatic lubrication and formulation of the lubrication problem

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Yuan, Qin

    1995-01-01

    The geometrical parameters for a wormgear intended to be used as the transmission in advanced helicopters are finalized. The resulting contact pattern of the meshing tooth surfaces is suitable for the implementation of hydrostatic lubrication Fluid film lubrication of the contact is formulated considering external pressurization as well as hydrodynamic wedge and squeeze actions. The lubrication analysis is aimed at obtaining the oil supply pressure needed to separate the worm and gear surfaces by a prescribed minimum film thickness. The procedure of solving the mathematical problem is outlined.

  9. Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.

    2013-05-01

    In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.

  10. Composition optimization of chromium carbide based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1987-01-01

    A test program to determine the optimum composition of chromium carbide based solid lubricant coatings for compliant gas bearings is described. The friction and wear properties of the coatings are evaluated using a foil gas bearing test apparatus. The various coatings were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized nickel-chromium alloy foils. The test bearings were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. The bearings were tested for 9000 start/stop cycles or until the specimen wear reached a predetermined failure level. In general, the addition of silver and eutectic to the chromium carbide base stock significantly reduced foil wear and increased journal coating wear. The optimum coating composition, PS212 (70 wt% metal bonded Cr3C2, 15 wt% Ag, 15% BaF2/CaF2 eutectic), reduced foil wear by a factor of two and displayed coating wear well within acceptable limits. The load capacity of the bearing using the plasma-sprayed coating prior to and after a run-in period was ascertained and compared to polished Inconel 718 specimens.

  11. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Cermak, Steven C; Gordon, Sherald H; Vermillion, Karl

    2011-05-11

    Most industrial lubricants are derived from nonrenewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of the Earth's environment as a result of the slow degradation of the spent materials. Native seed oils, on the other hand, are renewable and are also biodegradable in the environment, but these oils often suffer a drawback in having lower thermal stability and a shorter shelf life because of the intrinsic -C?C- unsaturation in their structures. This drawback can be overcome, yet the inherent biodegradative property retained, by appropriate derivatization of the oil. Pursuant to this, this study investigated derivatized polyhydroxy milkweed oil to assess its suitability as lubricant. The milkweed plant is a member of the Asclepiadaceae, a family with many genera including the common milkweeds, Asclepias syriaca L., Asclepias speciosa L., Asclepias tuberosa L., etc. The seeds of these species contain mainly C-18 triglycerides that are highly unsaturated, 92%. The olefinic character of this oil has been chemically modified by generating polyhydroxy triglycerides (HMWO) that show high viscosity and excellent moisturizing characteristics. In this work, HMWO have been chemically modified by esterifying their hydroxyl groups with acyl groups of various chain lengths (C2-C5). The results of investigation into the effect of the acyl derivatives' chemical structure on kinematic and dynamic viscosity, oxidation stability, cold-flow (pour point, cloud point) properties, coefficient of friction, wear, and elastohydrodynamic film thickness are discussed. PMID:21428293

  12. HFRR investigation of biobased and petroleum based oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased oils come in a wide range of chemical structures as do petroleum based oils. In addition, a distinct structural difference exists between these two broad categories of oils. Previous work has shown that, in spite of the structural differences, these two categories of oils display similar pr...

  13. Manufacturing vegetable oil based biodiesel: An engineering management perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...

  14. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle... of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in...

  15. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as...

  16. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle... of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in...

  17. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as...

  18. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle... of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in...

  19. Resin additive improves performance of high-temperature hydrocarbon lubricants

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Loomis, W. R.

    1971-01-01

    Paraffinic resins, in high temperature applications, improve strength of thin lubricant film in Hertzian contacts even though they do not increase bulk oil viscosity. Use of resin circumvents corrosivity and high volatility problems inherent with many chemical additives.

  20. Polyamine Triglycerides: Synthesis and Study of Their Potential in Lubrication, Neutralization, and Sequestration.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Murray, Rex E

    2015-07-22

    Renewable resources have evoked a new awakening in both scientific and industrial circles in the past decade. Vegetable oil is one category of renewables that is amenable as a source of new industrial products. Because the source feedstock, seeds, are environmentally friendly, the derivatized products from these at the end of their lifetime could also be benign when designed appropriately. Bioethanol and biodiesel are examples of biobased industrial products currently in the market place and have become resources for uplifting the rural economy. Biolubricants also are playing a more prominent role because they have become closely competitive with petroleum-based lubricants. These products are renewable because the crops from which the feedstuff for the biofuels and biolubricants are produced are grown annually in contrast to nonrenewable mineral sources. Added to their renewability is the inherent biodegradability of their end-use products after their useful lifetime. In a recent study of the lubricity characteristics of peracylated polyhydroxy milkweed oil, the derivatives were found to exhibit good oxidative stability as well as excellent antiwear properties. To further explore an expansion in the properties of such materials in lubrication and other applications, in this study the polyhydroxy (OH) moieties of derivatized milkweed triglycerides were replaced with -NHR groupings in the oil. In this process novel polyketo triglyceride intermediates leading to polyamine derivatives of the vegetable oil have been synthesized. The polyamine triglyceride markedly improved the stability of the parent oil to oxidative stress. It has also attenuated the extreme viscosity of the starting polyhydroxy oil to a more useful product that could be amenable for use as a lubricating agent, for example, hydraulic fluid. Both the polyketone and polyimine intermediates of the polyamine have chelating properties. The intermediates and the polyamine were characterized spectroscopically, tribologically, and rheologically for their intrinsic properties. PMID:26154265

  1. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A; Scown, Corinne D; Toste, F Dean; Bell, Alexis T

    2015-06-23

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%. PMID:26056307

  2. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    PubMed Central

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-01-01

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%. PMID:26056307

  3. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  4. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE PAGESBeta

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore »for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  5. Lubricant Effects on Efficiency of a Helicopter Transmission

    NASA Technical Reports Server (NTRS)

    Mitchell, A. M.; Coy, J. J.

    1982-01-01

    Eleven different lubricants were used in efficiency tests conducted on the OH-58A helicopter main transmission using the NASA Lewis Research Center's 500 hp torque regenerative helicopter transmission test stand. Tests were run at oil-in temperatures of 355 K and 372 K. The efficiency was calculated from a heat balance on the water running through an oil to water heat exchanger which the transmission was heavily insulated. Results show an efficiency range from 98.3% to 98.8% which is a 50% variation relative to the losses associated with the maximum efficiency measured. For a given lubricant, the efficiency increased as temperature increased and viscosity decreased. There were two exceptions which could not be explained. Between lubricants, efficiency was not correlated with viscosity. There were relatively large variations in efficiency with the different lubricants whose viscosity generally fell in the 5 to 7 centistoke range. The lubricants had no significant effect on the vibration signature of the transmission.

  6. Lubricant rheology applied to elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Winer, W. O.; Sanborn, D. M.

    1977-01-01

    Viscosity measurements in a high pressure rheometer, elastohydrodynamic simulator studies (including the development of a temperature measuring technique), and analytical fluid modeling for elastohydrodynamic contacts are described. The more recent research which is described concerns infrared temperature measurements in elastohydrodynamic contacts and the exploration of the glassy state of lubricants. A correlation, of engineering significance, was made between transient surface temperature measurements and surface roughness profiles. Measurements of glass transitions of lubricants and the study of the effect of rate processes on materials lead to the conclusion that typical lubricants go into the glassy state as they pass through the contact region of typical elastohydrodynamic contacts.

  7. Evaluation of minimum quantity lubrication grinding with nano-particles and recent related patents.

    PubMed

    Li, Changhe; Wang, Sheng; Zhang, Qiang; Jia, Dongzhou

    2013-06-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a supply system for the grinding fluid in nano-particle jet MQL, which produced MQL lubricant by adding solid nano-particles in degradable grinding fluid. The MQL supply device turns the lubricant to the pulse drops with fixed pressure, unchanged pulse frequency and the same drop diameter. The drops will be produced and injected in the grinding zone in the form of jet flow under high pressure gas and air seal. As people become increasingly demanding on our environment, minimum quantity lubrication has been widely used in the grinding and processing. Yet, it presents the defect of insufficient cooling performance, which confines its development. To improve the heat transfer efficiency of MQL, nano-particles of a certain mass fraction can be added in the minimum quantity of lubricant oil, which concomitantly will improve the lubrication effects in the processing. In this study, the grinding experiment corroborated the effect of nano-particles in surface grinding. In addition, compared with other forms of lubrication, the results presented that the grinding force, the friction coefficient and specific grinding energy of MQL grinding have been significantly weakened, while G ratio greatly rose. These are attributed to the friction oil-film with excellent anti-friction and anti-wear performance, which is generated nano-particles at the wheel/workpiece interface. In this research, the cooling performance of nano-particle jet MQL was analyzed. Based on tests and experiments, the surface temperature was assayed from different methods, including flood lubricating oil, dry grinding, MQL grinding and nano-particle jet MQL grinding. Because of the outstanding heat transfer performance of nano-particles, the ratio of heat delivered by grinding media was increased, leading to lower temperature in the grinding zone. Results demonstrate that nano-particle jet MQL has satisfactory cooling performance as well as a promising future of extensive application. PMID:23763268

  8. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation.

    PubMed

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-12-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li(+), Na(+), K(+), Ca(2+)) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, (1)H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils. PMID:26058517

  9. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R.; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-06-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li+, Na+, K+, Ca2+) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

  10. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  11. Amine-intercalated ?-zirconium phosphates as lubricant additives

    NASA Astrophysics Data System (ADS)

    Xiao, Huaping; Dai, Wei; Kan, Yuwei; Clearfield, Abraham; Liang, Hong

    2015-02-01

    In this study, three types of amines intercalated ?-zirconium phosphate nanosheets with different interspaces were synthesized and examined as lubricant additives to a mineral oil. Results from tribological experiments illustrated that these additives improved lubricating performance. Results of rheological experiments showed that the viscosity of the mineral oil was effectively reduced with the addition of ?-zirconium phosphate nanosheets. The two-dimensional structure, with larger interspaces, resulting from amine intercalation, exhibited improved effectiveness in reducing viscosity. This study demonstrates that the nanosheet structure of ?-zirconium phosphates is effective in friction reduction. The manufacture of lubricants with tailored viscosity is possible by using different intercalators.

  12. Interior, looking northeast Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, looking northeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Clean Lubrication Oil Storage Tank & Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. Exterior, looking west Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior, looking west - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Clean Lubrication Oil Storage Tank & Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  14. Tribological Properties of a Pennzane(Registered Trademark)-Based Liquid Lubricant (Disubstituted Alkylated Cyclopentane) for Low Temperature Space Applications

    NASA Technical Reports Server (NTRS)

    Venier, Clifford; Casserly, Edward W.; Jones, William R., Jr.; Marchetti, Mario; Jansen, Mark J.; Predmore, Roamer E.

    2002-01-01

    The tribological properties of a disubstituted alkylated cyclopentane, Pennzane (registered) Synthesized Hydrocarbon Fluid X-1000, are presented. This compound is a lower molecular weight version of the commonly used multiply alkylated cyclopentane, Pennzane X-2000, currently used in many space mechanisms. New, lower temperature applications will require liquid lubricants with lower viscosities and pour points and acceptable vapor pressures. Properties reported include: friction and wear studies and lubricated lifetime in vacuum; additionally, typical physical properties (i.e., viscosity-temperature, pour point, flash and fire point, specific gravity, refractive index, thermal properties, volatility and vapor pressure) are reported.

  15. A New Type of Self-lubricated Thermal Spray Coatings: Liquid Lubricants Embedded in a Metal Matrix

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Armada, S.

    2015-01-01

    Oils and greases are commonly used for lubricating, rotating and sliding systems such as bearings, gears, connectors, etc. The maintenance of such lubricated systems in some applications where access is difficult (e.g., offshore wind farms and subsea equipment) increases the operational costs. In some cases, it can be thought that the use of solid lubricants (MoS2, PTFE, graphite, etc.) embedded in coatings could be a solution for such applications; however, the mechanical and dynamic conditions of most of the systems are not appropriate for solid lubricants. Despite this, solid lubricants such as PTFE and MoS2 have been largely employed in different industries, especially in those applications where liquid lubricants cannot be used and when the dynamic conditions allow for it. Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Although the use of liquid lubricants is desirable whenever it is possible, limited research has been addressed toward the development of self-lubricated coatings containing liquid lubricants. One of the main reasons for this is due to the complexity of embedding liquid lubricant reservoirs inside the coating matrix. In the present work, a new type of liquid-solid self-lubricated coatings is presented, being the matrix a metal alloy. Three thermal spray techniques used were as follows: arc-spray, plasma spray, and HVOAF. The metal matrices were two stainless steel types and liquid lubricant-filled capsules with different liquid contents were used. No degradation of the capsules during spraying was observed and the coatings containing capsules were able to keep a low coefficient of friction. The optimal performance is found for the coatings obtained at the lowest spraying temperature and velocity.

  16. A New Type of Self-lubricated Thermal Spray Coatings: Liquid Lubricants Embedded in a Metal Matrix

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Armada, S.

    2014-09-01

    Oils and greases are commonly used for lubricating, rotating and sliding systems such as bearings, gears, connectors, etc. The maintenance of such lubricated systems in some applications where access is difficult (e.g., offshore wind farms and subsea equipment) increases the operational costs. In some cases, it can be thought that the use of solid lubricants (MoS2, PTFE, graphite, etc.) embedded in coatings could be a solution for such applications; however, the mechanical and dynamic conditions of most of the systems are not appropriate for solid lubricants. Despite this, solid lubricants such as PTFE and MoS2 have been largely employed in different industries, especially in those applications where liquid lubricants cannot be used and when the dynamic conditions allow for it. Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Although the use of liquid lubricants is desirable whenever it is possible, limited research has been addressed toward the development of self-lubricated coatings containing liquid lubricants. One of the main reasons for this is due to the complexity of embedding liquid lubricant reservoirs inside the coating matrix. In the present work, a new type of liquid-solid self-lubricated coatings is presented, being the matrix a metal alloy. Three thermal spray techniques used were as follows: arc-spray, plasma spray, and HVOAF. The metal matrices were two stainless steel types and liquid lubricant-filled capsules with different liquid contents were used. No degradation of the capsules during spraying was observed and the coatings containing capsules were able to keep a low coefficient of friction. The optimal performance is found for the coatings obtained at the lowest spraying temperature and velocity.

  17. Optimized liquid-liquid extractive rerefining of spent lubricants.

    PubMed

    Kamal, Muhammad Ashraf; Naqvi, Syed Mumtaz Danish; Khan, Fasihullah

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R (2) = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge. PMID:24688388

  18. Optimized Liquid-Liquid Extractive Rerefining of Spent Lubricants

    PubMed Central

    Kamal, Muhammad Ashraf; Khan, Fasihullah

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R2 = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7?h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6?h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge. PMID:24688388

  19. Qualification of oil-based tracer particles for heated Ludwieg tubes

    NASA Astrophysics Data System (ADS)

    Casper, Marcus; Stephan, Sören; Scholz, Peter; Radespiel, Rolf

    2014-06-01

    The generation, insertion, pressurization and use of oil-based tracer particles is qualified for the application in heated flow facilities, typically hypersonic facilities such as Ludwieg tubes. The operative challenges are to ensure a sub-critical amount of seeding material in the heated part, to qualify the methods that are used to generate the seeding, pressurize it to storage tube pressure, as well as to test specific oil types. The mass of the seeding material is held below the lower explosion limit such that operation is safe. The basis for the tracers is qualified in off-situ particle size measurements. In the main part different methods and operational procedures are tested with respect to their ability to generate a suitable amount of seeding in the test section. For the best method the relaxation time of the tracers is qualified by the oblique shock wave test. The results show that the use of a special temperature resistant lubricant oil "Plantfluid" is feasible under the conditions of a Mach-6 Ludwieg tube with heated storage tube. The method gives high-quality tracers with high seeding densities. Although the experimental results of the oblique shock wave test differ from theoretical predictions of relaxation time, still the relaxation time of 3.2 ?s under the more dense tunnel conditions with 18 bar storage tube pressure is low enough to allow the use of the seeding for meaningful particle image velocimetry studies.

  20. Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Miller, D. R.

    1980-01-01

    Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers.

  1. Lubricant and additive effects on spur gear fatigue life

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.; Scibbe, H. W.

    1985-01-01

    Spur gear endurance tests were conducted with six lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The sixth lubricant was divided into four batches each of which had a different additive content. Lubricants tested with a phosphorus-type load carrying additive showed a statistically significant improvement in life over lubricants without this type of additive. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears. No statistical difference in life was produced with those lubricants of different base stocks but with similar viscosity, pressure-viscosity coefficients and antiwear additives. Gears tested with a 0.1 wt % sulfur and 0.1 wt % phosphorus EP additives in the lubricant had reactive films that were 200 to 400 (0.8 to 1.6 microns) thick.

  2. Ball Bearings Equipped for In Situ Lubrication on Demand

    NASA Technical Reports Server (NTRS)

    Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark; Predmore, Roamer

    2005-01-01

    In situ systems that provide fresh lubricants to ball/race contacts on demand have been developed to prolong the operational lives of ball bearings. These systems were originally intended to be incorporated into ball bearings in mechanisms that are required to operate in outer space for years, in conditions in which lubricants tend to deteriorate and/or evaporate. These systems may also be useful for similarly prolonging bearing lifetimes on Earth. Reservoirs have been among the means used previously to resupply lubricants. Lubricant- resupply reservoirs are bulky and add complexity to bearing assemblies. In addition, such a reservoir cannot be turned on or off as needed: it supplies lubricant continuously, often leading to an excess of lubricant in the bearing. A lubricator of the present type includes a porous ring cartridge attached to the inner or the outer ring of a ball bearing (see Figure 1). Oil is stored in the porous cartridge and is released by heating the cartridge: Because the thermal expansion of the oil exceeds that of the cartridge, heating causes the ejection of some oil. A metal film can be deposited on a face of the cartridge to serve as an electrical-resistance heater. The heater can be activated in response to a measured increase in torque that signals depletion of oil from the bearing/race contacts. Because the oil has low surface tension and readily wets the bearing-ring material, it spreads over the bearing ring and eventually reaches the ball/race contacts. The Marangoni effect (a surface-tension gradient associated with a temperature gradient) is utilized to enhance the desired transfer of lubricant to the ball/race contacts during heating. For a test, a ball bearing designed for use at low speed was assembled without lubricant and equipped with a porous-ring lubricator, the resistance heater of which consumed a power of less than 1 W when triggered on by a torque-measuring device. In the test, a load of 20 lb (.89 N) was applied and the bearing was turned at a rate of 200 RPM. The lubricator control was turned on at the beginning of the test, turned off for about 800 seconds, then turned on again. As shown in Figure 2, the controlled lubricator stabilized the torque in a low range, starting immediately after initial turn-on and immediately after resumption of the lubricator control.

  3. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  4. Fundamentals of fluid lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  5. Lubrication of Machine Elements

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1984-01-01

    The understanding of hydrodynamic lubrication began with the classical experiments of Tower and Petrov. Reynolds used a reduced form of the Navier-Stokes equations and the continuity equation to generate a second order differential equation for the pressure in the narrow, converging gap of a bearing contact. Such a pressure enables a load to be transmitted between the surfaces with very low friction since the surfaces are completely separated by a film of fluid. In such a situation it is the physical properties of the lubricant, notably the dynamic viscosity, that dictate the behavior of the contact. The understanding of boundary lubrication is normally attributed to Hardy and Doubleday. In boundary lubrication it is the physical and chemical properties of thin films of molecular proportions and the surfaces to which they are attached that determine contact behavior. The lubricant viscosity is not an influential parameter. Research is devoted to a better understanding and more precise definition of other lubrication regimes between these extremes. One such regime, elastohydrodynamic lubrication, occurs in nonconformal contacts, where the pressures are high and the bearing surfaces deform elastically. In this situation the viscosity of the lubricant may raise considerably, and this further assists the formation of an effective fluid film. The science of these three lubrication regimes (hydrodynamic, elastohydrodynamic, and boundary) are described and the manner in which this science is used in the design of machine elements is examined.

  6. Commercialization of NASA PS304 Solid Lubricant Coating Enhanced by Fundamental Powder Flow Research

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2003-01-01

    The NASA Glenn Research Center has developed a patented high-temperature solid lubricant coating, designated PS304, for reducing friction and wear in bearing systems. The material used to produce the coating is initially a blend of metallic and ceramic powders that are deposited on the bearing surface by the plasma spray process. PS304 was developed to lubricate foil air bearings in Oil-Free turbomachinery, where the moving surfaces are coated with a hydrodynamic air film except at the beginning and end of an operation cycle when the air film is not present. The coating has been successful in several applications including turbochargers, land-based turbines, and industrial drying furnace conveyor components, with current development activities directed at implementation in Oil-Free aeropropulsion engines.

  7. 2010 oil spill: trajectory projections based on ensemble drifter analyses

    E-print Network

    2010 oil spill: trajectory projections based on ensemble drifter analyses Yu-Lin Chang & Leo Oey # Springer-Verlag 2011 Abstract An accurate method for long-term (weeks to months) projections of oil spill released at the northern Gulf of Mexico spill site is demonstrated during the 2010 oil spill

  8. Inlet shear heating in elastohydrodynamic lubrication.

    NASA Technical Reports Server (NTRS)

    Greenwood, J. A.; Kauzlarich, J. J.

    1972-01-01

    In elastohydrodynamic lubrication, the oil film thickness of rollers is controlled by the rate at which the oil is drawn into the conjunction of the disks by the moving surfaces of the rollers. The theory often assumes isothermal conditions in the inlet, although it can be shown that the maximum shear rate often exceeds 1,000,000 per sec, even in pure rolling. A theoretical analysis is presented for the oil temperature rise in the inlet of rollers, and the result is applied to predict the consequent film thickness. It is found that thermal effects on film thickness are only negligible at low rolling speeds. A comparison with experiment supports the conclusion that the thinning of the film thickness below that predicted by isothermal theory is substantially explained by inlet shear heating of the lubricant.

  9. Additives for high-temperature liquid lubricants

    NASA Technical Reports Server (NTRS)

    Lawton, Emil A.; Yavrouian, Andre H.; Repar, John

    1988-01-01

    A preliminary research program was conducted to demonstrate a new concept for additives to liquid lubricants. It was demonstrated that suspensions of o-phthalonitrile and a substituted 1,2-maleonitrile in mineral oil and dilute solutions of o-phthalonitrile and tetrafluoro-o-phthalonitrile extended the lifetime of bearings under boundary lubricating conditions. The solutions exhibited coefficients of friction under high loads of 0.02-0.03. These results were consistent with the hypothesis that these compounds react with the hot metal surface to form a planar lubricating film by means of a metal or metal oxide template reaction. Also, the adherence was very strong due to the chelating action of the planar macrocycles postulated to form under the experimental conditions.

  10. Compatibility of refrigerants and lubricants with motor materials

    SciTech Connect

    Doerr, R.; Kujak, S.; Waite, T. )

    1993-01-01

    Equipment manufacturers are challenged to replace CFC-based refrigerants and their lubricants with environmentally acceptable alternatives. Information on the compatibility of motor materials with these alternative refrigerants and lubricants is a basic requirement for reliable performance. This report presents compatibility data for 24 commercially used motor materials exposed to 17 refrigerant/lubricant combinations. This compatibility data will enable the phase out of CFC's to continue at its current fast pace and insure the continued reliable performance of refrigerant-based equipment.

  11. BIOBASED METALWORKING LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metalworking lubricants must allow the manufacture of acceptable products at competitive cost without causing harm to operators or the environment. One way of attaining such a goal is through the use of biobased raw materials in lubricant formulations. Biobased materials are generally non-toxic, e...

  12. Ocean Spray Lubricates Winds

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    According to a new study by two University of California, Berkeley, mathematicians and their Russian colleague, the water droplets kicked up by rough seas serve to lubricate the swirling winds of hurricanes and cyclones, letting them build to speeds approaching 200 miles per hour. Without the lubricating effect of the spray, the mathematicians…

  13. High temperature lubricating process

    DOEpatents

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  14. Formulation of Automotive Lubricants

    NASA Astrophysics Data System (ADS)

    Atkinson, D.; Brown, A. J.; Jilbert, D.; Lamb, G.

    The formulation of lubricants for current light- and heavy-duty vehicles (passenger cars and trucks) and also motorcycles/small engines is described in terms of engine types and meeting European, US and Japanese emission control requirements. Trends in the formulation of lubricants are discussed and the importance of high and low 'SAPS' for future developments emphasised. Specification and evaluation of lubricant performance for light-vehicle gasoline and diesel, and also heavy-duty diesel engines are described. Emphasis is given to diesel engine cleanliness by soot and deposit control and the effect of emission controls on lubricant formulation. The lubricant requirements for motorcycle and small engines, primarily two-stroke cycle, and their specifications are described.

  15. Effect of lubricant extreme-pressure additives on surface fatigue life of AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Townsend, D. P.; Aron, P. R.

    1984-01-01

    Surface fatigue tests were conducted with AISI 9310 spur gears using a formulated synthetic tetraester oil (conforming to MIL-L-23699 specifications) as the lubricant containing either sulfur or phosphorus as the EP additive. Four groups of gears were tested. One group of gears tested without an additive in the lubricant acted as the reference oil. In the other three groups either a 0.1 wt % sulfur or phosphorus additive was added to the tetraester oil to enhance gear surface fatigue life. Test conditions included a gear temperature of 334 K (160 F), a maximum Hertz stress of 1.71 GPa (248 000 psi), and a speed of 10,000 rpm. The gears tested with a 0.1 wt % phosphorus additive showed pitting fatigue life 2.6 times the life of gears tested with the reference tetraester based oil. Although fatigue lives of two groups of gears tested with the sulfur additive in the oil showed improvement over the control group gear life, the results, unlike those obtained with the phosphorus oil, were not considered to be statistically significant.

  16. Lubricating system for a cutting tool of a fly-cutting machine

    SciTech Connect

    Gerth, H.L.; Robinson, S.C.

    1980-07-08

    The present invention is directed to a cutting-tool lubricating system for use in a machine tool set-up for fly-cutting operations. A lubricating oil is poured into an open-sided oil-distribution ring carried by the fly cutter during the rotation of the latter. Centrifugal force distributes the oil about the ring and forces oil through a radially extending conduit onto the cutting tool and workpiece for lubricating and cooling the tool and workpiece as well as washing the machining chips from the latter.

  17. Effect of lubricant environment on saw damage in silicon wafers

    NASA Technical Reports Server (NTRS)

    Kuan, T. S.; Shih, K. K.; Vanvechten, J. A.; Westdorp, W. A.

    1982-01-01

    The chemomechanical effect of lubricant environments on the inner diameter (ID) sawing induced surface damage in Si wafers was tested for four different lubricants: water, dielectric oil, and two commercial cutting solutions. The effects of applying different potential on Si crystals during the sawing were also tested. It is indicated that the number and depth of surface damage are sensitive to the chemical nature of the saw lubricant. It is determined that the lubricants that are good catalysts for breaking Si bonds can dampen the out of plane blade vibration more effectively and produce less surface damage. Correlations between the applied potential and the depth of damage in the dielectric oil and one of the commercial cutting solutions and possible mechanisms involved are discussed.

  18. Fluid film lubrication

    SciTech Connect

    Gross, W.A.; Matsch, L.A.; Castelli, V.; Eshel, A.; Vohr, J.H.; Wildmann, M.

    1980-01-01

    The purpose of this book is to review the fundamentals of fluid lubricating films and to serve as a reference by applying these fundamentals to a variety of examples. Theory and anaysis are emphasized, and important equations, design fundamentals, and some design data are presented. Experimental results are introduced chiefly to corroborate the theory. Normalized notation is used whenever practical to stress the common characteristics of lubricating films and to simplify comparison. This presentation has the additional advantage of saving the reader the labor of confronting the wide range of terminology now in use. Tribology, the theory and practice of lubrication, is a broad subject, the exhaustive treatment of which would include thorough consideration both of the variety of mechanisms of lubrication and of bearing types. The treatment here is limited to those continuum fluid films, called simply ''films,'' which are associated with slider, journal, and sector thrust bearings. Considerable attention is given to incompressible films because films are often effectively incompressible. Thin film and boundary lubrication, the other important mechanisms of lubrication, are not examined here. There is a special focus upon gas lubrication.

  19. Dairy Equipment Lubrication

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  20. Turbine engine lubricant foaming due to silicone basestock used in non-specification spline lubricant

    SciTech Connect

    Centers, P.W.

    1995-05-01

    Dependent upon molecular weight and distribution, concentration, temperature, air flow, and test details or field application, polydimethylsiloxane (PDMS) may be neutral, profoamant or antifoamant in polyolesters. This understanding was critical in the solution of a turbine engine lubrication system foaming problem occurring at several military locations. Suspect turbine engine-accessory gearbox assembly materials gathered from several sites were evaluated. One non-specification PDMS-based spline lubricant caused copious foaming of the lubricant at less than ten parts-per-million concentration, while a specification polymethyl-phenylsiloxane (PMPS)-based lubricant required a concentration nearly 2000 times greater to generate equivalent foam. Use of the profoamant PDMS spline lubricant was then prohibited. Since prohibition, foaming of turbine engine lubricants used in the particular application has not been reported. PMPS impact on foaming of ester lubricants is similar to a much more viscous PDMS attributed to the reduced interaction of PMPS in esters due to pendant phenyl structure of PMPS absent in PDMS. These data provide significant additional insight and methodology to investigate foaming tendencies of partially miscible silicone-ester and other fluid systems. 7 refs., 2 figs., 1 tab.

  1. Energy-efficient lubricants reduce plant energy costs

    SciTech Connect

    Scharf, C.; Lockett, A.

    1997-09-01

    This article describes how specially formulated synthetic lubricants can improve gear drive efficiency, extend maintenance cycles and enhance equipment durability. Energy-efficient synthetic gear oils, formulated to optimize viscometric and friction characteristics, can significantly reduce the power-consumption requirements of gear-driven equipment, while enhancing gear drive durability and significantly lowering energy costs. Unfortunately energy-efficient lubricants are not widely understood and appreciated.

  2. A self-lubricating bearing

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (inventor)

    1974-01-01

    An improved bearing structure is described which includes a permanently magnetized porous body filled with an interstitial magnetic lubricant for extending the operational life of self-lubricating bearings. The bearing structure is characterized by a permanently magnetized retainer formed of a porous material and filled with an interstitial magnetic lubricant, whereby the pores serve as lubricant reservoirs from which the lubricant continuously is delivered to a film disposed between contiguous bearing surfaces.

  3. Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian J.; DellaCorte, Christopher

    2002-01-01

    The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.

  4. New Lubricants Protect Machines and the Environment

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 1994, NASA and Lockheed Martin Space Operations commissioned Sun Coast Chemicals of Daytona Inc to develop a new type of lubricant that would be safe for the environment and help "grease the wheels" of the shuttle-bearing launcher platform. Founded in 1989, Sun Coast Chemicals is known amongst the racing circuit for effective lubricants that help overcome engine and transmission problems related to heat and wear damage. In a matter of weeks, Sun Coast Chemical produced the biodegradable, high-performance X-1R Crawler Track Lube. In 1996, Sun Coast Chemical determined there was a market for this new development, and introduced three derivative products, Train Track Lubricant, Penetrating Spray Lubricant, and Biodegradable Hydraulic Fluid, and then quickly followed with a gun lubricant/cleaner and a fishing rod and reel lubricant. Just recently, Sun Coast introduced the X-1R Corporation, which folds the high-performance, environmentally safe benefits into a full line of standard automotive and specially formulated racing products. The entire X-1R automotive product line has stood up to rigorous testing by groups such as the American Society of Mechanical Engineers, the Swedish National Testing and Research Institute, the Department of Mechanical Engineering at Oakland University (Rochester, Michigan), and Morgan-McClure Motorsports (Abingdon, Virginia). The X-1R Corporation also markets "handy packs" for simple jobs around the house, consisting of a multi-purpose, multi-use lubricant and grease. In 2003, The X-1R Corporation teamed up with Philadelphia-based Penn Tackle Manufacturing Co., a leading manufacturer of fishing tackle since 1932, to jointly develop and market a line of advanced lubrication products for saltwater and freshwater anglers

  5. Development of waterborne oil spill sensor based on printed ITO nanocrystals.

    PubMed

    Koo, Jieun; Jung, Jung-Yeul; Lee, Sangtae; Lee, Moonjin; Chang, Jiho

    2015-09-15

    Oil spill accidents occasionally occur in coastal and ocean environments, and cause critical environmental damage, spoiling the marine habitats and ecosystems. To mitigate the damages, the species and amount of spilled oil should be monitored. In this study, we developed a waterborne oil spill sensor using a printed ITO layer. ITO is a compatible material for salty environments such as oceans because ITO is strong against corrosion. The fabricated sensor was tested using three oils, gasoline, lubricant and diesel, and different oil thicknesses of 0, 5, 10, and 15mm. The results showed that the resistance of the sensor clearly increased with the oil thickness and its electrical resistance. For sustainable sensing applications in marine environments, XRD patterns confirmed that the crystal structure of the ITO sensor did not change and FE-SEM images showed that the surface was clearly maintained after tests. PMID:26162511

  6. Comparative analysis of plant oil based fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.J.; Haines, H.; Huong, C.

    1995-12-31

    This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.

  7. Development of a full-scale transmission testing procedure to evaluate advanced lubricants

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Decker, Harry J.; Shimski, John T.

    1992-01-01

    Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500-hp Helicopter Transmission Test Stand. The testing was part of a joint Navy/NASA/Army lubrication program. The objective of the program was to develop a separate lubricant for gearboxes and demonstrate an improved performance in life and load-carrying capacity. The goal of the experiments was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 base reference oil, then run identical tests with improved lubricants and demonstrate performance. The tests were directed at failing components that the Navy has had problems with due to marginal lubrication. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hours of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.

  8. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, Hans O. (Stockbridge, GA); Starr, Thomas L. (Roswell, GA)

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  9. Lubrication System Failure Baseline Testing on an Aerospace Quality Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2000-01-01

    Aerospace drive systems are required to survive a loss-of-lubrication test for qualification. In many cases emergency lubrication systems need to be designed and utilized to permit the drive system to pass this difficult requirement. The weight of emergency systems can adversely affect the mission capabilities of the aircraft. The possibility to reduce the emergency system weight through the use of mist lubrication will be described. Mist lubrication involves the delivery of a minute amount of an organic liquid as a vapor or fine mist in flowing compressed air to rubbing surfaces. At the rubbing surface, the vapor or mist reacts to form a solid lubricating film. The aim of this study was to establish a baseline for gear behavior under oil depleted conditions. A reactive vapor-mist lubrication method is described and proposed as a candidate emergency lubrication system.

  10. Industry Needs Fulfilled by Patented NASA PS300 Solid Lubricant Technology

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2003-01-01

    In 1999, the NASA Glenn Research Center was awarded a patent (#5866518) for a new high-temperature solid lubricant coating material, PS300. A combination of wear-resistant metals and ceramics with solid lubricant additives, PS300 reduces friction and wear in sliding contacts from below ambient to over 650 C. This lubricant is an outgrowth of over three decades of high-temperature tribological research and was specifically developed as a shaft lubricant to protect foil air bearings used in Oil-Free turbomachinery, like gas turbines. Foil bearings are lubricated by air at high speeds but experience sliding and wear during initial startup and shut down when a lubricating film of air has not yet developed. PS300 shaft coatings have successfully lubricated foil bearings for over 100 000 cycles without wearing out.

  11. Liquid lubrication in space

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    The requirement for long-term, reliable operation of aerospace mechanisms has, with a few exceptions, pushed the state of the art in tribology. Space mission life requirements in the early 1960s were generally 6 months to a year. The proposed U.S. space station schedule to be launched in the 1990s must be continuously usable for 10 to 20 years. Liquid lubrication systems are generally used for mission life requirements longer than a year. Although most spacecraft or satellites have reached their required lifetimes without a lubrication-related failure, the application of liquid lubricants in the space environment presents unique challenges. The state of the art of liquid lubrication in space as well as the problems and their solutions are reviewed.

  12. Origins of hydration lubrication

    NASA Astrophysics Data System (ADS)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-01

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  13. Solid lubrication design methodology

    NASA Technical Reports Server (NTRS)

    Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.

    1984-01-01

    A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.

  14. Origins of hydration lubrication.

    PubMed

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-01

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication. PMID:25585501

  15. Emergency and microfog lubrication and cooling of bearings for Army helicopters

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once-through oil-mist (microfog) and coolant air system. A system was designed, manufactured, coupled with an existing rig and evaluation tests were performed using 46 mm bore split-inner angular-contact ball bearings under 1779N (400 lb.) thrust load. An emergency lubrication aspirator system was also manufactured and tested under lost lubricant conditions. The testing demonstrated the feasibility of using a mist oil and cooling air system to lubricate and cool a high speed helicopter engine mainshaft bearing. The testing also demonstrated the feasibility of using an emergency aspirator lubrication system as a viable survivability concept for helicopter mainshaft engine bearing for periods as long as 30 minutes.

  16. Notes 00. Introduction to Hydrodynamic Lubrication 

    E-print Network

    San Andres, Luis

    2010-01-01

    bearing and seal elements and to calculate the mechanical impedances (stiffness, damping and inertia force coefficients) connecting the rotor to its casing. c) To perform an eigenvalue analysis, i.e. to predict the natural frequencies and damping... or delivered to. Examples of turbomachines include pumps and compressors, gas and steam turbines, turbo generators and turbo expanders, turbochargers, APU (auxiliary power units), etc. Most turbomachinery is supported on oil lubricated fluid film bearings...

  17. Methods to improve lubricity of fuels and lubricants

    DOEpatents

    Erdemir, Ali (Naperville, IL)

    2009-06-16

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  18. Design and fundamental understanding of Minimum Quantity Lubrication (MQL) assisted grinding using advanced nanolubricants

    NASA Astrophysics Data System (ADS)

    Kalita, Parash

    Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants that are hazardous to human health and environment. Application of Minimum Quantity Lubrication (MQL) that cuts the volumetric fluid consumption by 3-4 orders of magnitude have been extensively researched in grinding as a high-productivity and environmentally-sustainable alternative to the conventional flood method. However, the lubrication performance and productivity of MQL technique with current fluids has been critically challenged by the extreme thermo-mechanical conditions of abrasive grinding. In this research, an MQL system based on advanced nanolubricants has been proposed to address the current thermo-mechanical challenges of MQL grinding and improve its productivity. The nanolubricants were composed of inorganic Molybdenum Disulphide nanoparticles (? 200 nm) intercalated with organic macromolecules of EP/AW property, dispersed in straight (base) oils---mineral-based paraffin and vegetable-based soybean oil. After feasibility investigations into the grindability of cast iron using MQL with nanolubricants, this research focused on the fundamental understanding of tribological behavior and lubricating mechanisms of nanolubricants as a method to improve the productivity of MQL-assisted surface grinding of ductile iron and alloy steel. An extensive investigation on MQL-assisted grinding using vitrified aluminum oxide wheel under varied infeed and lubrication condition was carried out with the scope of documenting the process efficiency and lubrication mechanisms of the nanolubricants. Experimental results showed that MQL grinding with nanolubricants minimized the non-productive outputs of the grinding process by reducing frictional losses at the abrasive grain-workpiece interfaces, energy consumption, wheel wear, grinding zone temperatures, and friction-induced heat generation. Use of nanolubricants in MQL yielded superior productivity by producing surface roughness as low as 0.35 ?m and grinding efficiencies that were four times higher as compared to those obtained from flood grinding. Repeatable formation of tribochemical films of antifriction, antiwear, and extreme pressure chemical species in between the contact asperities of abrasive crystals and work material was identified with nanolubricants. The tribological behavior was characterized by this synergistic effect of the antiwear, antifriction, and load carrying chemical species that endured grain-workpiece seizures and reduced adhesion friction between the contact surfaces. Delivery of organic coated Molybdenum Disulphide nanoparticles by anchoring on the natural porosity of the abrasive wheel and eventually, sliding-induced interfacial deformation into tribolayers and alignment at the grinding zone were established as the lubrication mechanisms of the nanolubricants. These mechanisms were further validated from tribological evaluations of lubricated cubic boron nitride (cBN) superabrasives-1045 steel sliding pairs on a reciprocating tribotest rig resembling the tool-lubricant-workpiece interactions of MQL-assisted grinding.

  19. ?-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency.

    PubMed

    Song, Ci; Ding, Lei; Yao, Fei; Deng, Jianping; Yang, Wantai

    2013-01-01

    This article reports the preparation and evaluation of polymeric microspheres as a new class of oil-absorbent (POAMs). Based on our earlier oil-absorbents, the present microspheres contained ?-cyclodextrin (?-CD) moieties as both cross-linking agent and porogen agent, and showed exciting high oil absorbency, fast oil absorption speed and good reusability. Such microspheres were prepared via suspension polymerization with octadecyl acrylate and butyl acrylate as co-monomers, ?-CD derivative as cross-linking agent, 2,2'-azoisobutyronitrile as initiator and polyvinylalcohol as stabilizer. Oil absorbency of the POAMs was, for CCl(4), 83.4; CHCl(3), 75.1; xylene, 48.7; toluene, 42.8; gasoline, 30.0; kerosene 27.1; and diesel, 18.2 g/g (oil/POAMs). Saturation oil absorption reached within 3h in CCl(4). The POAMs exhibited high oil retention percentage (>90%), and can be reused for at least 10 times while keeping oil absorbency almost unchanged. PMID:23044125

  20. Power system with an integrated lubrication circuit

    DOEpatents

    Hoff, Brian D. (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL); Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Lane, William H. (Chillicothe, IL)

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  1. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    SciTech Connect

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  2. Lubrication of Space Systems (c)

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1995-01-01

    This article presents an overview of the current state-of-the-art tribology, some current and future perceived space lubrication problem areas, and some potential new lubrication technologies. It is the author's opinion that tribology technology, in general, has not significantly advanced over the last 20 to 30 years, even though some incremental improvements in the technology have occurred. There is a better understanding of elasto-hydrodynamic lubrication, some new lubricating and wear theories have been developed, and some new liquid and solid lubricants have been formulated. However, the important problems of being able to lubricate reliably at high temperatures or at cryogenic temperatures have not been adequately address.

  3. REMOVING SELENATE FROM WATER WITH A VEGETABLE OIL BASED BIOBARRIER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil based permeable reactive biobarriers (PRBs) were evaluated as a method for remediating groundwater containing unacceptable amounts of selenate. PRBs formed by packing laboratory columns with sand coated with soybean oil were used. In an initial 24-week study a simulated groundwater c...

  4. Preparation of microemulsions with soybean oil-based surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  5. KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING

    E-print Network

    Aamodt, Agnar

    KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process for information handling, decision-making, and on-the-job learning for drilling personnel in their daily working

  6. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  7. Oil-Free Turbomachinery Being Developed

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2001-01-01

    NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVI, I--CATERPILLAR LUBRICATION SYSTEMS AND COMPONENTS, II--LEARNING ABOUT BRAKES (PART I).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTIONS OF DIESEL ENGINE LUBRICATION SYSTEMS AND COMPONENTS AND THE PRINCIPLES OF OPERATION OF BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THE NEED FOR OIL, (2) SERVICE CLASSIFICATION OF OILS, (3) CATERPILLAR LUBRICATION SYSTEM COMPONENTS (4)…

  9. Friction losses in a lubricated thrust-loaded cageless angular-contract bearing

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Allen, C. W.; Zaretsky, E. V.

    1973-01-01

    The NASA spinning torque apparatus was modified to measure the spinning torque on a cageless ball thrust bearing. Friction torque was measured for thrust loads varying from 44.5 to 403 newtons (10 to 90 lb) at speeds of 1000, 2000, and 3000 rpm. Tests were conducted with di-2-ethylhexyl sebacate and a synthetic paraffinic oil. These tests were run with either oil jet lubrication or with a thin surface film of lubricant only. An analytical model which included rolling resistance was developed and extended from previous models for spinning torque and lubricant rheology. The model was extended by the inclusion of rolling resistance. The computed values were in fair agreement with the experimental results and confirmed previous hypotheses that a thin lubricant film gives minimum bearing torque and an oil jet flow of a viscous lubricant will result in considerable rolling torque in addition to the torque due to ball spin.

  10. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  11. Low voltage reversible electrowetting exploiting lubricated polymer honeycomb substrates

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Bormashenko, Yelena; Grynyov, Roman; Gendelman, Oleg

    2014-04-01

    Low-voltage electrowetting-on-dielectric scheme realized with lubricated honeycomb polymer surfaces is reported. Polycarbonate honeycomb reliefs manufactured with the breath-figures self-assembly were impregnated with silicone and castor oils. The onset of the reversible electrowetting for silicone oil impregnated substrates occurred at 35 V, whereas for castor oil impregnated ones it took place at 80 V. The semi-quantitative analysis of electrowetting of impregnated surfaces is proposed.

  12. Low Voltage Reversible Electrowetting Exploiting Lubricated Polymer Honeycomb Substrates

    E-print Network

    Edward Bormashenko; Roman Pogreb; Yelena Bormashenko; Roman Grynyov; Oleg Gendelman

    2014-06-16

    Low-voltage electrowetting-on-dielectric scheme realized with lubricated honeycomb polymer surfaces is reported. Polycarbonate honeycomb reliefs manufactured with the breath-figures self-assembly were impregnated with silicone and castor oils. The onset of the reversible electrowetting for silicone oil impregnated substrates occurred at 35 V, whereas for castor oil impregnated ones it took place at 80 V. The semi-quantitative analysis of electrowetting of impregnated surfaces is proposed.

  13. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants.

    PubMed

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-01-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1?wt% ultrathin MoS2 nanosheets, at the temperature of 120?°C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry. PMID:26249536

  14. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1?wt% ultrathin MoS2 nanosheets, at the temperature of 120?°C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  15. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    PubMed Central

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-01-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1?wt% ultrathin MoS2 nanosheets, at the temperature of 120?°C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry. PMID:26249536

  16. Correlation of elastohydrodynamic film thickness measurements for fluorocarbon type 2 ester, and polyphenyl ether lubricants

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    A minimum films thickness correlation applicable to heavily loaded elastohydrodynamic (EHD) contacts was formulated from experimental data obtained by an X-ray transmission technique. The correlation, based on data generated with fluorocarbon, type II ester, and polyphenyl ether lubricants, extends a previous analysis developed from data for a synthetic paraffinic oil. The resulting correlation represents the data of the four lubricants reasonably well over a large range of operating conditions. Contained within the derived relation is a factor to account for the high-load dependence displayed by the measurements beyond that which is provided for by the theory. Thermal corrections applied to a commonly used film thickness formula showed little improvement to the general disagreement that exists between theory and test. Choice of contact geometry and material are judged to have a relatively mild influence on the form of the semiempirical model.

  17. Combustion fundamentals of pyrolysis oil based fuels

    SciTech Connect

    Calabria, R.; Chiariello, F.; Massoli, P.

    2007-04-15

    The combustion behavior of emulsions of pyrolysis oil in commercial diesel oil was studied. The emulsions were different in terms of concentration and size of the dispersed phase. The study was carried out in a single droplet combustion chamber. The size of droplets varied between 400 {mu}m and 1200 {mu}m. They were suspended to a bare thermocouple and, hence, their temperature during combustion was measured. High-speed digital shadowgraphy was used to follow droplets evolution. The main features of the droplet combustion were recognized. The general combustion behavior of emulsions is intermediate with respect to pure PO and commercial diesel oil. Emulsion droplets underwent strong swelling and microexplosion phenomena. However, under the investigated conditions, the microexplosions were ineffective in destroying droplets. The size distribution of the dispersed PO droplets in the range 3-10 {mu}m was not effective either for determining the overall thermal behavior or for the efficacy of the microexplosions. The homogeneous combustion phase resulted identical for emulsions and diesel oil despite the emulsions composition (i.e., concentration of oil, surfactant and co-surfactant, as well as the size of the oil droplets in the emulsion) and the different structure of the flame and also its time and spatial evolution. (author)

  18. Piezoviscous effects in nonconformal contacts lubricated hydrodynamically

    NASA Technical Reports Server (NTRS)

    Jeng, Y. R.; Hamrock, B. J.; Brewe, D. E.

    1985-01-01

    The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids.

  19. Lubricant replacement in rolling element bearings for weapon surety devices

    SciTech Connect

    Steinhoff, R.; Dugger, M.T.; Varga, K.S.

    1996-05-01

    Stronglink switches are a weapon surety device that is critical to the nuclear safety theme in modem nuclear weapons. These stronglink switches use rolling element bearings which contain a lubricant consisting of low molecular weight polytetrafluoroethylene (PTFE) fragments. Ozone-depleting solvents are used in both the manufacture and application of this lubricant. An alternate bearing lubrication for stronglink switches is needed that will provide long-term chemical stability, low migration and consistent performance. Candidates that were evaluated include bearings with sputtered MoS{sub 2} on the races and retainers, bearings with TiC-coated balls, and bearings with Si{sub 3}N{sub 4} balls and steel races. These candidates were compared to the lubricants currently used which are bearings lubricated with PTFE fragments of low molecular weight in a fluorocarbon solvent. The candidates were also compared to bearings lubricated with a diester oil which is representative of bearing lubricants used in industrial applications. Evaluation consisted of cycling preloaded bearings and subjecting them to 23 gRMS random vibration. All of the candidates are viable substitutes for low load application where bearing preload is approximately 1 pound. For high load applications where the bearing preload is approximately 10 pounds, bearings with sputtered MoS{sub 2} on the races and retainers appear to be the best substitutes. Bearings with TiC-coated balls also appear to be a viable candidate but these bearings did not perform as well as the sputtered MoS{sub 2}.

  20. Tribological Properties of Carbon Nanocapsule Particles as Lubricant Additive.

    PubMed

    Jeng, Yeau-Ren; Huang, Yao-Huei; Tsai, Ping-Chi; Hwang, Gan-Lin

    2014-10-01

    An experimental investigation is performed into the tribological properties of mineral oil lubricants containing carbon nanocapsules (CNCs) additives with various concentrations (wt.%). Friction characteristics and wear behaviors at contact interfaces are examined by the block-on-ring tests, high-resolution transmission electron microscopy (HRTEM), and mapping (MAP) analysis. The results suggest that the addition of CNCs to the mineral oil yields an effective reduction in the friction coefficient at the contact interface. Molecular dynamics (MD) simulations clarify the lubrication mechanism of CNCs at the sliding system, indicating the tribological properties are essentially sensitive to the structural evolutions of CNCs. PMID:25161338

  1. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  2. Spacecraft materials guide. [including: encapsulants and conformal coatings; optical materials; lubrication; and, bonding and joining processes

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L. (editor)

    1975-01-01

    Materials which have demonstrated their suitability for space application are summarized. Common, recurring problems in encapsulants and conformal coatings, optical materials, lubrication, and bonding and joining are noted. The subjects discussed include: low density and syntactic foams, electrical encapsulants; optical glasses, interference filter, mirrors; oils, greases, lamillar lubricants; and, soldering and brazing processes.

  3. The effect of refrigerants in the mixed lubrication regime

    SciTech Connect

    Mizuhara, Kazuyuki; Tomimoto, Makoto

    1997-12-31

    Because of environmental concerns, CFC (chlorofluorocarbon) refrigerants must be replaced with HFCs (hydrofluorocarbons). As a result, many tribological problems are caused especially in rotary piston compressors. To solve the problem, the effects of refrigerants on friction and wear characteristics of the oil and refrigerant mixtures at the mixed lubrication regime are investigated. The difference in refrigerants are clearly observed not only in boundary but also in the mixed lubrication regime. The effects of operating conditions on sliding conditions and experimental results are also discussed. It is concluded that for practical application where long life is essential, experiments must be conducted under the mixed lubrication regime. Also, the importance of defining the lubrication regime in terms of film parameter is emphasized.

  4. Measurement of rod seal lubrication for Stirling engine

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.

    1980-01-01

    The elastohydrodynamic behavior of sliding elastomeric seals for the Stirling engine, was analyzed using an experimental apparatus to determine the instantaneous oil film thickness throughout the cyclic reciprocating motion. Tests were conducted on two commercial elastomeric seals: a "T" seal (76 mm O.D. and 3.8 mm between backing rings) and an "O" ring (76 mm O.D. and 5.3 mm diameter). Testing conditions included seal durometers of 70 and 90, sliding velocities of 0.8, 2.0, and 3.6 m/s, and no pressure gradient across the seal. Both acrylic and aluminum cylinders were used. Measured oil film thickness profiles were compared to results of the elastohydrodynamic analysis. The comparison shows an overall qualitative agreement. Friction and oil leakage measurements were also made at these sliding speeds. The fluid used was a typical synthetic base automotive lubricant. It is concluded that this first time experimental analytical comparison for oil film thickness indicates the need for some improvements in the analytical model and in the experimental technique.

  5. Nano-based systems for oil spills control and cleanup.

    PubMed

    Avila, Antonio F; Munhoz, Viviane C; de Oliveira, Aline M; Santos, Mayara C G; Lacerda, Glenda R B S; Gonçalves, Camila P

    2014-05-15

    This paper reports the development of superhydrophobic nanocomposite systems which are also oleophilic. As hydrophobicity is based on low energy surface and surface roughness, the electrospinning technique was selected as the manufacturing technique. N,N' dimethylformamide (DMF) was employed as the polystyrene (PS) solvent. The "Tea-bag" (T-B) nanocomposite system is based on exfoliated graphite surrounded by PS superhydrophobic membranes. The T-B systems were tested regarding its adsorption and absorption rates. To test these properties, it was employed three different water/oil emulsions, i.e., new and used motor oil, which have physical properties (viscosity and specific gravity) similar to heavy crude oil extracted in Brazil, and vacuum pump oil (which does not form oil/water emulsion). It was observed that oil adsorption rate is dependent on oil surface tension, while the absorption rate is mainly dependent on membrane/exfoliated graphite surface area. Experimental data show that oil absorption rates ranged between 2.5g/g and 40g/g, while the adsorption rate oscillated from 0.32g/g/min to 0.80g/g/min. Furthermore, T-B systems were tested as containment barriers and sorbent materials with good results including its recyclability. PMID:24667439

  6. An Evaluation of Liquid, Solid, and Grease Lubricants for Space Mechanisms Using a Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Buttery, Michael

    2010-01-01

    We present the findings of the test program performed by The European Space Tribology Laboratory (ESTL) to evaluate the performance (friction and lifetime) of a number of space lubricants under vacuum using a Spiral Orbit Tribometer (SOT). Focus was given to a comparison of various popular space oils, a comparison study between the old and new MAPLUB grease formulations, and the performance of commonly used solid lubricants under various conditions. Tests demonstrated that the lifetimes of hydrocarbon NYE oils 2001 & 2001A outperformed those of the perfluroropolyalkylether (PFPE) oils Fomblin Z25 & Z60, though these pairs displayed similar behavior. This relationship was also generally seen for greases; with the lifetimes of the multiple alkylated cyclopentane (MAC)-based greases being extended in comparison to the PFPE-based greases. Testing on greases also demonstrated similar performance between the old (-a) and new (-b) formulations when considering PFPE-based MAPLUB greases, and indeed for all tested PFPE-based non-MAPLUB greases, but significantly shorter lifetimes for the new formulations when considering MAC-based MAPLUB greases. MAPLUB MAC greases containing molybdenum disulphide (MoS2) thickener were also found to display reduced lifetimes. For solid lubricants, lead displayed significantly extended lifetimes over MoS2, speculated to be caused by redistribution of lead from the ball onto all contact surfaces during the test. Friction coefficients were seen to be some 2.5x higher for lead than for MoS2 under similar conditions, a result that corresponds well with conventional bearing tests. The work described was performed under contract for the European Space Agency as part of the Tribology Applications Program, with all funding for testing and apparatus provided by European Space Agency (ESA).

  7. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  8. Enhancement of Perfluoropolyether Boundary Lubrication Performance

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Ajayi, O. O.; Wedeven, L. D.

    1996-01-01

    A ball bearing simulator operating under starved conditions was used to perform screening tests to evaluate the boundary lubrication performance of a branched perfluoropolyether (PFPE), K-143 AB. Several approaches to enhance boundary lubrication were studied. These included: (1) soluble boundary additives, (2) bearing surface modifications, (3) 'run-in' surface films, and (4) ceramic bearing components. In addition, results were compared with two non-perfluorinated liquid lubricant formulations. Based on these tests, the following tentative conclusions can be made: (1) Substantial improvements in boundary lubrication performance were observed with a beta-diketone boundary additive and a tricresyl phosphate (TCP) liquid surface pretreatment, (2) the use of rough Si3N4 balls (R(sub a) = 40 micro-inch) also provided increases in test duration, but with concomitant abrasive wear, (3) moderate improvements were seen with two boundary additives (a phosphine and a phosphatriazine) and a neat (100%) fluid (a carboxylic acid terminated PFPE); and small improvements with surface pretreatments with synthetic hydrocarbons, a polytetrafluoroethylene (PTFE) coating, and TiC coated 440 C and smooth Si3N4 balls (R(sub a) = 1 micro-inch), and (4) two non-PFPE lubricant formulations (a polyalphaolefin (PAO) and synthetic hydrocarbon) yielded substantial improvements.

  9. Determination of physical and chemical states of lubricants in concentrated contacts, part 2

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1981-01-01

    Infrared emission spectroscopy through a window in an operating bearing continued to provide most of the information gathered on the state of lubricants subjected to elastohydrodynamic (EHD) conditions. Other measurements were traction, scanning electron microscopy and elemental surface analysis X-rays. A very significant finding was the decomposition of a naphthenic oil lubricant in the presence of small concentrations of an organic chloride. Olefins and aromatics were formed in ever increasing amounts prior to total lubricant failure. An aromatic fluid also failed in the presence of chloride. A correlation was found between changes of the alignment of lubricant molecules evidence by infrared polarization and changes of traction under varying EHD stresses.

  10. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  11. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Final report

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  12. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    NASA Astrophysics Data System (ADS)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  13. [Peculicidal activity of plant essential oils and their based preparations].

    PubMed

    Lopatina, Iu V; Eremina, O Iu

    2014-01-01

    The peculicidal activity of eight plant essential oils in 75% isopropyl alcohol was in vitro investigated. Of them, the substances that were most active against lice were tea tree (Melaleuca), eucalyptus, neem, citronella (Cymbopogon nardus), and clove (Syzygium aromaticum) oils; KT50 was not more than 3 minutes on average; KT95 was 4 minutes. After evaporating the solvent, only five (tea tree, cassia, clove, anise (Anisum vulgare), and Japanese star anise (Illicium anisatum) oils) of the eight test botanical substances were active against lice. At the same time, KT50 and KT95 showed 1.5-5-fold increases. Citronella and anise oils had incomplete ovicidal activity. Since the lice were permethrin-resistant, the efficacy of preparations based on essential oils was much higher than permethrin. PMID:25296426

  14. An experimental study of the oil evolution in critical piston ring pack regions and the effects of piston and ring designs in an internal combustion engine utilizing two-dimensional laser induced fluorescence and the impact on maritime economics

    E-print Network

    Vokac, Adam, 1978-

    2004-01-01

    Faced with increasing concern for lubricating, oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions ...

  15. Operational Satellite-based Surface Oil Analyses (Invited)

    NASA Astrophysics Data System (ADS)

    Streett, D.; Warren, C.

    2010-12-01

    During the Deepwater Horizon spill, NOAA imagery analysts in the Satellite Analysis Branch (SAB) issued more than 300 near-real-time satellite-based oil spill analyses. These analyses were used by the oil spill response community for planning, issuing surface oil trajectories and tasking assets (e.g., oil containment booms, skimmers, overflights). SAB analysts used both Synthetic Aperture Radar (SAR) and high resolution visible/near IR multispectral satellite imagery as well as a variety of ancillary datasets. Satellite imagery used included ENVISAT ASAR (ESA), TerraSAR-X (DLR), Cosmo-Skymed (ASI), ALOS (JAXA), Radarsat (MDA), ENVISAT MERIS (ESA), SPOT (SPOT Image Corp.), Aster (NASA), MODIS (NASA), and AVHRR (NOAA). Ancillary datasets included ocean current information, wind information, location of natural oil seeps and a variety of in situ oil observations. The analyses were available as jpegs, pdfs, shapefiles and through Google, KML files and also available on a variety of websites including Geoplatform and ERMA. From the very first analysis issued just 5 hours after the rig sank through the final analysis issued in August, the complete archive is still publicly available on the NOAA/NESDIS website http://www.ssd.noaa.gov/PS/MPS/deepwater.html SAB personnel also served as the Deepwater Horizon International Disaster Charter Project Manager (at the official request of the USGS). The Project Manager’s primary responsibility was to acquire and oversee the processing and dissemination of satellite data generously donated by numerous private companies and nations in support of the oil spill response including some of the imagery described above. SAB has begun to address a number of goals that will improve our routine oil spill response as well as help assure that we are ready for the next spill of national significance. We hope to (1) secure a steady, abundant and timely stream of suitable satellite imagery even in the absence of large-scale emergencies such as Deepwater Horizon, (2) acquire a 24 x 7 oil spill response capability at least on a pre-operational basis, (3) acquire improved and expanded ancillary datasets, (4) reduce the number of false positives (analyzed oil that is not actually oil), (5) acquire the ability to reliably differentiate, at least in general qualitative terms, thick oil (“recoverable oil”) from oil sheens, and (6) join our Canadian counterparts (the Integrated Satellite Tracking of Pollution group in Environment Canada) to create a joint North American center for oil spill response.

  16. Electrophoretically-deposited solid film lubricants

    SciTech Connect

    Dugger, M.T.; Panitz, J.K.J.; Vanecek, C.W.

    1995-04-01

    An aqueous-based process that uses electrophoresis to attract powdered lubricant in suspension to a charged target was developed. The deposition process yields coatings with low friction, complies with environmental safety regulations, requires minimal equipment, and has several advantages over processes involving organic binders or vacuum techniques. This work focuses on development of the deposition process, includes an analysis of the friction coefficient of the material in sliding contact with stainless steel under a range of conditions, and a functional evaluation of coating performance in a precision mechanical device application. Results show that solid lubricant films with friction coefficients as low as 0.03 can be produced. A 0.03 friction coefficient is superior to solid lubricants with binder systems and is comparable to friction coefficients generated with more costly vacuum techniques.

  17. Traction behavior of two traction lubricants

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Rohn, D. A.

    1983-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed.

  18. 7 CFR 3201.107 - Water turbine bearing oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    Lubricants that are specifically formulated for use in the bearings found in water turbines for electric power generation. Previously designated turbine drip oils are used to lubricate bearings of shaft driven water well turbine pumps. (b) Minimum biobased...

  19. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Lubricants designed for use in 2-cycle engines to provide lubrication...on the amount of qualifying biobased carbon in the product as a percent of the...preference for qualifying biobased 2-cycle engine oils. By that date,...

  20. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Lubricants designed for use in 2-cycle engines to provide lubrication...on the amount of qualifying biobased carbon in the product as a percent of the...preference for qualifying biobased 2-cycle engine oils. By that date,...

  1. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Lubricants designed for use in 2-cycle engines to provide lubrication...on the amount of qualifying biobased carbon in the product as a percent of the...preference for qualifying biobased 2-cycle engine oils. By that date,...

  2. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Lubricants designed for use in 2-cycle engines to provide lubrication...on the amount of qualifying biobased carbon in the product as a percent of the...preference for qualifying biobased 2-cycle engine oils. By that date,...

  3. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Lubricants designed for use in 2-cycle engines to provide lubrication...on the amount of qualifying biobased carbon in the product as a percent of the...preference for qualifying biobased 2-cycle engine oils. By that date,...

  4. Experience with synthetic fluorinated fluid lubricants

    NASA Technical Reports Server (NTRS)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  5. Tribological efficacy and stability of phospholipid-based membrane lubricants in varying pH chemical conditions.

    PubMed

    Pawlak, Zenon; Urbaniak, Wieslaw; Afara, Isaac O; Yusuf, Kehinde Q; Banaszak-Piechowska, Agnieszka; Oloyede, Adekunle

    2016-01-01

    In this study, the authors examine the influence of joint chemical environment by measuring changes in the tribological properties (friction coefficient and charge density) of contacting surfaces of normal and degenerated cartilage samples in bath solutions of varying pH (2.0-9.0). Bovine articular cartilage samples (n?=?54) were subjected to several surface measurements, including interfacial energy, contact angle, and friction coefficient, at varying pH. The samples were delipidized and then subjected to the same measurement protocols. Our results reveal that the interfacial energy and charge density, which have been shown to be related to friction coefficient, decrease with pH in the acidic range and approach constant values at physiological (or synovial fluid) pH of 7.4 and beyond it, i.e., toward basic pH domain. The authors conclude that this rather complex response explains the long-term efficacy with respect to ageing and associated pH changes, of the phospholipid layers that facilitate the almost frictionless, hydration-lubrication involving contact in the mammalian musculoskeletal system. PMID:26727914

  6. Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method

    E-print Network

    Chen, Haijie

    2011-01-01

    Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

  7. Bearing elastohydrodynamic lubrication: A complex calculation made simple

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    The lubricant elastohydrodynamic (EHD) film thickness formula is reduced to a simplified form whereby only the rolling-element bearing inside and outside diameters and speed (in revolutions per minute) and the lubricant type and viscosity (in centipoise) at temperature are required for its use. Additionally, a graph is provided for the first time that is based upon experimental data giving an EHD film reduction factor as a function of contact lubricant flow number. This reduction factor accounts for lubricant starvation within the Hertzian contact. A graph relating the ratio of minimum film thickness to composite surface roughness and a lubrication-life correction factor is also provided. The life correction factor is used to determine resultant bearing life.

  8. Lubricant reflow after laser heating in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Haoyu; Mendez, Alejandro Rodriguez; Xiong, Shaomin; Bogy, David B.

    2015-05-01

    In heat assisted magnetic recording (HAMR) technology for hard disk drives, the media will be heated to about 500 °C during the writing process in order to reduce its magnetic coercivity and thus allow data writing with the magnetic head transducers. The traditional lubricants such as Z-dol and Z-tetraol may not be able to perform in such harsh heating conditions due to evaporation, decomposition and thermal depletion. However, some of the lubricant depletion can be recovered due to reflow after a period of time, which can help to reduce the chance of head disk interface failure. In this study, experiments of lubricant thermal depletion and reflow were performed using a HAMR test stage for a Z-tetraol type lubricant. Various lubricant depletion profiles were generated using different laser heating conditions. The lubricant reflow process after thermal depletion was monitored by use of an optical surface analyzer. In addition, a continuum based lubrication model was developed to simulate the lubricant reflow process. Reasonably good agreement between simulations and experiments was achieved.

  9. Seal/lubricant systems for geothermal drilling equipment

    SciTech Connect

    Hendrickson, R.R.; Winzenried, R.W.

    1980-07-01

    The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

  10. The impact of lubricants on the precision lapping process.

    PubMed

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Wei, Zhongxian; Shen, Yuqiu; Yang, Zhizhou

    2014-12-01

    The impact of lubricants on pole-tip recession and surface morphology of hard disk drive heads in the precision lapping process was investigated with atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy. In particular, the effects of deionized water, hydrocarbon oil, ethanediol, isopropanol, and ethanol lubricants were evaluated. The results reveal that proper selection of lubricant is critical for achieving optimal performance in the lapping process. A mixture of 68% hydrocarbon oil, 30% isopropanol, and 2% octadecenoic acid was found to yield the most favorable results, displaying a writer shield recession, first shield of reader recession, and surface roughness of 0.423, 0.581, and 0.242 nm, respectively. PMID:25387606

  11. Sea water resistant turbo oil

    SciTech Connect

    Metro, S.J.; Carr, D.D.

    1987-04-07

    A lubricating oil composition is described comprising: A. a base oil; B. an alkylphenol; C. a salicylate salt; D. polyisobutylene succinic acid/amine reaction product; E. phosphate salt of an amine; and, F. a naphthenate. The total concentration of the alkylphenol, salicylate salt and polyisobutylene succinic acid/amine reaction product is in the range of between about 0.005 and about 1.5 wt %. The phosphate salt of an amine is present in an amount ranging between about 0.01 and about 2 wt %, and the naphthenate concentration ranges between about 0.006 and about 0.6 wt %.

  12. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  13. In vitro tests of substitute lubricants for wear testing orthopaedic biomaterials.

    PubMed

    Scholes, Susan C; Joyce, Thomas J

    2013-06-01

    Bovine serum is the lubricant recommended by several international standards for the wear testing of orthopaedic biomaterials; however, there are issues over its use due to batch variation, degradation, cost and safety. For these reasons, alternative lubricants were investigated. A 50-station Super-CTPOD (circularly translating pin-on-disc) wear test rig was used, which applied multidirectional motion to ultra-high-molecular-weight polyethylene test pins rubbing against cobalt chromium discs. Thirteen possible alternative lubricants were tested. The use of soy protein as a lubricant gave statistically higher wear, while soya oil, olive oil, Channel Island milk, whole milk, whey, wheatgerm oil, 11 mg/mL egg white, albumin/globulin mix and albumin/globulin/chondroitin sulphate mix all gave statistically lower wear than bovine serum. The lubricants giving the closest wear results to bovine serum were 20 and 40 mg/mL egg white solutions. A light absorbance assay found that these egg white solutions suffered from a high degradation rate that increased with increasing protein content. While egg white solutions offer the best alternative lubricant to bovine serum due to the wear volumes produced, cost-effectiveness and safety of handling, protein degradation will still occur, leading to the need for regular lubricant replacement. Of the lubricants tested in this study, none were found to be superior to bovine serum. PMID:23636752

  14. Glass microsphere lubrication

    NASA Technical Reports Server (NTRS)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the manufacturing of the microspheres, while sorting entails deciphering the good microspheres from the bad ones. Each process is discussed in detail.

  15. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  16. Biobased Lubricant Development - Problems and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased lubricants are those comprising ingredients derived from natural sources such as those harvested from farms, forests, etc. Biolubricants provide a number of economic, environmental and health benefits over petroleum-based products. Among these are: biodegradability, renewability and non-t...

  17. Polysulfide and bio-based EP additive performance in vegetable vs. paraffinic base oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twist compression test (TCT) and 4-ball extreme pressure (EP) methods were used to investigate commercial polysulfide (PS) and bio-based polyester (PE) EP additives in paraffinic (150N) and refined soybean (SOY) base oils of similar viscosity. Binary blends of EP additive and base oil were investiga...

  18. 9. UNIT 4, 'DOG HOLE' IN TURBINE, SHOWING LUBRICATING LINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. UNIT 4, 'DOG HOLE' IN TURBINE, SHOWING LUBRICATING LINES ENTERING TURBINE BEARING HOUSING THROUGH FORMER 'SIGHT GLASSES,' WITH OVERFLOW/RETURN OIL PIPE (CENTER FOREGROUND) - Washington Water Power Company Monroe Street Plant, Units 4 & 5, South Bank Spokane River, below Monroe Street Bridge, Spokane, Spokane County, WA

  19. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...

  20. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...