Science.gov

Sample records for oil spill detection

  1. Automated oil spill detection with multispectral imagery

    NASA Astrophysics Data System (ADS)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  2. Oil Spills

    MedlinePlus

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil spills ...

  3. Endmember detection in marine environment with oil spill event

    NASA Astrophysics Data System (ADS)

    Andreou, Charoula; Karathanassi, Vassilia

    2011-11-01

    Oil spill events are a crucial environmental issue. Detection of oil spills is important for both oil exploration and environmental protection. In this paper, investigation of hyperspectral remote sensing is performed for the detection of oil spills and the discrimination of different oil types. Spectral signatures of different oil types are very useful, since they may serve as endmembers in unmixing and classification models. Towards this direction, an oil spectral library, resulting from spectral measurements of artificial oil spills as well as of look-alikes in marine environment was compiled. Samples of four different oil types were used; two crude oils, one marine residual fuel oil, and one light petroleum product. Lookalikes comprise sea water, river discharges, shallow water and water with algae. Spectral measurements were acquired with spectro-radiometer GER1500. Moreover, oil and look-alikes spectral signatures have been examined whether they can be served as endmembers. This was accomplished by testifying their linear independence. After that, synthetic hyperspectral images based on the relevant oil spectral library were created. Several simplex-based endmember algorithms such as sequential maximum angle convex cone (SMACC), vertex component analysis (VCA), n-finder algorithm (N-FINDR), and automatic target generation process (ATGP) were applied on the synthetic images in order to evaluate their effectiveness for detecting oil spill events occurred from different oil types. Results showed that different types of oil spills with various thicknesses can be extracted as endmembers.

  4. Oil Spill!

    ERIC Educational Resources Information Center

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  5. Aoutomatic Oil Spill Detection Using TerraSAR-X Data

    NASA Astrophysics Data System (ADS)

    Zulipiye, Kaiyoumu; Balik Sanli, Fusun

    2016-07-01

    Oil release into the ocean may affect marine ecosystems and cause environmental pollution. Thus, oil spill detection and identification becomes critical important. Characterized by synoptic view over large regions, remote sensing has been proved to be a reliable tool for oil spill detection. Synthetic Aperture Radar (SAR) imagery shows returned signal that clearly distinguish oil from oil-free surface under optimal wind conditions, which makes it the most frequent used remote sensing technique in oil spill detection. Algorithms of automatic oil spill detection has already been developed for different SAR sensors, including RADARSAT and ENVISAT. In this study, we want to apply automatic oil spill detection algorithms on TerraSAR-X data which is previously developed for ASAR data. The applied methodology includes two steps as segmentation and classification. First segmentation algorithms compiled by C# have been applied under a Bayesian framework adopting a multi-level logistic. After segmentation different classification methods such as feature selection, filter, and embedded selection have been applied. As a result the used classifiers for oil spill detection will be compared, and the complete processing chain will be evaluated.

  6. Automatic oil spill detection on quad polarimetric UAVSAR imagery

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Dhakal, Shanti

    2016-05-01

    Oil spill on the water bodies has adverse effects on coastal and marine ecology. Oil spill contingency planning is of utmost importance in order to plan for mitigation and remediation of the oceanic oil spill. Remote sensing technologies are used for monitoring the oil spills on the ocean and coastal region. Airborne and satellite sensors such as optical, infrared, ultraviolet, radar and microwave sensors are available for remote surveillance of the ocean. Synthetic Aperture Radar (SAR) is used most extensively for oil-spill monitoring because of its capability to operate during day/night and cloud-cover condition. This study detects the possible oil spill regions on fully polarimetric Uninhabited Aerial Vehicle - Synthetic Aperture Radar (UAVSAR) images. The UAVSAR image is decomposed using Cloude-Pottier polarimetric decomposition technique to obtain entropy and alpha parameters. In addition, other polarimetric features such as co-polar correlation and degree of polarization are obtained for the UAVSAR images. These features are used to with fuzzy logic based classification to detect oil spill on the SAR images. The experimental results show the effectiveness of the proposed method.

  7. Oil Spills

    MedlinePlus

    ... is to provide scientific support to the U.S. Coast Guard officers in charge of response operations. In addition ... NOAA Responds to Oil Spills While the U.S. Coast Guard oversees all responses to oil spills and chemical ...

  8. Oil Spills

    MedlinePlus

    ... deliberate acts. Oil spills have major environmental and economic effects. Oil spills can also affect human health. These effects can depend on what kind of oil was spilled and where (on land, in a river, or in the ocean). Other factors include what kind of exposure and how much ...

  9. Enhanced oil spill detection sensors in low-light environments

    NASA Astrophysics Data System (ADS)

    Allik, Toomas H.; Ramboyong, Len; Roberts, Mark; Walters, Mark; Soyka, Thomas J.; Dixon, Roberta; Cho, Jay

    2016-05-01

    Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.

  10. Zipf's Law Application To Oil Spill Detection In The Ocean

    NASA Astrophysics Data System (ADS)

    Platonov, A.; Redondo, J. M.

    One of the results of the CLEAN SEAS European Union project using SAR imaging of European Coastal Waters was the statistical analysis and detection of thousands of oil spills and slicks in the three compared sections, Baltic Sea, North Sea and N.W. Mediterranean. The results of another European Project, OIL WATCH together with the past 30 years of recorded mayor tanker accidental oil spills have been used in a predictive scheme that subject to spatial and temporal normalization of these two different scale processes clearly shows that the annual probability of the occurence of an oil spill follows Zipf's law. Local deviations from the law may be also explained in terms of multifractal analysis.

  11. The detection and prediction for oil spill on the sea based on the infrared images

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Liu, Lei; Huang, Wei

    2016-07-01

    Detection for oil pollution is an important part of the marine environment protection in maritime security. In order to realize all-weather, rapid and accurate oil spill area detection, infrared images of oil spill on the sea is processed on account of infrared thermal imaging's visual capacity in darkness and frog. The detection for oil spill is realized and the location as well as the area of oil spill is calculated. The prediction integrated model of oil spill spreading is established and the prediction simulation for oil spill area is realized by changing the oil varieties, environmental factors and time, etc. The results show that this simulation is accurate, fast, intuitive and simple. It has certain significance for realizing the early warning of oil spill area detection automatically, intelligently and quickly.

  12. Oil spill disasters detection and monitoring by optical satellite data

    NASA Astrophysics Data System (ADS)

    Livia Grimaldi, Caterina Sara; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Marine oil spill disasters may be related to natural hazards, when storms and hurricanes cause the sinking of tankers carrying crude or refined oil, as well as to human action, as illegal discharges, assessment errors (failures or collisions) or acts of warfare. Their consequence has a devastating effects on the marine and coastal environment. In order to reduce the environmental impact of such kind of hazard, giving to local authorities necessary information of pollution entity and evolution, timely detection and continuously updated information are fundamental. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and description, thanks to the high spatial resolution and all-time/weather capability of the present operational sensors. Anyway, the actual SARs revisiting time does not allow a rapid detection and near real-time monitoring of these phenomena at global scale. The COSMO-Skymed Italian dual-mission (expected in the 2010) will overcome this limitation improving the temporal resolution until 12 hours by a SAR constellation of four satellites, but several open questions regarding costs and global delivery policy of such data, might prevent their use in an operational context. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques have been proposed for mapping known oil spill discharges monitoring using optical satellite data, on the other hand, reliable satellite methods for an automatic and timely detection of oil spill are still currently missing. Existing methods, in fact, can localize the presence of an oil spill only after an alert and

  13. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  14. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms

    PubMed Central

    Topouzelis, Konstantinos N.

    2008-01-01

    This paper provides a comprehensive review of the use of Synthetic Aperture Radar images (SAR) for detection of illegal discharges from ships. It summarizes the current state of the art, covering operational and research aspects of the application. Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant discharges and associated effects on the marine environment are important parameters in evaluating sea water quality. Satellite images can improve the possibilities for the detection of oil spills as they cover large areas and offer an economical and easier way of continuous coast areas patrolling. SAR images have been widely used for oil spill detection. The present paper gives an overview of the methodologies used to detect oil spills on the radar images. In particular we concentrate on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena. We discuss the most common techniques to detect dark formations on the SAR images, the features which are extracted from the detected dark formations and the most used classifiers. Finally we conclude with discussion of suggestions for further research. The references throughout the review can serve as starting point for more intensive studies on the subject.

  15. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  16. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  17. X-Bragg Based Detection of Oil Spills Using Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Rudjord, Oystein; Salberg, Arnt-Borre

    2013-03-01

    It is possible to construct three features from the quad-pol coherency matrix of the X-Bragg scattering model, two that are independent of the relative permittivity, and one that is independent of the surface roughness. In this study we test these three features on Radarsat-2 and SIR-C data containing oil spill and look-alikes, in order to investigate the properties of these features for oil spill detection. We find that the features may distinguish oil from water, but are less sensitive to biogenic slicks and other look alikes. This useful for for operational oil spill detection.

  18. Understanding oil spills and oil spill response

    SciTech Connect

    Not Available

    1993-10-01

    The volume contains individual sections that outline what oil spills are, their potential effects on the environment, how they are cleaned up, and how various agencies prepare for spills before they happen.

  19. ENVISYS -- A solution for automatic oil spill detection in the Mediterranean

    SciTech Connect

    Solberg, R.; Theophilopoulos, N.

    1997-06-01

    The Mediterranean is a semi-enclosed basin heavily polluted by industrial outlets and spills from ships. Since the area is very fragile with strong environmental and commercial interests relying on clean water, a strong interest to protect the area has grown up. Intentional oil spills from ships washing their oil tanks is a significant problem in the Mediterranean. A promising technique for monitoring a large sea area for oil-spill early warning is by means of satellite SAR. ERS-1 and 2 have already been used for manual oil spill detection in North Europe for several years. With Radarsat and soon also ENVISAT, frequent satellite coverage of the Mediterranean will be possible. An European Union research project is currently developing a prototype system for automatic detection, verification, assessment and cleanup support. The prototype uses a feature extraction and classification scheme for the automatic detection. A design goal is to detect 98% of the oil slicks with a low rate of false alarms. Experiments so far indicate that it should be possible to reach this goal. An expected requirement for ships to record their route by a GPS system will in combination with automatic oil spill detection be a powerful tool to identify ships dumping oil. It is expected that such a system will have a significant preventive effect reducing intentional oil spills.

  20. Video systems for real-time oil-spill detection

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.; Lewis, P. L.; Woolever, G. F.

    1973-01-01

    Three airborne television systems are being developed to evaluate techniques for oil-spill surveillance. These include a conventional TV camera, two cameras operating in a subtractive mode, and a field-sequential camera. False-color enhancement and wavelength and polarization filtering are also employed. The first of a series of flight tests indicates that an appropriately filtered conventional TV camera is a relatively inexpensive method of improving contrast between oil and water. False-color enhancement improves the contrast, but the problem caused by sun glint now limits the application to overcast days. Future effort will be aimed toward a one-camera system. Solving the sun-glint problem and developing the field-sequential camera into an operable system offers potential for color 'flagging' oil on water.

  1. Object-oriented approach to oil spill detection using ENVISAT ASAR images

    NASA Astrophysics Data System (ADS)

    Konik, M.; Bradtke, K.

    2016-08-01

    The growing importance of oil spill detection as part of a rapid response system to oil pollution requires the ongoing development of algorithms. The aim of this study was to create a methodology for improving manual classification at the scale of entire water bodies, focusing on its repeatability. This paper took an object-oriented approach to radar image analysis and put particular emphasis on adaptation to the specificity of seas like the Baltic. Pre-processing using optimised filters enhanced the capability of a multilevel hierarchical segmentation, in order to detect spills of different sizes, forms and homogeneity, which occur as a result of shipping activities. Confirmed spills detected in ENVISAT/ASAR images were used to create a decision-tree procedure that classifies every distinct dark object visible in SAR images into one out of four categories, which reflect growing probability of the oil spill presence: look-alikes, dubious spots, blurred spots and potential oil spills. Our objective was to properly mark known spills on ASAR scenes and to reduce the number of false-positives by eliminating (classifying as background or look-alike) as many objects as possible from the vast initial number of objects appearing on full-scale images. A number of aspects were taken into account in the classification process. The method's performance was tested on a group of 26 oil spills recorded by HELCOM: 96.15% of them were successfully identified. The final target group was narrowed down to about 4% of dark objects extracted from ASAR images. Although a specialist is still needed to supervise the whole process of oil spill detection, this method gives an initial view, substantial for further evaluation of the scenes and risk estimation. It may significantly accelerate the pace of manual image analysis and enhance the objectivity of assessments, which are key aspects in operational monitoring systems.

  2. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  3. Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours.

    PubMed

    GRIERSON

    1998-11-01

    / Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent's Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.KEY WORDS: Airborne video; Thermal imagery; Global positioning; Oil-spill monitoring; Tracking beacon PMID:9732519

  4. RST analysis of thermal infrared satellite data for a continuous oil spill detection and monitoring

    NASA Astrophysics Data System (ADS)

    Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2012-04-01

    Oil spills is one of the main sea pollution sources causing remarkable ecological impact on maritime and coastal environments. Oil spills can derive both from natural phenomena (hurricanes, landslides, earthquakes) and "human errors" (tankers collisions, shipwrecks, platform accidents), even if the main contribution to this kind of technological hazard comes from operational discharge from tankers (i.e. oil dumped during cleaning operations) representing 45% of total hydrocarbons marine pollution. Mainly for this reason, the developing of systems able to provide a high frequent sampling and observation of sea surface is fundamental. Satellite remote sensing, thanks to global coverage and continuity of observations, might effectively contribute to mitigate oil spill environmental impact, provided that reliable and effective detection techniques are developed and that relevant information and products are timely delivered and made available. In particular, satellite remote sensing by passive optical sensors on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), can give a significant opportunity in this field. Unfortunately, up to now, optical satellite data found a poor application in oil spill alert system mainly for the lack of data analysis techniques suitable for an automatic oil spill detection. The few methods up to now proposed are only able to manually and interactively localize the presence of an already known oil spill, mainly for "a posteriori" mapping purpose, often requiring the intervention of an expert operator. In particular, techniques based on Thermal Infrared (TIR) records exploit oil and water different thermal inertia in order to map spill sea pollution. Oil thermal inertia, in fact, is lower than sea water one, so that oil polluted areas usually show Brightness Temperature (BT) higher than sea water in TIR images collected in daytime

  5. Oil Spill Cleanup

    ERIC Educational Resources Information Center

    Kauble, Christena Ann

    2011-01-01

    Several classroom activities using a model of a seashore and an oil spill demonstrate the basic properties of oil spills in oceans. Students brainstorm about how to best clean up the mess. They work in teams, and after agreeing on how they will proceed, their method is tested by measuring the amount of oil removed and by rating the cleanliness of…

  6. Development of a fluorescence polarization submersible instrument for the detection of submerged heavy oil spills

    NASA Astrophysics Data System (ADS)

    Bello, Job; Smirnov, Anton G.; Toomey, Patrick

    2012-06-01

    Spills of Group V heavy oils are a concern because once spilled heavy oils will immediately sink to the bottom and can harm wetlands, beaches, and marine life. Recently, we developed a new tool-fluorescence polarization (FP)- for locating heavy oil deposits. The method relies on the observation that heavy, viscous oil fractions exhibit polarized fluorescence while the ubiquitous fluorescence background characteristic of chlorophyll and humic compounds do not. The basic FP measurement entails exciting the fluorophore with polarized light and observing the intensities of the emission polarized perpendicular and parallel to it. Heavy, tarry oils containing higher molecular weight polynuclear aromatic hydrocarbons fractions exhibit strong FP. The development of a remotely operated, submersible FP instrument will be presented, as well as testing results of the instrument in a simulated spill set up by the US Coast Guard at the National Oil Spill Response Research & Renewable Energy Test Facility (OHMSETT). The FP instrument utilizes a laser (532 nm) to excite the oil matrix. A small refracting telescope with variable focus is employed as the front optics and used to focus the laser beam and to collect the polarized fluorescence from the sample at a standoff distance. An embedded computer resides inside and controls the various operations such as autofocusing of the telescope and data acquisition. The embedded computer also allows autonomous or remotely controlled operation. FP along with phase sensitive detection combines to provide excellent sunlight rejection, thus allowing the use of the instrument during daylight hours.

  7. Oil Spill Detection along the Gulf of Mexico Coastline based on Airborne Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Arslan, M. D.; Filippi, A. M.; Guneralp, I.

    2013-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection and thickness estimation based on hyperspectral images acquired along the coastline of the Gulf of Mexico. We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imaging spectrometer data collected over Bay Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 2010. We also employ field-based observations of the degree of oil accumulation along the coastline, as well as in situ measurements from the literature. As part of our proposed spectroscopic approach, we operate on atmospherically- and geometrically-corrected hyperspectral AVIRIS data to extract image-derived endmembers via Minimum Noise Fraction transform, Pixel Purity Index-generation, and n-dimensional visualization. Extracted endmembers are then used as input to endmember-mapping algorithms to yield fractional-abundance images and crisp classification images. We also employ Multiple Endmember Spectral Mixture Analysis (MESMA) for oil detection and mapping in order to enable the number and types of endmembers to vary on a per-pixel basis, in contast to simple Spectral Mixture Analysis (SMA). MESMA thus better allows accounting for spectral variabiltiy of oil (e.g., due to varying oil thicknesses, states of degradation, and the presence of different oil types, etc.) and other materials, including soils and salt marsh vegetation of varying types, which may or may not be affected by the oil spill. A decision-tree approach is also utilized for comparison. Classification results do indicate that MESMA provides advantageous capabilities for mapping several oil-thickness classes for affected vegetation and soils along the Gulf of Mexico coastline, relative to the conventional approaches tested. Oil thickness-mapping results from MESMA

  8. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images

  9. Exploring Oil Spills.

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.; And Others

    1996-01-01

    Presents activities in which elementary and middle school students work together to gain environmental awareness about oil spills. Involves students experiencing a simulated oil spill and attempting to clean it up. Discusses the use of children's literature after the activity in evaluation of the activity. (JRH)

  10. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours

    SciTech Connect

    Grierson, I.T.

    1998-11-01

    Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent`s Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.

  11. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. PMID:23790462

  12. Oil spill detection method using X-band marine radar imagery

    NASA Astrophysics Data System (ADS)

    Zhu, Xueyuan; Li, Ying; Feng, Haiyang; Liu, Bingxin; Xu, Jin

    2015-01-01

    A viable method to implement oil spill detection and monitoring based on marine radar is proposed. The primary data of this study are obtained from the X-band marine radar of the teaching-training ship, YUKUN, of the Dalian Maritime University on July 21, 2010, when a pipeline burst and an oil spill accident occurred at the Xingang Port in Dalian. Aiming at the working characteristics of marine radar, the adaptive median filter algorithm is improved to eliminate the radar shared-frequency interference by adding the identification of noise points and resetting the neighborhood window. A power attenuation correction method is proposed to solve the uneven distribution in resolution and echo intensity by acquiring the average power distribution of radar images simultaneously. Oil spill will be easily detected from different sea backgrounds after morphological processing, gray segmentation, and image smoothing. Comparison with the images extracted from a thermal infrared sensor on the same monitoring point demonstrates the validity of the extraction method for oil spill based on X-band marine radar.

  13. Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery

    NASA Astrophysics Data System (ADS)

    Harahsheh, H. A.

    2016-06-01

    Abu Dhabi Government endorsed vision for its Maritime Strategy `A safe, secure and sustainable maritime domain for Abu Dhabi'. This research study share this vision using the concept of monitoring as tool for marine protection against any possible oil pollution. The best technology to detect and monitor oil pollution and in particularly oil spill is SAR imagery In this case study we chose KOMPSAT-5 SAR. KOMPSAT-5 carries X-band SAR for earth observation, and is capable of day-and-night imaging under all weather condition. It provides three operation modes: High Resolution Mode to provide 1 m resolution, Standard Mode to provide 3 m resolution and Wide Swath Mode to provide 20 m resolution with 100 km swath at 550 km altitude, with four modes of polarization. KOMPSAT-5 provides products for various applications; security and defense, mapping, and natural resource management, environmental monitoring, disaster monitoring and more. For our case study we chose to work with Wide Swath mode (WS) with Vertical polarization (VV) to cover a wide area of interest located to the north west of Abu Dhabi including some important islands like "Zirku Island", and areas with oil production activities. The results of data acquired on 4th May 2015 show some spot of oil spill with length estimated about 3 KM, and the daily satellite data acquisition over the period July 24 through July 31 shows serious and many oil spill events some are small, but many others are considered to be big with area size around 20 km2. In the context of oil spill pollution in the seas, we have to consider the development and increase of overseas transportation, which is an important factor for both social and economic sectors. The harmful effects of marine pollution are numerous, from the damage of marine life to the damage of the aquatic ecosystem as whole. As such, the need for oil slick detection is crucial, for the location of polluted areas and to evaluate slick drift to protect the coastline

  14. Reference spectral signature selection using density-based cluster for automatic oil spill detection in hyperspectral images.

    PubMed

    Liu, Delian; Zhang, Jianqi; Wang, Xiaorui

    2016-04-01

    Reference spectral signature selection is a fundamental work for automatic oil spill detection. To address this issue, a new approach is proposed here, which employs the density-based cluster to select a specific spectral signature from a hyperspectral image. This paper first introduces the framework of oil spill detection from hyperspectral images, indicating that detecting oil spill requires a reference spectral signature of oil spill, parameters of background, and a target detection algorithm. Based on the framework, we give the new reference spectral signature selection approach in details. Then, we demonstrate the estimation of background parameters according to the reflectance of seawater in the infrared bands. Next, the conventional adaptive cosine estimator (ACE) algorithm is employed to achieve oil spill detection. Finally, the proposed approach is tested via several practical hyperspectral images that are collected during the Horizon Deep water oil spill. The experimental results show that this new approach can automatically select the reference spectral signature of oil spills from hyperspectral images and has high detection performance. PMID:27137031

  15. Possibilities and difficulties of oil spill and ship detection from space

    NASA Astrophysics Data System (ADS)

    Lavrova, O.; Mityagina, M.; Bocharova, T.; Pyrkov, V.; Shcherbak, S.; Zlatopolskiy, A.

    Oil pollution of coastal zones is an almost daily event associated with offshore oil exploitation pipeline seeps routine tanker operations and marine traffic in general The long-term effects of this chronic pollution are arguably more harmful to the coastal environment than any single large-scale accident The ability to monitor it more reliably would thus represent a highly desirable contribution to any environmental information system The best way of monitoring this chronic oil pollution would be a constant satellite-based system Various satellites equipped with active and passive sensors working at microwave infrared and optical frequencies have been launched recently and now provide numerous images of most parts of the world oceans Among the many different sensors synthetic aperture radar SAR is possibly the most suited for oil spill monitoring because of its high ground resolution and independence of cloud and light conditions SAR is an excellent tool to monitor and detect oil on the water surface Oil appears as dark patches on SAR images because of the damping effect of the oil on the backscattered radar signal Nevertheless detection based only on SAR data is still problematic because of the difficulty in distinguishing oil slicks especially at lower wind speeds from other phenomena known as oil look-alikes Phenomena giving rise to look-alikes include bioorganic films areas of wind-shadow near coasts rain cells zones of upwelling internal waves and oceanic or atmospheric fronts The contrast between a spill and the

  16. Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data.

    PubMed

    Marghany, Maged

    2014-12-15

    In this work, a genetic algorithm is applied for the automatic detection of oil spills. The procedure is implemented using sequences from RADARSAT-2 SAR ScanSAR Narrow single-beam data acquired in the Gulf of Mexico. The study demonstrates that the implementation of crossover allows for the generation of an accurate oil spill pattern. This conclusion is confirmed by the receiver-operating characteristic (ROC) curve. The ROC curve indicates that the existence of oil slick footprints can be identified using the area between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills, and the ScanSAR Narrow single-beam mode serves as an excellent sensor for oil spill detection and survey. PMID:25455367

  17. Multi-objective entropy evolutionary algorithm for marine oil spill detection using cosmo-skymed satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, M.

    2015-06-01

    Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.

  18. Oil Spill Detection and Modelling: Preliminary Results for the Cercal Accident

    NASA Astrophysics Data System (ADS)

    da Costa, R. T.; Azevedo, A.; da Silva, J. C. B.; Oliveira, A.

    2013-03-01

    Oil spill research has significantly increased mainly as a result of the severe consequences experienced from industry accidents. Oil spill models are currently able to simulate the processes that determine the fate of oil slicks, playing an important role in disaster prevention, control and mitigation, generating valuable information for decision makers and the population in general. On the other hand, satellite Synthetic Aperture Radar (SAR) imagery has demonstrated significant potential in accidental oil spill detection, when they are accurately differentiated from look-alikes. The combination of both tools can lead to breakthroughs, particularly in the development of Early Warning Systems (EWS). This paper presents a hindcast simulation of the oil slick resulting from the Motor Tanker (MT) Cercal oil spill, listed by the Portuguese Navy as one of the major oil spills in the Portuguese Atlantic Coast. The accident took place nearby Leix˜oes Harbour, North of the Douro River, Porto (Portugal) on the 2nd of October 1994. The oil slick was segmented from available European Remote Sensing (ERS) satellite SAR images, using an algorithm based on a simplified version of the K-means clustering formulation. The image-acquired information, added to the initial conditions and forcings, provided the necessary inputs for the oil spill model. Simulations were made considering the tri-dimensional hydrodynamics in a crossscale domain, from the interior of the Douro River Estuary to the open-ocean on the Iberian Atlantic shelf. Atmospheric forcings (from ECMWF - the European Centre for Medium-Range Weather Forecasts and NOAA - the National Oceanic and Atmospheric Administration), river forcings (from SNIRH - the Portuguese National Information System of the Hydric Resources) and tidal forcings (from LNEC - the National Laboratory for Civil Engineering), including baroclinic gradients (NOAA), were considered. The lack of data for validation purposes only allowed the use of the

  19. Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems.

    PubMed

    Krupadam, Reddithota J; Nesterov, Evgueni E; Spivak, David A

    2014-06-15

    Im*plications due to oil spills on marine ecosystems have created a great interest toward developing more efficient and selective materials for oil spill toxins detection and remediation. This research paper highlights the application of highly efficient molecularly imprinted polymer (MIP) adsorbents based on a newly developed functional crosslinker (N,O-bismethacryloyl ethanolamine, NOBE) for detection of highly toxic polycyclic aromatic hydrocarbons (PAHs) in seawater. The binding capacity of MIP for oil spill toxin pyrene is 35 mg/g as compared to the value of 3.65 mg/g obtained using a non-imprinted polymer (NIP). The selectivity of all three high molecular weight PAHs (pyrene, chrysene and benzo[a]pyrene) on the NOBE-MIP shows an excellent selective binding with only 5.5% and 7% cross-reactivity for chrysene and benzo[a]pyrene, respectively. Not only is this particularly significant because the rebinding solvent is water, which is known to promote non-selective hydrophobic interactions; the binding remains comparable under salt-water conditions. These selective and high capacity adsorbents will find wide application in industrial and marine water monitoring/remediation. PMID:24759433

  20. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  1. The application of hyperspectral image techniques on MODIS data for the detection of oil spills in the RSA

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad; Amos, Carl; Byfield, Valborg; Petrov, Peter

    2008-10-01

    Oil spills pose a serious threat to the sensitive marine ecosystem of the RSA. The study aims to detect and identify oil spills using remote sensing data provided by ROPME MODIS receiving station. MODIS data of confirmed incidents of oil spills via in-situ observations were processed to produce radiometrically corrected L1B data. Algal mats were further eliminated as look-alike, when the distinct oil pattern was not visible in the standard MODIS algorithm for Chlorophyll a. Shape analysis based on the operators' prior knowledge of the region was also used as a method for discriminating oil from other look-alikes. Oil spills exhibit different levels of contrast in relation to the viewing angle geometry and sun position. The Spectral Contrast Shift (SCS) is an empirical relationship that was derived to identify sea surface patterns including oil spills using the maximum and minimum spectral radiance values at the 250m spatial resolution bands. Results were combined with GIS based information of oil platform locations and daily tanker routes to aid interpretation and improve the probability for an accurate identification of oil spills, and avoiding false positives.

  2. Application of Lipschitz Regularity and Multiscale Techniques for the Automatic Detection of Oil Spills in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.; Tello, M.

    2015-12-01

    This research presents a promising new method for the detection and tracking of oil spills from Synthetic Aperture Radar (SAR) data. The method presented here combines a number of advanced image processing techniques in order to overcome some common performance limitations of SAR-based oil spill detection. Principal among these limitations are: (1) the radar cross section of the ocean surface strongly depends on wind and wave activities and is therefore highly variable; (2) the radar cross section of oil covered waters is often indistinguishable from other dark ocean features such as low wind areas or oil lookalikes, leading to ambiguities in oil spill detection. In this paper, we introduce two novel image analysis techniques to largely mitigate the aforementioned performance limitations, namely Lipschitz regularity (LR) and Wavelet transforms. We used LR, an image texture parameter akin to the slope of the local power spectrum, in our approach to mitigate these limitations. We show that the LR parameter is much less sensitive to variations of wind and waves than the original image amplitude, lending itself well for normalizing image content. Beyond its benefit for image normalization, we also show that the LR transform enhances the contrast between oil-covered and oil-free ocean surfaces and therefore improves overall spill detection performance. To calculate LR, the SAR images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), which are furthermore transformed into Holder space to measure LR. Finally, we demonstrate that the implementation of wavelet transforms provide additional benefits related to the adaptive reduction of speckle noise. We show how LR and CWT are integrated into our image analysis workflow for application to oil spill detection. To describe the performance of this approach under controlled conditions, we applied our method to simulated SAR data of wind driven oceans containing oil spills of various properties. We also

  3. How Are Oil Spills Treated?

    ERIC Educational Resources Information Center

    Whitmore, William

    2005-01-01

    No two oil spills are the same. Logistically, oil spills are a nightmare because they are unanticipated and uncontrolled events. Oil spills present a threat to wildlife and coastal resources, concerning everyone from local residents to state environmental agencies and the federal government. Thousands of people may be involved in a significant…

  4. On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP.

    PubMed

    Ferraro, Guido; Baschek, Björn; de Montpellier, Geraldine; Njoten, Ove; Perkovic, Marko; Vespe, Michele

    2010-01-01

    Satellite services that deliver information about possible oil spills at sea currently use different labels of "confidence" to describe the detections based on radar image processing. A common approach is to use a classification differentiating between low, medium and high levels of confidence. There is an ongoing discussion on the suitability of the existing classification systems of possible oil spills detected by radar satellite images with regard to the relevant significance and correspondence to user requirements. This paper contains a basic analysis of user requirements, current technical possibilities of satellite services as well as proposals for a redesign of the classification system as an evolution towards a more structured alert system. This research work offers a first review of implemented methodologies for the categorisation of detected oil spills, together with the proposal of explorative ideas evaluated by the European Group of Experts on satellite Monitoring of sea-based oil Pollution (EGEMP). PMID:19775709

  5. Artic oil-spill response guide for the alaskan beaufort sea. Final report

    SciTech Connect

    Not Available

    1988-03-01

    Contents include--Federal Response Organization; Initial Response; Elements of Response; Detection and Surveillance, Oil-Spill Trajectory Models, Oil-Spill Containment, Oil-Spill Recovery, Transfer Equipment, Recovered Oil Storage Equipment, Oil-Spill Disposal, Personnel, Logistics, Well Control, Dispersants, Mechanics of Response, Oil Spill Response Scenarios; Appendices.

  6. OIL SPILL CLEANUP

    EPA Science Inventory

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. uring biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic con...

  7. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    PubMed Central

    Jha, Maya Nand; Levy, Jason; Gao, Yang

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensive overview and comparison of existing sensors. Specifically, this paper examines the characteristics and applications of different sensors. A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. Laser fluorosensors were found to be the best available sensor for oil spill detection since they not only detect and classify oil on all surfaces but also operate in either the day or night. For example, the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance. However, no single sensor was able to provide all information required for oil spill contingency planning. Hence, combinations of sensors are currently used for oil spill surveillance. Specifically, satellite sensors are used for preliminary oil spill assessment while airborne sensors are used for detailed oil spill analysis. While satellite remote sensing is not suitable for tactical oil spill planning it can provide a synoptic coverage of the affected area.

  8. Oil spill clean up

    SciTech Connect

    Claxton, L.D.; Houk, V.S.; Williams, R.; Kremer, F.

    1991-01-01

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. During biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic constituents to toxic species. Also, toxic compounds refractory to biological degradation may compromise the effectiveness of the treatment technique. In the study, the Salmonella mutagenicity assay showed that both the Prudhoe Bay crude oil and its weathered counterpart collected from oil-impacted water were weakly mutagenic. Results also showed that the mutagenic components were depleted at a faster rate than the overall content of organic material.

  9. Oil spill environmental forensics: the Hebei Spirit oil spill case.

    PubMed

    Yim, Un Hyuk; Kim, Moonkoo; Ha, Sung Yong; Kim, Sunghwan; Shim, Won Joon

    2012-06-19

    After the Hebei Spirit oil spill (HSOS) in December 2007, mixtures of three types of Middle East crude oil (total 12,547 kL) were stranded along 375 km of coastline in Western Korea. Emergency responses together with 1.3 million volunteers' activity rapidly removed ca. 20% of spilled oil but the lingering oils have been found along the heavily impacted shorelines for more than 4 years. The HSOS was the worst oil spill case in Republic of Korea, and there were many issues and lessons to be shared. In this study, we summarized some of the oil spill environmental forensic issues that were raised after the HSOS. Rapid screening using on-site measurement, long-term monitoring of multimedia, fingerprinting challenges and evaluation of the extent of the submerged oil were introduced, which supported decision making process of oil spill cleanup, mitigation of debates among stakeholders and provided scientific backgrounds for reasonable compensation. PMID:22582823

  10. Automatic decision support system based on SAR data for oil spill detection

    NASA Astrophysics Data System (ADS)

    Mera, David; Cotos, José M.; Varela-Pet, José; Rodríguez, Pablo G.; Caro, Andrés

    2014-11-01

    Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several decision support systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above 25% of the system processing time.

  11. Oil Spill Cleanup

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  12. Remote sensing of marine oil spills and its applications

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ma, Long; Yu, Shui-ming; Li, Chuan-long; Li, Qi-jun

    2008-11-01

    Remote sensing is an effective tool to monitor oil spills. The theory of oil spill remote sensing is based on the differences between oil slick and other environmental objects. For optical sensor, the ability of different bands to find oil film at sea is different. Oil spill object could be intensified by composing appropriate bands. In addition, image enhancements could also strengthen oil spill features. For SAR, image characteristics of oil spill are crucial to oil detection. Applications show that sensors loaded on satellite can find oil slick at sea. Optical sensor and SAR have their own advantages, and play different roles in oil spill remote sensing. It is necessary to integrate them to establish an all-weather, omnidirectional 3-D monitoring network for monitoring oil spills and illicit vessel discharges.

  13. Detection of waterborne mutagens and characterization of chemicals in selected Galveston sites after an oil spill

    SciTech Connect

    Kira, S.; Taketa, K.; Itoh, T.; Hayatsu, H. ); Zheng, Y.; Li, R.; Holliday, T.L.; Giam, C.S. )

    1994-08-01

    In our previous study, we proposed a unique sampling technique for mutagens in marine environment by suspending an absorbent, blue rayon, selective to polycyclic mutagens with three or more fused rings. By using this technique, we were able to bring back a small amount of adsorbent, weighing less than 10 g, from remote sampling sites, rather than large volumes of water. In the summer of 1990, a collision of barge tankers occurred in Galveston Bay and approximately 500,000 gal of oil were spilled into the Bay. Several sites in Galveston Bay were sampled 5-7 d after the oil sill. We characterized the pollutants chemically and detected the mutagenicity. We designed the present study to examine the applicability of our technique from two points of view. One was to determine if there was a correlation between mutagenicity of blue rayon-adsorbed compounds and the level of known mutagens detected in water samples from the same site. The other was to certify if the sampling technique provided a convenient method for handling water samples collected at remote sites. The chemical analysis was carried out in Texas (U.S.A.) an the mutagenicity testing was done in Okayama (Japan). 7 refs., 2 figs., 1 tab.

  14. Crude Oil Spills and Health

    MedlinePlus

    ... of Health Journal Articles on Oil Dispersants and Invertebrates, Seawater, Plants and Environment PubMed - Biomedical journal literature ... of Health Journal Articles on Oil Spills and Invertebrates, Seawater, Plants and Environment PubMed - Biomedical journal literature ...

  15. For oil spills, no slick solutions

    SciTech Connect

    Not Available

    1984-12-01

    Oil spills from tankers and offshore wells are getting bigger and more numerous. Oil spill cleanup technology is hard-pressed to keep up with the problem. The use of skimming devices, sorbents and chemical agents, and microorganisms to control oil spills is described. The environmental effects of oil spills are briefly discussed.

  16. MODELING METHODOLOGIES FOR OIL SPILLS

    EPA Science Inventory

    Oil spilled into aquatic environments is subject to a number of fates, including natural dispersion, emulsification and weathering. An oil slick moves due to the inherent spreading of the oil, currents, winds and waves. All of these processes influence the impacts of the oil on...

  17. Detection of Oil Pollution Hotspots and Leak Sources Through the Quantitative Assessment of the Persistence and Temporal Repetition of Regular Oil Spills in the Caspian Sea Using Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Bayramov, E. R.; Buchroithner, M. F.; Bayramov, R. V.

    2015-08-01

    The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution Images acquired during 2006-2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2-10 (3471.04 sq. km.), 11-20 (971.66 sq. km.), 21-50 (692.44 sq. km.), 51-128 (191.38 sq. km.). The most critical oil leak sources with the frequency range of 41-128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  18. Oil Spills and Spills of Hazardous Substances.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    The stated purpose of this publication is to describe some of the more significant spill incidents and the mechanisms, both managerial and technological, to deal with them. This publication is targeted for school, general public, and other such audiences. Sections include effects of spills, prevention of spills, responding to spills, spill…

  19. Oil spill responses R D

    SciTech Connect

    Engelhardt, F.R.; Nordvik, A.B.; Giammona, C.P.; Aurand, D.V.

    1994-01-01

    The Marine Spill Response Corp. (MSRC) was created as an industry response to the Exxon Valdez oil spill. The charter of MSRC includes as one of the primary functions the implementation of a spill response R D program to enhance future oil spill response decision-making. Funding for the program is provided largely by the Marine Preservation Association as part of an annual operating grant from that industry organization to MSRC. Research and development at MSRC is considered the key element in improving the future capability of MSRC and other oil spill responders. The major focus of the R D program is to advance knowledge and the technology needed to contain, clean up, and mitigate spills of persistent petroleum products in coastal and offshore waters while minimizing damage to marine and coastal resources and human health. The R D program is solidly in place today with more than 30 projects underway supporting more than $10 million targeted for research. By the end of 1994, more than 60 contracts will have been activated, and the results of many of these projects will be published.

  20. Oil Spills - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Oil Spills URL of this page: https://www.nlm.nih. ... V W XYZ List of All Topics All Oil Spills - Multiple Languages To use the sharing features on ...

  1. Oil Spills - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Oil Spills URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Oil Spills - Multiple Languages To use the sharing features on ...

  2. Detection of Salt Marsh Vegetation Stress after the Deepwater Horizon BP Oil Spill Along the Shoreline of Gulf of Mexico Using Aviris Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Ustin, S.; Hestir, E. L.

    2011-12-01

    Coastal wetlands and aquatic environments are highly productive ecosystems that are rich in biodiversity. They also provide critically important habitat for both aquatic and terrestrial organisms, many of which have significant economic and recreational importance. The United States Gulf of Mexico coastline is riddled with oil wells (~50,000 wells of which ~30,000 are decommissioned or abandoned), that are subject to frequent oil spills. Oil spills have both short-term and long-term detrimental effects on the coastal environment. Brackish and salt marshes are among the most vulnerable of coastal ecosystems to oil spill impacts because oil tends to have a much longer residence time in marches compared to other environments. Remote sensing has been used extensively to directly map the oil and indirectly to detect wetland plant stress in oil spill impact zones. Using AVIRIS hyperspectral data flown over the Deepwater Horizon Gulf Oil Spill in July and September of 2010, we tested if oil had any impact on the health of the wetland plant community. Two difference indices, NDVI and NDI, two angle indices, ANIR and ARed, and two continuum removals over water absorption bands, all showed that oiled shoreline index values were significantly lower than that from unoiled shoreline in September. The impact was significant at least 10-12m inland from the shoreline. In the July dataset, the effect of oil stress was not as pronounced. A comparison of the green vegetation fraction between July and September showed no significant difference indicating that there was no significant loss of wetland area between July and September. This study illustrates the use of hyperspectral remote sensing in detecting ecosystem stress and monitoring recovery after a catastrophic event such as an oil spill.

  3. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data

    USGS Publications Warehouse

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  4. Detection of Salt Marsh Vegetation Stress and Recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico Using AVIRIS Data

    PubMed Central

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill. PMID:24223872

  5. Lecithins - promising oil spill cleaner

    SciTech Connect

    Not Available

    1993-04-01

    A new, non-polluting method of cleaning up oil spills at sea as well as on land has been developed by researchers at the Hebrew University of Jerusalem. Their technique is based on the use of lecithins, a byproduct of producing edible oils from plants. Lecithin molecules are hydrophyllic at one end and lipophilic at their tail ends. When they come into contact with water, they organize themselves into bilayers whose heads all face the water and whose tails are all directed towards each other. These bilayers form particles called liposomes that, when spread on water fouled by oil spills, change the properties of the oil thereby stopping the spreading and breaking it down into sticky droplets that continue to float on the surface and can be easily collected. The treatment is said to be effective in both fresh and salt water and is almost temperature and pH independent. Another beneficial effect is that the physical change generated by liposomes in the spilled oil improves the ability of oil-eating bacteria in the water to remove some of the spill by bioremediation.

  6. In-Situ Burning of Spilled Oil.

    ERIC Educational Resources Information Center

    Allen, Alan A.

    1991-01-01

    Reviews in-situ burning with particular emphasis on how it can be applied in water-related oil spill situations. Presents and discusses the use of nomograms and development of techniques cited for safe and effective ignition and controlled burning of spilled oil. Includes representative oil spill scenarios and possible responses. (15 references)…

  7. OIL SPILL AND OIL POLLUTION REPORTS AUGUST 1975 - OCTOBER 1975

    EPA Science Inventory

    The August 1975 - October 1975 Oil Spill and Oil Pollution Reports is the fifth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) Summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) ...

  8. OIL SPILL AND OIL POLLUTION REPORTS, FEBRUARY 1976 - APRIL 1976

    EPA Science Inventory

    The February 1976 - April 1976 Oil Spill and Oil Pollution Reports is the seventh quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c...

  9. OIL SPILL AND OIL POLLUTION REPORTS, MAY 1975-JULY 1975

    EPA Science Inventory

    The May 1975 - July 1975 Oil Spill and Oil Pollution Reports is the fourth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) summa...

  10. OIL SPILL AND OIL POLLUTION REPORTS, MAY 1976-JULY 1976

    EPA Science Inventory

    The May 1976 - July 1976 Oil Spill and Oil Pollution Report is the eighth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) summar...

  11. OIL SPILL AND OIL POLLUTION REPORTS, AUGUST 1976-OCTOBER 1976

    EPA Science Inventory

    The August 1976 - October 1976 Oil Spill and Oil Pollution Reports is the ninth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) ...

  12. Oil Spill Disasters Detection and Monitoring by RST Analysis of Optical Satellite Radiances: the Case of Deepwater Horizon Platform in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pergola, N.; Grimaldi, S. C.; Coviello, I.; Faruolo, M.; Lacava, T.; Tramutoli, V.

    2010-12-01

    Marine oil spill disasters may have devastating effects on the marine and coastal environment. For monitoring and mitigation purposes, timely detection and continuously updated information on polluted areas are required. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/all-weather capability of the present operational sensors. Anyway, the present SARs revisiting time does not allow for a rapid detection and a near real-time monitoring of these phenomena at global scale. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques, based on optical satellite data, have been proposed for “a posteriori” mapping of already known oil spill discharges. On the other hand, reliable satellite methods for an automatic and timely detection of oil spills, for surveillance and warning purposes, are still currently missing. Recently, an innovative technique for automatic and near real time oil spill detection and monitoring has been proposed. The technique is based on the general RST (Robust Satellite Technique) approach which exploits multi-temporal satellite records in order to obtain a former characterization of the measured signal, in terms of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change detection step. Results obtained by using AVHRR (Advanced Very High Resolution Radiometer) Thermal Infrared data, in different geographic areas and observational conditions, demonstrated excellent detection capabilities both in

  13. Review of oil spill remote sensing.

    PubMed

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. PMID:24759508

  14. Oil spill cleanup using graphene.

    PubMed

    Iqbal, Muhammad Z; Abdala, Ahmed A

    2013-05-01

    In this article, we study the use of thermally reduced graphene (TRG) for oil spill cleanup. TRG was synthesized by thermal exfoliation of graphite oxide and characterized by X-ray diffusion, Raman spectroscopy, SEM, TEM, elemental analysis, and Brunauer-Emmett-Teller (BET) surface area measurement. Various aspects of the sorption process have been studied including the sorption capacity, the recovery of the adsorbed oil, and the recyclability of TRG. Our results shows that TRG has a higher sorption capacity than any other carbon-based sorbents, with sorption capacity as high as 131 g of oil per gram TRG. With recovery of the sorbed oil via filtration and reuse of TRG for up to six cycles, 1 g of TRG collectively removes approximately 300 g of crude oil. Moreover, the effects of TRG bulk density, pore volume, and carbon/oxygen ratio and the oil viscosity on the sorption process are also discussed. PMID:23093418

  15. MEDSLIK oil spill model recent developments

    NASA Astrophysics Data System (ADS)

    Lardner, Robin; Zodiatis, George

    2016-04-01

    MEDSLIK oil spill model recent developments Robin Lardner and George Zodiatis Oceanography Center, University of Cyprus, 1678 Nicosia, Cyprus MEDSLIK is a well established 3D oil spill model that predicts the transport, fate and weathering of oil spills and is used by several response agencies and institutions around the Mediterranean, the Black seas and worldwide. MEDSLIK has been used operationally for real oil spill accidents and for preparedness in contingency planning within the framework of pilot projects with REMPEC-Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea and EMSA-European Maritime Safety Agency. MEDSLIK has been implemented in many EU funded projects regarding oil spill predictions using the operational ocean forecasts, as for example the ECOOP, NEREIDs, RAOP-Med, EMODNET MedSea Check Point. Within the frame of MEDESS4MS project, MEDSLIK is at the heart of the MEDESS4MS multi model oil spill prediction system. The MEDSLIK oil spill model contains among other, the following features: a built-in database with 240 different oil types characteristics, assimilation of oil slick observations from in-situ or aerial, to correct the predictions, virtual deployment of oil booms and/or oil skimmers/dispersants, continuous or instantaneous oil spills from moving or drifting ships whose slicks merge can be modelled together, multiple oil spill predictions from different locations, backward simulations for tracking the source of oil spill pollution, integration with AIS data upon the availability of AIS data, sub-surface oil spills at any given water depth, coupling with SAR satellite data. The MEDSLIK can be used for operational intervention for any user-selected region in the world if the appropriate coastline, bathymetry and meteo-ocean forecast files are provided. MEDSLIK oil spill model has been extensively validated in the Mediterranean Sea, both in real oil spill incidents (i.e. during the Lebanese oil pollution crisis in

  16. Physical oceanography of oil spills

    SciTech Connect

    Murray, S.P. )

    1991-03-01

    The introduction of petroleum products and crude oil from ship accidents and damaged platforms into the ocean remains a significant problem. Weather systems of nearly all sizes and time scales may have strong effects on oil slick movement and dispersal. Thunderstorms, local weather systems, mid-latitude high- and low-pressure systems, tropical cyclones, and the trade winds and prevailing westerlies of the planetary wind system are all potentially important agents in the movement and dispersal of oil slicks. Currents driven by these wind systems are influenced by the rotation of the earth, which causes them to veer to the right of the wind in the northern hemisphere. Wind shifts or sudden decreases in wind stress induce circular or inertial oscillations whose period varies with latitude. Near the shore these effects are severely damped by the blocking action of the coast, causing the flow to run more or less parallel to the coastal boundary. All these effects will in turn exert significant control over the movement of entrained oil slicks. In the near-field region of an oil spill tidal currents can also be of considerable importance. Rotary currents, characteristic of open-shelf waters and effective dispersal agents of oil, arise from the influence of the rotation of the earth on the tidal current. Another such interaction between rotation of the earth and the tide produces Kelvin waves, which result in unusually high tidal ranges along the coast to the right of the tidal wave propagation. Both effects have been important in recent oil spills. All these oceanographic processes, reviewed in this talk, have played key roles in major spills over the last 15 years from the Torrey Canyon to the Mega-Borg.

  17. Detection of the Hebei Spirit oil spill on SAR imagery and its temporal evolution in a coastal region of the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Sung; Park, Kyung-Ae; Li, Xiaofeng; Lee, Moonjin; Hong, Sungwook; Lyu, Sang Jin; Nam, Sooyong

    2015-09-01

    To investigate the evolution of a disastrous oil spill from a vessel collision, known as the Hebei Spirit accident, off the coast of Korea in the Yellow Sea on 6 December 2007, oil slicks were identified from Synthetic Aperture Radar (SAR) images using a neural network (NN) and an adaptive threshold method. The results from the two objective methods showed good agreement, enough for the estimation of the extent of oil patches and their trajectories, with the exception of negligible errors at the boundaries. Quantitative analyses showed that the detected oil slicks moved southward, corresponding to the prevailing wind and tidal currents, and gradually dissipated during the spill, except for an extraordinary rapid decrease in onshore regions at the initial stage. The initial dissipation of the spilt oil was induced by tidal mixing in the tidal front zone. The spatial and temporal variations of the oil slicks confirmed the influence of atmospheric and oceanic environmental factors. The overall horizontal migration of the oil spills detected from consecutive SAR images was mainly driven by Ekman drift during the winter monsoon rather than the tidal residual current.

  18. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  19. Comparison Of Semi-Automatic And Automatic Slick Detection Algorithms For Jiyeh Power Station Oil Spill, Lebanon

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Ozkan, C.; Sunar, F.

    2013-10-01

    After air strikes on July 14 and 15, 2006 the Jiyeh Power Station started leaking oil into the eastern Mediterranean Sea. The power station is located about 30 km south of Beirut and the slick covered about 170 km of coastline threatening the neighboring countries Turkey and Cyprus. Due to the ongoing conflict between Israel and Lebanon, cleaning efforts could not start immediately resulting in 12 000 to 15 000 tons of fuel oil leaking into the sea. In this paper we compare results from automatic and semi-automatic slick detection algorithms. The automatic detection method combines the probabilities calculated for each pixel from each image to obtain a joint probability, minimizing the adverse effects of atmosphere on oil spill detection. The method can readily utilize X-, C- and L-band data where available. Furthermore wind and wave speed observations can be used for a more accurate analysis. For this study, we utilize Envisat ASAR ScanSAR data. A probability map is generated based on the radar backscatter, effect of wind and dampening value. The semi-automatic algorithm is based on supervised classification. As a classifier, Artificial Neural Network Multilayer Perceptron (ANN MLP) classifier is used since it is more flexible and efficient than conventional maximum likelihood classifier for multisource and multi-temporal data. The learning algorithm for ANN MLP is chosen as the Levenberg-Marquardt (LM). Training and test data for supervised classification are composed from the textural information created from SAR images. This approach is semiautomatic because tuning the parameters of classifier and composing training data need a human interaction. We point out the similarities and differences between the two methods and their results as well as underlining their advantages and disadvantages. Due to the lack of ground truth data, we compare obtained results to each other, as well as other published oil slick area assessments.

  20. Oil spill protector

    SciTech Connect

    Gwinn, C.M.

    1993-06-08

    An apparatus for limiting and containing liquid spills from leaking vessels that navigate the water ways is described, comprising: (a) a protective sheeting that is thin, flexible and waterproof which covers the vessel from side to side and underneath the vessel, and spans from the bow to the stern of the vessel, for keeping the leaking contents of the vessel from leaking into the surrounding waters; (b) a means for storing the protective sheeting when the protective sheeting is no longer needed, whereby the means for storing is attached to one side of the vessel and spans the full width of the protective sheeting from the bow to the stern of the vessel, and the means for storing is powered; (c) cables attached to the edge of the protective sheeting, at different points, for the purpose of enabling the protective sheeting to be deployed, and to assist in the support of the protective sheeting when the protective sheeting is deployed; (d) a means for pulling the protective sheeting from storage, for deployment from one side of the vessel to the other side of the vessel; (e) a stem sealing unit for sealing the protective sheeting to the stern of the vessel completely around the hull of the vessel for the prevention of the leakage of unwanted liquid into surrounding waters, whereby the stern sealing unit is attached to the hull of the vessel, near the stern and just before the propulsion screw of the vessel, and spanning down the hull and underneath the hull and up the other side of the hull of the vessel, whereby upon deployment of the protective sheeting one of the cables is used to guide the end of the protective sheeting, to be sealed, into the stern sealing unit; and (f) a bow scaling unit for sealing the protective sheeting which covers the bow of the vessel, whereby the bow sealing unit fits over the front edge of the protective sheeting from the top to the bottom, thereby preventing the leakage of unwanted liquid into the surrounding waters.

  1. Evaluating technologies of oil spill surveillance

    SciTech Connect

    Hover, G.L.

    1993-07-01

    Surveillance and monitoring of oil in the marine environment imposes a broad spectrum of remote sensing requirements. At the US Coast Guard Research Development Center, the environmental safety branch is sponsoring oil spill remote sensing research in four areas of technology: Synthetic aperture radar (SAR), Frequency-scanning microwave radiometry (FSR), Laser fluorosensing (LFS), and Forward-looking infrared (FLIR) imagers. SAR technology uses sophisticated signal processing to overcome prior limitations, providing images of higher and more uniform spatial acuity which may enable interpreters to more-readily distinguish petroleum slicks from others. The ability to determine the distribution of oil thickness within a slick is necessary when an estimate of oil volume is desired. Scientists at MIT have formulated a new approach to radiometric oil thickness measurement that takes advantage of recent advances in electronic component technology. The initial data collected with a prototype FSR instrument have validated the FSR concept and more work is ongoing. The Coast Guard is co-funding a program to demonstrate and evaluate the capabilities of an airborne laser fluorosensor to support oil spill response operations. During a controlled test, the instrument successfully demonstrated an ability to detect oil on water, ice, and various beach surfaces. Additional testing included different oil types and allowed for weathering. Data analysis is ongoing. Recent developments in infrared imager technology have produced a wide variety of off-the-shelf, portable cameras that could potentially provide a rapid-response spill assessment capability. The R D Center has been involved in the testing of many of these sensors.

  2. A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean

    NASA Astrophysics Data System (ADS)

    Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.

    2013-10-01

    With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.

  3. Locating spilled oil with airborne laser fluorosensors

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Nelson, Robert D.; Mullin, Joseph V.

    1999-02-01

    Locating oil in marine and terrestrial environments is a daunting task. There are commercially available off the shelf (COTS) sensors with a wide field-of-view (FOV) which can be used to map the overall extent of the spill. These generic sensors, however, lack the specificity required to positively identify oil and related products. The problem is exacerbated along beach and shoreline environments where a variety of organic and inorganic substrates are present. One sensor that can detect and classify oil in these environments is the laser fluorosensor. Laser fluorosensors have been under development by several agencies around the world for the past two decades. Environment Canada has been involved with laser fluorosensor development since the early 1990s. The prototype system was known as the Laser Environmental Airborne Fluorosensor (LEAF). The LEAF has recently been modified to provide real-time oil spill detection and classification. Fluorescence spectra are collected and analyzed at the rate of 100 Hz. Geo-referenced maps showing the locations of oil contamination are produced in real-time onboard the aircraft. While the LEAF has proven to be an excellent prototype sensor and a good operational tool, it has some deficiencies when it comes to oil spill response operations. A consortium including Environment Canada and the Minerals Management Service has recently funded the development of a new fluorosensor, called the Scanning Laser Environmental Airborne Fluorosensor (SLEAF). The SLEAF was designed to detect and map oil in shoreline environments where other non-specific sensors experience difficulty. Oil tends to pile up in narrow bands along the high tide line on beaches. A nadir-looking, small footprint sensor such as the LEAF would have difficulty locating oil in this situation. The SLEAF employs a pair of conical scanning mirrors to direct the laser beam in a circular pattern below the aircraft. With a sampling rate of 400 Hz and real-time spectral analysis

  4. Decision support system for managing oil spill events.

    PubMed

    Keramitsoglou, Iphigenia; Cartalis, Constantinos; Kassomenos, Pavlos

    2003-08-01

    The Mediterranean environment is exposed to various hazards, including oil spills, forest fires, and floods, making the development of a decision support system (DSS) for emergency management an objective of utmost importance. The present work presents a complete DSS for managing marine pollution events caused by oil spills. The system provides all the necessary tools for early detection of oil-spills from satellite images, monitoring of their evolution, estimation of the accident consequences and provision of support to responsible Public Authorities during clean-up operations. The heart of the system is an image processing-geographic information system and other assistant individual software tools that perform oil spill evolution simulation and all other necessary numerical calculations as well as cartographic and reporting tasks related to a specific management of the oil spill event. The cartographic information is derived from the extant general maps representing detailed information concerning several regional environmental and land-cover characteristics as well as financial activities of the application area. Early notification of the authorities with up-to-date accurate information on the position and evolution of the oil spill, combined with the detailed coastal maps, is of paramount importance for emergency assessment and effective clean-up operations that would prevent environmental hazard. An application was developed for the Region of Crete, an area particularly vulnerable to oil spills due to its location, ecological characteristics, and local economic activities. PMID:14753653

  5. Review of oil spill remote sensing

    SciTech Connect

    Fingas, M.F.; Brown, C.E.

    1996-12-31

    Remote-sensors for application to oil spills are reviewed. The capability of sensors to detect oil and to discriminate oil from background targets is the most important assessment criterion. A common sensor is an infrared camera or an IR/UV system. This sensor class can detect oil under a variety of conditions, discriminate oil from some backgrounds and has the lowest cost of any sensor. The inherent weaknesses include the inability to discriminate oil on beaches, among weeds or debris and under certain lighting conditions oil is not detected. The laser fluorosensor is recommended because of its unique capability to identify oil on most backgrounds. Radar, although low in priority for purchase, offers the only potential for large area searches and foul weather remote sensing. Radar is costly and requires a dedicated aircraft. Radar is prone to many interferences. Equipment operating in the visible spectrum, such as a camera or scanner, is useful for documentation or providing a basis for the overlay of other data. It is not useful beyond this, because oil shows no spectral characteristics in the visible region.

  6. NASA Satellites View Gulf Oil Spill

    NASA Video Gallery

    Two NASA satellites are capturing images of the oil spill in the Gulf of Mexico, which began April 20, 2010, with the explosion of the Deepwater Horizon oil rig. This series of images shows a space...

  7. Satellites View Growing Gulf Oil Spill (Update)

    NASA Video Gallery

    On April 30, 2010, the Deepwater Horizon oil rig exploded in the Gulf of Mexico, triggering the largest oil spill in U.S. history. The MODIS instrument, on board NASA's Terra and Aqua satellites, c...

  8. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  9. Oil spill cleanup method and apparatus

    SciTech Connect

    Mayes, F.M.

    1980-06-24

    A method for removing oil from the surface of water where an oil spill has occurred, particularly in obstructed or shallow areas, which comprises partially surrounding a hovercraft with a floating oil-collecting barrier, there being no barrier at the front of the hovercraft, moving the oil-barrier-surrounded-hovercraft into oil contaminated water, and collecting oil gathered within the barrier behind the hovercraft through a suction line which carries the oil to a storage tank aboard the hovercraft. The invention also embodies the hovercraft adapted to effect an oil spill cleanup.

  10. Approaches to sheltered-water oil spills

    SciTech Connect

    Jacobs, M.A.; Waldron, D.M.

    1996-10-01

    Technology has produced more effective and efficient oil removal equipment for on-water cleanup in the past five years. Much of the innovation has been to increase recovery capacity to meet the planning volumes required to government regulations. However, more than 95 percent of the spills are relatively small. Large equipment, often requiring large platforms, is not very useful and is difficult/expensive to operate on small spills. In addition, damage from spills results when oil impacts shorelines. The emphasis on spill response should address the ability of the equipment to remove oil in a nearshore environment. Clean Seas has been attempting to address this need since the Avila Pipeline spill in 1992, in which a 180 barrel spill resulted in about $18 million damage/cleanup cost.

  11. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf.

    PubMed

    Zhao, Jun; Temimi, Marouane; Ghedira, Hosni; Hu, Chuanmin

    2014-06-01

    Remote sensing provides an effective tool for timely oil pollution response. In this paper, the spectral signature in the optical and infrared domains of oil slicks observed in shallow coastal waters of the Arabian Gulf was investigated with MODIS, MERIS, and Landsat data. Images of the Floating Algae Index (FAI) and estimates of sea currents from hydrodynamic models supported the multi-sensor oil tracking technique. Scenes with and without sunglint were studied as the spectral signature of oil slicks in the optical domain depends upon the viewing geometry and the solar angle in addition to the type of oil and its thickness. Depending on the combination of those factors, oil slicks may exhibit dark or bright contrasts with respect to oil-free waters. Three oil spills events were thoroughly analyzed, namely, those detected on May 26 2000 by Landsat 7 ETM + and MODIS/Terra, on October 21 2007 by MERIS and MODIS, and on August 17 2013 by Landsat 8 and MODIS/Aqua. The oil slick with bright contrast observed by Landsat 7 ETM + on May 26 2000 showed lower temperature than oil-free areas. The spectral Rayleigh-corrected reflectance (R(rc)) signature of oil-covered areas indicated higher variability due to differences in oil fractions while the R(rc) spectra of the oil-free area were persistent. Combined with RGB composites, FAI images showed potentials in differentiating oil slicks from algal blooms. Ocean circulation and wind data were used to track oil slicks and forecast their potential landfall. The developed oil spill maps were in agreement with official records. The synergistic use of satellite observations and hydrodynamic modeling is recommended for establishing an early warning and decision support system for oil pollution response. PMID:24921568

  12. A New Approach of Oil Spill Detection Using Time-Resolved LIF Combined with Parallel Factors Analysis for Laser Remote Sensing.

    PubMed

    Liu, Deqing; Luan, Xiaoning; Guo, Jinjia; Cui, Tingwei; An, Jubai; Zheng, Ronger

    2016-01-01

    In hope of developing a method for oil spill detection in laser remote sensing, a series of refined and crude oil samples were investigated using time-resolved fluorescence in conjunction with parallel factors analysis (PARAFAC). The time resolved emission spectra of those investigated samples were taken by a laser remote sensing system on a laboratory basis with a detection distance of 5 m. Based on the intensity-normalized spectra, both refined and crude oil samples were well classified without overlapping, by the approach of PARAFAC with four parallel factors. Principle component analysis (PCA) has also been operated as a comparison. It turned out that PCA operated well in classification of broad oil type categories, but with severe overlapping among the crude oil samples from different oil wells. Apart from the high correct identification rate, PARAFAC has also real-time capabilities, which is an obvious advantage especially in field applications. The obtained results suggested that the approach of time-resolved fluorescence combined with PARAFAC would be potentially applicable in oil spill field detection and identification. PMID:27563899

  13. Oil Spill Risk Analysis Model and Its Application to Deepwater Horizon Oil Spill (Invited)

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Johnson, W. R.; Li, Z.

    2010-12-01

    The oil spill risk analysis (OSRA) model plays an essential role in analyzing oil spill risks in the U.S. continental shelf for the U.S. federal government. The OSRA model is driven by analyzed sea surface winds and model-generated ocean surface currents. Instead of focusing on individual oil spill events, the OSRA model examines oil spill risks over long periods of time, ranging from 5 years to decades. The OSRA model calculates thousands of hypothetical oil spill trajectories over U.S. continental shelf and tabulates the frequencies with which the simulated oil spills contact the geographic boundaries of designated natural resources within a specified number of days after the simulated spill events. As a result of a three-year effort, the model was completely updated and improved to meet the new challenges in the oil spill risk analyses. The updated OSRA model is more efficient in terms of computational time, is capable of producing results that are consistent with our previous analyses, and is more user-friendly by incorporating GIS tools. The combination of code parallelization, code optimization, and I/O optimization has greatly improved the computational efficiency. Applying the model to the Gulf of Mexico using 15 years of ocean currents and winds, we find that the newly improved OSRA model can provide important information on the behavior of oil spills more accurately and efficiently. The Deepwater Horizon oil spill is unique and unprecedented in the Gulf of Mexico. Approximated 4.9 million barrels of oil were spilled into the U.S. water. The statistical patterns and results from the OSRA model are being compared with the Deepwater Horizon oil spill. Findings from this study will help in assessing the oil spill risks in the Gulf of Mexico.

  14. Exxon Valdez oil spill restoration plan

    SciTech Connect

    1994-11-01

    In 1989, the Exxon Valdez oil spill contaminated about 1,500 miles of Alaska`s coastline. It killed birds, mammals, and fish, and disrupted the ecosystem in the path of the oil. The Exxon Valdez Restoration Plan provides long-term guidance for restoring the resources and services injured by the oil spill. It contains policies for making restoration decisions and describes how restoration activities will be implemented.

  15. DISPERSANT EFFECTIVENESS ON OIL SPILLS - EMPIRICAL CORRELATIONS

    EPA Science Inventory

    When a dispersant is applied to an oil slick, its effectiveness in dispersing the spilled oil depends on various factors such as oil properties, wave mixing energy, temperature of both oil and water, and salinity of the water. Estuaries represent water with varying salinities. In...

  16. Oil recovery; Technology that tames large spills

    SciTech Connect

    Valenti, M.

    1991-05-01

    This paper reports that the threat of oil spills is growing with the increasing use of larger tankers, the expansion of offshore oil exploration, and-as was demonstrated recently in the Persian Gulf-the dangers of war and terrorism. Aware of the environmental havoc that massive spills can cause, engineers are working hard to devise effective methods of scooping oil from the water's surface and cleaning contaminated shorelines. Techniques are being developed, which combine mechanical, chemical, and biological processes to contain spills.

  17. Remote oil spill sensing system (ROSSS)

    SciTech Connect

    Fornaca, S.; Agravante, H.H.; Eberhard, C.; Hauss, B.I.

    1996-10-01

    To provide tactical information during an oil spill, TRW developed Remote Oil Spill Sensing System (ROSSS). It is an integrated system of airborne sensors for rapid in-situ surveillance and a ground system that provides data analysis and display support at the spill cleanup command center. It provides knowledge of precise location of oil spill and produces timely updates, which are critical for effective spill containment and cleanup operations. It is capable of distinguishing where the bulk of spill exists, which is key to directing cleanup efforts for maximum efficiency. Using a passive microwave radiometric imager as the primary sensor, it provides data acquisition capabilities in both day and night and through haze, fog, and light ram. The high-speed air-to-ground telemetry link permits timely delivery of surveyed data from the spill site to the ground system to aid in the planning and assessment of cleanup strategies. ROSSS has been in service since November, 1992, ready to respond in any oil spill emergencies along the U.S. West Coast. 9 refs., 4 figs.

  18. Oil Spill Map for Indian Sea Region based on Bhuvan- Geographic Information System using Satellite Images

    NASA Astrophysics Data System (ADS)

    Vijaya kumar, L. J.; Kishore, J. K.; Kesava Rao, P.; Annadurai, M.; Dutt, C. B. S.; Hanumantha Rao, K.; Sasamal, S. K.; Arulraj, M.; Prasad, A. V. V.; Kumari, E. V. S. Sita; Satyanarayana, S. N.; Shenoy, H. P.

    2014-11-01

    Oil spills in the ocean are a serious marine disaster that needs regular monitoring for environmental risk assessment and mitigation. Recent use of Polarimetric SAR imagery in near real time oil spill detection systems is associated with attempts towards automatic and unambiguous oil spill detection based on decomposition methods. Such systems integrate remote sensing technology, geo information, communication system, hardware and software systems to provide key information for analysis and decision making. Geographic information systems (GIS) like BHUVAN can significantly contribute to oil spill management based on Synthetic Aperture Radar (SAR) images. India has long coast line from Gujarat to Bengal and hundreds of ports. The increase in shipping also increases the risk of oil spills in our maritime zone. The availability of RISAT-1 SAR images enhances the scope to monitor oil spills and develop GIS on Bhuvan which can be accessed by all the users, such as ships, coast guard, environmentalists etc., The GIS enables realization of oil spill maps based on integration of the geographical, remote sensing, oil & gas production/infrastructure data and slick signatures detected by SAR. SAR and GIS technologies can significantly improve the realization of oil spill footprint distribution maps. Preliminary assessment shows that the Bhuvan promises to be an ideal solution to understand spatial, temporal occurrence of oil spills in the marine atlas of India. The oil spill maps on Bhuvan based GIS facility will help the ONGC and Coast Guard organization.

  19. New problems and opportunities of oil spill monitoring systems

    NASA Astrophysics Data System (ADS)

    Barenboim, G. M.; Borisov, V. M.; Golosov, V. N.; Saveca, A. Yu.

    2015-04-01

    Emergency oil and oil products spills represent a great danger to the environment, including ecosystems, and to the population. New problems of such dangerous spills and methods of early detection are discussed in this paper. It is proposed to conduct assessment of biological hazards of such spills on the basis of data on the distribution of individual oil hydrocarbons within the column of the water body and computer predictions of their toxicity. Oil radioactivity, which is associated with uranium and thorium, is seen as the important aspect of the oil spill danger, especially in watercourses. The need for an automated monitoring system for the early detection of oil spills in water bodies is analysed. The proposed system consists of three subsystems. The first remote sensing subsystem is based on powerful fluorescent lidars; experimental results on lidar registration of oil pollution of water are reported. The second subsystem uses a network of automatic monitoring stations with contact detectors. The third subsystem is the combined sensor system based on remote and contact technologies.

  20. The Great Oil Spill Cleanup Contest.

    ERIC Educational Resources Information Center

    Hampton, Elaine

    1993-01-01

    Presents an exciting way to acquaint students with current methods to clean up oil spills. Students also have the freedom to create new clean-up methods as they think through the problem and experiment to find effective solutions. (PR)

  1. Earth Observation Services (Oil Spill Mapping)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An EOCAP project led Research Planning, Inc. to the development of advanced techniques for "environmental sensitivity" oil spill mapping. The new method incorporates satellite remote sensing and GIS technologies and was utilized to assess the damage potential of the Gulf war oil spill. EOCAP provides government co-funding to encourage private investment in, and to broaden the, use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  2. Immediate ecotoxicological effects of short-lived oil spills on marine biota

    PubMed Central

    Brussaard, Corina P. D.; Peperzak, Louis; Beggah, Siham; Wick, Lukas Y.; Wuerz, Birgit; Weber, Jan; Samuel Arey, J.; van der Burg, Bart; Jonas, Arjen; Huisman, Johannes; van der Meer, Jan Roelof

    2016-01-01

    Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m3 of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning. PMID:27041738

  3. Immediate ecotoxicological effects of short-lived oil spills on marine biota.

    PubMed

    Brussaard, Corina P D; Peperzak, Louis; Beggah, Siham; Wick, Lukas Y; Wuerz, Birgit; Weber, Jan; Samuel Arey, J; van der Burg, Bart; Jonas, Arjen; Huisman, Johannes; van der Meer, Jan Roelof

    2016-01-01

    Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning. PMID:27041738

  4. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  5. Oil spill response: Countdown to readiness

    SciTech Connect

    Costello, J.D.

    1993-04-01

    In the wake of the Exxon Valdez oil spill, a task force representing America's oil industry set about studying the existing resources across the nation for responding to catastrophic oil spills. In June 1989 the task force reported that the capability did not exist in either government or industry to respond to a spill the magnitude of the one in Alaska. As a result of task force recommendations, 20 companies began the process that led to the creation of both the Marine Preservation Association (MPA) and the Marine Spill Response Corp. (MS-RC). The latter is headquartered in Washington, D.C., with 5 regional response centers around the US. Under the direction of the US Coast Guard, each of MSRC's five regions will provide a best-effort response to cleaning up spill of persistent (crude) oils that are beyond the capabilities of local spill response organizations. MSRC will work closely with both cooperatives and independent, commercial responders to maximize spill response effectiveness. The MPA and its member companies have committed more than $400 million for the acquisition of capital equipment for MSRC, an unprecedented record in American business history. MSRC is also involved in research programs concerning remote sensing, in-situ burning, dispersants, handling of recovered material, and shoreline countermeasures.

  6. Automatic Calculation of Oil Slick Area from Multiple SAR Acquisitions for Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Osmanoğlu, B.; Özkan, C.; Sunar, F.; Staples, G.

    2012-07-01

    The Deepwater Horizon oil spill occurred in the Gulf of Mexico in April 2010 and became the largest accidental marine oil spill in history. Oil leaked continuously between April 20th and July 15th of 2010, releasing about 780, 000m3 of crude oil into the Gulf of Mexico. The oil spill caused extensive economical and ecological damage to the areas it reached, affecting the marine and wildlife habitats along with fishing and tourism industries. For oil spill mitigation efforts, it is important to determine the areal extent, and most recent position of the contaminated area. Satellitebased oil pollution monitoring systems are being used for monitoring and in hazard response efforts. Due to their high accuracy, frequent acquisitions, large area coverage and day-and-night operation Synthetic Aperture Radar (SAR) satellites are a major contributer of monitoring marine environments for oil spill detection. We developed a new algorithm for determining the extent of the oil spill from multiple SAR images, that are acquired with short temporal intervals using different sensors. Combining the multi-polarization data from Radarsat-2 (C-band), Envisat ASAR (C-band) and Alos-PALSAR (L-band) sensors, we calculate the extent of the oil spill with higher accuracy than what is possible from only one image. Short temporal interval between acquisitions (hours to days) allow us to eliminate artifacts and increase accuracy. Our algorithm works automatically without any human intervention to deliver products in a timely manner in time critical operations. Acquisitions using different SAR sensors are radiometrically calibrated and processed individually to obtain oil spill area extent. Furthermore the algorithm provides probability maps of the areas that are classified as oil slick. This probability information is then combined with other acquisitions to estimate the combined probability map for the spill.

  7. Thickness characterisation of oil spills using active microwave sensors

    NASA Astrophysics Data System (ADS)

    True, Michael; Shuchman, Robert A.; Kletzli, D. W., Jr.; Johannessen, Johnny A.; Digranes, Gunar; Berg, Sverre; Dalland, Kjell

    1994-12-01

    Oil thickness is a crucial parameter in the characterization of oil spills for environmental impact. The feasibility of using active microwave sensors to measure thickness was addressed in a series of microwave scatterometer experiments performed by Simrad Marine A/S in a wave tank at the Nansen Environmental Remote Sensing Center. The thickness of the oil layer was maintained at levels similar to the thick part of an oil spill (0.1 - 1 mm). The measurements showed the capability of active microwave sensors to measure oil spill thickness when the oil type is known. In addition to thickness characterization, the experiment studied the effects of oil viscosity, incidence angle, wind speed, wind angle, microwave frequency, and polarization. The backscatter contrast was observed to be greater for lower incidence angles which indicates that the ERS-1 viewing geometry is optimum for the detection and measurement of thick oil slicks. A thickness-dependent backscatter model was developed which included the effects of oil viscosity, composite surface effects, and oil-water reflectivities. The model viscous effects saturated when the oil thickness was greater than the viscous boundary layer thickness. This explained the observed C-VV backscatter contrast saturation for low viscosity diesel oil at thicknesses greater than 0.15 mm. The model predicted contrast saturation at greater thicknesses for the higher viscosity oils. The data showed this trend but the measurements did not extend to thicknesses which tested the model completely.

  8. Analysis of remote sensing data collected for detection and mapping of oil spills: Reduction and analysis of multi-sensor airborne data of the NASA Wallops oil spill exercise of November 1978

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Airborne, remotely sensed data of the NASA Wallops controlled oil spill were corrected, reduced and analysed. Sensor performance comparisons were made by registering data sets from different sensors, which were near-coincident in time and location. Multispectral scanner images were, in turn, overlayed with profiles of correlation between airborne and laboratory-acquired fluorosensor spectra of oil; oil-thickness contours derived (by NASA) from a scanning fluorosensor and also from a two-channel scanning microwave radiometer; and synthetic aperture radar X-HH images. Microwave scatterometer data were correlated with dual-channel (UV and TIR) line scanner images of the oil slick.

  9. Oil spill impact modeling: development and validation.

    PubMed

    French-McCay, Deborah P

    2004-10-01

    A coupled oil fate and effects model has been developed for the estimation of impacts to habitats, wildlife, and aquatic organisms resulting from acute exposure to spilled oil. The physical fates model estimates the distribution of oil (as mass and concentrations) on the water surface, on shorelines, in the water column, and in the sediments, accounting for spreading, evaporation, transport, dispersion, emulsification, entrainment, dissolution, volatilization, partitioning, sedimentation, and degradation. The biological effects model estimates exposure of biota of various behavior types to floating oil and subsurface contamination, resulting percent mortality, and sublethal effects on production (somatic growth). Impacts are summarized as areas or volumes affected, percent of populations lost, and production foregone because of a spill's effects. This paper summarizes existing information and data used to develop the model, model algorithms and assumptions, validation studies, and research needs. Simulation of the Exxon Valdez oil spill is presented as a case study and validation of the model. PMID:15511105

  10. Study of Oil spill in Norwegian area using Decomposition Techniques on RISAT-1 Hybrid Polarimetric Data.

    NASA Astrophysics Data System (ADS)

    Jayasri, P. V.; Usha Sundari, H. S. V.; Kumari, E. V. S. Sita; Prasad, A. V. V.

    2014-11-01

    Over past few years Synthetic Aperture Radar(SAR) has received a considerable attention for monitoring and detection of oil spill due to its unique capabilities to provide wide-area surveillance and day and night measurements, almost independently from atmospheric conditions. The critical part of the oil spill detection is to distinguish oil spills from other natural phenomena. Stokes vector analysis of the image data is studied to estimate the polarized circular and linear components of the backscatter signal which essentially utilize the degree of polarization(m) and relative phase (δ) of the target. In a controlled oil spill experiment conducted at Norwegian bay during 17th to 22nd June 2014, RISAT-1 hybrid polarimetry images were utilized to study the characteristics of oil spill in the sea. The preliminary results obtained by using polarimetric decomposition technique on hybrid polarimetric data to decipher the polarimetric characteristics of oil spills from natural waters are discussed in the paper.

  11. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-01-01

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  12. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-07-04

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  13. Ecological Impacts during the Deepwater Horizon Oil Spill

    EPA Science Inventory

    The Deepwater Horizon (DWH) oil spill was the largest spill and response effort in United States history. Nearly 800 million L of oil was spilled in the Gulf of Mexico, and nearly 7 million L of chemical dispersants were applied in at the ocean surface and subsea1. The DWH spill ...

  14. EVALUATION OF OIL SPILL DISPERSANT TESTING REQUIREMENTS

    EPA Science Inventory

    The research program evaluates the cost effectiveness of the procedures for testing oil spill dispersants as specified in Annex X of the National Oil and Hazardous Substances Pollution Contingency Plan. The testing procedure is described in detail in the Standard Dispersant Effec...

  15. THE FEASIBILITY OF IDENTIFYING MYSTERY OIL SPILLS

    EPA Science Inventory

    Several off-the-shelf passive tagging techniques for identifying the origin of mystery oil spills were evaluated to determine the viability of enforcement provisions of Maine's Oil Conveyance Law. Duplicating the operating conditions experienced during every-day marine terminals ...

  16. Helping nature clean up oil spills

    SciTech Connect

    Paddock, A.

    1996-11-01

    Oil spills are nothing new. In fact, for millions of years crude oil has been seeping up to the Earth`s surface, and for all that time Mother Nature has been on the job with microbes, or bacteria, to harmlessly convert the oil to water and carbon dioxide gas. Not all bacteria are bad. True, some can make us sick, however, the good ones help us bake bread, brew beer, and even clean up oil spills by a process known as biodegradation. Oil and bacteria don`t easily get together because oil and water don`t mix and bacteria prefer to stay in water. After some oil tankers spills in the English Channel 25 years ago, major oil companies (Arco, BP, Exxon, and others) developed oil dispersant products-specialized chemicals that make oils and sea water mix. The simplest examples of similar wetting agents are soaps and detergents. Now, thanks to dispersants, the natural bacteria at sea can easily get to the oil and the normally slow biodegradation process goes rather quickly.

  17. Combinative hypergraph learning on oil spill training dataset

    NASA Astrophysics Data System (ADS)

    Wei, Binghui; Cheng, Ming; Wang, Cheng; Li, Jonathan

    2016-03-01

    Detecting oil spill from open sea based on Synthetic Aperture Radar (SAR) image is a very important work. One of key issues is to distinguish oil spill from "look-alike". There are many existing methods to tackle this issue including supervised and semi-supervised learning. Recent years have witnessed a surge of interest in hypergraph-based transductive classification. This paper proposes combinative hypergraph learning (CHL) to distinguish oil spill from "look-alike". CHL captures the similarity between two samples in the same category by adding sparse hypergraph learning to conventional hypergraph learning. Experimental results have demonstrated the effectiveness of CHL in comparison to the state-of-the-art methods and showed that our proposed method is promising.

  18. OIL SPILL AND OIL POLLUTION REPORTS. VOLUME 5. NUMBER 1

    EPA Science Inventory

    The November 1977-January 1978 issue begins Volume 5 of OIL SPILL AND OIL POLLUTION REPORTS, a quarterly compilation of abstracts of current oil pollution-related literature and research projects. Comprehensive coverage of terrestrial and aquatic oil pollution and its prevention ...

  19. Investigating Montara platform oil spill accident by implementing RST-OIL approach.

    NASA Astrophysics Data System (ADS)

    Satriano, Valeria; Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    Oil Spills represent one of the most harmful events to marine ecosystems and their timely detection is crucial for their mitigation and management. The potential of satellite data for their detection and monitoring has been largely investigated. Traditional satellite techniques usually identify oil spill presence applying a fixed threshold scheme only after the occurrence of an event, which make them not well suited for their prompt identification. The Robust Satellite Technique (RST) approach, in its oil spill detection version (RST-OIL), being based on the comparison of the latest satellite acquisition with its historical value, previously identified, allows the automatic and near real-time detection of events. Such a technique has been already successfully applied on data from different sources (AVHRR-Advanced Very High Resolution Radiometer and MODIS-Moderate Resolution Imaging Spectroradiometer) showing excellent performance in detecting oil spills both during day- and night-time conditions, with an high level of sensitivity (detection also of low intensity events) and reliability (no false alarm on scene). In this paper, RST-OIL has been implemented on MODIS thermal infrared data for the analysis of the Montara Platform (Timor Sea - Australia) oil spill disaster occurred in August 2009. Preliminary achievements are presented and discussed in this paper.

  20. Offshore oil spill response practices and emerging challenges.

    PubMed

    Li, Pu; Cai, Qinhong; Lin, Weiyun; Chen, Bing; Zhang, Baiyu

    2016-09-15

    Offshore oil spills are of tremendous concern due to their potential impact on economic and ecological systems. A number of major oil spills triggered worldwide consciousness of oil spill preparedness and response. Challenges remain in diverse aspects such as oil spill monitoring, analysis, assessment, contingency planning, response, cleanup, and decision support. This article provides a comprehensive review of the current situations and impacts of offshore oil spills, as well as the policies and technologies in offshore oil spill response and countermeasures. Correspondingly, new strategies and a decision support framework are recommended for improving the capacities and effectiveness of oil spill response and countermeasures. In addition, the emerging challenges in cold and harsh environments are reviewed with recommendations due to increasing risk of oil spills in the northern regions from the expansion of the Arctic Passage. PMID:27393213

  1. Development of an oil spill forecast system for offshore China

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2015-12-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  2. Development of an oil spill forecast system for offshore China

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2016-07-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  3. Tourism and its hypersensitivity to oil spills.

    PubMed

    Cirer-Costa, Joan Carles

    2015-02-15

    The sinking of the Don Pedro merchant ship in 2007 near the island of Ibiza is a good example of the extreme sensitivity of the tourism sector to oil spills. Despite the limited scale of the spill (only some 20 tonnes), its minimal ecological impact, and the rapid deployment of personnel and equipment to contain it, the accident nonetheless caused significant economic damage to the island's tourism sector. This particular case demonstrates the importance of the beach as a factor of production in the holiday tourism sector, and the capacity of even small amounts of oil to render it unusable and cause heavy losses to holiday firms. PMID:25561004

  4. Oil Spill! Student Guide and Teacher Guide. OEAGLS Investigation 17.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.; Ihle, Stephanie

    Presented in this unit are three activities concerning the causes and effects of oil spills and methods used to clean up these spills in the oceans and Great Lakes. Students construct and interpret a graph showing oil pollution sources. The students create and try to clean up a small-scale oil spill in a pan, and they compare the water quality of…

  5. 77 FR 60454 - Exxon Valdez Oil Spill Public Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Office of the Secretary Exxon Valdez Oil Spill Public Advisory Committee AGENCY: Office of the Secretary... renewal of the Exxon Valdez Oil Spill Public Advisory committee. SUPPLEMENTARY INFORMATION: The Court Order establishing the Exxon Valdez Oil Spill Trustee Council also requires a public advisory...

  6. 78 FR 54669 - Exxon Valdez Oil Spill Public Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Office of the Secretary Exxon Valdez Oil Spill Public Advisory Committee AGENCY: Office of the Secretary... announcing a public meeting of the Exxon Valdez Oil Spill Public Advisory Committee. DATES: October 3, 2013...-5011. SUPPLEMENTARY INFORMATION: The Exxon Valdez Oil Spill Public Advisory Committee was created...

  7. Oil spill dispersants: boon or bane?

    PubMed

    Prince, Roger C

    2015-06-01

    Dispersants provide a reliable large-scale response to catastrophic oil spills that can be used when the preferable option of recapturing the oil cannot be achieved. By allowing even mild wave action to disperse floating oil into tiny droplets (<70 μm) in the water column, seabirds, reptiles, and mammals are protected from lethal oiling at the surface, and microbial biodegradation is dramatically increased. Recent work has clarified how dramatic this increase is likely to be: beached oil has an environmental residence of years, whereas dispersed oil has a half-life of weeks. Oil spill response operations endorse the concept of net environmental benefit, that any environmental costs imposed by a response technique must be outweighed by the likely benefits. This critical review discusses the potential environmental debits and credits from dispersant use and concludes that, in most cases, the potential environmental costs of adding these chemicals to a polluted area are likely outweighed by the much shorter residence time, and hence integrated environmental impact, of the spilled oil in the environment. PMID:25938731

  8. Combating oil spill problem using plastic waste

    SciTech Connect

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  9. A sustainable approach to controlling oil spills.

    PubMed

    Al-Majed, Abdul Aziz; Adebayo, Abdulrauf Rasheed; Hossain, M Enamul

    2012-12-30

    As a result of the huge economic and environmental destruction from oil spills, studies have been directed at improving and deploying natural sorbents which are not only the least expensive but also the safest means of spill control. This research reviews the limitations and environmental impact of existing cleanup methods. It also justifies the need for concerted research effort on oil spill control using natural and sustainable technology concepts. The article proposes future guidelines for the development of a sustainable cleanup technology. Finally, guidelines for the development of a new technology for the Middle East are proposed, which is the use of an abundant resource--date palm fibers--for such techniques. PMID:23037316

  10. The economy of oil spills: direct and indirect costs as a function of spill size.

    PubMed

    Liu, Xin; Wirtz, Kai W

    2009-11-15

    As a rational basis for addressing both ecological and economic consequences of oil spills, a combination of simulating and estimating methods is proposed in this paper. An integration of the state-of-the-art oil spill contingency simulation system OSCAR with economic assessment method leads to realistic oil spill scenarios including their biological and economic impacts and the effort taken for combat as well as to an estimate for the total oil spill costs. In order to derive a simple function of total costs depending on few spill characteristics such as size, a number of hypothetical scenarios are simulated and evaluated for the German North Sea area. Results reveal that response costs of per unit oil spilled as well as integrated costs of oil released are simply characterized as two particular power-law functions of spill size. Such relationships can be straightforward transferred into decision making for efficient prevention and combat strategy in the study area. PMID:19576685

  11. OIL SPILL AND OIL POLLUTION REPORTS: AUGUST 1977-OCTOBER 1977

    EPA Science Inventory

    The August 1977 - October 1977 issue of Oil Spill and Oil Pollution Reports is a quarterly compilation of oil pollution publications and ongoing project summaries. Presented in the report are: (a) summaries and citations of published literature and patents; (b) summaries and stat...

  12. Self-similar distribution of oil spills in European coastal waters

    NASA Astrophysics Data System (ADS)

    Redondo, Jose M; Platonov, Alexei K

    2009-01-01

    Marine pollution has been highlighted thanks to the advances in detection techniques as well as increasing coverage of catastrophes (e.g. the oil tankers Amoco Cadiz, Exxon Valdez, Erika, and Prestige) and of smaller oil spills from ships. The new satellite based sensors SAR and ASAR and new methods of oil spill detection and analysis coupled with self-similar statistical techniques allow surveys of environmental pollution monitoring large areas of the ocean. We present a statistical analysis of more than 700 SAR images obtained during 1996-2000, also comparing the detected small pollution events with the historical databases of great marine accidents during 1966-2004 in European coastal waters. We show that the statistical distribution of the number of oil spills as a function of their size corresponds to Zipf's law, and that the common small spills are comparable to the large accidents due to the high frequency of the smaller pollution events. Marine pollution from tankers and ships, which has been detected as oil spills between 0.01 and 100 km2, follows the marine transit routes. Multi-fractal methods are used to distinguish between natural slicks and spills, in order to estimate the oil spill index in European coastal waters, and in particular, the north-western Mediterranean Sea, which, due to the influence of local winds, shows optimal conditions for oil spill detection.

  13. Contributions to oil-spill detection and analysis with radar and microwave radiometry: Results of the Archimedes II campaign

    SciTech Connect

    Bartsch, N.; Gruner, K.; Keydel, W.; Witte, F.

    1987-11-01

    During the Archimedes II campaign in November 1985 (conducted and sponsored by JRC ISPRA) different DFVLR-instruments were flown, an X-band SLAR, an elementary L-band SAR, and microwave radiometers at 32 and 90 GHz. The objective of these measurements was to evaluate the possibility of detection, localization, and qualification of oil pollution with microwave sensors. Examples of measurement results obtained are presented. As a main result, it can be stated that all of these microwave instruments are valuable and necessary tools for oil pollution detection and oil collection systems.

  14. Aquatic oil spill cleanup using natural sorbents.

    PubMed

    Paulauskienė, Tatjana; Jucikė, Indrė

    2015-10-01

    One of the most popular transportation methods of crude oil is water transport, leading to potential spills of these pollutants in the seas and oceans and water areas of ports, during their extraction, transportation, transhipment and use. The growth of the Lithuanian economy and the expansion of competitiveness were hardly imagined without the development of the Klaipeda seaport. However, the intensity of shipping and the increase in cargo loading volumes at specialised terminals are associated with a higher risk of environmental pollution. To achieve a sustainable development of the seaport, it is necessary not only to ensure the prevention of potential water pollution but also, if necessary, to use environmentally friendly technology for pollution management. The work analyses the possibilities related to the collection of oil products from the water surface using natural sorbents (peat, wool, moss and straw) and their composites.The research of absorbed amount of crude oil and diesel fuel spilled on the water surface, while using sorbents and their composites, determined that sorbents' composite straw-peat (composition percentage of straw-peat 25-75 %) absorbs the major amount of both crude oil (60 % of the spilled volume) and diesel fuel (69 % of the spilled volume) comparing to single sorbents and sorbents' composite straw-peat (composition percentage of straw-peat 50-50 %). PMID:25994272

  15. Coast Guard's Response to Spilled Oil

    ERIC Educational Resources Information Center

    Ard, R. W., Jr.

    1976-01-01

    The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…

  16. TECHNIQUES FOR MIXING DISPERSANTS WITH SPILLED OIL

    EPA Science Inventory

    The effective use of some oil spill dispersants requires the addition of mixing energy to the dispersant-treated slick. Various methods of energy application have included the use of fire hose streams directed to the water surface, outboard motors mounted on work boats, and the f...

  17. A predictive ocean oil spill model

    SciTech Connect

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  18. Cyber Physical Intelligence for Oil Spills (CPI)

    NASA Astrophysics Data System (ADS)

    Lary, D. J.

    2015-12-01

    The National Academy of Sciences estimate 1.7 to 8.8 million tons of oil are released into global waters every year. The effects of these spills include dead wildlife, oil covered marshlands and contaminated water. Deepwater horizon cost approximately $50 billion and severely challenged response capabilities. In such large spills optimizing a coordinated response is a particular challenge. This challenge can be met in a revolutionary new way by using an objectively optimized Cyber Physical Decision Making System (CPS) for rapid response products and a framework for objectively optimized decision-making in an uncertain environment. The CPS utilizes machine learning for the processing of the massive real-time streams of Big Data from comprehensive hyperspectral remote sensing acquired by a team of low-cost robotic aerial vehicles, providing a real-time aerial view and stream of hyperspectral imagery from the near UV to the thermal infrared, and a characterization of oil thickness, oil type and oil weathering. The objective decision making paradigm is modeled on the human brain and provides the optimal course trajectory for response vessels to achieve the most expeditious cleanup of oil spills using the available resources. In addition, oil spill cleanups often involve surface oil burns that can lead to air quality issues. The aerial vehicles comprehensively characterize air quality in real-time, streaming location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S) and the full size distribution of airborne particulates. This CPS can be readily applied to other systems in agriculture, water conversation, monitoring of stream quality, air quality, diagnosing risk of wild fires, etc..

  19. Shoreline oiling from the Deepwater Horizon oil spill.

    PubMed

    Nixon, Zachary; Zengel, Scott; Baker, Mary; Steinhoff, Marla; Fricano, Gail; Rouhani, Shahrokh; Michel, Jacqueline

    2016-06-15

    We build on previous work to construct a comprehensive database of shoreline oiling exposure from the Deepwater Horizon (DWH) spill by compiling field and remotely-sensed datasets to support oil exposure and injury quantification. We compiled a spatial database of shoreline segments with attributes summarizing habitat, oiling category and timeline. We present new simplified oil exposure classes for both beaches and coastal wetland habitats derived from this database integrating both intensity and persistence of oiling on the shoreline over time. We document oiling along 2113km out of 9545km of surveyed shoreline, an increase of 19% from previously published estimates and representing the largest marine oil spill in history by length of shoreline oiled. These data may be used to generate maps and calculate summary statistics to assist in quantifying and understanding the scope, extent, and spatial distribution of shoreline oil exposure as a result of the DWH incident. PMID:27098990

  20. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.

    PubMed

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang; Tang, Zeyan; Cheng, Yongcun; Pichel, William G

    2013-06-15

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil spills, we performed two numerical simulations to simulate the trajectories of the oil spills with the GNOME (General NOAA Operational Modeling Environment) model. For the first time, we drive the GNOME with currents obtained from an operational ocean model (NCOM, Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (ASCAT, the Advanced Scatterometer). Both data sets are freely and openly available. The initial oil spill location inputs to the model are based on the detected oil spill locations from the SAR images acquired on June 11 and 14. Three oil slicks are tracked simultaneously and our results show good agreement between model simulations and subsequent satellite observations in the semi-enclosed shallow sea. Moreover, GNOME simulation shows that the number of 'splots', which denotes the extent of spilled oil, is a vital factor for GNOME running stability when the number is less than 500. Therefore, oil spill area information obtained from satellite sensors, especially SAR, is an important factor for setting up the initial model conditions. PMID:23618498

  1. Operational approach for oil spill monitoring

    NASA Astrophysics Data System (ADS)

    Franca, Gutemberg B.; Landau, Luiz; Tores, Audalio R., Jr.; Drumond, Jose A. L.; Fragoso, Mauricio R.; De Almeida, Ricardo C.; Cunha, Gerson G.; Pedroso, Enrico C.; Beisl, Carlos H.

    2003-05-01

    This paper presents the methodological approach of the oil spill monitoring system that is being put into operation by the National Petroleum Agency (NPA) in Brazil. The methodology is based on integrated analysis of multi-sensor data which includes satellites products, such as, GOES and AVHRR Sea Surface Temperature (SST), SeaWiFs chlorophyll concentration, QuikScat near sea surface wind field, GOES and AVHRR convective rain areas, and Synthetic Aperture RADAR (SAR) data from RADARSAT-1 satellite. The methodology is implemented by means of a system composed by four subsystems called, data reception (SAR, GOES, NOAA and QuikScat), Integrator, hydrodynamic model and database. The methodology was applied to the accidental oil spill caused by PETROBRAS oil rig P-36. A RADARSAT-1 image was acquired during accident period at 21:07 (GMT) on 22nd of March 2001 and used. The results are presented and discussed.

  2. Bioremediation of crude oil spills in marine and terrestrial environments

    SciTech Connect

    Prince, R.C.

    1995-12-31

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work.

  3. Sea otter oil spill avoidance study

    SciTech Connect

    Davis, R.W.; Williams, T.M.; Awbrey, F.

    1988-04-01

    To determine whether acoustic, visual, or olfactory stimuli could be used to move sea otters out of an area in the event of an oil spill, the authors recorded the responses of sea otters to a variety of stimuli during captive studies in Alaska. These findings are similar to those of previous attempts to control the movements of sea otters and other marine mammals and birds. An alternative to herding is to capture otters in the vicinity of the spill and temporarily hold them in captivity. This approach is only practical if the number of otters in jeopardy is small (less than 60) and there is enough time to capture them. Based on the results of the study and previous attempts by the California Department of Fish and Game to herd sea otters, the authors do not think acoustic, visual, and olfactory stimuli are effective deterrents. In the absence of effective methods to keep sea otters out of an oil spill, the emphasis must remain on spill prevention, containment, and cleanup.

  4. Combating oil spill problem using plastic waste.

    PubMed

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. PMID:26105077

  5. Oil spill response group aiming for full operation

    SciTech Connect

    Crow, P.

    1991-12-02

    In 15 months the first national oil spill cleanup organization plans to be in operation at sites around the U.S. coast. This paper reports that the Marine Spill Response Corp. (MSRC), financed by major oil companies, plans to begin full operation Feb. 18, 1993. It is considering starting limited operations in selected regions before then. Following the 1989 Exxon Valdez oil spill, an American Petroleum Institute task force proposed creation of a private offshore oil spill response agency. Individual oil companies then began a nonprofit firm that has evolved into MSRC. MSRC has a clearly defined role: It exists to sponsor oil spill research and to respond to catastrophic spills from offshore pipelines, platforms, rigs and tankers, carrying the oil of its sponsoring companies.

  6. ALASKAN OIL SPILL BIOMEDIATION PROJECT

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Office of Research and Development entered into a cooperative agreement with the Exxon Company to initiate a bioremediation study as part of an effort to clean up oil on the shorelines of Prince William Sound, Alaska. The presence of oil...

  7. Sea otter oil-spill mitigation study

    SciTech Connect

    Davis, R.W.; Thomas, J.; Williams, T.M.; Kastelein, R.; Cornell, L.

    1986-05-01

    The objective of the study was to analyze the effectiveness of existing capture, transport, cleaning, and rehabilitation methods and develop new methods to reduce the impact of an accidental oil spill to California sea otters, resulting from the present conditions or from future Outer Continental Shelf (OCS) oil and gas development in State or Federal waters. In addition, the study investigated whether or not a systematic difference in thermal conductivity existed between the pelts of Alaska and California Sea otters. This was done to assure that conclusions drawn from the oiling experiments carried out at Hubbs Marine Research Institute, Tetra Tech, Inc. contributed to the overall study by preparing a literature review and report on the fate and effects of oil dispersants and chemically dispersed oil.

  8. Development of an oil spill information system combining remote sensing data and surveillance metadata

    NASA Astrophysics Data System (ADS)

    Tufte, Lars; Trieschmann, Olaf; Carreau, Philippe; Hunsaenger, Thomas; Clayton, Peter J. S.; Barjenbruch, Ulrich

    2004-02-01

    The detection of accidentally or illegal marine oil discharges in the German territorial waters of the North Sea and Baltic Sea is of great importance for combating of oil spills and protection of the marine ecosystem. Therefore the German Federal Ministry of Transport set up an airborne surveillance system consisting of two Dornier DO 228-212 aircrafts equipped with a Side-Looking Airborne Radar (SLAR), a IR/UV sensor, a Microwave Radiometer (MWR) for quantification and a Laser-Flurosensor (LFS) for classification purposes of the oil spills. The flight parameters and the remote sensing data are stored in a database during the flight. A Pollution Observation Log is completed by the operator consisting of information about the detected oil spill (e.g. position, length, width) and several other information about the flight (e.g. name of navigator, name of observer). The objective was to develop an oil spill information system which integrates the described data, metadata and includes visualization and spatial analysis capabilities. The metadata are essential for further statistical analysis in spatial and temporal domains of oil spill occurrences and of the surveillance itself. It should facilitate the communication and distribution of metadata between the administrative bodies and partners of the German oil spill surveillance system. A connection between a GIS and the database allows to use the powerful visualization and spatial analysis functionality of the GIS in conjunction with the oil spill database.

  9. Potential impacts of the Deepwater Horizon oil spill on large pelagic fishes

    NASA Astrophysics Data System (ADS)

    Frias-Torres, Sarrah; Bostater, Charles R., Jr.

    2011-11-01

    Biogeographical analyses provide insights on how the Deepwater Horizon oil spill impacted large pelagic fishes. We georeferenced historical ichthyoplankton surveys and published literature to map the spawning and larval areas of bluefin tuna, swordfish, blue marlin and whale shark sightings in the Gulf of Mexico with daily satellite-derived images detecting surface oil. The oil spill covered critical areas used by large pelagic fishes. Surface oil was detected in 100% of the northernmost whale shark sightings, in 32.8 % of the bluefin tuna spawning area and 38 % of the blue marlin larval area. No surface oil was detected in the swordfish spawning and larval area. Our study likely underestimates the extend of the oil spill due to satellite sensors detecting only the upper euphotic zone and the use of dispersants altering crude oil density, but provides a previously unknown spatio-temporal analysis.

  10. Bacteria Provide Cleanup of Oil Spills, Wastewater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  11. Proceedings of the Workshop on Government Oil Spill Modeling

    NASA Technical Reports Server (NTRS)

    Bishop, J. M. (Compiler)

    1980-01-01

    Oil spill model users and modelers were brought together for the purpose of fostering joint communication and increasing understanding of mutual problems. The workshop concentrated on defining user needs, presentations on ongoing modeling programs, and discussions of supporting research for these modeling efforts. Specific user recommendations include the development of an oil spill model user library which identifies and describes available models. The development of models for the long-term fate and effect of spilled oil was examined.

  12. Ecological impacts of the Deepwater Horizon oil spill

    EPA Science Inventory

    The Deepwater Horizon oil spill (DWH) was the largest environmental disaster and response effort in United States history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep ocean communities and over 1...

  13. Ecological Impacts During the Deepwater Horizon Oil Spill Response

    EPA Science Inventory

    The Deepwater Horizon (DWH) oil spill was the largest environmental disaster and response effort in U.S. history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep-ocean communities and over 1,600 kilo...

  14. Application of a step-by-step fingerprinting identification method on a spilled oil accident in the Bohai Sea area

    NASA Astrophysics Data System (ADS)

    Sun, Peiyan; Gao, Zhenhui; Cao, Lixin; Wang, Xinping; Zhou, Qing; Zhao, Yuhui; Li, Guangmei

    2011-03-01

    In recent years, oil spill accidents occur frequently in the marine area of China. Finding out the spilled oil source is a key step in the relevant investigation. In this paper, a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002. Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples. The original gas chromatography -flame ionization detection (GC-FID) chromatogram of saturated hydrocarbons was compared. The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane, n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed. The correlation analysis on diagnostic ratios was performed with Student's t-test. It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory. They both showed the fingerprinting character of mixed oil. The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character. The identification result not only gave support for the spilled oil investigation, but also served as an example for studying spilled oil accidents.

  15. Source apportionment in oil spill remediation.

    PubMed

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes oil in this case and the contribution that Caño Limon made to the total oil ranged from 0% to 74%. The total hydrocarbon concentrations were lower after cleaning indicating an efficacy of 90% although the reduction in Caño Limon oil was smaller. This was sufficient to make further remediation unnecessary. PMID:22588176

  16. Oil spill removal techniques and equipment. (Latest citations from Oceanic Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  17. Oil-spill removal techniques and equipment. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  18. Oil spill removal techniques and equipment. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  19. Oil spill removal techniques and equipment. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning equipment and techniques used for control, detection, dispersion, and disposal of oil spills particularly within harbors and estuaries. Topics include chemical dispersants, mechanical skimmers, and biodegradation. The citations also explore spill impact on habitats, marine life, and water birds. (Contains 250 citations and includes a subject term index and title list.)

  20. 75 FR 21648 - MMS Information Collection Activity: 1010-0106, Oil Spill Financial Responsibility for Offshore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Minerals Management Service MMS Information Collection Activity: 1010-0106, Oil Spill Financial... Part 253, Oil Spill Financial Responsibility for Offshore Facilities.'' DATES: Submit written comments... collection of information. SUPPLEMENTARY INFORMATION: Title: 30 CFR Part 253, Oil Spill...

  1. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  2. Field evaluations of marine oil spill bioremediation.

    PubMed

    Swannell, R P; Lee, K; McDonagh, M

    1996-06-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  3. In Situ Burning of Oil Spills

    PubMed Central

    Evans, David D.; Mulholland, George W.; Baum, Howard R.; Walton, William D.; McGrattan, Kevin B.

    2001-01-01

    For more than a decade NIST conducted research to understand, measure and predict the important features of burning oil on water. Results of that research have been included in nationally recognized guidelines for approval of intentional burning. NIST measurements and predictions have played a major role in establishing in situ burning as a primary oil spill response method. Data are given for pool fire burning rates, smoke yield, smoke particulate size distribution, smoke aging, and polycyclic aromatic hydrocarbon content of the smoke for crude and fuel oil fires with effective diameters up to 17.2 m. New user-friendly software, ALOFT, was developed to quantify the large-scale features and trajectory of wind blown smoke plumes in the atmosphere and estimate the ground level smoke particulate concentrations. Predictions using the model were tested successfully against data from large-scale tests. ALOFT software is being used by oil spill response teams to help assess the potential impact of intentional burning. PMID:27500022

  4. Oil spills: Legal aspects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the legal aspects of oil spills. Topics include general perspectives on oil spills, EPA's response to oil spills, legal and corporate response to oil spills, public interest groups' attitudes on oil spills, and economic and political approaches to the problems caused by oil spills. Federal, state and local legislation dealing with these problems is emphasized. (Contains 250 citations and includes a subject term index and title list.)

  5. Floating Oil-Spill Containment Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2012-01-01

    Previous oil containment booms have an open top that allows natural gas to escape, and have significant oil leakage due to wave action. Also, a subsea pyramid oil trap exists, but cannot move relative to moving oil plumes from deepsea oil leaks. The solution is to have large, moveable oil traps. One version floats on the sea surface and has a flexible tarp cover and a lower weighted skirt to completely entrap the floating oil and natural gas. The device must have at least three sides with boats pulling at each apex, and sonar or other system to track the slowly moving oil plume, so that the boats can properly locate the booms. The oil trap device must also have a means for removal of the oil and the natural gas. A second design version has a flexible pyramid cover that is attached by lines to ballast on the ocean floor. This is similar to fixed, metal pyramid oil capture devices in the Santa Barbara Channel off the coast of California. The ballast lines for the improved design, however, would have winches that can move the pyramid to always be located above the oil and gas plume. A third design is a combination of the first two. It uses a submerged pyramid to trap oil, but has no anchor and uses boats to locate the trap. It has ballast weights located along the bottom of the tarp and/or at the corners of the trap. The improved floating oil-spill containment device has a large floating boom and weighted skirt surrounding the oil and gas entrapment area. The device is triangular (or more than three sides) and has a flexible tarp cover with a raised gas vent area. Boats pull on the apex of the triangles to maintain tension and to allow the device to move to optimum locations to trap oil and gas. The gas is retrieved from a higher buoyant part of the tarp, and oil is retrieved from the floating oil layer contained in the device. These devices can be operated in relatively severe weather, since waves will break over the devices without causing oil leaking. Also, natural

  6. After the Prestige oil spill modifications in NO production and other parameters related to the immune response were detected in hemocytes of Mytilus galloprovincialis.

    PubMed

    Novas, Ana; Barcia, Ramiro; Ramos-Martínez, Juan Ignacio

    2007-12-30

    In marine mollusks, many physiologic functions are regulated seasonally depending on such factors as the reproductive cycle or the presence of food. The synthesis of nitric oxide by hemocytes of Mytilus galloprovincialis is among the multiple physiologic actions in the immune response, and it is also affected by season. The maximal basal production of NO by hemocytes of M. galloprovincialis was detected in summer, whereas the minimum values were detected in winter. In winter, the presence of IL-2 induced an increase in NO production that was not detected in summer. Three months after the Prestige oil spill (November 2002), basal NO production by the hemocytes of mussels in the Galician coast showed a progressive decrease and stopping, both in summer and in winter. The characteristic increase of NO synthesis induced by IL-2 in winter also disappeared all through 2003 and 2004. The two different nitric oxide synthases previously identified by immunoblotting between 1999 and 2002 were undetectable in both 2003 and 2004. When comparing the data obtained during 2003 and 2004 to those obtained in previous years, an increase in the proportion of SH cells was detected. Also, these cells showed a higher sensitivity to apoptosis- and necrosis-inducing agents than in earlier years. PMID:17980924

  7. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    EPA Science Inventory

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  8. Large Oil Spill Classification Using SAR Images Based on Spatial Histogram

    NASA Astrophysics Data System (ADS)

    Schvartzman, I.; Havivi, S.; Maman, S.; Rotman, S. R.; Blumberg, D. G.

    2016-06-01

    Among the different types of marine pollution, oil spill is a major threat to the sea ecosystems. Remote sensing is used in oil spill response. Synthetic Aperture Radar (SAR) is an active microwave sensor that operates under all weather conditions and provides information about the surface roughness and covers large areas at a high spatial resolution. SAR is widely used to identify and track pollutants in the sea, which may be due to a secondary effect of a large natural disaster or by a man-made one . The detection of oil spill in SAR imagery relies on the decrease of the backscattering from the sea surface, due to the increased viscosity, resulting in a dark formation that contrasts with the brightness of the surrounding area. Most of the use of SAR images for oil spill detection is done by visual interpretation. Trained interpreters scan the image, and mark areas of low backscatter and where shape is a-symmetrical. It is very difficult to apply this method for a wide area. In contrast to visual interpretation, automatic detection algorithms were suggested and are mainly based on scanning dark formations, extracting features, and applying big data analysis. We propose a new algorithm that applies a nonlinear spatial filter that detects dark formations and is not susceptible to noises, such as internal or speckle. The advantages of this algorithm are both in run time and the results retrieved. The algorithm was tested in genesimulations as well as on COSMO-SkyMed images, detecting the Deep Horizon oil spill in the Gulf of Mexico (occurred on 20/4/2010). The simulation results show that even in a noisy environment, oil spill is detected. Applying the algorithm to the Deep Horizon oil spill, the algorithm classified the oil spill better than focusing on dark formation algorithm. Furthermore, the results were validated by the National Oceanic and Atmospheric Administration (NOAA) data.

  9. OIL SPILL AND OIL POLLUTION REPORTS

    EPA Science Inventory

    This issue contains summaries of articles, reports, patents, documents, and other materials relating to oil pollution published during the period 1974 to 1976. Subject coverage includes aquatic and terrestrial oil pollution with emphasis on the marine environment. A list of the p...

  10. Western European oil pipeline spills on land decline in 1992

    SciTech Connect

    Not Available

    1994-02-07

    European crude oil and petroleum products pipelines in 1992 had fewer incidents of oil spills than in 1991, spilled less in total volume, and recovered a larger portion of what was spilled than in any single year in the 5-year period beginning in 1988. Only seven incidents of oil spills from pipelines or related facilities occurred in 1992, compared with 14 in 1991 and an average of 12.9/year since 1971. Five spills were from pipelines; two from pump stations. Net loss of oil into the environment was 430 cu m (2,709 bbl) or barely 0.7 ppm of the total volume transported. Gross amount of spills totaled 804 cu m (5,065 bbl), least in the period 1988--92.

  11. OIL SPILL BIOREMEDIATION: EXPERIENCES, LESSONS AND RESULTS FROM THE EXXON VALDEZ OIL SPILL IN ALASKA

    EPA Science Inventory

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  12. Spreading of oil spilled under ice

    SciTech Connect

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  13. Statistics of extremes in oil spill risk analysis.

    PubMed

    Ji, Zhen-Gang; Johnson, Walter R; Wikel, Geoffrey L

    2014-09-01

    The Deepwater Horizon oil spill (DWH) in 2010 in the Gulf of Mexico is the largest accidental marine oil spill in the history of the petroleum industry. After DWH, key questions were asked: What is the likelihood that a similar catastrophic oil spill (with a volume over 1 million barrels) will happen again? Is DWH an extreme event or will it happen frequently in the future? The extreme value theory (EVT) has been widely used in studying rare events, including damage from hurricanes, stock market crashes, insurance claims, flooding, and earthquakes. In this paper, the EVT is applied to analyze oil spills in the U.S. outer continental shelf (OCS). Incorporating the 49 years (1964-2012) of OCS oil spill data, the EVT is capable of describing the oil spills reasonably well. The return period of a catastrophic oil spill in OCS areas is estimated to be 165 years, with a 95% confidence interval between 41 years and more than 500 years. Sensitivity tests indicate that the EVT results are relatively stable. The results of this study are very useful for oil spill risk assessment, contingency planning, and environmental impact statements on oil exploration, development, and production. PMID:25109900

  14. IT - OSRA: applying ensemble simulations to estimate the oil spill hazard associated to operational and accidental oil spills

    NASA Astrophysics Data System (ADS)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; martins, Flavio

    2016-04-01

    Every year, 270,000 tonnes of oil are estimated to be spilled in the ocean by vessel operations (e.g. tank washing, leakage of lubricants) and the so called operational spills are typically associated with small volumes and high occurrence rate. Vessel-related accidental spills (e.g. collisions, explosions) seldom occur and usually involve high volumes of oil, accounting for about 100,000 tonnes/year. The occurrence of accidental spills and their impacts have been well documented in the available literature. On the other hand, occurrence rates of operational spills and the effects they have on the marine and coastal environments remain very uncertain due to insufficient sampling effort and methodological limitations. Trying to foresee when and where an oil spill will occur in a certain area, its characteristics and impacts is, at present, impossible. Oil spill risk assessments (OSRAs) have been employed in several parts of the globe in order to deal with such uncertainties and protect the marine environment. In the present work, we computed the oil spill risk applying ensemble oil spill simulations following an ISO-31000 compliant OSRA methodology (Sepp Neves et al. , 2015). The ensemble experiment was carried out for the Algarve coast (southern Portugal) generating a unique data set of 51,200 numerical oil spill simulations covering the main sources of uncertainties (i.e. where and when the spill will happen and oil spill model configuration). From the generated data set, the risk due to accidental and operational spills was mapped for the Algarve municipalities based on the frequency and magnitude (i.e. concentrations) of beaching events and the main sources of risk were identified. The socioeconomic and environmental dimensions of the risk were treated separately. Seasonal changes in the risk index proposed due to the variability of meteo-oceanographic variables (i.e. currents and waves) were also quantified.

  15. Estimating Potential Effects of Hypothetical Oil Spills on Polar Bears

    USGS Publications Warehouse

    Amstrup, Steven C.; Durner, G.M.; McDonald, T.L.; Johnson, W.R.

    2006-01-01

    Much is known about the transport and fate of oil spilled into the sea and its toxicity to exposed wildlife. Previously, however, there has been no way to quantify the probability that wildlife dispersed over the seascape would be exposed to spilled oil. Polar bears, the apical predator of the arctic, are widely dispersed near the continental shelves of the Arctic Ocean, an area also undergoing considerable hydrocarbon exploration and development. We used 15,308 satellite locations from 194 radiocollared polar bears to estimate the probability that polar bears could be exposed to hypothetical oil spills. We used a true 2 dimensional Gausian kernel density estimator, to estimate the number of bears likely to occur in each 1.00 km2 cell of a grid superimposed over near shore areas surrounding 2 oil production facilities: the existing Northstar oil production facility, and the proposed offshore site for the Liberty production facility. We estimated the standard errors of bear numbers per cell with bootstrapping. Simulated oil spill footprints for September and October, the times during which we hypothesized effects of an oil-spill would be worst, were estimated using real wind and current data collected between 1980 and 1996. We used ARC/Info software to calculate overlap (numbers of bears oiled) between simulated oil-spill footprints and polar bear grid-cell values. Numbers of bears potentially oiled by a hypothetical 5912 barrel spill (the largest spill thought probable from a pipeline breach) ranged from 0 to 27 polar bears for September open water conditions, and from 0 to 74 polar bears in October mixed ice conditions. Median numbers oiled by the 5912 barrel hypothetical spill from the Liberty simulation in September and October were 1 and 3 bears, equivalent values for the Northstar simulation were 3 and 11 bears. In October, 75% of trajectories from the 5912 barrel simulated spill at Liberty oiled 9 or fewer bears while 75% of the trajectories affected 20 or

  16. Testing the Generalization Efficiency of Oil Slick Classification Algorithm Using Multiple SAR Data for Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Ozkan, C.; Osmanoglu, B.; Sunar, F.; Staples, G.; Kalkan, K.; Balık Sanlı, F.

    2012-07-01

    Marine oil spills due to releases of crude oil from tankers, offshore platforms, drilling rigs and wells, etc. are seriously affecting the fragile marine and coastal ecosystem and cause political and environmental concern. A catastrophic explosion and subsequent fire in the Deepwater Horizon oil platform caused the platform to burn and sink, and oil leaked continuously between April 20th and July 15th of 2010, releasing about 780,000 m3 of crude oil into the Gulf of Mexico. Today, space-borne SAR sensors are extensively used for the detection of oil spills in the marine environment, as they are independent from sun light, not affected by cloudiness, and more cost-effective than air patrolling due to covering large areas. In this study, generalization extent of an object based classification algorithm was tested for oil spill detection using multiple SAR imagery data. Among many geometrical, physical and textural features, some more distinctive ones were selected to distinguish oil and look alike objects from each others. The tested classifier was constructed from a Multilayer Perception Artificial Neural Network trained by ABC, LM and BP optimization algorithms. The training data to train the classifier were constituted from SAR data consisting of oil spill originated from Lebanon in 2007. The classifier was then applied to the Deepwater Horizon oil spill data in the Gulf of Mexico on RADARSAT-2 and ALOS PALSAR images to demonstrate the generalization efficiency of oil slick classification algorithm.

  17. Combustive management of oil spills

    SciTech Connect

    Not Available

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  18. Ecological Impacts of the Deepwater Horizon Oil Spill (Bogota, Columbia)

    EPA Science Inventory

    The Deepwater Horizon oil spill (DWH) was the largest environmental disaster and response effort in US History, with nearly 800 million liters spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep ocean communities, protected species, over 1600 km o...

  19. RESIDUAL MUTAGENICITY OF THE ALASKAN OIL SPILL ORGANICS

    EPA Science Inventory

    RESIDUAL MUTAGENICITY OF THE ALASKAN OIL SPILL ORGANICS. L.D.

    The Exxon Valdez, on March 24, 1989, spilled approximately eleven million gallons of Prudhoe Bay crude oil into the waters of Prince William Sound. Approximately 300 miles of
    contaminated beach are potential...

  20. OIL SPILL DEBRIS - WHERE TO PUT THE WASTE

    EPA Science Inventory

    This report is a digest of a workshop on disposal of oil spill debris. Representatives of five New England states and New York agreed that oil spill cleanup and disposal of debris is a major regional problem which must be addressed by identifying disposal sites in advance of majo...

  1. USE OF CHEMICAL DISPERSANTS FOR MARINE OIL SPILLS

    EPA Science Inventory

    Chemical dispersants are one of the tools available to oil spill response personnel to control the spread of an oil slick. The manual presents information from the literature relative to dispersant effectiveness, toxicity and other environmental factors, regulatory and administra...

  2. USE OF CHEMICAL DISPERSANTS FOR MARINE OIL SPILLS

    EPA Science Inventory

    Chemical dispersants are one of the tools available to oil spill response personnel to control the spread of an oil slick. his manual presents information from the literature relative to dispersant effectiveness, toxicity and other environmental factors, regulatory and administra...

  3. Lumber spill in central California waters: implications for oil spills and sea otters

    SciTech Connect

    VanBlaricom, G.R.; Jameson, R.J.

    1982-03-19

    A large quantity of lumber was spilled in the ocean off central California during the winter of 1978, and it spread through most of the range of the threatened California sea otter population within 4 weeks. The movement rates of lumber were similar to those of oil slicks observed elsewhere. These observations indicate that a major oil spill could expose significant numbers of California sea otters to oil contamination.

  4. A GIS planning model for urban oil spill management.

    PubMed

    Li, J

    2001-01-01

    Oil spills in industrialized cities pose a significant threat to their urban water environment. The largest city in Canada, the city of Toronto, has an average 300-500 oil spills per year with an average total volume of about 160,000 L/year. About 45% of the spills was eventually cleaned up. Given the enormous amount of remaining oil entering into the fragile urban ecosystem, it is important to develop an effective pollution prevention and control plan for the city. A Geographic Information System (GIS) planning model has been developed to characterize oil spills and determine preventive and control measures available in the city. A database of oil spill records from 1988 to 1997 was compiled and geo-referenced. Attributes to each record such as spill volume, oil type, location, road type, sector, source, cleanup percentage, and environmental impacts were created. GIS layers of woodlots, wetlands, watercourses, Environmental Sensitive Areas, and Areas of Natural and Scientific Interest were obtained from the local Conservation Authority. By overlaying the spill characteristics with the GIS layers, evaluation of preventive and control solutions close to these environmental features was conducted. It was found that employee training and preventive maintenance should be improved as the principal cause of spills was attributed to human errors and equipment failure. Additionally, the cost of using oil separators at strategic spill locations was found to be $1.4 million. The GIS model provides an efficient planning tool for urban oil spill management. Additionally, the graphical capability of GIS allows users to integrate environmental features and spill characteristics in the management analysis. PMID:11379137

  5. Tanker spills Norwegian crude oil off Shetlands

    SciTech Connect

    Not Available

    1993-01-11

    This paper reports that crude oil was spilling last week from the U.S. owned Braer tanker after the 89,000 dwt vessel ran aground on the south end of Scotland's Shetland Islands. Workers were trying to assess the extent of damage to the tanker, shoreline, and wildlife after the January 5 accident. Braer's cargo amounted to 607,000 bbl of Norwegian oil bound for Canada. Braer loaded its cargo and sailed January 3 from Den norske stats oljeselskap AS's Mongstad, Norway, terminal with crude from Gullfaks field in the Norwegian North Sea. The $11 million shipment was destined for Ultramar Canada Inc.'s 125,000 b/d refinery at St. Romuald, Que.

  6. Panel recommendations on Oil Spill Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mellor, George L.

    A technical panel was convened by the Minerals Management Services (MMS) of the Department of Interior to identify deficiencies and recommend improvements in their Oil Spill Risk Analysis (OSRA) model. Members of the panel were J. M. Bane, Jr. (University of North Carolina, Chapel Hill), G. S. Janowitz (North Carolina State University, Raleigh), T. H. Lee (University of Miami, Miami, Fla.), G. L. Mellor (Princeton University, Princeton, N.J.), M. L. Spaulding (University of Rhode Island, Kingston), and F. M. Vukovich (Research Triangle Institute, Raleigh-Durham, N.C.).The present OSRA model uses climatologically derived near-surface velocity fields on which are superposed oil trajectory velocities derived from the so-called “3.5% rule”: this uses a wind series derived from a “transition probability matrix” statistical approach.

  7. Differences in faecal profiles of porphyrins among river otters exposed to the Exxon Valdez oil spill.

    PubMed

    Blajeski, A; Duffy, L K; Bowyer, R T

    1996-01-01

    Abstract River otters (Lutra canadensis) living in marine environments of Prince William Sound, Alaska, exposed to crude oil from the Exxon Valdez spill in March 1989, showed significantly elevated levels of faecal porphyrin over those of otters from non-oiled areas (oiled mean = 48.2, andnon-oiled mean = 34.5 nmol g(-1) dry faeces). Profiles of uro-, hepta-, hexa-, penta-, copro-, andprotoporphyrin profiles were qualitatively characterized by high-performance liquid chromatography. These findings suggest that river otters may serve as a suitable indicator species in which porphyrin profiles can be used to monitor the effects of marine andfreshwater crude oil exposure. Also, this is the first model showing the effects of an oil spill on porphyrins on a free-ranging mammal using a non-lethal methodology. These effects were detectable 1 year after the spill andfollowing a major effort to clean oil from the shorelines of Prince William Sound. PMID:23888993

  8. Laser cleaning of oil spill on coastal rocks

    NASA Astrophysics Data System (ADS)

    Kittiboonanan, Phumipat; Rattanarojpan, Jidapa; Ratanavis, Amarin

    2015-07-01

    In recent years, oil spills have become a significant environmental problem in Thailand. This paper presents a laser treatment for controlled-clean up oil spill from coastal rocks. The cleaning of various types of coastal rocks polluted by the spill was investigated by using a quasi CW diode laser operating at 808 nm. The laser power was attempted from 1 W to 70 W. The result is shown to lead to the laser removal of oil spill, without damaging the underlying rocks. In addition, the cleaning efficiency is evaluated using an optical microscope. This study shows that the laser technology would provide an attractive alternative to current cleaning methods to remove oil spill from coastal rocks.

  9. The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)

    NASA Astrophysics Data System (ADS)

    Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.

    2014-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency

  10. Change and recovery of coastal mesozooplankton community structure during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Carassou, L.; Hernandez, F. J.; Graham, W. M.

    2014-12-01

    The response of mesozooplankton community structure to the Deepwater Horizon oil spill in the northern Gulf of Mexico was investigated using data from a long-term plankton survey off the coast of Alabama (USA). Environmental conditions observed in the study area during the oil spill (2010) were compared to historical observations (2005-2009), to support the contention that variations observed in zooplankton assemblage structure may be attributed to the oil spill, as opposed to natural climatic or environmental variations. Zooplankton assemblage structure observed during the oil spill period (May-August) in 2010 was then compared to historical observations from the same period (2005-2009). Significant variations were detected in assemblage structure in May and June 2010, but these changes were no longer significant by July 2010. The density of ostracods, cladocerans and echinoderm larvae were responsible for most of the differences observed, but patterns differed depending on taxa and months. Many taxa had higher densities during the oil spill year, including calanoid and cyclopoid copepods, ostracods, bivalve larvae and cladocerans, among others. Although this result is somewhat surprising, it is possible that increased microbial activity related to the infusion of oil carbon may have stimulated secondary production through microbial-zooplankton trophic linkages. Overall, results suggest that, although changes in zooplankton community composition were observed during the oil spill, variations were weak and recovery was rapid.

  11. Studies on marine oil spills and their ecological damage

    NASA Astrophysics Data System (ADS)

    Mei, Hong; Yin, Yanjie

    2009-09-01

    The sources of marine oil spills are mainly from accidents of marine oil tankers or freighters, marine oil-drilling platforms, marine oil pipelines, marine oilfields, terrestrial pollution, oil-bearing atmosphere, and offshore oil production equipment. It is concluded upon analysis that there are two main reasons for marine oil spills: (I) The motive for huge economic benefits of oil industry owners and oil shipping agents far surpasses their sense of ecological risks. (II) Marine ecological safety has not become the main concern of national security. Oil spills are disasters because humans spare no efforts to get economic benefits from oil. The present paper draws another conclusion that marine ecological damage caused by oil spills can be roughly divided into two categories: damage to marine resource value (direct value) and damage to marine ecosystem service value (indirect value). Marine oil spills cause damage to marine biological, fishery, seawater, tourism and mineral resources to various extents, which contributes to the lower quality and value of marine resources.

  12. 75 FR 60097 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... oil spill and to develop options to guard against, and mitigate the impact of, any oil spills... mitigate the impact of, any oil spills associated with offshore drilling in the future. Tentative Agenda... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department...

  13. 75 FR 69652 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... oil spill and to develop options to guard against, and mitigate the impact of, any oil spills... mitigate the impact of, any oil spills associated with offshore drilling in the future. Tentative Agenda... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department...

  14. Effectiveness of bioremediation for the Exxon Valdez oil spill

    NASA Astrophysics Data System (ADS)

    Bragg, James R.; Prince, Roger C.; Harner, E. James; Atlas, Ronald M.

    1994-03-01

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future.

  15. Oil spill fishery impact assessment model: Sensitivity to spill location and timing

    NASA Astrophysics Data System (ADS)

    Spaulding, Malcolm L.; Reed, Mark; Anderson, Eric; Isaji, Tatsusaburo; Swanson, J. Craig; Saila, Saul B.; Lorda, Ernesto; Walker, Henry

    1985-01-01

    An oil spill fishery impact assessment model system has been applied to the Georges Bank-Gulf of Maine region to assess the sensitivity of probable impact on several key fisheries to spill location and timing. Simulations of the impact on the fishery of tanker spills (20 million gallons released over 5 days), at two separate locations for each season of the year, and blowout spills (68 million gallons released over 30 days) at one location, with monthly releases and at six other locations with seasonal spills have been studied. Atlantic cod has been employed as the principal fish species throughout the simulations. Impacts on Atlantic herring and haddock have also been investigated for selected cases. All spill sites are located on Georges Bank with the majority in the general region of OCS leasing activity. The results of these simulations suggest a complex interaction among spill location and timing, the spatial and temporal distribution of spawning, the population dynamics of the species under study, and the hydrodynamics of the area. For the species studied, spills occurring during the winter and spring have the largest impact with cod being the most heavily impacted followed by haddock and herring. In all cases, the maximum cumulative loss to the fishery of a one time spill event never exceeded 25% of the annual catch with the exact value depending on the number of ichthyoplankton impacted by the spill and the compensatory dynamics of the population.

  16. Minimizing risks from spilled oil to ecosystem services using influence diagrams: the Deepwater Horizon spill response.

    PubMed

    Carriger, John F; Barron, Mace G

    2011-09-15

    Decision science tools can be used in evaluating response options and making inferences on risks to ecosystem services (ES) from ecological disasters. Influence diagrams (IDs) are probabilistic networks that explicitly represent the decisions related to a problem and their influence on desired or undesired outcomes. To examine how IDs might be useful in probabilistic risk management for spill response efforts, an ID was constructed to display the potential interactions between exposure events and the trade-offs between costs and ES impacts from spilled oil and response decisions in the DWH spill event. Quantitative knowledge was not formally incorporated but an ID platform for doing this was examined. Probabilities were assigned for conditional relationships in the ID and scenarios examining the impact of different response actions on components of spilled oil were investigated in hypothetical scenarios. Given the structure of the ID, potential knowledge gaps included understanding of the movement of oil, the ecological risk of different spill-related stressors to key receptors (e.g., endangered species, fisheries), and the need for stakeholder valuation of the ES benefits that could be impacted by a spill. Framing the Deepwater Horizon problem domain in an ID conceptualized important variables and relationships that could be optimally accounted for in preparing and managing responses in future spills. These features of the developed IDs may assist in better investigating the uncertainty, costs, and the trade-offs if large-scale, deep ocean spills were to occur again. PMID:21875054

  17. DISPERSANT EFFECTIVENESS ON OIL SPILLS - IMPACT OF ENVIRONMENTAL FACTORS

    EPA Science Inventory

    When a dispersant is applied to an oil slick, its effectiveness in dispersing the spilled oil depends on various factors such as oil properties, wave mixing energy, temperature of both oil and water, and salinity of the water. Estuaries represent water with varying salinities. In...

  18. A tale of two recent spills--comparison of 2014 Galveston Bay and 2010 Deepwater Horizon oil spill residues.

    PubMed

    Yin, Fang; Hayworth, Joel S; Clement, T Prabhakar

    2015-01-01

    Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts. PMID:25714100

  19. Removing Spilled Oil With Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Snow, Daniel B.

    1991-01-01

    Technique proposed to reduce more quickly, contain, clean up, and remove petroleum products and such other pollutants as raw sewage and chemicals without damage to humans, animals, plants, or the environment. Unique and primary aspect of new technique is use of cryogenic fluid to solidify spill so it can be carried away in solid chunks. Liquid nitrogen (LN2), with boiling point at -320 degrees F (-196 degrees C), offers probably best tradeoff among extreme cold, cost, availability, and lack of impact on environment among various cryogenic fluids available. Other applications include extinguishing fires at such locations as oil derricks or platforms and at tank farms containing such petroleum products as gasoline, diesel fuel, and kerosene.

  20. Satellite Observations: Oil Spills Impact on Phytoplankton in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Tang, Danling; Wang, Sufen; Pan, Gang

    2014-11-01

    This study discussed ecological responses to the Penglai oil spills in the Bohai Sea, occurring on June 4, 2011, using MODIS Chlorophyll-a data. After time intervals of 20 days, 12 months and 14 months, phytoplankton blooms appeared at three locations in the surrounding and distant regions of the oil spills in the Bohai Sea. A bloom with high Chlorophyll-a (13.66 mg m-3) spread over an area of 800 km2 on June 18-25, 2011, about 56 km northeast from the location of the oil spills. A pronounced increase in the monthly Chlorophyll-a concentration (6.40 mg m-3) indicating phytoplankton bloom was observed in the Bohai Sea in June 2012. Phytoplankton blooms depend on the amount and composition of oil, toxicity of petroleum hydrocarbons, micro-organisms, and sea ice. The oil spills impact phytoplankton for a long duration, which impacts the marine ecosystem.

  1. Modeling of oil spill beaching along the coast of the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Cheng, Yongcun; Liu, Bingqing; Wei, Yongliang

    2015-12-01

    On June 4 and 17, 2011, two separate oil spill accidents occurred at platforms B and C of the Penglai 19-3 oilfield located in the Bohai Sea, China. Based on the initial oil spill locations detected from the first available Synthetic Aperture Radar (SAR) image acquired on June 11, 2011, we performed a numerical experiment to simulate the potential oil spill beaching area with the General NOAA Operational Modeling Environment (GNOME) model. The model was driven by ocean surface currents from an operational ocean model (Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (the Advanced Scatterometer). Under the forcing of wind and ocean currents, some of the oil spills reached land along the coast of Qinhuangdao within 12 days. The results also demonstrate that the ocean currents are likely to carry the remaining oil spills along the Bohai coast towards the northeast. The predicted oil spill beaching area was verified by reported in-situ measurements and former studies based on MODIS observations.

  2. OIL SPILL RESEARCH AND DEVELOPMENT NEEDS FOR THE 1990'S

    EPA Science Inventory

    In the 1970s and the early 1980s the emphasis of Federally-sponsored oil spill research was on mechanical spill control devices and removal methods such as booms, skimmers, and sorbents, with later efforts also focused on dispersing agents. The preponderance of the work was direc...

  3. OIL SPILL RESPONSE SCENARIOS FOR REMOTE ARCTIC ENVIRONMENTS

    EPA Science Inventory

    Special problems occur during oil spill cleanup in remote inland areas in cold climates. In Alaska these problems result from the harsh climate, the unusual terrain features, and the special problems of spills along swift rivers. The analysis begins with a description of the envi...

  4. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 3A. SIMULATION OF OIL SPILLS AND DISPERSANTS UNDER CONDITIONS OF UNCERTAINTY

    EPA Science Inventory

    At the request of the US EPA Oil Program Center, ERD is developing an oil spill model that focuses on fate and transport of oil components under various response scenarios. This model includes various simulation options, including the use of chemical dispersing agents on oil sli...

  5. Planning for the Human Dimensions of Oil Spills and Spill Response

    NASA Astrophysics Data System (ADS)

    Webler, Thomas; Lord, Fabienne

    2010-04-01

    Oil spill contingency planners need an improved approach to understanding and planning for the human dimensions of oil spills. Drawing on existing literature in social impact assessment, natural hazards, human ecology, adaptive management, global change and sustainability, we develop an integrative approach to understanding and portraying the human dimensions impacts of stressors associated with oil spill events. Our approach is based on three fundamental conclusions that are drawn from this literature review. First, it is productive to acknowledge that, while stressors can produce human impacts directly, they mainly affect intermediary processes and changes to these processes produce human impacts. Second, causal chain modeling taken from hazard management literature provides a means to document how oil spill stressors change processes and produce human impacts. Third, concepts from the global change literature on vulnerability enrich causal models in ways that make more obvious how management interventions lessen hazards and mitigate associated harm. Using examples from recent spill events, we illustrate how these conclusions can be used to diagrammatically portray the human dimensions of oil spills.

  6. Spilled Oils: Static Mixtures or Dynamic Weathering and Bioavailability?

    PubMed Central

    Carls, Mark G.; Larsen, Marie L.; Holland, Larry G.

    2015-01-01

    Polynuclear aromatic hydrocarbons (PAHs) from sequestered MV Selendang Ayu oil were biologically available in 2008, 3.6 y after it was spilled along Unalaska Island, Alaska. Thermodynamically driven weathering was the most probable mechanism of organism exposure to PAHs. Alkane and PAH composition in oil changed over time as smaller constituents were preferentially lost, indicative of weathering. In contrast, composition of the largest compounds (biomarkers) including triterpanes, hopanes, and steranes remained unchanged. Smaller molecules (the PAHs) lost from stranded oil were observed in indigenous mussels and passive samplers deployed in July 2008. Concentration and composition of PAHs were significantly different than in a non-oiled reference area and patterns observed in mussels were repeated in passive samplers deployed in three zones (intertidal, subtidal, and water). Thus, hydrocarbons lost from one compartment (sequestered whole oil) were detectable in another (mussels and passive samplers) implying aqueous transfer. Quantities of mobile oil constituents were small, yielding uptake concentrations that are likely inconsequential for mussels, but the sensitivity provided by bioaccumulation and passive sampler uptake ensured that dissolved hydrocarbons were detectable. PMID:26332909

  7. Oil spill monitoring via microwave tomography enhanced GPR surveys

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Affinito, Antonio; Bertolla, Luciana; Porsani, Jorge Luís; Soldovieri, Francesco

    2014-09-01

    Oil spill detection and monitoring deserve huge attention in environmental protection as well as for timely planning maintenance actions, with the final aim to mitigate soil pollution. In this frame, the requirement for detailed subsurface diagnostics, while performing non-invasive surveys, motivates the use of ground penetrating radar (GPR) systems and their continuous development in order to improve the achievable performance. Moving in this direction, this paper aims at investigating the reconstruction capabilities of a full 3D microwave tomography approach as a tool for pollution characterization and imaging. The microwave tomography approach exploits a Born Approximation based model of the electromagnetic scattering phenomenon and is capable of accounting for the vectorial nature of the wave-material interaction. The reconstruction capabilities are assessed against experimental data referred to oil spill in dry and water saturated sand soils, gathered in laboratory controlled conditions at the Department of Geophysics of the University of São Paulo, Brazil. The provided results state that the full 3D microwave tomography approach is able to gain accurate images of the surveyed scenarios allowing to acquire information on the oil diffusion process in both the considered soils.

  8. A method for quantitative mapping of thick oil spills using imaging spectroscopy

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Eric; Kokaly, Raymond F.; Hoefen, Todd; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Pearson, Neil; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Bradley, Eliza; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne; The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Team

    2010-01-01

    In response to the Deepwater Horizon oil spill in the Gulf of Mexico, a method of near-infrared imaging spectroscopic analysis was developed to map the locations of thick oil floating on water. Specifically, this method can be used to derive, in each image pixel, the oil-to-water ratio in oil emulsions, the sub-pixel areal fraction, and its thicknesses and volume within the limits of light penetration into the oil (up to a few millimeters). The method uses the shape of near-infrared (NIR) absorption features and the variations in the spectral continuum due to organic compounds found in oil to identify different oil chemistries, including its weathering state and thickness. The method is insensitive to complicating conditions such as moderate aerosol scattering and reflectance level changes from other conditions, including moderate sun glint. Data for this analysis were collected by the NASA Airborne Visual Infrared Imaging Spectrometer (AVIRIS) instrument, which was flown over the oil spill on May 17, 2010. Because of the large extent of the spill, AVIRIS flight lines could cover only a portion of the spill on this relatively calm, nearly cloud-free day. Derived lower limits for oil volumes within the top few millimeters of the ocean surface directly probed with the near-infrared light detected in the AVIRIS scenes were 19,000 (conservative assumptions) to 34,000 (aggressive assumptions) barrels of oil. AVIRIS covered about 30 percent of the core spill area, which consisted of emulsion plumes and oil sheens. Areas of oil sheen but lacking oil emulsion plumes outside of the core spill were not evaluated for oil volume in this study. If the core spill areas not covered by flight lines contained similar amounts of oil and oil-water emulsions, then extrapolation to the entire core spill area defined by a MODIS (Terra) image collected on the same day indicates a minimum of 66,000 to 120,000 barrels of oil was floating on the surface. These estimates are preliminary and

  9. Exceptions to the rules of oil-spill behavior: Case studies of major oil spills of the past twenty years

    SciTech Connect

    Hayes, M.O.

    1994-11-01

    Studies of major oil spills over the past 20 yr have allowed an evolution of our understanding of how to respond to and remediate the environmental impacts from such spills. There have been a number of spills for which follow-up research has provided major turning points that allowed the development of certain rules of oil-spill behavior. For example, the spill of over 100,000 tons of crude oil by the tanker Urquiola on the coast of Spain in May 1976 demonstrated the importance of hydrodynamic energy level in natural cleanup processes. Research on the spill of over 200,000 tons of crude oil along the coast of France by the tanker Amoco Cadiz in March 1978 allowed a better understanding of the long-term effects of spilled oil on exposed tidal flats and salt marshes. The oil spilled by the tanker Exxon Valdez in Prince William Sound, Alaska, in March 1989 impacted many miles of gravel beaches, which were treated by a number of methods, including some innovative berm-relocation techniques. A thorough understanding of the coastal geomorphology and processes of the spill site was essential for the development of meaningful contingency and response plans. Research on the impacts of intertidal habitats of the coast of Saudi Arabia during the Gulf War spill of 1991 indicates that some previously held concepts on oil behavior and fate on shorelines must be revised. One of the best established rules of oil-spill behavior was that the depth of oil penetration on sand beaches and tidal flats increases with increasing sediment grain size. However, no such correlation was found on the Saudi Arabian coast, primarily due to the presence of secondary porosity (e.g., bubble sand, extensive burrows, and gypsum crystals). The oil penetrated to depths of tens of centimeters, even in fine sand, which has significantly slowed natural removal processes and weathering rates. These sediments remained heavily oiled with incipient asphalt pavements forming two years after the spill.

  10. 75 FR 37783 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... spill and develop options to guard against, and mitigate the impact of, any oil spills associated with... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department of... meeting of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling...

  11. 50 CFR 622.14 - Area closures related to the Deepwater Horizon oil spill.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Horizon oil spill. 622.14 Section 622.14 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... spill. (a) Caribbean EEZ area closure related to Deepwater Horizon oil spill. Effective May 11, 2010... Web site: http://sero.nmfs.noaa.gov/deepwater_horizon_oil_spill.htm. (b) Gulf EEZ area closure...

  12. The oil spill in ageing Bruch membrane

    PubMed Central

    Curcio, Christine A; Johnson, Mark; Rudolf, Martin; Huang, Jiahn-Dar

    2013-01-01

    Ageing is the largest risk factor for age-related macular degeneration (AMD), and soft drusen and basal linear deposits are lipid-rich extracellular lesions specific to AMD. Oil red O binding neutral lipid represents a major age-related deposition in the Bruch membrane (BrM) and the first identified druse component. Decades after these seminal observations, a natural history of neutral lipid deposition has been articulated and a biochemical model proposed. Results obtained with multiple biochemical, histochemical, and ultrastructural methods, and supported indirectly by epidemiology, suggest that the RPE secretes apolipoprotein B (apoB)-lipoprotein particles of unusual composition into BrM, where they accumulate with age eventually forming a lipid wall, a precursor of basal linear deposit. The authors propose that constituents of these lesions interact with reactive oxygen species to form pro-inflammatory peroxidised lipids that elicit neovascularisation. Here, the authors summarise key evidence supporting both accumulation of BrM lipoproteins leading to lesion formation and lipoprotein production by the RPE. The authors update their model with genetic associations between AMD and genes historically associated with plasma HDL metabolism, and suggest future directions for research and therapeutic strategies based on an oil-spill analogy. PMID:21890786

  13. Federal seafood safety response to the Deepwater Horizon oil spill.

    PubMed

    Ylitalo, Gina M; Krahn, Margaret M; Dickhoff, Walton W; Stein, John E; Walker, Calvin C; Lassitter, Cheryl L; Garrett, E Spencer; Desfosse, Lisa L; Mitchell, Karen M; Noble, Brandi T; Wilson, Steven; Beck, Nancy B; Benner, Ronald A; Koufopoulos, Peter N; Dickey, Robert W

    2012-12-11

    Following the 2010 Deepwater Horizon oil spill, petroleum-related compounds and chemical dispersants were detected in the waters of the Gulf of Mexico. As a result, there was concern about the risk to human health through consumption of contaminated seafood in the region. Federal and Gulf Coast State agencies worked together on a sampling plan and analytical protocols to determine whether seafood was safe to eat and acceptable for sale in the marketplace. Sensory and chemical methods were used to measure polycyclic aromatic hydrocarbons (PAHs) and dispersant in >8,000 seafood specimens collected in federal waters of the Gulf. Overall, individual PAHs and the dispersant component dioctyl sodium sulfosuccinate were found in low concentrations or below the limits of quantitation. When detected, the concentrations were at least two orders of magnitude lower than the level of concern for human health risk. Once an area closed to fishing was free of visibly floating oil and all sensory and chemical results for the seafood species within an area met the criteria for reopening, that area was eligible to be reopened. On April 19, 2011 the area around the wellhead was the last area in federal waters to be reopened nearly 1 y after the spill began. However, as of November 9, 2011, some state waters off the Louisiana coast (Barataria Bay and the Delta region) remain closed to fishing. PMID:22315401

  14. Federal seafood safety response to the Deepwater Horizon oil spill

    PubMed Central

    Ylitalo, Gina M.; Krahn, Margaret M.; Dickhoff, Walton W.; Stein, John E.; Walker, Calvin C.; Lassitter, Cheryl L.; Garrett, E. Spencer; Desfosse, Lisa L.; Mitchell, Karen M.; Noble, Brandi T.; Wilson, Steven; Beck, Nancy B.; Benner, Ronald A.; Koufopoulos, Peter N.; Dickey, Robert W.

    2012-01-01

    Following the 2010 Deepwater Horizon oil spill, petroleum-related compounds and chemical dispersants were detected in the waters of the Gulf of Mexico. As a result, there was concern about the risk to human health through consumption of contaminated seafood in the region. Federal and Gulf Coast State agencies worked together on a sampling plan and analytical protocols to determine whether seafood was safe to eat and acceptable for sale in the marketplace. Sensory and chemical methods were used to measure polycyclic aromatic hydrocarbons (PAHs) and dispersant in >8,000 seafood specimens collected in federal waters of the Gulf. Overall, individual PAHs and the dispersant component dioctyl sodium sulfosuccinate were found in low concentrations or below the limits of quantitation. When detected, the concentrations were at least two orders of magnitude lower than the level of concern for human health risk. Once an area closed to fishing was free of visibly floating oil and all sensory and chemical results for the seafood species within an area met the criteria for reopening, that area was eligible to be reopened. On April 19, 2011 the area around the wellhead was the last area in federal waters to be reopened nearly 1 y after the spill began. However, as of November 9, 2011, some state waters off the Louisiana coast (Barataria Bay and the Delta region) remain closed to fishing. PMID:22315401

  15. Characterization and identification of a "mystery" oil spill from Quebec (1999).

    PubMed

    Wang, Z; Fingas, M; Sigouin, L

    2001-02-16

    This paper describes a case study in which advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical compositions and determine the source of an unknown spilled oil from Quebec. On 28 February 1999, significant amounts of oil was reported on the river banks of St. Laurence River in front of a company named "Thermex" (in a town - Beauharnois, Quebec, about 50 km northwest of Montreal). The spilled oil was suspected to be released from a nearby factory. In response to this specific site investigation needs, a tiered analytical approach using GC-MS and GC-flame ionization detection was applied. A variety of diagnostic ratios of "source-specific marker" compounds, in particular isomers of biomarkers and alkylated series of polycyclic aromatic hydrocarbons within the same alkylation groups, were determined and analyzed. The hydrocarbon analysis results reveal the following: (1) the spilled oil is very "specific", and is significantly different from most crude oils in chemical composition; (2) the oil in samples come from the same source, however, the spill sample 2569 was identified to contain a small amount (approximately 10%) of diesel; (3) the spilled oil was relatively "fresh", its chemical composition has not undergone significant alteration yet; (4) the spilled oil showed unusually high concentration of the US Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs). The "Pyrogenic Index" values were determined to be as high as 0.11-0.13, significantly higher than crude oils (<0.010) and heavy Bunker type fuels (0.015-0.060). This indicates significant contribution of PAH composition from pyrogenic components; (5) biomarkers were also detected, but their concentrations were unusually low in comparison to most crude oils. PMID:11269516

  16. Comparison of two shoreline assessment programs conducted for the Exxon Valdez oil spill

    SciTech Connect

    Harner, E.J.; Gilfillan, E.S.

    1995-12-31

    Two large shoreline assessment studies conducted in 1990 in Prince William Sound, Alaska, after the Exxon Valdez oil spill used different design strategies to determine the impact of oiling on shoreline biota. One of the studies, the Coastal Habitat Injury Assessment (CHIA) conducted for the Exxon Valdez Oil Spill Council, used matched pairs of sites, normal population distributions for biota, and meta-analysis. The power of the CHIA study to detect oiling impacts depends on being able to identify and select appropriate pairs of sites for comparison. The CHIA study also increased the oiling signal by focusing on moderate to heavily oiled sites. The Shoreline Ecology Program (SEP), conducted for Exxon, used a stratified-random-sampling study design, normal and non-normal population distributions and covariates. The SEP study was able to detect oiling impacts by using a sufficient number of sites and widely spaced transects.

  17. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    EPA Science Inventory

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  18. THE OHIO RIVER OIL SPILL: A CASE STUDY

    EPA Science Inventory

    The spill of diesel oil fuel from an Ashland Oil storage tank in January 1988 on the Monongahela River raised a number of technical, legislative, and administrative issues. These include as assessing long- and short-term environmental damage, evaluating regulations regarding oil ...

  19. Effects of exposure to oil spills on human health: Updated review.

    PubMed

    Laffon, Blanca; Pásaro, Eduardo; Valdiglesias, Vanessa

    2016-01-01

    Oil spills may involve health risks for people participating in the cleanup operations and coastal inhabitants, given the toxicological properties of the oil components. In spite of this, only after a few major oil spills (crude oil or fuel oil no. 6) have studies on effects of exposure to diverse aspects of human health been performed. Previously, Aguilera et al. (2010) examined all documents published to that date dealing with any type of human health outcome in populations exposed to oil spills. The aim of the present review was to compile all new information available and determine whether evidence reported supports the existence of an association between exposure and adverse human health risks. Studies were classified in three groups according to type of health outcome addressed: (i) effects on mental health, (ii) physical/physiological effects, and (iii) genotoxic, immunotoxic, and endocrine toxicity. New studies published on oil-spill-exposed populations-coastal residents in the vicinity of the spills or participants in cleanup operations-provide additional support to previous evidence on adverse health effects related to exposure regarding different parameters in all three categories considered. Some of the observed effects even indicated that several symptoms may persist for some years after exposure. Hence, (1) health protection in these individuals should be a matter of concern; and (2) health risk assessment needs to be carried out not only at the time of exposure but also for prolong periods following exposure, to enable early detection of any potential exposure-related harmful effects. PMID:27221976

  20. Hopper dredges applied to the Alaska oil spill, March 1989

    SciTech Connect

    Patterson, K.H.; Redlinger, J.F.

    1992-03-01

    On March 24, 1989, the oil tanker Exxon Valdez ran aground in Prince William Sound, Alaska. This accident resulted in the largest American oil spill ever and spoiled one of the most pristine areas in North America. In April 1989, the US Army Corps of Engineers was requested to assist in the cleanup of this disastrous oil spill. Two of the Corps' minimum fleet hopper dredges, the Yaquina and the Essayons, were dispatched to assist in collecting oil. Although unmodified hopper dredges had never been used in this capacity, the Yaquina and the Essayons proved to be the most effective tools in the recovery of oil. Given proper air support, adequate containment boom, and commitment at the earliest possible time, hopper dredges can make a significant contribution to the cleanup of large oil spills.

  1. U. S. oil spill law to cause growing tanker problem

    SciTech Connect

    Price, R.B.

    1991-09-30

    This paper reports on tanker owners which face a growing dilemma on the issue of oil spill liability. The U.S. Oil Pollution Act, passed last year in the wake of the March 1989 Exxon Valdez oil spill, was intended to reduce risk of and damage from such accidents. However, in addition to phasing in double hulls on most tankers operating in U.S. waters, the law substantially increases shipowner's liability for spills. And the federal law does not preempt state liability laws, which in most cases amount to unlimited liability for spill cleanup. Rather than face potentially unlimited liability in the event of a spill, tanker owners worldwide are exercising a number of options to shield themselves. Some of those options could increase the potential for oil spills, industry officials warn. The act also threatens to shatter the international alliance among shippers. A report by Drewry Shipping Consultants Ltd., London, says the law could have a devastating effect on operating practices. Tanker owners and operators have voiced the most opposition to the new spill law and the shackles it places on them. Now the industry that insures tankers has spoken up about is increased liability, and it too may launch a boycott.

  2. Fate and toxicity of spilled oil from the Exxon Valdez. Subtidal study number 4. Exxon Valdez oil spill, state/federal natural resource damage assessment final report

    SciTech Connect

    Wolfe, D.A.

    1996-03-01

    Three separate papers are represented in this final report; Toxicity of intertidal and subtidal sediments contaminated by the Exxon Valdez oil spill; Comparative toxicities of polar and non-polar organic fractions from sediments affected by the Exxon Valdez oil spill in Prince William Sound, Alaska; and Fate of the oil spilled from the T/V Exxon Valdez in Prince William Sound, Alaska.

  3. Introduction to coastal habitats and biological resources for oil-spill response

    SciTech Connect

    Hayes, M.O.; Hoff, R.; Michel, J.; Scholz, D.; Shigenaka, G.

    1992-04-01

    The report discusses the physical, geological, and biological considerations relevant to oil behavior and oil spill response and cleanup. The intent is to contribute to an informed and effective oil spill response in coastal waters.

  4. Robotic swarm concept for efficient oil spill confrontation.

    PubMed

    Kakalis, Nikolaos M P; Ventikos, Yiannis

    2008-06-15

    This paper examines the behaviour of a distributed system/robotic swarm concept for the effective confrontation of oil spills. The system described consists of a number of identical robotic units of high-power autonomy that recover oil mechanically and are able to communicate with each other. A mathematical model that accounts for a multitude of oil weathering processes and for the concerted action of the autonomous units is implemented for this investigation. Computational assessment of the robotic swarm in weathering oil spills indicates the potential effectiveness of the method. PMID:18077087

  5. Guidance for use of the oil spill liability trust fund

    SciTech Connect

    1997-02-01

    This guidance document has been prepared to assist On-Scene Coordinators (OSCs) and financial management personnel in accessing and using the Oil Spill Liability Trust Fund (OSLTF) in orders to conduct oil pollution removal actions under Section 311(c) of the Clean Water Act (CWA) and Section 1012 of the Oil Pollution Act of 1990 (OPA), and fully accounting for OSLTF funds. This document details the requirments and procedures for use of the OSLTF that are described in the Memorandum of Understanding between the U.S. Environmental Protection Agency and the U.S. Coast Guard for use of the Oil Spill Liability Trust Fund (MOU).

  6. DOE's Portal to Deepwater Horizon Oil Spill Data

    DOE Data Explorer

    On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

  7. Environmental implications of oil spills from shipping accidents.

    PubMed

    Rogowska, Justyna; Namieśnik, Jacek

    2010-01-01

    Since ancient times, ships have sunk during storms, either as a result of collisions with other vessels or running onto rocks. However, the ever-increasing importance of crude oil in the twentieth century and the corresponding growth in the world's tanker fleet have drawn attention to the negative implications of sea transport. Disasters involving tankers like the Torrey Canyon or the Amoco Cadiz have shown how dramatic the consequences of such an accident may be. The effects of oil spills at sea depend on numerous factors, such as the physicochemical parameters of the oil, the characteristics of the environment affected, and the physical, chemical, and biological processes occurring there, such as evaporation, dissolution, dispersion, emulsification, photo-oxidation, biodegradation, and sedimentation. The combination of these processes reduces the concentrations of hydrocarbons in sediments and water and alters the chemical composition of spilled oils. In every case, oil spills pose a danger to fauna and flora and cause damage to sea and shores ecosystems. Many of the petroleum-related chemicals that are spilled are toxic, otherwise carcinogenic or can be bioaccumulated in the tissues of marine organisms. Such chemicals may then be biomagnified up the marine food chain from phytoplankton to fish, then to seals and other carnivorous sea mammals. Moreover, oil products can be accumulated and immobilized in bottom deposits for long periods of time. Oil spills are particularly dangerous when they occur in small inland seas that have intense sea traffic, e.g., the Baltic Sea. PMID:20652670

  8. Tracking the Deepwater Horizon Oil Spill: A Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert H.; Hu, Chuanmin; Zheng, Lianyuan

    2011-02-01

    The Deepwater Horizon oil spill was caused by a drilling rig explosion on 20 April 2010 that killed 11 people. It was the largest oil spill in U.S. history and presented an unprecedented threat to Gulf of Mexico marine resources. Although oil gushing to the surface diminished after the well was capped, on 15 July 2010, much remains to be known about the oil and the dispersants beneath the surface, including their trajectories and effects on marine life. A system for tracking the oil, both at the surface and at depth, was needed for mitigation efforts and ship survey guidance. Such a system was implemented immediately after the spill by marshaling numerical model and satellite remote sensing resources available from existing coastal ocean observing activities [e.g., Weisberg et al., 2009]. Analyzing this system's various strengths and weaknesses can help further improve similar systems designed for other emergency responses.

  9. Brine Spills Associated with Unconventional Oil Development in North Dakota.

    PubMed

    Lauer, Nancy E; Harkness, Jennifer S; Vengosh, Avner

    2016-05-17

    The rapid rise of unconventional oil production during the past decade in the Bakken region of North Dakota raises concerns related to water contamination associated with the accidental release of oil and gas wastewater to the environment. Here, we characterize the major and trace element chemistry and isotopic ratios ((87)Sr/(86)Sr, δ(18)O, δ(2)H) of surface waters (n = 29) in areas impacted by oil and gas wastewater spills in the Bakken region of North Dakota. We establish geochemical and isotopic tracers that can identify Bakken brine spills in the environment. In addition to elevated concentrations of dissolved salts (Na, Cl, Br), spill waters also consisted of elevated concentrations of other contaminants (Se, V, Pb, NH4) compared to background waters, and soil and sediment in spill sites had elevated total radium activities ((228)Ra + (226)Ra) relative to background, indicating accumulation of Ra in impacted soil and sediment. We observed that inorganic contamination associated with brine spills in North Dakota is remarkably persistent, with elevated levels of contaminants observed in spills sites up to 4 years following the spill events. PMID:27119384

  10. Process of cleaning oil spills and the like

    SciTech Connect

    Breisford, J.A.

    1993-06-01

    A process of cleaning spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like from bodies of water, garage floors, roadways and the like, comprising spraying unbonded shredded fiberglass blowing wool composition particles onto the spill, absorbing the spill into the shredded fiberglass blowing wool composition particles, and removing the soaked shredded fiberglass blowing wool composition particles and the spill absorbed therein. An absorbent composition for absorbing spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and like, comprising shredded fiberglass blowing wool particles, and means for absorbing the spill and for stiffening the co-position so that the composition fights against being compressed so that less of the absorbed spill escapes from the composition when it is being removed from the spill, said means including cork particles dispersed in with the fiberglass blowing wool particles. An absorbent sock for absorbing or containing a spill of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like, comprising a hollow tube, said tube being permeable to the toxic or hazardous materials and being made of nylon or polypropylene, and unbonded, shredded fiberglass blowing wool composition particles enclosed in the tube. Apparatus for controlling an oil slick on the surface of water, comprising a craft for traversing the slick, a supply of fiberglass blowing wool composition particles stored on the craft in position for being dispersed, shredding means on the craft for shredding the fiberglass blowing wool particles to form unbonded, shredded fiberglass blowing wool particles, and dispensing means on the craft for dispensing the unbonded, shredded fiberglass blowing wool particles onto the slick.

  11. Behavior and persistence of spilled oil on shoreline

    SciTech Connect

    Michel, J. )

    1991-03-01

    Recent oil spills have re-demonstrated the range of shoreline impacts that are possible from medium to large spills in the United States, i.e., the Exxon Valdez spill which significantly contaminated over 1000 km of shoreline in Alaska and the Mega Borg, which resulted in widely scattered tar balls over a small area. Immediate and total removal of stranded oil should not always be the primary objective. Instead, shoreline cleanup strategies developed for oil spills need to consider the persistence and short- to long-term persistence of stranded oil. There are several general guidelines on the persistence of stranded oil. High-energy shorelines are rapidly and effectively cleaned by natural processes, although there are micro-environments where oil tends to persist (wave shadows, supratidal zone, rock crevices, etc.). On sand and mixed sand and gravel beaches, oil tends to be buried below clean layers of sediment, but erosional/depositional cycles will result in oil removal, usually within one year. In sheltered environments (wetlands, tidal flats) oil will persist for long periods; therefore, oil removal is frequently required, though it is usually poorly implemented. Cobble/boulder beaches, while usually very complex, present a special problem. They can be found in a range of energy settings, with years between periods of storm activity. These beaches can hold large volumes of oil; they can be a source of long-term ({gt} one year) leaching and sheening; subsurface oil is very difficult to remove by surface treatment methods; and they have poorly understood sedimentation patterns, so it is difficult to predict rates of sediment reworking. Studies of recent oil spills have shown a need for shoreline-specific technologies for these types of beaches.

  12. IT-OSRA: applying ensemble simulations to estimate the oil spill risk associated to operational and accidental oil spills

    NASA Astrophysics Data System (ADS)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; Martins, Flavio

    2016-08-01

    Oil Spill Risk Assessments (OSRAs) are widely employed to support decision making regarding oil spill risks. This article adapts the ISO-compliant OSRA framework developed by Sepp Neves et al. (J Environ Manag 159:158-168, 2015) to estimate risks in a complex scenario where uncertainties related to the meteo-oceanographic conditions, where and how a spill could happen exist and the risk computation methodology is not yet well established (ensemble oil spill modeling). The improved method was applied to the Algarve coast, Portugal. Over 50,000 simulations were performed in 2 ensemble experiments to estimate the risks due to operational and accidental spill scenarios associated with maritime traffic. The level of risk was found to be important for both types of scenarios, with significant seasonal variations due to the the currents and waves variability. Higher frequency variability in the meteo-oceanographic variables were also found to contribute to the level of risk. The ensemble results show that the distribution of oil concentrations found on the coast is not Gaussian, opening up new fields of research on how to deal with oil spill risks and related uncertainties.

  13. IT-OSRA: applying ensemble simulations to estimate the oil spill risk associated to operational and accidental oil spills

    NASA Astrophysics Data System (ADS)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; Martins, Flavio

    2016-06-01

    Oil Spill Risk Assessments (OSRAs) are widely employed to support decision making regarding oil spill risks. This article adapts the ISO-compliant OSRA framework developed by Sepp Neves et al. (J Environ Manag 159:158-168, 2015) to estimate risks in a complex scenario where uncertainties related to the meteo-oceanographic conditions, where and how a spill could happen exist and the risk computation methodology is not yet well established (ensemble oil spill modeling). The improved method was applied to the Algarve coast, Portugal. Over 50,000 simulations were performed in 2 ensemble experiments to estimate the risks due to operational and accidental spill scenarios associated with maritime traffic. The level of risk was found to be important for both types of scenarios, with significant seasonal variations due to the the currents and waves variability. Higher frequency variability in the meteo-oceanographic variables were also found to contribute to the level of risk. The ensemble results show that the distribution of oil concentrations found on the coast is not Gaussian, opening up new fields of research on how to deal with oil spill risks and related uncertainties.

  14. Oil spill contamination probability in the southeastern Levantine basin.

    PubMed

    Goldman, Ron; Biton, Eli; Brokovich, Eran; Kark, Salit; Levin, Noam

    2015-02-15

    Recent gas discoveries in the eastern Mediterranean Sea led to multiple operations with substantial economic interest, and with them there is a risk of oil spills and their potential environmental impacts. To examine the potential spatial distribution of this threat, we created seasonal maps of the probability of oil spill pollution reaching an area in the Israeli coastal and exclusive economic zones, given knowledge of its initial sources. We performed simulations of virtual oil spills using realistic atmospheric and oceanic conditions. The resulting maps show dominance of the alongshore northerly current, which causes the high probability areas to be stretched parallel to the coast, increasing contamination probability downstream of source points. The seasonal westerly wind forcing determines how wide the high probability areas are, and may also restrict these to a small coastal region near source points. Seasonal variability in probability distribution, oil state, and pollution time is also discussed. PMID:25534630

  15. Effects of the Oil Spill on Alaskan Education.

    ERIC Educational Resources Information Center

    Oldaker, Lawrence Lee

    Oil-industry-produced revenues, help finance Alaskan state and local governmental services including education. Capital losses incurred by the Exxon Corporation and by commerical fisheries as a consequence of the Exxon Valdez oil spill caused an economic recession, the result being diminished financing for a number of governmental programs and…

  16. 40 CFR Appendix E to Part 300 - Oil Spill Response

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Oil Spill Response E Appendix E to Part 300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Pt. 300, App. E Appendix E to Part...

  17. PERFORMANCE TESTS OF FOUR SELECTED OIL SPILL SKIMMERS

    EPA Science Inventory

    A series of performance tests were conducted at the U.S. Environmental Protection Agency's OHMSETT test facility with four selected oil spill pickup devices (skimmers). Each of the four skimmers was tested for two weeks with both high and low viscosity oils. The objectives of the...

  18. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  19. Polarimetric synthetic aperture radar utilized to track oil spills

    NASA Astrophysics Data System (ADS)

    Migliaccio, Maurizio; Nunziata, Ferdinando; Brown, Carl E.; Holt, Benjamin; Li, Xiaofeng; Pichel, William; Shimada, Masanobu

    2012-04-01

    The continued demand for crude oil and related petroleum products along with the resulting upward spiral of the market price of oil have forced oil exploration and production companies to seek out new reserves farther offshore and in deeper waters. The United States is among the top five nations globally in terms of estimated offshore oil reserves and petroleum production. Yet deepwater drilling to extract these reserves is a major engineering challenge for oil companies. Moreover, such drilling activity also comes with a significant environmental risk, and the extremely high pressures associated with deepwater oil wells mean that the mitigation of accidental releases from a deepwater spill is truly a challenging endeavor.

  20. Modeling oil spills in the Med-Sea as a mean of early response in cases of oil leakages

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; De Dominicis, Michela; Perivoliotis, Leonidas; Radhakrishnan, Hari; Lardner, Robin; Pinardi, Nadia; Coppini, Giovanni; Soloviev, Dmitry; Tintore, Joaquin; Sotillo, Marcos; Drago, Aldo; Stylianou, Stavros; Nikolaidis, Andreas; Alves, Tiago; Kokinou, Eleni

    2016-04-01

    key users, such as REMPEC and EMSA. One of the well established oil spill prediction model in MEDESS4MS, is the MEDSLIK, used to provide bulletins and predictions within few hours from the time of receipt of the oil leakage or warnings from SAR images detecting possible oil slicks, in the frame of other projects too, such as EMODNET MedSea check point and RAOP-Med. In addition to the operational use of the oil spill systems, long lasting simulations were also carried out to examine the seasonal and inter-annual likely oil spill trajectories and the likelihood the oil will impact the coastal zones in the Eastern Mediterranean Levantine Basin.

  1. Efficient tools for marine operational forecast and oil spill tracking.

    PubMed

    Marta-Almeida, Martinho; Ruiz-Villarreal, Manuel; Pereira, Janini; Otero, Pablo; Cirano, Mauro; Zhang, Xiaoqian; Hetland, Robert D

    2013-06-15

    Ocean forecasting and oil spill modelling and tracking are complex activities requiring specialised institutions. In this work we present a lighter solution based on the Operational Ocean Forecast Python Engine (OOFε) and the oil spill model General NOAA Operational Modelling Environment (GNOME). These two are robust relocatable and simple to implement and maintain. Implementations of the operational engine in three different regions with distinct oceanic systems, using the ocean model Regional Ocean Modelling System (ROMS), are described, namely the Galician region, the southeastern Brazilian waters and the Texas-Louisiana shelf. GNOME was able to simulate the fate of the Prestige oil spill (Galicia) and compared well with observations of the Krimsk accident (Texas). Scenarios of hypothetical spills in Campos Basin (Brazil) are illustrated, evidencing the sensitiveness to the dynamical system. OOFε and GNOME are proved to be valuable, efficient and low cost tools and can be seen as an intermediate stage towards more complex operational implementations of ocean forecasting and oil spill modelling strategies. PMID:23643409

  2. Oil spill problems and sustainable response strategies through new technologies.

    PubMed

    Ivshina, Irena B; Kuyukina, Maria S; Krivoruchko, Anastasiya V; Elkin, Andrey A; Makarov, Sergey O; Cunningham, Colin J; Peshkur, Tatyana A; Atlas, Ronald M; Philp, James C

    2015-07-01

    Crude oil and petroleum products are widespread water and soil pollutants resulting from marine and terrestrial spillages. International statistics of oil spill sizes for all incidents indicate that the majority of oil spills are small (less than 7 tonnes). The major accidents that happen in the oil industry contribute only a small fraction of the total oil which enters the environment. However, the nature of accidental releases is that they highly pollute small areas and have the potential to devastate the biota locally. There are several routes by which oil can get back to humans from accidental spills, e.g. through accumulation in fish and shellfish, through consumption of contaminated groundwater. Although advances have been made in the prevention of accidents, this does not apply in all countries, and by the random nature of oil spill events, total prevention is not feasible. Therefore, considerable world-wide effort has gone into strategies for minimising accidental spills and the design of new remedial technologies. This paper summarizes new knowledge as well as research and technology gaps essential for developing appropriate decision-making tools in actual spill scenarios. Since oil exploration is being driven into deeper waters and more remote, fragile environments, the risk of future accidents becomes much higher. The innovative safety and accident prevention approaches summarized in this paper are currently important for a range of stakeholders, including the oil industry, the scientific community and the public. Ultimately an integrated approach to prevention and remediation that accelerates an early warning protocol in the event of a spill would get the most appropriate technology selected and implemented as early as possible - the first few hours after a spill are crucial to the outcome of the remedial effort. A particular focus is made on bioremediation as environmentally harmless, cost-effective and relatively inexpensive technology. Greater

  3. Optical detection of oil on water

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1973-01-01

    Three radiometric techniques utilizing sunlight reflected and backscattered from water bodies have potential application for remote sensing of oil spills. Oil on water can be detected by viewing perpendicular polarization component of reflected light or difference between polarization components. Best detection is performed in ultraviolet or far-red portions of spectrum and in azimuth directions toward or opposite sun.

  4. Movement of spilled oil as predicted by estuarine nontidal drift

    USGS Publications Warehouse

    Conomos, T.J.

    1975-01-01

    Information on water movement obtained from bimonthly releases of surface and seabed drifters in the San Francisco Bay and adjacent Pacific Ocean is used to understand major processes controlling dispersal of oil after a spill of 3,200 m3 of Bunker C in the bay in January 1971. River-induced nontidal estuarine circulation was the dominant factor controlling net movement of the oil spilled at the entrance of the bay system, reinforcing ebbing tidal currents and causing the seaward movement of floating oil, which followed paths taken by surface drifters released 3 weeks before the spill. In contrast, some oil formed globules which sank to the near-bottom waters, had the same relative buoyancy as seabed drifters, and moved similarly, beaching in eastern San Pablo Bay after being transported landward in the near-bottom waters. No oil or surface drifters floated into the south bay because surface waters were drifting seaward, away from the south bay. Notable seasonally modulated phenomena which must be considered in predicting surface and near-bottom oil drifts of future spills include a summer (low-river discharge period) diminution of the estuarine circulation mechanism in the north and central bayadjacent ocean region and a seasonal reversal in two-layer drift in the south bay.

  5. Toxicology of oil-spill cleanup agents. Final report

    SciTech Connect

    Tjeerdema, R.S.; Singer, M.M.; Scelfo, G.M.; Smalheer, D.L.; Swall, L.M.

    1990-07-01

    The report describes both advanced analytical and biochemical techniques for use with surfactant-based oil spill cleanup agents. It also presents novel aquatic toxicity testing procedures, as well as the results from toxicity testing with the sensitive early life stages of diverse marine organisms. In addition, it describes the metabolic fate, including both tissue and temperature dependence, of a representative surfactant in a marine invertebrate. Finally, it delineates the in vitro effects of surfactant-based oil spill cleanup agents in both marine birds and mammals.

  6. Oil spills: Environmental effects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning environmental impacts of oil spills primarily resulting from ship wrecks and oil drilling or exploration. Oil spills in temperate, tropic and arctic zones which affect fresh water, estuarine, and marine environments are included. Cleanup operations and priorities, computer modeling and simulation of oil spills, oil spill investigations, and prediction of oil slick movement in high traffic shipping lanes are among the topics discussed. Microbial degradation of oils, and toxicity studies of oils and oil dispersants affecting aquatic plant and animal life are considered. (Contains 250 citations and includes a subject term index and title list.)

  7. Oil spills: Environmental effects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning environmental impacts of oil spills primarily resulting from ship wrecks and oil drilling or exploration. Oil spills in temperate, tropic and arctic zones which affect fresh water, estuarine, and marine environments are included. Cleanup operations and priorities, computer modeling and simulation of oil spills, oil spill investigations, and prediction of oil slick movement in high traffic shipping lanes are among the topics discussed. Microbial degradation of oils, and toxicity studies of oils and oil dispersants affecting aquatic plant and animal life are considered. (Contains 250 citations and includes a subject term index and title list.)

  8. 78 FR 33431 - Deepwater Horizon Oil Spill; Notice of Intent To Prepare a Programmatic Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Deepwater Horizon Oil Spill; Notice of Intent To Prepare a Programmatic Environmental Impact Statement for a... state natural resource trustees for the Deepwater Horizon oil spill (Trustees) intend to prepare a PEIS... discharges from the rig and from the wellhead on the seabed. The Deepwater Horizon oil spill is the...

  9. 78 FR 25472 - Information Collection: Oil Spill Financial Responsibility for Offshore Facilities; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Bureau of Ocean Energy Management Information Collection: Oil Spill Financial Responsibility for Offshore... requirements for 30 CFR 553, Oil Spill Financial Responsibility for Offshore Facilities. DATES: Submit written... CFR Part 553, Oil Spill Financial Responsibility for Offshore Facilities. Forms: BOEM-1016, 1017,...

  10. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Training Elements for Oil Spill.... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The... capabilities of the contracted oil spill removal organizations and the procedures to notify and activate...