Science.gov

Sample records for oil field centrifuge

  1. A Fuzzy Feed-Forward/Feedback Control System for a Three-Phase Oil Field Centrifuge.

    SciTech Connect

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad; Miller, N.

    2002-01-01

    A set of fuzzy controllers was designed and applied to a commercial three-phase oil field centrifuge. This centrifuge is essentially a one of a kind unit. It is used to recover oil from tank bottoms and oil field and/or refinery sludge. It is unique because it can separate oily emulsions into three separate phases, oil, water, and solids, in one operation. The centrifuge is a large but portable device. It is moved form site to site and is used to separate a large variety of waste emulsions. The centrifuge feedstock varies significantly from site to site and often varies significantly during the daily operation. In this application, fuzzy logic was used on a class of problems not easily solved by classical control techniques. The oil field centrifuge is a highly nonlinear system, with a time varying input. We have been unable to develop a physical-mathematical model of the portion of the centrifuge operation that actually separates the oil, water, and solids. For this portion of the operation we developed a fuzzy feedback control system that modeled a skilled operator's knowledge and actions as opposed to the physical model of the centrifuge itself. Because of the variable feed we had to develop a feed-forward controller that would sense and react to feed changes prior to the time that the actual change reached the centrifuge separation unit. This portion of the control system was also a fuzzy controller designed around the knowledge of a skilled operator. In addition to the combined feed-forward and feedback control systems, we developed a soft-sensor that was used to determine the value of variables needed for the feed-forward control system. These variables could not actually be measured but were calculated from the measurement of other variables. The soft-sensor was developed with a combination of a physical model of the feed system and a skilled operator's expert knowledge. Finally the entire control system is tied together with a fuzzy-SPC (Statistical Process

  2. A fuzzy control system for a three-phase oil field centrifuge

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Wantuck, P.J.; Miller, N.

    1998-12-31

    The three-phase centrifuge discussed here is an excellent device for cleaning up oil field and refinery wastes. These wastes are typically composed of hydrocarbons, water, and solids. This technology converts waste, which is often classified as hazardous, into salable oil, reusable water, and solids that can be placed in landfills. No secondary waste is produced. A major problem is that only one person can set up and run the equipment well enough to provide an optimal cleanup. Demand for this technology has far exceeded a one-man operation. The solution to this problem is an intelligent control system that can replace a highly skilled operator so that several centrifuges can be operated at different locations at the same time.

  3. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  4. Fuzzy SPC filter for a feed-forward control system for a three-phase oil field centrifuge.

    SciTech Connect

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Jamshidi, Mohammad; Ross, Timothy J.

    2002-01-01

    In this work we describe a signal filter for a feed-forward controller based on the application of fuzzy logic combined with statistical process control (SPC), The feed-forward controller is for a three-phase oil field centrifuge. The centrifuge system is used to separate meta-stable three-phase emulsions consisting of oil and water stabilized by solids. These emulsions are considered to be unusable wastes and must be disposed of in an environmentally acceptable manner. The centrifuge is capable of turning these wastes into clean saleable oil, water that can be reused in an operating process or re-injected into oil wells and, solids that can be disposed of in landfills. The feed-forward controller is used for feed disturbance rejection. It works in conjunction with and, is capable of over-riding the actions of, a feedback controller. The measured feed variables for the feed-forward controller each exhibit reasonably large random fluctuations. It is therefore quite important to use a signal filter that truly recognizes the difference between random noise and a 'caused' event, in order to prevent overriding a perfectly good correction from the feedback controller.

  5. 19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND OIL TANK, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  6. Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  7. Lube oil centrifuge saves Odeco $360,000/year

    SciTech Connect

    Closs, D.E.

    1983-05-01

    Purifying centrifuges were installed in the offshore drilling operation diesel engines of the Odeco Co. of New Orleans. The centrifuges extend filter life fourfold, eliminate the need to change oil at all, and defer the need for costly overhauls indefinitely. The Alfa-Laval built centrifuges were placed on 23 mobile rigs that Odeco has working in the Gulf of Mexico, and they paid for their cost twice over during the first year of operation. Originally, a lubricant centrifuge was tested aboard the Ocean Tempest. The results were so remarkable that similar installations were placed on all other vessels in the domestic drilling division.

  8. Rhie-Chow interpolation in strong centrifugal fields

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  9. Modeling of Centrifugal Force Field and the Effect on Filling and Solidification in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sheng, Wenbin; Ma, Chunxue; Gu, Wanli

    2011-06-01

    Based on the steady flow in a tube, a mathematical model has been established for the consideration of centrifuging force field by combining the equations of continuity, conservation of momentum and general energy. Effects of centrifugal field on the filling and solidification are modeled by two accessional terms: centrifugal force and Chorios force. In addition, the transfer of heat by convection is considered to achieve a coupling calculation of velocity field and temperature field. The solution of pressure item is avoided by introducing the stream function ψ(x,y) and the eddy function ξ(x,y). Corresponding difference formats for the simultaneous equations of centrifugal filling, the accessional terms and the solidifying latent heat have been established by the finite difference technique. Furthermore, the centrifugal filling and solidification processes in a horizontal tube are summarized to interpret the mechanism by which internal defects are formed in centrifugal castings.

  10. Damping of Sound Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    A method for numerical calculation of the sound wave damping and dispersion law in a strong centrifugal field of the order of 106 g is considered. The damping is defined from the width of the resonance peak for different wave vectors. In the strong centrifugal field damping of the sound waves essentially exceeds the damping in the quiescent gas.

  11. Gas dynamics in strong centrifugal fields

    SciTech Connect

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  12. Clocks & particles in a centrifugal field

    NASA Astrophysics Data System (ADS)

    Favaron, Marco

    We are proposing a new approach to investigate the physical effects of the centrifugal acceleration in an inertial reference system. Our proposal is based primarily on geometrical considerations, built on the extension of the equivalence principle. The equivalence principle is then used to derive an effective Schwarzschild radius. After having developed the equations, we propose an experiment to detect the effect of the centrifugal acceleration on the time. We compute also the consequence on the unstable particle's lifetime. The testability of our model is well reachable from our present technology.

  13. Waves in strong centrifugal fields: dissipationless gas

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  14. CENTRIFUGE

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  15. Oil-free centrifugal hydrogen compression technology demonstration

    SciTech Connect

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  16. Deformation of human erythrocytes in a centrifugal field.

    PubMed Central

    Corry, W D; Meiselman, H J

    1978-01-01

    A new method for altering red cell morphology by high-speed centrifugation of cells through a physiological medium is described. Cell shape is preserved for microscopic analysis by allowing the sedimenting cells to pass from the physiological medium into a glutaraldehyde fixative solution. Examination of the deformed, fixed cells indicates that the vast majority resemble spheres with a flat, triangular tail. Measurements of the overall length of deformed cells show a nearly linear relationship between cell length and centrifugal force; average cell length increased from 8 to 11 micrometer as the centrifugal field was increased from 2,000 to 15,000 g. These data suggest that this centrifugal technique may be useful for evaluating cellular deformability and, potentially, the material properties of red cells. Images FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 7 PMID:413592

  17. Demonstration of Reduced Gas Pressure in a Centrifugal Field.

    ERIC Educational Resources Information Center

    Fischer, Fred; Wild, R. L.

    1979-01-01

    Describes a simple demonstration that shows the change in molecular density and the reduction in pressure of air in a centrifugal field. Uses two circular disks with the same radius and rotating with the same angular velocity, in loose mutual contact, around their symmetry axis. (GA)

  18. Sedimentation of a suspension in a centrifugal field.

    PubMed

    Lueptow, R M; Hübler, W

    1991-11-01

    To model centrifugal sedimentation of biological suspensions, the time history of sedimentation of particles in a centrifugal field was considered for two geometries: a tube and a cylindrical container. The Kynch theory for batch gravitational settling in Cartesian coordinates based on mass conservation was extended to include a centrifugal sedimentation force, cylindrical coordinates, and the Hawksley-Vand hindered settling model. The resulting quasi-linear partial differential equation was solved by the method of characteristics. The combination of radial dependence of the sedimentation force and cylindrical geometry in the centrifugal case results in several differences in the time-position history diagram of the sedimentation process compared to the gravitational case. First, instead of a region of uniform concentration equal to the initial concentration, a region of concentration that is continuously decreasing with time results. Second, in the region of particle accumulation, curved constant concentration contours result instead of straight lines. Finally, a secondary shock that is dependent upon the initial concentration and the radius ratio of the rotating vessel appears in the centrifugal case. The time history of the concentration for a particle suspension with an initial concentration typical of blood is presented. PMID:1762447

  19. Study on vibration suppression based on particle damping in centrifugal field of gear transmission

    NASA Astrophysics Data System (ADS)

    Xiao, Wangqiang; Li, Jiani; Wang, Sheng; Fang, Xiaomeng

    2016-03-01

    Though particle damping technology has been applied to vibration suppression in steady state, there are few reports about the study of particle dampers in centrifugal fields because of its nonlinear damping performance and complex mechanism. Introducing particle damping technology into gear transmission will effectively reduce the vibration from gear engaging, especially for harsh working conditions, such as high temperature and oil lubrication. In this paper, we have explored the mechanism of gear excitation and determined the relationship between the rotational speed and gear's modal parameters in centrifugal fields. A mechanical model of the particle damper based on the discrete element method (DEM) in centrifugal fields has been established. Furthermore, the DEM model has been verified by comparing simulation data with experimental data. Based on the model, we have discussed the particle damper's energy dissipation mechanism in centrifugal fields, as well as the calculation method of energy dissipation. Moreover, the influence of the particle size on energy dissipation characteristics has been analyzed. The results can provide theoretical guidance for vibration and noise reduction of the gear transmission.

  20. Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells.

    PubMed

    Ghasemi Naghdi, Forough; Schenk, Peer M

    2016-10-01

    Solvent-free microalgal lipid recovery is highly desirable for safer, more sustainable and more economical microalgal oil production. Dispersed air flotation and centrifugation were evaluated for the ability to separate oil and debris from a slurry mixture of osmotically fractured Chaetoceros muelleri cells with and without utilizing collectors. Microalgal oil partially phase-separated as a top layer and partially formed an oil-in-water emulsion. Although collectors, such as sodium dodecyl sulphate enhanced selective flotation, by just adjusting the pH and cell concentration of the mixture, up to 78% of the lipids were recovered in the froth. Using centrifugation of fractured microalgal slurry resulted in removal of 60% cell debris and up to 68.5% of microalgal oil was present in the supernatant. Both methods, centrifugation and flotation provided options for separation of microalgal oil from C. muelleri slurry with similar fatty acid recoveries of 57% and 60%, respectively. PMID:27393833

  1. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  2. Excessive centrifugal fields damage high density lipoprotein[S

    PubMed Central

    Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.

    2015-01-01

    HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941

  3. Improvement in methanol oxidation in a centrifugal field

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Scott, K.

    Oxidation of methanol at a Pt-Ru/Ti mini-mesh anode has been investigated. The oxidation is efficient giving low anode potential, e.g. 520 mV versus RHE at a current density of 200 mA cm -2. The potentials were lower than that obtained at catalysed carbon cloth anode and at catalysed Teflon-bonded gas diffusion anode, under similar conditions. An outstanding performance was demonstrated by subjecting the electrolytic cell, including the electrolytes, to centrifugal force to enhance mass transfer and to accelerate gas bubble disengagement from the electrode surfaces, the electrolytes and the membrane. The acceleration field caused a significant reduction in the anode potential (up to 500 mV at 300 mA cm -2), compared with a static cell, and increased current density greatly by up to 250 mA cm -2 at 500 mV versus RHE, at a relative acceleration rate of 190 and at 80 °C. Increasing the methanol concentration and the electrolyte temperature increased the rate of methanol oxidation. An increase in the concentration of the electrolyte led to a reduction in the cell resistance. These improvements in anode potential were improved further in a centrifugal field, compared to a gravitational field.

  4. The composition of corn oil produced after fermentation via centrifugation in a commercial dry grind ethanol process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the chemical composition of corn oil obtained via centrifugation after fermentation of corn to make fuel ethanol, and compare its composition to that of corn germ oil (commercial corn oil) and experimental corn oils. The levels of free fatty acids in the post fermen...

  5. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Korobenko, A.; Milner, V.

    2016-05-01

    We use an optical centrifuge to align asymmetric top SO2 molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

  6. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  7. The influence of centrifugal forces on the B field structure of an axially symmetric equilibrium magnetosphere

    NASA Technical Reports Server (NTRS)

    Ye, Gang; Voigt, Gerd-Hannes

    1989-01-01

    A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.

  8. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.

    PubMed

    Korobenko, A; Milner, V

    2016-05-01

    We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light. PMID:27203318

  9. A numerical study on the flow and sound fields of centrifugal impeller located near a wedge

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo

    2003-09-01

    Centrifugal fans are widely used and the noise generated by these machines causes one of the serious problems. In general, the centrifugal fan noise is often dominated by tones at blade passage frequency and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cut-off in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and considering the scattering effect of the casing. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of the centrifugal impeller. A discrete vortex method is used to model the centrifugal impeller and a wedge and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. In order to consider the scattering and diffraction effects of the casing, Kirchhoff-Helmholtz boundary element method (BEM) is developed. The source of Kirchhoff-Helmholtz BEM is newly developed, so the sound field of the centrifugal fan can be obtained. A centrifugal impeller and wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effect of the wedge.

  10. Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhu; Chen, Gang; Zhu, Changyun; Qin, Guoliang

    2013-03-01

    In order to study the flow field in the impeller in the accelerating start-up process of centrifugal compressor, the 3-D and 1-D transient accelerated flow governing equations along streamline in the impeller of the centrifugal compressor are derived in detail, the assumption of pressure gradient distribution is presented, and the solving method for 1-D transient accelerating flow field is given based on the assumption. The solving method is achieved by programming and the computing result is obtained. It is obtained by comparison that the computing method is met with the test result. So the feasibility and effectiveness for solving accelerating start-up problem of centrifugal compressor by the solving method in this paper is proven.

  11. Confinement of Plasma along Shaped Open Magnetic Fields from the Centrifugal Force of Supersonic Plasma Rotation

    SciTech Connect

    Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  12. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  13. Experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1992-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational analysis, and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the rotor as well as surface flow visualization along the impeller blade surfaces provide independent confirmation of the laser measurement technique.

  14. Experimental and computational studies of the relative flow field in a centrifugal blood pump.

    PubMed

    Ng, B T; Chan, W K; Yu, S C; Li, H D

    2000-01-01

    The relative flow field within the impeller passage of a centrifugal blood pump had been examined using flow visualization technique and computational fluid dynamics. It was found that for a seven-blade radial impeller design, the required flow rate and static pressure rise across the pump could be achieved but the flow field within the blades was highly undesirable. Two vortices were observed near the suction side and these could lead to thrombus formation. Preliminary results presented in this article are part of our overall effort to minimize undesirable flow patterns such flow separation and high shear stress regions within the centrifugal blood pump. This will facilitate the future progress in developing a long-term clinically effective blood pump. PMID:10999375

  15. Interdependence of centrifugal compressor blade geometry and relative flow field

    NASA Astrophysics Data System (ADS)

    Krain, H.

    1985-03-01

    The influence of the impeller blade geometry on the calculated relative flow field has been studied by means of an impeller design program available at DFVLR (Krain, 1984). Several geometrical parameters were varied, however, the meridional channel geometry was always kept constant. By this approach the blade wrap angle has been found to react significantly on the relative flow which is illustrated by comparing two designs with different wrap angles. Primarily in the hub/leading edge area a better boundary layer flow connected with a reduction of blade loading was obtained by increasing the wrap angle. But also in the shroud/pressure side area the increased blade looping attributed to an additional flow stabilization.

  16. Factors in the Design of Centrifugal Type Injection Valves for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, E G

    1928-01-01

    This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.

  17. Numerical calculation of the internal flow field in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Harp, J. L., Jr.; Liu, C. Y.

    1975-01-01

    An iterative numerical method has been developed for the calculation of steady, three-dimensional, viscous, compressible flow fields in centrifugal compressor impellers. The computer code, which embodies the method, solves the steady three dimensional, compressible Navier-Stokes equations in rotating, curvilinear coordinates. The solution takes place on blade-to-blade surfaces of revolution which move from the hub to the shroud during each iteration.

  18. Structure characteristics in industrially centrifugally cast 25Cr20Ni stainless steel tubes solidified under different electromagnetic field intensity

    SciTech Connect

    Wu, X.Q.; Yang, Y.S.; Zhang, J.S.; Jia, G.L.; Hu, Z.Q.

    1999-10-01

    The influences of different electromagnetic field intensities on the solidification structures of industrially centrifugally cast 25Cr20Ni stainless steel tubes have been investigated in detail. The results reveal that the electromagnetic field exerted during the centrifugal solidification causes a marked variation in the structures of the cast tubes. With an increase of the electromagnetic field intensity, the area fraction of the equiaxed structures in transverse sections of the cast tubes increases, and the macrostructures are gradually refined. The distribution of the eutectic carbides changes from the dendrite boundaries to the grain boundaries. However, an excessive electromagnetic field intensity gives rise to many intergranular cast defects formed along the inner walls of the centrifugally cast tubes. The effects of fluid flow induced by the electromagnetic field on the solidification process of the centrifugally cast tubes are the primary reason for the previously mentioned structure variations.

  19. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  20. Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation.

    PubMed

    Wang, Gou-Jen; Hsu, Wen-Haw; Chang, Yau-Zin; Yang, Hsiharng

    2004-03-01

    In this article, we propose a versatile CD-like multi-channel electrophoresis-based biomedical separation system that is driven by the interactive forces between the centrifugal force and the electric field force. The centrifugal force control of this system is realized through the velocity control of a DC servo motor, while the electric field is governed through the concentric conducting circuits, which are suitably designed and fabricated by sputtering on metal mask method, and can be adjusted to provide multi-stage voltages. Experimental results demonstrate that the electro-osmotic flow (EOF) effect can be effectively reduced when the electric field force and centrifugal force are in the opposite direction. Benefits from this are that the electrophoresis separation time can be prolonged and the length of the microfluidic channels can be shortened; therefore, more effective separation efficiency can be obtained. Moreover, other advantages, such as lower joule-heat generation, low-chemistry reaction, and no variation on the ion concentration during processes, make this biomedical separation system more useful. PMID:15307444

  1. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    NASA Astrophysics Data System (ADS)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  2. Liquid-particle dynamics and rate of evaporation in the rotating field of centrifugal compressors

    SciTech Connect

    Pinkus, O.

    1981-01-01

    A model is presented which consists of injecting a liquid coolant into the vapor of centrifugal compressors via slots in the rotating blades. The aim of the injection is to achieve isothermal compression and thus minimal work input. The 3-dimensional analysis determines the relative velocities and trajectories of the liquid particles, and their rate of vaporization as a function of the prevailing flow field and inlet conditions. Inertia, viscous drag, centrifugal and Coriolis forces are all included. The computer-obtained results show that for optimum conditions and to avoid collision with the blades it is desirable that injection occur at the suction side of the blades and close to the hub; that low rather than high initial particle velocities are preferred; and that small droplet sizes are required both to avoid blade erosion and to assure the highest rate of vaporization. The analysis also shows that vaporization levels will remain low unless the compressed vapor is at relatively high temperatures.

  3. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  4. Field verification of lateral-torsional coupling effects on rotor instabilities in centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Wachel, J. C.; Szenasi, F. R.

    1980-01-01

    Lateral and torsional vibration data obtained on a centrifugal compressor train which had shaft instabilities and gear failures is examined. The field data verifies that the stability of centrifugal compressors can be adversely affected by coincidence of torsional natural frequencies with lateral instability frequencies. The data also indicates that excitation energy from gear boxes can reduce stability margins if energy is transmitted either laterally or torsionally to the compressors. The lateral and torsional coupling mechanisms of shaft systems is discussed. The coupling mechanisms in a large industrial compressor train are documented and the potential effect on rotor stability is demonstrated. Guidelines are set forth to eliminate these potential problems by minimizing the interaction of torsional and lateral responses and their effect on rotor stability.

  5. Field performance of a premium heating oil

    SciTech Connect

    Santa, T.; Jetter, S.

    1997-01-01

    As part of ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. The performance of this premium heating oil is discussed.

  6. Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2016-04-01

    Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.

  7. Oil field redevelopment -- some lessons learned

    SciTech Connect

    Robertson, M.

    1996-12-31

    This paper presents a summary of some oil field redevelopment experiences that resulted in unanticipated expenses or other inconveniences and consequently became learning experiences. Compared with many other types of contaminated properties, oil fields are relatively easy to remediate. The primary contaminant is crude oil ranging in nature from hard and weathered tar to fresh crude with a notable fraction of light end hydrocarbons. Groundwater is usually not impacted due to the low mobility and solubility of crude oil. Crude oil overall has a relatively low toxicity, is not considered a hazardous material and can usually be easily remediated using bioremediation. All of these factors contribute to the notion that oil fields are low risk in terms of cleanup. However, experience has shown that oil field redevelopment does have some risks as is illustrated by examples.

  8. Magnetic field effect on waves in a centrifuged layer of a rotating conducting viscous fluid

    NASA Astrophysics Data System (ADS)

    Klueva, N. V.; Sandalov, V. M.; Tkach, M. E.; Soldatov, I. N.

    2015-05-01

    This paper considers wave processes in a centrifuged layer of an incompressible viscous conducting fluid in an axial magnetic field in the cavity of a rapidly rotating infinite cylinder with insulating walls. Inertial modes (solutions of the linearized boundary-value problem of magnetohydrodynamics) are represented as a superposition of helical fields. Expressions for the vorticity parameters of the helical flows forming the inertial mode at a small Stewart number are given. Dispersion curves of inertial waves are constructed, and the influence of the magnetic field on the flow field is analyzed. The critical frequencies at which the lowest (surface) mode arises are determined. The spatial and temporal stability of the modes are investigated.

  9. Abandoned oil fields of Texas Gulf Coast

    SciTech Connect

    Dutton, S.P.

    1984-04-01

    One nonconventional oil target in Texas is the oil that remains in abandoned fields, defined as those fields that had no oil or gas production in 1977 and 1982. This target includes oil that has not been tapped by conventional field development because of reservoir heterogeneity and oil in reservoirs that have not been subjected to any secondary or tertiary recovery efforts. A total of 138 abandoned oil fields having individual cumulative production greater than 500,000 bbl are located in the Texas Gulf Coast (railroad Commission of Texas Districts 2, 3, and 4). These 138 onshore fields produced 276 million barrels of oil before being abandoned. Nongiant fields in the Texas Gulf Coast average about 40% ultimate recovery, so these fields probably originally contained about 700 million bbl of oil in place. Therefore, about 424 million bbl of oil remain unrecovered. Reservoirs in these abandoned fields are Tertiary sandstones. The 44 abandoned fields in the upper Texas Gulf Coast (District 3) produced from a wide range of plays; those plays with the largest number of abandoned fields are Yegua and Frio deep-seated domes, Eocene deltaic sandstone, and Frio barrier/strand-plain sandstone. The 19 abandoned fields in the middle Texas Gulf Coast (District 2) produced mainly from Wilcox and Frio fluvial/deltaic sandstones and from Frio and Jackson-Yegua barrier/strand-plain sandstones. The lower Texas Gulf Coast (District 4) contains 75 abandoned fields that produced from Frio fluvial/deltaic and barrier/strand-plain sandstones and from Jackson-Yegua barrier/strand-plain sandstones.

  10. Crude oil from Tengiz field

    SciTech Connect

    Dorogochinskaya, V.A.; Shul'zhenko, E.D.; Varshaver, V.P.; Khabibulina, R.K.; Kochuleva, L.R.

    1988-03-01

    Analyses were performed on samples taken from exploratory wells. Physicochemical characteristics of the oil were determined as light, low-pour, and high-wax, with low percentages of resins, asphaltenes, and sulfur; the oil contained practically no vanadium or nickel. The kerosine cuts were high in acidity and sulfur content, and diesel fuel cuts met all requirements for L-0.5-61 diesel fuel. The potential contents and properties of distillate and residual lube base stocks are shown and yields of oil base stocks with 96 and 90 V.I. are presented. The residues had high solid points, low viscosities, and high levels of carbon residue, ash, and sulfur content.

  11. Application of centrifugal fields in fused salt electrowinning with a view to reducing electrolytic energy consumption

    SciTech Connect

    Cox, A.; Fray, D.J.

    1996-12-01

    A high-temperature, laboratory scale electrochemical cell was designed, constructed, and commissioned to investigate the use of centrifugal fields in fused salt electrolysis production of light metals. Fused salt electrowinning of zinc was initially investigated due to the simpler physical and chemical nature of the Zn{sub l}{vert_bar}ZnCl{sub 2(l)}:KCl{sub l}{vert_bar}Cl{sub 2(g)} system. Current efficiencies of 93 pct were obtained for an electrode spacing of 8 mm using 70-mm-diameter plane disc electrodes rotating at 100 rpm, significantly reducing the resistive contribution to the cell voltage. By reducing the immersion depth of the electrodes from 25 to 10 mm, current efficiencies of 88 pct were obtained for an electrode spacing of only 4 mm for the same operating conditions, further decreasing the resistive contribution to the cell voltage.

  12. Application of centrifugal fields in fused salt electrowinning with a view to reducing electrolytic energy consumption

    NASA Astrophysics Data System (ADS)

    Cox, Antony; Fray, Derek J.

    1996-12-01

    A high-temperature, laboratory scale electrochemical cell was designed, constructed, and commissioned to investigate the use of centrifugal fields in fused salt electrolysis production of light metals. Fused salt electrowinning of zinc was initially investigated due to the simpler physical and chemical nature of the Zn( l)‖ZnCl2( l):KCl( l)‖Cl2( g) system. Current efficiencies of 93 pct were obtained for an electrode spacing of 8 mm using 70-mm-diameter plane disc electrodes rotating at 100 rpm, significantly reducing the resistive contribution to the cell voltage. By reducing the immersion depth of the electrodes from 25 to 10 mm, current efficiencies of 88 pct were obtained for an electrode spacing of only 4 mm for the same operating conditions, further decreasing the resistive contribution to the cell voltage.

  13. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  14. Field performance of a premium heating oil

    SciTech Connect

    Santa, T.; Jetter, S.M.

    1996-07-01

    As part of our ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel, Inc., conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. Fuel related, unscheduled service calls were monitored in this test area, as well as in a similar baseline area that did not receive the premium heating oil. Overall, the premium fuel provided a 45% reduction in the occurrence of fuel related, unscheduled service calls as compared to the baseline area. Within this population, there was a reduction of 38% in systems with 275 gallon tanks, and 55% in systems that had >275 gallon tanks showing that the additive is effective in the various configurations of residential oil heat systems. In addition, photographic documentation collected at two accounts supported this improvement by clearly showing that the equipment remained cleaner with the premium heating oil than with regular heating oil. Based on these results, a full marketing trial of this new product has been initiated by Mobil and Santa Fuel, Inc., during the 1995-1996 heating season.

  15. Fault seals in oil fields in Nevada

    SciTech Connect

    Foster, N.H.; Veal, H.K.; Bortz, L.C.

    1987-08-01

    Faults forms seals for oil accumulations in the Eagle Springs, Trap Spring, and Blackburn fields, and probably in the Grant Canyon field, in Nevada. The main boundary fault on the east side of the Pine Valley graben forms a seal in the Blackburn field. A fault on the west side of the trap Spring field forms a seal. In Grant Canyon field, it is interpreted that the main boundary fault on the east side of the Railroad Valley graben forms a seal. Calcite is deposited by hot spring activity, plugging up many fault zones and, in some cases, forming seals. Some fault zones have calcite mineralization up to several thousand feet wide. Within the Eagle Springs field on the east side of the Railroad Valley graben, a northeast-trending fault separates oil accumulations with different oil-water contacts. This separation indicates that the fault forms at least a partial seal within the accumulation.

  16. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.

    PubMed

    Reis, Wieland G; Weitz, R Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (10(5)) and field-effect mobilities (17 cm(2)/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  17. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Weitz, R. Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-05-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105) and field-effect mobilities (17 cm2/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production.

  18. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    PubMed Central

    Reis, Wieland G.; Weitz, R. Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105) and field-effect mobilities (17 cm2/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  19. Grant Canyon oil field, Nye County, Nevada

    SciTech Connect

    Veal, H.K.; Duey, H.D.; Bortz, L.C.; Foster, N.H.

    1987-08-01

    The Grant Canyon field is located on the east side of Railroad Valley, 8 mi south of the Eagle Springs oil field. The discovery well, 1 Grant Canyon Unit (SW 1/4 NW 1/4, Sec. 21, T7S, R57E), was completed by Northwest Exploration Co. on September 11, 1983, flowing 1816 BOPD from the Devonian Simonson(.) dolomite (4374-4448 ft). Two additional wells have been completed in the field. Cumulative oil production through December 31, 1986, is 5,260,430 bbl of oil. During December 1986, wells 3 and 4 flowed an average of 5189 BOPD. Well 4 averaged 4065 BOPD for a recent monthly total. The discovery well (1) has been shut-in. The productive area is about 240 acres. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Simonson(.) reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary valley fill which unconformably overlies the Simonson(.) dolomite. The oil column is about 400 ft thick and the field apparently has an active water drive, inasmuch as the 1 Unit had to be shut-in because of water production. The oil is black, 26/sup 0/ API gravity, a pour point of 10/sup 0/F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13,000,000 bbl of oil. The adjacent Bacon Flat field is a one-well field (SW 1/4 SW 1/4, Sec. 17, T7N, R57E) that was completed by Northwest Exploration Co. on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette(.) limestone (5316-5333 ft). Cumulative production through December 31, 1986, is 209,649 bbl of oil, and this well averaged 215 BOPD during December 1986.

  20. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  1. Grant Canyon oil field, Nye County, Nevada

    SciTech Connect

    Duey, H.D.; Veal, H.K.; Bortz, L.C.; Foster, N.H.

    1988-03-01

    The Grant Canyon field is located on the east side of Railroad Valley, Nevada, 8 mi south of the Eagle Springs oil field. The discovery well, 1 Grant Canyon Unit (SW1/4NW1/4, Sec. 21, T7S, T57E), was completed by Northwest Exploration Company on September 11, 1983, flowing 1816 BOPD, probably from the Devonian Simonson Dolomite (4375-4448 ft). Two additional wells have been completed in the field. Cumulative oil production through December 31, 1986, is 5,260,430 bbl of oil. During December 1986, wells 3 and 4 flowed an average of 5189 BOPD. Well 4 averaged 4065 BOPD for a recent month. The discovery well has been shut-in. The productive area is about 240 ac. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Simonson reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary valley fill, which unconformably overlies the Simonson Dolomite. The oil column is about 400 ft and the field apparently has an active water drive, inasmuch as the 1 Grant Canyon Unit had to be shut-in because of water production. The oil is black, 26/sup 0/API gravity, with a pour point of 10/sup 0/F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13,000,000 bbl. The adjacent Bacon Flat field is a one-well field (SW1/4SW1/4, Sec. 17, T7N, R57E) that was completed by Northwest Exploration Company on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette Limestone (5316-5333 ft). Cumulative production through December 31, 1986, was 209,649 bbl of oil. This well averaged 215 BOPD during December 1986.

  2. Methanogenic Oil Degradation in the Dagang Oil Field

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans Hermann; Krüger, Martin

    2014-05-01

    Anaerobic biodegradation is one of the main in situ oil transformation processes in subsurface oil reservoirs. Recent studies have provided evidence of biodegradation of residual oil constituents under methanogenic conditions. Methane, like other biogenic gases, may contribute to reduce the viscosity of oil and enhance its flow characteristics (making it more available) but it can also be used as a energy source. So the aim of the present study was to provide reliable information on in situ biotransformation of oil under methanogenic conditions, and to assess the feasibility of implementing a MEOR strategy at this site. For this reason, chemical and isotopic analyses of injection and production fluids of the Dagang oil field (Hebei province, China) were performed. Microbial abundances were assessed by qPCR, and clone libraries were performed to study the diversity. In addition, microcosms with either oil or 13C-labelled hydrocarbons were inoculated with injection or production waters to characterize microbial processes in vitro. Geochemical and isotopic data were consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation: GC-MS profiles of petroleum samples were nearly devoid of n-alkanes, linear alkylbenzenes, and alkyltoluenes, and light PAH, confirming that Dagang oil is mostly highly weathered. In addition, carbon and hydrogen isotopic signatures of methane (δ13CCH4 and δDCH4, respectively), and the bulk isotopic discrimination (Δδ13C) between methane and CO2 (between 32 and 65 ) were in accordance with previously reported values for methane formation during hydrocarbon degradation. Furthermore, methane-producing Archaea and hydrocarbon-degrading Bacteria were abundant in produced oil-water samples. On the other hand, our laboratory degradation experiments revealed that autochthonous microbiota are capable of significantly degrade oil within several months, with biodegradation patterns resembling those

  3. Reclamation planning for oil and gas fields

    SciTech Connect

    Lahti, T.

    1990-12-31

    Oil and gas activity began in Rocky Mountain Region during the early 1900`s. Many of the early fields are still producing today. During the initial development of these older fields, little emphasis was placed upon environmental protection activities and reclamation of disturbed areas. Today, many of the {open_quotes}older fields{close_quotes} continue to change without a plan for environmental protection and reclamation. Reclamation of producing fields should begin immediately after a well site is equipped for production. Disturbed areas, no longer needed for operations, should be recontoured and revegetated to stabilize the site and reduce erosion. The Wyoming Bureau of Land Management (BLM) has developed a planning process for use by petroleum industry representatives, in conjunction with the BLM, whenever they are proposing expansion of new fields or planning the reclamation of existing disturbances. The procedures contained in this planning process can help resolve conflicts while guiding operators as they develop reasonable measures to mitigate the impacts of oil and gas development and production. The oil and gas operators, working with the BLM, or other land management entities, should establish a planned priority schedule for completing necessary maintenance and reclamation-related field work. This plan will help the operator budget his resources and work with the land manager to meet present and future responsibilities for environmental protection, reclamation, and final abandonment. Development and implementation of a field reclamation plan encourages the operator to condition a field for reclamation prior to final abandonment. The primary objective of this paper is to describe a procedure for the development of oil and gas field reclamation plans. This procedure establishes guidelines for reclamation planning of existing oil and gas fields on the Bureau of Land Management administered public lands in Wyoming.

  4. Amposta oil field (Spanish Mediterranean offshore)

    SciTech Connect

    Seeman, U. )

    1988-08-01

    The Amposta oil field lies some 20 km off the Mediterranean coast of Spain directly south of the Ebro delta in 70 m of water. The field is operated by Shell in association with Repsol Exploracion (the Spanish national oil company) and Coparex. The field was discovered in 1970 and came on stream in 1972, reaching a maximum production of 40,000 bbl/day. The current cumulative production of 55.7 million bbl is just 300,000 bbl short of the field's expected ultimate primary recovery. Original production was established via a single-buoy mooring system (SBM) with a permanently moored tanker acting as a floating storage vessel. Oil is produced from a fractured, karstified Lower Cretaceous limestone reservoir in a tilted fault-block structure (areal closure is 900 ha), sealed by overlying Miocene clastics. The top of the reservoir is at 1,746 m; the original oil column was 194 m. Designing the optimal production/drainage scheme for a complex reservoir such as the Amposta field with its intricate pore geometry (channels, caves, and fractures) formed an interesting challenge. The field has produced from 7 wells so far. Until recently pressure could be maintained and dry oil produced. Enhanced recovery tests (gas injection) are presently being undertaken. The heavy, undersaturated, high-sulfur crude (17{degree} API, gas-oil ratio of 380 scf/bbl, and 5.5% sulfur) is an early expulsion product generated from a marly/chalky type II source rock sequence of latest Jurassic-earliest Cretaceous age, underlying the field.

  5. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  6. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  7. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  8. Innovative technologies for managing oil field waste.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    2003-09-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  9. Development of the seeding system used for laser velocimeter surveys of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.; Hathaway, Michael D.

    1993-01-01

    An atomizer-based system for distributing high-volume rates of seed material was developed to support laser velocimeter investigations of the NASA Low-Speed Centrifugal Compressor flow field. The seeding system and the major concerns that were addressed during its development are described. Of primary importance were that the seed material be dispersed as single particles and that the liquid carrier used be completely evaporated before entering the compressor.

  10. Sacha oil field of Ecuadorian Oriente

    SciTech Connect

    Canfield, R.W.; Bonilla, G.; Robbins, R.K.

    1982-08-01

    The Sacha oil field in the Ecuadorian Oriente was discovered in early 1969. Production began in July 1972, and at the end of 1980 had exceeded 190 million bbl. Drilling through 1980 had resulted in 91 oil wells and 2 dry holes. Estimated original primary recoverable reserves surpass 632 million bbl. The field is on a very low-relief anticline about 17.5 mi (28 km) long and averaging 4 mi (6.5 km) wide. Vertical closure amounts to 200 ft (60 m) and there are 41,000 acres (16,600 ha.) of areal closure on top of the principal reservoir. The Cretaceous sandstones, at drilled depths between 9,300 and 10,100 ft (2,835 and 3,080 m) provide excellent reservoirs. The Hollin Formation, the basal Cretaceous sandstone, is the principal reservoir, having produced 80% of the oil through 1980 and containing about 68% of the original reserves.

  11. Field evaluations of marine oil spill bioremediation.

    PubMed

    Swannell, R P; Lee, K; McDonagh, M

    1996-06-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  12. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  13. Field-free long-lived alignment of molecules with a two-dimensional optical centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2016-05-01

    We introduce an optical tool—a "two-dimensional optical centrifuge"—capable of aligning molecules in extreme rotational states. The alignment is studied in oxygen under ambient conditions, and in a cold jet of nitrogen. Unlike the conventional centrifuge, which confines the molecules in the plane of their rotation, its two-dimensional version aligns the molecules along a well-defined axis, similar to the effect of a single linearly polarized laser pulse, but at a much higher level of rotational excitation. We observe long lifetimes of the created alignment due to the increased robustness of ultrahigh rotational states with respect to collisions. The adiabatic nature of the centrifuge excitation provides a means of generating stationary aligned states.

  14. UNSATURATED FLOW IN A CENTRIFUGAL FIELD: MEASUREMENT OF HYDRAULIC CONDUCTIVITY AND TESTING OF DARCY'S LAW.

    USGS Publications Warehouse

    Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.

    1987-01-01

    A method has been developed to establish steady flow of water in unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameter. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values at low as 7. 6 multiplied by 10** minus **1**1 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content.

  15. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  16. Experiments on the unsteady flow field and noise generation in a centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Soo; McLaughlin, Dennis K.; Thompson, Donald E.

    2003-06-01

    This paper reports on an experimental investigation of large-scale flowfield instabilities in a pump rotor and the process of noise generation by these instabilities. Measurements of the fluctuating components of velocity and surface pressure were made with hot-wire probes and surface mounted pressure transducers on a seven bladed back swept centrifugal water pump impeller operating with air as the working fluid. The impeller was operated without a volute or scroll diffuser, thereby eliminating any sound generation from pressure fluctuations on the volute cutoff. Thus the study focused on flow field and noise components other than the blade passage frequency (and its harmonics). The primary goal of the study was to provide fundamental information on the unsteady flow processes, particularly those associated with the noise generation in the device. It was further anticipated that detailed flow measurements would be useful for the validation of future computational simulations. The measured data at the discharge show a jet-wake type of flow pattern which results in a strong vorticity field. The flow with high velocity found on the pressure side of the impeller tends to move to the low-pressure region present at the suction side of the passage as a form of roll-up around the blade trailing edge. This motion causes an unsteady flow separation at the suction side of the blade and consequently disturbs the flow in the adjacent passage. By interacting with the impeller blades near the trailing edges, this instability flow causes a periodic pressure fluctuation on the blade surface and generates noise by a trailing edge generation mechanism. The spectrum of surface pressure measured at the trailing edge of each blade reveals a cluster of peaks which were identified with azimuthal mode numbers. The correlation between the acoustic farfield pressure and the surface pressure on the impeller blade has proven that the azimuthal modes synchronized with the number of impeller

  17. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1984-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  18. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1983-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  19. A model of peak production in oil fields

    NASA Astrophysics Data System (ADS)

    Abrams, Daniel M.; Wiener, Richard J.

    2010-01-01

    We developed a model for oil production on the basis of simple physical considerations. The model provides a basic understanding of Hubbert's empirical observation that the production rate for an oil-producing region reaches its maximum when approximately half the recoverable oil has been produced. According to the model, the oil production rate at a large field must peak before drilling peaks. We use the model to investigate the effects of several drilling strategies on oil production. Despite the model's simplicity, predictions for the timing and magnitude of peak production match data on oil production from major oil fields throughout the world.

  20. Assessment of remaining recoverable oil in selected major oil fields of the San Joaquin Basin, California

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of volumes of technically recoverable, conventional oil that could eventually be added to reserves in nine selected major oil fields in the San Joaquin Basin in central California. The mean total volume of potential oil reserves that might be added in the nine fields using improved oil-recovery technologies was estimated to be about 6.5 billion barrels of oil.

  1. L2F and LDV velocimetry measurement and analysis of the 3-D flow field in a centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Fagan, John R., Jr.; Fleeter, Sanford

    1989-01-01

    The flow field in the Purdue Research Centrifugal Compressor is studied using a laser two-focus (L2F) velocimeter. L2F data are obtained which quantify: (1) the compressor inlet flow field; (2) the steady-state velocity field in the impeller blade passages; and (3) the flow field in the radial diffuser. The L2F data are compared with both laser Doppler velocimetry (LDV) data and predictions from three-dimensional inviscid and viscous flow models. In addition, a model is developed to calculate the effect on the measurement volume geometry of refraction by curved windows. Finally, the advantages and disadvantages of using the L2F for turbomachinery measurements is discussed in terms of measurement accuracy, ease of use, including sample time per correlated event and the ability to make measurements in regions of high noise due to stray radiation from wall reflections.

  2. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  3. Oil and gas field code master list, 1993

    SciTech Connect

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  4. Gullfaks oil field - From challenge to success

    SciTech Connect

    Carlsen, H.; Nygaard, O. )

    1990-09-01

    The giant Gullfaks oil field was discovered in 1978. The field contains oil reserves in excess of 1.3 billion bbl. The field is located in the northeastern past of Block 34/10 in the Norwegian sector of the North Sea. Gullfaks represents the shallowest structural element of the Tampen Spur and was formed during the Late Jurassic to Early Cretaceous as a sloping high with a westerly structural dip gradually decreasing toward the east. The major north-south-striking faults, with easterly sloping fault planes, divided the field into several rotated fault blocks. Central and eastern parts of the structure have been eroded by the Early Cretaceous transgression. The reservoir sandstones are comprised of the Middle Jurassic to Early Cretaceous as a sloping high with a westerly structural dip gradually decreasing toward the east. The major north-south-striking faults, with easterly sloping fault planes, divided the field into several rotated fault blocks. Central and eastern parts of the structure have been eroded by the Early Cretaceous transgression. The reservoir sandstones are comprised of the Middle Jurassic delta-deposited Brent Group, the Lower Jurassic shallow-marine sandstones of the Cook Formation, and the Lower Jurassic shallow-marine sandstones of the Cook Formation, and the Lower Jurassic fluvial channel and delta-plain deposits of the Statfjord Formation. The presence of gas in the post-Jurassic section and a variable water depth have complicated seismic interpretation. However, the improved quality of the 1985 three dimensional seismic survey and deliberate deepening of the development wells have resulted in a more accurate and complete structural interpretation. The Brent reserves in the western part of the field currently are being developed by the Gullfaks A and B platforms. The eastern part of the field is developed by a third platform, Gulflaks C. Water injection is the major drive mechanism maintaining reservoir pressure above the bubble point.

  5. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  6. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  7. Assessment of microorganisms from Indonesian Oil Fields

    SciTech Connect

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H.

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  8. Salt caverns for oil field waste disposal.

    SciTech Connect

    Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

    2000-07-01

    Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

  9. Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, Z. W.; Y Luo, Y.; Liu, M.

    2013-12-01

    Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased.

  10. Halophilic archaebacteria from the Kalamkass oil field

    SciTech Connect

    Zvyagintseva, I.S.; Belyaev, S.S.; Borzenkov, I.A.; Kostrikina, N.A.; Milekhina, E.I.; Ivanov, M.V.

    1995-01-01

    Two strains of halophilic archaebacteria, growing in a medium containing from 10 to 25% NaCl, were isolated from the brines of the Kalamkass (Mangyshlak) oil field. Both strains are extremely halophilic archaebacteria according to the complex of their phenotypic properties. Strain M-11 was identified as Haloferax mediterranei on the basis of the composition of polar lipids and DNA-DNA homology. The composition of polar lipids and 16S rRNA sequence of strain M-18 allowed us to assign it to the genus Haloferax. This strain differs from the approved species of the genus Haloferax, H. volcanii, and H. mediterranei. However, to describe it as a new species, additional investigations are necessary. 13 refs., 3 figs.

  11. Landslide oil field, San Joaquin Valley, California

    SciTech Connect

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  12. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  13. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-01-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  14. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Astrophysics Data System (ADS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-07-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  15. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  16. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  17. Oil and Gas Field Code Master List 1990

    SciTech Connect

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  18. Centrifuge apparatus

    DOEpatents

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  19. Microbial processes in oil fields: culprits, problems, and opportunities.

    PubMed

    Youssef, Noha; Elshahed, Mostafa S; McInerney, Michael J

    2009-01-01

    Our understanding of the phylogenetic diversity, metabolic capabilities, ecological roles, and community dynamics of oil reservoir microbial communities is far from complete. The lack of appreciation of the microbiology of oil reservoirs can lead to detrimental consequences such as souring or plugging. In contrast, knowledge of the microbiology of oil reservoirs can be used to enhance productivity and recovery efficiency. It is clear that (1) nitrate and/or nitrite addition controls H2S production, (2) oxygen injection stimulates hydrocarbon metabolism and helps mobilize crude oil, (3) injection of fermentative bacteria and carbohydrates generates large amounts of acids, gases, and solvents that increases oil recovery particularly in carbonate formations, and (4) nutrient injection stimulates microbial growth preferentially in high permeability zones and improves volumetric sweep efficiency and oil recovery. Biosurfactants significantly lower the interfacial tension between oil and water and large amounts of biosurfactant can be made in situ. However, it is still uncertain whether in situ biosurfactant production can be induced on the scale needed for economic oil recovery. Commercial microbial paraffin control technologies slow the rate of decline in oil production and extend the operational life of marginal oil fields. Microbial technologies are often applied in marginal fields where the risk of implementation is low. However, more quantitative assessments of the efficacy of microbial oil recovery will be needed before microbial oil recovery gains widespread acceptance. PMID:19203651

  20. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    SciTech Connect

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages. The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet

  1. Polymer flooding increases production in giant oil field

    SciTech Connect

    Delamaide, E.; Corlay, P. )

    1994-12-01

    Daqing field, discovered in 1959, is the largest oil field in the People's Republic of China, with original oil in place exceeding two billion tons. Reservoir heterogeneity and oil viscosity have resulted in moderate displacement efficiency and high watercut. To increase recovery, polymer injection was tested in two pilots between 1987 and 1992, after lab and reservoir studies. Both pilots proved highly successful and led to the decision to extend polymer injection to the whole field. This article presents the history of Daqing polymer flooding, from preliminary studies to full-field extension.

  2. Kill fluid for oil field operations

    SciTech Connect

    Sydansk, R.D.

    1990-08-14

    This patent describes a process employing a kill fluid to substantially reduce the volumetric flow of formation fluid into a wellbore penetrating a formation containing the formation fluid below an earthen surface. It comprises: admixing components of a continuous flowing gel at the surface comprising of water-soluble carboxylate-containing polymer, a complex capable of crosslinking the polymer and formed of at least one electropositive chromium III species and at least one electronegative carboxylatespecies, and an aqueous solvent for the polymer and the complex; crosslinking the polymer and the complex to form the gel, wherein the kill fluid comprises the gel; placing a volume of the kill fluid in the wellbore sufficient to create a hydrostatic head which exerts a kill fluid pressure against the formation fluid substantially equal to or greater than the formation fluid pressure and thereby substantially reduces the volumetric flow of the formation fluid into the wellbore; performing an oil field operation after placing the volume of the kill fluid in the wellbore; and removing the gel from the wellbore to substantially restore the volumetric flow of the formation fluid into the wellbore.

  3. Plans to revive oil fields in Venezuela on track

    SciTech Connect

    Not Available

    1992-02-24

    This paper reports on the three operating units of Venezuela's state owned oil company Petroleos de Venezuela SA which will begin receiving bids Feb. 28 from companies interested in operating 55 inactive oil fields in nine producing areas of Venezuela. Francisco Pradas, Pdvsa executive in charge of the program, the the company expects 88 companies or combines of foreign and domestic private companies to participate in the bidding. The program, announced last year, aims to reactivate production in marginal oil fields. It will involve the first direct participation by private companies in Venezuela's oil production since nationalization in 1976.

  4. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  5. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  6. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    PubMed

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. PMID:22704814

  7. Objective Method for Presumptive Field-Testing of Illicit Drug Possession Using Centrifugal Microdevices and Smartphone Analysis.

    PubMed

    Krauss, Shannon T; Remcho, Thomas P; Lipes, Shelby M; Aranda, Roman; Maynard, Henry P; Shukla, Nishant; Li, Jingyi; Tontarski, Richard E; Landers, James P

    2016-09-01

    Current colorimetric presumptive identification of illicit drugs for determining illegal possession of controlled substances by law enforcement relies solely on the subjective interpretation of color change using drug- or class-specific reactions. Here, we describe the use of inexpensive polyester-toner, rotation-driven microfluidic devices with a smartphone as a potential alternative for current presumptive colorimetric field-testing of illicit drugs, allowing for an objective and user-friendly image analysis technique for detection. The centrifugal microfluidic platform accommodates simultaneous presumptive testing of material from a single input to multiple reaction chambers, enabling rapid screening. Hue and saturation image analysis parameters are used to define threshold values for the detection of cocaine and methamphetamine as proof-of-principle with 0.25 and 0.75 mg/mL limits of detection, respectively, with nonvolatile reagents stored on-board and smartphone for detection. Reported LODs are lower than those concentrations used in the field. Additionally, the developed objective detection method addresses the testing of drugs with various common cutting agents, including those known to produce false negative and positive results. We demonstrate the effectiveness of the method by successfully identifying the composition of 30 unknown samples. PMID:27525468

  8. Exploitation of multizones by waterflooding in the Daqing oil field

    SciTech Connect

    Jinyusun; Yangwanli; Wangzhiwu

    1982-01-01

    The distribution of oil and water in the pay zones and the constant changes of relationship taking place among the zones in the course of development of a sandstone oil reservoir by waterflooding bear closely on its stable production and ultimate recovery. So, the result of development of an oil field depends largely on knowledge of the changing conditions and the ability to cope with them by regulatory or reconstructive measures. All the pay zones in the Daqing oil field have been clearly segregated, and on this basis, different zones in the one and same well may be flooded and produced separately. The development of the Daqing oil field has been successful, comparable to similar oil fields in the U.S. and Soviet Union in the following respects, which are disucssed: reservoir pressure maintained; wells kept flowing; stable average daily output; long, stable high- yielding period; and less water consumed than in oil fields of other countries producing oil of similar viscosity. (12 refs.)

  9. Environmental contamination in the oil fields of western Pennsylvania

    USGS Publications Warehouse

    Albers, P.H.; Belisle, A.A.; Swineford, D.M.; Hall, R.J.

    1985-01-01

    The effects on freshwater wildlife of chronic exposure to oil field discharges are not well known. Collections of wastewater, aquatic invertebrates, fish, salamanders, and small mammals were made in several streams in the oil fields of western Pennsylvania during 1980-81. Estimates of the petroleum content of two wastewater discharges were high (21.9 and 8.4 ppm) and one was low (0.3 ppm). Water conductivity was inversely related to aquatic invertebrate biomass. Hydrocarbons accumulated in significantly greater amounts in crayfish, fish, and small mammals from collection sites with oil extraction activity than from sites without oil extraction activity. Estimates of total petroleum in invertebrates, trout, and suckers averaged between 200 and 280 ppm for oil extraction sites and between 8 and 80 ppm for sites without oil extraction activity: Oil extraction activity did not affect metal accumulation by fish. Oil and wastewater discharges in oil fields disrupt community composition and can cause an overall reduction in stream productivity.

  10. Using InSAR to Analyze the Effects of Oil Extraction on the Kuparuk Oil Field

    NASA Astrophysics Data System (ADS)

    Baluyut, E.; Liu, L.; Zebker, H. A.

    2012-12-01

    Ground deformation around oil fields is a major concern in regards to the impacts of this human-induced change on the environment. Interferometric synthetic aperture radar (InSAR) was used to map the ground deformation in the area of the Kuparuk Oil Field in Northern Alaska from 2007 to 2010. Data packages from the Advanced Land Observation Satellite (ALOS) and corresponding data for the digital elevation model (DEM) were used to create interferograms and the DEM. This was done using MATLAB and Python on a Linux operating system. Selected interferograms were cropped and errors from noise, topography, or atmosphere were minimized through fitting and stacking techniques. After analysis, the InSAR data yielded a chronology of a change in ground deformation around the Kuparuk Oil Field, which is correlated to a history of recovery techniques. Analysis of interferograms from before, in transition, and after application of different techniques can determine patterns of ground deformation in the field. It was found that positive ground deformation was more prevalent before the implementation of new oil recovery techniques as opposed to after implementation, with negative ground deformation occurring during the transition of the applications that allowed for more productive oil extraction. These results quantitatively demonstrate the magnitude of land subsidence that actively recovered oil fields induce. They also suggest that new methods of enhanced oil recovery are stabilizing the subterranean layers being drilled, creating a decrease in positive land deformation. This could support the continuation of research in fields of enhanced oil recovery and carbon sequestration.

  11. Oil and Gas field code master list 1995

    SciTech Connect

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  12. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  13. Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

    NASA Astrophysics Data System (ADS)

    Senoo, Yasutoshi

    1987-03-01

    The flow field near the tip of compressor rotor blades is distorted by leakage through the tip clearance and the performance of the compressor is deteriorated. The literature regarding the tip clearance of compressor blades consists of computational fluid mechanics and experimental studies on the flow field and the pressure loss. Empirical equations expressing the pressure loss and the efficiency drop are varied. They relate to the lift coefficient in different ways, depending upon the ways of understanding the mechanics of pressure losses. These methods are examined and compared. Also, a brief discussion is made on the optimum value of the tip clearance.

  14. Direct quantification of protein partitioning in oil-in-water emulsion by front-face fluorescence: avoiding the need for centrifugation.

    PubMed

    Granger, C; Barey, P; Toutain, J; Cansell, M

    2005-07-10

    The quantification of proteins adsorbed at the oil-in-water interface is often difficult since it requires separation of fat globules from the aqueous phase that may damage the fat globule size and/or modify the interfacial composition. Front-face fluorescence spectroscopy was used to characterize the protein partitioning between the aqueous and oil phases of emulsions without separating these two phases. Different emulsions based on skim milk powder (SMP), two mono- and di-glyceride (MDG) mixtures (saturated and partially unsaturated), and three fats (hydrogenated and refined coconut oils and refined palm oil) were studied. The impact of an ageing period (24 h at 4 degrees C) was also investigated to typify the first step of ice cream processing. The emulsions were characterized for protein partitioning, immediately following emulsification and after ageing, using the Bradford spectrophotometric method, applied to the aqueous phase recovered after emulsion centrifugation. In parallel, the emulsions were characterized by their tryptophan emission fluorescence spectra. The area of the peaks at 333 nm, of the fourth-derivative fluorescence spectra corresponding to the amount of proteins present in the aqueous phase of emulsions, was well correlated with the Bradford measurements (r2=0.91). This amount was also calculated from the fluorescence calibration curve obtained with SMP in solution. In conclusion, front-face fluorescence spectroscopy appeared to be a powerful and simple technique allowing the quantification of different populations of protein in an emulsified system, i.e., in the aqueous phase and loaded at the fat globule interface. PMID:15946827

  15. A field test of the centrifugal community organization model using psammophilic gerbils in Israel's southern coastal plain

    USGS Publications Warehouse

    Wasserberg, G.; Kotler, B.P.; Morris, D.W.; Abramsky, Z.

    2007-01-01

    Background: An optimal habitat selection model called centrifugal community organization (CCO) predicts that species, although they have the same primary habitat, may co-exist owing to their ability to use different secondary habitats. Goal: Test the predictions of CCO with field experiments. Species: The Egyptian sand gerbil (40 g), Gerbillus pyramidum, and Allenby's gerbil (25 g), G. andersoni allenbyi. Site: Ashdod sand dunes in the southern coastal plain of Israel. Three sandy habitats are present: shifting, semi-stabilized, and stabilized sand. Gerbils occupied all three habitats. Methods: We surveyed rodent abundance, activity levels, and foraging behaviour while experimentally removing G. pyramidum. Results: Three predictions of the CCO model were supported. Both species did best in the semi-stabilized habitat. However, they differed in their secondary habitats. Gerbillus pyramidum preferred the shifting sand habitat, whereas G. a. allenbyi preferred the stabilized habitat. Habitat selection by both species depended on density. However, in contrast to CCO, G. pyramidum dominated the core habitat and excluded G. a. allenbyi. We term this variant of CCO, 'asymmetric CCO'. Conclusions: The fundamental feature of CCO appears valid: co-existence may result not because of what each competing species does best, but because of what they do as a back-up. But in contrast to the prediction of the original CCO model, all dynamic traces of interaction can vanish if the system includes interference competition. ?? 2007 Gideon Wasserberg.

  16. Characterizing Air Toxics from Oil Field Operations in Los Angeles

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Brown, S. G.; DeWinter, J. L.; Bai, S.; O'Brien, T.; Vaughn, D.; Peltier, R.; Soltis, J.; Field, R. A.; Murphy, S. M.; Roberts, P. T.

    2014-12-01

    The Inglewood Oil Field in urban Los Angeles has been in operation for more than 70 years. Neighborhoods surrounding the oil field are concerned with the potential emissions of air toxics from oil field operations. The Baldwin Hills Air Quality Study focused on (1) quantifying air toxics concentrations originating from the Inglewood Oil Field operations, including drilling and well workovers, and (2) assessing the health risk of both acute and chronic exposure to air toxics emitted from oil field operations. Key pollutants identified for characterization included diesel particulate matter (DPM), cadmium, benzene, nickel, formaldehyde, mercury, manganese, acrolein, arsenic, and lead. The field study began in November 2012 and ended in November 2013. Four types of instruments were used to characterize oil field operations: (1) Aethalometers to measure black carbon (BC; as a proxy for DPM); (2) X-ray fluorescence spectrometer (XRF) for metals; (3) Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOFMS) for volatile organic compounds; and (4) meteorological sensors to help assess the wind patterns, temperature, and humidity that influence pollutant concentrations. Overall concentrations of most of the species measured in the study were quite low for an urban area. We determined that there were statistically significant increases in concentrations of DPM associated with oil field operations when winds were from the west-southwest. BC concentrations increased by 0.036 to 0.056 μg/m3, on average, when winds originated from the west-southwest, compared to annual mean BC concentrations of approximately 0.67 μg/m3. West-southwest winds occurred 53% of the time during the study. No other pollutants showed strong statistical evidence of chronic or acute risk from oil field operations.

  17. Centrifugal Compressors

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-02-06

    The article discusses small high speed centrifugal compressors. This topic was covered in a previous ASHRAE Journal column (2003). This article reviews another configuration which has become an established product. The operation, energy savings and market potential of this offering are addressed as well.

  18. Assessment of remaining recoverable oil in selected major oil fields of the Permian Basin, Texas and New Mexico

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of technically recoverable, conventional oil in selected oil fields in the Permian Basin in west Texas and southeastern New Mexico. The mean total volume of potential additional oil resources that might be added using improved oil-recovery technologies was estimated to be about 2.7 billion barrels of oil.

  19. Attack on centrifugal costs

    SciTech Connect

    Murray, P.F.

    1986-03-01

    The Monsanto Chocolate Bayou plant has had an aggressive and successful energy conservation program. The combined efforts have resulted in a 80% reduction in unit energy consumption compared to 1972. The approach of using system audits to optimize fluid systems was developed. Since most of the fluid movers are centrifugal, the name Centrifugal Savings Task Force was adopted. There are three tools that are particularly valuable in optimizing fluid systems. First, a working level understanding of the Affinity Laws seems a must. In addition, the performance curves for the fluid movers is needed. The last need is accurate system field data. Systems effectively managed at the Chocolate Bayou plant were process air improvement, feed-water pressure reduction, combustion air blower turbine speed control, and cooling tower pressure reduction. Optimization of centrifugal systems is an often-overlooked opportunity for energy savings. The basic guidelines are to move only the fluid needed, and move it at as low a pressure as possible.

  20. Oil fields of northern Railroad Valley, Nye County, Nevada

    SciTech Connect

    Duey, H.D.

    1989-03-01

    Since 1954 four oil fields have been discovered in northern Railroad Valley: Eagle Springs, Trap Springs, Currant, and Kate Spring. Though similar in many aspects, each is unique in structure, stratigraphy, and reservoir conditions. Oil accumulation in all four fields is related to faulting, and all reservoirs are either fractured or enhanced by fractures. The reservoir rocks vary from Tertiary ignimbrites to Tertiary lacustrine sediments to Paleozoic carbonates. A Tertiary unconformity controls the seal at Trap Spring, Eagle Springs, and Kate Spring. At Currant the seal is the Tertiary Sheep Pass shale. There are two basic oil types. Oil has been generated from shales of the Tertiary Sheep Pass Formation and the Mississippian Chainman Formation. Oil generation is probably recent and continuing. These oils are mixed in at least two reservoirs. Over 10 million bbl of oil have been produced in northern Railroad Valley, and despite the variability of the stratigraphy, structure, and oil generation, the area is still a viable hunting ground for modest reserves. Using these fields along with their permutations and combinations as models makes exploration in the rest of the Basin and Range province inspiring.

  1. Geology and geochemistry of crude oils, Bolivar coastal fields, Venezuela

    SciTech Connect

    Bockmeulen, H.; Barker, C.; Dickey, P.A.

    1983-02-01

    The Bolivar Coastal Fields (BCF) are located on the eastern margin of Lake Maracaibo, Venezuela. They form the largest oil field outside of the Middle East and contain mostly heavy oil with a gravity less than 22/sup 0/ API. Thirty crude oils from the BCF were collected along two parallel and generally southwest-northeast trends. These oils were characterized by their API gravity, percent saturates, aromatics, NSO and asphalitic compounds, gas chromatograms for whole oils, C/sub 4/-C/sub 7/ fractions, and aromatics. Also, 24 associated waters were sampled and analyzed for Ca/sup + +/, Mg/sup + +/, Na/sup +/, HCO/sub 3//sup -/, CO/sub 3//sup - -/, SO/sub 4//sup - -/, pH, and total dissolved solids (TDS). The geological and geochemical significances of these analyses are discussed with particular emphasis on the genesis of the petroleum.

  2. Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

    NASA Astrophysics Data System (ADS)

    Senoo, Yasutoshi

    The flow field near the tip of compressor rotor blades is distorted by leakage through the tip clearance, and the performance of the compressor deteriorates. Empirical equations expressing the pressure loss and the efficiency drop are varied. They are related to the lift coefficient in different ways such as proportional to C(L), C(L) exp 1.5, C(L) sq, or the sum of two terms, depending upon the ways of understanding the mechanics of pressure losses. These methods are examined and compared. Also included is a brief discussion on the optimum value of the tip clearance.

  3. Largest US oil and gas fields, August 1993

    SciTech Connect

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  4. Oil and gas field code master list 1994

    SciTech Connect

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  5. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    SciTech Connect

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The ranges of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.

  6. Oil and gas field code master list 1997

    SciTech Connect

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  7. Polarimetric SAR Models for Oil Fields Monitoring in China Seas

    NASA Astrophysics Data System (ADS)

    Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.

    2014-11-01

    In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification. Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.

  8. Salt caverns show promise for nonhazardous oil field waste disposal

    SciTech Connect

    Veil, J.A.

    1996-11-18

    Salt caverns show promise for the disposal of non-hazardous oil field wastes, and there are no apparent regulatory barriers to this application. Solution-mined salt caverns have been used for many years for storing hydrocarbon products. Argonne National laboratory has reviewed the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicates that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied (Kansas, Louisiana, Michigan, Mississippi, New Mexico, New York, North Dakota, Ohio, Oklahoma, Pennsylvania, and Texas). The paper discusses the two types of salt deposits in the US, regulatory concerns, wastes, cavern design, disposal operations, closure and remediation, and results of the feasibility study.

  9. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  10. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  11. Laboratory studies of oil spill bioremediation; toward understanding field behavior

    SciTech Connect

    Prince, R.C.; Hinton, S.M.; Elmendorf, D.L.; Lute, J.R.; Grossman, M.J.; Robbins, W.K.; Hsu, Chang S.; Richard, B.E.; Haith, C.E.; Senius, J.D.; Minak-Bernero, V.; Chianelli, R.R.; Bragg, J.R.; Douglas, G.S.

    1993-12-31

    Oil spill remediation aims to enhance the natural process of microbial hydrocarbon biodegradation. The microbial foundations have been studied throughout this century, but the focus of most of this work has been on the degradation of well defined compounds by well defined microbial species. This paper addresses laboratory studies on crude oil biodegradation by microbial consortia obtained from oiled beaches in Prince William Sound, Alaska following the spill from the Exxon Valdez. It demonstrates that oil degradation is indeed likely to be nitrogen-limited in Prince William Sound, the different molecular classes in crude oil that are subjected to biodegradation, the identification of conserved species in the oil that can be used for assessing biodegradation and bioremediation in the field, the effectiveness of fertilizers in stimulating sub-surface biodegradation, the role of the olephilic fertilizer Inipol EAP22, and the identification of the oil-degrading microorganisms in Prince William Sound. Together, these laboratory studies provided guidance and important insights into the microbial phenomena underlying the successful bioremediation of the oiled shorelines.

  12. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  13. Crude oil from the Samgori field

    SciTech Connect

    Dorogochinskaya, V.A.; Manovyan, A.K.; Shigapova, A.K.; Shul'zhenko, E.D.; Varshaver, V.P.

    1984-04-01

    This article analyzes the chemical composition and physical properties of petroleum from the Georgian SSR. The crude oil is light in color, light in distillation range, low-viscosity, and medium-wax, with low contents of resin-asphaltene compounds, sulfur, and metals. This petroleum is characterized by its high content of naphtha cuts with low sulfur contents, low octane numbers (owing to the high contents of paraffin hydrocarbons), and low contents of aromatics. It is determined that the best flow plan for processing the crude is either a fuel scheme or a fuel/lube scheme, depending on the specific product demands.

  14. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    PubMed

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR. PMID:23314376

  15. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  16. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  17. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  18. Composition and placement process for oil field chemicals

    SciTech Connect

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  19. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  20. Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs

    PubMed Central

    Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

    1996-01-01

    The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

  1. Oil-field equipment in Romania. Export trade information

    SciTech Connect

    Tinis, R.

    1991-09-01

    The Industry Sector Analyses (I.S.A.) for oil field equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Romanian consumers to U.S. products, the competitive situation - Romanian production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Romanian tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Romanian market for oil field equipment.

  2. Subtle history and geology of Villeperdue oil field

    SciTech Connect

    Duval, B.C.; Arbin, P. )

    1990-09-01

    Villeperdue oil field is located in the Paris basin 80 km east of Paris. The first well was drilled in 1959 and tested some oil. But it was not until 1982, after a subtle seismic and drilling history, that exploration resumed and the field proved commercial. The reservoir is an oolitic limestone of early Callovian age (late Dogger); it has an average thickness of about 30 m and is 1,850 m below ground level. The trap, not obvious from seismic data, is a combination of stratigraphic, structural, and diagenetic features. The structure is a western-plunging nose, and the eastward updip closure is supposedly controlled by permeability change with the possible influence of gentle faults and pressure barriers. The producing surface is about 70 km{sup 2}, with a 60-m oil column. Gross porosity, ranging from 8 to 20%, is highly variable, the result of numerous porosity types. As a result, each well has its own characteristics, and field development is mainly controlled by this problem. Thus, porosity detection over the field, and consequently delineation, are dependent on subtle seismic facies studies. Today, 145 wells have been drilled, of which 120 are producing and 19 are used for water injection. Horizontal wells are planned to increase productivity. Production of this giant oil field (based on the Paris basin scale) has been of 3 million m{sup 3} to date, with an average weekly production of about 13,000 m{sup 3}.

  3. Oil field slim hole drilling technology improving

    SciTech Connect

    Not Available

    1992-11-23

    Recent advances in slim hole drilling technology have improved the application of this drilling technique to oil and gas exploration and development wells. These advancements include Optimization of slim hole drilling hydraulics, Application of a small particle weighing agent to improve well control and coring operations, Use of slim hole techniques to drill horizontal wells, Use of a new polycrystalline diamond compact cutter to allow economical re-entry of small diameter wells in hard rock. Slim hole continuous coring and drilling is becoming more accepted as a viable drilling method, especially as exploration budgets become smaller. Typical applications for slim hole equipment include drilling in frontier areas where logistics can be a problem and reentry operations in which the existing well has a small diameter. Typically, slim hole drilling operations use technology borrowed from the mining industry. The rigs are smaller and drill with much higher rotational speeds. Definitions of slim holes vary from a well with 90% drilled, with a diameter of less than 7 in. To a well with 70% drilled with less than 5 in. A goal of slim hole, however it is defined, is the drilling of a well with a diameter smaller than that used on conventional wells in the area. The reduced diameter helps cut rig time and cost and reduces the cost of the tubulars. Another goal of slim hole drilling is the ability to retrieve cores from the entire well during drilling.

  4. The application and field experience of high strength 12% Cr centrifugally cast pipe for gas gathering system

    SciTech Connect

    Yoshitake, A.; Teraoka, M.; Torigoe, T.; Amako, S.

    1995-10-01

    Centrifugal cast method is one of the processes to provide high quality seamless pipe. The advantages of the process are (1) heavy wall pipe can be manufactured (2) relatively flexible in material selection for manufacturing pipe. For sweet corrosion environment caused by CO{sub 2} where carbon steels can not be used, centrifugally cast 12% Cr martensitic stainless steel pipes and fittings have been developed. One of the key factors of this material applied to pipeline is the weldability, especially high hardness of the welds or its heat affected zone which causes for brittle rupture as well as stress corrosion cracking of the pipeline. Cast 12% Cr pipe which has high strength with low hardness even at the weld joint has been developed. Besides of the development of straight pipe, several types of fittings have been developed. These pipes and fittings have been used for natural gas gathering lines and booster compression lines in sweet corrosion service.

  5. Biodiesel Prepared From Field Pennycress Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L., FP) is a winter annual species of the mustard family (Brassicaceae) which is widely distributed throughout temperate North America that can serve as a winter rotational crop for conventional crops, thus not displacing farm land or negatively impacting the food s...

  6. Spectral anomaly over Railroad Valley oil field, Nevada

    SciTech Connect

    Feldman, S.C. ); Honey, F.R. ); Ballew, G.I. )

    1990-05-01

    Oil was first discovered in Railroad Valley, south-central Nevada in 1954. Since that time, over 195 wells have been drilled and six oil fields have been found: Bacon Flat, Currant, Trap Spring, Eagle Springs, Grant Canyon and Kate Spring. Two wells in the Grant Canyon field had flows between 2,480 and 4,108 bbl/day in 1987 and may be the most prolific wells onshore in the continental US. Production in the Railroad Valley fields is from Oligocene volcanic and sedimentary rocks and Paleozoic carbonate formations. Traps are structural or structural and stratigraphic, and reservoir seals are indurated or clayey valley fill, weathered tuff, and shales in Tertiary sediments. Reservoir temperatures range between 95 and 309{degree}F. Previous workers have identified a statistically significant positive correlation between hydrocarbon microseepage and vegetation anomalies over the Railroad Valley oil fields with Landsat Multispectral Scanner (MSS) imagery. Several flight lines of high spectral and spatial resolution imagery in the visible, near infrared, shortwave infrared, and thermal infrared regions of the spectrum were flown with Geoscan's MkII Airborne Multispectral Scanner to determine if there was a mineralogical signature associated with the oil fields. The 24-channel scanner collected 8-m resolution picture elements over a swath of about 8 km. Image processing strategies were developed from a knowledge of the spectral curves of minerals in the laboratory. The results from processing Geoscans MkII data were also compared with those obtained from processing Landsat Thematic Mapper (TM) imagery over the same area. An 8 {times} 6 km carbonate and iron anomaly was detected on the processed MkII imagery over the Trap Spring oil field. This anomaly may be related to hot spring activity, reported by other workers, that has formed extensive calcite deposits along faults.

  7. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    NASA Astrophysics Data System (ADS)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  8. Extraction of Field Pennycress Seed Oil by Full Pressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlasphi arvense L., Brassicaceae) is a winter annual that grows widely in the temperate North America. Its seeds contain up to 36% oil (db) with the major fatty acid as erucic acid (38%). With an estimated seed production of 1,700 – 2,200 kg/ha, pennycress can be a major source of...

  9. Crosshole EM for oil field characterization and EOR monitoring: Field examples

    SciTech Connect

    Wilt, M.; Schenkel, C.; Lee, K.; Torrses-Verdin, C.; Tseng, H.

    1994-12-31

    Crosshole and surface-to-borehole electromagnetic (EM) imaging is applied to reservoir characterization and steam flood monitoring in a central California oil field. Steam was injected into 3 stacked eastward dipping unconsolidated oil sands. EM measurements were made from two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the initiation of a steam drive to map the distribution of the oil sands and then six months after the steam was injected to monitor the progress of the steam chest. Resistivity images derived from the collected data could clearly delineate the distribution and dipping structure on the target oil sands. Difference images from data collected before and after steam flooding indicate that the steam chest has developed only in the deeper oil sands and it has preferentially migrated eastward.

  10. Carcinogenic potential of PAHs in oil-contaminated soils from the main oil fields across China.

    PubMed

    Wang, Jie; Cao, Xiaofeng; Liao, Jingqiu; Huang, Yi; Tang, Xiaoyan

    2015-07-01

    The concentrations, composition profiles, and sources of polycyclic aromatic hydrocarbons (PAHs) were analyzed in 55 surface soil samples collected from four oil fields across China (Daqing, DQ; Shengli, SL; Xinjiang, XJ; and Huabei, HB). The total 16 priority PAHs concentrations of DQ, SL, XJ, and HB ranged from 857 to 27,816; 480 to 20,625; 497 to 43,210; and 12,112 to 45,325 ng/g, respectively, with means of 9160; 6394; 13,569; and 22,954 ng/g and the seven possible carcinogenic PAHs accounted for 8-25.7 % of the total PAHs. Almost all the samples were heavily contaminated, and phenanthrene, chrysene, and pyrene were the most dominant components. The PAH isomeric ratios indicated that PAHs in oil fields mainly originated from petroleum. The toxic assessment illustrated that people living and working in oil fields would suffer low carcinogenic risk, which was somehow coincided with the results of epidemiological survey on cancer incidence. It seems essential to pay more attention to the chronic human health effects of exposure to oil fields and to focus new studies on the public health field that involves a large number of people all over the world. PMID:25772862

  11. Giant oil fields of the Gulf Coast area

    SciTech Connect

    Haeberle, F.R.

    1993-09-01

    The 134 giant fields in the Gulf Coastal area contain 29% of the total giant-field reserves. Cumulative production is 32% of the giant-field cumulative total and 20% of the United States cumulative production. Eighty-nine of the giant fields are offshore with 22% of the reserves, 11 fields are in east Texas with 24% of the reserves, and 1 field is in Florida with 1% of the reserves. In 106 of the giant fields the primary producing interval is Cenozoic with 65% of the reserves, and in 28 giant fields the producing interval is Mesozoic with 35% of the reserves. The primary producing interval is Mesozoic with 35% of the reserves. The primary producing interval in 124 giant fields consists of clastics with 91% of the reserves, in 7 fields the primary lithology is carbonates with 6% of the reserves, and in 3 giant fields the lithology is mixed clastics and carbonates. A total of 127 fields are in structural traps with all of the reserves, 4 fields are stratigraphic traps (3%) with 18% of the reserves, and 3 fields are combination traps with 1% of the reserves. Over 50 of the giant oil fields in structural traps are salt domes. The most prevalent types of giant fields in the Gulf Coastal area are onshore structural traps with Cenozoic clastics as the primary producing intervals.

  12. Disposal of nonhazardous oil field wastes into salt caverns

    SciTech Connect

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.

    1996-12-31

    Bedded and domal salt deposits occur in many states. If salt deposits are thick enough, salt caverns can be formed through solution mining. These caverns are created either incidentally as a result of salt recovery or intentionally to create an underground chamber that can be used for storing hydrocarbon products or disposing of wastes. This paper evaluates the legality, feasibility, and suitability of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns.

  13. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  14. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  15. DOE tallies Class III oil recovery field projects

    SciTech Connect

    Not Available

    1994-07-25

    Here are details from midterm proposals submitted as part of the US Department of Energy's Class 3 oil recovery field demonstration candidate projects. All of the proposals emphasize dissemination of project details so that the results, if successful, can be applied widely in similar reservoirs. Project results will also be fed into a national petroleum technology transfer network. The proposals include: Gulf of Mexico, Gulf coast, offshore California, a California thermal, immiscible CO[sub 2], produced/potable water, microbial EOR, California diatomite, West Texas Spraberry field, and other Permian Basin fields.

  16. Toxicology of oil field pollutants in cattle: a review.

    PubMed

    Coppock, R W; Mostrom, M S; Khan, A A; Semalulu, S S

    1995-12-01

    Cattle are poisoned by petroleum and substances used in drilling and operating oil and gas wells. The most common reported route of exposure for non-gaseous material is oral. Exposures occur when the petroleum or chemicals used in oil and gas field activities are available to cattle and when water and feed-stuffs are contaminated. Cattle, as a leisure activity, explore and ingest crude oil. Based on morbidity patterns in cattle herds, the amount of toxic substance ingested is variable. When water and feedstuffs are contaminated, a larger number in a herd generally are affected. Cattle have been poisoned by a wide variety of chemical mixtures. For substances high in volatile hydrocarbons, the lung is a target organ. Hydrocarbons also target the kidney, liver and brain. Exposure-linked abortions have been reported in cattle. Diethylene glycol targets the brain, liver and kidney. The reported threshold dose of unweathered oil for cattle ranges from 2.5 to 5.0 ml/kg bw, and the reported threshold dose for weathered oil is 8.0 ml/kg. PMID:8588300

  17. Bird Mortality in Oil Field Wastewater Disposal Facilities

    NASA Astrophysics Data System (ADS)

    Ramirez, Pedro

    2010-11-01

    Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980’s. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.

  18. Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela

    SciTech Connect

    Kaufman, R.L.; Noguera, V.H.; Bantz, D.M.; Rodriguez, R.

    1996-08-01

    Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

  19. Clay-oil droplet suspensions in electric fields

    NASA Astrophysics Data System (ADS)

    Rozynek, Zbigniew; Fossum, Jon Otto; Kjerstad, Knut; Mikkelsen, Alexander; Castberg, Rene

    2012-02-01

    Silicone oil droplets containing synthetic smectite clay submerged in immiscible organic oil have been studied by observing clay particle movement and oil circulation when an electric field is applied. Results show how electric field strength, dielectric and electrorheological properties as well as electrohydrodynamics determine the fluid flow and clay particle formation. In a presence of the DC electric fields the clay particles formed a ribbon-like structure onto the inner surface of the droplet. The structure consists of short chain-like clay elements orienting parallel to the electric field direction. It is suggested that a combination of two phenomena, namely the induced viscous flow (electrohydrodynamic effect) and the polarization of the clay particles (dielectric effect), contribute to the ribbon-like structure formation. -/abstract- References [1] G. Taylor, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 291 (1966) 159--166. [2] J. R. Melcher and G. I. Taylor, Annual Review of Fluid Mechanics 1 (1969) 111--146. [3] H. Sato, N. Kaji, T. Mochizuki, and Y. H. Mori, Physics of Fluids 18 (2006) 127101. [4] D. A. Saville, Annual Review of Fluid Mechanics 29 (1997) 27--64. [5] J. O. Fossum, Y. M'eheust, K. P. S. Parmar, K. D. Knudsen, K. J. Måløy, and D. M. Fonseca Europhysics Letters 74

  20. Application of a multi-block CFD code to investigate the impact of geometry modeling on centrifugal compressor flow field predictions

    SciTech Connect

    Hathaway, M.D.; Wood, J.R.

    1997-10-01

    CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certain features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.

  1. Strategies for field application of foams in heavy oil reservoirs

    SciTech Connect

    Isaacs, E.E.; Ivory, J.; Law, D.H.S.

    1995-12-31

    Steam-based processes in heavy oil reservoirs that are not stabilized by gravity have poor vertical and areal conformance. This is because gases are more mobile within the pore space than liquids and steam tends to override or channel through oil in a formation. The steam-foam process which consists of adding surfactant with or without non-condensible gas to the injected steam, was developed to improve the sweep efficiency of steam drive and cyclic steam processes. The foam-forming components injected with the steam stabilize the liquid lamellae and cause some of the steam to exist as a discontinuous phase. The steam mobility (gas relative permeability) is thereby reduced resulting in an increased pressure gradient in the steam-swept region, to divert steam to the unheated interval and displace the heated oil better. The propagation of surfactant in the reservoir is determined by its thermal stability, adsorption, precipitation, and oil partitioning behaviour. The propagation of the foam is determined by the mechanisms that generate and destroyfoam in the reservoir, including gas and liquid velocities, condensation and evaporation, non-condensible gas, and the presence of oil. Strategies were developed to minimize the chemical requirements for generating effective steam-foams. Economic steam-foam processes requires that surfactant losses are minimized, foam propagation and foam stability is maximized at surfactant concentrations lower than has hereto been used in the field. This paper, based on laboratory finding and field experience, discusses the important considerations which affect the efficient application of steam-foam in the field.

  2. Source rock identification and oil generation related to trap formation: Southeast Constantine oil field

    SciTech Connect

    Boudjema, A.; Rahmani, A.; Belhadi, E.M.; Hamel, M.; Bourmouche, R. )

    1990-05-01

    Petroleum exploration began in the Southeast Constantine basin in the late 1940s. Despite the very early discovery of Djebel Onk field (1954), exploration remains very sparse and relatively unsuccessful due mainly to the geological complexity of the region. The Ras-Toumb oil field was discovered only twenty years later. In 1988, a new discovery, the Guerguit-El-Kihal oil field renewed the interest of explorationists in this region. The Southeast Constantine Mesozoic-Cenozoic basin has a sedimentary sequence of shales and carbonates with a thickness exceeding 7,000 m. Structural traps are related to pyrenean and post-Villafranchian phases. Potential reservoirs with good petrophysical characteristics and seals can be found throughout the section and are mainly Cenomanian-Turonian and Coniacian limestones and dolomites. The known source rocks are Cenomanian-Turonian and Campanian carbonate shales. Kerogen is a mixture of type II and type III for the Campanian. The kerogen has a fair petroleum potential and is often immature or low mature. The Cenomanian-Turonian kerogen is type II amorphous, with a variable but important petroleum potential. Total organic carbon values range from 1.5% to 7%. Maturity corresponds to the oil window. This source rock is well known throughout the Mediterranean region and is related to the oceanic anoxic event. Kinetic modeling of this organic matter evolution indicates favorable oil generation timing related to trap formation ages.

  3. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  4. Crosshole EM for oil field characterization and EOR monitoring: Field examples from Lost Hills, California

    SciTech Connect

    Wilt, M.; Schenkel, C.; Wratcher, M.; Lambert, I.; Torres-Verdin, C.; Tseng H.W.

    1996-07-16

    A steamflood recently initiated by Mobil Development and Production U.S. at the Lost Hills No 3 oil field in California is notable for its shallow depth and the application of electromagnetic (EM) geophysical techniques to monitor the subsurface steam flow. Steam was injected into three stacked eastward-dipping unconsolidated oil sands at depths from 60 to 120 m; the plume is expected to develop as an ellipsoid aligned with the regional northwest-southeast strike. Because of the shallow depth of the sands and the high viscosity of the heavy oil, it is important to track the steam in the unconsolidated sediments for both economic and safety reasons. Crosshole and surface-to-borehole electromagnetic imaging were applied for reservoir characterization and steamflood monitoring. The crosshole EM data were collected to map the interwell distribution of the high-resistivity oil sands and to track the injected steam and hot water. Measurements were made in two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the steam drive, to map the distribution of the oil sands, and then 6 and 10 months after steam was injected, to monitor the expansion of the steam chest. Resistivity images derived from the collected data clearly delineated the distribution and dipping structure of the target oil sands. Difference images from data collected before and during steamflooding indicate that the steam chest has developed only in the middle and lower oil sands, and it has preferentially migrated westward in the middle oil sand and eastward in the deeper sand. Surface-to-borehole field data sets at Lost Hills were responsive to the large-scale subsurface structure but insufficiently sensitive to model steam chest development in the middle and lower oil sands. As the steam chest develops further, these data will be of more use for process monitoring.

  5. Earthquakes in the oil field at Rangely, Colorado

    USGS Publications Warehouse

    Gibbs, James F.; Healy, John H.; Raleigh, C. Barry; Coakley, John M.

    1972-01-01

    Seven years of seismic data recorded at the Uinta Basin Observatory were searched for earthquakes originating near an oil field at Rangely, Colorado, located 65 km ESE of the observatory. Changes in the number of earthquakes recorded per year appear to correlate with changes in the quantity of fluid injected per year. Between November 1962 and January 1970, 976 earthquakes were detected near the oil field by the UBO station; 320 earthquakes were larger than magnitude 1. Richter magnitudes are estimated from both S-wave and P-wave measurements and a method based on the duration of the seismic signal is used to estimate the magnitude of the larger shocks. The two largest shocks had magnitudes of 3.4 and 3.3. The total seismic energy released was l0l7 ergs. During this same period the energy used for water injection, measured at the wellhead, was 1021 ergs.

  6. Design of gearbox for oil field hoisting equipment

    SciTech Connect

    Ibragimova, N.E.

    1995-07-01

    The kinematic diagram of the mechanical drive of oil field hoisting equipment is determined by the gear ratio for raising and lowering the down-hole equipment, the necessary hoist load capacity, and the power of the traction engine of the transport base. The choice of a rational gear ratio for raising the down-hole equipment is an important stage in the kinematic design of the transmission. The gear ratio of the gearbox of an oil-field hoist should be such as to ensure that the equipment is raised and lowered most rapidly and the utilization of the traction engine power is highest. The preferred gear train is one chosen in accordance with the geometric structure of the gear train of the gearbox. Such gearboxes are convenient to operate and easy to build. The design of these gearboxes is discussed.

  7. Methane leaks from oil and gas fields detected from space

    NASA Astrophysics Data System (ADS)

    Rosen, Julia

    2014-11-01

    A few years ago, while poring over satellite images of the Earth at night, scientists spotted the bright glow of natural gas flares burning in the oil and gas fields that have fueled America's recent energy boom. Now they have spotted something else from space: large plumes of fugitive methane gas liberated from these formations by unconventional extraction methods like horizontal drilling and hydraulic fracturing.

  8. CFD simulation of centrifugal cells washers.

    PubMed

    Kellet, Beth E; Binbing, Han; Dandy, David S; Wickramasinghe, S Ranil

    2004-01-01

    The feasibility of using computational fluid dynamics to guide the design of better centrifuges for processing shed blood is explored here. The velocity field and the rate of protein removal from the shed blood have been studied. The results indicate that computational fluid dynamics could help screen preliminary centrifuge bowl designs thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Though the focus of this work is on washing shed blood the methods developed here are applicable to the design of centrifuge bowls for other blood processing applications. PMID:15133962

  9. Sulfide mineralization and magnetization, Cement oil field, Oklahoma

    USGS Publications Warehouse

    Reynolds, Richard L.; Fishman, Neil S.; Webring, Michael W.; Wanty, Richard B.; Goldhaber, Martin B.

    1989-01-01

    Geochemical, petrographic, and rock-magnetic studies were undertaken to investigate possible sources for reported positive aeromagnetic anomalies over the Cement oil field, Oklahoma. Ferrimagnetic pyrrhotite (monoclinic, Fe7S8 ), intergrown with more-abundant, nonmagnetic pyrite (FeS2), is present in well-cutting, core, and quarry samples at Cement, and it is the only identified source of possible enhanced magnetization in rocks over the field. Magnetite, found only in well cuttings from Cement, is contamination from drilling. Magnetite was considered previously by others to be the source of magnetic anomalies at Cement.

  10. Crude oil from the var'egansk field. [Siberia

    SciTech Connect

    Driatskaya, Z.V.; Kaminskii, E.K.; Krylova, S.M.; Mkhchiyan, M.A.

    1982-09-01

    This article presents results from an investigation of a representative sample of the crude oil of the BV group (BV/sub 6/, BV/sub 7/, BV/sub 8/, and BV/sub 9/), taken at a central gathering point in the Tyumen Oblast. It indicates that Var'egansk crude is low-sulfur, medium-resin, and medium-wax. The Var'egansk field is a single-bed field, and its deposits are confined to the Jurassic and Cretaceous systems (Valanginian and Hauterivian-Barremian stages).

  11. Plans for first oil production revived in two Sudanese fields

    SciTech Connect

    Not Available

    1993-05-03

    A Vancouver, British Columbia, independent and its Sudanese partner have filed a development plan with the government of Sudan to produce an initial 40,000 b/d from Heglig and Unity oil fields in Sudan. Arakis Energy Corp., and the private Sudanese company State Petroleum Corp. (SPC) want to begin the first commercial hydrocarbon production in the destitute, war torn country. They are picking up where Chevron Corp. left off after years of grappling with an ambitious, costly - and ultimately futile - effort to export crude-oil from Sudan. After finding almost 300 million bbl of oil in Sudan during the early 1980s, Chevron scuttled a $2 billion project to export 50,000 b/d of Sudanese crude in 1986. It drilled 90 wells and sank more than $1 billion into the project. But it dropped the plan, citing the 1986 collapse of oil prices and concerns over security after repeated guerrilla attacks delayed work. The paper details the project.

  12. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  13. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  14. Separation of gas mixtures by centrifugation

    NASA Technical Reports Server (NTRS)

    Park, C.; Love, W. L.

    1972-01-01

    Magnetohydrodynamic (MHD) centrifuge utilizing electric currents and magnetic fields produces a magnetic force which develops supersonic rotational velocities in gas mixtures. Device is superior to ordinary centrifuges because rotation of gas mixture is produced by MHD force rather than mechanical means.

  15. Greater Burgan of Kuwait: world's second largest oil field

    SciTech Connect

    Youash, Y.Y.

    1989-03-01

    Greater Burgan (Main burgan, Magwa, and Ahmadi) field is located in the Arabian Platform geologic province and the stable shelf tectonic environment of the Mesopotamian geosyncline, a sedimentary basin extending from the Arabian shield on the west to the complexly folded and faulted Zagros Mountains on the east. The structural development in Cretaceous time represents a major anticlinorium bounded by a basin to the west and a synclinorium to the east. Greater Burgan is located within this anticlinorium. The field consists of three dome structures 25 km wide and 65 km long with gentle dips of only few degrees. Faults have little throw and did not contribute to the trapping mechanism. The structural deformation may have been caused by halokinetic movements and most likely by basement block faulting that may have started in the Paleozoic. Greater Burgan was discovered in 1938. All production during the last 40 years has been by its natural pressure. Although natural gas injection has been carried out for some time, no waterflooding has been initiated yet. Recoverable reserves of the field are 87 billion bbl of oil. During the last 5 years giant reserves have been added in this field from the deeper strata of Jurassic age. Several deep wells have been drilled to the Permian for the purpose of discovering gas. So far, no Permian gas has been found in Kuwait. The Permian is 25,000 ft deep, and it is unlikely gas will be found there in the future. However, the potential of the Jurassic reservoirs will be a major target in the future. Also, there is a great possibility of discovering oil in stratigraphic traps, as several producing strata in the nearby fields pinch out on the flanks of this giant structure. Enhanced oil recovery should add significant reserves in the future.

  16. Crosshole EM for oil field characterization and EOR monitoring: Field examples

    SciTech Connect

    Wilt, M.; Schenkel, C.; Torres-Verdin, C.; Lee, Ki Ha; Tseng, Hung-Wen

    1994-09-01

    Crosshole and surface-to-borehole electromagnetic (EM) imaging is applied to reservoir characterization and steam flood monitoring in a central California oil field. Steam was injected into three stacked, eastward-dipping, unconsolidated oil sands within the upper 200 in. The steam plume is expected to develop as an ellipse aligned with the regional northwest-southeast strike. EM measurements were made from two flberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the initiation of a steam drive to map the distribution of the oil sands and then six months after the steam was injected to monitor the progress of the steam chest. Resisitivity images derived from the EM data collected before steam injection clearly delineate the distribution and dipping structure on the target oil sands. Difference images from data collected before and after steam flooding indicate that the steam chest has developed only in the deeper oil sands, and it has preferentially migrated eastward. Surface-to-borehole measurements were useful in mapping the distribution of the major oil sands, but they were insensitive to resisitivity changes in the early stages of the steam flood.

  17. Geology of Terra Nova oil field, Grand Banks, Newfoundland

    SciTech Connect

    Dwyer, J.D.; Sullivan, G.W.; Park, J.

    1986-05-01

    Oil was discovered at the Petro-Canada et al Terra Nova K-08 well in May 1984. The well was drilled in the Jeanne d'Arc subbasin, 340 km east of St. John's, Newfoundland, and 35 km southeast of the giant Hibernia oil field. Follow-up wells provided log correlations and core data that have been used with a three-dimensional seismic survey to construct a geologic model. Mapping the field demonstrated a combination structural-stratigraphic trap. The reservoir is within the lower part of the Jeanne d'Arc sequence (Upper Jurassic). This conglomeratic sandstone is interpreted as having been deposited in a nearshore to fluvial setting by basinward, northward progradation of fan-delta systems. The reservoir has a depositional limit updip to the south, and is overstepped and sealed by transgressive shales of the upper Jeanne d'Arc. Oil source is from the underlying Egret (Oxfordian-Kimmeridgian) argillaceous limestones. The geologic model and seismic interpretation have been tested by appraisal drilling.

  18. Gas condensate and oil from Verkhnechonsk field of eastern Siberia

    SciTech Connect

    Bezhanidze, A.M.; Titkina, G.I.; Krylova, S.M.; Kolevatova, V.P.

    1988-05-01

    Two condensates and three crudes from different sectors and depths of the Verkhnechonsk oil and gas field were assessed for their viscosities, molecular weights, densities, flash and solid and boiling points, cetane and octane numbers, and chemical compositions, including sulfur, nitrogen, nickel, vanadium, wax, resin, and asphaltene contents. The samples were distilled into 10-20 C fractions, reblended in proportion to their contents in the original feedstock, and analyzed by gas-liquid chromatography for product quality and hydrocarbon group composition. Distillation requirements were calculated for generating kerosene, gasoline, and diesel, jet engine, and boiler fuels from the feedstocks. Potential yields of these cuts, as well as yields of lubricating oils and paving asphalts, were evaluated for the five samples.

  19. Floating oil production unit slated in small field off Gabon

    SciTech Connect

    Not Available

    1991-10-14

    This paper reports on the first U.S. tanker converted to a floating production, storage, and offloading (FPSO) unit which takes up station in Gombe-Beta field off Gabon by Dec. 1. FPSO Ocean Producer will work under a 3 year, day rate contract let late in 1990 by Amoco-Gabon Bombe Marin co., a unit of Amoco Production Co. (OGJ, Dec. 24, 1990, p. 27). Gombe-Beta field is in the Atlantic Ocean about 70 miles south of Port Gentil, Gabon. Ocean Producer will be moored in 50 ft of water 3.7 miles off Gabon, with Bombe-Beta's unmanned production platform about 820 ft astern. The vessel will be held in position by a disconnectable, asymmetric, six point, spread mooring system, It is owned and operated by Oceaneering International Services Ltd. (OISL). Affiliate Oceaneering Production Systems (OPS) converted the 78,061 dwt oil tanker MT Baltimore Sea at a capital cost of $25 million at Gulf Copper Manufacturing Corp.'s Port Arthur, Tex., shipyard. Both companies are units of Oceaneering International Inc., Houston. OPS the Ocean Producer's use in Gombe-Beta field is the shallowest water FPSO application in the world. Amoco-Gabon chose an FPSO production system for Gombe-Beta because it expects the remote field to have a short economic life, and the oil requires extensive processing.

  20. Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration

    SciTech Connect

    Hill, D.W.; Sande, J.J.; Doe, P.H.

    1995-04-01

    Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

  1. Genesis and formation oil and gas fields (Azerbaijan)

    NASA Astrophysics Data System (ADS)

    Poletayev, Alexander

    2010-05-01

    The large amount of material of HC isotope composition of over 330 samples allow to restore the history of oil and gas deposits formation within the South-Caspian Depression. Maps of isotope composition changes according to area extent, as well as graphs of HC distribution depending upon stratigraphic age, including rocks, graphs of isotope composition change on sampling depth were compiled for HC study and oil-gas deposits formation. Comparison of mud volcanoes gases, oil and gas fields, gas-hydrates and bottom sediments were conducted. Gases genesis according to M. Shoelle and A. James methodic were studied. Model of area paleoconstruction was studied. Two stages of formation were distinguished as a result of gases study of various forms of their manifestation (gases of mud volcanoes, oil and gas fields, gas hydrate, bottom sediments) as well as isotope gases composition distribution in area of extent including stratigraphic age of deposits, depth of sampling and application of M. Shoelle and A. James. There were determined basic ways of HC migration as well as estimated oil-gas content prospective. The first stage has begun in the underlying PS deposits and continued up to PS deposits. At this stage one various kind of tectonic fluctuations can observed. The second stage of HC formation has started from PS and characterised with a change of geodynamic conditions in region. Avalanche sedimentation, predominance of descending movements over ascending ones promoted the accumulation of thick sediments in PS age. As a result of sediments accumulation and tectonic processes (down warping) in the deep-seated basin led to the complication of thermobaric conditions in the sedimentary series. The studied chemical and HC gases isotope composition showed that basic source of oil and gas formation is located in the deep areas of central and near-flank parts of depression. HC migration has mainly occurred upward. Study of HC migration trend in time and area as well as areas

  2. Qualitative identification of group composition in crude oil from different oil fields using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Cheng J.; Miao, Xin Y.; Li, Yi Z.; Bao, Ri M.; Zhao, Kun

    2015-11-01

    Optical properties of the group components in crude oil were studied using terahertz time-domain spectroscopy (THz-TDS) under nitrogen environment at ambient temperature. The group composition of crude oil from different oil fields were analyzed on the basis of terahertz spectra. Both time delay and amplitude of terahertz wave were modulated in accordance with group composition. The features of terahertz spectra which contain information from different parts of the crude oil group composition can be qualitatively analyzed to detect the group components of the crude oil.

  3. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters

    PubMed Central

    Beeder, Janiche; Nilsen, Roald Kåre; Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1994-01-01

    A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75°C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 μm wide. The temperature for growth was between 60 and 85°C with an optimum of 76°C. Lactate, pyruvate, and valerate plus H2 were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO2. The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO2 via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F420 was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85°C and contribute to hydrogen sulfide formation in this environment. Images PMID:16349231

  4. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  5. Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide.

    PubMed

    Li, Dongmei; Midgley, David J; Ross, Jason P; Oytam, Yalchin; Abell, Guy C J; Volk, Herbert; Daud, Wan Ata Wan; Hendry, Philip

    2012-06-01

    Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected. PMID:22245906

  6. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  7. Rotatingwall Technique and Centrifugal Separation

    NASA Astrophysics Data System (ADS)

    Anderegg, François

    This chapter describes the "rotating wall" technique which enables essentially unlimited confinement time of 109-1010 charged particles in a Penning trap. The applied rotating wall electric field provides a positive torque that counteracts background drags, resulting in radial compression or steady-state confinement in near-thermal equilibrium states. The last part of the chapter discusses centrifugal separation in a rotating multi-species non-neutral plasma. Separation occurs when the centrifugal energy is larger than the mixing due to thermal energy.

  8. Experimental and numerical investigation of the unsteady flow field and tone generation in an isolated centrifugal fan impeller

    NASA Astrophysics Data System (ADS)

    Wolfram, Daniel; Carolus, Thomas H.

    2010-10-01

    In spite of a low circumferential Mach number the sound of isolated centrifugal fan impellers is sometimes dominated by distinctive tones at blade passing frequency (BPF) and integer multiples. This paper reports on an experimental and numerical investigation intended to unveil the tone generating mechanism. The sound spectra from three impellers operating at a large range of speed were measured and decomposed into Strouhal and Helmholtz number dependent functions. This led to the preliminary conclusion that the BPF related tones are exclusively flow-induced. Based on hot-wire and blade pressure fluctuation measurements and a subsequent correlation analysis, coherent flow structures different from those associated with the principal azimuthal flow pattern due to the blades were detected. Eventually a numerical three-dimensional unsteady flow simulation revealed an inlet vortex. It takes on a helical form, with the vortex core slowly varying its position with respect to the impeller center. As the blades cut through that quasi-stationary helical vortex they encounter blade force fluctuations, producing the BPF tones. Slow spin of the vortex core and slow variation of vortex strength were identified as the reasons for amplitude modulation of the BPF tone.

  9. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  10. Methanococcus thermolithotrophicus Isolated from North Sea Oil Field Reservoir Water

    PubMed Central

    Nilsen, R. K.; Torsvik, T.

    1996-01-01

    Methanococcus thermolithotrophicus ST22 was isolated from produced water of a North Sea oil field, on mineral medium with H(inf2)-CO(inf2) as the sole source of carbon and energy. The isolate grew at 17 to 62(deg)C, with an optimum at 60(deg)C. The pH range was 4.9 to 9.8, with optimal growth at pH 5.1 to 5.9; these characteristics reflected its habitat. Strain ST22 was quickly identified and distinguished from the type strain by immunoblotting. PMID:16535247

  11. Applications of water-soluble polymers in the oil field

    SciTech Connect

    Chatterji, J.; Borchardt, J.K.

    1981-11-01

    Water-soluble polymers commonly used in the oil field are reviewed. The properties of guar, guar derivatives, cellulose derivatives, xanthan gum, locust bean gum, starches, and synthetic polymers, especially polyacrylamides, are discussed and related to chemical structures of the polymers. Original data comparing polymer solution viscosity properties under identical conditions are presented. These data include effect of polymer concentration on solution viscosity, temperature effect on solution viscosity, viscosity in acidic solution, and polymer solution viscosity in the presence of a hemicellulase enzyme. 105 refs.

  12. Corrosion of alloy steels in oil field fluids

    SciTech Connect

    Martin, R.L.

    1987-01-01

    Laboratory and field tests have been conducted on two low alloy and two higher alloy steels at a range of brine salinities and sulfide contents typical of oil well production fluids. AISI types 4130 and 4340 show the same behavior in these fluids as mild steel. AISI type 410 stainless steel and 9% chromium - 1% molybdenum steel corrode at rates as great as that of mild steel at higher chloride or sulfide concentrations. Special corrosion inhibitors are required for higher alloy steels when they are exposed to these conditions.

  13. Premium performance heating oil - Part 2, Field trial results

    SciTech Connect

    Jetter, S.M.; Hoskin, D.; McClintock, W.R.

    1996-07-01

    Limited field trial results of a heating oil additive package developed to minimize unscheduled maintenance indicate that it achieves its goal of keeping heating oil systems cleaner. The multifunctional additive package was developed to provide improved fuel oxidation stability, improved corrosion protection, and dispersency. This combination of performance benefits was chosen because we believed it would retard the formation of sludge, as well as allow sludge already present to be carried through the system without fouling the fuel system components (dispersency should keep sludge particles small so they pass through the filtering system). Since many unscheduled maintenance calls are linked to fouling of the fuel filtering system, the overall goal of this technology is to reduce these maintenance calls. Photographic evidence shows that the additive package not only reduces the amount of sludge formed, but even removes existing sludge from filters and pump strainers. This {open_quotes}clean-up{close_quotes} performance is provided trouble free: we found no indication that nozzle/burner performance was impaired by dispersing sludge from filters and pump strainers. Qualitative assessments from specific accounts that used the premium heating oil also show marked reductions in unscheduled maintenance.

  14. Geochemistry of oil-field water from the North Slope

    SciTech Connect

    Kharaka, Y.K.; Carothers, W.W.

    1989-01-01

    Knowledge of the chemical composition of oil-field water is important in understanding the origin and migration of petroleum as well as the water mineral reactions that affect the porosity and permeability of the reservoir rocks. This knowledge is essential in interpreting electric logs and in determining potential pollution, corrosion, and disposal problems of water produced with oil and gas. Finally, the chemical composition of water is an important factor in determining the conditions (temperature, pressure) for the formation of clathrates. This chapter reports detailed chemical analyses of seven formation-water samples from wells within the NPRA and one surface-and two formation-water samples from the Prudhoe Bay oil field. The authors also report {delta}D and {delta}{sup 18}O values for eight of the water samples as well as analyses for gases from six wells. The formation-water samples were obtained from depths ranging from about 700 to 2800 m and from reservoir rocks ranging in age from Mississippian (Lisburne Group) to Triassic. The reservoir rocks are sandstone except for sample 79-AK-5, which was obtained from a limestone interbedded with sandstone. Generally, the pre-Cretaceous sandstone reservoir rocks on the North Slope have a similar mineral composition. Van de Kamp (1979) gave the following description of these sandstones: Quartz (usually monocrystalline) and chert are the major components; carbonate and clay are variable. Carbonate occurs as detrital grains and as cement, siderite being the most common type. Siderite can form as much as 30 percent of the rock. Clay occurs as a common matrix, generally making up less than 10 percent of the rock. Accessory minerals include pyrite, plagioclase, microcline, glauconite, zircon, sphene, tourmaline, and muscovite.

  15. Crude oil from the El'Darovo field

    SciTech Connect

    Dorogochinskaya, V.A.; Fadeev, V.S.; Shul'zhenko, E.D.

    1985-11-01

    The crudes from the El'darovo field are analyzed. They are light, low-sulfur, low-viscosity, and low pour, with a wax content of 1.2-2.8% by weight and low contents of asphaltenes and nitrogen. The oils from the Lower Cretaceous deposits differ from those from the Upper Creataceous deposits in that they are lower in density, viscosity, and carbon residue, with low contents of resins and asphaltenes, sulfur and nitrogen, and high yields of light fractions. The hydrocarbon composition of the IBP-62 degrees C cut was determined chromatographically in a column packed with CaA zeolite. The properties of the crudes are typical for crudes produced in this region. It is recommended that these crudes should be processed in mixtures with crudes from other fields in the Checheno-Ingush ASSR.

  16. Field testing the prototype BNL fan-atomized oil burner

    SciTech Connect

    McDonald, R.; Celebi, Y.

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  17. Silverthread oil field, Ventura County, California: a hydrodynamic trap

    SciTech Connect

    Hacker, R.N.; Hester, R.L.

    1987-05-01

    Silverthread oil field is located in west-central Ventura County, California. An unusual combination of Miocene turbidite sand deposition, tight folding, faulting, and hydrodynamics have created an accumulation of over 6 million bbl of oil from 33 wells. This field is also unique in that it lies beneath the convergence of several opposing major thrust faults which effectively hide any surface indication of structure at depth. Though previously and often explored by majors and other operators, the remarkable deduction and perseverance by Harry Browne and Argo Petroleum Corporation geologists led to the main area discovery in 1971. Of exceptional interest is the interaction of classic hydrodynamic flow on the distribution of fluids within the reservoir. Thirteen contour maps and numerous structure and stratigraphic sections were required to unravel the sand sequence, faulting, structure, and hydrodynamics. Because of high surface relief, most wells were directionally drilled from islands, and subsequent electric logs had to be unstretched using the Dental Dam technique to facilitate their correlation. A large, lighted, three-dimensional model consisting of thirty-six 2 x 5-ft transparent plexiglas plates was constructed to show a simple resolution of the complexities of this area and will be part of the poster session. This display, they believe, will generate considerable interest in their presentation.

  18. Work Related Injuries in an Oil field in Oman

    PubMed Central

    Al-Rubaee, Faisal Rabia; Al-Maniri, Abdullah

    2011-01-01

    Objectives The aim of this paper is to describe the epidemiology of occupational injuries in the Harweel oil field, Oman. Methods The study is based on data gathered from a computerized database maintained by Petroleum Development of Oman (PDO). All non-fatal work-related occupational injuries registered between April 2007 and December 2009 were gathered and analyzed. Results A total of 170 work-related injuries were reported during the study period. Foreign body to the eye was the most common type of injury (27.6%) encountered among all injuries, followed by man falls/slips (11.8%). Injury to the upper extremities accounted for the largest percentage (38.8%) among other body parts. While, a significant portion of the injuries (52%) affected workers aged less than 30 years. The average injury rate per 1000 exposed workers per year was 19.8. Conclusion The study outlines the types of injuries most commonly encountered in the oil field in Oman. Additional data is required in order to devise proper epidemiological analysis. Establishing a comprehensive surveillance system for injuries is essential to ascertain factors influencing such injuries. PMID:22125724

  19. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  20. Tukau Field: Finding new oil in matured and complex field after 20 years of production

    SciTech Connect

    Shariff, M.D.; Ridza, M. ); Majid, P. )

    1996-01-01

    The Tukau Field is located some 30 km offshore Sarawak, Malaysia. in water depth of about 160 ft. The field, discovered by TK-2 in 1966 found 235 ft net oil sand and 16 ft wet gas sand. After further seismic data acquisition and interpretation, six (6) appraisal wells were drilled from 1973 to 1975 before the field could be commercially developed. The Tukau structure is a structurally complex feature formed as a domal anticlinal uplift, located along the Tukau I Bakau / Baram trend. It is dissected at the shallow level by normal synthetic and antithetic faults. These fault system divide the field into seven (7) fault blocks. The major hydrocarbon accumulations are between 2400 ftss and 7500 ftss and the main prospective sequence consists of fine to very fine grained sand of the upper cycle V of late Miocene age and deposited in a deltaic, fluviomarine, coastal to near shore environment. Development drilling commenced in 1975 with a total of 23 wells. To date a total of nine (9) rounds of development activities were carried out resulting in 55 wells being drilled and nine (9) well jackets installed. In 1975, based on the seismic and well data. the field is estimated to contain some 300 MMSTB of oil. Following subsequent field reviews Incorporating some 50 odd well data and seismic reinterpretation in 1987. the field STOIIP increased to 500 MMST. 3D seismic was acquired in 1992 and field review carried out In 1995 resulted In some development potential and appraisal / exploration opportunities. The appraisal well drilled in October 1995, increased the field STOIIP by some 50 MMSTB. Preliminary evaluation based on geological, engineering and economic information indicated that Tukau field will be further developed with additional well jacket and this will boost the field production by about 50%.

  1. Tukau Field: Finding new oil in matured and complex field after 20 years of production

    SciTech Connect

    Shariff, M.D.; Ridza, M.; Majid, P.

    1996-12-31

    The Tukau Field is located some 30 km offshore Sarawak, Malaysia. in water depth of about 160 ft. The field, discovered by TK-2 in 1966 found 235 ft net oil sand and 16 ft wet gas sand. After further seismic data acquisition and interpretation, six (6) appraisal wells were drilled from 1973 to 1975 before the field could be commercially developed. The Tukau structure is a structurally complex feature formed as a domal anticlinal uplift, located along the Tukau I Bakau / Baram trend. It is dissected at the shallow level by normal synthetic and antithetic faults. These fault system divide the field into seven (7) fault blocks. The major hydrocarbon accumulations are between 2400 ftss and 7500 ftss and the main prospective sequence consists of fine to very fine grained sand of the upper cycle V of late Miocene age and deposited in a deltaic, fluviomarine, coastal to near shore environment. Development drilling commenced in 1975 with a total of 23 wells. To date a total of nine (9) rounds of development activities were carried out resulting in 55 wells being drilled and nine (9) well jackets installed. In 1975, based on the seismic and well data. the field is estimated to contain some 300 MMSTB of oil. Following subsequent field reviews Incorporating some 50 odd well data and seismic reinterpretation in 1987. the field STOIIP increased to 500 MMST. 3D seismic was acquired in 1992 and field review carried out In 1995 resulted In some development potential and appraisal / exploration opportunities. The appraisal well drilled in October 1995, increased the field STOIIP by some 50 MMSTB. Preliminary evaluation based on geological, engineering and economic information indicated that Tukau field will be further developed with additional well jacket and this will boost the field production by about 50%.

  2. Chemically bonded phosphate ceramic sealant formulations for oil field applications

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young; McDaniel, Richard

    2008-10-21

    A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250.degree. F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH.sub.2PO.sub.4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.

  3. Oil field waste disposal in salt caverns: An information website

    SciTech Connect

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  4. Indexes of pumps for oil field pumping units

    SciTech Connect

    Ibragimov, E.S.

    1995-07-01

    As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

  5. FIELD TEST KIT FOR CHARACTERIZING OIL-BRINE EFFLUENTS FROM OFFSHORE DRILLING PLATFORMS

    EPA Science Inventory

    This research program was initiated to evaluate test methods for characterizing oil-brine effluents from offshore oil production platforms and to package and deliver a field test kit for on-site oil-brine analyses. After an initial laboratory evaluation and selection of test meth...

  6. Sword field, offshore California: challenges in making this giant oil field commercial

    SciTech Connect

    Ballard, J.H.

    1988-03-01

    The major obstacles and challenges involved in exploration and development of a giant deep-water low-gravity oil field are exemplified in the undeveloped Sword field of offshore southern California. In 1979, Conoco Exploration identified a northeast-southwest-trending basement high in 800-2000 ft deep federal waters 12 mi southwest of Pt. Conception at the western end of the Santa Barbara Channel. The intended reservoir was fractured Miocene Monterey chert, siliceous shales or siltstones, and dolomites that are draped over the axially faulted anticlinal structure. Drilling of the initial well in OCS P-0322 in 1982 resulted in discovering the giant Sword field. A confirmation well drilled in OCS P-0320 indicates in-place reserves of well over 1 billion bbl. Although the discovered potential is significant, the low gravity (8.5/sup 0/-10.5/sup 0/ API) of the oils discovered to date, along with water depths in excess of 1500 ft, currently pose economic challenges to successful field development. Conoco and its partners are addressing the current economic barriers on several fronts. A three-dimensional seismic survey has been conducted to delineate reservoir geometry and to define probable variations in pay thickness and fracturing. A market feasibility study will be undertaken to assess the demand for low gravity crude from offshore California. Finally, Conoco has developed proprietary technology called OCHOS (Offshore California Heavy Oil System), which uses an innovative oil and/or water emulsion technique to allow for more economic recovery of high-velocity or low-gravity crudes.

  7. Geochemical Specific Characters of the Oil and the Origin of the Oil and Gas Fields

    NASA Astrophysics Data System (ADS)

    Gottikh, Rimma; Pisotskiy, Bogdan; Plotnikova, Irina

    2010-05-01

    and porous rocks. The high metal content of carbonaceous substances and their compositional variations governed by homogenisation temperatures of the inclusions suggest that they are not the products of the decomposition of oil fields. The constant presence of uranium in the fluid and its differentiation products allows the tracing of the systems' migration ways from the crystalline basement to oil-saturated reservoir zones of the sedimentary cover The known geochemical properties of bitumen and oil - high platinum content, specific distributions of rare earth elements, that are not characteristic of the upper crust formations, as well as 143Nd/144Nd and 87Sr/86Sr isotopic compounds, which are out of balance with the organic matter of sedimentary rocks - suggest that hydrocarbons are accumulated in the presence of cooling high-alkalinity mafite-ultramafite intrusions. This logically corresponds to the distribution of seismic anomalies and magnetic and gravity fields in the consolidated crust below the various petroleum fields (for example, South Tatarstan and Nepsky arches of the Romashkino and Verkhne-Chonskoye oil fields). The acquired geochemical and thermodynamic characteristics of the reduced fluids and their differentiation products from the crystalline basement and the sedimentary cover of the southern Siberian and eastern East European platforms indicate that these were formed outside of the sedimentary cover and that the migration was directed upwards. The analysis of the magmatic evolution on platforms reveals its alkaline trend due to the impeded degassing of magmatic sources at depth and the inflow of new doses of alkaline fluids or melts into them. Further evolution of the zones of partial melting of the substratum led, in the authors' view, to the generation of oil-forming fluids and their transportation into the Earth's upper crust. Their interaction with the surrounding rocks in turn led to the formation of oil accumulations. Thus, oil is the product

  8. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  9. Magnetotelluric signature of anticlines in Iran's Sehqanat oil field

    NASA Astrophysics Data System (ADS)

    Mansoori, Isa; Oskooi, Behrooz; Pedersen, Laust B.

    2015-07-01

    The magnetotelluric (MT) method has proved to be an effective tool in hydrocarbon exploration especially in areas with geological structures/formations where seismic reflection provides neither good quality data nor images. The Sehqanat oil field located in the sedimentary zone of Zagros in SW of Iran is a typical example. It is covered by the high velocity and heterogeneous formation of Gachsaran, which is exposed at the surface and has a thickness varying from 500 m to more than 2 km in the region. Gachsaran is composed mainly of salt and evaporites overlying, as a cap rock, the Asmari limestone formation which is the main reservoir in all oil fields of Iran along the Zagros range. The main geological interface which is targeted to be imaged with the MT method is the contact between the highly conductive evaporites of the Gachsaran formation and the underlying more resistive carbonates of the Asmari formation. MT data at more than 600 stations along five parallel SW-NE profiles crossing the main geological trend of the study area and transient electromagnetic data over 400 stations to be used for static shift corrections of the MT data were available. Dimensionality and strike analysis of the MT data show dominant two-dimensional (2-D) conditions in almost all sites and periods. The 2-D resistivity models resolved the boundary between Gachsaran and Asmari formations as a transition zone from highly conductive to resistive structures. The Sehqanat anticline has also been delineated throughout the 2-D resistivity sections as a resistive dome-shaped body located in the middle part of the MT profiles. There is a considerable correlation between the 2-D resistivity models and the adjacent 2-D reflection seismic sections so that a more reliable interpretation on the hydrocarbon trap of the Sehqanat anticline can be obtained.

  10. Detection of virgin olive oil adulteration using low field unilateral NMR.

    PubMed

    Xu, Zheng; Morris, Robert H; Bencsik, Martin; Newton, Michael I

    2014-01-01

    The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR) method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils. PMID:24469355

  11. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-01-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites. PMID:20861922

  12. Grant Canyon and Bacon Flat oil fields, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Veal, H.K.; Duey, H.D.; Bortz, L.C.; Foster, N.H.

    1989-03-01

    The Grant Canyon field is located on the eastern side of Railroad Valley, 8 mi south of the Eagle Springs oil field. The discovery well, Grant Canyon Unit 1 was completed by Northwest Exploration Co. on September 11, 1983, flowing 1816 bbl of oil/day from the Devonian Guilmette dolomite (4374-4448 ft). Two additional wells have been completed in the field. Through April 1988, cumulative oil production was 8,211,149 bbl of oil. During March and April 1988, wells 3 and 4 flowed an average of 6089 bbl of oil/day. For these months, well 3 averaged 4144 bbl of oil/day with 1935 bbl of oil/day coming from well 4. Production area appears to be 240 ac. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Guilmette reservoir is an intensely fractured vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary Valley Fill, which unconformably overlies the Guilmette dolomite. The oil column is about 400 ft thick and the field apparently has an active water drive, inasmuch as unit 1 had to be shut in because of water production. The oil is black, 26/degree/API, 0.5% sulfur, and has a pour point of 10/degree/F. Estimated ultimate recoverable oil reserves are 13 million bbl. The adjacent Bacon Flat field is a one-well field completed by Northwest Exploration CO. on July 5, 1981, for 200 bbl of oil/day and 1050 bbl of water/day from the Devonian Guilmette Limestone (5316-5332 ft). Cumulative production through April 1988 was 303,860 bbl of oil. During March 1988, the well averaged 108 bbl of oil/day plus an unreported amount of water. Estimated ultimate recoverable oil reserves are 400,000 bbl.

  13. PVTX characteristics of oil inclusions from Asmari formation in Kuh-e-Mond heavy oil field in Iran

    NASA Astrophysics Data System (ADS)

    Shariatinia, Zeinab; Haghighi, Manouchehr; Shafiei, Ali; Feiznia, Sadat; Zendehboudi, Sohrab

    2015-04-01

    Incorporating PVT properties and compositional evolution of oil inclusions into reservoir engineering simulator protocols can enhance understanding of oil accumulation, reservoir charge history, and migration events. Microthermometry and volumetric analysis have proven to be useful tools in compositional reconstitution and PT studies of oil inclusions and were used to determine composition, thermodynamic conditions, physical properties, and gas-to-oil ratios of heavy oil samples from Asmari carbonate reservoir in Kuh-e-Mond heavy oil field in Iran. PVT properties were predicted using a PVT black-oil model, and an acceptable agreement was observed between the experiments and the simulations. Homogenization temperatures were determined using microthermometry techniques in dolomite and calcite cements of the Asmari Formation, as well. Based on the homogenization temperature data, the undersaturated hydrocarbon mixture prior to formation of the gas cap migrated with a higher gas-to-oil ratio from a source rock. According to the oil inclusion data, the onset of carbonate cementation occurred at temperatures above 45 °C and that cementation was progressive through burial diagenesis. PVT black-oil simulator results showed that the reservoir pressure and temperature were set at 100 bar and 54 °C during the initial stages of oil migration. Compositional modeling implies that primary and secondary cracking in source rocks were responsible for retention of heavy components and migration of miscible three-phase flow during hydrocarbon evolution. The PT evolution of the petroleum inclusions indicates changes in thermodynamic properties and mobility due to phenomena such as cracking, mixing, or/and transport at various stages of oil migration.

  14. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  15. CUMULATIVE IMPACTS OF OIL FIELDS ON NORTHERN ALASKAN LANDSCAPES (JOURNAL VERSION)

    EPA Science Inventory

    Proposed further developments on Alaska's Arctic Coastal Plain raise questions about cumulative effects on arctic tundra ecosystems of development of multiple large oil fields. Maps of historical changes to the Prudhoe Bay Oil Field show indirect impacts can lag behind planned de...

  16. Air injection project breathes fire into aging West Hackberry oil field

    SciTech Connect

    Duey, R.

    1996-02-01

    Amoco, the DOE and LSU seek more oil from Gulf Coast salt dome fields with air injection technique. The West Hackberry Field in Louisiana is a water-driven reservoir. By injecting air into the high-pressure, high-temperature reservoir rock, the water is backed down, allowing the oil to drain off the steeply dipped rock.

  17. Infrared spectrometry field-method for identification of natural seep-oils.

    PubMed

    Grant, D F; Eastwood, D

    1983-11-01

    An infrared field-method has been developed which is capable of distinguishing between oils originating from natural seepage in the Santa Barbara (California) Channel region and closely similar oils from onshore drilling platforms. The technique involves a minimum of sample preparation and the use of simple infrared instrumentation which can be operated by non-technical personnel. Natural seep-oil samples were collected from the surface of the water, underwater, and from beaches in the area. The non-seep oils were obtained from production wells which were located in the same geographical areas as the seepage and were from several different well depths corresponding to different geological zones. Natural seep-oils are more aromatic than the production oils, and this difference is evidenced by observed differences in the spectra for both weathered and unweathered oils. These spectral differences between seep and non-seep oils have been found to persist after exposure to weathering for a week. PMID:18963475

  18. Basement reservoir in Zeit Bay oil field, Gulf of Suez

    SciTech Connect

    Zahran, I.; Askary, S.

    1988-01-01

    Fractured basement, one of the most important reservoirs of Zeit Bay field, contains nearly one-third of oil in place of the field. The flow rates per well vary from 700 to 9,000 BOPD. Due to its well-established production potential, 60% of the wells for the development of the field were drilled down to basement. The Zeit Bay basement consist of granitic rocks of pegmatitic to coarse porphyritic texture and has equal proportions of alkali feldspars. Dykes of various compositions are present, traversing the granite at different intervals. Dykes include aplite, microsyenite, diabase and lamprophyre. The last two pertain to the post-granitic dykes of later Proterozoic age. The main granitic luton is related to one of the final stages of the tectonic-magmatic cycle of the Arabo-Nubian sheild. The Zeit Bay area was a significant paleohigh until the Miocene, hence its structural picture is very complicated due to the impact of different tectonic movements from the late Precambrian to Cenozoic. The resulting structural elements were carefully investigated and statistically analyzed to decipher the influence of various tectonic events. The presence of high porosity in some intervals and low porosity in others could be tied to the presence of new fractures and the nature of cementing minerals. The relation of mineralized fractures and their depths lead to zonation of porous layers in the granitic pluton. Diagenetic processes on the granitic body and the alternation/resedimentation of the diagenetic products controlled the magnitude and amplitude of the porosity layers.

  19. Basement reservoir in Zeit Bay oil field, Gulf of Suez

    SciTech Connect

    Zahran, I.; Askary, S.

    1988-02-01

    Fractured basement, one of the most important reservoirs of Zeit Bay field, contains nearly one-third of oil in place of the field. The flow rates per well vary from 700 to 9,000 BOPD. Due to its well-established production potential, 60% of the wells for the development of the field were drilled down to basement. The Zeit Bay basement consists of granitic rocks of pegmatitic to coarse porphyritic texture and has equal proportions of alkali feldspars. Dykes of various compositions are present, traversing the granite at different intervals. Dykes include aplite, microsyenite, diabase and lamprophyre. The last two pertain to the post-granitic dykes of late Proterozoic age. The main granitic pluton is related to one of the final stages of the tectonic-magmatic cycle of the Arabo-Nubian shield. The Zeit Bay area was a significant paleohigh until the Miocene, hence its structural picture is very complicated due to the impact of different tectonic movements from the late Precambrian to Cenozoic. The resulting structural elements were carefully investigated and statistically analyzed to decipher the influence of various tectonic events. The presence of high porosity in some intervals and low porosity in others could be tied to the presence of new fractures and the nature of cementing minerals. The relation of mineralized fractures and their depths lead to zonation of porous layers in the granitic pluton. Diagenetic processes on the granitic body and the alteration/resedimentation of the diagenetic products controlled the magnitude and amplitude of the porosity layers. A model has been constructed to illustrate the changes in the primary rock texture and structure with sequential diagenetic processes, taking into consideration the fracture distribution and their opening affinities as related to their depths.

  20. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence

  1. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  2. Vertical magnetic field and its analytic signal applicability in oil field underground pipeline detection

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyong; Liu, Dejun; Pan, Qi; Zhang, Yingying; Li, Yi; Wang, Zheng

    2015-06-01

    We propose using the vertical component of the magnetic anomaly (vertical magnetic field (VMF)) and its analytic signal (AS) to detect oil field underground pipelines. The connection between two peaks of the VMF curves or the AS curves was used to calculate the pipeline azimuth, and the peak coordinates of the AS were used to determine the horizontal position of pipelines. Then, the effect of the pipeline magnetization direction and pipeline buried depth on the horizontal locating error was analyzed. Three typical pipeline models were used for verifying this method. Results indicate that this method can be used to precisely calculate the stretch direction of the pipeline and effectively improve the identification capability in detecting parallel pipelines. The horizontal position of the pipeline axis can be accurately located by the peak of the AS and the locating error increases with the increase in pipeline buried depth, but it is not affected by pipeline outer diameter, thickness, susceptibility. The instrument design and the VMF measurement strategy are realistic and applicable. The VMF detection with its AS provides a new effective method for horizontal locating and direction calculating of oil field underground pipelines.

  3. Method and apparatus for centrifugal separation of dispersed phase from a continuous liquid phase

    SciTech Connect

    Ryan, D.G.

    1986-12-16

    A method is described of treating a hydrocarbon oil mixture boiling in the lubricating oil range and containing wax particles, for separating wax particles from the oil mixture, comprising the steps of: centrifugating the oil mixture to be treated in a centrifugal separation device, for separating a quantity of the wax particles from the oil mixture; introducing free excess charge which is net unipolar into the oil mixture, whereby charge transfers to wax particles in the oil mixture; and collecting charged wax particles, for separation from the oil mixture.

  4. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    NASA Astrophysics Data System (ADS)

    Vaganova, N. A.; Filimonov, M. Yu.

    2015-11-01

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  5. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    SciTech Connect

    Vaganova, N. A.; Filimonov, M. Yu.

    2015-11-30

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  6. Microseismic monitoring of the Chaveroo oil field, New Mexico

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Fairbanks, T.D.; Murphy, M.B.; Roberts, P.M.

    1990-01-01

    Induced microseismicity was monitored in the Chaveroo oil field in southeastern New Mexico during a pressurized stimulation of a well being prepared as an injector for a waterflood operation. In addition, the microseismicity was monitored for 5 weeks following the stimulation while the area was under normal waterflood production. Little seismicity was detected during the 5.5 hour stimulation in which three thousand barrels of water were injected into the reservoir at pressures ranging from 96 to 257 bars in excess of hydrostatic pressure. Intermittent monitoring over the 5-week period indicated detectable seismicity occurred during waterflood production. Monitoring during the 5 weeks, however, was not complete enough to draw general conclusions on temporal variations of observed microseismicity. Seventy-three good quality events recorded over a cumulative 24 hours of intermittent monitoring were located using the hodogram technique. Events were detected at distances up to 1700 m from the monitor well but most occurred within 900 m. The map of microearthquake locations indicated that events occurred in the vicinity of producing wells and away from injection wells. The first half of the sequence of mappable events occurred along linear trends, but the pattern became more scattered during the later half of the sequence. The lack of seismicity during the pressurized injection and the increased seismicity levels occurring away from injection wells during waterflood production, suggest seismicity is not induced by Mohr-Coulomb failure. 6 refs., 6 figs.

  7. Take home lead exposure in children of oil field workers.

    PubMed

    Khan, Fahad

    2011-06-01

    Childhood lead poisoning is a major, preventable environmental health problem. While residential lead-based paint and lead contaminated dust and soil are the most common sources of childhood lead poisoning, children can also be at risk if they live with an adult with a job or hobby that involves exposure to lead. Currently, the Oklahoma Childhood Lead Poisoning Prevention Program (OCLPPP) has a small number of cases of "take home" lead exposure in children of oil field workers. These workers may come in contact with a threading compound, "pipe dope" that can contain large amounts of lead. Workers handling this product may be exposed to lead by not following safety instructions. Additionally workers may not be provided the facilities to shower and change out of the contaminated clothing before leaving the work location. The OCLPPP recommends employers and worksites should consider effective alternative options like lead free biodegradable pipe dopes or dope free connections to prevent workers and their families from adverse health effects associated with lead. PMID:21888039

  8. Driving mechanism for plunger pumps in oil field installations

    SciTech Connect

    Gazarov, R.E.; Zaslavskii, Yu.V.

    1995-07-01

    Mobile oil field pumping installations of up to 1600 kW power at a pressure up to 140 MPa are widely used in hydraulic fracturing of beds, acid treatment of the near-face zone, cementation of wells, and other flushing and pressure operations. Equipment in these installations, which include high-pressure plunger pumps of high unit capacity, are mounted on mobile bases of limited lifting capacity (KrAZ automobile chassis, T-130 tractors, etc.). Very strict demands are made on the reliability, durability, and mass/size characteristics of the pumps and on all the equipment of the mobile installations. In modern pumps, an axial load of up to 100 tons or more, which is transmitted to the crankshaft, acts on each plunger. The engine of the installation rotates the crankshaft through a multiple-speed transmission and the transmission shaft of the pump. The forces acting on the elements of the driving part of a pump with a connecting rod - crank drive and a single-reduction tooth gear are described.

  9. Copper removal from oil-field brine by coprecipitation.

    PubMed

    Khosravi, Jafar; Alamdari, Abdolmohammad

    2009-07-30

    The present study aims at investigation of copper removal from oil-field brine by coprecipitation process. The produced brine containing heavy metals is usually returned to the reservoir for water flooding or is discarded to the surroundings. Therefore, surface waters or underground waters may be polluted due to probable contact to these discarded waters. Removal experiments were carried out at room temperature in a bench-scale crystallizer equipped with a draft tube. In order to gain an insight into the influence of soluble compounds in the industrial natural brine on the precipitation process, some comparative experiments were performed both on a sample of natural brine and on a synthetic simulated brine in the absence of natural impurities. A metal removal practice by coprecipitation of copper through CaCO(3) precipitates induced by reaction of Na(2)CO(3) and CaCl(2) reduced the copper concentration (Cu(2+)) from 0.27 ppm in the synthetic brine to 0.06 ppm. This removal of 78% required only 1g of precipitate per 0.15 mg copper metal. Analysis of the experimental results suggested that about 5% of the copper removal from the synthetic brine was through the mechanism of incorporation into the crystal lattice, and around 95% was through the adsorption on the crystal faces. PMID:19157701

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  12. INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS

    SciTech Connect

    G.P. Willhite; D.W. Green; C.S. McCool

    2003-05-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in

  13. Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field.

    PubMed

    Mukherji, Suparna; Jagadevan, Sheeja; Mohapatra, Gita; Vijay, Avinash

    2004-12-01

    Laboratory scale batch studies were performed to test the diesel oil biodegradation ability of ES1 cultures isolated from Arabian Sea sediments obtained from the vicinity of an oil field. This culture could utilize diesel as the sole source of carbon and energy. Under aerobic conditions, 39% loss of diesel oil was observed over 8 days where 80% of the loss was due to aliphatic constituents. Under anoxic nitrate reducing conditions the rate and extent of degradation was significantly lower, i.e., 18% over 50 days. Salt acclimatized cultures could tolerate salinities up to 3.5% and demonstrated optimal performance at a salinity of 0.5%. The optimum N/P ratio for these cultures was found to be in the range of 2:1-5:1. Addition of two trace elemental substance formulations exhibited a significant inhibitory effect on culture growth. This culture has good potential for decontamination of oil-contaminated marine and subsurface environments. PMID:15288270

  14. System analysis of plasma centrifuges and sputtering

    NASA Technical Reports Server (NTRS)

    Hong, S. H.

    1978-01-01

    System analyses of cylindrical plasma centrifuges are presented, for which the velocity field and electromagnetic fields are calculated. The effects of different electrode geometrics, induced magnetic fields, Hall-effect, and secondary flows are discussed. It is shown that speeds of 10000 m/sec can be achieved in plasma centrifuges, and that an efficient separation of U238 and U235 in uranium plasmas is feasible. The external boundary-value problem for the deposition of sputtering products is reduced to a Fredholm integral equation, which is solved analytically by means of the method of successive approximations.

  15. Economic evaluation on CO₂-EOR of onshore oil fields in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.

  16. Economic evaluation on CO₂-EOR of onshore oil fields in China

    DOE PAGESBeta

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less

  17. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1992-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  18. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1997-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  19. IMPROVED APPROACHES TO DESIGN OF POLYMER GEL TREATMENTS IN MATURE OIL FIELDS: FIELD DEMONSTRATION IN DICKMAN FIELD, NESS COUNTY, KANSAS

    SciTech Connect

    Ronald Fowler

    2004-11-30

    This report describes the results of the one-year project entitled ''Improved Approaches to Design of Polymer Gel Treatments in Mature Oil Fields: Field Demonstration in Dickman Field, Ness County, Kansas''. The project was a 12-month collaboration of Grand Mesa Operating Company (a small independent), TIORCO Inc. (a company focused on improved recovery technology) and the University of Kansas. The study undertook tasks to determine an optimum polymer gel treatment design in Mississippian reservoirs, demonstrate application, and evaluate the success of the program. The project investigated geologic and engineering parameters and cost-effective technologies required for design and implementation of effective polymer gel treatment programs in the Mississippian reservoir in the Midcontinent. The majority of Mississippian production in Kansas occurs at or near the top of the Mississippian section just below the regional sub-Pennsylvanian unconformity and karst surface. Dickman Field with the extremely high water cuts and low recovery factors is typical of Mississippian reservoirs. Producibility problems in these reservoirs include inadequate reservoir characterization, drilling and completion design problems, and most significantly extremely high water cuts and low recovery factors that place continued operations at or near their economic limits. Geologic, geophysical and engineering data were integrated to provide a technical foundation for candidate selection and treatment design. Data includes core, engineering data, and 3D seismic data. Based on technical and economic considerations a well was selected for gel-polymer treatment (Grand Mesa Operating Company Tilley No.2). The treatment was not successful due to the small amount of polymer that could be injected. Data from the initial well and other candidates in the demonstration area was analyzed using geologic, geophysical and engineering data. Based on the results of the treatment and the integrated reservoir

  20. DESIGN INFORMATION REPORT: CENTRIFUGES

    EPA Science Inventory

    In the 1960s, manufacturers began to design centrifuges specifically for wastewater sludge applications. In addition, sludge thickening and dewatering processes were improved with the introduction of polyelectrolytes for chemical sludge conditioning. The report contains a brief d...

  1. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  2. Environmental effects of the Kuwaiti oil field fires

    SciTech Connect

    Hahn, J. )

    1991-09-01

    Theory suggests that the rates of smoke emission and heat generation and, consequently, the atmospheric injection height and residence time of the smoke are crucial in determining whether the environmental effects are of global or only regional importance. Confirming the results of model calculations, observations have shown that, up to now, the smoke did not rise higher than to the top of the planetary boundary layer (PBL), about 3,300 m at a maximum. The photochemistry within the smoke cloud very likely is significantly different from that of the smoke-free troposphere. Also, because there is very little precipitation in the greater Gulf region from May through October, it is difficult to predict how and where NO{sub x}, SO{sub 2}, and their oxidation products HNO{sub 3} and H{sub 2}SO{sub 4} will be deposited. Photochemical oxidation should be largely suppressed in the denser parts of the smoke cloud, so major acid deposition is likely to occur at some distance from the source area, probably as far away as 2,000 km. Results of model calculations suggest that the effect of the smoke emission in Kuwait on the Asian summer monsoon is small. In summary, one should expect severe environmental consequences of the Kuwaiti oil field fires for the territory of Kuwait and for parts of Iraq, Jordan, and Saudi Arabia. Serious effects also may be felt in Iran and the other Gulf states, and perhaps even as far away as Turkey and Afghanistan. The surface waters of the Gulf also may be severely affected by smoke deposition. Significant environmental effects on a global or even hemispheric scale, however, are not likely to occur.

  3. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  4. ALASKA NORTH SLOPE OIL-FIELD RESTORATION RESEARCH STRATEGY (ANSORRS)

    EPA Science Inventory

    This document provides a research strategy to support ecological restoration of disturbances related to oil and gas developments on the North Slope of Alaska that is mutually beneficial to the arctic ecorestoration research community and the arctic regulatory community (including...

  5. Composition and structure of asphalthene components of oils from the Krapivinskoye oil field

    NASA Astrophysics Data System (ADS)

    Sergun, Valery P.; Cheshkova, Tatiana V.; Sagachenko, Tatiana A.; Min, Raissa S.

    2015-10-01

    Asphaltene substances of oil are characterized via the methods of extraction, adsorption chromatography, chemical degradation, and chromatography-mass spectrometry. The data on the structure of the high- and low molecular weight asphaltenes of methane-naphthene oils and composition of the compounds adsorbed/occluded by their molecules are presented. These investigations are important for the development of efficient petroleum technologies.

  6. Geology and geothermal origin of Grant Canyon and Bacon Flat Oil Fields, Railroad Valley, Nevada

    SciTech Connect

    Hulen, J.B. ); Goff, F. ); Ross, J.R. ); Bortz, L.C. ); Bereskin, S.R. )

    1994-04-01

    Eastern Nevada's Grant Canyon and Bacon Flat oil fields show strong evidence of formation in a still-active, moderate-temperature geothermal system. Modern manifestations of this system include unusually elevated oil-reservoir temperature at shallow depth, 116-122[degrees]C at 1.1-1.6 km, and dilute Na-HCO[sub 3]Cl thermal waters directly associated with hot oil. Hydrogen and oxygen isotopic compositions indicate that these thermal waters are meteoric in origin, but were probably recharged prior to the Holocene (before 10 ka). The waters apparently ascended to oil-reservoir elevations after deep heating in response to the normal regional thermal gradient; there is no evidence for a modern magmatic heat source. The beginning of oil-reservoir evolution at both fields is recorded by late-stage, fracture-filling quartz in the vuggy, brecciated, Paleozoic dolostone reservoir rocks. Oil and aqueous solutions were trapped as fluid inclusions in the quartz at temperatures comparable to those now prevailing in the reservoirs. Present day and fluid-inclusion temperatures define essentially coincident isothermal profiles through and beneath the oil-reservoir interval, a phenomenon consistent with near-constant convective heat transfer since inception of the geothermal system. Some basin and range oil fields have arisen as valuable byproducts of actively circulating geothermal systems and blending this concept into current exploration stratigies could hasten discovery of the 100 mbbl fields many geologists believe remain to be found in this region. 100 refs., 13 figs., 5 tabs.

  7. Uncertainty of oil field GHG emissions resulting from information gaps: a Monte Carlo approach.

    PubMed

    Vafi, Kourosh; Brandt, Adam R

    2014-09-01

    Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water-oil ratio (WOR) and steam-oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1-0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown. PMID:25110115

  8. Composition and Physical Properties of Cress (Lepidium sativum L.) and Field Pennycress (Thlaspi arvense L.) Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile and tocopherol, and phytosterol contents of crude cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils are reported, along with yields from the corresponding seeds. The physical properties of these oils were also determined, which included oxidative stab...

  9. Production and Evaluation of Biodiesel from Field Pennycress (Thlaspi Arvense L.) Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) oil is evaluated for the first time as a potential feedstock for biodiesel production. Biodiesel was obtained in 82 wt % yield by a standard transesterification procedure with methanol and sodium methoxide catalyst at 60 deg C and an alcohol to oil ratio of 6:1...

  10. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  11. Enhancement of the TORIS data base of Appalachian basin oil fields. Final report

    SciTech Connect

    1996-01-31

    The Tertiary Oil Recovery Information System, or TORIS, was developed by the Department of Energy in the early 1980s with a goal of accounting for 70% of the nation`s original oil in place (OOIP). More than 3,700 oil reservoirs were included in TORIS, but coverage in the Appalachian basin was poor. This TORIS enhancement project has two main objectives: to increase the coverage of oil fields in the Appalachian basin; and to evaluate data for reservoirs currently in TORIS, and to add, change or delete data as necessary. Both of these objectives have been accomplished. The geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia have identified 113 fields in the Appalachian basin to be included in TORIS that collectively contained 80% of the original oil in place in the basin. Furthermore, data in TORIS at the outset of the project was checked and additional data were added to the original 20 TORIS oil fields. This final report is organized into four main sections: reservoir selection; evaluation of data already in TORIS; industry assistance; and data base creation and validation. Throughout the report the terms pool and reservoir may be used in reference to a single zone of oil accumulation and production within a field. Thus, a field is composed of one or more pools at various stratigraphic levels. These pools or reservoirs also are referred to as pay sands that may be individually named sandstones within a formation or group.

  12. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  13. 37. SAR2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SAR-2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD COIL CONTROL RHEOSTATS (BELOW). SCE negative no. 10331, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  14. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  15. Centrifugal pumps: which suction specific speeds are acceptable

    SciTech Connect

    Hallam, J.L.

    1982-04-01

    Suction specific speed is an important consideration when purchasing or analyzing centrifugal pumps. There is a direct correlation between this parameter, pump reliability and maintenance expenses. This article demonstrates that in a large Gulf Coast oil refinery, centrifugal pumps with a suction specific speed greater than 11,000 failed at a frequency nearly twice that of centrifugal pumps with suction specific speed less than 11,000. This study consisted primarily of hydrocarbon pumps with an average horsepower of 150 hp. Results may vary some from those found if high energy water pumps are studied. 5 refs.

  16. The space-time structure of oil and gas field growth in a complex depositional system

    USGS Publications Warehouse

    Drew, L.J.; Mast, R.F.; Schuenemeyer, J.H.

    1994-01-01

    Shortly after the discovery of an oil and gas field, an initial estimate is usually made of the ultimate recovery of the field. With the passage of time, this initial estimate is almost always revised upward. The phenomenon of the growth of the expected ultimate recovery of a field, which is known as "field growth," is important to resource assessment analysts for several reasons. First, field growth is the source of a large part of future additions to the inventory of proved reserves of crude oil and natural gas in most petroliferous areas of the world. Second, field growth introduces a large negative bias in the forecast of the future rates of discovery of oil and gas fields made by discovery process models. In this study, the growth in estimated ultimate recovery of oil and gas in fields made up of sandstone reservoirs formed in a complex depositional environment (Frio strand plain exploration play) is examined. The results presented here show how the growth of oil and gas fields is tied directly to the architectural element of the shoreline processes and tectonics that caused the deposition of the individual sand bodies hosting the producible hydrocarbon. ?? 1994 Oxford University Press.

  17. De-convoluting mixed crude oil in Prudhoe Bay Field, North Slope, Alaska

    USGS Publications Warehouse

    Peters, K.E.; Scott, Ramos L.; Zumberge, J.E.; Valin, Z.C.; Bird, K.J.

    2008-01-01

    Seventy-four crude oil samples from the Barrow arch on the North Slope of Alaska were studied to assess the relative volumetric contributions from different source rocks to the giant Prudhoe Bay Field. We applied alternating least squares to concentration data (ALS-C) for 46 biomarkers in the range C19-C35 to de-convolute mixtures of oil generated from carbonate rich Triassic Shublik Formation and clay rich Jurassic Kingak Shale and Cretaceous Hue Shale-gamma ray zone (Hue-GRZ) source rocks. ALS-C results for 23 oil samples from the prolific Ivishak Formation reservoir of the Prudhoe Bay Field indicate approximately equal contributions from Shublik Formation and Hue-GRZ source rocks (37% each), less from the Kingak Shale (26%), and little or no contribution from other source rocks. These results differ from published interpretations that most oil in the Prudhoe Bay Field originated from the Shublik Formation source rock. With few exceptions, the relative contribution of oil from the Shublik Formation decreases, while that from the Hue-GRZ increases in reservoirs along the Barrow arch from Point Barrow in the northwest to Point Thomson in the southeast (???250 miles or 400 km). The Shublik contribution also decreases to a lesser degree between fault blocks within the Ivishak pool from west to east across the Prudhoe Bay Field. ALS-C provides a robust means to calculate the relative amounts of two or more oil types in a mixture. Furthermore, ALS-C does not require that pure end member oils be identified prior to analysis or that laboratory mixtures of these oils be prepared to evaluate mixing. ALS-C of biomarkers reliably de-convolutes mixtures because the concentrations of compounds in mixtures vary as linear functions of the amount of each oil type. ALS of biomarker ratios (ALS-R) cannot be used to de-convolute mixtures because compound ratios vary as nonlinear functions of the amount of each oil type.

  18. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  19. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  20. The discovery and development of the El Dorado (Kansas) oil field

    USGS Publications Warehouse

    Skelton, L.H.

    1997-01-01

    Pioneers named El Dorado, Kansas, in 1857 for the beauty of the site and the promise of future riches but not until 58 years later was black rather than mythical yellow gold discovered when the Stapleton No. 1 oil well came in on October 5, 1915. El Dorado's leaders were envious when nearby towns found huge gas fields and thrived. John Donley, an El Dorado barber, had tried to find either gas or oil in 1878 at a nearby site selected by a spiritualist. He staked out a townsite, spudded a well and drilled 200 feet before running out of money. Wells in 1879 and 1882 produced only brine. In June, 1914, chafed over discovery of oil in nearby Augusta, El Dorado city fathers contracted with Erasmus Haworth, soon to retire from his position as State Geologist, to perform a geological study of the area. His field work outlined the El Dorado Anticline, which unsuccessfully was drilled first in August, 1915. On abandonment, the Wichita Natural Gas Company purchased the lease and drilled the Stapleton No. 1 oil well. More success followed and by 1918, the El Dorado produced 29 million barrels, almost 9% of the nation's oil. Entrepreneurs came and prospered: the Cities Service Oil Company, A.L. Derby, Jack Vickers, and Bill Skelly all became familiar names in Midcontinent oil marketing. Earlier giant fields had hurt the price of crude oil but the El Dorado came in as both World War I and the rapid popularization of motor transport made a market for both light and heavy ends of the refinery stream. The giant gas field never materialized as hoped but in late 1995, the El Dorado Field produced its 300 millionth barrel of oil.

  1. New Rapid Evaluation for Long-Term Behavior in Deep Geological Repository by Geotechnical Centrifuge. Part 1: Test of Physical Modeling in Near Field Under Isotropic Stress-Constraint Conditions

    NASA Astrophysics Data System (ADS)

    Nishimoto, Soshi; Sawada, Masataka; Okada, Tetsuji

    2016-08-01

    The objective of this study is to evaluate the long-term geomechanical behavior of a geological repository for high-level radioactive waste disposal, using the centrifugal near-field model test. The model consisted of a sedimentary rock mass, bentonite buffer, and model overpack, and was enclosed within a pressure vessel. Tests were conducted with a centrifugal force field of 30 G under isotropic stress-constraint conditions with confining pressures of 5-10 MPa and injection of pore water up through a time period equivalent to about 165 years in the field. Our results showed that the measured values and the temporal changes in the displacement of the overpack, the soil pressure of the bentonite, and the strain of the rock mass were clearly dependent on the confining pressure. These data were not convergent during the test. Our data experimentally revealed that long-term behavior in the near field was changed by the geomechanical interaction between the deformation stress of the bedrock/disposal hole and the swelling behavior of the bentonite buffer.

  2. Seed oil development of pennycress under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi sp) has been targeted as a potential oilseed for the biofuels industry. Its seeds contain ~36% oil, where erucic acid is the major fatty acid presented with 38.1%. Additionally, the physical proprieties of the methyl esters are in the range to satisfy the needs of the biodiesel m...

  3. Centrifuge modelling of granular flows

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  4. Oil, gas field growth projections: Wishful thinking or reality?

    USGS Publications Warehouse

    Attanasi, E.D.; Mast, R.F.; Root, D.H.

    1999-01-01

    The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.

  5. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    SciTech Connect

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  6. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  7. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  8. Field test of re-refined automotive engine oil in RCMP vehicles

    SciTech Connect

    Armstrong, J.

    1980-11-01

    A field test has been designed to isolate the performance characteristics of the virgin and re-refined base oils being studied. The conditions selected for the test are those normally experienced by Royal Canadian Mounted Police vehicles in similar service. All test and reference vehicles have been subjected to as equal treatment as possible, in both driving conditions and maintenance schedules. The primary conclusion that can be made with the data obtained to date is that there are statistically significant differences occurring in certain measured properties of used crankcase oil from the two test groups of vehicles. These differences are no doubt attributable, at least in part, to performance differences between the two finished oils, but other factors such as the observed differences in length of oil change interval and top-up requirements are also contributing to the responses being measured. Given the methods by which the test and reference oils were defined and chosen, it might be expected that differences in performance characteristics would be observed, and also that the reference oil might exhibit better performance characteristics than the test oil. However, the final magnitudes of any differences between the oils will not be known until the field test period is completed, and the real significance of these differences, in terms of their effect on the engines, cannot be determined until the engine examinations have been completed.

  9. An overview of giant oil and gas fields of the decade: 1978-1988

    SciTech Connect

    Halbouty, M.T. )

    1990-09-01

    Scientific studies and projections of future world energy demand indicate that although alternate-energy fuel sources must be actively pursued and developed, there must be adequate petroleum supplies to bridge the gap. For the international petroleum industry, the years covered by this conference, 1978-1988, were complex. They were years of boom and bust. The world's energy consciousness was boosted sharply by the effects of the 1979 Iranian revolution and the resulting embargo that sent world oil prices to record heights. Global petroleum exploration soon surged, leading to the industry's all-time drilling high in 1981. Then came the oil price collapse in 1985, and the following years were characterized by falling oil prices and drastic budget cuts for exploration and development. Although exploration dropped sharply, there was a steady flow of giant oil and gas field discoveries. Using the giant field designation criteria of 500 million bbl of oil recoverable for fields in Asiatic Russia, North Africa, and the Middle East; 100 million bbl of oil recoverable for the fields in the remainder of the world; and 3 tcf and 1 tcf of gas reserves recoverable for the same areas, respectively, it is estimated that at least 182 oil and gas fields containing an estimated 140 billion BOE were discovered in 46 countries during the years covered by this conference. Today, exploration is slowly gaining momentum in all types of petroleum provinces-intensely explored, partially explored, moderately explored, and essentially unexplored - and as long as exploration continues in whatever area of the world, there will always be opportunities to find giant oil and gas fields.

  10. Grant Canyon and Bacon Flat oil fields, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Bortz, L.C. ); Forster, N.H. ); Veal, H.K.; Duey, H.D.

    1988-10-01

    The Grant Canyon field is located on the east side of Railroad Valley, 8 mi south of the Eagle Springs oil field. The discovery well, Grant Canyon Unit 1, was completed by Northwest Exploration Co. on September 11, 1983, flowing 1816 BOPD from the Devonian Guilmette Dolomite. Two additional wells have been completed in the field. Cumulative oil production through April 1988 is 8,211,149 barrels of oil. During March and April 1988, wells 3 and 4 flowed an average of 6081 BOPD. For these months, well 3 average 4144 BOPD with 1935 BOPD coming from well 4. Production area appears to be 240 acres. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Guilmette reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary Valley Fill which unconformably overlies Guilmette Dolomite. The oil column is about 400 ft thick and the field apparently has an active water drive, inasmuch as the 1 Unit had to be shut-in because of water production. The oil is black, 26 degree API gty, a pour of 10 F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13 MMBO. The adjacent Bacon Flat field is a one-well field that was completed by Northwest Exploration Co. on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette Limestone (5316-5332 ft). Cumulative production through April 1988 is 303,860 barrels of oil. During March 1988 the well averaged 108 BOPD plus an unreported amount of water. Estimated ultimate recoverable oil reserves are 400 MBO.

  11. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  12. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    PubMed Central

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  13. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    PubMed

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  14. Field test and mathematical modeling of bioremediation of an oil-contaminated soil. Part 1: Field test

    SciTech Connect

    Li, K.Y.; Xu, T.; Colapret, J.A. ); Cawley, W.A. ); Bonner, J.S. . Civil Engineering Dept.); Ernest, A.; Verramachaneni, P.B. . Environmental Engineering Dept.)

    1994-01-01

    A fire-wall area (about 270 ft x 310 ft) with the Bunker C oil contaminated soil was selected for the bioremediation field test. This fire-wall area was separated into 18 plots by dirt dikes to test 6 bioremediation methods with three tests of each method. The six treatment methods were: (a) aeration with basic nutrients and indigenous organisms (BNIO); (b) aeration with basic nutrients and inoculation from a refinery wastewater treatment facility (BNSIWT); (c) aeration with an oleophilic fertilizer and indigenous organisms (INIPOL); (d) aeration with basic nutrients and biosurfactant organisms (EPA Seal Beach consortia) (EPA); (e) aeration with proprietary nutrients and organisms (PRO); and (f) aeration only for active control (CONTROL). This field test was conducted for 91 days. In general the oil contents in 18 plots were reduced, but the results showed significant fluctuations. A statistical method was used to examine if the oil reductions of six methods were the results from the random error of sampling and sample analysis or biodegradation. The results of the statistical analysis showed that oil reduction was concluded from all but the plots of PRO. From the data analysis, it may be concluded that the oil reduction rate in these studies is controlled by oil transfer from soil into the aqueous solution. An example of calculation was used to illustrate this conclusion.

  15. Field evaluation of essential oils for reducing attraction by the Japanese beetle (Coleoptera: Scarabaeidae).

    PubMed

    Youssef, Nadeer N; Oliver, Jason B; Ranger, Christopher M; Reding, Michael E; Moyseenko, James J; Klein, Michael G; Pappas, Robert S

    2009-08-01

    Forty-one plant essential oils were tested under field conditions for the ability to reduce the attraction of adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), to attractant-baited or nonbaited traps. Treatments applied to a yellow and green Japanese beetle trap included a nonbaited trap, essential oil alone, a Japanese beetle commercial attractant (phenethyl proprionate:eugenol:geraniol, 3:7:3 by volume) (PEG), and an essential oil plus PEG attractant. Eight of the 41 oils reduced attractiveness of the PEG attractant to the Japanese beetle. When tested singly, wintergreen and peppermint oils were the two most effective essential oils at reducing attractiveness of the PEG attractant by 4.2x and 3.5x, respectively. Anise, bergamont mint, cedarleaf, dalmation sage, tarragon, and wormwood oils also reduced attraction of the Japanese beetle to the PEG attractant. The combination of wintergreen oil with ginger, peppermint, or ginger and citronella oils reduced attractiveness of the PEG attractant by 4.7x to 3.1x. Seventeen of the 41 essential oils also reduced attraction to the nonbaited yellow and green traps, resulting in 2.0x to 11.0x reductions in trap counts relative to nonbaited traps. Camphor, coffee, geranium, grapefruit, elemi, and citronella oils increased attractiveness of nonbaited traps by 2.1x to 7.9x when tested singly, but none were more attractive than the PEG attractant. Results from this study identified several plant essential oils that act as semiochemical disruptants against the Japanese beetle. PMID:19736768

  16. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments

    SciTech Connect

    Willhite, G.P.; Green, D.W.; McCool, S.

    2001-03-28

    Gelled polymer treatments were applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. Procedures were developed to determine the weight-average molecular weight and average size of polyacrylamide samples in aqueous solutions. Sample preparation techniques were key to achieving reproducible results.

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  18. Rapid subsidence over oil fields measured by SAR

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Blom, R. G.; Goldstein, R. M.

    1998-01-01

    The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.

  19. Livestock poisoning from oil field drilling fluids, muds and additives

    SciTech Connect

    Edwards, W.C.; Gregory, D.G. )

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  20. Intelligent fiber sensing system for the oil field area

    NASA Astrophysics Data System (ADS)

    Sun, Wenju; Ma, Linping

    2010-08-01

    Optical Fiber strain sensor using fiber Bragg grating are poised to play a major role in structural health from military to civil engineering. Fiber Bragg Grating sensor is a practical type of fiber optic sensors. Its measurement is encoded with the wavelength of the optical signal reflected from fiber Bragg grating. The method of measuring the absolute optical wavelength is a critical component of the fiber optic sensing system. To reliably detect very small changes in the environment at the sensor, the interrogation system must provide accurate and repeatable wavelength measurements. Energy sources are increasingly scarce in the world. Getting oil from the oil-wells has become more and more difficult. Therefore, new technology to monitor the oil-well condition has become extremely important. The traditional electrical sensor system is no longer useful because of the down-hole's high temperature and high pressure environment. The optical fiber sensing system is the first choice to monitor this condition. This system will reduce the cost and increase the productivity. In the high pressure and high temperature environment, the traditional packed fiber grating pressure-temperature sensor will be no longer reliability. We have to find a new fiber grating temperature-pressure sensor element and the interrogation system. In this work we use the very narrow bandwidth birefringent fiber grating as the sensing element. We obtain the interrogation system has 0.1 pm resolution.

  1. Geological setting of North Slope oil fields, Alaska

    SciTech Connect

    Edrich, S.P.

    1985-04-01

    The North Slope is a prolific hydrocarbon province in which discoveries to date amount to some 60 billion bbl of oil in place and 50 tcf of gas in place. Reservoirs and prolific source rocks occur throughout the stratigraphic column, which consists of a lower (or Ellesmerian) megasequence of Carboniferous to Jurassic age and an upper (or Brookian) megasequence of Early Cretaceous to Recent age. Discovered oil is almost equally divided between Ellesmerian and Brookian reservoirs. Patterns of hydrocarbon generation and migration have been controlled by deposition of clastic sedimentary wedges derived from the Brooks Range orogen. In the Late Jurassic to Early Cretaceous, the main oil kitchen was located in the Western Colville trough. Clastic depocenters and associated kitchen areas migrated progressively eastward with time and are now located in the East Beaufort offshore. Important source rocks include the Jurassic Kingak and Late Triassic Shublik Formations of the Ellesmerian megasequence, and the Aptian-Cenomanian HRZ and Turonian-Paleocene Shale Wall formations of the Brookian megasequence.

  2. Petroleum geology of Giant oil and gas fields in Turpan Basin Xinjiang China

    SciTech Connect

    Boliang, Hu; Jiajing, Yang,

    1995-08-01

    Turpan Basin is the smallest and the last development basin in three big basins of Xinjiang autonomous region, P.R. China. Since April, 1989, the Shanshan oilfield was discovered, the Oinling, Wenjisang, Midang, Baka, Qiudong and North Putaogou fields were discovered. In 1994, the crude oil productivity of Turpan Basin was a Million tons, with an estimated output of 3 million tons per year by 1995; obviously a key oil productive base in the west basins of China, Tarim, Jungar, Chaidam, Hexi, Erduos and Sichuan Basins. The Turpan Basin is an intermontane basin in a eugeosyncline foldbelt of the north Tianshan Mountains. The oil and gas was produced from the payzone of the Xishanyao, Sanjianfang and Qiketai Formatiosn of the Middle Jurassic series. The geochemical characteristics of the crude oil and gas indicate they derive from the Middle to Lower Jurassic coal series, in which contains the best oil-prone source rocks in the basin.

  3. Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait: interpretations from thermal remote sensing data.

    PubMed

    ud Din, Saif; Al Dousari, Ahmad; Literathy, Peter

    2008-03-01

    The paper presents the application of thermal remote sensing for mapping hydrocarbon polluted sites. This has been achieved by mono-window algorithm for land surface temperature (LST) measurements, using multi-date band 6 data of Landsat Thematic Mapper (TM). The emissivity, transmittance and mean atmospheric temperature were used as critical factors to estimate LST. The changes in the surface emissivity due to oil pollution alter the apparent temperature, which was used as a recognition element to map out oil polluted surfaces. The LST contrast was successfully used to map spatial distribution of hydrocarbon pollution in the Burgan Oil field area of Kuwait. The methodology can be positively used to detect waste dumping, oil spills in oceans and ports, besides environmental management of oil pollution at or near the land surface. PMID:17291680

  4. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  5. Velocity shear stabilization of centrifugally confined plasma.

    PubMed

    Huang, Y M; Hassam, A B

    2001-12-01

    A magnetized, centrifugally confined plasma is subjected to a 3D MHD stability test. Ordinarily, the system is expected to be grossly unstable to "flute" interchanges of field lines. Numerical simulation shows though that the system is stable on account of velocity shear. This allows consideration of a magnetically confined plasma for thermonuclear fusion that has a particularly simple coil configuration. PMID:11736455

  6. Centrifugal acceleration in the magnetotail lobes

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Engwall, E.; Eriksson, A.; Puhl-Quinn, P. A.; Arvelius, S.

    2010-02-01

    Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s-2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s-1.

  7. Bifurcated equilibria in centrifugally confined plasma

    SciTech Connect

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-12-15

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  8. Laboratory and field observations of stress-wave induced changes in oil flow behavior

    SciTech Connect

    Roberts, P. M.; Majer, Ernest Luther; Wooden, W.; Daley, T. M.

    2001-01-01

    We present recent results of laboratory and field experiments designed to validate and quantify the phenomenon of seismically enhanced oil production in marginal reservoirs. Controlled laboratory experiments were performed where mechanical stress oscillations at 100 Hz or less were applied to sandstone cores while flowing oil and/or brine at constant flow rates. Steady-state flow and simulated flooding experiments indicated that stress stimulation causes significant changes in the ability of one fluid to displace the other and on the preference that the rock has for trapping one fluid over the other. For Berea sandstone, which is highly water wet, stress stimulation caused oil production to be impeded during water floods and caused the bulk fluid pressure drop across the core to increase during steady-state simultaneous flow of oil and brine. A possible explanation of these observations is that stimulation caused the core to become more oil wet. Field stimulation tests on producing reservoirs at Lost Hills, California were performed using a downhole fluid pressure pulsation device. Stimulation was applied in one well for 50 days total during July - November 2000. Two groups of producing wells were monitored for changes in oil cut and oil production during the test. A control group of 26 wells displayed an oil-cut increase of 29% and an oil production increase of 26% which are clearly correlated with the stimulation treatment. A larger group of 60 wells showed 11% oil-cut and 17v0 production increases. Similar increases were observed during the October 1999 Hector Mine earthquake, magnitude 7.1, in the Mojave Desert about 230 miles from Lost Hills. Downhole seismic monitoring of the stimulation wavefield is being used to help quantify the frequency range and energy threshold required for effective production enhancement.

  9. Lightweight Shield for Centrifuge

    NASA Technical Reports Server (NTRS)

    Luper, C.

    1982-01-01

    Centrifuge bowl composed of laminated aluminum offers required combination of high strength at reduced weight. Around outside wall of bowl core of 1/16 inch thick spun aluminum are wrapped two layers of aluminum, each also one-sixteenth inch thick. Layered structure prevents cracks from propagating through wall.

  10. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  11. Strontium isotope constraint on the genesis of crude oils, oil-field brines and Kuroko ore deposits from the Green Tuff region of northeastern Japan

    NASA Astrophysics Data System (ADS)

    Nakano, Takanori; Kajiwara, Yoshimichi; Farrell, Clifton W.

    1989-10-01

    Crude oils from Akita to northern Niigata oil fields in the Green Tuff region of northeastern Japan have distinctly uniform 87Sr/86Sr ratios (0.7080-0.7082), while those from the southern Niigata oil field contain more radiogenic strontium (0.7095-0.7102). The regional variation in the strontium isotopic composition of crude oils is also reflected in their sulfur contents and sulfur isotopic compositions, and may be attributed to the regional heterogeneity of marine organic sediments from which the crude oils were ultimately derived. The 87Sr/86Sr ratios of most oil-field brines (0.7061-0.7084), however, are different from and vary more locally than those of the accompanying crude oils. This finding supports the view that strontium, and by inference some other dissolved solutes in the brines, may have evolved during diagenesis by reaction of a connate and/or a meteoric water with rocks in the Green Tuff region. Barites in the sulfide ore and anhydrites and gypsums in the sulfate (sekko) ore from the Fukazawa and Kosaka Kuroko deposits in the Hokuroku district are divided by the 87Sr/86Sr ratio of 0.7081 (±0.0001), which is identical to that of crude oils from nearby oil fields. This similarity in ratios lends support to the conclusion that the Kuroko base metal deposits and crude oil deposits were ultimately derived from a common organic sediment named PUMOS (Primitive Undifferentiated Metalliferous Organic Sediments).

  12. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  13. Computer Simulation of Stress-Strain State of Oil Gathering Pipeline Designed for Ugut Field

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Burkova, S. P.; Samigullin, V. D.

    2016-04-01

    The paper presents the stress and strain state modeling of infield pipeline in Ugut oil field. The finite element models of the stress field distribution in the pipeline wall are presented in this paper. The attention is paid to the pipeline reliability under stress conditions induced by the internal pressure and external compressive or tensile loads.

  14. Forecasting populations of undiscovered oil fields with the log-Pareto distribution

    SciTech Connect

    Bettini, C.

    1987-01-01

    The search for a statistical representation of parent populations of oil field sizes in sedimentary basins has yielded a new probability distribution, termed the log-Pareto distribution. The log-Pareto law, related to the log-Pareto distribution, describes the medians of oil field sizes (either volumes or areas) associated with size-ranks in a parent population of fields. The name proposed for the new distribution stems from the assumption that an algebraic transformation involving logarithms of the volumes (or areas) of a parent population of oil fields yields a frequency distribution of transformed sizes that accords with the Pareto distribution. The derivation of the log-Pareto law and the log-Pareto distribution involved two steps, namely, (1) simulating a parent population of oil fields such that the population is conditioned to both the proportion of a basin's area occupied by fields and their geographic variability, and (2) finding a mathematical function that fits the log-log plot of field ranks versus simulated field areas. Both the log-Pareto law and log-Pareto distribution are useful for estimating the size distribution of the oil fields that remain to be discovered in a basin. A log-Pareto law fitted to the range of the largest fields discovered in maturely explored basins tends to underestimate the subpopulation of undiscovered fields, while Pareto's law tends to overestimate the undiscovered subpopulation. Therefore the log-Pareto law is more appropriate for risk-averse decision makers, and Pareto law for risk-seeking decision makers. The log-Pareto law has been validated with both simulated data and actual data from Nigeria, the Denver-Julesburg Basin, and the Campos Basin in Brazil.

  15. Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas

    SciTech Connect

    Brock P.E., Cary D.

    2003-03-10

    The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

  16. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics.

    PubMed

    Zhu, Wenran; Wang, Xin; Chen, Lihua

    2017-02-01

    (1)H low-field nuclear magnetic resonance (LF-NMR) and chemometrics were employed to screen the quality changes of peanut oil (PEO) adulterated with soybean oil (SO), rapeseed oil (RO), or palm oil (PAO) in ratios ranging from 0% to 100%. Significant differences in the LF-NMR parameters, single component relaxation time (T2W), and peak area proportion (S21 and S22), were detected between pure and adulterated peanut oil samples. As the ratio of adulteration increased, the T2W, S21, and S22 changed linearly; however, the multicomponent relaxation times (T21 and T22) changed slightly. The established principal component analysis or discriminant analysis models can correctly differentiate authentic PEO from fake and adulterated samples with at least 10% of SO, RO, or PAO. The binary blends of oils can be clearly classified by discriminant analysis when the adulteration ratio is above 30%, illustrating possible applications in screening the oil species in peanut oil blends. PMID:27596419

  17. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  18. Economic assessment of environmental impact in the course of oil field development and production

    NASA Astrophysics Data System (ADS)

    Tsibulnikova, M. R.; Kupriyanova, O. S.; Strelnikova, A. B.

    2015-11-01

    The article considers the variety of impacts that oil exploration and production operations have on the environment at different stages of the process. To provide accurate economic assessment, an oil field development project was designed, with various development options. These options being analyzed, the strategy with the minimal environmental impact was identified. This has allowed preparation of a guideline on how to prevent deterioration of the environment and to reduce the negative environmental impact

  19. Planning and management of the Nido Reef Complex Oil Field development, Philippines

    SciTech Connect

    Harry, R.Y.

    1981-01-01

    As Operator for the Northeast Palawan consortium, Philippines-Cities Service, Inc., commenced the Philippines first commercial offshore oil production from the Nido Reef Complex Oil Field on February 1, 1979, some 11 months after a decision by management to start development. The relative speed at which design, fabrication, and construction were accomplished is attributed to the use of the concepts of project planning, task force approach, and project management. This paper presents the above concepts as applied to the Nido Complex.

  20. Arctic National Wildlife Refuge: oil field or wilderness

    SciTech Connect

    Spitler, A.

    1987-11-01

    The second session of the 100th Congress will see continued debate over the prospect of oil and gas drilling on a 19-million-acre expanse of mountains and tundra known as the Arctic National Wildlife Refuge (ANWR). The arctic refuge, most of which lies above the Arctic Circle, is larger than any refuges in the lower 48 states. Because of its size, the area supports a broad range of linked ecosystems. Of particular concern is the 1.5-million-acre coastal plain, which may be targeted for development. The coastal plain provides a home, at least part of the year, to Alaska's porcupine caribou. The coastal plain also supports many other forms of wildlife-including the wolf, arctic fox, brown bear, polar bear, and arctic peregrine falcon, which is listed as a threatened species. The potential effects of drilling projects extend beyond loss of wildlife; they include desecration of the land itself. Although few members of Congress deny the value of protecting the amazing variety of life on the coastal plain, some insist that limited drilling could be conducted without destroying crucial habitat. Last July, the department tentatively divided some of the targeted lands among native corporations in preparation for leasing to oil companies. In response to what was felt to be an attempt to overstep congressional authority, the House passed HR 2629, banning this kind of land deal without congressional approval. In essence, the measure reiterated congressional authority provided by the Alaska National Interest Lands Conservation Act (ANILCA) of 1980. This act mandated the study of environmental threats and oil potential by the Department of Interior, while putting the ANWR coastal plain off-limits to development without an explicit congressional directive.

  1. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  2. New information on disposal of oil field wastes in salt caverns

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  3. Methane-forming bacteria of oil-fields

    SciTech Connect

    Laurinavichus, K.S.; Obraztsova, A.Ya.; Belyaev, S.S.; Ivanov, M.V.

    1983-03-01

    Pure cultures of the methanogenic bacteria, Methanobacterium bryantii and M. formicicum have been isolated, for the first time from oil deposits and their morphological, physiological and biochemical properties studied. All strains grow of H/sub 2//CO/sub 2/ and two of the three M. formicicum also utilize formate as a role source of carbon and energy. In no case could methanol, acetate, methylamine or glucose serve as an energy source for these autotrophs. All strains were resistant to penicillin and streptomycin and neither sulfate or sulfide inhibited their growth. Medium salinity inhibited the growth of M. bryantii but not that of M. formicicum.

  4. Observed oil and gas field size distributions: a consequence of the discovery process and prices of oil and gas

    SciTech Connect

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-11-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.

  5. Reservoir Model of the Jacksonburg-Stringtown Oil Field; Northwestern West Virginia: Potential for Miscible Carbon Dioxide Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Bergerud, Blake

    Located in northwestern West Virginia, the Jacksonburg-Stringtown field has produced over 22 million barrels of oil (MMBO) since its discovery in 1895. The primary producing interval within the field is the Late Devonian Gordon Stray. Log analysis shows this formation to represent an estuarine depositional system. Four subunits within the formation are defined based on depositional framework: barrier sand, central bay shale, estuarine channels, and fluvial channel subunits. RHOmaa/Umaa lithological composition plots support the conclusion of a marine-influenced estuarine depositional framework. Structural and isopach maps generated with data from 73 local wells reveal a northeast-southwest trending sand deposit of 15-35 foot thickness, which is interpreted as the depocenter for the incised valley of the Gordon Stray. Analysis of formation horizon maps shows that the reservoir is synclinal and, as a result, contains a stratigraphic trap as opposed to the more common structural traps found in the immediate area. Porosity and pore-feet distribution maps indicate high porosity regions in southern regions of the field and high pore volume in northern areas. A miscible CO2 flood model estimates that an additional 7.3 MMBO could be recovered from the high porosity regions in the southern half of the field. The Jacksonburg-Stringtown field is well-suited for enhanced oil recovery and/or geologic CO2 sequestration.

  6. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  7. Increased oil recovery from mature oil fields using gelled polymer treatments

    SciTech Connect

    Willhite, G. Paul; Green, Down W.; McCool, Stan

    2000-02-23

    Gelled polymer treatments are applied to oil reservoirs to increase oil production to reduce water production by altering the fluid movement within the reservoir. This research program is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. This report describes the progress of the research during the first six months of work. A Dawn EOS multi-angle laser light scattering detector was purchased, installed and calibrated. Experiments were conducted to determine the permeabilities of a bulk gel and of a filter cake which forms when a gel is dehydrated. The pressure at which a gel in a tube is ruptured was measured and was correlated to the length and diameter of the gel.

  8. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish.

    PubMed

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼ 10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  9. Genomic and Genotoxic Responses to Controlled Weathered-Oil Exposures Confirm and Extend Field Studies on Impacts of the Deepwater Horizon Oil Spill on Native Killifish

    PubMed Central

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  10. ROLE OF SMALL OIL AND GAS FIELDS IN THE UNITED STATES.

    USGS Publications Warehouse

    Meyer, Richard F.; Fleming, Mary L.

    1985-01-01

    The actual economic size cutoff is a function of such factors as depth, water depth offshore, and accessibility to transportation infrastructure. Because of the constraint of resource availability, price is now the principal force driving drilling activity. The proportion of new-field wildcats to other exploratory wells has fallen in recent years, but success in new-field wildcats has risen to about 20%. However, only very small fields, less than 1 million BOE, are being found in large numbers. Through 1979, almost 93% of known gas fields and 94. 5% of known oil fields were small, yet they contain only 14. 5% of the ultimately recoverable gas and 12. 5% of the oil. However, small fields are less capital intensive than equivalent-capacity synthetic-fuel plants, they are extremely numerous, and they are relatively easy and inexpensive to find and put on production. Refs.

  11. FIELD MANUAL FOR OIL SPILLS IN COLD CLIMATES

    EPA Science Inventory

    This manual documents the state-of-the-art response techniques as of early 1979. The manual has been divided into two basic parts: A field manual and supporting data. The field manual consists of a set of matrices that summarizes applicable techniques for various conditions. The ...

  12. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  13. Visualization by light transmission of oil and water contents in transient two-phase flow fields

    NASA Astrophysics Data System (ADS)

    Darnault, Christophe J. G.; Throop, James A.; DiCarlo, David A.; Rimmer, Alon; Steenhuis, Tammo S.; Parlange, J.-Yves

    1998-06-01

    The difficulty of determining transient fluid contents in a soil-oil-water system is hampering an understanding of the system's flow characteristics. In this paper, we describe a light transmission method (LTM) which can rapidly obtain oil and water contents throughout a large two-dimensional flow field of silica sand. By appropriately coloring the water with 0.005% FD&C blue #1, the hue of the transmitted light is found to be directly related to the water content within the porous media. The hue provides a high resolution measurement of the water and oil contents in transient flow fields (such as unstable flow). Evaluation of the reliability of LTM was assessed by checking the mass balance for a known water injection and its utility in visualizing a whole flow field was exemplified for unstable fingered flow by comparing fluid contents to those obtained with synchrotron X-ray radiation.

  14. Elastomers in mud motors for oil field applications

    SciTech Connect

    Hendrik, J.

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Results of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.

  15. Pilot test of alkaline surfactant polymer flooding in Daqing Oil Field

    SciTech Connect

    Wang Demin; Zhang Zhenhua; Cheng Jiecheng; Yang Jingchun; Gao Shutang; Li Lin

    1996-12-31

    After the success of polymer flooding in Daqing, two alkaline-surfactant-polymer (ASP) floods have been conducted to (1) increase oil recovery further (2) study the feasibility of ASP flooding (3) provide technical and practical experience for expanding the ASP pilots. Inverted five spot pattern is adopted in both pilots. Pilot 1 (PO) is located in the West Central area of Daqing Oil Field and consists of 4 injectors and 9 producers. Pilot 2 (XF) is located in the South area of Daqing Oil Field and has 1 injector and 4 producers. The crude oil of both pilots have high paraffin content and low acid value. Compared to PO, XF has characteristics of lower heterogeneity, lighter oil and higher recovery by water flooding. For each pilot, after extensive screening, an ASP system has been determined. The ASP systems all feature very low surfactant concentration and wide range of ultra low interfacial tension with change of concentration of any of the three components. Core flooding and numerical simulation show more than 20% OOIP incremental recovery by ASP over water flooding for both pilots. By the end of May, 1995, 100% of ASP slug and 100% of the polymer buffer have been injected in the pilots. Production wells showed good responses in terms of large decrease in water cut and increase in oil production. The performance of each pilot has followed the numerical simulation predication very well, or even a bit better. Emulsions showed up in producers, but the emulsions are easy to be broken by a special de-emulsifier. No formation damage and scaling have been detected. The ASP flood pilot tests are technically successful and, based on the preliminary evaluation, economically feasible. Therefore, in the near future, much larger scale ASP flood field tests are going to be performed at several districts in Daqing Oil Field.

  16. Centrifuges: their development and use in gravitational biology.

    PubMed

    Smith, A H

    1992-10-01

    The nature of centrifuges and their use in biological research are reviewed historically. Centrifuges are particularly important to research in gravitational biology because the inertial (centrifugal) forces developed by motion can be combined with gravitation to produce gravitational fields other than Earth gravity. In orbiting satellites centrifuges can provide an on-board 1 g environment. A similarity of results from the orbiting and ground-based 1 g controls will provide an essential assurance that the biological responses to the spacecraft environment are the result of changes in the gravitational field. The relationship of biological responses to gravitational fields greater or less than Earth gravity is considered. However, at present there is insufficient equivalent information to decide whether there is or is not a proportionality of response to fields stronger or weaker than Earth gravity. PMID:11537640

  17. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  18. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  19. Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound.

    PubMed

    Xin, Qing; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2009-01-01

    It was necessary to sterilize the oil-field re-injection water for biocorrosion inhibition. Saprophytic bacteria, iron bacteria and sulfate reducing bacteria were the three main microorganisms resulting in the microbial contamination. To enhance the sterilization efficiency of oil-field re-injection water by pulsed electric field (PEF), the combined treatment of PEF and ultrasound was explored in the study. Meanwhile, the effects of PEF, ultrasound and the combination treatment on the three bacteria inactivation were investigated. The combination treatment had higher inactivation efficiency than independent PEF as well as ultrasound. Obvious synergistic effects were also observed on the inactivation of saprophytic bacteria and iron bacteria by the combined treatment. PMID:18567526

  20. NAFTA opportunities: Oil and gas field drilling machinery and services sector

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) significantly improves market access in Mexico and Canada for U.S. exports of oil and gas field equipment. Foreign markets account for more than 80 percent of U.S. shipments of oil and gas field machinery. Foreign markets are expected to continue their importance to this industry, in the long term. Mexico and Canada are moderate-sized markets for U.S. exports of oilfield products. In 1992, U.S. exports of this equipment amounted to about $113 million to Mexico and $11 million to Canada.

  1. Characterising oil and water in porous media using decay due to diffusion in the internal field

    NASA Astrophysics Data System (ADS)

    Lewis, Rhiannon T.; Djurhuus, Ketil; Seland, John Georg

    2015-10-01

    In the method Decay due to Diffusion in the Internal Field (DDIF), the diffusion behaviour of water molecules in the internal magnetic field makes it possible to determine a distribution of pore sizes in a sample. The DDIF experiment can also be extended to a DDIF-Carr-Purcell-Meiboom-Gill (DDIF-CPMG) experiment to measure correlations between the pore size and the transverse relaxation time, T2 . In this study we have for the first time applied the DDIF experiment and the DDIF-CPMG experiment to porous materials saturated with both water and oil. Because of the large difference in diffusion rates between water and oil molecules, the DDIF experiment will act as a filter for the signal from oil, and we are left with the DDIF-signal from water only. This has been verified in model systems consisting of glass beads immersed in separate layers of water and oil, and in a sandstone sample saturated with water and oil. The results show that the DDIF and DDIF-CPMG experiments enable the determination of the confining geometry of the water phase, and how this geometry is correlated to T2 . Data obtained in the sandstone sample saturated with water and oil also show that with the exception of the smallest pores there is no clear correlation between pore size and the relaxation time of water.

  2. Centrifugal fan monitoring guidelines

    SciTech Connect

    Piety, K.R.; Piety, R.W.; Greene, R.H.; Johnson, E.L. )

    1991-07-01

    This study provide guidelines on the vibration monitoring of centrifugal fans in fossil-fired utility plants. Based on an intensive analysis of a fan database, it provides a substantial amount of detailed information relating to vibration patterns and vibration amplitudes and recommends parameter bands and alarm levels. The study focuses on forced draft, induced draft, primary air, and gas recirculating fans. 8 refs., 19 figs., 19 tabs.

  3. Centrifugal adsorption system

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)

    2006-01-01

    A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.

  4. Central centrifugal cicatricial alopecia

    PubMed Central

    Blattner, Collin; Polley, Dennis C.; Ferritto, Frank; Elston, Dirk M.

    2013-01-01

    Central centrifugal cicatricial alopecia is a common cause of progressive permanent apical alopecia. This unique form of alopecia includes entities previously know as “hot comb alopecia,” “follicular degeneration syndrome,” “pseudopelade” in African Americans and “central elliptical pseudopelade” in Caucasians. The etiology appears to be multifactorial and the condition occurs in all races. PMID:23440368

  5. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India.

    PubMed

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki; Kazy, Sufia K

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  6. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India

    PubMed Central

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  7. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  8. Analysis of the ecological risk of opening new oil and gas fields

    SciTech Connect

    Anikiev, V.V.; Mansurov, M.N.; Fleishman, B.S.

    1995-01-01

    Practical recommendations that would ensure the ecological safety of opening new marine oil and gas fields should include analysis of ecological risk. Such an analysis should precede the studies of ecological safety and resolve a sequence of problems in evaluating the ecological risk, the probability and scale of accidents at the oil and gas extraction complex, and economic damage that could occur. This paper presents a method of evaluation of risks for fish populations incurred by marine extraction of oil and gas, calculates the required limit of probability of accidents excluding the possibility of degradation of flatfish populations, estimates expenses incurred by accidental oil spills, and presents data on level of pollution. 9 refs., 1 tab.

  9. Application of bio-huff-`n`-puff technology at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  10. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China.

    PubMed

    Li, Chun-Quan; Chen, Hong-Han; Li, Si-Tian; Zhang, Xi-Ming; Chen, Han-Lin

    2004-08-01

    The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya, respectively. The critical hydrocarbon charging time was at the late Hercynian. PMID:15236484

  11. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  12. Hydro geochemistry Study of Yamama formation water in southern Iraqi oil Fields, Migration,Diagensis

    NASA Astrophysics Data System (ADS)

    Ali, A. A.; SOC Team

    2013-05-01

    Yamama Formation (Lower Cretaceous) form one of the main oil reservoir in southern Iraq, the present study deals with the general physical and chemical characteristics of Yamama formation water in selected oil fields - southern Iraq. Via the collecting the available water analysis data in in selected 10 wells in southern Iraqi oil fields, Well Logs, as well as, the technical final well reports. The task of this study is to illustrate the chemical and physical variation among the study oil wells, and their relation with the depositional environment, the grading of temperature and pressure, the reason behind of over pressure phenomenon, besides the delineation of oil migration and water reservoir movement direction. The study confirms the occurrences of two types of formation water; the first one is the connate water, which is brine, hypersaline, and marine in nature reflects the possibility of hydrocarbon accumulations. And the second is mixing water reflects the mixing of original marine water with percolating meteoric water for various degree. Regarding the hydrochemical ratios, the direction of water movement and oil migration is from northeast toward west and south west starting from Messan oil Fields, moreover, the secondary migration of oil is in the same direction. The western migration of oil and water attributed to the enhancement of porosity and permeability in this direction, which in turn means the possibility of finding new stratigraphic traps in this direction mainly western of Nasiriya and Garraf areas. The relationship between depositional environment and diagenetic processes in one hand, and the sediment logical units; tidal lime granular unit revealed the occurrences of khidar al-may which extends up to Al-Managish in Kuwait and Nahar Umar - Majnoon, Nasiriya - Abu Amood, as well as the clayey units represented by isolated and semi isolated lagoonal deposits. Based on the ionic ratios in AlZubair, Nahar Umer and Al-Kifil oil fields, outer shelf

  13. Microseismic Monitoring Using Surface and Borehole Seismic Stations in an Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Hashmi, S.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Toubi, K.; Al-Lazki, A.; Al-Kindy, F.

    2009-05-01

    Five shallow borehole seismic stations were installed to monitor microearthquake activities in a carbonate oil field in northern Oman since 1999. This shallow network of seismic station operated continuously until 2002 after which intermittent seismic recording took place due to lack of maintenance and failure of some stations. The objectives of the study are to determine the microseismic parameters in the oil field and to determine the spatial and temporal distribution of these events to evaluate possible triggering mechanism. Well over 400 microearthquakes per year were recorded in the first three years of operation and after that the level of seismic recording fell to less than 200 microearthquakes per year due to failure of some stations. In March 2008, temporary seismic experiment consisting of five near surface seismic stations were installed in the oil field to augment the shallow network station and to evaluate surface installment of seismic instrument to monitor microseismic activities. It has been recognized that microearthquakes data such as size, spatial, and temporal distribution provide information on the pressure waves initiated by either production of or injection of fluids into reservoirs. A total of 44 local microearthquake events were analyzed and located during the temporary seismic stations deployment using a non-linear location software that allows the use of variable accurate velocity model of the subsurface. The events location is confined to oil field reservoir boundary during the recording period and more events occurring at shallow depth. The correlation coefficient between gas production and number of events is the higher compared with the oil production or water injection. The focal plane solution for the largest event in the sequence indicates normal faulting with extensional stress consistent with the existing mapped normal faults in the oil field. Microseismic signal clearly detected by the collocated sensors of the near surface

  14. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  15. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  16. Analysis of radiolabelled thiocyanate tracer in oil field brines

    NASA Astrophysics Data System (ADS)

    Bjørnstad, T.; Brendsdal, E.; Michelsen, O. B.; Rogde, S. A.

    1990-12-01

    Thiocyanate (SCN -) labelled with 14C or 35S is applicable for the tracing of the water flow in water-driven oil production. This work describes two improved methods for increasing the concentration of S 14CN - with sample sizes up to 1000 ml of sampled brine. The radioactivity detection is carried out by low-background liquid scintillation counting using standard-size counting vials of 20 ml. The first method is based on solvent extraction: two extraction/strip steps reduce the volume by the required factor of 100 down to 10 ml. The extraction agent is 0.5M tri-isooctylamine (TiOA) in Solvesso-150 and the stripping agent is 5M NH 3. A chemical yield of 70-75%, a somewhat unfavourable quenching factor and a moderate reproducibility lead to a detection limit LD of 0.04 Bq/1. The second method is based on anion exchange. 1000 ml tracer-containing brine may be loaded onto 6.1 ml of the anion-exchange resin AG1-x8 before significant breakthrough of the tracer. More than 98.4% is absorbed. By elution with 2.8M sodiumperchlorate, more than 99.5% of the absorbed tracer is concentrated in a sharp elution peak of 10 ml. With a total chemical yield of 98%, a lower quenching factor and higher reproducibility than for the solvent extraction method, an LD-value of 0.005 Bq/1 is obtained.

  17. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  18. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  19. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.

  20. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  1. Programed oil generation of the Zubair Formation, Southern Iraq oil fields: Results from Petromod software modeling and geochemical analysis

    USGS Publications Warehouse

    Al-Ameri, T. K.; Pitman, J.; Naser, M.E.; Zumberge, J.; Al-Haydari, H. A.

    2011-01-01

    1D petroleum system modeling was performed on wells in each of four oil fields in South Iraq, Zubair (well Zb-47), Nahr Umr (well NR-9), West Qurna (well WQ-15 and 23), and Majnoon (well Mj-8). In each of these fields, deposition of the Zubair Formation was followed by continuous burial, reaching maximum temperatures of 100??C (equivalent to 0. 70%Ro) at depths of 3,344-3,750 m of well Zb-47 and 3,081. 5-3,420 m of well WQ-15, 120??C (equivalent to 0. 78%Ro) at depths of 3,353-3,645 m of well NR-9, and 3,391-3,691. 5 m of well Mj-8. Generation of petroleum in the Zubair Formation began in the late Tertiary, 10 million years ago. At present day, modeled transformation ratios (TR) indicate that 65% TR of its generation potential has been reached in well Zb-47, 75% TR in well NR-9 and 55-85% TR in West Qurna oil field (wells WQ-15 and WQ-23) and up to 95% TR in well Mj-8, In contrast, younger source rocks are immature to early mature (<20% TR), whereas older source rocks are mature to overmature (100% TR). Comparison of these basin modeling results, in Basrah region, are performed with Kifle oil field in Hilla region of western Euphrates River whereas the Zubair Formation is immature within temperature range of 65-70??C (0. 50%Ro equivalent) with up to 12% (TR = 12%) hydrocarbon generation efficiency and hence poor generation could be assessed in this last location. The Zubair Formation was deposited in a deltaic environment and consists of interbedded shales and porous and permeable sandstones. In Basrah region, the shales have total organic carbon of 0. 5-7. 0 wt%, Tmax 430-470??C and hydrogen indices of up to 466 with S2 = 0. 4-9. 4 of kerogen type II & III and petroleum potential of 0. 4-9. 98 of good hydrocarbon generation, which is consistent with 55-95% hydrocarbon efficiency. These generated hydrocarbons had charged (in part) the Cretaceous and Tertiary reservoirs, especially the Zubair Formation itself, in the traps formed by Alpine collision that closed the

  2. Design of centrifugal impeller blades

    NASA Technical Reports Server (NTRS)

    Betz, A; Flugge-Lotz, I

    1939-01-01

    This paper restricts itself to radial impellers with cylindrical blades since, as Prasil has shown, the flow about an arbitrarily curved surface of revolution may be reduced to this normal form we have chosen by a relatively simple conformal transformation. This method starts from the simple hypotheses of the older centrifugal impeller theory by first assuming an impeller with an infinite number of blades. How the flow is then modified is then investigated. For the computation of flow for a finite number of blades, the approximation method as developed by Munk, Prandtl and Birnbaum, or Glauert is found suitable. The essential idea of this method is to replace the wing by a vortex sheet and compute the flow as the field of these vortices. The shape of the blades is then obtained from the condition that the flow must be along the surface of the blade.

  3. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  7. Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump

    SciTech Connect

    Wilkie, D.I. )

    1993-09-27

    Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

  8. A look at Bacon Flat, Grant Canyon oil fields of Railroad Valley, Nevada

    SciTech Connect

    Johnson, E.H. )

    1993-05-17

    The prolific wells at Grant Canyon, and the puzzling geology, have intrigued explorationists and promoters. Many a Nevada prospect has been touted as 'another Grand Canyon.' But what processes formed Grant Canyon, and can others be found Last August, Equitable Resources Energy Co,'s Balcron Oil Division spudded a well at Bacon Flat, a mile west of Grant Canyon. A one well field, Bacon Flat had been abandoned in 1988. But just 900 ft north of the field opener, Balcron's well tested oil at a rate or 5,400 b/d. It turns out that Bacon Flat and Grant Canyon fields have a common geological history and, in fact, share the same faulted horst. However, they formed by an unusual combination of events that may be unique to those fields. This paper describes the geologic history, well logging interpretations, structures, the Jebco C seismic line, a geologic cross section, and the author's conclusions.

  9. The 1-AB block fields-a giant oil accumulation in Eastern Peru

    SciTech Connect

    Jarvis, H.A.; Lay, V. ); Orosco, C. )

    1993-02-01

    The 1-Ab block fields are located in the northeastern part of Peru. Geologically, the area is the sub-Andean Maranon Basin, a continuation of the Napo Basin from eastern Ecuador. During the 20 years that Occidental has operated Block 1-AB, approximately 11,500 km of seismic data has been recorded and 34 exploratory wells have been drilled, resulting in the discovery of 18 fields, or 53% exploration success. The 1-AB oil accumulation discovered in 1972 is a group of medium to small asymmetric anticlines distributed along six northwest-southeast trending structural alignments: North Capahuari-South Capahuari-Tambo, Carmen-North San Jaacinto and Bartra. This concentration of productive structures in a relative small area is unique within the Maranon basin. The controlling factors include exceptional pre-Cretaceous uplifting and the presence of very good to excellent Cretaceous sandstones reservoirs. The two major Cretaceous producing zones, the Chonta and Vivian sandstones, have been defined within the Coniacian and Campanian ages respectively. The Chonta sands are related to shelfal deposition across Block 1-AB, represented by strand plain and barrier island sediments. The Vivian formation is a massive fluvial sandstone covering all of the Maranon basin and ranging in thickness between 40 and 200 feet. After oil was accumulated, fresh water influxes into the reservoirs of the northern and eastern fields caused oil biodegradation and salinity variation of the reservoir waters, depending upon the intensity of biodegradation. Oil remigration also has been documented for the South Huayari field.

  10. Quality of field pennycress oil obtained by screw pressing and solvent extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlasphi arvense L., Brassicaceae) is a winter annual that grows widely in temperate North America. Its seeds contain up to 36% oil (dry basis, db) with the major fatty acid being erucic acid (38 %). With an estimated seed production of 1,700 – 2,200 kg/ha, pennycress can be a majo...

  11. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  12. FIELD MANUAL FOR PLUNGING WATER JET USE IN OIL SPILL CLEANUP

    EPA Science Inventory

    The use of plunging water jets can often make possible the control (and, as a consequence, the cleanup) of spilled oil and other floating pollutants in currents too swift for conventional equipment. This short, illustrated manual provides practical information for field and plann...

  13. [The phylogenetic diversity of aerobic organotrophic bacteria from the Dagan high-temperature oil field].

    PubMed

    Nazina, T N; Sokolova, D Sh; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Babich, T L; Lysenko, A M; Turova, T P; Poltaraus, A B; Feng, Tsin'syan; Ni, Fangtian; Beliaev, S S

    2005-01-01

    The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated. PMID:16119855

  14. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    PubMed

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990450

  15. The Magnetic Centrifugal Mass Filter

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-08-04

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages. __________________________________________________

  16. Sisterhood in the oil field: informal support networks, gender roles and adaptation among women in the Oklahoma oil field

    SciTech Connect

    Walsh, A.C.

    1988-01-01

    The petroleum drilling industry exhibits a number of definitive characteristics, which combined with the most recent boom/bust drilling cycle, affect women in much the same manner as factors commonly associated with the eroding of women's social and economic positions within modernizing societies. Recognizing that modernization has a negative impact on women, this study focuses on strategies of adaptation employed by women associated both directly and indirectly with the petroleum drilling industry in an oil boom/bust town in western Oklahoma. Utilizing the traditional techniques of ethnographic interview and participant observation, it was shown that informal support networks formed by women enhanced women's adaptation by extending their resource base beyond the nuclear family and encouraging solidarity. Gender-based division of labor was also modified by western energy development. Boom times facilitated a rigid division of labor that gave way to a more flexible arrangement during bust times without a concomitant change in gender-based ideology. This was accounted for by differences in the rates of change for the underlying habits and values associated with the public and private sectors.

  17. Estimation of oil recovery by in-situ combustion in the Jobo Field of Eastern Venezuela

    SciTech Connect

    Luengo-C, J.R.; Sanyal, S.K.

    1981-03-01

    A laboratory combustion experiment using samples from Jobo Field was completed. The data obtained by this experiment could be used for an approximate estimation of recovery for a pilot project in this field. An isolated pilot test would give enough information to determine the behavior of the combustion process for field applications. Aplication of recovery correlations indicate that a pilot test in an inverted 5-spot pattern (10 to 20 acres spacing) appears adequate for these field conditions. Air injection rates should be calculated and compared with injectivity tests, the ability of the producing wells to handle the oil, and the maximum pressure the reservoir can handle without fracturing.

  18. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect

    Milton, J.D. ); Edwards, E.B. ); Heck, R.G. )

    1996-01-01

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  19. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect

    Milton, J.D.; Edwards, E.B.; Heck, R.G.

    1996-12-31

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  20. Application of electrical submersible pumps in heavy crude oil in Boscan Field

    SciTech Connect

    Bortolin, L.L.

    1995-12-31

    During recent years optimization of artificial lift methods has been applied in the oil industry, in order to evaluate the effect on oil well production and to establish a company`s optimal investment policies. Higher costs on new artificial lifting equipment and facilities for new fields have created the necessity to review the latest available technology of different lifting methods and specially that related to electrical submersible pumps (ESP). Few studies in the area of heavy crude oil production optimization using ESP as a lifting method have been published. This paper discusses the results of an ESP pilot project performed in 24 wells in Boscan field, and analyzes the performance of the equipment and its application range. The ESP equipment was installed in completions at depths ranging from 7000 to 9000 feet, with a 10{degrees}API gravity crude and bottomhole temperature of 180{degrees}F. It was concluded that despite a reduction of the pump`s efficiency, the ESP equipment does qualify as a good alternative lifting method for heavy oil production. It is also possible to obtain higher production rates. The results obtained in this pilot project, confirm that submersible pumps are an alternative method for lifting heavy crude oil from relatively deep reservoirs.

  1. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control. PMID:25996514

  2. The significance of large variations in oil properties of the Dai Hung field, Vietnam

    SciTech Connect

    Behrenbruch, P.; Du, P.Q.

    1995-10-01

    The Dai Hung Oil field, offshore Vietnam, is comprised of a complex subsurface structure containing stacked reservoir sequences typically found in many other Southeast Asian fields. Combined with areal fault compartmentalization, this situation has led to the observed, large variations in oil properties. Furthermore, the depositional environment in terms of burial history has created a unique overpressure situation which also had an affect, particularly on the crude saturation conditions of individual reservoirs. For commercial and technical reasons, this situation required a detailed analysis, both in terms of variation in crude assay and live oil properties. For whole crude properties: gravity, K factor, wax content and pour point-graphs were drawn up using a large data base of worldwide crudes against which the Dai Hung data could be validated. In case of PVT properties (bubble point and formation volume factor) existing industry correlations were examined. It could be concluded that the sweet, medium gravity and moderately waxy Dai Hung crude has whole crude properties which are comparable to other, similar crudes. The general framework of crude properties established is suitable to type other crudes, even if limited information is available. Of the existing PVT correlations tested, it was found that Standing`s correlation for the oil formation volume factor and the Kartoatmodjo-Schmidt correlation for the bubble point fitted the Dai Hung crude data the best. For the lower shrinkage Dai Hung crudes the Malaysian oil formation volume factor correlation by Omar-Todd gave the best data fit.

  3. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

  4. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  5. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  6. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  7. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  8. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  9. Brine contamination of shallow ground water and streams in the Brookhaven Oil Field, Lincoln County, Mississippi

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1986-01-01

    A hydrologic investigation to define areas of brine contamination in shallow freshwater aquifers commonly used for streams that drain the Brookhaven Oil Field, was conducted from October 1983 to September 1984. The Brookhaven Oil Field covers approximately 15 sq mi in northwestern Lincoln County, Mississippi. Since 1943, disposal of approximately 544.2 million barrels of brine pumped from the oil producing zone (lower part of the Tuscaloosa Formation) has contaminated the Citronelle aquifer, the Hattiesburg aquifers, and streams that drain the oil field. Approximately 5 sq mi of the shallow Citronelle aquifer contain water with chloride concentrations higher than normal for this area ( > 20 mg/L). Brine contamination has moved from the source laterally through the Citronelle aquifer to discharge into nearby streams and vertically into the underlying Hattiesburg aquifers. Contamination is most noticeable in Shaws Creek when streamflow originates primarily from groundwater inflow (approximately 87% of the time during the study). Additional study is required to define contaminant plumes, rates of groundwater movement and geohydrochemical reactions between the contaminant and aquifer materials. These data would allow accurate predictions of location, extent and degree of contamination in the study area. (Author 's abstract)

  10. Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters

    PubMed Central

    Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

    1992-01-01

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

  11. Kinetics of lead and copper removal from oil-field brine by potential sorption.

    PubMed

    Nourafkan, E; Asachi, M; Marandi, R

    2014-01-01

    The present study investigates the kinetics of lead and copper removal from oil-field brine by potential sorption. A population balance equation, coupled with a mass balance equation, was used in the estimation of kinetic parameters. Metal removal was performed by potential sorption of lead and copper through CaCO3 precipitates induced by the reaction of Na2CO3 and CaCl2. The oil-field brine was selected from an oil well in Gachsaran, Iran. The crystal size distribution of the solid phase was measured by dynamic laser scattering analyzer, and the liquor phase was analyzed using atomic adsorption. The morphology of calcium carbonate particles was illustrated using scanning electron microscopy and X-ray diffraction. The results showed that the presence of copper and lead decreases the average size distribution of calcium carbonate particles by influencing the kinetic parameters. Lead and copper concentrations were reduced from 2.911 to 0.127 ppm (95.63% removal) and 0.476 to 0.025 ppm (94.74% removal), respectively, in exchange for 12 g CaCO3 consumption per 100 ml oil-field brine. PMID:25521137

  12. Vibration analysis of large centrifugal pump rotors

    NASA Astrophysics Data System (ADS)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.

  13. Centrifugal shot blast system

    SciTech Connect

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  14. Airborne measurements of atmospheric methane over oil fields in western Siberia

    NASA Astrophysics Data System (ADS)

    Tohjima, Y.; Maksyutov, S.; Machida, T.; Inoue, G.

    Airborne measurements of atmospheric methane (CH4) over oil fields in western Siberia were carried out on August 1, 1994. Extremely sharp CH4 peaks were observed in the horizontal distribution of CH4 at an altitude of 150 m above the ground surface; the half widths of the peaks were 3-4 km and the concentration of the largest peak exceeded 2.9 ppmv. Since the CH4 distribution was considered to reflect the distribution of CH4 emission strength on the surface, there was strong CH4 emission at the peak positions. All of the observed CH4 peak positions were located at or near oil production sites and/or oil pipelines, suggesting that natural gas was emitted from the facilities. Leakage or venting of natural gas are the probable CH4 sources.

  15. Evaluation of Slime-Producing Bacteria in Oil Field Core Flood Experiments

    PubMed Central

    Geesey, G. G.; Mittelman, M. W.; Lieu, V. T.

    1987-01-01

    Epifluorescence microscopy and carbohydrate determinations indicated that the decrease in permeability of oil reservoir sand to reclaimed sewage water was partially the result of biological plugging. Filtration and biocide addition studies demonstrated that the increase in bacterial densities and slime concentrations in flooded oil field cores appeared to be due to both deposition from the reclaimed water and in situ microbial growth and slime production. Although these biological components increased throughout the cores during flooding, the region where the water entered the core exhibited the highest cell densities and slime concentrations. The approach described in this report should be useful in predicting the potential of a water source to induce biological plugging of oil reservoir sand. PMID:16347276

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  17. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  19. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  20. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Marica, Florea; MacMillan, Bryce; Balcom, Bruce J.

    2016-08-01

    Magnetic resonance imaging (MRI) is a robust tool to image oil saturation distribution in rock cores during oil displacement processes. However, a lengthy measurement time for 3D measurements at low magnetic field can hinder monitoring the displacement. 1D and 2D MRI measurements are instead often undertaken to monitor the oil displacement since they are faster. However, 1D and 2D images may not completely reflect the oil distribution in heterogeneous rock cores. In this work, a high-speed 3D MRI technique, π Echo Planar Imaging (π-EPI), was employed at 0.2 T to monitor oil displacement. Centric scan interleaved sampling with view sharing in k-t space was employed to improve the temporal resolution of the π-EPI measurements. A D2O brine was employed to distinguish the hydrocarbon and water phases. A relatively homogenous glass bead pack and a heterogeneous Spynie core plug were employed to show different oil displacement behaviors. High quality 3D images were acquired with π-EPI MRI measurements. Fluid quantification with π-EPI compared favorably with FID, CPMG, 1D-DHK-SPRITE, 3D Fast Spin Echo (FSE) and 3D Conical SPRITE measurements. π-EPI greatly reduced the gradient duty cycle and improved sensitivity, compared to FSE and Conical SPRITE measurements, enabling dynamic monitoring of oil displacement processes. For core plug samples with sufficiently long lived T2, T2∗, π-EPI is an ideal method for rapid 3D saturation imaging.

  1. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Marica, Florea; MacMillan, Bryce; Balcom, Bruce J

    2016-08-01

    Magnetic resonance imaging (MRI) is a robust tool to image oil saturation distribution in rock cores during oil displacement processes. However, a lengthy measurement time for 3D measurements at low magnetic field can hinder monitoring the displacement. 1D and 2D MRI measurements are instead often undertaken to monitor the oil displacement since they are faster. However, 1D and 2D images may not completely reflect the oil distribution in heterogeneous rock cores. In this work, a high-speed 3D MRI technique, π Echo Planar Imaging (π-EPI), was employed at 0.2T to monitor oil displacement. Centric scan interleaved sampling with view sharing in k-t space was employed to improve the temporal resolution of the π-EPI measurements. A D2O brine was employed to distinguish the hydrocarbon and water phases. A relatively homogenous glass bead pack and a heterogeneous Spynie core plug were employed to show different oil displacement behaviors. High quality 3D images were acquired with π-EPI MRI measurements. Fluid quantification with π-EPI compared favorably with FID, CPMG, 1D-DHK-SPRITE, 3D Fast Spin Echo (FSE) and 3D Conical SPRITE measurements. π-EPI greatly reduced the gradient duty cycle and improved sensitivity, compared to FSE and Conical SPRITE measurements, enabling dynamic monitoring of oil displacement processes. For core plug samples with sufficiently long lived T2, T2(∗), π-EPI is an ideal method for rapid 3D saturation imaging. PMID:27208417

  2. Exploitation of oil in a volcanic cone by horizontal drilling in the Elaine field, south Texas

    SciTech Connect

    Martinez, P.A.; Kushner, P.L.; Harbaugh, J.W.

    1991-03-01

    The Uvalde volcanic field west and southwest of San Antonio contains many buried volcanic cones that offer attractive places to exploit with horizontal drilling. These buried cones were formed by eruption of basaltic flows and cinders during the Cretaceous when the Austin Chalk and immediately overlying strate were deposited. The cones vary in size, some being as much as 2 mi in diameter and 1000 ft in vertical dimension. During eruptions, flows and ejecta reacted with sea water, producing intermixtures of basaltic material and limestone. These cones provide attractive targets for oil exploration. The Elaine field about 90 mi southwest of San Antonio is associated with a buried volcanic cone that is now being exploited with horizontal drilling. Horizontal Drilling and Production, Inc., ('HDP') drilled the Autumn 1 as the initial horizontal well at Elaine. A vertical hole was drilled through the cone and underlying Austin Chalk, reconfirming the presence of the oil zone at the contact between volcanics and chalk. Moving back up the hole, a cement plug was set within the volcanics, and a horizontal hole was directed on a N 70W azimuth. The inclined hole's vertical angle had progressively decreased with distance to about 30{degree} from the horizontal when the oil zone was reentered. The hole's inclination continued to decrease within the oil zone, becoming horizontal after about 600 ft. With further distance, the hole passed beneath the oil zone, where its inclination was then reversed so that it climbed gradually and reentered the oil zone before reaching its terminal distance of 1500 horizontal feet. The well was completed on August 17, 1990, with an indicated initial production of 1609 BOPD.

  3. Centrifuge treatment of coal tar

    SciTech Connect

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  4. NASA low speed centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  5. Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite

    USGS Publications Warehouse

    Phillips, E.J.P.; Landa, E.R.; Kraemer, T.; Zielinski, R.

    2001-01-01

    Scale and sludge deposits formed during oil production can contain elevated levels of Ra, often coprecipitated with barium sulfate (barite). The potential for sulfate-reducing bacteria to release 226 Ra and Ba (a Ra analog) from oil-field barite was evaluated. The concentration of dissolved Ba increased when samples containing pipe scale, tank sludge, or oil-field brine pond sediment were incubated with sulfate-reducing bacteria Desulfovibrio sp., Str LZKI, isolated from an oil-field brine pond. However, Ba release was not stoichiometric with sulfide production in oil-field samples, and <0.1% of the Ba was released. Potential for the release of 226Ra was demonstrated, and the 226 Ra release associated with sulfate-reducing activity was predictable from the amount of Ba released. As with Ba, only a fraction of the 226Ra expected from the amount of sulfide produced was released, and most of the Ra remained associated with the solid material.

  6. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  7. How to make a billion-barrel oil field in offshore California commercial

    SciTech Connect

    Patterson, J.C.; Ballard, J.H.

    1988-02-01

    The major obstacles and challenges involved in exploration and development of a giant deep-water low-gravity oil field are exemplified in the undeveloped Sword field of offshore southern California. In 1979, Conoco Exploration identified a northeast-southwest-trending basement high in the 800 to 2000-ft deep federal waters 12 mi southwest of Pt. Conception at the western end of the Santa Barbara Channel. The intended reservoir was fractured Miocene Monterey chert, silicic shales/siltstones, and dolomites that are draped over the axially faulted structure. Drilling of the initial well in OCS P-0322 in 1982 resulted in discovering the giant Sword field. A confirmation well drilled in OCS P-0320 indicates in-place reserves of well over 1 billion bbl. While the discovered potential is significant, the low gravity (8.5/degree/-10.5/degree/ API) of the oils discovered to date, along with water depths in excess of 1500 ft, currently pose economic challenges to successful field development. Conoco and its partners are addressing the current economic barriers on a number of fronts. Three-dimensional seismic surveys are being conducted to better delineate reservoir geometry and to define probable variations in lithology, fracturing, and oil gravity. A market feasibility study will be undertaken to assess the demand for low-gravity crude from offshore California.

  8. Oil fields and new plays in the Rioni foreland basin, Republic of Georgia

    SciTech Connect

    Robinson, A.G.; Griffith, E.T. ); Sargeant, J. )

    1996-01-01

    The Rioni Basin in West Georgia is an Oligocene foredeep that evolved into a Miocene to Pliocene foreland basin, north of the Achara-Trialeti thrust belt and south of the Greater Caucasus. It extends to the west into the Black Sea. A large number of exploration wildcats have been drilled onshore since the nineteenth century and have led to the discovery of three fields. Exploration was prompted by seeps and restricted to frontal ramp anticlines mapped at surface. No wells have been drilled offshore. Supsa (discovered 1889) contains 29 MMbbl oil in clastic Sarmatian reservoirs. The field has around 50 wells but less than 0.5 MMbbl have been produced. Shromisubani (discovered 1973) contains oil within Maeotian and Pontian clastic reservoirs, Chaladidi oil within Upper Cretaceous chalk. Despite this long and apparently intensive exploration effort, several factors make the basin an exciting target for field redevelopment and further exploration. The quality of existing seismic is very poor both on-and offshore. Reinterpretation of the structure of the fold and thrust belt has suggested the presence of new targets and plays which may be imaged by modern seismic methods. In addition, due to problems associated with central planning, discovered fields have not been optimally developed or even fully appraised. The application of new technology, geological interpretation and investment promises to delineate substantial remaining reserves even after more than one hundred years of exploration.

  9. Oil fields and new plays in the Rioni foreland basin, Republic of Georgia

    SciTech Connect

    Robinson, A.G.; Griffith, E.T.; Sargeant, J.

    1996-12-31

    The Rioni Basin in West Georgia is an Oligocene foredeep that evolved into a Miocene to Pliocene foreland basin, north of the Achara-Trialeti thrust belt and south of the Greater Caucasus. It extends to the west into the Black Sea. A large number of exploration wildcats have been drilled onshore since the nineteenth century and have led to the discovery of three fields. Exploration was prompted by seeps and restricted to frontal ramp anticlines mapped at surface. No wells have been drilled offshore. Supsa (discovered 1889) contains 29 MMbbl oil in clastic Sarmatian reservoirs. The field has around 50 wells but less than 0.5 MMbbl have been produced. Shromisubani (discovered 1973) contains oil within Maeotian and Pontian clastic reservoirs, Chaladidi oil within Upper Cretaceous chalk. Despite this long and apparently intensive exploration effort, several factors make the basin an exciting target for field redevelopment and further exploration. The quality of existing seismic is very poor both on-and offshore. Reinterpretation of the structure of the fold and thrust belt has suggested the presence of new targets and plays which may be imaged by modern seismic methods. In addition, due to problems associated with central planning, discovered fields have not been optimally developed or even fully appraised. The application of new technology, geological interpretation and investment promises to delineate substantial remaining reserves even after more than one hundred years of exploration.

  10. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  11. Interpretation of the magnetic anomaly over the Omaha Oil Field, Gallatin County, Illinois

    SciTech Connect

    Sparlin, M.A. ); Lewis, R.D. . Waterways Experiment Station)

    1994-07-01

    A 40 nanoTesla (nT) magnetic anomaly identified in an aeromagnetic survey over southern Illinois contours as a localized magnetic high on the west flank of a regional magnetic low. This magnetic anomaly is generally coincident with the Omaha Oil Field in northwest Gallatin County, Illinois. It was initially assumed that cultural sources of steel associated with this oil field were the primary source of the magnetic feature; however, similar oil fields overflown by the survey do not exhibit magnetic anomalies in the data set. The Luther Rister et ux [number sign]1 well, drilled near the apex of the Omaha structural dome, encountered two zones of ultramafic intrusive rock containing 9.0% by volume magnetite. These intrusives were identified to be alnoeites which are a class of mantle-derived ultramafic rock that can be associated with the incipient stages of crustal rifting. A ground magnetic survey verified the presence of the anomaly, and provided detailed data for 3-D modeling of the source. Petrophysical evaluations, magnetic susceptibility measurements and thin section modal analysis were made on drill cuttings from the ultramafic intrusives encountered in the Luther Rister [number sign]1 well. These measurements were made to constrain the 3-D magnetic modeling by the petrophysical characteristics of the source. After removal of the regional magnetic field, the resulting 140 nT residual magnetic anomaly was successfully modeled using two ultramafic sills with an igneous feeder plug. The two igneous sills adequately account for the structural closure exhibited in the Omaha Oil Field and raise the interesting possibility of other hydrocarbon trapping structures generated by intrusives emplaced into the sedimentary section.

  12. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  13. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century. PMID:25029818

  14. Centrifuge rotor integrated analysis

    NASA Astrophysics Data System (ADS)

    Ohtomi, Koichi; Kanzawa, Takuya; Hampton, Roy; Kawamoto, Osamu

    2004-09-01

    The Centrifuge Rotor (CR) is a large life science experiment facility which will be installed in the International Space Station (ISS). It will provide artificial gravity of 2g or less by rotating up to 4 science habitats, and it will be the first such machinery to be used in space. To prevent vibration disturbance exchanges between the CR and the ISS, a soft 5 dof vibration isolation mechanism is used which cannot support the CR weight on the ground. Therefore, the CR on-orbit performance must be predicted by integrated analysis which must model all of the equipment including sensors, actuators, flexible structure, gyroscopic effects, and controllers. Here, we introduce the CR mechatronics, a verification procedure, and examples of the application of the integrated analysis which is based on the general-purpose mechanism analysis software ADAMS.

  15. Evaluating GIS for establishing and monitoring environmental conditions of oil fields

    SciTech Connect

    Pfeil, R.W.; Ellis, J.W.

    1995-04-01

    Good management of an oil field and compliance with ever-increasing environmental regulations is enhanced by technologies that improve a company`s understanding of field/production facilities and environmental conditions that have occurred to both through time. In Nigeria, Kazakhstan, Indonesia, and offshore Cabinda, remote sensing, computer-aided drafting (CAD) and Global Positioning System (GPF) technologies have effectively been used by Chevron to provide accurate maps of facilities and to better understand environmental conditions. Together these proven technologies have provided a solid and cost-effective base for planning field operation, verifying well and seismic locations, and locating sampling sites. The end product of these technologies is often locations, and locating sampling sites. The end product of these technologies is often cartographic-quality hardcopy images and maps for use in the office and field. Chevron has been evaluating the capability of Geographical Information System (GIS) technology to integrate images, maps, and tabular data into a useful database that can help managers and workers better evaluate conditions in an oil field, plan new facilities, and monitor/predict trends (for example, of air emissions, groundwater, soil chemistry, subsidence, etc.). Remote sensing, CAD (if formatted properly), and GPS data can be integrated to establish the spatial or cartographic base of the GIS. A major obstacle to establishing a sophisticated GIS for an overseas operation is the initial cost of data collection and conversion from legacy data base management systems and hardcopy to appropriate digital format. However, Chevron routinely uses GIS for oil spill modeling and is now using GIS in the field for integrating GPS data with field observations and programs.

  16. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  17. Raman distributed temperature sensor for oil leakage detection in soil: a field trial and future trends

    NASA Astrophysics Data System (ADS)

    Signorini, Alessandro; Nannipieri, Tiziano; Gabella, Luca; Di Pasquale, Fabrizio; Latini, Gilberto; Ripari, Daniele

    2014-05-01

    In this paper we perform field validation of distributed Raman temperature sensing (RDTS) for oil leakage detection in soil. The capability of the distributed Raman sensor in detecting and locating, with high accuracy and spatial resolution, drop leakages in soil is demonstrated through a water leakage simulation in a field trial. The future trends and the high potential of the Raman DTS technology for oil and gas leakage detection in long pipelines is then outlined in this paper by reporting lab experiments demonstrating accurate meter scale temperature measurement over more than 50 km of standard single mode fiber. The proposed solution, based on distributed Simplex coding techniques, can be competitive in terms of cost and performance with respect to other distributed sensing technologies.

  18. Truncated shifted pareto distribution in assessing size distribution of oil and gas fields

    SciTech Connect

    Houghton, J.C.

    1988-11-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a J-shape, and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment.

  19. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    USGS Publications Warehouse

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  20. Bohai Oil corporation conceptual engineering of overall development scheme for SZ 36-1 oil field. Final report. Export trade information

    SciTech Connect

    Not Available

    1992-10-01

    SZ 36-1 oil field is located in the Liaodong Bay in the northeastern section of Bohai Bay, in approximately 32 meters water depth, 46 kilometers offshore the Suizhong Coast. The reservoir is highly heterogeneous and unconsolidated, and the crude has high viscosity, high specific gravity, and requires artificial lift for production. A phased development of the field is planned. The U.S. Trade and Development Program (TDP) contracted for engineering services to perform conceptual engineering of the overall development scheme for the SZ 36-1 oil field. The study consisted of two parts: (1) concept selection, to assess various schemes for developing the SZ 36-1 field and selecting one to recommend to the Bohai oil corporation (BOC); (2) conceptual engineering of the recommended development concept. The final report covers both the concept selection and concept engineering phases of the study.

  1. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report

    SciTech Connect

    Baroni, M.

    1995-09-01

    Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

  2. The drilling of a horizontal well in a mature oil field

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  3. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  4. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    PubMed

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity. PMID:19290520

  5. Short chain aliphatic acid anions in oil field waters and their contribution to the measured alkalinity

    USGS Publications Warehouse

    Willey, L.M.; Kharaka, Y.K.; Presser, T.S.; Rapp, J.B.; Barnes, I.

    1975-01-01

    High alkalinity values found in some formation waters from Kettleman North Dome oil field are due chiefly to acetate and propionate ions, with some contribution from higher molecular weight organic acid ions. Some of these waters contain no detectable bicarbonate alkalinity. For waters such as these, high supersaturation with respect to calcite will be incorrectly indicated by thermodynamic calculations based upon carbonate concentrations inferred from traditional alkalinity measurements. ?? 1975.

  6. Static Electric Field Mapping Using a Mosquito Racket and Baby Oil

    ERIC Educational Resources Information Center

    Rediansyah, Herfien; Khairurrijal; Viridi, Sparisoma

    2015-01-01

    The aim of this research was to design a simple experimental device to see electric field force lines using common components which are readily available in everyday life. A solution of baby oil was placed in a plastic container, 4.5 × 4.5 × 1 inches, with both ends of the electrodes (metal wire) immersed in the solution at a depth of 0.2 inches.…

  7. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  8. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  9. Disposal of NORM-contaminated oil field wastes in Salt Caverns.

    SciTech Connect

    Veil, J. A.; Smith, K. P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G. P.

    1998-08-28

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  10. Solvent-free cleaning using a centrifugal cryogenic pellet accelerator

    SciTech Connect

    Haines, J.R.; Fisher, P.W.; Foster, C.A.

    1995-06-01

    An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

  11. Electrochemical velocimetry on centrifugal microfluidic platforms.

    PubMed

    Abi-Samra, Kameel; Kim, Tae-Hyeong; Park, Dong-Kyu; Kim, Nahui; Kim, Jintae; Kim, Hanshin; Cho, Yoon-Kyoung; Madou, Marc

    2013-08-21

    Expanding upon recent applications of interfacing electricity with centrifugal microfluidic platforms, we introduce electrochemical velocimetry to monitor flow in real-time on rotating fluidic devices. Monitoring flow by electrochemical techniques requires a simple, compact setup of miniaturized electrodes that are embedded within a microfluidic channel and are connected to a peripherally-located potentiostat. On-disc flow rates, determined by electrochemical velocimetry, agreed well with theoretically expected values and with optical measurements. As an application of the presented techniques, the dynamic process of droplet formation and release was recorded, yielding critical information about droplet frequency and volume. Overall, the techniques presented in this work advance the field of centrifugal microfluidics by offering a powerful tool, previously unavailable, to monitor flow in real-time on rotating microfluidic systems. PMID:23787459

  12. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  13. Depositional environments of Upper Triassic sandstones, El Borma oil field, southwestern Tunisia

    SciTech Connect

    Bentahar, H.; Ethridge, F.G. )

    1991-03-01

    El Borma oil field in southwestern Tunisia is located on the Algerian border and produces from five Upper Triassic sandstone reservoirs at depths ranging from 2,300 to 2,400 m. The 250 km{sup 2} field has recoverable reserves of 770 mm bbl of equivalent oil. Reservoir sandstones rest unconformably on south-dipping Lower Devonian clastic deposits. Silurian shale represents the major oil source rock and the field is capped by 550 m of shale, carbonate, and evaporite. Hercynian, topography below the reservoir sandstones comprises an 18 km wide, northeast-oriented paleovalley. Each of the four lower reservoir sandstones, bounded by a lower scour surface and a basal lag deposit, is commonly discontinuous and separated by lenticular shale beds. These 5 to 15 m thick sandstones display in channels flowing to the northeast. The overlying 12 m thick transgressive marine dolomitic shale contains carbonized bivalves and is capped by a paleosoil with root structures and siderite cement indicating subaerial exposure. The clay-rich and locally bioturbated uppermost reservoir sandstone was probably deposited in a tidally influenced estuary. Overall, the Upper Triassic reservoirs at El Borma consists of valley-fill estuary deposits that were formed during transgression of the sea from the northeast.

  14. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  15. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Carlson, Kenneth H

    2014-01-01

    Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field. PMID:24456231

  16. Significant role of structural fractures in Ren-Qiu buried-block oil field, eastern China

    SciTech Connect

    Fei, Q.; Xie-Pei, W.

    1983-03-01

    Ren-qui oil field is in a buried block of Sinian (upper Proterozoic) rocks located in the Ji-zhong depression of the western Bohai Bay basin in eastern China. The main reservoir consists of Sinian dolomite rocks. It is a fault block with a large growth fault on the west side which trends north-northeast with throws of up to 1 km (0.6 mi) or more. The source rocks for the oil are Paleogene age and overlie the Sinian dolomite rocks. The structural fractures are the main factor forming the reservoir of the buried-block oil field. Three structural lines, trending northeast, north-northeast, and northwest, form the regional netted fracture system. The north-northeast growth fault controlled the structural development of the buried block. The block was raised and eroded before the Tertiary sediments were deposited. In the Eocene Epoch, the Ji-zhong depression subsided, but the deposition, faulting, and related uplift of the block happened synchronously as the block was gradually submerged. At the same time, several horizontal and vertical karst zones were formed by the karst water along the netted structural fractures. The Eocene oil source rocks lapped onto the block and so the buried block, with many developed karst fractures, was surrounded by a great thickness of source rocks. As the growth fault developed, the height of the block was increased from 400 m (1300 ft) before the Oligocene to 1300 m (4250 ft) after. As the petroleum was generated, it migrated immediately into the karst fractures of the buried block along the growth fault. The karst-fractured block reservoir has an 800-m (2600-ft) high oil-bearing closure and good connections developed between the karst fractures.

  17. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  18. Missa Keswal oil field Potwar, Pakistan, a failure turned into success

    SciTech Connect

    Zaman, A.S.H.; Zahidi, S.A.

    1996-12-31

    Missa Keswal oil and gas field is located 70 kms. SSE of Islamabad in the eastern part of Potwar basin. On surface, it is a thrust bounded anticline striking in SW-NE direction. First seismic work was carried out in 1980, followed by drilling of an unsuccessful well. Another well was drilled after an improved seismic programme which resulted in discovery of oil and gas in seven different reservoir units of Cambrian, Permian, Paleocene, Eocene and Miocene age. Among these, three reservoir units namely Jutana, Baganwala and Kussak of Cambarian age had never produced in the Potwar basin earlier. The field had original, in place, proven reserves of 37.650 MMSTB of oil and 27.900 BSCF of gas. Current production from three wells is around 4500 barrels of oil and 7.3 MMSCFD of gas a day. This production comes from fractured limestone and porous sandstone rocks. It is an exploration case history, making a comparison between old and new seismic work. Low density of seismic profiles, inaccurate acquisition and processing parameters and lack of local interpretation experience contributed to earlier failures. Interpretation of new seismic data reveals that strata of platform sequence display a duplex geometry overlain by a passive roof complex of Siwaliks sequence as against earlier interpretation of a pop up structure. Closed area at Eocene level is 30 sq. kms., structure is bounded by a main thrust fault in the strike direction. Few orthognal faults exist which may provide lateral barriers to the flow during production. Probably upward migration of oil from the underthrusted block of the duplex has contributed to the occurrence of a multi-reservoir system in the upper block.

  19. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  20. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2002-01-31

    to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  4. A new reserve growth model for United States oil and gas fields

    USGS Publications Warehouse

    Verma, M.K.

    2005-01-01

    Reserve (or field) growth, which is an appreciation of total ultimate reserves through time, is a well-recognized phenomenon, particularly in mature petroleum provinces. The importance of forecasting reserve growth accurately in a mature petroleum province made it necessary to develop improved growth functions, and a critical review of the original Arrington method was undertaken. During a five-year (1992-1996), the original Arrington method gave 1.03% higher than the actual oil reserve growth, whereas the proposed modified method gave a value within 0.3% of the actual growth, and therefore it was accepted for the development for reserve growth models. During a five-year (1992-1996), the USGS 1995 National Assessment gave 39.3% higher oil and 33.6% lower gas than the actual growths, whereas the new model based on Modified Arrington method gave 11.9% higher oil and 29.8% lower gas than the actual growths. The new models forecast predict reserve growths of 4.2 billion barrels of oil (2.7%) and 30.2 trillion cubic feet of gas (5.4%) for the conterminous U.S. for the next five years (1997-2001). ?? 2005 International Association for Mathematical Geology.

  5. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  6. Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia.

    PubMed

    Qu, Y; Crne, A E; Lepland, A; van Zuilen, M A

    2012-11-01

    Organic carbon rich rocks in the c. 2.0 Ga Zaonega Formation (ZF), Karelia, Russia, preserve isotopic characteristics of a Paleoproterozoic ecosystem and record some of the oldest known oil generation and migration. Isotopic data derived from drill core material from the ZF show a shift in δ(13) C(org) from c. -25‰ in the lower part of the succession to c. -40‰ in the upper part. This stratigraphic shift is a primary feature and cannot be explained by oil migration, maturation effects, or metamorphic overprints. The shift toward (13) C-depleted organic matter (δ(13) C(org) < -25‰) broadly coincides with lithological evidence for the generation of oil and gas in the underlying sediments and seepage onto the sea floor. We propose that the availability of thermogenic CH(4) triggered the activity of methanotrophic organisms, resulting in the production of anomalously (13) C-depleted biomass. The stratigraphic shift in δ(13) C(org) records the change from CO(2) -fixing autotrophic biomass to biomass containing a significant contribution from methanotrophy. It has been suggested recently that this shift in δ(13) C(org) reflects global forcing and progressive oxidation of the Earth. However, the lithologic indication for local thermogenic CH(4) , sourced within the oil field, is consistent with basinal methanotrophy. This indicates that regional/basinal processes can also explain the δ(13) C(org) negative isotopic shift observed in the ZF. PMID:23009699

  7. Structure of pre-Caspian depression and major oil and gas fields of the region

    SciTech Connect

    Krylov, N.A. ); Avrov, V.P. ); Lisovsky, N.N.

    1991-03-01

    As a single unified depression, the pre-Caspian basin has been formed from Paleozoic to Cenozoic time. The basin is superimposed on two large pre-Permian depressions. On the Astrakhan-Aktyubinsk zone of uplifts between them is found sharply reduced Carboniferous and Devonian sections. Modern structural plan clearly displays two major structural stages: Subsalt (Paleozoic) and post (post-Kungurian). The post-salt stage is characterized by wide development of salt dome tectonics. It corresponds with its own petroliferous stage containing numerous, mostly small oil accumulations in terrigenous Mesozoic reservoirs. Large recent discoveries-Astrakhan condensate, Karachaganak and Kanazhol-Sinelnikov oil/condensate, Tengiz oil, and other fields-are associated with the Subsalt Paleozoic complex ranging from Lower Permian to the top of Upper Devonian. The Subsalt stage has its own regularities in hydrocarbon phase differentiation; large reserves concentration; dominantly productive carbonates with various reservoirs; and presence of structural, depositional, and erosional factors controlling formation of oil and gas traps. The paper describes major distributional features of the various arc-and-type Permian and Carboniferous formations, which in conjunction with Subsalt paleotemperature data and geochemistry of organic matter represents a basis for the forecast of new discoveries.

  8. A field experiment to assess impact of chemically dispersed oil on Arabian Gulf corals

    SciTech Connect

    Le Gore, R.S.; Cuddeback, J.E.; Hofmann, J.E.; Marszalek, D.S.

    1983-03-01

    Field experiments were conducted on a coral reef at Jurayd Island (Saudi Arabia) in the Arabian Gulf to study the effects of chemically dispersed oil on local corals. Portions of the reef were exposed to predetermined concentrations of oil alone, dispersant alone, and oil-plus-dispersant mixtures. Areas of the reef not exposed to any of the toxicants were used as controls. Arabian Light Crude and Corexit 9527 dispersant were the test toxicants. Two series of experiments were conducted beginning in September 1981, one with a 24-hour exposure period and the other with a 5-day (120-hour) exposure period. Corals were stained for growth rate studies and extensively photographed to document any observed effects. Corals were examined for biological impacts immediately after the exposures, and then at 3-month intervals for 1 year. Water temperature, salinity, dissolved oxygen, and hydrocarbon content were recorded during the exposure periods. Coral growth appeared unaffected by exposure to the toxicants. Some Acropora species corals exposed to dispersed oil for 5 days exhibited delayed effects, which became apparent during the relatively cold winter season.

  9. NMR measurement of oil shale magnetic relaxation at high magnetic field

    USGS Publications Warehouse

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  10. Gas, water, and oil production from Wattenberg field in the Denver Basin, Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.

    2011-01-01

    Gas, oil, and water production data were compiled from selected wells in two tight gas reservoirs-the Codell-Niobrara interval, comprised of the Codell Sandstone Member of the Carlile Shale and the Niobrara Formation; and the Dakota J interval, comprised mostly of the Muddy (J) Sandstone of the Dakota Group; both intervals are of Cretaceous age-in the Wattenberg field in the Denver Basin of Colorado. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after production commenced, which generally was in the 1990s. For each producing interval, summary diagrams and tables of oil-versus-gas production and water-versus-gas production are shown with fluid-production rates, the change in production over five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams and tables permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The Dakota J interval produces gas on a per-well basis at roughly three times the rate of the Codell-Niobrara interval. After five years of production, gas data from the second samples show that both intervals produce gas, on average, at about one-half the rate as the first sample. Oil-gas ratios in the Codell-Niobrara interval are characteristic of a retrograde gas and are considerably higher than oil-gas ratios in the Dakota J interval, which are characteristic of a wet gas. Water production from both intervals is low, and records in many wells are discontinuous, particularly in the Codell-Niobrara interval. Water-gas ratios are broadly variable, with some of the variability possibly due to the difficulty of measuring small production rates. Most wells for which water is reported have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir

  11. Determination of the residual stress in a centrifuge bowl by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Albertini, G.; Giuliani, A.; Lin Peng, R.; Manescu, A.; Ponzetti, A.

    An experimental study of the stress field in centrifuges for food processing and for agricultural applications was undertaken. The model, the dimensions and the material of the sample are those of the most recent line of production of the Nuova M.A.I.P. company. The rotor is also one of the largest rotors produced by that firm. The residual strains and stresses were determined by using neutron-diffraction techniques before centrifugation and after centrifugation, to evaluate the evolution of stress induced by centrifuging. The upper part of the rotating bowl is investigated, where the highest stress field during centrifugation is theoretically forecast to occur. A data elaboration aiming at avoiding systematic errors leads to the conclusion that no appreciable residual stress is induced by centrifugation.

  12. Geologic Sequestration of CO2 in a Depleted Oil Reservoir: A Field Demonstration

    NASA Astrophysics Data System (ADS)

    Westrich, H. R.; Zhang, D.; Grigg, R. B.

    2002-12-01

    Carbon dioxide (CO2) sequestration in geologic formations is the most direct carbon management strategy for long-term removal of anthropogenic CO2 from the atmosphere, and is likely to be needed for continuation of the US fossil fuel-based economy and high standard of living. Subsurface injection of CO2 into depleted oil reservoirs is a carbon sequestration strategy that might prove to be both cost effective and environmentally safe. However, there are significant R&D gaps that need to be addressed prior to sequestration of CO2 in depleted oil reservoirs, including the need of coupled physicochemical processes involving CO2, water, oil and reservoir rock, better estimates of the capacity of reservoir for long-term sequestration and ultimate fate of injected CO2, and improved geophysical monitoring technologies for accurately determining the presence and location of injected CO2. Our project is part of the DOE Carbon Sequestration program and it is directed at predicting and monitoring the migration and ultimate fate of CO2 after injection in a depleted oil reservoir. We utilize computer simulations of multiphase oil-brine-CO2 flow in the reservoir, laboratory measurements of geochemical brine-rock reactions, and geophysical surveys to monitor CO2 plume migration after injection. A principal component of this project is characterization and validation of predicted CO2 migration and fate through a field demonstration experiment. The reservoir under investigation is part of the West Pearl Queen field in southeastern New Mexico. Geologic modeling and numerical flow simulations (ECLIPSE code) have been used to study the feasibility of injection, and these techniques were used to help in designing geophysical monitoring studies to track the injected plume. Long-term static brine-rock reactions and short-term brine-CO2-oil flow through tests were performed to better understand the likely geochemical reactions that might be influence CO2 sequestration or injection. Results

  13. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  14. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  15. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    SciTech Connect

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  16. A fortran program for Monte Carlo simulation of oil-field discovery sequences

    USGS Publications Warehouse

    Bohling, G.C.; Davis, J.C.

    1993-01-01

    We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.

  17. Groundwater compatibility with formation water and pay zone rocks in Pervomaysk oil-gas-condensate field to maintain formation pressure

    NASA Astrophysics Data System (ADS)

    Trifonov, N.; Nazarov, A.; Alekseev, S.

    2016-03-01

    The paper describes the research results in determining the compatibility of groundwater from Aptain-Albian-Cenomanian aquifer with formation water and pay zone rocks in U1 layer sediments, Pervomaysk oil field.

  18. HOUSINGS AND MOUNTINGS FOR CENTRIFUGES

    DOEpatents

    Rushing, F.C.

    1960-08-16

    A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.

  19. Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill.

    PubMed

    Stout, Scott A; Payne, James R; Emsbo-Mattingly, Stephen D; Baker, Gregory

    2016-04-15

    Chemical analysis of large populations of floating (n=62) and stranded (n=1174) Macondo oils collected from the northern Gulf of Mexico sea surface and shorelines during or within seven weeks of the end of the Deepwater Horizon oil spill demonstrates the range, rates, and processes affecting surface oil weathering. Oil collected immediately upon reaching the sea surface had already lost most mass below n-C8 from dissolution of soluble aliphatics, monoaromatics, and naphthalenes during the oil's ascent with further reductions extending up to n-C13 due to the onset of evaporation. With additional time, weathering of the floating and stranded oils advanced with total PAH (TPAH50) depletions averaging 69±23% for floating oils and 94±3% for stranded oils caused by the combined effects of evaporation, dissolution, and photo-oxidation, the latter of which also reduced triaromatic steroid biomarkers. Biodegradation was not evident among the coalesced floating oils studied, but had commenced in some stranded oils. PMID:26936118

  20. Recent glacial events in the Norwegian North Sea - implications towards a better understanding of charging/leakage of oil fields and its impact oil exploration

    NASA Astrophysics Data System (ADS)

    Stoddart, Daniel

    2014-05-01

    Recent drilling and appraisal on the Southern Utsira High, Norwegian North Sea, has proved several large oil/gas discoveries, including the giant Johan Sverdrup, Edvard Grieg, Draupne, Ragnarrock and Apollo oil fields, making this a prolific petroleum area. The Southern Utsira High contains a variety of hydrocarbon density fluids found at several stratigraphic levels illustrating the compartmentalized nature of accumulations and charge history. The Southern Utsira High has been in a position to receive an oil/gas charge for a considerable period of time, with the basin towards the west most likely generating petroleum from early Eocene (50M Mabp) to its maximum present day burial depth. However, reservoir temperatures on the Southern Utsira High are just above the threshold for biodegradation (80°C). The Southern Utsira High oils are non-biodegraded suggesting that the majority of the oil charged relatively late - ca.3 million years ago to present day. The effects of the glaciation on the filling history of the Southern Utsira High are currently being assessed. It is clear that several erosional surfaces in the Pliocene can be identified, as well as glacial channels and moraine deposits, indicating that significant deposition and erosion occurred in the last five million years. Importantly, the effects of glacial rebound mean that the Southern Utsira High more than likely underwent tilting and possible leakage, not just once, but several times in the last 1 million years. The effects of tilting/leakage of geological areas on oil migration have been recognized by several authors. However, the detailed integration of geological mapping and geochemical evidence has not previously been published. The implications of a detailed assessment of tilting of a ''high' through time are; 1) opening up areas where oil migration is thought to be high risk or impossible; 2) identify possible paleo-oil columns aiding the de-risking of discovery appraisal strategies. The evidence

  1. Gas centrifuge with driving motor

    DOEpatents

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  2. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  3. The Application of Centrifuges 'Reduced Gravity' Research.

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    It is shown that life has emerged on Earth somewhere in the early Archaean (3800-2500 million years ago). Since then life has evolved from single cell into to multicellular complex organism under unit gravity conditions. Little is known about how life would have been evolved under different gravity conditions. In light of the current quests for Earth-like planets by astronomers; what life forms could be expected on planets with different gravity fields? Also the human endeavors in spaceflight (microgravity) and exploration programs (Moon, Mars) it is interesting and might be even vital to know and understand how gravity acts upon the human body in long duration space flights. Hyper-gravity, any acceleration acceding 9.81 ms-2, can relatively easily be generated on Earth using centrifuges. Long duration hypo-gravity (¡9.81 ms-2) is more cumbersome. For real microgravity we need free falling satellites such as ISS. For simulation on ground one can use clinostats, random positioning machines or levitating magnets. But could centrifuges also be applied to study a reduced gravity environment? What I would explore in this paper are the possibilities how centrifuges could be applied to study the effects of a 'reduced gravity environment' in, especially, life sciences studies.

  4. In-vivo Centrifugation of Drosophila Embryos

    PubMed Central

    Tran, Susan L.; Welte, Michael A.

    2010-01-01

    A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, and their outer egg shells are removed by treatment with 50% bleach. Embryos are then transferred to a small agar plate and inserted, posterior end first, into small vertical holes in the agar. The plates containing embedded embryos are centrifuged for 30 min at 3000g. The agar supports the embryos and keeps them in a defined orientation. Afterwards, the embryos are dug out of the agar with a blunt needle. Centrifugation separates major organelles into distinct layers, a stratification easily visible by bright-field microscopy. A number of fluorescent markers are available to confirm successful stratification in living embryos. Proteins associated with certain organelles will be enriched in a particular layer, demonstrating colocalization. Individual layers can be recovered for biochemical analysis or transplantation into donor eggs. This technique is applicable for organelle separation in other large cells, including the eggs and oocytes of diverse species. PMID:20613707

  5. Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields.

    PubMed

    Rajaretnam, G; Spitz, H B

    2000-02-01

    Elevated concentrations of naturally occurring radioactive material (NORM), including 238U, 232Th, and their progeny found in underground geologic deposits, are often encountered during crude oil recovery. Radium, the predominant radionuclide brought to the surface with the crude oil and produced water, co-precipitates with barium in the form of complex compounds of sulfates, carbonates, and silicates found in sludge and scale. These NORM deposits are highly stable and very insoluble under ambient conditions at the earth's surface. However, the co-precipitated radium matrix is not thermodynamically stable at reducing conditions which may enable a fraction of the radium to eventually be released to the environment. Although the fate of radium in uranium mill tailings has been studied extensively, the leachability of radium from crude oil NORM deposits exposed to acid-rain and other aging processes is generally unknown. The leachability of radium from NORM contaminated soil collected at a contaminated oil field in eastern Kentucky was determined using extraction fluids having wide range of pH reflecting different extreme environmental conditions. The average 226Ra concentration in the samples of soil subjected to leachability testing was 32.56 Bq g(-1) +/- 0.34 Bq g(-1). The average leaching potential of 226Ra observed in these NORM contaminated soil samples was 1.3% +/- 0.46% and was independent of the extraction fluid. Risk assessment calculations using the family farm scenario show that the annual dose to a person living and working on this NORM contaminated soil is mainly due to external gamma exposure and radon inhalation. However, waterborne pathways make a non-negligible contribution to the dose for the actual resident families living on farmland with the type of residual NORM contamination due to crude oil recovery operations. PMID:10647985

  6. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  7. Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view

    SciTech Connect

    Strickland, F.G.

    1982-01-01

    This work summarized research conducted on diatomite cores from the Belridge oil field in Kern County. The study was undertaken to try to explain the rapid decline in oil production in diatomite wells. Characterization of the rock showed that the rock was composed principally of amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of low strength and plastic. Finally, it was established that long-term creep of diatomite into a propped fracture proceeds at a rate of approximately 6 x 10-5 in./day, a phenomenon which may be a primary cause of rapid production declines. The testing program also revealed a matrix stength for the formation of calculated 1325 PSI, a value to consider when depleting the reservoir. This also may help to explain the phase transformation of opal ct at calculated 2000 to 2500 ft depth.

  8. How to make a billion-barrel oil field in offshore California commercial

    SciTech Connect

    Patterson, J.C.; Ballard, J.H.

    1988-01-01

    The major obstacles and challenges involved in exploration and development of a giant deep-water low-gravity oil field are exemplified in the undeveloped Sword field of offshore southern California. In 1979, Conoco Exploration identified a northeast-southwest-trending basement high in the 800 to 2,000-ft deep federal waters 12 mi southwest of Pt. Conception at the western end of the Santa Barbara Channel. The intended reservoir was fractured Miocene Monterey chert, silicic shales/siltstones,m and dolomites that are draped over the axially faulted structure. Drilling of the initial well in OCS P-0322 in 1982 resulted in discovering the giant Sword field. A confirmation well drilled in OCS P-0320 indicates in-place reserves of well over 1 billion bbl. while the discovered potential is significant, the low gravity (8.5/sup 0/-10.5/sup 0/ API) of the oils discovered to data, along with water depths in excess of 1,500 ft, currently pose economic challenges to successful field development.

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and

  10. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  11. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  12. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  13. VSP Monitoring of CO2 Injection at the Aneth Oil Field in Utah

    NASA Astrophysics Data System (ADS)

    Huang, L.; Rutledge, J.; Zhou, R.; Denli, H.; Cheng, A.; Zhao, M.; Peron, J.

    2008-12-01

    Remotely tracking the movement of injected CO2 within a geological formation is critically important for ensuring safe and long-term geologic carbon sequestration. To study the capability of vertical seismic profiling (VSP) for remote monitoring of CO2 injection, a geophone string with 60 levels and 96 channels was cemented into a monitoring well at the Aneth oil field in Utah operated by Resolute Natural Resources and Navajo National Oil and Gas Company. The oil field is located in the Paradox Basin of southeastern Utah, and was selected by the Southwest Regional Partnership on Carbon Sequestration, supported by the U.S. Department of Energy, to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration. The geophones are placed at depths from 805 m to 1704 m, and the oil reservoir is located approximately from 1731 m to 1786 m in depth. A baseline VSP dataset with one zero-offset and seven offset source locations was acquired in October, 2007 before CO2 injection. The offsets/source locations are approximately 1 km away from the monitoring well with buried geophone string. A time-lapse VSP dataset with the same source locations was collected in July, 2008 after five months of CO2/water injection into a horizontal well adjacent to the monitoring well. The total amount of CO2 injected during the time interval between the two VSP surveys was 181,000 MCF (million cubic feet), or 10,500 tons. The time-lapse VSP data are pre-processed to balance the phase and amplitude of seismic events above the oil reservoir. We conduct wave-equation migration imaging and interferometry analysis using the pre-processed time-lapse VSP data. The results demonstrate that time-lapse VSP surveys with high-resolution migration imaging and scattering analysis can provide reliable information about CO2 migration. Both the repeatability of VSP surveys and sophisticated time-lapse data pre-processing are essential to make VSP as an effective tool for monitoring CO2 injection.

  14. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    NASA Astrophysics Data System (ADS)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  15. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    USGS Publications Warehouse

    Jensenius, J.; Burruss, R.C.

    1990-01-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n-C17/pristane and n-C18/phytane ratios and loss of n-C7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C6 and C7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65??-96??C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95??-130??C) which are much higher than the temperatures of known occurrences of biodegraded oil. ?? 1990.

  16. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    NASA Astrophysics Data System (ADS)

    Jensenius, Jørgen; Burruss, Robert C.

    1990-03-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n- C17/pristane and n- C18/phytane ratios and loss of n-C 7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C 6 and C 7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65°-96°C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95°-130°C) which are much higher than the temperatures of known occurrences of biodegraded oil.

  17. Water rock interaction during the process of steam stimulation exploitation of viscous crude oil in Liaohe Shuguang Oil Field, Liaoning, China

    NASA Astrophysics Data System (ADS)

    Hui, Qian; Zhenghua, Yang; Yunfeng, Li; Wancai, Xu; Yaqiao, Sun

    2006-05-01

    In the process of steam stimulation exploitation of viscous crude oil, the injected water, at high temperature and under high pressure, reacts intensively with the host rock. This kind of water rock interaction in Liaohe Shuguang Oil Field was studied on the basis of analysis of water composition changes, laboratory experiments, mineral saturation indices analysis, and mass balance calculation. Compared with the injected water, the changes of the composition of discharged water are mainly the distinct decrease of pH, Na+, SiO2 and Cl-, as well as the increase of K+, Ca2+, Mg2+, SO{4/2-} and HCO{3/-}. Laboratory experiments under field conditions showed: the dissolution sequence of minerals quantitatively is quartz>potassium feldspar>albite, and the main change of clay minerals is the conversion of kaolinite to analcime. Mass balance calculation indicated during the process of steam stimulation, large quantities of analcime are precipitated with the dissolution of large amounts of quartz, kaolinite, potassium feldspar, and CO2. These results correlated very well with the experimental results. The calculated results of Liaohe Shuguang Oil Field showed that during the steam stimulation for viscous crude oil, the amounts of minerals dissolved (precipitated) are huge. To control the clogging of pore spaces of oil reservoirs, increased study of water rock interaction is needed.

  18. Geology and habitat of oil in Ras Budran field, Gulf of Suez, Egypt

    SciTech Connect

    Chowdhary, L.R.; Taha, S.

    1987-05-01

    Deminex discovered the Ras Budran oil field in 1978. Discovery well EE 85-1 was drilled in about 140 ft of water, 4 km off the Sinai coast of the Gulf of Suez. Appraisal drilling (EE 85-2, 3, and 4 wells) confirmed the presence of a major field with an estimated 700 million bbl oil in place. The field, developed from three wellhead platforms, went on production in April 1983. To date, 20 development wells have been drilled. The Ras Budran structure at the deepest mappable seismic reflector, top Kareem (middle Miocene), is a broad northeast-southwest-trending anticlinal feature striking nearly at right angles to the main Gulf of Suez trend. At pre-Miocene producing horizons, the structure is complex and consists of a northeast-dipping flank (14-15) broken into several blocks by faults and limited to the south and west by major bounding faults. Oil is produced from three units of Nubian sandstone at a depth of 11,000 to 12,000 ft. The lower unit of Paleozoic age averages 10% porosity and up to 200 md in -situ permeability. The wells completed in this unit produce up to 2000 BOPD. In contrast, the sands of the upper two units of Lower Cretaceous age have a 15-20% porosity and up to 700 md permeability. The wells completed in these units produce 6000-8000 BOPD. The Ras Budran structure was primarily formed during the intra-Rudeis tectonic phase (lower Miocene). Migration of oil for accumulation in Ras Budran started late in the upper Miocene or Pliocene when the Santonian Brown Limestone and the Eocene Thebes Formation, the main source beds in the Gulf, reached the threshold of oil generation at a burial depth of about 10,000 ft (3000 m). At these depths, the organic matter in the source beds have a transformation ratio (0.10 to 0.15), increased yields of C15 + soluble organic matter and C15 + saturated hydrocarbons, a vitrinite reflectance of 0.62%, and a TTI value of 15.

  19. Detailed Study of Seismic Wave Attenuation in Carbonate Rocks: Application on Abu Dhabi Oil Fields

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.; Matsushima, J.

    2015-12-01

    Seismic wave attenuation is a promising attribute for the petroleum exploration, thanks to its high sensitivity to physical properties of subsurface. It can be used to enhance the seismic imaging and improve the geophysical interpretation which is crucial for reservoir characterization. However getting an accurate attenuation profile is not an easy task, this is due to complex mechanism of this parameter, although that many studies were carried out to understand it. The degree of difficulty increases for the media composed of carbonate rocks, known to be highly heterogeneous and with complex lithology. That is why few attenuation studies were done successfully in carbonate rocks. The main objectives of this study are, Getting an accurate and high resolution attenuation profiles from several oil fields. The resolution is very important target for us, because many reservoirs in Abu Dhabi oil fields are tight.Separation between different modes of wave attenuation (scattering and intrinsic attenuations).Correlation between the attenuation profiles and other logs (Porosity, resistivity, oil saturation…), in order to establish a relationship which can be used to detect the reservoir properties from the attenuation profiles.Comparison of attenuation estimated from VSP and sonic waveforms. Provide spatial distribution of attenuation in Abu Dhabi oil fields.To reach these objectives we implemented a robust processing flow and new methodology to estimate the attenuation from the downgoing waves of the compressional VSP data and waveforms acquired from several wells drilled in Abu Dhabi. The subsurface geology of this area is primarily composed of carbonate rocks and it is known to be highly fractured which complicates more the situation, then we separated successfully the intrinsic attenuation from the scattering. The results show that the scattering is significant and cannot be ignored. We found also a very interesting correlation between the attenuation profiles and the

  20. Integration of seismic methods with reservoir simulation, Pikes Peak heavy oil field, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Zou, Ying

    The Pikes Peak heavy oil field has been operated by Husky Energy Ltd since 1981. Steam injection has been successfully employed to increase production. Efforts in geophysics and reservoir engineering have been made to improve interpretations in the mapping of reservoir conditions. This dissertation developed tools and a working flow for integrating the analysis of time-lapse seismic surveys with reservoir simulation, and applied them to the Pikes Peak field. Two time-lapse 2D seismic lines acquired in February 1991 and March 2000 in the eastern part of the field were carefully processed to produce wavelet and structure matched final sections. Reservoir simulation based on the field reservoir production history was carried out. It provided independent complementary information for the time-lapse seismic analysis. A rock physics procedure based on Gassmann's equation and Batzle and Wang's empirical relationship successfully linked the reservoir engineering to the seismic method. Based on the resultant seismic models, synthetic seismic sections were generated as the analogy of field seismic sections. The integrated interpretation for the Pikes Peak reservoir drew the following conclusions: The areas with a gas saturation difference, between two compared time steps, have seismic differences. Thicker gas zones correspond with large reflectivity changes on the top of the reservoir and larger traveltime delays in the seismic section. The thin gas zones only induce large reflectivity changes on the top of the reservoir, and do not have large time delays below the reservoir zone. High temperature regions also correlate with areas having large seismic energy differences. High temperature with thick gas (steam and methane) zones may be evidence for steam existence. The seismic differences at locations far from the production zone are due to the lower pressure that causes solution gas to evolve from the oil. Pressure changes propagate much faster (˜20 m in one month) than

  1. Effects of oil extraction methods on physical and chemical properties of red salmon oils (Oncorhynchus nerka)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different red salmon oil extraction processes were used to extract oil from red salmon heads: RS1 involved a mixture of ground red salmon heads and water, no heat treatment, and centrifugation; RS2 involved ground red salmon heads (no water added), heat treatment, and centrifugation; RS3 involv...

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil

  3. Electrorheology of a zeolite/silicone oil suspension under dc fields

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Meng, Yonggang; Wen, Shizhu

    2001-07-01

    The electrorheology of electrorheological (ER) fluids based on zeolite and silicone oil under dc fields was investigated at room temperature. ER fluids with volume fractions of 27% and 30% were prepared and tested. When a 5 kV/mm dc field was applied, shear yield stress of 26.7 kPa was obtained for the latter. The ER fluid with a higher volume fraction of zeolite had a higher current density and a higher shear yield stress under the same electric field. Compared with other ER fluids based on zeolite particles with low shear yield stress, the zeolite employed by us was found to have high dielectric constant and conductivity. The high permittivity mismatch and the high conductivity mismatch of the components of the fluids were considered responsible for the high shear yield stress.

  4. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  5. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    PubMed

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed. PMID:23097986

  6. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill.

    PubMed

    Faksness, Liv-Guri; Altin, Dag; Nordtug, Trond; Daling, Per S; Hansen, Bjørn Henrik

    2015-02-15

    Two Source oils and five field collected oil residues from the Deepwater Horizon incident were chemically characterized. Water accommodated fractions (WAFs) of the Source oils and two of the field-weathered oils were prepared to evaluate the impact of natural weathering on the chemical composition and the acute toxicity of the WAFs. Toxicity test species representing different tropic levels were used (the primary producer Skeletonema costatum (algae) and the herbivorous copepod Acartia tonsa). The results suggest that the potential for acute toxicity is higher in WAFs from non-weathered oils than WAFs from the field weathered oils. The Source oils contained a large fraction of soluble and bioavailable components (such as BTEX (benzene, toluene, ethyl benzene, xylenes) and naphthalene), whereas in the surface collected oils these components were depleted by dissolution into the water column as the oil rose to the surface and by evaporative loss after reaching the sea surface. PMID:25534626

  7. Development programs call for two concrete platforms in oil, gas fields off Norway

    SciTech Connect

    Not Available

    1991-12-23

    This paper reports on development plans for two fields off Norway that have given a boost to use of concrete for the construction of floating production facilities. Conoco Norway Inc. let a $350 million contract for construction of the world's first concrete hull, tension leg platform (TLP) to Norwegian Contractors, Stavanger. As part of a $3.5 billion project, it will be installed in the Conoco group's Heidrun oil and gas field in the Haltenbanken area of the Norwegian Sea off mid-Norway. In addition, a group led by Norsk Hydro Produksjon AS, Oslo, chose a concrete floating production platform as the basis for a $2.42 billion development of the oil province in Troll gas field in the North SEa. Also in the Norwegian North Sea, companies involved in the Sleipner gas development project agreed to seek approval for the $1.77 billion, first phase development phase of West Sleipner reserves beginning in 1996. This will use conventional production technology, although the possibility of a concrete treatment platform has not been ruled out.

  8. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    PubMed

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  9. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas

    PubMed Central

    Gan, Wei; Frohlich, Cliff

    2013-01-01

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast–southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957–1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  10. Local and Global Impacts of Carbon Capture and Storage Combined with Enhanced Oil Recovery in Four Depleted Oil Fields, Kern County, California

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Jordan, P. D.; Goodell, J. A.; Harrington, K.; Jameson, S.

    2015-12-01

    Depleted oil reservoirs are attractive targets for geologic carbon storage (GCS) because they possess proven trapping mechanisms and large amounts of data pertaining to production and reservoir geometry. In addition, CO2 enhanced oil recovery (EOR) can improve recovery of the remaining oil at recovery factors of 6 to 20% of original oil in place in appropriate reservoirs. CO2 EOR increases the attractiveness of depleted oil and gas reservoirs as a starting point for CCS because the CO2 becomes a commodity that can be purchased by field operators for EOR purposes thereby offsetting the costs of CO2 capture at the power plant. In California, Kern County contains the largest oil reservoirs and produces 76% of California's oil. Most of the production at depths suitable for CCS combined with CO2 EOR comes from three reservoirs: the Vedder and Temblor formations and the Stevens Sandstone of the Monterey Formation. These formations were evaluated for GCS and CO2 EOR potential at the North and South Coles Levee (Stevens Sandstone), Greeley (Vedder) and McKittrick (Temblor) fields. CO2 EOR could be expected to produce an additional 150 million bbls of oil. The total storage space created by pre- and post-EOR fluid production for all three reservoirs is approximately 104 million metric tons (MMT). Large fixed sources in California produce 156 MMT/yr of CO2, and sources in Kern County produce 26 MMT/yr (WESTCARB, 2012). Therefore, the fields could store about four years of local large fixed source emissions and about two thirds of statewide emissions. However, from a global perspective, burning the additional oil produced by CO2 EOR would generate an additional 65 MMT of CO2 if not captured. This would result in a net reduction of greenhouse gas of only 39 MMT rather than the full 104 MMT. If the water produced along with the oil recovered during CO2 EOR operations is not reinjected into the reservoir, the storage space could be much higher.

  11. The effect of gas fraction on centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.

    2015-01-01

    In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are

  13. Applying the Aramid Joined v-belt high torque, low speed oil field pumping units

    SciTech Connect

    Stork, D.; Watson, J.

    1982-11-01

    This paper discusses the successful application of Aramid fiber-reinforced Torque Team Plus Joined Vbelts to low speed; (8-20 rpm) high torque, up to (320,000 in-lb); 100% belt driven oil field pumping units. Also discussed is a comparison in operating efficiency over gear or chain units, reduced initial expense, and lower overall maintenance effort. The Aramid reinforced Joined V-belts were applied to a double reduction drive (68-142:1 ratio) eliminating gear or chain reducers. Pumping units range in size from 57,000 in-lb to 320,000 in-lb.

  14. Investigation of ginkgo biloba leave extracts as corrosion and Oil field microorganism inhibitors.

    PubMed

    Chen, Gang; Zhang, Min; Zhao, Jingrui; Zhou, Rui; Meng, Zuchao; Zhang, Jie

    2013-01-01

    Ginkgo biloba (Ginkgoaceae), originating from China, now distributes all over the world. Wide application of Ginkgo biloba extracts is determined by the main active substances, flavonoids and terpenoids, which indicates its extracts suitable to be used as an effective corrosion inhibitor. The extracts of Ginkgo biloba leave have been investigated on the corrosion inhibition of Q235A steel with weight loss and potentiodynamic polarisation techniques. The inhibition efficiency of the extracts varies with extract concentration. The extracts inhibit corrosion mainly by adsorption mechanism. Potentiodynamic polarisation studies show that extracts are mixed type inhibitors. The antibacterial activity of the extracts against oil field microorganism (SRB, IB and TGB) was also investigated. PMID:23651921

  15. Streamer initiation and propagation in insulating oil in weakly non-uniform fields under impulse conditions

    SciTech Connect

    Badent, R.; Kist, K.; Schwab, A.J.

    1996-12-31

    This paper deals with the investigation of prebreakdown phenomenon in insulating oil in weakly non-uniform fields of rod-plane geometries with gaps up to 100 mm under impulse voltages of both polarities up to 700 kV. As with the point-plane configuration, the rod-plane geometry shows a decrease of the time to breakdown with increasing voltage rate-of-rise. At a specific rate, a significantly shorter breakdown time is observed both for positive and negative polarities. Beyond this discontinuity range breakdown time decreases again but with lower rates.

  16. Feasibility study of enhanced oil recovery for fields in decline. Export trade information (Final)

    SciTech Connect

    Not Available

    1991-08-01

    The report, generated by Scientific Software-Intercomp, Inc. for Yacimientos Petroliferos Fiscales Bolivianos, documents the results of a feasibility study which addressed the viability of developing petroleum areas in Bolivia. The primary objective of the project was to describe the reservoirs that have been discovered and their reserves, describe which would be the best alternatives for development of these reservoirs, and to determine the best alternatives for development of all the reserves together. The report, volume 4 of 4, concerns the feasibility of enhancing the oil or condensate recovery from a chosen group of fields (Yapacani, Humberto Suarez Roca, Vibora, La Pena, San Roque, and Camiri).

  17. Integration of geological, geochemical, and geophysical spatial data of the Cement oil field, Oklahoma, test site

    USGS Publications Warehouse

    Termain, Patricia A.; Donovan, Terrence J.; Chavez, Pat S.

    1980-01-01

    Measurement pertaining to geology, geochemistry, and geophysics of the Cement oil field, Oklahoma, test site were collected employing both airborne sensors and ground-based data collection. The measurements include: (1) airborne gamma-ray spectrometry (supplying bismuth 214, thalium 208, and potassium 40 gamma-ray intensities); (2) aeromagnetic survey data; (3) multi-frequency airborne resistivity survey data (supplying apparent electrical resistivity of near surface materials); (4) gravity data; (5) geological and topographic maps; and (6) image data from Landsat MSS and U-2 photography.

  18. Pressure boosting technology recovers reserves in low pressure oil and gas fields

    SciTech Connect

    Sarshar, M.M.

    1999-01-01

    Fragmentation of reservoirs or production from different zones often results in oil or gas wells having different flowing wellhead pressures (FWHP). In many fields, the wells flow to a manifold, then the oil and gas is transported by pipeline to a processing plant. Production from the low-pressure (LP) wells is often restricted because of the backpressure imposed by the high-pressure (HP) wells or by the transportation pipeline. To minimize the production restrictions from LP wells, HP wells are usually choked down and their high energy is thus wasted through the choke. A team of engineers from CALTEC, the oil and gas division of BHR Group, have developed a system which harnesses the energy from HP wells to boost production from LP wells. The system is called WELLCOM, short for WELL COMmingling system. This patented system has won the 1998 British Royal Society Esso Energy award for an outstanding contribution to the advancement of science or engineering or technology that leads to a more efficient mobilization, conservation, or use of energy sources.

  19. The boomerang area: An example of oil and gas fields related to a transfer zone development

    SciTech Connect

    Specht, M.; Colletta, B.; Letouzey, J. ); Baby, P. ); Oller, J.; Montemuro, G. ); Guillier, B. )

    1993-02-01

    We present results of a study realized from petroleum data of Yacimientos Petroliferos Fiscales Bolivianos of the most important transfer zone of the Bolivian Andean belt: the Santa Cruz transfer zone. Frontal part of the Bolivian Andean belt consists of a thick series (6 to 8 km) of paleozoic to cenozoic sedimentary rocks thrusted eastwards on a sole thrust located in paleozoic series. The frontal part of the belt, globally N-S oriented, undergoes an important deviation East of Santa Cruz with a left lateral offset of 100 Km. Taking into account the E-W shortening direction, this transfer zone can be interpreted as a lateral ramp. The Santa Cruz transfer zone coincide with a set of small oil and gas fields whereas frontal structures lack hydrocarbon occurrences. We are then faced with a two-fold problem: (1) what is the origin of the transfer zone (2) why are the oil and gas concentrated in the transfer zone Our synthesis shows that the transfer zone is superimposed on the limit of a detached Paleozoic basin whose border direction is oblique to the regional shortening direction. We then interpret the oil and gas formation in two steps: (1) source rock maturation and hydrocarbon migration towards the top of the Paleozoic sedimentary wedge before Andean deformation. (2) hydrocarbon dismigration towards anticlinal structures developed during the lateral ramp propagation. In order to test our interpretation we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  20. Gas, Water, and Oil Production from the Wasatch Formation, Greater Natural Buttes Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, Philip H.; Hoffman, Eric L.

    2009-01-01

    Gas, oil, and water production data were compiled from 38 wells with production commencing during the 1980s from the Wasatch Formation in the Greater Natural Buttes field, Uinta Basin, Utah. This study is one of a series of reports examining fluid production from tight gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. The general ranges of production rates after 2 years are 100-1,000 mscf/day for gas, 0.35-3.4 barrel per day for oil, and less than 1 barrel per day for water. The water:gas ratio ranges from 0.1 to10 barrel per million standard cubic feet, indicating that free water is produced along with water dissolved in gas in the reservoir. The oil:gas ratios are typical of a wet gas system. Neither gas nor water rates show dependence upon the number of perforations, although for low gas-flow rates there is some dependence upon the number of sandstone intervals that were perforated. Over a 5-year time span, gas and water may either increase or decrease in a given well, but the changes in production rate do not exhibit any dependence upon well proximity or well location.

  1. El Furrial oil field, Northeastern Venezuela: First giant in foreland fold and thrust belts of Western Hemisphere

    SciTech Connect

    Not Available

    1988-01-01

    The El Furrial giant oil field lies on the northern flank of the prolific Eastern Venezuela basin. Major tectonic elements of the region consist of a fold and thrust belt and a deep foreland basin, whose deformation is a product of right-oblique arc-continent collision. This mountain-front oil province displays parallel bands of thrusts and associated folds that extend over 150 mi and have relay trend patterns. The El Furrial structure is a long, doubly plunging anticline, flanked by imbricated, blind thrusts. Seismic data indicate vertical closure of about 3,000 ft over an area of 17,300 ac. The prospective section, of middle Tertiary to Late Cretaceous age, is mainly clastic, with an oil column of 1,800 ft. The interval of greater hydrocarbon potential is equated with shallow marine platform sandstones. Production tests reach sustained daily flow rates exceeding 9,500 bbl of 28/sup 0/API oil and 9,100 mcf of gas. Analysis of the oil suggests a marine Cretaceous source. Although in an early stage of development, the field is estimated to contain approximately 2 billion bbl of recoverable oil reserves. This places El Furrial in the forefront of the giant oil fields in the foreland fold and thrust belt provinces of the Western Hemisphere, second only to the supergiant accumulations of the Zagros zone in the Persian Gulf. The eastern Venezuela basin probably contains on the order of 2 trillion bbl of oil in place, making it the largest oil-bearing basin in the world. An ultimate recovery of 500 billion bbl is estimated. Therefore, the basin offers significant geologic scope for exploration for other giant fields.

  2. Geo-information approach to the study of Romashkino oil field geodynamics

    NASA Astrophysics Data System (ADS)

    Usmanov, S.; Sharipov, B.; Akhmetov, A.; Delev, A.

    2012-04-01

    Geodynamic processes have an immediate influence on a fluid dynamics, for that version they are of significant importance in the formation and reformation processes of oil and gas deposits. The object of our analysis was Romashkino oil field, which is confined to the anticlinal structure of the arch part of the South Tatar Arch. The initial data in our project include the series of a paper maps, which contain the location of the intersection of production and injection wells with the Kyn horizont at the Romashkino oil field and geologic engineering information, which contains the flow rates's inversions data of the well's production activity. Inversion occurs as a periodic increasing of the flow rates which is not caused by the external special influence on the well, against the long-term production activity's decreasing by the decreasing of oil's flow rates. During the analysis of the data we identified the anomalous wells in which the hydrocarbon feed process was observed with the highest probability based on several criteria. By the using of modern GIS technology we have compared the plots, in which an anomal wells are located, with a block structure of the basement and the sedimentary cover, and with the deconsolidated and fluid's penetrability zones of the crystalline basement. For analysis of tabular data array we used ArcGis software package. Romashkino's map was vectorized by using the EasyTrase and when we assigned a number to each object. When the project was exported to ArcGIS and data obtained the geographic coordinates. We obtained the following attributes for the testing wells: the year of exploitation's beginning, the period of the inversion, the ratio of flow rates before and after inversion, and others. We created a series of maps with location of wells, with a flow rate's inversion by the year (1957-1998) for Minnibayevo area and by the five-year intervals for Minnibayevo area separately and for the Romashkino oil field. The maps of the inversion

  3. Commercial application of steamflooding in an oil field comprised of multiple thin-sand reservoirs

    SciTech Connect

    Powers, M.L.; Dosdon, C.J.; Ghassemi, F.; Moore, J.S.

    1984-09-01

    Steamfloods conducted in thin reservoirs generally provide marginal economics because of relatively high field development costs per barrel of oil-in-place and excessive heat losses from the productive zone. Techniques are being employed which include the utilization of induced horizontal fractures to circumvent these detriments attributed to thin zones, as well as the problems of steam distribution and confinement inherent in any steamflood. This paper documents the successful application of steamflooding in the multiple thin-sand reservoirs of the Loco Unit, Stephens County, Oklahoma. These reservoirs occur at depths from 50 ft (15 m) to 1,200 ft (366 m), and range in thickness up to 40 ft (12 m). Porosities of the productive zones vary from 20 percent to over 30 percent, and permeabilities range from 100 md to over 4,000 md. Oil gravities of the various zones range from 16 degrees to 24 degrees API. Reservoirs that occur at depths above approximately 700 ft (213 m) had little or no natural reservoir energy and generally contain viscous oils, ranging up to 10,000 cp. Consequently, there was no primary production from these reservoirs and potential for waterflooding was marginal. Steamflooding has been the only recovery process successfully applied to these zones, except for one isolated instance. Reservoirs of depths greater than 700 ft (213 m) normally contain lower viscosity oils. Six of these zones were produced by solution gas drive and were later successfully waterflooded. To date two of these six zones have been tested and have proven to support commercial steamflooding operations, after 23 years of waterflooding.

  4. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect

    Newell, K.D. )

    1991-03-01

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  5. Accurate bs and w testing important for crude-oil custody transfer

    SciTech Connect

    Williams, J. )

    1990-11-12

    This paper discusses how monitoring crude-oil sediment and water content at the field production site is essential in accurate crude-oil custody transfer operations. This is accomplished by manual methods, or on-line devices like capacitance, density, or energy-absorption analyzers. For custody-transfer purposes, sediment and water is determined by a test which follows one of the API manuals of petroleum measurement standards (MPMS). Typically, this test is conducted in the field by the field centrifuge method which, if performed properly, yields very accurate results. Laboratory tests can be performed, but sample handling becomes even more critical.

  6. Bacterial Community Features Are Shaped by Geographic Location, Physicochemical Properties, and Oil Contamination of Soil in Main Oil Fields of China.

    PubMed

    Liao, Jingqiu; Wang, Jie; Huang, Yi

    2015-08-01

    Geographic location and physicochemical properties are thought to represent major factors that shape soil bacterial community abundance and diversity. Crude oil contamination is becoming a notable concern with respect to soil property variation; however, the quantifiable influences of geographic location, physicochemical properties, and oil contamination are still poorly understood. In this study, the 16S ribosomal RNA genes of bacteria in the four oil fields in China were analyzed by using pyrosequencing. Results showed that physicochemical properties were the most dominant factor of bacterial community distribution, followed by geographical location. Oil contamination was a driving factor whose indirect influence was stronger than its direct influence. Under the impact of these three factors, different oil fields presented diversified and distinguishable bacterial community features. The soil of sites with the highest total petroleum hydrocarbon content (HB), nitrogen content (DQ), and phosphorus content (XJ) contained the largest proportion of functional groups participating in hydrocarbon degradation, nitrogen turnover, and phosphorus turnover, respectively. The first dominant phylum of the site with loam soil texture (HB) was Actinobacteria instead of Proteobacteria in other sites with sandy or sandy loam soil texture (DQ, SL, XJ). The site with the highest salinization and alkalization (SL) exhibited the largest proportion of unique local bacteria. The site that was located in the desert with extremely low precipitation (XJ) had the most diversified bacteria distribution. The bacterial community diversity was strongly influenced by soil physicochemical properties. PMID:25676171

  7. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.

    PubMed

    Xu, Kewei; Tang, Yuping; Ren, Chun; Zhao, Kebin; Wang, Wanmeng; Sun, Yongge

    2013-09-01

    Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community. PMID:23090054

  8. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and

  9. A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.

    USGS Publications Warehouse

    Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.

    1983-01-01

    Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the

  10. Magnetic forward models of Cement oil field, Oklahoma, based on rock magnetic, geochemical, and petrologic constraints

    USGS Publications Warehouse

    Reynolds, R.L.; Webring, M.; Grauch, V.J.S.; Tuttle, M.

    1990-01-01

    Magnetic forward models of the Cement oil field, Oklahoma, were generated to assess the possibility that ferrimagnetic pyrrhotite related to hydrocarbon seepage in the upper 1 km of Permian strata contributes to aeromagnetic anomalies at Cement. Six bodies having different magnetizations were constructed for the magnetic models. Total magnetizations of the bodies of highest pyrrhotite content range from about 3 ?? 10-3 to 56 ?? 10-3 A/m in the present field direction and yield magnetic anomalies (at 120 m altitude) having amplitudes of less than 1 nT to ~6 to 7 nT, respectively. Numerous assumptions were made in the generation of the models, but nevertheless, the results suggest that pyrrhotite, formed via hydrocarbon reactions and within a range of concentrations estimated at Cement, is capable of causing magnetic anomalies. -from Authors

  11. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  12. Analysis of gravity anomaly over coral-reef oil field: Wilfred Pool, Sullivan County, Indiana

    SciTech Connect

    Dana, S.W.

    1980-03-01

    To compare the measured and theoretical gravity anomaly of a typical coral-reef oil field, data were collected from the wilfred Pool, Sullivan County, Indiana. Densities of available core samples from the field were determined and the anomaly was calculated, taking into account the lateral and vertical variation of density and the geologic structure known from core studies and drilling-log records of lithologic types penetrated by the wells. Comparison of the theoretical and actual anomalies indicated a rough correspondence except for several sharp negative anomalies on the flanks of the measured gravity anomaly. Further studies indicated that the negative anomalies are possibly due to fluvial erosion that produced, on the surface of the youngest Pennsylvanian sediments, channels which were later filled with glacial till of lower density than the sediments. 13 figures.

  13. Degradation and remediation of soils polluted with oil-field wastewater

    NASA Astrophysics Data System (ADS)

    Gabbasova, I. M.; Suleymanov, R. R.; Garipov, T. T.

    2013-02-01

    The changes in the properties of gray forest soils and leached chernozems under the impact of contamination with highly saline oil-field wastewater were studied in a model experiment. It was shown that the soil contamination results in the development of technogenic salinization and alkalization leading to worsening of the major soil properties. The salinization of the soils with oil-field wastewater transformed the soil exchange complex: the cation exchange capacity decreased, and the exchangeable sodium percentage increased to up to 25% of the CEC upon the wastewater infiltration and up to 60% of the CEC upon the continuous soil saturation with the wastewater independently of the soil type. The content of exchangeable magnesium also increased due to the phenomenon of super-equivalent exchange. Despite the saturation of the soil adsorption complex with sodium, no development of the soil alkalization took place in the presence of the high concentration of soluble salts. However, the soil alkalization was observed upon the soil washing from soluble salts. The gypsum application to the washed soils lowered the exchangeable sodium concentration to acceptable values and normalized the soil reaction. The gypsum application without the preliminary washing of the soils from soluble salts was of low efficiency; even after six months, the content of exchangeable sodium remained very high. The subsequent soil washing resulted in the removal of the soluble salts but did not affect the degree of the soil alkalization.

  14. Water-in-oil emulsification in a non-uniform alternating electric field

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Saveliev, Alexei

    2015-11-01

    The emulsification of a water microdroplet placed in castor oil was performed using a non-uniform alternating electric field formed in the pin-to-plate geometry. A non-uniform electric field of ~40 kV/mm alternating with a frequency of 6.7 kHz was generated near the pin electrode. The applied frequency exceeded charge relaxation frequency of castor oil (0.3 Hz) and was below charge relaxation frequency of deionized water (7.8 kHz) used in the experiments. The emulsification process was captured with a CCD camera. The emulsification process started with entrainment of the water droplet in the high electric filed region near the pin electrode under the dielectrophoretic force. Upon touching the pin, the microdroplet was disintegrated in numerous channels and secondary droplets. The process continued by entrainment of secondary droplets and continuous size reduction. Three droplet breakup mechanisms were identified: drop elongation and capillary breakup, ac electrospraying of individual droplets, chain and bridge formation and decay. The quasi-steady narrow size distribution of emulsified water droplets with diameters close to 1 μm was formed after a few minutes. The generated emulsion was confined near the needle electrode due to the dielectrophoretic force. The emulsion had a well-defined boundary with a shape resembling a pendant drop suspended on the pin electrode.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current thermal operations in the Wilmington Field are economical with low oil prices due to the availability of inexpensive steam from an existing 50 MMBTU/hr steam generator that can utilize non-commercial low Btu produced gas. Such favorable terms for obtaining steam are not expected to be available in the future.

  16. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    PubMed

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. PMID:22159733

  17. Environmental assessment. Downhole steam generator field test project DEEP STEAM: enhanced oil recovery project (DOE No. 16), Kern County, California

    SciTech Connect

    Church, H.W.; Zak, B.D.

    1980-02-01

    Objective of DEEP STEAM is to develop the technology to economically produce heavy oil from reservoirs greater than 760 m deep using steam injection. The proposed site is in the Kern River Oil Field in the San Joaquin Valley. This document describes the project, existing environment, and possible impact of the project. It is concluded that the proposed action does not significantly affect the quality of the environment, and therefore an environmental impact statement is not required. (DLC)

  18. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  19. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  20. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-04-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.