Sample records for oil structured lipid

  1. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    PubMed

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  2. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    PubMed

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  3. Potential Use of Avocado Oil on Structured Lipids MLM-Type Production Catalysed by Commercial Immobilised Lipases

    PubMed Central

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil. PMID:25248107

  4. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    PubMed

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  5. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    PubMed

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  6. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    PubMed

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lipases as biocatalysts for the synthesis of structured lipids.

    PubMed

    Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing

    2012-01-01

    Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

  8. Co-administration of trientine and flaxseed oil on oxidative stress, serum lipids and heart structure in diabetic rats.

    PubMed

    Rezaei, Ali; Heidarian, Esfandiar

    2013-08-01

    The administration of flaxseed oil or flaxseed oil plus trientine in diabetic rats reduced triglyceride, very low density lipoprotein, and total cholesterol. Furthermore, the combined treatment significantly increased superoxide dismutase activity and attenuated serum Cu2+. The results suggest that the administration of flaxseed oil plus trientine is useful in controlling serum lipid abnormalities, oxidative stress, restoring heart structure, and reducing serum Cu2+ in diabetic rats.

  9. Structuration of lipid bases with fully hydrogenated crambe oil and sorbitan monostearate for obtaining zero-trans/low sat fats.

    PubMed

    Stahl, Marcella Aparecida; Buscato, Monise Helen Masuchi; Grimaldi, Renato; Cardoso, Lisandro Pavie; Ribeiro, Ana Paula Badan

    2018-05-01

    Several studies have shown that excessive intake of trans and saturated fatty acids is associated with an increased risk of cardiovascular disease. In this context, the food industry has sought alternatives for the development of healthy lipid bases, with higher levels of unsaturated fatty acids, adapting to current legislation. The incorporation of structuring agents into liquid oils has proven to be a potential alternative for obtaining semi-plastic lipid bases with reduced levels of saturated fatty acids. Thus, the objective of this study was to produce zero trans fat bases with lower saturated fatty acids levels. Palm oil (PO) was used as a zero trans-lipid base reference because of its technological functionality. Blends containing different proportions of high oleic sunflower oil (HOSO) and PO were prepared as follows: control 100: 0; 80:20; 60:40; 40:60; 20:80; and 100: 0 PO: HOSO (w/w%), respectively. Then, 3% of fully hydrogenated crambe oil (FHCO) and 3% sorbitan monostearate (SMS) were added to the blends as structuring agents, forming the structured (S) blends. The addition of HOSO to the PO decreased the saturated fatty acids by up to 30.6%, with consequent increase of unsaturated fatty acids, especially oleic acid. The joint action of the SMS and the FCHO allowed for obtaining structured blends with plastic and spreadability characteristics, as well as modifications throughout the crystallization process of the original blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Administration of structured lipid composed of MCT and fish oil reduces net protein catabolism in enterally fed burned rats.

    PubMed Central

    Teo, T C; DeMichele, S J; Selleck, K M; Babayan, V K; Blackburn, G L; Bistrian, B R

    1989-01-01

    The effects of enteral feeding with safflower oil or a structured lipid (SL) derived from 60% medium-chain triglyceride (MCT) and 40% fish oil (MCT/fish oil) on protein and energy metabolism were compared in gastrostomy-fed burned rats (30% body surface area) by measuring oxygen consumption, carbon dioxide production, nitrogen balance, total liver protein, whole-body leucine kinetics, and rectus muscle and liver protein fractional synthetic rates (FSR, %/day). Male Sprague-Dawley rats (195 +/- 5g) received 50 ml/day of an enteral regimen containing 50 kcal, 2 g amino acids, and 40% nonprotein calories as lipid for three days. Protein kinetics were estimated by using a continuous L-[1-14C] leucine infusion technique on day 2. Thermally injured rats enterally fed MCT/fish oil yielded significantly higher daily and cumulative nitrogen balances (p less than or equal to 0.025) and rectus muscle (39%) FSR (p less than or equal to 0.05) when compared with safflower oil. MCT/fish oil showed a 22% decrease (p less than or equal to 0.005) in per cent flux oxidized and a 7% (p less than or equal to 0.05) decrease in total energy expenditure (TEE) versus safflower oil. A 15% increase in liver FSR was accompanied by a significant elevation (p less than or equal to 0.025) in total liver protein with MCT/fish oil. This novel SL shares the properties of other structured lipids in that it reduces the net protein catabolic effects of burn injury, in part, by influencing tissue protein synthetic rates. The reduction in TEE is unique to MCT/fish oil and may relate to the ability of fish oil to diminish the injury response. PMID:2500898

  11. Essential oil-loaded lipid nanoparticles for wound healing.

    PubMed

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  12. Investigation of Lipid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum camphora Seed Oil in Healthy C57BL/6J Mice.

    PubMed

    Hu, Jiang-Ning; Shen, Jin-Rong; Xiong, Chao-Yue; Zhu, Xue-Mei; Deng, Ze-Yuan

    2018-02-28

    In the present study, a new structured lipid with medium- and long-chain triacylglycerols (MLCTs) was synthesized from camellia oil (CO) and Cinnamomum camphora seed oil (CCSO) by enzymatic interesterification. Meanwhile, the antiobesity effects of structured lipid were investigated through observing the changes of enzymes related to lipid mobilization in healthy C57BL/6J mice. Results showed that after synthesis, the major triacylgeride (TAG) species of intesterificated product changed to LaCC/CLaC (12.6 ± 0.46%), LaCO/LCL (21.7 ± 0.76%), CCO/LaCL (14.2 ± 0.55%), COO/OCO (10.8 ± 0.43%), and OOO (18.6 ± 0.64%). Through second-stage molecular distillation, the purity of interesterified product (MLCT) achieved 95.6%. Later, male C57BL/6J mice were applied to study whether the new structured lipid with MLCT has the efficacy of preventing the formation of obesity or not. After feeding with different diets for 6 weeks, MLCTs could reduce body weight and fat deposition in adipose tissue, lower plasma triacylglycerols (TG) (0.89 ± 0.16 mmol/L), plasma total cholesterol (TC) (4.03 ± 0.08 mmol/L), and hepatic lipids (382 ± 34.2 mg/mice) by 28.8%, 16.0%, and 30.5%, respectively, when compared to the control 2 group. This was also accompanied by increasing fecal lipids (113%) and the level of enzymes including cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), hormone-sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) related to lipid mobilization in MLCT group. From the results, it can be concluded that MLCT reduced body fat deposition probably by modulating enzymes related to lipid mobilization in C57BL/6J mice.

  13. Essential oil-loaded lipid nanoparticles for wound healing

    PubMed Central

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical–chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus, the other of Streptococcus pyogenes. Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical–chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion. PMID:29343956

  14. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils

    PubMed Central

    Budilarto, Elizabeth S; Kamal-Eldin, Afaf

    2015-01-01

    The microenvironment formed by surface active compounds is being recognized as the active site of lipid oxidation. Trace amounts of water occupy the core of micro micelles and several amphiphilic minor components (e.g., phospholipids, monoacylglycerols, free fatty acids, etc.) act as surfactants and affect lipid oxidation in a complex fashion dependent on the structure and stability of the microemulsions in a continuous lipid phase such as bulk oil. The structures of the triacylglycerols and other lipid-soluble molecules affect their organization and play important roles during the course of the oxidation reactions. Antioxidant head groups, variably located near the water-oil colloidal interfaces, trap and scavenge radicals according to their location and concentration. According to this scenario, antioxidants inhibit lipid oxidation not only by scavenging radicals via hydrogen donation but also by physically stabilizing the micelles at the microenvironments of the reaction sites. There is a cut-off effect (optimum value) governing the inhibitory effects of antioxidants depending inter alias on their hydrophilic/lipophilic balance and their concentrations. These complex effects, previously considered as paradoxes in antioxidants research, are now better explained by the supramolecular chemistry of lipid oxidation and antioxidants, which is discussed in this review. PMID:26448722

  15. The Potential of Microalgae Lipids for Edible Oil Production.

    PubMed

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  16. Enzymatic preparation of "functional oil" rich in feruloylated structured lipids with solvent-free ultrasound pretreatment.

    PubMed

    Zhang, Haiping; Zheng, Mingming; Shi, Jie; Tang, Hu; Deng, Qianchun; Huang, Fenghong; Luo, Dan

    2018-05-15

    In this study, a series of functional oils rich in feruloylated structured lipids (FSLs) was prepared by enzymatic transesterification of ethyl ferulate (EF) with triglycerides under ultrasound pretreatment. A conversion of more than 92.7% and controllable FSLs (3.1%-26.3%) can be obtained under the following conditions: 16% enzyme, substrate ratio 1:5 (oil/EF, mol/mol), 85 °C, ultrasound 1 h, pulse mode 3 s/3s (working/waiting), and 17.0 W/mL. Compared to conventional mechanical stirring, the activation energy decreased from 50.0 kJ/mol to 40.7 kJ/mol. The apparent kinetic constant increased by more than 13 times, and the time required for the maximum conversion reduced sharply from 20-60 h to 4-6h, which was the fastest rate for enzymatic synthesis of FSLs. The antioxidant activities of the functional oil significantly increased 1.0- to 8.1-fold more than that of the raw oil. The functional oil could be widely applied in various fields of functional foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Virgin coconut oil improves hepatic lipid metabolism in rats--compared with copra oil, olive oil and sunflower oil.

    PubMed

    Arunima, S; Rajamohan, T

    2012-11-01

    Effect of virgin coconut oil (VCO) on lipid levels and regulation of lipid metabolism compared with copra oil (CO), olive oil (OO), and sunflower oil (SFO) has been reported. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with synthetic diet. Results showed that VCO feeding significantly lowered (P < 0.05) levels of total cholesterol, LDL+ VLDL cholesterol, Apo B and triglycerides in serum and tissues compared to rats fed CO, OO and SFO, while HDL-cholesterol and Apo A1 were significantly (P < 0.05) higher in serum of rats fed VCO than other groups. Hepatic lipogenesis was also down regulated in VCO fed rats, which was evident from the decreased activities of enzymes viz., HMG CoA reductase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme. In addition, VCO significantly (P < 0.05) increased the activities of lipoprotein lipase, lecithin cholesterol acyl transferase and enhanced formation of bile acids. Results demonstrated hypolipidemic effect of VCO by regulating the synthesis and degradation of lipids.

  18. Substitution of Standard Soybean Oil with Olive Oil-Based Lipid Emulsion in Parenteral Nutrition: Comparison of Vascular, Metabolic, and Inflammatory Effects

    PubMed Central

    Siqueira, Joselita; Smiley, Dawn; Newton, Christopher; Le, Ngoc-Anh; Gosmanov, Aidar R.; Spiegelman, Ronnie; Peng, Limin; Osteen, Samantha J.; Jones, Dean P.; Quyyumi, Arshed A.; Ziegler, Thomas R.

    2011-01-01

    Context: Soybean oil-based lipid emulsions are the only Food and Drug Administration-approved lipid formulation for clinical use in parenteral nutrition (PN). Recently concerns with its use have been raised due to the proinflammatory effects that may lead to increased complications because they are rich in ω-6 polyunsaturated fatty acids. Methods: This was a prospective, randomized, controlled, crossover study comparing the vascular, metabolic, immune, and inflammatory effects of 24-h infusion of PN containing soybean oil-based lipid emulsion (Intralipid), olive oil-based (ClinOleic), lipid free, and normal saline in 12 healthy subjects. Results: Soybean oil-PN increased systolic blood pressure compared with olive oil-PN (P < 0.05). Soybean oil PN reduced brachial artery flow-mediated dilatation from baseline (−23% at 4 h and −25% at 24 h, both P < 0.01); in contrast, olive oil PN, lipid free PN, and saline did not change either systolic blood pressure or flow-mediated dilatation. Compared with saline, soybean oil PN, olive oil PN, and lipid free PN similarly increased glucose and insulin concentrations during infusion (P < 0.05). There were no significant changes in plasma free fatty acids, lipid profile, inflammatory and oxidative stress markers, immune function parameters, or sympathetic activity between soybean oil- and olive oil-based lipid emulsions. Conclusion: The 24-h infusion of PN containing soybean oil-based lipid emulsion increased blood pressure and impaired endothelial function compared with PN containing olive oil-based lipid emulsion and lipid-free PN in healthy subjects. These vascular changes may have significant implications in worsening outcome in subjects receiving nutrition support. Randomized controlled trials with relevant clinical outcome measures are needed in patients receiving PN with olive oil-based and soybean oil-based lipid emulsions. PMID:21832112

  19. Fish oil lipid emulsions and immune response: what clinicians need to know.

    PubMed

    Waitzberg, Dan Linetzky; Torrinhas, Raquel Susana

    2009-01-01

    Current evidence indicates that omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid and docosahexaenoic acid found in fish oil, can prevent the development of inflammatory diseases by affecting different steps of the immune response. The capacity of omega-3 PUFAs to modulate synthesis of eicosanoids, activity of nuclear receptor and nuclear transcription factors, and production of resolvins may also mitigate inflammatory processes already present. Parenteral infusion of omega-3 PUFAs is advantageous, particularly in severely ill patients, because the fatty acids are rapidly incorporated by cells. In addition, when fatty acids are given parenterally, there are no losses from digestion and absorption as there are with enteral infusion. Recently, lipid emulsions enriched with omega-3 fish oil have been introduced as a component of parenteral nutrition. Currently, there is one lipid emulsion that contains only fish oil; it is infused together with conventionally used lipid emulsions. Other commercially available lipid emulsions contain fish oil in a fat mixture; one contains 10% fish oil and another 15% fish oil. Relevant experimental and clinical data from studies evaluating fish oil lipid emulsions are discussed in the present review. Administration of fish oil lipid emulsion, when compared with soybean oil lipid emulsion (rich in omega-6 PUFA), decreases the length of hospital and intensive care unit stay in surgical patients.

  20. Hepatocellular integrity after parenteral nutrition: comparison of a fish-oil-containing lipid emulsion with an olive-soybean oil-based lipid emulsion.

    PubMed

    Piper, Swen N; Schade, Ingo; Beschmann, Ralf B; Maleck, Wolfgang H; Boldt, Joachim; Röhm, Kerstin D

    2009-12-01

    Parenteral nutrition including lipids might be associated with liver disease. The cause leading to parenteral nutrition-related liver dysfunction remains largely unknown but is likely to be multifactorial. The study was performed to assess the effects of a lipid emulsion based on soybean oil, medium-chain triglycerides, olive and fish oil (SMOFlipid20%) compared with a lipid emulsion based on olive and soybean oil on hepatic integrity. In a prospective, randomized, double-blinded trial, 44 postoperative patients with an indication for parenteral nutrition were allocated to one of two regimens: group A (n = 22) received SMOFlipid, group B (n = 22) a lipid emulsion based on olive and soybean oil for 5 days. Aspartate aminotransferase, alanin-aminotransferase, and serum alpha-glutathion S-transferase were measured before the start of parenteral nutrition (d0), at day 2 (d2), and day 5 (d5) after the start of parenteral nutrition. The significance level was defined at a P value of less than 0.05. There was no significant difference at d0, but at d2 and d5, significantly lower aspartate aminotransferase (d2: group A: 27 +/- 13 vs. group B: 47 +/- 36 U l(-1); d5: A: 31 +/- 14 vs. B: 56 +/- 45 U l(-1)), alanin-aminotransferase (d2: A: 20 +/- 12 vs. B: 42 +/- 39 U l(-1); d5: A: 26 +/- 15 vs. B: 49 +/- 44 U l(-1)), and alpha-glutathion S-transferase levels (d2: A: 5 +/- 6 vs. B: 17 +/- 21 U l(-1); d5: A: 6 +/- 7 vs. B: 24 +/- 27 microg l(-1)) were found in soybean oil, medium-chain triglycerides, olive and fish oil group compared with the control group. Hepatic integrity was well retained with the administration of SMOFlipid whereas in patients receiving a lipid emulsion based on olive and soybean oil liver enzymes were elevated indicating a lower liver tolerability.

  1. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    PubMed

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  2. Monitoring Interfacial Lipid Oxidation in Oil-in-Water Emulsions Using Spatially Resolved Optical Techniques.

    PubMed

    Banerjee, Chiranjib; Westberg, Michael; Breitenbach, Thomas; Bregnhøj, Mikkel; Ogilby, Peter R

    2017-06-06

    The oxidation of lipids is an important phenomenon with ramifications for disciplines that range from food science to cell biology. The development and characterization of tools and techniques to monitor lipid oxidation are thus relevant. Of particular significance in this regard are tools that facilitate the study of oxidations at interfaces in heterogeneous samples (e.g., oil-in-water emulsions, cell membranes). In this article, we establish a proof-of-principle for methods to initiate and then monitor such oxidations with high spatial resolution. The experiments were performed using oil-in-water emulsions of polyunsaturated fatty acids (PUFAs) prepared from cod liver oil. We produced singlet oxygen at a point near the oil-water interface of a given PUFA droplet in a spatially localized two-photon photosensitized process. We then followed the oxidation reactions initiated by this process with the fluorescence-based imaging technique of structured illumination microscopy (SIM). We conclude that the approach reported herein has attributes well-suited to the study of lipid oxidation in heterogeneous samples.

  3. Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation

    PubMed Central

    Sugawara, Soko; Honma, Taro; Ito, Junya; Kijima, Ryo; Tsuduki, Tsuyoshi

    2013-01-01

    Recently, we administered fish oil containing eicosapentaenoic acid and docosahexaenoic acid (DHA) to senescence-accelerated mice P8 (SAMP8), in order to investigate the effects on lifespan. Surprisingly, the lifespan of SAMP8 that were fed fish oil was shortened significantly, through a mechanism that likely involved lipid peroxidation. In this study, we investigated this phenomenon in further detail. To examine whether this phenomenon occurs only in SAMP8, we investigated the effect of fish oil on the lifespan of another organism species, Caenorhabditis elegans (C. elegans). C. elegans fed fish oil were cultured and the lifespan monitored. As a consequence of the provision of large amounts of fish oil the lifespan of C. elegans was shortened significantly, whereas an appropriate amount of fish oil extended their lifespan significantly. Lipid peroxide levels in C. elegans that were fed fish oil increased significantly in a dose-dependent manner. However, lipid peroxide levels in C. elegans were inhibited by the addition of fish oil and an antioxidant, α-tocopherol, and completely abrogated the changes in the lifespan. To further confirm whether the oxidation of n-3 polyunsaturated fatty acid in fish oil would change the lifespan of C. elegans, the effect of oxidized DHA was examined. Large amounts of oxidized DHA were found to shorten their lifespan significantly. Thus, fish oil changes the lifespan of C. elegans through lipid peroxidation. PMID:23526170

  4. Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions.

    PubMed

    Celus, Miete; Salvia-Trujillo, Laura; Kyomugasho, Clare; Maes, Ine; Van Loey, Ann M; Grauwet, Tara; Hendrickx, Marc E

    2018-02-15

    The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe 2+ ), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hypocholesterolemic effects of low calorie structured lipids on rats and rabbits fed on normal and atherogenic diet.

    PubMed

    Kanjilal, Sanjit; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Sugasini, Dhavamani; Rao, Yalagala Poornachandra; Prasad, Rachapudi B N; Lokesh, Belur R

    2013-01-01

    The hypocholesterolemic effects of two low calorie structured lipids (SL1 and SL2) containing essential fatty acids, prepared by lipase catalysed interesterification of ethyl behenate respectively with sunflower and soybean oils were studied in rats and rabbits. The feeding experiment conducted on rats as well as rabbits, fed on normal and atherogenic diet containing 10% of SL1 and SL2 (experimental) and sunflower oil (control) indicated no adverse effects on growth and food intake. However, the structured lipids beneficially lowered serum and liver lipids, particularly cholesterol, LDL cholesterol, triglycerides and also maintains the essential fatty acid status in serum and liver. The lipid deposition observed in the arteries of rabbits fed on atherogenic diets was significantly reduced when structured lipids were included in the diet. These observations coincided with reduced levels of serum cholesterol particularly LDL cholesterol observed in experimental groups. Therefore the structured lipids, designed to have low calorific value also beneficially lower serum lipids and lipid deposition in animals fed on atherogenic diets. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice

    PubMed Central

    2014-01-01

    Background Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. Methods Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. Results Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in

  7. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-11-15

    The influence of carrier oil type on the bioaccessibility of vitamin D3 encapsulated within oil-in-water nanoemulsions prepared using a natural surfactant (quillaja saponin) was studied using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. The rate of free fatty acid release during lipid digestion decreased in the following order: medium chain triglycerides (MCT) > corn oil ≈ fish oil > orange oil > mineral oil. Conversely, the measured bioaccessibility of vitamin D3 decreased in the following order: corn oil ≈ fish oil > orange oil > mineral oil > MCT. These results show that carrier oil type has a considerable impact on lipid digestion and vitamin bioaccessibility, which was attributed to differences in the release of bioactives from lipid droplets, and their solubilization in mixed micelles. Nanoemulsions prepared using long chain triglycerides (corn or fish oil) were most effective at increasing vitamin bioaccessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    PubMed Central

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Cheng Yuon, Lau

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil. PMID:22685623

  9. Protective effect of pulp oil extracted from Canarium odontophyllum Miq. Fruit on blood lipids, lipid peroxidation, and antioxidant status in healthy rabbits.

    PubMed

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Yuon, Lau Cheng

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.

  10. Comparison of Pure Palm Olein Oil, Hydrogenated Oil-Containing Palm, and Canola on Serum Lipids and Lipid Oxidation Rate in Rats Fed with these Oils.

    PubMed

    Amini, Seyed-Asadollah; Ghatreh-Samani, Keihan; Habibi-Kohi, Arash; Jafari, Laleh

    2017-02-01

    Due to increased consumption of canola oil and hydrogenated oil containing palm and palm olein, and their possible effects on serum lipoproteins, the present study was conducted to determine the effects of these oils on lipids and lipid oxidation level. In this experimental study, 88 Wistar rats were randomly assigned to four groups. Control group (A) was on a normal diet. Groups B, C, and D, in addition to normal diet, were fed with hydrogenated oil-contained palm oil, pure palm olein oil, and canola oil, respectively for 4 weeks. Serum Biochemical factors [total cholesterol (TC), triglyceride (TG), LDL, HDL, LDL/HDL ratio, oxLDL, paraoxanase-1 (PON1), and malondialdehyde (MDA)] were measured. The lowest mean serum TC was seen in the control group and the highest in the group B. There were differences in TC, TG, HDL, MDA, and PON1 between the control group and other groups (P<0.001). The lowest and highest LDL/HDL ratios were observed in the group C and the control group, respectively. Significant differences were seen in OxLDL and PON1 between the control group and other three groups (P<0.05), while there were no significant differences in oxLDL and PON1 among the other three groups (P>0.05). MDA was higher in groups C and D. Canola oil, hydrogenated oil-containing palm and palm olein may increase atherosclerosis risk through decreasing PON1 activity and elevating oxLDL. Palm olein oils in rats' diets cause a considerable decrease in LDL and help to increase HDL.

  11. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    PubMed

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil

    PubMed Central

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-01-01

    BACKGROUND Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. METHODS Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. RESULTS Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P < 0.05) in comparison with the control. CONCLUSION Essential oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body. PMID:24302936

  13. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  14. Short-term menhaden oil rich diet changes renal lipid profile in acute kidney injury.

    PubMed

    Ossani, Georgina P; Denninghoff, Valeria C; Uceda, Ana M; Díaz, Maria L; Uicich, Raúl; Monserrat, Alberto J

    2015-01-01

    Weanling male Wistar rats fed a choline-deficient diet develop acute kidney injury. Menhaden oil, which is a very important source of omega-3 fatty acids, has a notorious protective effect. The mechanism of this protection is unknown; one possibility could be that menhaden oil changes renal lipid profile, with an impact on the functions of biological membranes. The aim of this work was to study the renal lipid profile in rats fed a choline-deficient diet with menhaden oil or vegetable oil as lipids. Rats were divided into 4 groups and fed four different diets for 7 days: choline-deficient or choline-supplemented diets with corn and hydrogenated oils or menhaden oil. Serum homocysteine, vitamin B12, and folic acid were analyzed. Renal lipid profile, as well as the fatty acid composition of the three oils, was measured. Choline-deficient rats fed vegetable oils showed renal cortical necrosis. Renal omega-6 fatty acids were higher in rats fed a cholinedeficient diet and a choline-supplemented diet with vegetable oils, while renal omega-3 fatty acids were higher in rats fed a choline-deficient diet and a choline-supplemented diet with menhaden oil. Rats fed menhaden oil diets had higher levels of renal eicosapentaenoic and docosahexaenoic acids. Renal myristic acid was increased in rats fed menhaden oil. The lipid renal profile varied quickly according to the type of oil present in the diet.

  15. Influence of omega-3 polyunsaturated fatty acids from fish oil or meal on the structure of lipid microdomains in bovine luteal cells.

    PubMed

    Plewes, M R; Burns, P D; Graham, P E; Bruemmer, J E; Engle, T E

    2018-06-01

    Biological membranes are composed of a lipid bilayer and proteins that form lipid microdomains. This study examined the effects of fish byproducts on lipid-protein interactions within lipid microdomains of bovine luteal cells. In Exp. 1 and 2, luteal cells were prepared from corpora lutea (CL; n = 4 to 8) collected at an abattoir. Exp. 1 was conducted to optimize ultrasonication in a detergent-free protocol for isolation of lipid microdomains. A power setting of 10 to 20% was effective in isolating lipid microdomains from bulk lipid. In Exp. 2, cells were cultured in control medium or fish oil to determine influence of fish oil on distribution of lipid microdomain markers and prostaglandin F 2α (FP) receptors. Cells treated with fish oil had a smaller percentage of microdomain markers and FP receptor in microdomains (P < 0.05). In Exp. 3 and 4, cells were prepared from mid-cycle CL obtained from cows supplemented with corn gluten meal (n = 4) or fish meal (n = 4). Exp. 3 examined effects of dietary supplementation on distribution of lipid microdomain markers and FP receptor and Exp. 4 on fatty acid composition within lipid microdomains. A smaller percentage of lipid microdomain markers and FP receptor was detected in microdomains of cells collected from fish meal supplemented animals (P < 0.05). In Exp. 4, a greater percentage of omega-3 polyunsaturated fatty acids was detected in bulk lipid from fish meal supplemented cows (P < 0.05). Results show that fish byproducts influence lipid-protein interactions in lipid microdomains in bovine luteal cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of Hydrogenated, Liquid and Ghee Oils on Serum Lipids Profile

    PubMed Central

    Mohammadifard, Noushin; Nazem, Masoud; Naderi, Gholam-Ali; Saghafian, Faezeh; Sajjadi, Firoozeh; Maghroon, Maryam; Bahonar, Ahmad; Alikhasi, Hasan; Nouri, Fatemeh

    2010-01-01

    BACKGROUND Trans fatty acids are known as the most harmful type of dietary fats, so this study was done to compare the effects of hydrogenated, liquid and ghee oils on serum lipids profile of healthy adults. METHODS This study was a randomized clinical trial conducted on 129 healthy participants aged from 20 to 60 years old who were beneficiaries of Imam-e-Zaman charitable organization. Subjects were randomly divided into 3 groups and each group was treated with a diet containing cooking and frying liquid, ghee, or hydrogenated for 40 days. Fasting serum lipids, including total cholesterol (TC), triglyceride (TG), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), apoprotein A (Apo A), and apoprotein B (Apo B) were measured before and after the study. RESULTS TC, TG and Apo B had a significant reduction in the liquid oil group compared to the hydrogenated oil group. In the ghee group TG declined and Apo A increased significantly (P < 0.01). Liquid oil group had a significant reduction in HDL-C, compared to the ghee oil group (P < 0.05). CONCLUSION It was concluded that consuming liquid oil along with frying oil caused to reduce all serum lipid levels. However, ghee oil only reduced TG and increased HDL-C levels. PMID:22577408

  17. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.

    PubMed

    Nevin, K G; Rajamohan, T

    2004-09-01

    The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.

  18. Recent Research Trends on the Enzymatic Synthesis of Structured Lipids.

    PubMed

    Kim, Byung Hee; Akoh, Casimir C

    2015-08-01

    Structured lipids (SLs) are lipids that have been chemically or enzymatically modified from their natural biosynthetic form. Because SLs are made to possess desired nutritional, physicochemical, or textural properties for various applications in the food industry, many research activities have been aimed at their commercialization. The production of SLs by enzymatic procedures has a great potential in the future market because of the specificity of lipases and phospholipases used as the biocatalysts. The aim of this review is to provide concise information on the recent research trends on the enzymatic synthesis of SLs of commercial interest, such as medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free or low-trans plastic fats (such as margarines and shortenings), low-calorie fats/oils, health-beneficial fatty acid-rich fats/oils, mono- or diacylglycerols, and structurally modified phospholipids. This limited review covers 108 research articles published between 2010 and 2014 which were searched in Web of Science. © 2015 Institute of Food Technologists®

  19. LMSD: LIPID MAPS structure database

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933

  20. Biological and Clinical Aspects of an Olive Oil-Based Lipid Emulsion-A Review.

    PubMed

    Cai, Wei; Calder, Phillip C; Cury-Boaventura, Maria F; De Waele, Elisabeth; Jakubowski, Julie; Zaloga, Gary

    2018-06-15

    Intravenous lipid emulsions (ILEs) have been an integral component of parenteral nutrition for more than 50 years. Numerous formulations are available and are based on vegetable (soybean, olive, coconut) and animal (fish) oils. Therefore, each of these formulations has a unique fatty acid composition that offers both benefits and limitations. As clinical experience and our understanding of the effects of fatty acids on various physiological processes has grown, there is evidence to suggest that some ILEs may have benefits compared with others. Current evidence suggests that olive oil-based ILE may preserve immune, hepatobiliary, and endothelial cell function, and may reduce lipid peroxidation and plasma lipid levels. There is good evidence from a large randomized controlled study to support a benefit of olive oil-based ILE over soybean oil-based ILE on reducing infections in critically ill patients. At present there is limited evidence to demonstrate a benefit of olive oil-based ILE over other ILEs on glucose metabolism, and few data exist to demonstrate a benefit on clinical outcomes such as hospital or intensive care unit stay, duration of mechanical ventilation, or mortality. We review the current research and clinical evidence supporting the potential positive biological and clinical aspects of olive oil-based ILE and conclude that olive oil-based ILE is well tolerated and provides effective nutritional support to various PN-requiring patient populations. Olive oil-based ILE appears to support the innate immune system, is associated with fewer infections, induces less lipid peroxidation, and is not associated with increased hepatobiliary or lipid disturbances. These data would suggest that olive oil-based ILE is a valuable option in various PN-requiring patient populations.

  1. Differential abundance analysis of mesocarp protein from high- and low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis.

    PubMed

    Ooi, Tony Eng Keong; Yeap, Wan Chin; Daim, Leona Daniela Jeffery; Ng, Boon Zean; Lee, Fong Chin; Othman, Ainul Masni; Appleton, David Ross; Chew, Fook Tim; Kulaveerasingam, Harikrishna

    2015-01-01

    The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps. From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield. Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.

  2. Comparison of effects of soft margarine, blended, ghee, and unhydrogenated oil with hydrogenated oil on serum lipids: A randomized clinical trail

    PubMed Central

    Mohammadifard, Noushin; Hosseini, Mohsen; Sajjadi, Firoozeh; Maghroun, Maryam; Boshtam, Maryam; Nouri, Fatemeh

    2013-01-01

    BACKGROUND Trans fatty acids (TFAs) are known as the most harmful type of dietary fats. Therefore, this study was done to compare the effects of some different oils including unhydrogenated, blended, ghee, and soft magazine with hydrogenated oil on serum lipid profile of healthy adults. METHODS This study was a randomized clinical trial conducted on 206 healthy participants of 20 to 60 years of age. Subjects were randomly divided into 5 groups and each of them was treated with a diet containing unhydrogenated oil, ghee, blended oil, soft margarine, or hydrogenated oil for 40 days. Fasting serum lipids were measured before and after the study. RESULTS Compared to hydrogenated oil, total cholesterol (TC) and triglyceride (TG) had a significant reduction in all groups, LDL-C declined in unhydrogenated oil and soft margarine groups, and apolipoprotein (Apo) B only in unhydrogenated oil group (all P < 0.05). However, there was a significant enhancement in ApoA of ghee oil (P < 0.001). CONCLUSION Consuming unhydrogenated oil, ghee, soft margarine, and blended oil had some beneficial effects on serum lipids. PMID:24575140

  3. Mid-infrared spectral characteristics of lipid molecular structures in Brassica carinata seeds: relationship to oil content, fatty acid and glucosinolate profiles, polyphenols, and condensed tannins.

    PubMed

    Xin, Hangshu; Khan, Nazir A; Falk, Kevin C; Yu, Peiqiang

    2014-08-13

    The objectives of this study were to quantify lipid-related inherent molecular structures using a Fourier transform infrared spectroscopy (FT-IR) technique and determine their relationship to oil content, fatty acid and glucosinolate profile, total polyphenols, and condensed tannins in seeds from newly developed yellow-seeded and brown-seeded Brassica carinata lines. Canola seeds were used as a reference. The lipid-related molecular spectral band intensities were strongly correlated to the contents of oil, fatty acids, glucosinolates, and polyphenols. The regression equations gave relatively high predictive power for the estimation of oil (R² = 0.99); all measured fatty acids (R² > 0.80), except C14:0, C20:3n-3, C22:2n-9, and C22:2n-6; 3-butenyl, 2-OH-3-butenyl, 4-OH-3-CH3-indolyl, and total glucosinolates (R² > 0.686); and total polyphenols (R² = 0.935). However, further study is required to obtain predictive equations based on large numbers of samples from diverse sources to illustrate the general applicability of these regression equations.

  4. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.

    PubMed

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  5. Synthesis of structured lipids by lipase-catalyzed interesterification of triacetin with camellia oil methyl esters and preliminary evaluation of their plasma lipid-lowering effect in mice.

    PubMed

    Cao, Yu; Qi, Suijian; Zhang, Yang; Wang, Xiaoning; Yang, Bo; Wang, Yonghua

    2013-03-25

    Structured lipids (SLCTs triacylglycerols with short- and long-chain acyl residues) were synthesized by interesterification of triacetin and fatty acid methyl esters (FAMEs) from camellia oil, followed by molecular distillation for purification. Different commercial immobilized lipases (Lipozyme RM IM and Novozyme 435), the substrate molar ratios of FAMEs to triacetin, the reaction temperatures and the lipase amounts were studied for their efficiency in producing SLCTs. Results showed that Novozyme 435 was more suitable for this reaction system. Moreover, the optimal reaction conditions for the highest conversion of FAMEs and the highest LLS-TAGs (triacylglycerols with one short- and two long-chain acyl residues) yields were achieved at a molar ratio of FAMEs to triacetin of 3:1, 50 °C of reaction temperature and a lipase amount of 4% (w/v). Scale-up was conducted based on the optimized reaction conditions. Results showed that after 24 h of reaction , the conversion rate of FAMEs was 82.4% and the rate of disubstituted triacetin was 52.4 mol%. The final product yield rate was 94.6%. The effects of the synthesized SLCTs on the plasma lipid level of fasting mice were also studied. The SLCTs could effectively lessen the total triacylglycerol levels in plasma compared to the triacylglycerol group in fasting NIH mice. It suggested that this type of structured lipid might be beneficial for human health, especially for the prevention of obesity.

  6. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds.

    PubMed

    Lu, Shaoping; Sturtevant, Drew; Aziz, Mina; Jin, Cheng; Li, Qing; Chapman, Kent D; Guo, Liang

    2018-06-01

    Despite the importance of oilseeds to worldwide human nutrition, and more recently to the production of bio-based diesel fuels, the detailed mechanisms regulating seed oil biosynthesis remain only partly understood, especially from a tissue-specific perspective. Here, we investigated the spatial distributions of lipid metabolites and transcripts involved in oil biosynthesis from seeds of two low-erucic acid genotypes of Brassica napus with high and low seed-oil content. Integrated results from matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) of lipids in situ, lipidome profiling of extracts from seed tissues, and tissue-specific transcriptome analysis revealed complex spatial distribution patterns of lipids and transcripts. In general, it appeared that many triacylglycerol and phosphatidylcholine species distributed heterogeneously throughout the embryos. Tissue-specific transcriptome analysis identified key genes involved in de novo fatty acid biosynthesis in plastid, triacylglycerols assembly and lipid droplet packaging in the endoplasmic reticulum (ER) that may contribute to the high or low oil phenotype and heterogeneity of lipid distribution. Our results imply that transcriptional regulation represents an important means of impacting lipid compartmentalization in oil seeds. While much information remains to be learned about the intricacies of seed oil accumulation and distribution, these studies highlight the advances that come from evaluating lipid metabolism within a spatial context and with multiple omics level datasets. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  7. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    PubMed Central

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461

  8. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    PubMed

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    PubMed

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Reproducibility of the serum lipid response to coffee oil in healthy volunteers

    PubMed Central

    Boekschoten, Mark V; Engberink, Mariëlle F; Katan, Martijn B; Schouten, Evert G

    2003-01-01

    Background Humans and animals show a certain consistency in the response of their serum lipids to fat-modified diets. This may indicate a genetic basis underlying this response. Coffee oil might be used as a model substance to investigate which genes determine differences in the serum lipid response. Before carrying out such studies our objective was to investigate to what extent the effect of coffee oil on serum lipid concentrations is reproducible within subjects. Methods The serum lipid response of 32 healthy volunteers was measured twice in separate five-week periods in which coffee oil was administered (69 mg cafestol / day). Results Total cholesterol levels increased by 24% in period 1 (range:0;52%) and 18% in period 2 (1;48%), LDL cholesterol by 29 % (-9;71%) and 20% (-12;57%), triglycerides by 66% (16;175%) and 58% (-13;202%), and HDL cholesterol did not change significantly: The range of the HDL response was -19;25% in period 1 and -20;33% in period 2. The correlation between the two responses was 0.20 (95%CI -0.16, 0.51) for total cholesterol, 0.16 (95%CI -0.20, 0.48) for LDL, 0.67 (95%CI 0.42, 0.83) for HDL, and 0.77 (95%CI 0.56, 0.88) for triglycerides. Conclusions The responses of total and LDL cholesterol to coffee oil were poorly reproducible within subjects. The responses of HDL and triglycerides, however, appeared to be highly reproducible. Therefore, investigating the genetic sources of the variation in the serum-lipid response to coffee oil is more promising for HDL and triglycerides. PMID:14613505

  12. Structural proteomics: Topology and relative accessibility of plant lipid droplet associated proteins.

    PubMed

    Jolivet, Pascale; Aymé, Laure; Giuliani, Alexandre; Wien, Frank; Chardot, Thierry; Gohon, Yann

    2017-10-03

    Lipid droplets are the major stock of lipids in oleaginous plant seeds. Despite their economic importance for oil production and biotechnological issues (biofuels, lubricants and plasticizers), numerous questions about their formation, structure and regulation are still unresolved. To determine water accessible domains of protein coating at lipid droplets surface, a structural proteomic approach has been performed. This technique relies on the millisecond timescale production of hydroxyl radicals by the radiolysis of water using Synchrotron X-ray white beam. Thanks to the evolution of mass spectrometry analysis techniques this approach allows the creation of a map of the solvent accessibility for proteins difficult to study by other means. Using these results, a S3 oleosin water accessibility map is proposed. This is the first time that such a map on an oleosin co-purified with plant lipid droplets and other associated protein is presented. Lipid droplet associated proteins function is linked to stability, structure and probably formation and lipid mobilization of droplets. Structure of these proteins in their native environment, at the interface between bulk water and the lipidic core of these organelles is only based on hydrophobicity plot. Using hydroxyl radical footprinting and proteomics approaches we studied water accessibility of one major protein in these droplets: S3 oleosin of Arabidopsis thaliana seeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Effects of silkworm pupa oil on serum lipids level and platelet function in rats].

    PubMed

    Yang, Xuefeng; Huang, Lianzhen; Hu, Jianping; Li, Tao

    2002-08-01

    To observe the effects of silkworm pupa oil on serum lipids level and platelet function in rats, according to serum TG, TC level, 40 male Wistar rats are divided into four groups (normal control group, high fat control group, silkworm pupa oil group and silkworm pupa oil + VE group). The rats are fed different diets and six weeks later, serum lipids level and platelet function are measured. The results show that (1) Compared with high fat control group, serum TC, TG, LDL-C level, AI value, Platelet aggregability, plasma TXB2 level and T/P ratio decrease significantly while HDL-C level and 6-k-PGF1 level increase in silkworm pupa oil group; (2) Serum TC, LDL-C level, T/P ratio and platelet aggregability are significantly lower in silkworm pupa oil + VE group than in silkworm pupa oil group. It is suggested that silkworm pupa oil rich in alpha-linolenic acid can reduce serum lipids level and inhibit platelet aggregation, which is more effective with the supplementation with VE.

  14. Direct technique for monitoring lipid oxidation in water-in-oil emulsions based on micro-calorimetry.

    PubMed

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud

    2017-09-01

    An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Coconut oil predicts a beneficial lipid profile in pre-menopausal women in the Philippines

    PubMed Central

    Feranil, Alan B.; Duazo, Paulita L.; Kuzawa, Christopher W.; Adair, Linda S.

    2011-01-01

    Coconut oil is a common edible oil in many countries, and there is mixed evidence for its effects on lipid profiles and cardiovascular disease risk. Here we examine the association between coconut oil consumption and lipid profiles in a cohort of 1,839 Filipino women (age 35–69 years) participating in the Cebu Longitudinal Health and Nutrition Survey, a community based study in Metropolitan Cebu City. Coconut oil intake was measured as individual coconut oil intake calculated using two 24-hour dietary recalls (9.54 ± 8.92 grams). Cholesterol profiles were measured in plasma samples collected after an overnight fast. Mean lipid values in this sample were total cholesterol (TC) (186.52 ± 38.86 mg/dL), high density lipoprotein cholesterol (HDL-c) (40.85 ± 10.30 mg/dL), low density lipoprotein cholesterol (LDL-c) (119.42 ± 33.21 mg/dL), triglycerides (130.75 ± 85.29 mg/dL) and the TC/HDL ratio (4.80 ± 1.41). Linear regression models were used to estimate the association between coconut oil intake and each plasma lipid outcome after adjusting for total energy intake, age, body mass index (BMI), number of pregnancies, education, menopausal status, household assets and urban residency. Dietary coconut oil intake was positively associated with HDL-c levels. PMID:21669587

  16. Lipid composition of Castanea sativa Mill. and Aesculus hippocastanum fruit oils.

    PubMed

    Zlatanov, Magdalen D; Antova, Ginka A; Angelova-Romova, Maria J; Teneva, Olga T

    2013-02-01

    Sweet and horse chestnut fruit contain carbohydrates, fibers, proteins, lipids, vitamins, glycosides and coumarin. The lipids are rich in biologically active substances as fatty acids, phospholipids, sterols and tocopherols. The fruit has been used as food, and for medicinal purposes to treat inflammatory and vascular problems. The fruits of sweet and horse chestnut contain 20 and 81 g kg(-1) glyceride oil respectively. The content of phospholipids in the oils was 49 and 3 g kg(-1). Sterols were found to be 8 and 12 g kg(-1). In the tocopherol fraction (1920 and 627 mg kg(-1)) γ-tocopherol predominated in the sweet chestnut oil (927 g kg(-1)); γ-tocopherol (591 g kg(-1)) and α-tocopherol (402 g kg(-1)) in horse chestnut oil. Palmitic, oleic and linoleic acids predominated in the triacylglycerols. Higher quantities of palmitic and oleic acids were established in the phospholipids and sterol esters. The fruits of horse and sweet chestnut have a close lipid composition. The oils are rich in essential fatty acids, such as linoleic and linolenic, as well as biologically active substances: phospholipids, sterols and tocopherols. This fact determines the good food value of sweet chestnut fruit and the possibilities for use of horse chestnuts in pharmacy and for technical purposes. © 2012 Society of Chemical Industry.

  17. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    NASA Astrophysics Data System (ADS)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p<0.05). In contrast, G3, G4, G5 and G6 showed significant difference (p<0.05) with weight loss by 2.16 g, 10.71g, 7.27 g and 3.23 g respectively 7.27 g and 3.23 g respectively after the treatment. Biochemical analyses on the ratsplasma lipid revealed that the total blood cholesterol content of rats fed with either low

  18. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    PubMed Central

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms. PMID:16461689

  19. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    PubMed

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  20. Synthesis and characterization of canola oil-stearic acid-based trans-free structured lipids for possible margarine application.

    PubMed

    Lumor, Stephen E; Jones, Kerby C; Ashby, Rick; Strahan, Gary D; Kim, Byung Hee; Lee, Guan-Chiun; Shaw, Jei-Fu; Kays, Sandra E; Chang, Shu-Wei; Foglia, Thomas A; Akoh, Casimir C

    2007-12-26

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candida rugosa lipase isoform 1 (LIP1) and two acyl donors, stearic acid and ethyl stearate, on the incorporation. Lipozyme RM IM and ethyl stearate gave the best result. Gram quantities of SLs were synthesized using lipozyme RM IM, and the products were compared to SL made by chemical catalysis and fat from commercial margarines. After short-path distillation, the products were characterized by GC and RPHPLC-MS to obtain fatty acid and triacylglycerol profiles, 13C NMR spectrometry for regiospecific analysis, X-ray diffraction for crystal forms, and DSC for melting profile. Stearic acid was incorporated into canola oil, mainly at the sn-1,3 positions, for the lipase reaction, and no new trans fatty acids formed. Most SL products did not have adequate solid fat content or beta' crystal forms for tub margarine, although these may be suitable for light margarine formulation.

  1. Early enteral feeding in postsurgical cancer patients. Fish oil structured lipid-based polymeric formula versus a standard polymeric formula.

    PubMed Central

    Kenler, A S; Swails, W S; Driscoll, D F; DeMichele, S J; Daley, B; Babineau, T J; Peterson, M B; Bistrian, B R

    1996-01-01

    OBJECTIVES: The authors compared the safety, gastrointestinal tolerance, and clinical efficacy of feeding an enteral diet containing a fish oil/medium-chain triglyceride structured lipid (FOSL-HN) versus an isonitrogenous, isocaloric formula (O-HN) in patients undergoing major abdominal surgery for upper gastrointestinal malignancies. SUMMARY BACKGROUND DATA: Previous studies suggest that feeding with n-3 fatty acids from fish oil can alter eicosanoid and cytokine production, yielding an improved immunocompetence and a reduced inflammatory response to injury. The use of n-3 fatty acids as a structured lipid can improve long-chain fatty acid absorption. METHODS: This prospective, blinded, randomized trial was conducted in 50 adult patients who were jejunally fed either FOSL-HN or O-HN for 7 days. Serum chemistries, hematology, urinalysis, gastrointestinal complications, liver and renal function, plasma and erythrocyte fatty acid analysis, urinary prostaglandins, and outcome parameters were measured at baseline and on day 7. Comparisons were made in 18 and 17 evaluable patients based a priori on the ability to reach a tube feeding rate of 40 mL/hour. RESULTS: Patients receiving FOSL-HN experienced no untoward side effects, significant incorporation of eicosapentaenoic acid into plasma and erythrocyte phospholipids, and a 50% decline in the total number of gastrointestinal complications and infections compared with patients given O-HN. The data strongly suggest improved liver and renal function during the postoperative period in the FOSL-HN group. CONCLUSION: Early enteral feeding with FOSL-HN was safe and well tolerated. Results suggest that the use of such a formula during the postoperative period may reduce the number of infections and gastrointestinal complications per patient, as well as improve renal and liver function through modulation of urinary prostaglandin levels. Additional clinical trials to fully quantify clinical benefits and optimize nutritional

  2. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    PubMed

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  3. Alternative lipid emulsions versus pure soy oil based lipid emulsions for parenterally fed preterm infants.

    PubMed

    Kapoor, Vishal; Glover, Rebecca; Malviya, Manoj N

    2015-12-02

    The pure soybean oil based lipid emulsions (S-LE) conventionally used for parenteral nutrition (PN) in preterm infants have high polyunsaturated fatty acid (PUFA) content. The newer lipid emulsions (LE) from alternative lipid sources with reduced PUFA content may improve clinical outcomes in preterm infants. To determine the safety and efficacy of the newer alternative LE compared with the conventional S-LE for PN in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG) to search the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 7), MEDLINE (1946 to 31 July 2015), EMBASE (1947 to 31 July 2015), CINAHL (1982 to 31 July 2015), Web of Science (31 July 2015), conference proceedings, trial registries (clinicaltrials.gov, controlled-trials.com, WHO's ICTRP), and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised or quasi-randomised controlled trials in preterm infants (< 37 weeks), comparing newer alternative LE with S-LE. Data collection and analysis conformed to the methods of the CNRG. We assessed the quality of evidence for important outcomes using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, in addition to reporting the conventional statistical significance of results. Fifteen studies (N = 979 infants) are included in this review. Alternative LE including medium chain triglycerides/long chain triglycerides (MCT/LCT) LE (3 studies; n = 108), MCT-olive-fish-soy oil-LE (MOFS-LE; 7 studies; n = 469), MCT-fish-soy oil-LE (MFS-LE; 1 study; n = 60), olive-soy oil-LE (OS-LE; 7 studies; n = 406), and borage-soy oil-LE (BS-LE; 1 study; n = 34) were compared with S-LE. The different LE were also considered together to compare 'all fish oil containing-LE' versus S-LE (7 studies; n = 499) and 'all alternative LE' versus S-LE (15 studies; n = 979). Some studies had multiple intervention arms and were included in

  4. A Blend of Sesame and Rice Bran Oils Lowers Hyperglycemia and Improves the Lipids.

    PubMed

    Devarajan, Sankar; Chatterjee, Biprabuddha; Urata, Hidenori; Zhang, Bo; Ali, Amanat; Singh, Ravinder; Ganapathy, Sambandam

    2016-07-01

    Considering the health benefits of sesame oil and rice bran oil, the study was conducted to determine the extent to which the daily use of this blend of oils controls hyperglycemia and improves the lipid profile. In this 8-week open-label randomized dietary intervention study, 300 type 2 diabetes mellitus patients and 100 normoglycemic subjects were grouped as 1) normoglycemic subjects (n = 100) treated with sesame oil blend Vivo (Adani Wilmar, Ahmedabad, Gujarat, India), 2) type 2 diabetes mellitus patients treated with sesame oil blend (n = 100), 3) type 2 diabetes mellitus patients treated with glibenclamide (n = 100; 5 mg/d), and 4) type 2 diabetes mellitus patients treated in combination of glibenclamide (5 mg/d) and sesame oil blend (n = 100). Twelve-hour fasting blood glucose, glycated hemoglobin (HbA1c), and lipid profile followed by postprandial blood glucose were measured at baseline. Sesame oil blend was supplied to the respective groups, who were instructed to use as cooking oil for 8 weeks. Fasting and postprandial blood glucose was measured at week 4 and week 8, while HbA1c and lipid profile were measured at week 8. At week 4 and week 8, type 2 diabetes mellitus patients treated with sesame oil blend or glibenclamide or combination of glibenclamide and sesame oil blend showed significant reduction of fasting and postprandial blood glucose (P <.001). HbA1c, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol were significantly reduced (P <.001), while high-density lipoprotein cholesterol was significantly increased at week 8 (P <.001) in type 2 diabetes mellitus patients treated with the sesame oil blend or combination of glibenclamide and sesame oil blend; whereas glibenclamide-alone-treated type 2 diabetes mellitus patients showed a significant reduction of HbA1c (P <.001) only. A novel blend of 20% cold-pressed unrefined sesame oil and 80% physically refined rice bran oil as

  5. Preparation of Deep Sea Fish Oil-Based Nanostructured Lipid Carriers with Enhanced Cellular Uptake.

    PubMed

    Zhu, Qiu-Yun; Guissi, Fida; Yang, Ru-Ya; Wang, Qian; Wang, Ke; Chen, Dan; Han, Zhi-Hao; Ma, Yi; Zhang, Min; Gu, Yue-Qing

    2015-12-01

    Nanostructured lipid carriers (NLC) are a promising pharmaceutical delivery system with mean diameter less than 200 nm which are dispersed in an aqueous phase containing emulsifier(s), to increase the water solubility, stability and bioavailability of oil compounds. Herein we prepared a promising NLC with glyceryl monostearate (GMS) as the solid lipid template and deep sea fish oil as the liquid lipid template using melted-ultrasonic method. Fish oil-NLC had a mean size of 84.7 ± 2.6 nm and a zeta potential that ranged from -17.87 mV to -32.91 mV. The nanoparticles exhibited good stability for four weeks with a high encapsulation efficiency of 87.5 ± 5.2%. Afterwards, confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) were used to investigate the contribution of Fish oil-NLC in enhancing fluorescein isothiocyanate (FITC) cellular uptake in comparison with free FITC. The results of this study indicated the possibility of this carrier to overcome the shortcomings of deep sea fish oil and to provide a novel bifunctional carrier with nutritional potential and drug delivery ability.

  6. A role for caleosin in degradation of oil-body storage lipid during seed germination.

    PubMed

    Poxleitner, Marianne; Rogers, Sally W; Lacey Samuels, A; Browse, John; Rogers, John C

    2006-09-01

    Caleosin is a Ca(2+)-binding oil-body surface protein. To assess its role in the degradation of oil-bodies, two independent insertion mutants lacking caleosin were studied. Both mutants demonstrated significant delay of breakdown of the 20:1 storage lipid at 48 and 60 h of germination. Additionally, although germination rates for seeds were not affected by the mutations, mutant seedlings grew more slowly than wild type when measured at 48 h of germination, a defect that was corrected with continued growth for 72 and 96 h in the light. After 48 h of germination, wild-type central vacuoles had smooth contours and demonstrated internalization of oil bodies and of membrane containing alpha- and delta-tonoplast intrinsic proteins (TIPs), markers for protein storage vacuoles. In contrast, mutant central vacuoles had distorted limiting membranes displaying domains with clumps of the two TIPs, and they contained fewer oil bodies. Thus, during germination caleosin plays a role in the degradation of storage lipid in oil bodies. Its role involves both the normal modification of storage vacuole membrane and the interaction of oil bodies with vacuoles. The results indicate that interaction of oil bodies with vacuoles is one mechanism that contributes to the degradation of storage lipid.

  7. Tuning of shell thickness of solid lipid particles impacts the chemical stability of encapsulated ω-3 fish oil.

    PubMed

    Salminen, Hanna; Helgason, Thrandur; Kristinsson, Bjarki; Kristbergsson, Kristberg; Weiss, Jochen

    2017-03-15

    This study demonstrates that tuning the shell thickness of lipid particles can modulate their oxidative stability. We hypothesized that a thick crystallized shell around the incorporated fish oil would improve the oxidative stability due to the reduced diffusion of prooxidants and oxygen. We prepared solid lipid nanoparticles (5%w/w lipid phase, 1.5%w/w surfactant, pH 7) by using different ratios of tristearin as carrier lipid and ω-3 fish oil as incorporated liquid lipid stabilized by high- or low-melting lecithin. The physical, polymorphic and oxidative stability of the lipid particles was assessed. The high-melting lecithin was the key in inducing the formation of a solidified tristearin shell around the lipid particles by interfacial heterogeneous nucleation. Lipid particles containing a higher ratio of tristearin showed a better oxidative stability. The results revealed that a crystallized tristearin layer above 10nm was required to inhibit oxidation of the incorporated fish oil. This cut-off was shown for lipid particles containing 50-60% fish oil. This research gives important insights into understanding the relation between the thickness of the crystallized shell around the lipid particles and their chemical stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    PubMed

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  9. Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhen; Zeng, Guangming; Kosa, Matyas

    2014-11-07

    Light oil from pyrolysis, which accounts for ~10 % carbon yield of the starting biomass, is a complex aqueous product that is difficult to utilize and usually discarded. This work presents the feasibility of light oil as a sole carbon source to support the growth of Rhodococcus opacus (R. opacus) that in turn accumulate triacylglycerols as biodiesel feedstock. Two types of bacteria (R. opacus PD630 and DSM 1069) were selected in this study. Research results showed that after short adaption periods both strains can grow well on this complex carbon source, as proved by the consumption of oligomers and monomersmore » in light oil. Lipid content by R. opacus PD630 and DSM 1069 was observed up to 25.8 % and 22.0 % of cell dry weight, respectively. Palmitic and stearic acids were found to be the predominant fatty acids in these bacterial cells. In addition, the light oil-based lipid production can be enhanced by reducing the pH value from 7 to 4, especially in case of DSM 1069.« less

  10. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  11. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    PubMed

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  12. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  13. [Preparation of Oenothera biennis Oil Solid Lipid Nanoparticles Based on Microemulsion Technique].

    PubMed

    Piao, Lin-mei; Jin, Yong; Cui, Yan-lin; Yin, Shou-yu

    2015-06-01

    To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. The preparation process is simple, stable and feasible.

  14. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    PubMed

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  15. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    PubMed

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  16. Why fish oil fails: a comprehensive 21st century lipids-based physiologic analysis.

    PubMed

    Peskin, B S

    2014-01-01

    The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention-both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology.

  17. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration

    PubMed Central

    Tichota, Deise Michele; Silva, Ana Catarina; Sousa Lobo, José Manuel; Amaral, Maria Helena

    2014-01-01

    Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration). PMID:25143733

  18. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.

    PubMed

    Tichota, Deise Michele; Silva, Ana Catarina; Sousa Lobo, José Manuel; Amaral, Maria Helena

    2014-01-01

    Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration).

  19. Inhibition of lipid oxidation by formation of caseinate-oil-oat gum complexes

    USDA-ARS?s Scientific Manuscript database

    Lipid oxidation, particularly oxidation of unsaturated fatty acids such as omega-3 fatty acids, has posed a serious challenge to the food industry trying to incorporate heart-healthy oil products into their lines of healthful foods and beverages. In this study, model plant oil was dispersed into so...

  20. Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: a randomized crossover trial.

    PubMed

    Svensson, Julia; Rosenquist, Anna; Ohlsson, Lena

    2011-06-28

    Postprandial lipaemia varies with gender and the composition of dietary fat due to the partitioning of fatty acids between beta-oxidation and incorporation into triacylglycerols (TAGs). Increasing evidence highlights the importance of postprandial measurements to evaluate atherogenic risk. Postprandial effects of alpha-linolenic acid (ALA) in women are poorly characterized. We therefore studied the postprandial lipid response of women to an ALA-rich oil in comparison with olive oil and butter, and characterized the fatty acid composition of total lipids, TAGs, and non-esterified fatty acids (NEFAs) in plasma. A randomized crossover design (n = 19) was used to compare the postprandial effects of 3 meals containing 35 g fat. Blood samples were collected at regular intervals for 7 h. Statistical analysis was carried out with ANOVA (significant difference = P < 0.05). No significant difference was seen in incremental area under the curve (iAUC) plasma-TAG between the meals. ALA and oleic acid levels were significantly increased in plasma after ALA-rich oil and olive oil meals, respectively. Palmitic acid was significantly increased in plasma-TAG after the butter meal. The ratios of 18:2 n-6 to18:3 n-3 in plasma-TAGs, three and seven hours after the ALA-rich oil meal, were 1.5 and 2.4, respectively. The corresponding values after the olive oil meal were: 13.8 and 16.9; and after the butter meal: 9.0 and 11.6. The postprandial p-TAG and NEFA response in healthy pre-menopausal women was not significantly different after the intake of an ALA-rich oil, olive oil and butter. The ALA-rich oil significantly affected different plasma lipid fractions and improved the ratio of n-6 to n-3 fatty acids several hours postprandially.

  1. Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: A randomized crossover trial

    PubMed Central

    2011-01-01

    Background Postprandial lipaemia varies with gender and the composition of dietary fat due to the partitioning of fatty acids between beta-oxidation and incorporation into triacylglycerols (TAGs). Increasing evidence highlights the importance of postprandial measurements to evaluate atherogenic risk. Postprandial effects of alpha-linolenic acid (ALA) in women are poorly characterized. We therefore studied the postprandial lipid response of women to an ALA-rich oil in comparison with olive oil and butter, and characterized the fatty acid composition of total lipids, TAGs, and non-esterified fatty acids (NEFAs) in plasma. Methods A randomized crossover design (n = 19) was used to compare the postprandial effects of 3 meals containing 35 g fat. Blood samples were collected at regular intervals for 7 h. Statistical analysis was carried out with ANOVA (significant difference = P < 0.05). Results No significant difference was seen in incremental area under the curve (iAUC) plasma-TAG between the meals. ALA and oleic acid levels were significantly increased in plasma after ALA-rich oil and olive oil meals, respectively. Palmitic acid was significantly increased in plasma-TAG after the butter meal. The ratios of 18:2 n-6 to18:3 n-3 in plasma-TAGs, three and seven hours after the ALA-rich oil meal, were 1.5 and 2.4, respectively. The corresponding values after the olive oil meal were: 13.8 and 16.9; and after the butter meal: 9.0 and 11.6. Conclusions The postprandial p-TAG and NEFA response in healthy pre-menopausal women was not significantly different after the intake of an ALA-rich oil, olive oil and butter. The ALA-rich oil significantly affected different plasma lipid fractions and improved the ratio of n-6 to n-3 fatty acids several hours postprandially. PMID:21711508

  2. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review

    PubMed Central

    Suárez-Jiménez, Guadalupe Miroslava; López-Saiz, Carmen María; Ramírez-Guerra, Hugo Enrique; Ezquerra-Brauer, Josafat Marina; Ruiz-Cruz, Saul; Torres-Arreola, Wilfrido

    2016-01-01

    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils. PMID:27886145

  3. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review.

    PubMed

    Suárez-Jiménez, Guadalupe Miroslava; López-Saiz, Carmen María; Ramírez-Guerra, Hugo Enrique; Ezquerra-Brauer, Josafat Marina; Ruiz-Cruz, Saul; Torres-Arreola, Wilfrido

    2016-11-24

    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils.

  4. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study.

    PubMed

    Zhang, Ruojie; Zhang, Zipei; Zhang, Hui; Decker, Eric Andrew; McClements, David Julian

    2015-09-01

    The potential gastrointestinal fate of oil-in-water emulsions containing lipid phases from different sources was examined: vegetable oils (corn, olive, sunflower, and canola oil); marine oils (fish and krill oil); flavor oils (orange and lemon oil); and, medium chain triglycerides (MCT). The lowest rates and extents of lipid digestion were observed for emulsified flavor oil, followed by emulsified krill oil. There was no appreciable difference between the final amounts of free fatty acids released for emulsified digestible oils. Differences in the digestibility of emulsions prepared using different oils were attributed to differences in their compositions, e.g., fatty acid chain length and unsaturation. The particle size distribution, particle charge, microstructure, and macroscopic appearance of the emulsions during passage through the simulated GIT depended on oil type. The results of this study may facilitate the design of functional foods that control the digestion and absorption of triglycerides, as well as the bioaccessibility of hydrophobic bioactives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Why Fish Oil Fails: A Comprehensive 21st Century Lipids-Based Physiologic Analysis

    PubMed Central

    Peskin, B. S.

    2014-01-01

    The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention—both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology. PMID:24551453

  6. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula.

    PubMed

    Li, Ruoyu; Sabir, Jamal S M; Baeshen, Nabih A; Akoh, Casimir C

    2015-11-01

    Structured lipids (SLs) containing palmitic, docosahexaenoic (DHA), and gamma-linolenic (GLA) acids were produced using refined olive oil, tripalmitin, and ethyl esters of DHA single cell oil and GLA ethyl esters. Immobilized Lipozyme TL IM lipase was used as the biocatalyst. The SLs were characterized for fatty acid profile, triacylglycerol (TAG) molecular species, solid fat content, oxidative stability index, and melting and crystallization profiles and compared to physical blend of substrates, extracted fat from commercial infant formula (IFF), and milk fat. 49.28 mol% of palmitic acid was found at the sn-2 position of SL TAG and total DHA and GLA composition were 0.73 and 5.00 mol%, respectively. The total oleic acid content was 36.13 mol% which was very close to the 30.49% present in commercial IFF. Comparable solid fat content profiles were also found between SLs and IFF. The SLs produced have potential for use in infant formulas. © 2015 Institute of Food Technologists®

  7. [Effects of vegetal oil supplementation on the lipid profile of Wistar rats ].

    PubMed

    Poveda, Elpidia; Ayala, Paola; Milena, Rodríguez; Ordóñez, Edgar; Baracaldo, Cesar; Delgado, Willman; Guerra, Martha

    2005-03-01

    Dietary tocopherols, tocotrienols and saturated, mono and polyunsaturated fatty acids have been reported to have an effect on blood lipid profiles. In Colombia, vegetable oils (palm, soy, corn, sunflower, and canola) are a common dietary constituent and consumed in high quantities. In the current study, the effects of vegetable oil consumption was examined by measuring blood concentrations of triglycerides (TG), total cholesterol (TC) and HDL cholesterol (HDL-C) in male Wistar rats. The concentrations of tocopherols, tocotrienols, and fatty acids in each oil was quantified by High Performance Liquid Chromatography (HPLC). Each rat diet was supplemented with 0.2 ml/day with one oil type. Over a 4-week period, groups of animals were sacrificed weekly and blood samples were obtained to quantify TC, TG and HDL-C for each oil class. Statistical analyses included mean, standard deviation, ANOVA and Bonferroni comparisons tests. Triglyceride content was not affected except in the control and the soy group in the third treatment week, although a tendency for decreased TG was noted in the palm oil group and for increased TG in the sunflower oil and canola oil groups. No significant differences in total cholesterol were observed. In HDL-C, significant differences were present for every treatment week (p = 0.005); this represented a decreasing trend in palm oil group and an increasing trend in the sunflower and corn oil groups. The oils effected changes in the blood lipid profile. A small amount of saturated fatty acids (tocopherol and tocotrienol) were favourable for the HDL-C increase. The presenct of tocorienols tended to decrease the TG and probably helped attenuate the unfavorable effects of the saturated fatty acids.

  8. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882

  9. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2016-09-01

    The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Differences in the intramolecular structure of structured oils do not affect pancreatic lipase activity in vitro or the absorption by rats of (n-3) fatty acids.

    PubMed

    Porsgaard, Trine; Xu, Xuebing; Göttsche, Jesper; Mu, Huiling

    2005-07-01

    The fatty acid composition and intramolecular structure of dietary triacylglycerols (TAGs) influence their absorption. We compared the in vitro pancreatic lipase activity and the lymphatic transport in rats of fish oil and 2 enzymatically interesterified oils containing 10:0 and (n-3) PUFAs of marine origin to investigate whether the positional distribution of fatty acids influenced the overall bioavailability of (n-3) PUFAs in the body. The structured oils had the (n-3) PUFA either mainly at the sn-1,3 position (LML, M = medium-chain fatty acid, L = long-chain fatty acid) or mainly at the sn-2 position (MLM). Oils were administered to lymph-cannulated rats and lymph was collected for 24 h. The fatty acid composition as well as the lipid class distribution of lymph samples was determined. In vitro pancreatic lipase activity was greater when fish oil was the substrate than when the structured oils were the substrates (P < 0.001 at 40 min). This was consistent with a greater 8-h recovery of total fatty acids from fish oil compared with the 2 structured oils (P < 0.05). The absorption profiles of MLM and LML in rats and their in vitro rates of lipase activity did not differ. This indicates that the absorption rate is highly influenced by the lipase activity, which in turn is affected by the fatty acid composition and intramolecular structure. The lipid class distribution in lymph collected from the 3 groups of rats did not differ. In conclusion, the intramolecular structure did not affect the overall absorption of (n-3) PUFAs.

  11. Short-Term Use of Parenteral Nutrition With a Lipid Emulsion Containing a Mixture of Soybean Oil, Olive Oil, Medium-Chain Triglycerides, and Fish Oil

    PubMed Central

    Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    Background: For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Methods: Double-blind, controlled study in 53 neonates (<34 weeks’ gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1–3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6–14. Results: Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). Conclusions: The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile. PMID:22237883

  12. Comparison Of Lipid Lowering Effect Of Extra Virgin Olive Oil And Atorvastatin In Dyslipidaemia In Type 2 Diabetes Mellitus.

    PubMed

    Khan, Tariq Mahmood; Iqbal, Sohail; Rashid, Muhammad Adnan

    2017-01-01

    Extra virgin olive oil (EVOO) is fruit oil with rich source of monounsaturated fats and powerful antioxidants. It acts as hypolipidemic agent and significant decrease of plasma lipids level was observed with EVOO use. Atorvastatin is hypolipidemic drug commonly used for treatment of hyperlipidaemia. The purpose of this study was to determine & compare the lipid lowering effect of EVOO with atorvastatin in type 2 diabetic dyslipidaemia which is leading cause of microvascular diseases. This randomised controlled trial was conducted on 60 already diagnosed cases of type 2 diabetes mellitus with dyslipidaemia. All sixty subjects were divided randomly into 2 groups. Atorvastatin 40 mg was given to Group One and two tablespoons of extra virgin olive oil orally per day was given to Group Two. Blood was collected for estimation of plasma lipids level at base line, 4th week, and 6th weeks in two groups and was compared statistically. The present study demonstrated 20-40% lipid lowering effect of atorvastatin on plasma lipids level with 9-16% increase in HDL while extra virgin olive oil showed 14-25% reduction in plasma lipids with 8-12% increase in HDL-cholesterol level. This study concludes that both atorvastatin and extra virgin olive oil are effective in reducing plasma lipids level in type 2 diabetic dyslipidaemia with more prominent effect of atorvastatin than EVOO.

  13. Combined "de novo" and "ex novo" lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis.

    PubMed

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Qi, Gao-Xiang; Xiong, Lian; Lin, Xiao-Qing; Wang, Can; Li, Hai-Long; Chen, Xin-De

    2017-01-01

    Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways (" de novo " lipid fermentation and " ex novo " lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both " de novo " and " ex novo " lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined " de novo " and " ex novo " lipid fermentation by oleaginous yeast Trichosporon dermatis . Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis . Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis . The present study proves the potential and possibility of combined " de novo " and " ex novo " lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.

  14. Enzymatic synthesis of capric acid-rich structured lipids (MUM type) using Candida antarctica lipase.

    PubMed

    SilRoy, Sumita; Ghosh, Mahua

    2011-01-01

    The objective of the work was to produce capric acid rich structured lipids starting from various Indian indigenous vegetable oils, such as rice bran, ground nut and mustard oils. Acidolysis reaction between individual vegetable oils and capric acid in one is to three molar ratios at 45 degree centigrade temperature was carried out using position specific Candida antarctica lipase so as to protect the Sn-2 position of the oils which are rich in unsaturated fatty acids. The incorporation of capric acid depended on the reaction time showing 6 % within 6 h and 30.8 % in 72 h with rice bran oil. Similarly, in ground nut oil incorporation of capric acid was 34.2 % in 72 h compared to 5.3 % in 6 h. Thus mustard oil showed much lower incorporation than the other two oils, with 3.3 % and 19.5 % in 6 and 72 h respectively. The incorporation of capric acid was influenced by the nature of the fatty acids present in the original oil. The fatty acid composition of Sn-2 position of the structured triacylglycerols of the three oils revealed that capric acid was mainly replacing the fatty acids occupying the Sn-1 and 3 positions of the triglyceride molecule.

  15. Effects of flavonoid glycosides obtained from a Ginkgo biloba extract fraction on the physical and oxidative stabilities of oil-in-water emulsions prepared from a stripped structured lipid with a low omega-6 to omega-3 ratio.

    PubMed

    Yang, Dan; Wang, Xiang-Yu; Gan, Lu-Jing; Zhang, Hua; Shin, Jung-Ah; Lee, Ki-Teak; Hong, Soon-Taek

    2015-05-01

    In this study, we have produced a structured lipid with a low ω6/ω3 ratio by lipase-catalysed interesterification with perilla and grape seed oils (1:3, wt/wt). A Ginkgo biloba leaf extract was fractionated in a column packed with HP-20 resin, producing a flavonoid glycoside fraction (FA) and a biflavone fraction (FB). FA exhibited higher antioxidant capacity than FB, showing 58.4 mmol gallic acid equivalent (GAE)/g-of-total-phenol-content, 58.8 mg quercetin equivalent (QUE)/g-of-total-flavonoid-content, 4.5 mmol trolox/g-of-trolox-equivalent antioxidant capacity, 0.14 mg extract/mL-of-free-radical-scavenging-activity (DPPH assay, IC50), and 2.3 mmol Fe2SO4 · 7H2O/g-of-ferric-reducing-antioxidant-power. The oil-in-water emulsion containing the stripped structured lipid as an oil phase with FA exhibited the highest stability and the lowest oil globule diameters (d43 and d32), where the aggregation was unnoticeable by Turbiscan and particle size analyses during 30 days of storage. Furthermore, FA was effective in retarding the oxidation of the emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A blend of sesame oil and rice bran oil lowers blood pressure and improves the lipid profile in mild-to-moderate hypertensive patients.

    PubMed

    Devarajan, Sankar; Singh, Ravinder; Chatterjee, Biprabuddha; Zhang, Bo; Ali, Amanat

    2016-01-01

    Sesame oil and rice bran oil are known for their unsaturated fatty acids and antioxidants contents and have been reported to reduce the cardiovascular risk. To determine the effect of a blend of 20% unrefined cold-pressed lignans-rich sesame oil and 80% physically refined γ-oryzanol-rich rice bran oil (Vivo) as cooking oil in mild-to-moderate hypertensive patients. In this prospective, open-label dietary approach, 300 hypertensive patients and 100 normotensives were divided into groups as: (1) normotensives treated with sesame oil blend, (2) hypertensives treated with sesame oil blend, (3) hypertensives treated with nifedipine, a calcium channel blocker (20 mg/d), and (4) hypertensives receiving the combination of sesame oil blend and nifedipine (20 mg/d). Sesame oil blend was supplied to respective groups, and they were instructed to use it as the only cooking oil for 60 days. Resting blood pressure was measured at days 0, 15, 30, 45, and 60, whereas the fasting lipid profile was measured at days 0 and 60. Significant reduction in blood pressure (systolic, diastolic, and mean arterial) from days 0 to 15, 30, 45, and 60 were observed in hypertensives treated with sesame oil blend alone (P < .001), nifedipine alone (P < .001), and combination of sesame oil blend and nifedipine (P < .001). Sesame oil blend with nifedipine-treated group showed greatest reduction in blood pressure. Total cholesterol, low-density lipoprotein cholesterol, triglycerides, and non-high-density lipoprotein cholesterol levels reduced, whereas high-density lipoprotein cholesterol levels increased significantly only in hypertensives treated with sesame oil blend alone and the combination of sesame oil blend and nifedipine (P < .001). We demonstrate for the first time that using a blend of sesame oil and rice bran oil as cooking oil showed a significant antihypertensive and lipid-lowering action and had noteworthy additive effect with antihypertensive medication. Copyright © 2016 National

  17. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba).

    PubMed

    Albalat, Amaya; Nadler, Lauren E; Foo, Nicholas; Dick, James R; Watts, Andrew J R; Philp, Heather; Neil, Douglas M; Monroig, Oscar

    2016-12-01

    In the UK, the Norway lobster ( Nephrops norvegicus ) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba , represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes

  18. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba)

    PubMed Central

    Albalat, Amaya; Nadler, Lauren E.; Foo, Nicholas; Dick, James R.; Watts, Andrew J. R.; Philp, Heather; Neil, Douglas M.; Monroig, Oscar

    2016-01-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as “tails-only” for the scampi trade. In the “tailing” process, the “head” (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and

  19. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    PubMed Central

    2011-01-01

    Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503

  20. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat.

    PubMed

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Jeon, Seon-Min; Lee, Ki-Teak; Choi, Myung-Sook

    2011-01-20

    Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.

  1. Lipid Peroxidation in a Stomach Medium Is Affected by Dietary Oils (Olive/Fish) and Antioxidants: The Mediterranean versus Western Diet.

    PubMed

    Tirosh, Oren; Shpaizer, Adi; Kanner, Joseph

    2015-08-12

    Red meat is an integral part of the Western diet, and high consumption is associated with an increased risk of chronic diseases. Using a system that simulated the human stomach, red meat was interacted with different oils (olive/fish) and lipid peroxidation was determined by measuring accumulation of malondialdehyde (MDA) and lipid peroxides (LOOH). Olive oil decreased meat lipid peroxidation from 121.7 ± 3.1 to 48.2 ± 1.3 μM and from 327.1 ± 9.5 to 77.3 ± 6.0 μM as assessed by MDA and ROOH, respectively. The inhibitory effect of olive oil was attributed to oleic acid rather than its polyphenol content. In contrast, fish oils from tuna or an ω-3 supplement dramatically increased meat lipid peroxidation from 96.2 ± 3.6 to 514.2 ± 6.7 μM MDA. Vitamin E inhibited meat lipid peroxidation in the presence of olive oil but paradoxically increased peroxidation in the presence of fish oil. The inhibitory properties of oleic acid may play a key role in the health benefits of the Mediterranean diet.

  2. Production of trans-free margarine with stearidonic acid soybean and high-stearate soybean oils-based structured lipid.

    PubMed

    Pande, Garima; Akoh, Casimir C; Shewfelt, Robert L

    2012-11-01

    Omega-3 fatty acids (n-3 FAs) have been positively associated with prevention and treatment of chronic diseases. Intake of high amounts of trans fatty acids (TFAs) is correlated with increased risk of coronary heart disease, inflammation, and cancer. Structured lipid (SL) was synthesized using stearidonic acid (SDA) soybean oil and high-stearate soybean oil catalyzed by Lipozyme(®) TLIM lipase. The SL was compared to extracted fat (EF) from a commercial brand for FA profile, sn-2 positional FAs, triacylglycerol (TAG) profile, polymorphism, thermal behavior, oxidative stability, and solid fat content (SFC). Both SL and EF had similar saturated FA (about 31 mol%) and unsaturated FA (about 68 mol%), but SL had a much lower n-6/n-3 ratio (1.1) than EF (5.8). SL had 10.5 mol% SDA. After short-path distillation, a loss of 53.9% was observed in the total tocopherol content of SL. The tocopherols were lost as free tocopherols. SL and EF had similar melting profile, β' polymorph, and oxidative stability. Margarine was formulated using SL (SLM) and EF (RCM, reformulated commercial margarine). No sensory difference was observed between the 2 margarines. The SL synthesized in this study contained no TFA and possessed desirable polymorphism, thermal properties, and SFC for formulation of soft margarine. The margarine produced with this SL was trans-free and SDA-enriched. The current research increases the food applications of stearidonic acid (SDA) soybean oil. trans-Free SDA containing SL was synthesized with desirable polymorph, thermal properties, and SFC for formulation of soft margarine. The margarine produced with this SL had no trans fat and had a low n-6/n-3 ratio. This may help in reducing trans fat intake in our diet while increasing n-3 FA intake. © 2012 Institute of Food Technologists®

  3. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  4. Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea.

    PubMed

    Fokina, N N; Bakhmet, I N; Shklyarevich, G A; Nemova, N N

    2014-12-01

    A study on the effect oil pollution under normal and reduced salinity had on blue mussels Mytilus edulis L. from the White Sea in an aquarium-based experiment and in the natural habitat revealed a change in gill total lipids as a compensatory response. The cholesterol concentration and the cholesterol/phospholipids ratio in gills were found to reflect the impact of the environmental factors (oil pollution and desalination), and evidence adaptive changes in the cell membrane structure. An elevated content of storage lipids (chiefly triacylglycerols) in the mussels in the aquarium experiment indicates, first of all, the uptake and accumulation of oil products in gill cells under both normal and reduced seawater salinity, while high triacylglycerols level in gill littoral mussels from 'control' biotope in the Gulf of Kandalaksha is primarily associated with the mussel׳s pre-spawning period. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Fish oil improves lipid profile in juvenile rats with intrauterine growth retardation by altering the transcriptional expression of lipid-related hepatic genes.

    PubMed

    Chen, Lian-Hui; Liang, Li; Fang, Yan-Lan; Wang, Ying-Min; Zhu, Wei-Fen

    2016-10-01

    To determine whether maternal intrauterine undernutrition and post-weaning fish oil intake influence lipid profile in juvenile offspring, and explore the possible mechanisms at transcriptional levels. After weaning, 32 control offspring and 24 intrauterine growth retardation (IUGR) offspring were randomly allocated to standard chow or fish oil diet. At 10 weeks, fasting plasma glucose, triglycerides, total cholesterol and expressions of related hepatic genes were examined. IUGR offspring without catch-up growth tended to develop hyperglycemia, dyslipidemia and hepatic steatosis. Down-regulation of CPT-1 and LDLR at transcriptional levels were found in IUGR offspring. Early short-term fish oil intervention reversed these unfavorable changes in juvenile rats with IUGR. The mechanisms might be mediated by decreased expression of ACC-1, increased expression of CPT-1, LDLR and ABCG5. These data suggest that IUGR offspring already present lipid abnormality in juvenile stage, and early short-term fish oil consumption is beneficial to prevent these unfavorable changes.

  6. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  7. Physical and chemical stability of nanostructured lipid drug carriers (NLC) based on natural lipids from Baikal region (Siberia, Russia).

    PubMed

    Averina, E S; Müller, R H; Popov, D V; Radnaeva, L D

    2011-05-01

    At the turn of the millennium, a new generation of lipid nanoparticles for pharmacology was developed, nanostructured lipid carriers (NLC). The features of NLC structure which allow the inclusion of natural biologically active lipids in the NLC matrix open a wide prospect for the creation of high performance drug carriers. In this study NLC formulations were developed based on natural lipids from the Siberia region (Russia): fish oil from Lake Baikal fish; polyunsaturated fatty acid fractions and monounsaturated and saturated fatty acid fractions from fish oil and Siberian pine seed oil. Formulation parameters of NLC such as as type of surfactant and storage conditions were evaluated. The data obtained indicated high physical stability of NLC formulated on the basis of pure fish oil stabilized by Tween 80 and NLC formulated on the basis of free fatty acids stabilized by Poloxamer 188. The good chemical stability of the lipid matrix and the high concentrations of the biologically active polyunsaturated fatty acids in the NLC developed open wide prospects for their use in pharmaceutics and cosmetics.

  8. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    PubMed

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  9. The effect of a herbal paste and oil extract on the lipid content of canine hair fibres.

    PubMed

    Momota, Yutaka; Shimada, Kenichiro; Kadoya, Chihiro; Gin, Azusa; Kobayashi, Jun; Nakamura, Yuka; Matsubara, Takako; Sako, Toshinori

    2017-08-01

    Application of herbal paste and oil to a dog's coat and body before rinsing (often combining with shampooing) is a cosmetic therapy available in Japan. It is highly appreciated by users, who claim that the treatment makes the coat shinier, improves volume and eliminates tangles. However, there has been no scientific evaluation of such treatments. Improvement of hair condition is derived from oils such as sebum and conditioning oils because chemicals are not used. Therefore, we examined nonpolar lipids (the primary lipids in dog hair) and the botanical oils used in this therapy. Hair samples were obtained from six beagle dogs. Groups were based on different combinations of the following processes: rinsing, shampooing, herbal therapy and herbal therapy with oil extract. Analysis of lipids was performed by high performance thin layer chromatography. The processes of shampooing and herbal therapy were associated with an equivalent reduction in cholesterol ester and triglyceride (TG). However, hair treated by herbal therapy combined with oil extract had an almost three-fold higher TG content, even after shampooing. This study demonstrated that the herbal therapy was able to coat hair samples with TG that was not removed with rinsing. Further investigation is required to evaluate the possible benefits of the application of botanical products containing lipids, such as TG, on hair coat quality in dogs. © 2017 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  10. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms

  11. Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina.

    PubMed

    Abed, Sherif M; Zou, Xiaoqiang; Ali, Abdelmoneim H; Jin, Qingzhe; Wang, Xingguo

    2017-11-01

    Microbial oils (MOs) have gained widespread attention due to their functional lipids and health promoting properties. In this study, 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids (SLs) were produced from MO and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. Under the optimal conditions, the content of unsaturated fatty acids (UFAs) increased from 60.63 to 84.00%, while the saturated fatty acids (SFAs) content decreased from 39.37 to 16.00% at sn-1,3 positions in SLs. Compared with MO, arachidonic acid (ARA) content at the sn-2 position of SLs accounted for 49.71%, whereas OA was predominantly located at sn-1,3 positions (47.05%). Meanwhile, the most abundant triacylglycerol (TAG) species in SLs were (18:1-20:4-18:1), (20:4-20:4-18:1), (18:1-18:2-18:1), (18:1-18:2-18:0) and (24:0-20:4-18:1) with a relative content of 18.79%, 11.94%, 6.07%, 5.75% and 4.84%, respectively. Such novel SLs with improved functional properties enriched with UFAs are highly desirable and have the potential to be used in infant formula. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  13. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice

    PubMed Central

    2013-01-01

    Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors. PMID:23510369

  14. Empty nano and micro-structured lipid carriers of virgin coconut oil for skin moisturisation.

    PubMed

    Noor, Norhayati Mohamed; Khan, Abid Ali; Hasham, Rosnani; Talib, Ayesha; Sarmidi, Mohamad Roji; Aziz, Ramlan; Aziz, Azila Abd

    2016-08-01

    Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.

  15. Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids?

    PubMed

    Fiori, L; Solana, M; Tosi, P; Manfrini, M; Strim, C; Guella, G

    2012-09-15

    Lipid profiles of fish oil extracted from trout heads, spines and viscera using supercritical carbon dioxide and Randall extraction with hexane were measured. The amount of unsaturated fatty acids (as a percentage of total fatty acids) was within the range of 72.6-75.3% in all the substrates. A significant presence of the most important omega-3 fatty acids was detected. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in oil from spines, heads and viscera resulted to be 8.7% and 7.3%, 7.9% and 6.3%, and 6.4% and 6.0%, respectively. A low (≈3%), but worth noting, presence of lipids with omega-1 polyunsaturated fatty chains was observed in all the oils. Finally, significant differences were noticed in the relative amounts of triacylglycerides (TAG), diacylglycerides (DAG) and free fatty acids (FFA). Whereas oil from heads and spines was essentially composed of TAG (≈98%), in viscera oil the molar distribution ratio became TAG:DAG:FFA=87:8:5. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  17. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881

  18. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions.

    PubMed

    Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno

    2015-11-11

    Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.

  19. Separation of sardine oil without heating from surimi waste and its effect on lipid metabolism in rats.

    PubMed

    Toyoshima, Kotoe; Noguchi, Ryoko; Hosokawa, Masashi; Fukunaga, Kenji; Nishiyama, Toshimasa; Takahashi, Riki; Miyashita, Kazuo

    2004-04-21

    Sardine oil was obtained by centrifugation of surimi wastewater without heating or chemical refining. This oil (CE) showed light yellow color and the peroxide value was less than 1.0 meq/kg. The main lipid class of CE was triacylglycerol (TG) (>99%). These features indicate that CE can be directly used as food materials without further purification. Commercial sardine oil (CO) is usually prepared via some kind of refining process with high temperature (250 degrees C) and chemical treatment. The comparative study on the physiological effects of these sardine oils (CE and CO) revealed that the dietary sardine oils were more effective in reducing abdominal fat pads, plasma total cholesterol, and TG levels of rats than was a soybean oil diet (control). Furthermore, these effects were greater in CE than CO, although there was little difference in the fatty acid composition of both oils. Although the main lipid class of CE was TG (>99%), CE was prepared by centrifugation from surimi waste and directly used as dietary fat without further purification. Therefore, CE may contain some kinds of minor components, which could be attributed to the higher physiological activity of CE. To reveal the involvement of the minor compounds in CE, we prepared TG from CE by column chromatography and measured its effect on lipid metabolism of rats. TG from CE also showed the reducing effects on abdominal fad pads and plasma lipid levels. The effect of TG from CE was almost the same as that of original CE, suggesting that the higher nutritional activity of CE than CO may not be due to the minor compounds in CE.

  20. Effect of topically applied lipids on surfactant-irritated skin.

    PubMed

    Lodén, M; Andersson, A C

    1996-02-01

    Moisturizers are used daily by many people to alleviate symptoms of dry skin. All of them contain lipids. It has been suggested that topically applied lipids may interfere with the structure and function of the permeability barrier. The influence of a single application of nine different lipids on normal skin and skin irritated by sodium lauryl sulphate (SLS) was studied in 21 healthy subjects. Parameters assessed were visible signs of irritation, and objectively measured cutaneous blood flow and transepidermal water loss (TEWL). The substances tested were hydrocortisone, petrolatum, fish oil, borage oil, sunflower seed oil, canola oil, shea butter, and fractions of unsaponifiable lipids from canola oil and shea butter. Water was included as a control. On normal skin, no significant differences in the effects of the test substances were found, whereas significant differences were observed when they were applied to SLS-irritated skin. The visible signs of SLS-induced irritation were significantly less pronounced after treatment with the sterol-enriched fraction from canola oil than after treatment with water. This fraction, and hydrocortisone, reduced cutaneous blood flow. Furthermore, application of hydrocortisone, canola oil, and its sterol-enriched fraction, resulted in significantly lower TEWL than with water. The other lipids had no effect on the degree of irritation. In conclusion, lipids commonly used in moisturizers may reduce skin reactions to irritants. Previous studies have shown that, in barrier perturbed skin, the synthesis of sterols is increased. The observed effects of canola oil and its fraction of unsaponifiable lipids on SLS-induced irritation suggest the possibility that they assisted the skin in supplying the damaged barrier with adequate lipids.

  1. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    PubMed Central

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  2. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954

  3. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions.

    PubMed

    Tristram-Nagle, Stephanie; Nagle, John F

    2004-01-01

    This article, adapted from our acceptance speech of the Avanti Award in Lipids at the 47th Biophysical Society meeting in San Antonio, 2003, summarizes over 30 years of research in the area of lipid bilayers. Beginning with a theoretical model of the phase transition (J.F.N.), we have proceeded experimentally using dilatometry and density centrifugation to study volume, differential scanning calorimetry to study heat capacity, and X-ray scattering techniques to study structure of lipid bilayers as a function of temperature. Electron density profiles of the gel and ripple phases have been obtained as well as profiles from several fluid phase lipids, which lead to many structural results that compliment molecular dynamics simulations from other groups. Using the theory of liquid crystallography plus oriented lipid samples, we are the first group to obtain both material parameters (KC and B) associated with the fluctuations in fluid phase lipids. This allows us to use fully hydrated lipid samples, as in vivo, to obtain the structure.

  4. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions

    PubMed Central

    Tristram-Nagle, Stephanie; Nagle, John F.

    2009-01-01

    This article, adapted from our acceptance speech of the Avanti Award in Lipids at the 47th Biophysical Society meeting in San Antonio, 2003, summarizes over 30 years of research in the area of lipid bilayers. Beginning with a theoretical model of the phase transition (J.F.N.), we have proceeded experimentally using dilatometry and density centrifugation to study volume, differential scanning calorimetry to study heat capacity, and X-ray scattering techniques to study structure of lipid bilayers as a function of temperature. Electron density profiles of the gel and ripple phases have been obtained as well as profiles from several fluid phase lipids, which lead to many structural results that compliment molecular dynamics simulations from other groups. Using the theory of liquid crystallography plus oriented lipid samples, we are the first group to obtain both material parameters (KC and B) associated with the fluctuations in fluid phase lipids. This allows us to use fully hydrated lipid samples, as in vivo, to obtain the structure. PMID:14706737

  5. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    USDA-ARS?s Scientific Manuscript database

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  6. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    PubMed

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-12-01

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  7. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    PubMed

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  8. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.

    PubMed

    Liu, Fuguo; Zhu, Zhenbao; Ma, Cuicui; Luo, Xiang; Bai, Long; Decker, Eric Andrew; Gao, Yanxiang; McClements, David Julian

    2016-12-21

    Chemically unstable lipophilic bioactives, such as polyunsaturated lipids, often have to be encapsulated in emulsion-based delivery systems before they can be incorporated into foods, supplements, and pharmaceuticals. The objective of this study was to develop highly concentrated emulsion-based fish oil delivery systems using natural emulsifiers. Fish oil-in-water emulsions were fabricated using a highly efficient dual-channel high-pressure microfluidizer. The impact of oil concentration on the formation, physical properties, and oxidative stability of fish oil emulsions prepared using two natural emulsifiers (quillaja saponins and rhamnolipids) and one synthetic emulsifier (Tween-80) was examined. The mean droplet size, polydispersity, and apparent viscosity of the fish oil emulsions increased with increasing oil content. However, physically stable emulsions with high fish oil levels (30 or 40 wt %) could be produced using all three emulsifiers, with rhamnolipids giving the smallest droplet size (d < 160 nm). The stability of the emulsions to lipid oxidation increased as the oil content increased. The oxidative stability of the emulsions also depended on the nature of the emulsifier coating the lipid droplets, with the oxidative stability decreasing in the following order: rhamnolipids > saponins ≈ Tween-80. These results suggest that rhamnolipids may be particularly effective at producing emulsions containing high concentrations of ω-3 polyunsaturated fatty acids-rich fish oil.

  9. Infrared study of structural characteristics of Frankfurters formulated with olive oil-in-water emulsions stabilized with casein as pork backfat replacer.

    PubMed

    Carmona, P; Ruiz-Capillas, C; Jiménez-Colmenero, F; Pintado, T; Herrero, A M

    2011-12-28

    This article reports an infrared spectroscopic (FT-IR) study on lipids and protein structural characteristics in frankfurters as affected by an emulsified olive oil stabilizing system used as a pork backfat replacer. The oil-in-water emulsions were stabilized with sodium caseinate, without (F/SC) and with microbial transglutaminase (F/SC+MTG). Proximate composition and textural characteristics were also evaluated. Frankfurters F/SC+MTG showed the highest (P < 0.05) hardness and lowest (P < 0.05) adhesiveness. These products also showed the lowest (P < 0.05) half-bandwidth of the 2922 cm(-1) band, which could be related to the fact that the lipid chain was more orderly than that in the frankfurters formulated with animal fat and F/SC. The spectral results revealed modifications in the amide I band profile when the olive oil-in-water emulsion replaced animal fat. This fact is indicative of a greater content of aggregated intermolecular β-sheets. Structural characteristics in both proteins and lipids could be associated with the specific textural properties of frankfurters.

  10. Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats.

    PubMed

    Haggag, Mohammad El-Sayed Yassin El-Sayed; Elsanhoty, Rafaat Mohamed; Ramadan, Mohamed Fawzy

    2014-01-01

    To investigate the effects of different dietary fat and oils (differing in their degree of saturation and unsaturation) on lipid peroxidation in liver and blood of rats. The study was conducted on 50 albino rats that were randomly divided into 5 groups of 10 animals. The groups were fed on dietary butter (Group I), margarine (Group II), olive oil (Group III), sunflower oil (Group IV) and corn oil (Group V) for 7 weeks. After 12 h of diet removal, livers were excised and blood was collected to measure malondialdehyde (MDA) levels in the supernatant of liver homogenate and in blood. Blood superoxide dismutase activity (SOD), glutathione peroxidase activity (GPx), serum vitamin E and total antioxidant capacity (TAC) levels were also measured to determine the effects of fats and oils on lipid peroxidation. The results indicated that no significant differences were observed in SOD activity, vitamin E and TAC levels between the five groups. However, there was significant decrease of GPx activity in groups IV and V when compared with other groups. The results indicated that feeding corn oil caused significant increases in liver and blood MDA levels as compared with other oils and fats. There were positive correlations between SOD and GPx, vitamin E and TAC as well as between GPx and TAC (r: 0.743; P<0.001) and between blood MDA and liver MDA (r: 0.897; P<0.001). The results showed also negative correlations between blood MDA on one hand and SOD, GPx, vitamin E and TAC on the other hand. The results demonstrated that feeding oils rich in polyunsaturated fatty acids (PUFA) increases lipid peroxidation significantly and may raise the susceptibility of tissues to free radical oxidative damage. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  11. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of Variable Solvents on Particle Size of Geranium Oil-Loaded Solid Lipid Nanoparticle (Ge-SLN) For Mosquito Repellent Applications

    NASA Astrophysics Data System (ADS)

    Asnawi, Syalwati; Aziz, Azila A.; Aziz, Ramlan A.

    2009-06-01

    A new delivery system for insect repellent is proposed by the incorporation of geranium oil into solid lipid nanoparticle (SLN). A variety of solvents which act as co-surfactants, were introduced to increase the particle size of GE-SLN. Ethanol, which has a high boiling point and a long chain alcohol produced larger particle than dichloromethane. The structure of SLN was not stable when methanol and acetone were used as co-solvents. Concentration of solvents can also influence the size of SLN. In vitro release experiments showed that SLN was able to reduce the rapid evaporation of geranium oil.

  13. Effects of dietary crude oil exposure on molecular and physiological parameters related to lipid homeostasis in polar cod (Boreogadus saida).

    PubMed

    Vieweg, Ireen; Bilbao, Eider; Meador, James P; Cancio, Ibon; Bender, Morgan Lizabeth; Cajaraville, Miren P; Nahrgang, Jasmine

    2018-04-01

    Polar cod is an abundant Arctic key species, inhabiting an ecosystem that is subjected to rapid climate change and increased petroleum related activities. Few studies have investigated biological effects of crude oil on lipid metabolism in this species, despite lipids being a crucial compound for Arctic species to adapt to the high seasonality in food abundance in their habitat. This study examines the effects of dietary crude oil exposure on transcription levels of genes related to lipid metabolism (peroxisome proliferator-activated receptors [ppar-α, ppar-γ], retinoic X receptor [rxr-β], palmitoyl-CoA oxidase [aox1], cytochrome P4507A1 [cyp7α1]), reproduction (vitellogenin [vtg-β], gonad aromatase [cyp19a1]) and biotransformation (cytochrome P4501A1 [cyp1a1], aryl hydrocarbon receptor [ahr2]). Exposure effects were also examined through plasma chemistry parameters. Additional fish were exposed to a PPAR-α agonist (WY-14,643) to investigate the role of PPAR-α in their lipid metabolism. The dose-dependent up-regulation of cyp1a1 reflected the activation of genes related to PAH biotransformation upon crude oil exposure. The crude oil exposure did not significantly alter the mRNA expression of genes involved in lipid homeostasis except for cyp7α1 transcription levels. Plasma levels of cholesterol and alanine transaminase showed significant alterations in fish exposed to crude oil at the end of the experiment. WY exposure induced a down-regulation of ppar-α, an effect contrary to studies performed on other fish species. In conclusion, this study showed clear effects of dietary crude oil exposure at environmentally relevant concentrations on xenobiotic biotransformation but revealed only weak alterations in the lipid metabolism of polar cod. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Effects of dietary fish oil on serum lipids and blood coagulation in peritoneal dialysis patients.

    PubMed

    Lempert, K D; Rogers, J S; Albrink, M J

    1988-02-01

    The effects of a daily fish oil supplement rich in eicosapentaenoic acid were studied in 11 stable continuous ambulatory peritoneal dialysis (CAPD) patients. Serum lipids, platelet aggregation studies, and template bleeding times were determined before and after 4 weeks of fish oil treatment. The lipid studies were repeated approximately 20 weeks after stopping fish oil supplement. At the end of the treatment period, serum triglycerides (mean +/- SEM) decreased from 297 +/- 42 to 211 +/- 29 mg/dL (P less than .01), high density lipoprotein (HDL) cholesterol fell from 45 +/- 3 to 41 +/- 3 mg/dL (P less than .05), and low density lipoprotein (LDL) cholesterol increased from 172 +/- 16 to 208 +/- 19 mg/dL (P less than .05). After discontinuing the fish oil supplement, the triglycerides increased to 278 +/- 39 mg/dL, which was no different than the value before fish oil treatment. No significant changes occurred in template bleeding time (TBT), platelet count, hematocrit, or platelet aggregation response. Clinically important uremic bleeding was not apparent. We conclude that in CAPD patients a fish oil supplement favorably effects hypertriglyceridemia and can be ingested without promoting uremic bleeding. The likely beneficial impact on atherogenesis resulting from the lowering of the triglycerides may, however, be counteracted by concomitant changes in HDL- and LDL-cholesterol.

  15. Replacement of fish oil with soybean oil in diets for juvenile Chinese sucker (Myxocyprinus asiaticus): effects on liver lipid peroxidation and biochemical composition.

    PubMed

    Yu, Deng-Hang; Chang, Jia-Zhi; Dong, Gui-Fang; Liu, Jun

    2017-10-01

    This study was designed to evaluate the effect of the replacement of fish oil (FO) by soybean oil (SO) on growth performance, liver lipid peroxidation, and biochemical composition in juvenile Chinese sucker, Myxocyprinus asiaticus. Fish (13.7 ± 0.2 g) in triplicate were fed five experimental diets in which 0% (FO as control), 40% (SO40), 60% (SO60), 80% (SO40), and 100% (SO100) FO were replaced by SO. The body weight gain of fish fed SO40, SO60, or SO80 diet was similar to FO group, but diets that have 100% soybean oil as dietary lipid significantly reduced fish growth (P < 0.05). Although the level of SO resulted in increasing crude lipid content of the liver, the level of SO did not significantly alter the hepatosomatic index (HSI). Indicators of peroxidation, such as vitamin E (V E ) and thiobarbituric acid-reactive substance (TBARS) contents, were changed as increasing dietary SO. It was shown that the inclusion of SO in the diets increased V E concentrations, but reduced TBARS in the liver and total cholesterol (T-CHO) in the plasma. Linoleic acid (LA) and linolenic acid (LNA) significantly increased in fish liver fed diets that contained SO, but eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio n-3/n-6 were significantly reduced by the inclusion of dietary SO (P < 0.05). Our results indicated that the inclusion of SO increased the hepatic V E content and reduced lipid peroxidation in fish. However, diet containing 100% SO as dietary lipid could reduce growth performance. Thus, we recommended that 40-80% SO can be used as dietary lipid to replace FO for juvenile Chinese sucker.

  16. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells.

    PubMed

    Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M

    2016-09-14

    We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.

  17. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function

    PubMed Central

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651

  18. Serum lipids, lipid peroxidation and glutathione peroxidase activity in rats on long-term feeding with coconut oil or butterfat (ghee).

    PubMed

    Soelaiman, I N; Merican, Z; Mohamed, J; Kadir, K B

    1996-12-01

    We determined the relative atherogenicity of two saturated fats by studying their effects on lipid peroxidation (LP), by way of malonaldehyde (MDA) and conjugated dienes (CD) and glutathione peroxidase (GSHPx) activity in serum, liver and heart; and on serum lipid profile after 4 months and 9 months of feeding. Male Rattus norwegicus rats were fed a basal diet (control) or basal diet fortified with 20% weight/weight butterfat (ghee) (BF) or coconut oil (CO). Serum high-density-lipoprotein-cholesterol (HDL-chol) and HDL-chol:LDL-chol ratio was lower in the BF group compared to CO after both feeding periods. Conjugated dienes (CDs) were higher in the serum and liver after 4 months, and heart after 9 months, of the rats fed BF compared to CO. Serum low-density-lipoprotein-cholesterol (LDL-chol) was higher, but CD were lower at 9 months than at 4 months feeding for all three groups. Liver and heart MDA and CD were higher in both groups after 9 months compared to 4 months. Liver GSHPx activity was higher after 9 months compared to 4 months in the BF group. Heart GSHPx activity was lower after 9 months compared to 4 months for both BF and CO groups. In conclusion, BF is potentially more atherogenic than CO in terms of serum lipids and LP. The unfavourable responses in serum lipids, with the exception of triglycerides, and LP were exaggerated with the longer duration of feeding with both oils.

  19. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    NASA Astrophysics Data System (ADS)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  20. Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared With Soybean Oil in Parenteral Nutrition-Fed Neonatal Piglets.

    PubMed

    Turner, Justine M; Josephson, Jessica; Field, Catherine J; Wizzard, Pamela R; Ball, Ronald O; Pencharz, Paul B; Wales, Paul W

    2016-09-01

    The optimal parenteral lipid emulsion for neonates should reduce the risk of intestinal failure-associated liver disease and inflammation, while supporting growth and development. This could be best achieved by balanced content of ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Using a neonatal piglet model of parenteral nutrition (PN), we compared a 100% soy oil-based emulsion (ω-6:ω-3 PUFA: 7:1) with a mixed lipid emulsion comprising 30% soy oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (ω-6:ω-3 PUFA: approximately 2.5:1) with regard to liver disease, inflammation, and fatty acid content in plasma and brain. Neonatal piglets, 3-6 days old, underwent jugular catheter insertion for isonitrogenous, isocaloric PN delivery over 14 days. The IL group (n = 8) was treated with Intralipid; the ML group (n = 10) was treated with the mixed lipid (SMOFlipid). Bile flow, liver chemistry, C-reactive protein (CRP), and PUFA content in plasma phospholipids and brain were compared. Compared with the IL group, ML-treated piglets had increased bile flow (P = .008) and lower total bilirubin (P = .001) and CRP (P = .023) concentrations. The ω-6 long-chain PUFA content was lower in plasma and brain for the ML group. The key ω-3 long-chain PUFA for neonatal development, docosahexaenoic acid (DHA), was not different between groups. The mixed lipid, having less ω-6 PUFA and more ω-3 PUFA, was able to prevent liver disease and reduce systemic inflammation in PN-fed neonatal piglets. However, this lipid did not increase plasma or brain DHA status, which would be desirable for neonatal developmental outcomes. © 2015 American Society for Parenteral and Enteral Nutrition.

  1. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial

    PubMed Central

    2012-01-01

    Background Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. Methods/Design In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. Discussion The achievement

  2. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial.

    PubMed

    Giannì, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Ligneul, Amandine; Morniroli, Daniela; Garbarino, Francesca; le Ruyet, Pascale; Mosca, Fabio

    2012-10-17

    Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. The achievement of an appropriate long chain

  3. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    PubMed

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  4. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil.

    PubMed

    Qiu, Xujian; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2018-10-15

    Lipid oxidation of fish oil enriched cow milk and soy milk supplemented with rosemary extract stored at 2 °C was studied. Both peroxide value and volatile secondary lipid oxidation products were determined to monitor the progress of lipid oxidation. Rosemary extract inhibited lipid oxidation in fish oil enriched cow milk. In contrast, soy milk samples having much higher unsaturated fatty acid content showed higher lipid oxidation stability compared to cow milk. Reduction in the content of chlorogenic acid during storage suggested that this compound may contribute to the lipid oxidation stability of fish oil enriched soy milk product. Total carnosic acid and carnosol concentration declined much faster in soy milk than in cow milk. It is suggested from the results that food components could have significant impact on the fate of bioactive antioxidant compounds in a specific food product during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Comparison of Fish Oil Sources for Parenteral Lipid Emulsions in a Murine Model

    PubMed Central

    Fell, Gillian L.; Cho, Bennet S.; Pan, Amy; Nose, Vania; Anez-Bustillos, Lorenzo; Dao, Duy; Baker, Meredith A.; Nandivada, Prathima; Gura, Kathleen M.; Puder, Mark

    2017-01-01

    Background Parenteral fat emulsions are important components of parenteral nutrition (PN). For patients who develop PN-associated liver disease (PNALD), use of fish oil (FO) fat emulsions reverses cholestasis. The European Pharmacopeia contains two FO monographs. One is “fish oil; rich in omega-3 fatty acids,” (NFO). The other is “omega-3 acids,” (PFO) derived from NFO but enriched in omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The purpose of this study is to compare the effects of 20% NFO and PFO emulsions produced in the laboratory and tested in a murine model. Methods Lipid emulsions (20% oil) were compounded containing different oils: United States Pharmacopoeia (USP)-grade soybean oil (SO), NFO, PFO with 66% of the purified fatty acids in triglyceride form (PFO66), and PFO with 90% of the purified fatty acids in triglyceride form (PFO90). Chow-fed C57BL/6 mice received saline, one of the above emulsions, or a commercial FO (OM) by tail vein injection (2.4g/kg/day) for 19 days. Effects after each dose were recorded. On day 19, animals were euthanized and livers, spleens, and lungs were procured for histologic analysis. Results Animals administered OM, SO, NFO, and PFO90 tolerated injections well clinically, while those administered PFO66 developed tachypnea and lethargy for ~1 minute following injections. At euthanasia, PFO66- and PFO90-treated animals had organomegaly compared to the other groups. On histologic analysis, PFO66 and PFO90 groups had splenic fat-laden macrophages and hepatic sinusoidal lipid-laden Kupffer cells with no inflammation or necrosis. Lungs in these groups had scattered fat deposits. All other groups had normal-appearing livers, spleens, and lungs. Conclusions Use of PFO lipid emulsions is an attractive possibility for improving systemic inflammation in PN-dependent patients and optimizing management of PNALD by concentrating anti-inflammatory EPA and DHA. However, when

  6. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    PubMed

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition.

    PubMed

    Nasseri, Mahboobeh; Golmohammadzadeh, Shiva; Arouiee, Hossein; Jaafari, Mahmoud Reza; Neamati, Hossein

    2016-11-01

    The aim of the present study was to prepare, characterize, and evaluate solid lipid nanoparticles (SLNs) containing Zataria multiflora essential oil (ZEO). In this study, Z. multiflora essential oil-loaded solid lipid nanoparticles (ZE-SLNs) were prepared to improve its efficiency in controlling some fungal pathogens. SLNs containing Z. multiflora essential oil were prepared by high shear homogenization and ultra sound technique. ZEO-SLNs contained 0.03% ZEO in 5% of lipid phase (Glyceryl monostearate-GMS and Precirol® ATO 5). Tween 80 and Poloxamer 188 (2.5% w/v) were used as surfactant in the aqueous phase. The antifungal efficacy of ZE-SLNs and ZEO was compared under in vitro conditions. The particle size of ZE-SLNs was around 255.5±3 nm with PDI of 0.369±0.05 and zeta potential was about -37.8±0.8 mV. Encapsulation efficacy of ZE-SLNs in crystalline form was 84±0.92%. The results showed that the ZEO and ZE-SLNs had 54 and 79% inhibition on the growth of fungal pathogens, respectively. The minimum inhibitory concentration (MIC) under in vitro conditions for the ZEO on the fungal pathogens of Aspergillus ochraceus, Aspergillus niger, Aspergillus flavus, Alternaria solani, Rhizoctonia solani, and Rhizopus stolonifer was 300, 200, 300, 200, 200 and 200 ppm, respectively, for ZE-SLNs, it was 200, 200, 200, 100, 50 and 50 ppm. The antifungal efficacy of ZE-SLNs was significantly more than ZEO. Our results showed that the SLNs were suitable carriers for Z. multiflora essential oil in controlling the fungal pathogens and merits further investigation.

  8. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome.

    PubMed

    Venturini, Danielle; Simão, Andréa Name Colado; Urbano, Mariana Ragassi; Dichi, Isaias

    2015-06-01

    The aim of this study was to verify if extra virgin olive oil and fish oil have a synergistic effect on lipid and oxidative stress parameters in patients with metabolic syndrome (MetS). This intervention study included 102 patients (81 women and 21 men) with MetS (mean age 51.45 ± 8.27 y) from the ambulatory center of the University Hospital of Londrina, Paraná, Brazil. Patients were randomly assigned to one of four groups: Patients in the control group (CG) were instructed to maintain their usual diet; the second group (fish oil group [FO]) received 3 g/d of fish oil ω-3 fatty acids (10 capsules); the third group (extra virgin olive oil group [OO]) received 10 mL/d of extra virgin olive oil at lunch and dinner; and the fourth group (fish oil and extra virgin olive oil group [FOO]) received 3 g/d of fish oil ω-3 fatty acids and 10 mL/d of extra virgin olive oil. MetS related markers and oxidative stress were measured at baseline and after 90 d. Differences across treatment groups showed a statistically significant decrease (P < 0.05) in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) when FOO was compared with CG and OO, respectively. Hydroperoxides showed a significant decrease (P < 0.05) when FOO was compared with CG, whereas there was an increase in total peroxyl radical-trapping antioxidant potential/advanced oxidation protein products (TRAP/AOPP; P < 0.05) in FOO when compared with FO. In relation to baseline values, there was a significant decrease (P < 0.05) in LDL-C values, and TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C indexes in FOO. There was also a decrease (P < 0.05) in hydroperoxides, in AOPP and in AOPP/TRAP index in FOO, and an increase (P < 0.05) in TRAP/AOPP index in FOO and in TRAP/uric acid ratio in OO. The present study provides evidence that increased dietary ω-3 polyunsaturated fatty acids and extra virgin olive oil have beneficial synergistic effects on lipid metabolism and oxidative stress in

  9. Olive Oil, Sunflower Oil or no Oil for Baby Dry Skin or Massage: A Pilot, Assessor-blinded, Randomized Controlled Trial (the Oil in Baby SkincaRE [OBSeRvE] Study).

    PubMed

    Cooke, Alison; Cork, Michael J; Victor, Suresh; Campbell, Malcolm; Danby, Simon; Chittock, John; Lavender, Tina

    2016-03-01

    Topical oils on baby skin may contribute to development of childhood atopic eczema. A pilot, assessor-blinded, randomized controlled trial assessed feasibility of a definitive trial investigating their impact in neonates. One-hundred and fifteen healthy, full-term neonates were randomly assigned to olive oil, sunflower oil or no oil, twice daily for 4 weeks, stratified by family history of atopic eczema. We measured spectral profile of lipid lamellae, trans-epidermal water loss (TEWL), stratum corneum hydration and pH and recorded clinical observations, at baseline, and 4 weeks post-birth. Recruitment was challenging (recruitment 11.1%; retention 80%), protocol adherence reasonable (79-100%). Both oil groups had significantly improved hydration but significantly less improvement in lipid lamellae structure compared to the no oil group. There were no significant differences in TEWL, pH or erythema/skin scores. The study was not powered for clinical significance, but until further research is conducted, caution should be exercised when recommending oils for neonatal skin.

  10. Serum lipid profile and inflammatory markers in the aorta of cholesterol-fed rats supplemented with extra virgin olive oil, sunflower oils and oil-products.

    PubMed

    Katsarou, Ageliki I; Kaliora, Andriana C; Papalois, Apostolos; Chiou, Antonia; Kalogeropoulos, Nick; Agrogiannis, George; Andrikopoulos, Nikolaos K

    2015-01-01

    Extra virgin olive oil (EVOO) major and minor component anti-inflammatory effect on aorta was evaluated; Wistar rats were fed (9 weeks) on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, i.e. EVOO, sunflower oil (SO), high-oleic sunflower oil (HOSO), or oil-products modified to their phenolic content, i.e. phenolics deprived-EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], HOSO enriched with the EVOO phenolics [HOSO(+)]. HCD induced dyslipidemia and resulted in higher aorta adhesion molecules levels at euthanasia. Groups receiving EVOO, EVOO(-), HOSO, HOSO(+) presented higher serum TC and LDL-c levels compared to cholesterol-fed rats; attenuation of aorta E-selectin levels was also observed. In EVOO/EVOO(-) groups, aorta vascular endothelial adhesion molecule-1 (VCAM-1) was lower compared to HCD animals. SO/SO(+) diets had no effect on endothelial dysfunction amelioration. Overall, our results suggest that major and/or minor EVOO constituents improve aorta E-selectin and VCAM-1, while serum lipids do not benefit.

  11. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    PubMed

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  12. Comparative study of tissue deposition of omega-3 fatty acids from polar-lipid rich oil of the microalgae Nannochloropsis oculata with krill oil in rats.

    PubMed

    Kagan, Michael L; Levy, Aharon; Leikin-Frenkel, Alicia

    2015-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) exert health benefits which are dependent upon their incorporation into blood, cells and tissues. Plasma and tissue deposition of LC n-3 PUFA from oils extracted from the micro-algae Nannochloropsis oculata and from krill were compared in rats. The algal oil provides eicosapentaenoic acid (EPA) partly conjugated (15%) to phospholipids and glycolipids but no docosahexaenoic acid (DHA), whereas krill oil provides both EPA and DHA conjugated in part (40%) to phospholipids. Rats fed a standard diet received either krill oil or polar-lipid rich algal oil by gavage daily for 7 days (5 ml oil per kg body weight each day). Fatty acid concentrations were analyzed in plasma, brain and liver, and two adipose depots since these represent transport, functional and storage pools of fatty acids, respectively. When measuring total LC n-3 PUFA (sum of EPA, docosapentaenoic acid (DPA) and DHA), there was no statistically significant difference between the algal oil and krill oil for plasma, brain, liver and gonadal adipose tissue. Concentrations of LC n-3 PUFA were higher in the retroperitoneal adipose tissue from the algal oil group. Tissue uptake of LC n-3 PUFA from an algal oil containing 15% polar lipids (glycolipids and phospholipids) was found to be equivalent to krill oil containing 40% phospholipids. This may be due to glycolipids forming smaller micelles during ingestive hydrolysis than phospholipids. Ingestion of fatty acids with glycolipids may improve bioavailability, but this needs to be further explored.

  13. Oil exudation and histological structures of duck egg yolks during brining.

    PubMed

    Lai, K M; Chung, W H; Jao, C L; Hsu, K C

    2010-04-01

    Changes in oil exudation and histological structures of salted duck egg yolks during brining up to 5 wk were investigated. During brining, the salt contents of albumen, exterior yolk (hardened portion), and interior yolk (soft or liquid portion) gradually increased accompanied by slight decreases in moisture content. The hardening ratio of salted egg yolks increased rapidly to about 60% during the first week of brining and then reached 100% at the end of brining. After brining, part of the lipids in salted egg yolk became free due to the structural changes of low-density lipoprotein induced by dehydration and increase of salt content, and more free lipids in salted egg yolk were released after the cooking process. With the brining time increased up to 5 wk, the outer region of the cooked salted yolk gradually changed into dark brown, brown, orange, and then dark brown, whereas the center region changed into light yellow, yellow, dark yellow, and then yellow again. The microstructures of cooked salted egg yolks showed that the yolk spheres in the outer and middle regions retained their original shape, with some shrinking and being packed more loosely when brining time increased, and the exuded oil filled the space between the spheres. Furthermore, the yolk spheres in the center region transformed to a round shape but still showed granulation after 4 wk of brining, whereas they were mostly disrupted after 2 to 5 wk of brining. One of the most important characteristics of cooked salted egg yolks, gritty texture, contributed to oil exudation and granulated yolk spheres were observed at the brining time of 4 wk.

  14. Improved outcome in neonatal short bowel syndrome using parenteral fish oil in combination with ω-6/9 lipid emulsions.

    PubMed

    Angsten, Gertrud; Finkel, Yigael; Lucas, Steven; Kassa, Ann-Marie; Paulsson, Mattias; Lilja, Helene Engstrand

    2012-09-01

    Newborn infants with short bowel syndrome (SBS) represent a high-risk group of developing intestinal failure-associated liver disease (IFALD), which may be fatal. However, infants have a great capacity for intestinal growth and adaptation if IFALD can be prevented or reversed. A major contributing factor to IFALD may be the soybean oil-based intravenous lipid emulsions used since the introduction of parenteral nutrition (PN) 40 years ago. This retrospective study compares the outcome in 20 neonates with SBS treated with parenteral fish oil (Omegaven) in combination with ω-6/9 lipid emulsions (ClinOleic) with the outcome in a historical cohort of 18 patients with SBS who received a soybean oil-based intravenous lipid emulsion (Intralipid). Median gestational age was 26 weeks in the treatment group and 35.5 weeks in the historical group. All patients were started on PN containing Intralipid that was switched to ClinOleic/Omegaven in the treatment group at a median age of 39 gestational weeks. In the treatment group, direct bilirubin levels were reversed in all 14 survivors with cholestasis (direct bilirubin >50 umol/L). Median time to reversal was 2.9 months. Only 2 patients died of liver failure (10%). In the historical cohort, 6 patients (33%) died of liver failure, and only 2 patients showed normalization of bilirubin levels. Parenteral fish oil in combination with ω-6/9 lipid emulsions was associated with improved outcome in premature neonates with SBS. When used instead of traditional soybean-based emulsions, this mixed lipid emulsion may facilitate intestinal adaptation by increasing the IFALD-free period.

  15. Food types and frying frequency affect the lipid oxidation of deep frying oil for the preparation of school meals in Korea.

    PubMed

    Koh, Eunmi; Surh, Jeonghee

    2015-05-01

    200 soybean oils used in school meals for deep frying were investigated to elucidate factors influencing lipid oxidation in the oils. The mean levels of moisture along with primary and secondary lipid oxidation products were significantly different among the oils used by the six schools. When comparing lipid oxidation products of frying oils used for four different food groups (vegetables, fish, meat or carbohydrate-rich foods), differences were found among them, with the values for the carbohydrate-rich group being the lowest. The vegetable group was higher in the contents of conjugated dienes and trienes, and lower for those of hydroperoxides and malondialdehyde. The mean values of malondialdehyde and p-anisidine value for the fish group were greater than those of the other groups. The levels of conjugated trienes and malondialdehyde increased with the frying frequency. These findings indicate that food types and frequency of frying play a role in determining the oil oxidation in deep fried foods in schools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  17. Micronutrients-fortified rapeseed oil improves hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet

    PubMed Central

    2013-01-01

    Intake of high-fat diet is associated with increased fatty livers. Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in this disease. Micronutrients polyphenols, tocopherols and phytosterols in rapeseed exert potential benefit to hepatoprotection, but most of these micronutrients are removed by the traditional refining process. The purpose of the present study was to determine whether rapeseed oil fortified with these micronutrients can decrease hepatic lipid accumulation and oxidative stress induced by high-fat diet. Sprague–Dawley rats received rodent diet contained 20% fat whose source was refined rapeseed oil (RRO) or fortified RRO with low, middle and high quantities of these micronutrients for 10 weeks. Intake of RRO caused a remarkable hepatic steatosis. Micronutrients supplementation was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. These micronutrients also significantly increased hepatic antioxidant defense capacities, as evaluated by the significant elevation in the activities of SOD and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. These findings suggest that rapeseed oil fortified with micronutrients polyphenols, tocopherols and phytosterols may contribute to prevent fatty livers such as nonalcoholic fatty liver disease by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23510587

  18. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: a randomized double-blind study in preterm infants.

    PubMed

    Rayyan, Maissa; Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Double-blind, controlled study in 53 neonates (<34 weeks' gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1-3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6-14. Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile.

  19. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women

    PubMed Central

    Khaw, Kay-Tee; Sharp, Stephen J; Finikarides, Leila; Afzal, Islam; Forouhi, Nita G

    2018-01-01

    Introduction High dietary saturated fat intake is associated with higher blood concentrations of low-density lipoprotein cholesterol (LDL-C), an established risk factor for coronary heart disease. However, there is increasing interest in whether various dietary oils or fats with different fatty acid profiles such as extra virgin coconut oil may have different metabolic effects but trials have reported inconsistent results. We aimed to compare changes in blood lipid profile, weight, fat distribution and metabolic markers after four weeks consumption of 50 g daily of one of three different dietary fats, extra virgin coconut oil, butter or extra virgin olive oil, in healthy men and women in the general population. Design Randomised clinical trial conducted over June and July 2017. Setting General community in Cambridgeshire, UK. Participants Volunteer adults were recruited by the British Broadcasting Corporation through their websites. Eligibility criteria were men and women aged 50–75 years, with no known history of cancer, cardiovascular disease or diabetes, not on lipid lowering medication, no contraindications to a high-fat diet and willingness to be randomised to consume one of the three dietary fats for 4 weeks. Of 160 individuals initially expressing an interest and assessed for eligibility, 96 were randomised to one of three interventions; 2 individuals subsequently withdrew and 94 men and women attended a baseline assessment. Their mean age was 60 years, 67% were women and 98% were European Caucasian. Of these, 91 men and women attended a follow-up assessment 4 weeks later. Intervention Participants were randomised to extra virgin coconut oil, extra virgin olive oil or unsalted butter and asked to consume 50 g daily of one of these fats for 4 weeks, which they could incorporate into their usual diet or consume as a supplement. Main outcomes and measures The primary outcome was change in serum LDL-C; secondary outcomes were change in total and high

  20. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women.

    PubMed

    Khaw, Kay-Tee; Sharp, Stephen J; Finikarides, Leila; Afzal, Islam; Lentjes, Marleen; Luben, Robert; Forouhi, Nita G

    2018-03-06

    High dietary saturated fat intake is associated with higher blood concentrations of low-density lipoprotein cholesterol (LDL-C), an established risk factor for coronary heart disease. However, there is increasing interest in whether various dietary oils or fats with different fatty acid profiles such as extra virgin coconut oil may have different metabolic effects but trials have reported inconsistent results. We aimed to compare changes in blood lipid profile, weight, fat distribution and metabolic markers after four weeks consumption of 50 g daily of one of three different dietary fats, extra virgin coconut oil, butter or extra virgin olive oil, in healthy men and women in the general population. Randomised clinical trial conducted over June and July 2017. General community in Cambridgeshire, UK. Volunteer adults were recruited by the British Broadcasting Corporation through their websites. Eligibility criteria were men and women aged 50-75 years, with no known history of cancer, cardiovascular disease or diabetes, not on lipid lowering medication, no contraindications to a high-fat diet and willingness to be randomised to consume one of the three dietary fats for 4 weeks. Of 160 individuals initially expressing an interest and assessed for eligibility, 96 were randomised to one of three interventions; 2 individuals subsequently withdrew and 94 men and women attended a baseline assessment. Their mean age was 60 years, 67% were women and 98% were European Caucasian. Of these, 91 men and women attended a follow-up assessment 4 weeks later. Participants were randomised to extra virgin coconut oil, extra virgin olive oil or unsalted butter and asked to consume 50 g daily of one of these fats for 4 weeks, which they could incorporate into their usual diet or consume as a supplement. The primary outcome was change in serum LDL-C; secondary outcomes were change in total and high-density lipoprotein cholesterol (TC and HDL-C), TC/HDL-C ratio and non

  1. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism.

    PubMed

    Michalski, M C; Genot, C; Gayet, C; Lopez, C; Fine, F; Joffre, F; Vendeuvre, J L; Bouvier, J; Chardigny, J M; Raynal-Ljutovac, K

    2013-10-01

    On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.

    PubMed

    Adamakis, Ioannis-Dimosthenis; Lazaridis, Polykarpos A; Terzopoulou, Evangelia; Torofias, Stylianos; Valari, Maria; Kalaitzi, Photeini; Rousonikolos, Vasilis; Gkoutzikostas, Dimitris; Zouboulis, Anastasios; Zalidis, Georgios; Triantafyllidis, Konstantinos S

    2018-06-01

    A systematic study of the effect of nitrogen levels in the cultivation medium of Chlorella vulgaris microalgae grown in photobioreactor (PBR) on biomass productivity, biochemical and elemental composition, fatty acid profile, heating value (HHV), and composition of the algae-derived fast pyrolysis (bio-oil) is presented in this work. A relatively high biomass productivity and cell concentration (1.5 g of dry biomass per liter of cultivation medium and 120 × 10 6 cells/ml, respectively) were achieved after 30 h of cultivation under N-rich medium. On the other hand, the highest lipid content (ca. 36 wt.% on dry biomass) was obtained under N-depletion cultivation conditions. The medium and low N levels favored also the increased concentration of the saturated and mono-unsaturated C16:0 and C18:1(n-9) fatty acids (FA) in the lipid/oil fraction, thus providing a raw lipid feedstock that can be more efficiently converted to high-quality biodiesel or green diesel (via hydrotreatment). In terms of overall lipid productivity, taking in consideration both the biomass concentration in the medium and the content of lipids on dry biomass, the most effective system was the N-rich one. The thermal (non-catalytic) pyrolysis of Chlorella vulgaris microalgae produced a highly complex bio-oil composition, including fatty acids, phenolics, ethers, ketones, etc., as well as aromatics, alkanes, and nitrogen compounds (pyrroles and amides), originating from the lipid, protein, and carbohydrate fractions of the microalgae. However, the catalytic fast pyrolysis using a highly acidic ZSM-5 zeolite, afforded a bio-oil enriched in mono-aromatics (BTX), reducing at the same time significantly oxygenated compounds such as phenolics, acids, ethers, and ketones. These effects were even more pronounced in the catalytic fast pyrolysis of Chlorella vulgaris residual biomass (after extraction of lipids), thus showing for the first time the potential of transforming this low value by

  3. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  4. Elaiophores in Gomesa bifolia (Sims) M.W. Chase & N.H. Williams (Oncidiinae: Cymbidieae: Orchidaceae): structure and oil secretion

    PubMed Central

    Aliscioni, Sandra S.; Torretta, Juan P.; Bello, Mariano E.; Galati, Beatriz G.

    2009-01-01

    Background and Aims Oils are an unusual floral reward in Orchidaceae, being produced by specialized glands called elaiophores. Such glands have been described in subtribe Oncidiinae for a few species. The aims of the present study were to identify the presence of elaiophores in Gomesa bifolia, to study their structure and to understand how the oil is secreted. Additionally, elaiophores of G. bifolia were compared with those of related taxa within the Oncidiinae. Methods Elaiophores were identified using Sudan III. Their structure was examined by using light, scanning electron and transmission electron microscopy. Key Results Secretion of oils was from the tips of callus protrusions. The secretory cells each had a large, centrally located nucleus, highly dense cytoplasm, abundant plastids containing lipid globules associated with starch grains, numerous mitochondria, an extensive system of rough and smooth endoplasmatic reticulum, and electron-dense dictyosomes. The outer tangential walls were thick, with a loose cellulose matrix and a few, sparsely distributed inconspicuous cavities. Electron-dense structures were observed in the cell wall and formed a lipid layer that covered the cuticle of the epidermal cells. The cuticle as viewed under the scanning electron microscope was irregularly rugose. Conclusions The elaiophores of G. bifolia are of the epithelial type. The general structure of the secretory cells resembles that described for other species of Oncidiinae, but some unique features were encountered for this species. The oil appears to pass through the outer tangential wall and the cuticle, covering the latter without forming cuticular blisters. PMID:19692391

  5. Development of an up-grading process to produce MLM structured lipids from sardine discards.

    PubMed

    Morales-Medina, R; Munio, M; Guadix, A; Guadix, E M

    2017-08-01

    The aim of the work was to produce MLM structured lipids with caprylic acid (M) as medium chain fatty acid located at the external bonds of the glycerol backbone and concentrated polyunsaturated fatty acids (L) from sardine discards (Sardine pilchardus) in the central bond of the glycerol. To that end, the following steps were conducted: (i) fish oil extraction, (ii) Omega-3 free fatty acids (FFA) concentration (low temperature winterization), (iii) two-steps enzymatic esterification and (iv) triacylglycerols (TAG) purification (liquid column chromatography). The resultant purified triacylglycerols accomplished with the oxidative state (peroxide and anisidine value, PV and AV) required for refined oils. As enzymatic treatment, Omega-3 concentrate FFA (Omega-3>600mg Omega-3 per g oil) were esterified with dicaprylic glycerol employing Novozyme 435. This process presented high regioselectivity, with ∼80mol% of concentrated fatty acids esterified at the sn-2 position. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil.

    PubMed

    Leonova, Svetlana; Grimberg, Asa; Marttila, Salla; Stymne, Sten; Carlsson, Anders S

    2010-06-01

    Since the cereal endosperm is a dead tissue in the mature grain, beta-oxidation is not possible there. This raises the question about the use of the endosperm oil in cereal grains during germination. In this study, mobilization of lipids in different tissues of germinating oat grains was analysed using thin-layer and gas chromatography. The data imply that the oat endosperm oil [triacylglycerol (TAG)] is not a dead-end product as it was absorbed by the scutellum, either as free fatty acids (FFAs) released from TAG or as intact TAG immediately degraded to FFAs. These data were supported by light and transmission electron microscopy (LM and TEM) studies where close contact between endosperm lipid droplets and the scutellum was observed. The appearance of the fused oil in the oat endosperm changed into oil droplets during germination in areas close to the aleurone and the scutellar epithelium. However, according to the data obtained by TEM these oil droplets are unlikely to be oil bodies surrounded by oleosins. Accumulation of FFA pools in the embryo suggested further transport of FFAs from the scutellum. Noticeably high levels of TAG were also accumulated in the embryo but were not synthesized by re-esterification from imported FFAs. Comparison between two oat cultivars with different amounts of oil and starch in the endosperm suggests that an increased oil to starch ratio in oat grains does not significantly impact the germination process.

  7. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    PubMed Central

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  8. Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota.

    PubMed

    Martín-Peláez, Sandra; Mosele, Juana Ines; Pizarro, Neus; Farràs, Marta; de la Torre, Rafael; Subirana, Isaac; Pérez-Cano, Francisco José; Castañer, Olga; Solà, Rosa; Fernandez-Castillejo, Sara; Heredia, Saray; Farré, Magí; Motilva, María José; Fitó, Montserrat

    2017-02-01

    To investigate the effect of virgin olive oil phenolic compounds (PC) alone or in combination with thyme PC on blood lipid profile from hypercholesterolemic humans, and whether the changes generated are related with changes in gut microbiota populations and activities. A randomized, controlled, double-blind, crossover human trial (n = 12) was carried out. Participants ingested 25 mL/day for 3 weeks, preceded by 2-week washout periods, three raw virgin olive oils differing in the concentration and origin of PC: (1) a virgin olive oil (OO) naturally containing 80 mg PC/kg, (VOO), (2) a PC-enriched virgin olive oil containing 500 mg PC/kg, from OO (FVOO), and (3) a PC-enriched virgin olive oil containing a mixture of 500 mg PC/kg from OO and thyme, 1:1 (FVOOT). Blood lipid values and faecal quantitative changes in microbial populations, short chain fatty acids, cholesterol microbial metabolites, bile acids, and phenolic metabolites were analysed. FVOOT decreased seric ox-LDL concentrations compared with pre-FVOOT, and increased numbers of bifidobacteria and the levels of the phenolic metabolite protocatechuic acid compared to VOO (P < 0.05). FVOO did not lead to changes in blood lipid profile nor quantitative changes in the microbial populations analysed, but increased the coprostanone compared to FVOOT (P < 0.05), and the levels of the faecal hydroxytyrosol and dihydroxyphenylacetic acids, compared with pre-intervention values and to VOO, respectively (P < 0.05). The ingestion of a PC-enriched virgin olive oil, containing a mixture of olive oil and thyme PC for 3 weeks, decreases blood ox-LDL in hypercholesterolemic humans. This cardio-protective effect could be mediated by the increases in populations of bifidobacteria together with increases in PC microbial metabolites with antioxidant activities.

  9. Effects of dietary coconut oil, butter and safflower oil on plasma lipids, lipoproteins and lathosterol levels.

    PubMed

    Cox, C; Sutherland, W; Mann, J; de Jong, S; Chisholm, A; Skeaff, M

    1998-09-01

    The aim of this present study was to determine plasma levels of lathosterol, lipids, lipoproteins and apolipoproteins during diets rich in butter, coconut fat and safflower oil. The study consisted of sequential six week periods of diets rich in butter, coconut fat then safflower oil and measurements were made at baseline and at week 4 in each diet period. Forty-one healthy Pacific island polynesians living in New Zealand participated in the trial. Subjects were supplied with some foods rich in the test fats and were given detailed dietary advice which was reinforced regularly. Plasma lathosterol concentration (P < 0.001), the ratio plasma lathosterol/cholesterol (P=0.04), low density lipoprotein (LDL) cholesterol (P<0.001) and apoB (P<0.001) levels were significantly different among the diets and were significantly lower during coconut and safflower oil diets compared with butter diets. Plasma total cholesterol, HDL cholesterol and apoA-levels were also significantly (P< or =0.001) different among the diets and were not significantly different between buffer and coconut diets. These data suggest that cholesterol synthesis is lower during diets rich in coconut fat and safflower oil compared with diets rich in butter and might be associated with lower production rates of apoB-containing lipoproteins.

  10. Kdo2-lipid A: structural diversity and impact on immunopharmacology

    PubMed Central

    Wang, Xiaoyuan; Quinn, Peter J; Yan, Aixin

    2015-01-01

    3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development. PMID:24838025

  11. [Effects of Frankincense and Myrrh essential oil on transdermal absorption of ferulic acid in Chuanxiong].

    PubMed

    Guan, Yong-Mei; Tao, Ling; Zhu, Xiao-Fang; Zang, Zhen-Zhong; Jin, Chen; Chen, Li-Hua

    2017-09-01

    The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption, and investigate the mechanism of permeation on the microstructure and molecular structure of stratum corneum. Through the determination of stratum corneum/medium partition coefficient of ferulicacid in Chuanxiong influenced by Frankincense and Myrrh essential oil, the effects of volatile oil of frankincense and Myrrh on the the microscopic and molecular structure of stratum corneum were explored by observation of skin stratum corneum structure under scanning electron microscopy, and investigation of frankincense and myrrh essential oil effects on the molecular structure of keratin and lipids in stratum corneum under Fourier transform infrared spectroscopy. The results showed that the oil could enhance the distribution of ferulic acid in the stratum corneum and medium, and to a certain extent damaged the imbricate structure of stratum corneum which was originally regularly, neatly, and closely arranged; some epidermal scales turned upward, with local peeling phenomenon. In addition, frankincense and myrrh essential oil caused the relative displacement of CH2 stretching vibration peak of stratum corneum lipids and amide stretching vibration peak of stratum corneum keratin, indicating that frankincense and myrrh essential oil may change the conformation of lipid and keratin in the stratum corneum, increase the bilayer liquidity of the stratum corneum lipid, and change the orderly and compact structure to increase the skin permeability and reduce the effect of barrier function. It can be concluded that Frankincense and Myrrh essential oil can promote the permeation effect by increasing the distribution of drugs in the stratum corneum and changing the structure of the stratum corneum. Copyright© by the Chinese Pharmaceutical Association.

  12. The changes of oil palm roots cell wall lipids during pathogenesis of Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Alexander, A.; Dayou, J.; Abdullah, S.; Chong, K. P.

    2017-07-01

    One of the first physical defences of plants against fungal infection is their cell wall. Interaction between combinations of metabolism enzymes known as the “weapons” of pathogen and the host cell wall probably determines the fate of possible invasion of the pathogen in the host. The present work aims to study the biochemical changes of cell wall lipids of oil palm roots and to determine novel information on root cell wall composition during pathogenesis of Ganoderma boninense by using Gas Chromatography Mass Spectrometry. Based on Total Ion Chromatogram analysis, 67 compounds were found more abundant in the roots infected with G. boninense compared to the healthy roots (60 compounds). Interestingly, nine new compounds were identified from the cell wall lipids of roots infected with G. boninense. These includes Cyclohexane, 1,2-dimethyl-, Methyl 2-hydroxy 16-methyl-heptadecanoate, 2-Propenoic acid, methyl ester, Methyl 9-oxohexacosanoate, 5-[(3,7,11,15-Tetramethylhexadecyl)oxy]thiophene-2carboxylic acid, Ergosta-5,7,22,24(28)-tetraen-3beta-ol, 7-Hydroxy-3',4'-methylenedioxyflavan, Glycine and (S)-4'-Hydroxy-4-methoxydalbergione, this may involve as response to pathogen invasion. This paper provides an original comparative lipidomic analysis of oil palm roots cell wall lipids in plant defence during pathogenesis of G. boninense.

  13. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    PubMed

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.

  15. Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals.

    PubMed

    Tasselli, Giorgia; Filippucci, Sara; Borsella, Elisabetta; D'Antonio, Silvia; Gelosia, Mattia; Cavalaglio, Gianluca; Turchetti, Benedetta; Sannino, Ciro; Onofri, Andrea; Mastrolitti, Silvio; De Bari, Isabella; Cotana, Franco; Buzzini, Pietro

    2018-01-01

    Some lignocellulosic biomass feedstocks occur in Mediterranean Countries. They are still largely unexploited and cause considerable problems due to the lack of cost-effective harvesting, storage and disposal technologies. Recent studies found that some basidiomycetous yeasts are able to accumulate high amount of intracellular lipids for biorefinery processes (i.e., biofuels and biochemicals). Accordingly, the above biomass feedstocks could be used as carbon sources (after their pre-treatment and hydrolysis) for lipid accumulation by oleaginous yeasts. Cardoon stalks, stranded driftwood and olive tree pruning residues were pre-treated with steam-explosion and enzymatic hydrolysis for releasing free mono- and oligosaccharides. Lipid accumulation tests were performed at two temperatures (20 and 25 °C) using Leucosporidium creatinivorum DBVPG 4794, Naganishia adeliensis DBVPG 5195 and Solicoccozyma terricola DBVPG 5870. S. terricola grown on cardoon stalks at 20 °C exhibited the highest lipid production (13.20 g/l), a lipid yield (28.95%) close to the maximum theoretical value and a lipid composition similar to that found in palm oil. On the contrary, N. adeliensis grown on stranded driftwood and olive tree pruning residues exhibited a lipid composition similar to those of olive and almonds oils. A predictive evaluation of the physical properties of the potential biodiesel obtainable by lipids produced by tested yeast strains has been reported and discussed. Lipids produced by some basidiomycetous yeasts grown on Mediterranean lignocellulosic biomass feedstocks could be used as supplementary sources of oils for producing biofuels and biochemicals.

  16. Solid lipid dispersions: potential delivery system for functional ingredients in foods.

    PubMed

    Asumadu-Mensah, Aboagyewa; Smith, Kevin W; Ribeiro, Henelyta S

    2013-07-01

    Structured solid lipid (SL) systems have the advantages of long-term physical stability, low surfactant concentrations, and may exhibit controlled release of active ingredients. In this research work, the potential use of high-melting SLs for the production of the above structured SL carrier systems was investigated. Dispersions containing either SL or blend of solid lipid and oil (SL+O) were produced by a hot melt high-pressure homogenization method. Experiments involved the use of 3 different SLs for the disperse phase: stearic acid, candelilla wax and carnauba wax. Sunflower oil was incorporated in the disperse phase for the production of the dispersions containing lipid and oil. In order to evaluate the practical aspects of structured particles, analytical techniques were used including: static light scattering to measure particle sizes, transmission electron microscopy (TEM) for investigating particle morphology and differential scanning calorimetry (DSC) to investigate the crystallization behavior of lipids in bulk and in dispersions. Results showed different mean particle sizes depending on the type of lipid used in the disperse phase. Particle sizes for the 3 lipids were: stearic acid (SL: 195 ± 2.5 nm; SL+O: 138 ± 6.0 nm); candelilla wax (SL: 178 ± 1.7 nm; SL+O: 144 ± 0.6 nm); carnauba wax (SL: 303 ± 1.5 nm; SL+O: 295 ± 5.0 nm). TEM results gave an insight into the practical morphology, showing plate-like and needle-like structures. DSC investigations also revealed that SL dispersions melted and crystallized at lower temperatures than the bulk. This decrease can be explained by the small particle sizes of the dispersion, the high-specific surface area, and the presence of a surfactant. © 2013 Institute of Food Technologists®

  17. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.

    PubMed

    Khot, Mahesh; Ghosh, Debashish

    2017-04-01

    This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L -1 ) was able to give the SCO yield of 0.17 g g -1 of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Physical State of Emulsified Edible Oil Modulates Its in Vitro Digestion.

    PubMed

    Guo, Qing; Bellissimo, Nick; Rousseau, Dérick

    2017-10-18

    Emulsified lipid digestion was tailored by manipulating the physical state of dispersed oil droplets in whey protein stabilized oil-in-water (O/W) emulsions, where the oil phase consisted of one of five ratios of soybean oil (SO) and fully hydrogenated soybean oil (FHSO). The evolution in particle size distribution, structural changes during oral, gastric, and intestinal digestion, and free fatty acid release during intestinal digestion were all investigated. Irrespective of the physical state and structure of the dispersed oil/fat, all emulsions were stable against droplet size increases during oral digestion. During gastric digestion, the 50:50 SO:FHSO emulsion was more stable against physical breakdown than any other emulsion. All emulsions underwent flocculation and coalescence or partial coalescence upon intestinal digestion, with the SO emulsion being hydrolyzed the most rapidly. The melting point of all emulsions containing FHSO was above 37 °C, with the presence of solid fat within the dispersed oil droplets greatly limiting lipolysis. Fat crystal polymorph and nanoplatelet size did not play an important role in the rate and extent of lipid digestion. Free fatty acid release modeled by the Weibull distribution function showed that the rate of lipid digestion (κ) decreased with increasing solid fat content, and followed an exponential relationship (R 2 = 0.95). Overall, lipid digestion was heavily altered by the physical state of the dispersed oil phase within O/W emulsions.

  19. Effects of walnut oil on lipid profiles in hyperlipidemic type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Zibaeenezhad, M J; Farhadi, P; Attar, A; Mosleh, A; Amirmoezi, F; Azimi, A

    2017-04-10

    The role of herbal medicine is now well documented in preventing and controlling diabetes mellitus. The main aim of this study was to evaluate the effects of walnut oil consumption on lipid profiles of hyperlipidemic patients with type 2 diabetes. In a randomized, double-blind, placebo-controlled clinical trial, 100 hyperlipidemic type 2 diabetic patients aged 35-75 years were assigned to receive 15 cc Persian walnut oil or placebo every day for 90 days. The primary outcomes were the lipid profiles. Consumption of walnut oil by type 2 hyperlipidemic diabetic patients resulted in a significant decrease in total cholesterol levels (treatment difference (TD)=-30.04, P<0.001), triglyceride (TG) level (TD=-15.04, P=0.021), low-density lipoprotein (LDL) level (TD=-30.44, P<0.001) and total cholesterol to high-density lipoprotein (HDL) ratio (TD=-0.72, P<0.001) compared to the control group. There was a trend toward increasing HDL level with consumption of walnut oil (TD=2.28, P=0.06). Frequency of patients reaching a LDL level below 100 was higher in the case group (20 vs 0%). Addition of walnut oil in the daily diet of type 2 diabetic patients improves lipid profiles. Thus, it may be associated with a coronary artery disease risk factor modulation. Also, walnut oil may serve as a helpful natural remedy for hyperlipidemic patients with type 2 diabetes.

  20. Research advancements in palm oil nutrition.

    PubMed

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-10-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers ( sn) -2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

  1. Research advancements in palm oil nutrition*

    PubMed Central

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  2. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  3. The effect of olive oil-based ketogenic diet on serum lipid levels in epileptic children.

    PubMed

    Güzel, Orkide; Yılmaz, Unsal; Uysal, Utku; Arslan, Nur

    2016-03-01

    Ketogenic diet (KD) is one of the most effective therapies for intractable epilepsy. Olive oil is rich in monounsaturated fatty acids and antioxidant molecules and has some beneficial effects on lipid profile, inflammation and oxidant status. The aim of this study was to evaluate the serum lipid levels of children who were receiving olive oil-based KD for intractable seizures at least 1 year. 121 patients (mean age 7.45 ± 4.21 years, 57 girls) were enrolled. At baseline and post-treatment 1, 3, 6, and 12 months body mass index-SDS, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride levels were measured. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. The mean duration of KD was 15.4 ± 4.1 months. Mean total cholesterol, LDL-cholesterol and triglyceride levels were significantly higher at 1st, 3rd, 6th and 12th months of the KD treatment, compared to pre-treatment levels (p = 0.001), but showed no difference among during-treatment measurements. Mean body mass index-SDS and HDL-cholesterol levels were not different among the baseline and follow-up time points (p = 0.113 and p = 0.067, respectively). No child in this study discontinued the KD because of dyslipidemia. Even if rich in olive oil, high-fat KD causes significant increase in LDL-cholesterol and triglyceride levels. More studies are needed to determine the effect of KD on serum lipids in children using different fat sources in the diet.

  4. Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil

    PubMed Central

    Tauk-Tornisielo, Sâmia M.; Arasato, Luciana S.; de Almeida, Alex F.; Govone, José S.; Malagutti, Eleni N.

    2009-01-01

    The fungi strains were tested in Bioscreen automated system to select the best nutritional source. Following, shaking submserse cultures were studied in media containing sole carbon or nitrogen source. The growth of these strains improved in media containing vegetable oil, with high concentration of lipids. The high concentration of γ-linolenic acid was obtained with M. circinelloides in culture containing sesame oil. PMID:24031370

  5. α-Lipoic acid ameliorated oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective to cause marked deceases in serum lipid levels in rats.

    PubMed

    Ide, Takashi; Tanaka, Ai

    2017-12-01

    Dietary perilla oil rich in α-linolenic acid and α-lipoic acid lowers the serum lipid level through changes in hepatic fatty acid metabolism. We therefore hypothesized that the combination of these dietary factors may ameliorate lipid metabolism more than the factors individually. Moreover, α-lipoic acid exerts strong anti-oxidative activity. Hence, we also hypothesized that α-lipoic acid may attenuate perilla oil-mediated oxidative stress. We therefore studied the combined effects of perilla oil and α-lipoic acid on lipid metabolism and parameters of oxidative stress. Male rats were fed diets supplemented with 0 or 2.0 g/kg R-α-lipoic acid and containing 120 g/kg of palm (saturated fat), corn (linoleic acid), or perilla oil (α-linolenic acid) for 23 days. Perilla oil compared with other fats decreased serum lipid concentrations in rats fed α-lipoic acid-free diets; however, the combination of perilla oil with α-lipoic acid was ineffective for observing more marked decreases in serum lipid levels. Alterations in hepatic fatty acid synthesis and oxidation may account for the observed changes. Perilla oil, compared with palm and corn oils, strongly increased the malondialdehyde level in the serum and liver. α-Lipoic acid counteracted the increases in these parameters even though the effects were attenuated in the liver. α-Lipoic acid increased the parameters of the anti-oxidant system. The results suggested that α-lipoic acid can ameliorate oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective for additionally reducing serum lipid levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel.

    PubMed

    Patel, Ashok R; Dewettinck, Koen

    2015-11-01

    In lipid-based food products, fat crystals are used as building blocks for creating a crystalline network that can trap liquid oil into a 3D gel-like structure which in turn is responsible for the desirable mouth feel and texture properties of the food products. However, the recent ban on the use of trans-fat in the US, coupled with the increasing concerns about the negative health effects of saturated fat consumption, has resulted in an increased interest in the area of identifying alternative ways of structuring edible oils using non-fat-based building blocks. In this paper, we give a brief account of three alternative approaches where oil structuring was carried out using wax crystals (shellac), polymer strands (hydrophilic cellulose derivative), and emulsion droplets as structurants. These building blocks resulted in three different types of oleogels that showed distinct rheological properties and temperature functionalities. The three approaches are compared in terms of the preparation process (ease of processing), properties of the formed systems (microstructure, rheological gel strength, temperature response, effect of water incorporation, and thixotropic recovery), functionality, and associated limitations of the structured systems. The comparative evaluation is made such that the new researchers starting their work in the area of oil structuring can use this discussion as a general guideline. Various aspects of oil binding for three different building blocks were studied in this work. The practical significance of this study includes (i) information on the preparation process and the concentrations of structuring agents required for efficient gelation and (ii) information on the behavior of oleogels to temperature, applied shear, and presence of water. This information can be very useful for selecting the type of structuring agents keeping the final applications in mind. For detailed information on the actual edible applications (bakery, chocolate, and

  7. Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets.

    PubMed

    Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Loizon, Emmanuelle; Plaisancié, Pascale; Durand, Annie; Géloën, Alain; Joffre, Florent; Vaysse, Carole; Michalski, Marie-Caroline; Laugerette, Fabienne

    2017-05-01

    Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The NMR analysis of frying oil: a very reliable method for assessment of lipid oxidation

    USDA-ARS?s Scientific Manuscript database

    There are many analytical methods developed for the assessment of lipid oxidation. However, one of the most challenging issues in analyzing oil oxidation is that there is lack of consistency in results obtained from different analytical methods. The major reason for the inconsistency is that most me...

  9. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  10. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: a randomized controlled trial.

    PubMed

    Beken, Serdar; Dilli, Dilek; Fettah, Nurdan Dinlen; Kabataş, Emrah Utku; Zenciroğlu, Ayşegül; Okumuş, Nurullah

    2014-01-01

    To compare the effect of two lipid emulsions on the development of retinopathy of prematurity in very low birth weight infants. Randomized controlled study. Eighty very low birth weight infants receiving parenteral nutrition from the first day of life were evaluated. One of the two lipid emulsions were used in the study infants: Group 1 (n=40) received fish-oil based lipid emulsion (SmofLipid®) and Group 2 (n=40) soybean oil based lipid emulsion (Intralipid®). The development of retinopathy of prematurity and the need for laser photocoagulation were assessed. The maternal and perinatal characteristics were similar in both groups. The median (range) duration of parenteral nutrition [14days (10-28) vs 14 (10-21)] and hospitalization [34days (20-64) vs 34 (21-53)] did not differ between the groups. Laboratory data including complete blood count, triglyceride level, liver and kidney function tests recorded before and after parenteral nutrition also did not differ between the two groups. In Group 1, two patients (5.0%) and in Group 2, 13 patients (32.5%) were diagnosed with retinopathy of prematurity (OR: 9.1, 95% CI 1.9-43.8, p=0.004). One patient in each group needed laser photocoagulation, without significant difference. Multivariate analysis showed that only receiving fish-oil emulsion in parenteral nutrition decreased the risk of development of retinopathy of prematurity [OR: 0.76, 95% CI (0.06-0.911), p=0.04]. Premature infants with very low birth weight receiving an intravenous fat emulsion containing fish oil developed less retinopathy of prematurity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Skin lipid structure controls water permeability in snake molts.

    PubMed

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Influence of omega-6/omega-3 rich dietary oils on lipid profile and antioxidant enzymes in normal and stressed rats.

    PubMed

    Benson, M K; Devi, Kshama

    2009-02-01

    To evaluate the influence of omega-6/omega-3 poly unsaturated fatty acid (PUFA) containing oils on lipid profile and endogenous antioxidant enzymes in normal and stressed (immobilization) rats, 28 day old male Wistar rats were fed for 45 days with fat enriched special diet (10% fat) prepared with sunflower oil (SO)--omega-6 rich, mustard oil (MO)--omega-3 rich and groundnut oil--control respectively. SO treated normal rats have significantly reduced total cholesterol, high density lipoprotein-cholesterol (HDL-C) and catalase thereby significantly increased the atherogenic index (AI) and lipid peroxidation (LPO). However, treatment with MO increased superoxide dismutase; decreased LPO significantly. Under stress conditions AI and LPO were significantly high with SO and significantly less with MO. In addition, SO decreased HDL-C whereas MO decreased non-HDL-C significantly. Results suggest a protective role against AI and LPO in normal and stress conditions in MO. The quantity of omega-3 fatty acids in dietary oil may play a crucial role in the body against atherogenicity. The findings signify that not just PUFA, but type of PUFA present in dietary oil used is important.

  13. Evaluation of Lipid Content in Microalgae Biomass Using Palm Oil Mill Effluent (Pome)

    NASA Astrophysics Data System (ADS)

    Kamyab, Hesam; Chelliapan, Shreeshivadasan; Shahbazian-Yassar, Reza; Din, Mohd Fadhil Md; Khademi, Tayebeh; Kumar, Ashok; Rezania, Shahabaldin

    2017-08-01

    The scope of this study is to assess the main component of palm oil mill effluent (POME) to be used as organic carbon for microalgae. The applicable parameters such as optical density, chlorophyll content, mixed liquor suspended solid, mixed liquor volatile suspended solid, cell dry weight (CDW), carbon:total nitrogen ratio and growth rate were also investigated in this study. The characteristics and morphological features of the isolates showed similarity with Chlorella. Chlorella pyrenoidosa ( CP) was found to be a dominant species in POME and Chlorella vulgaris ( CV) could grow well in POME. Furthermore, the optimal lipid production was obtained at the ratio 95:05 CDW with highest lipid production by CP compared to CV. At day 20, CDW for CV species was obtained at 193 mg/L and with lipid content at 56 mg/L. Finally, the concentration ratio at 50:50 showed a higher absorbance of chlorophyll a for both strains.

  14. Behaviour of non-oxidized and oxidized flaxseed oils, as models of omega-3 rich lipids, during in vitro digestion. Occurrence of epoxidation reactions.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Guillén, María D

    2017-07-01

    Fresh and partially oxidized flaxseed oil, as models of omega-3 rich lipids, were submitted to in vitro gastrointestinal digestion. Hydrolysis level, lipid composition and oxidative status of the samples before and after digestion were studied by Proton Nuclear Magnetic Resonance ( 1 H NMR) and Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). Although a great degree of lipolysis was reached in both kinds of samples after digestion, it was somewhat lower in the digests of oxidized flaxseed oil. The occurrence of lipid oxidation during digestion was evidenced by decreased unsaturated lipids and increased primary and secondary oxidation products, especially in oxidized samples. In these latter, linolenic-derived monoepoxy-octadecadienoates were the main oxidation products generated. SPME-GC/MS study showed the highest abundances of highly reactive alkadienals (C5-C10), alkatrienals (C9-C10) and linolenic-derived 4,5-epoxy-2-heptenals in the headspace of oxidized flaxseed oil digests. Volatile markers of Maillard-type reactions were also detected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Parenteral Nutrition and Lipids.

    PubMed

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-04-14

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.

  16. Parenteral Nutrition and Lipids

    PubMed Central

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-01-01

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them. PMID:28420095

  17. Deposition and mobilization of lipids varies across the rainbow trout fillet during feed deprivation and transition from plant to fish oil-based diets

    USDA-ARS?s Scientific Manuscript database

    Identifying aquaculture feeding strategies that reduce the consumption of fish oil without sacrificing the cardioprotective lipid profile of the salmonid fillet will improve aquafeed economics and sustainability. Transitioning fish from a plant oil-based diet to a finishing diet rich in fish oil an...

  18. Effects of Scandinavian caviar paste enriched with a stable fish oil on plasma phospholipid fatty acids and lipid peroxidation.

    PubMed

    Engström, K; Wallin, R; Saldeen, T

    2003-09-01

    To study the possibility of increasing the very long-chain n-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in humans by means of consumption of a common food product, Scandinavian caviar paste, suitable for strategic enrichment with a high concentration of these fatty acids, and to measure the potential inducement of lipid peroxidation. A randomized double blind repeated measures experiment. In total, 16 healthy, nonsmoking subjects (eight men and eight women, age 42+/-12 y) were included in the study. Eight consumed 25 g ordinary caviar paste daily for 3 weeks, and eight the same amount of caviar paste enriched with a very stable fish oil (7%, wt/wt). Blood lipids, plasma phospholipid fatty acids and lipid peroxidation were measured. alpha-Linoleic acid was significantly decreased after intake of both ordinary (-8%, P<0.05) and fish oil caviar (-10%, P<0.05), as was the sum of all n-6 fatty acids (-6%, P<0.05 and -8%, P<0.001, respectively). The fatty acids EPA and DHA, as well as the sum of all n-3 fatty acids, increased significantly in both caviar groups but more in the group given fish oil caviar paste (EPA: +51%, P<0.05 and +100%, P<0.001, respectively; DHA: +24%, P<0.01 and +29%, P<0.001, respectively; sum of n-3:+27%, P<0.05 and +40%, P<0.001, respectively). Lipid peroxidation, measured as the thiobarbituric acid-malondialdehyde adduct, was increased by 26% (P<0.05) after intake of ordinary caviar paste, but was unchanged after intake of fish oil-enriched caviar paste. Scandinavian caviar paste is a spread naturally enriched with n-3 polyunsaturated fatty acids that can be included in the diet to achieve an increase in these fatty acids. However, changing to caviar paste enriched with stable fish oil will lead to a considerably greater increase in EPA and DHA. Swedish Medical Research Council; Cardinova AB, Uppsala, Sweden.

  19. Label-free in situ imaging of oil body dynamics and chemistry in germination

    PubMed Central

    Waschatko, Gustav; Billecke, Nils; Schwendy, Sascha; Jaurich, Henriette; Bonn, Mischa; Vilgis, Thomas A.

    2016-01-01

    Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ. Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination. Oil bodies undergo a cycle of growth and shrinkage that is paralleled by lipid and protein compositional changes. Specifically, the total protein concentration associated with oil bodies increases in the first phase of germination and subsequently decreases. Lipids contained within the oil bodies change in saturation and chain length during germination. Our results show that CRM is a well-suited platform to monitor in situ lipid dynamics and local chemistry and that oil bodies are actively remodelled during germination. This underscores the dynamic role of lipid reservoirs in plant development. PMID:27798279

  20. Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice

    PubMed Central

    Korou, Laskarina-Maria; Agrogiannis, George; Koros, Christos; Kitraki, Efthimia; Vlachos, Ioannis S.; Tzanetakou, Irene; Karatzas, Theodore; Pergialiotis, Vasilios; Dimitroulis, Dimitrios; Perrea, Despina N.

    2014-01-01

    Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis. PMID:25348324

  1. Oil goldenberry (Physalis peruviana L.).

    PubMed

    Ramadan, Mohamed F; Mörsel, Jörg-T

    2003-02-12

    Whole berries, seeds, and pulp/peel of goldenberry (Physalis peruviana L.) were compared in terms of fatty acids, lipid classes, triacylglyerols, phytosterols, fat-soluble vitamins, and beta-carotene. The total lipid contents in the whole berries, seeds, and seedless parts were 2.0, 1.8, and 0.2% (on a fresh weight basis), respectively. Linoleic acid was the dominating fatty acid followed by oleic acid as the second major fatty acid. Palmitic and stearic acids were the major saturates. In pulp/peel oil, the fatty acid profile was characterized by higher amounts of saturates, monoenes, and trienes than in whole berry and seed oils. Neutral lipids comprised >95% of total lipids in whole berry oil and seed oil, while neutral lipids separated in lower level in pulp/peel oil. Triacylglycerols were the predominant neutral lipid subclass and constituted ca. 81.6, 86.6, and 65.1% of total neutral lipids in whole berry, seed, and pulp/peel oils, respectively. Nine triacylglycerol molecular species were detected, wherein three species, C54:3, C52:2, and C54:6, were presented to the extent of approximately 91% or above. The highest level of phytosterols was estimated in pulp/peel oil that contained the highest level of unsaponifiables. In both whole berry and seed oils, campesterol and beta-sitosterol were the sterol markers, whereas Delta5-avenasterol and campesterol were the main 4-desmethylsterols in pulp/peel oil. The tocopherols level was much higher in pulp/peel oil than in whole berry and seed oils. beta- and gamma-tocopherols were the major components in whole berry and seed oils, whereas gamma- and alpha-tocopherols were the main constituents in pulp/peel oil. beta-Carotene and vitamin K(1) were also measured in markedly high levels in pulp/peel oil followed by whole berry oil and seed oil, respectively. Information provided by the present work is of importance for further chemical investigation of goldenberry oil and industrial utilization of the berries as a raw

  2. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.

    PubMed

    Attama, A A; Schicke, B C; Paepenmüller, T; Müller-Goymann, C C

    2007-08-01

    This paper describes the characterization of solid lipid nanodispersions (SLN) prepared with a 1:1 mixture of theobroma oil and goat fat as the main lipid matrix and Phospholipon 90G (P90G) as a stabilizer heterolipid, using polysorbate 80 as the mobile surfactant, with a view to applying the SLN in drug delivery. The 1:1 lipid mixture and P90G constituting the lipid matrix was first homogeneously prepared by fusion. Thereafter, the SLN were formulated with a gradient of polysorbate 80 and constant lipid matrix concentration by melt-high pressure homogenisation. The SLN were characterized by time-resolved particle size analysis, zeta potential and osmotic pressure measurements, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). Transmission electron microscopy (TEM) and isothermal heat conduction microcalorimetry (IMC) which monitors the in situ crystallization were also carried out on the SLN containing P90G and 1.0 % w/w of polysorbate 80. The results obtained in these studies were compared with SLN prepared with theobroma oil with and without phospholipid. Particle size analysis of SLN indicated reduction in size with increase in concentration of mobile surfactant and was in the lower nanometer range after 3 months except SLN prepared without P90G or polysorbate 80. The lipid nanoparticles had negative potentials after 3 months. WAXD and DSC studies revealed low crystalline SLN after 3 months of storage except in WAXD of SLN formulated with 1.0 % w/w polysorbate 80. TEM micrograph of the SLN containing 1.0 % w/w polysorbate 80 revealed discrete particles whose sizes were in consonance with the static light scattering measurement. In situ crystallization studies in IMC revealed delayed crystallization of the SLN with 1.0 % w/w polysorbate 80. Results indicate lipid mixtures produced SLN with lower crystallinity and higher particle sizes compared with SLN prepared with theobroma oil alone with or without P90G, and would lead to higher

  3. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    PubMed

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    PubMed

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Substitution of fish oil with camelina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissue lipid classes, and fatty acids.

    PubMed

    Hixson, S M; Parrish, C C

    2014-03-01

    Developing a commercially relevant Atlantic cod aquaculture industry will require improvements in feed sustainability. Camelina oil and meal are potential replacements of fish oil and fish meal in aquaculture feeds. Camelina oil is high in 18:3ω3 (30%), with an ω3/ω6 ratio > 1. Camelina meal has a considerable crude protein level (38%), which includes significant amounts of methionine and phenylalanine. Four diets were tested; each diet was fed to triplicate tanks (3 tanks per diet) of Atlantic cod (14.4 g/fish; 70 fish per tank) for 13 wk. The diets included a fish oil/fish meal control (FO) and three diets which replaced 100% of fish oil with camelina oil: one diet contained fish meal (100CO), another solvent extracted fish meal (100COSEFM), and another had fish meal partially reduced by 15% inclusion of camelina meal (100CO15CM). Growth was measured (length and weight) and tissue samples were collected for lipid analysis (muscle, liver, brain, gut, spleen, skin, and carcass) at wk 0 (before feeding the experimental diet) and at wk 13. Cod fed camelina oil had a lower (P < 0.001) final weight than cod fed the FO diet (50.8 ± 10.3 g/fish). Cod fed 100CO15CM had a lower (P < 0.001) final weight (35.0 ± 8.0 g) than those fed 100CO (43.6 ± 8.9 g) and 100COSEFM (46.7 ± 10.7 g). Cod tissues in the 100COSEFM treatment were most impacted by dietary fatty acid profile. Multivariate statistics revealed that FO and 100COSEFM tissue fatty acid profiles were 21 to 31% different, depending on tissue type. The full replacement of fish oil with camelina oil, plus solvent extracted fish meal had an overarching effect on the entire fatty acid profile of the whole animal. Fatty acid mass balance calculations indicated that cod fed 100COSEFM elongated 13% of 18:3ω3 to 20:3ω3 and oxidized the remaining 87%, whereas cod fed fish oil showed a much lower (P < 0.001) elongation of 18:3ω3 of 1.6%. These results suggest that excess 18:3ω3 from camelina oil caused some fatty acid

  6. Monoacylglycerol-enriched oil increases EPA/DHA delivery to circulatory system in humans with induced lipid malabsorption conditions.

    PubMed

    Cruz-Hernandez, Cristina; Destaillats, Frédéric; Thakkar, Sagar K; Goulet, Laurence; Wynn, Emma; Grathwohl, Dominik; Roessle, Claudia; de Giorgi, Sara; Tappy, Luc; Giuffrida, Francesca; Giusti, Vittorio

    2016-12-01

    It was hypothesized that under induced lipid malabsorption/maldigestion conditions, an enriched sn-1(3)-monoacylglycerol (MAG) oil may be a better carrier for n-3 long-chain PUFAs (LC-PUFAs) compared with triacylglycerol (TAG) from fish oil. This monocentric double blinded clinical trial examined the accretion of EPA (500 mg/day) and DHA (300 mg/day) when consumed as TAG or MAG, into the erythrocytes, plasma, and chylomicrons of 45 obese (BMI ≥30 kg/m 2 and ≤40 kg/m 2 ) volunteers who were and were not administered Orlistat, an inhibitor of pancreatic lipases. Intake of MAG-enriched oil resulted in higher accretion of LC-PUFAs than with TAG, the concentrations of EPA and DHA in erythrocytes being, respectively, 72 and 24% higher at 21 days (P < 0.001). In addition, MAG increased the plasma concentration of EPA by 56% (P < 0.001) as compared with TAG. In chylomicrons, MAG intake yielded higher levels of EPA with the area under the curve (0-10 h) of EPA being 55% greater (P = 0.012). In conclusion, in obese human subjects with Orlistat-induced lipid maldigestion/malabsorption conditions, LC-PUFA MAG oil increased LC-PUFA levels in erythrocytes, plasma, and chylomicrons to a greater extent than TAG. These results indicate that MAG oil might require minimal enzymatic digestion prior to intestinal uptake and transfer across the epithelial barrier. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Enzymatic synthesis of structured lipids.

    PubMed

    Iwasaki, Yugo; Yamane, Tsuneo

    2004-01-01

    Structured lipids (SLs) are defined as lipids that are modified chemically or enzymatically in order to change their structure. This review deals with structured triacylglycerols (STGs) and structured phospholipids (SPLs). The most typical STGs are MLM-type STGs, having medium chain fatty acids (FAs) at the 1- and 3-positions and a long chain fatty acid at the 2- position. MLM-type STGs are synthesized by: 1) 1,3-position-specific lipase-catalyzed acyl exchange of TG with FA or with FA ethylester (FAEt); 2) 1,3-position-specific lipase-catalyzed acylation of glycerol with FA, giving symmetric 1,3-diacyl-sn-glycerol, followed by chemical acylation at the sn-2 position, and; 3) 1,3-position-specific lipase-catalyzed deacylation of TG, giving 2-monoacylglycerol, followed by reacylation at the 1- and 3-positions with FA or with (FAEt). Enzymatic preparation of SPLs requires: 1) acyl group modification, and 2) head group modification of phospholipids. Acyl group modification is performed using lipases or phospholipase A2-mediated transesterification or ester synthesis to introduce arbitrary fatty acid to phospholipids. Head group modification is carried out by phospholipase D-catalyzed transphosphatidylation. A wide range of compounds can be introduced into the polar head of phospholipids, making it possible to prepare various SPLs.

  8. Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle.

    PubMed

    Pazos, Manuel; Iglesias, Jacobo; Maestre, Rodrigo; Medina, Isabel

    2010-10-27

    The influence of polymerization (number of monomers) and galloylation (content of esterified gallates) of oligomeric catechins (proanthocyanidins) on their effectiveness to prevent lipid oxidation in pelagic fish muscle was evaluated. Non-galloylated oligomers of catechin with diverse mean polymerization (1.9-3.4 monomeric units) were extracted from pine (Pinus pinaster) bark. Homologous fractions with galloylation ranging from 0.25 to <1 gallate group per molecule were obtained from grape (Vitis vinifera) and witch hazel (Hamamelis virginiana). The results showed the convenience of proanthocyanidins with medium size (2-3 monomeric units) and low galloylation degree (0.15-0.25 gallate group/molecule) to inhibit lipid oxidation in pelagic fish muscle. These optimal structural characteristics of proanthocyanidins were similar to those lately reported in fish oil-in-water emulsions using phosphatidylcholine as emulsifier. This finding suggests that the antioxidant behavior of polyphenols in muscle-based foods can be mimicked in emulsions prepared with phospholipids as emulsifier agents. The present data give relevant information to achieve an optimum use of polyphenols in pelagic fish muscle.

  9. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

    PubMed

    Mansour, Maged P; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R; Nichols, Peter D; Singh, Surinder P

    2014-02-21

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  10. Supercritical fluid precipitation of ketoprofen in novel structured lipid carriers for enhanced mucosal delivery--a comparison with solid lipid particles.

    PubMed

    Gonçalves, V S S; Matias, A A; Rodríguez-Rojo, S; Nogueira, I D; Duarte, C M M

    2015-11-10

    Structured lipid carriers based on mixture of solid lipids with liquid lipids are the second generation of solid lipid particles, offering the advantage of improved drug loading capacity and higher storage stability. In this study, structured lipid carriers were successfully prepared for the first time by precipitation from gas saturated solutions. Glyceryl monooleate (GMO), a liquid glycerolipid, was selected in this work to be incorporated into three solid glycerolipids with hydrophilic-lipophilic balance (HLB) ranging from 1 to 13, namely Gelucire 43/01™, Geleol™ and Gelucire 50/13™. In general, microparticles with a irregular porous morphology and a wide particle size distribution were obtained. The HLB of the individual glycerolipids might be a relevant parameter to take into account during the processing of solid:liquid lipid blends. As expected, the addition of a liquid lipid into a solid lipid matrix led to increased stability of the lipid carriers, with no significant modifications in their melting enthalpy after 6 months of storage. Additionally, Gelucire 43/01™:GMO particles were produced with different mass ratios and loaded with ketoprofen. The drug loading capacity of the structured lipid carriers increased as the GMO content in the particles increased, achieving a maximum encapsulation efficiency of 97% for the 3:1 mass ratio. Moreover, structured lipid carriers presented an immediate release of ketoprofen from its matrix with higher permeation through a mucous-membrane model, while solid lipid particles present a controlled release of the drug with less permeation capacity. Copyright © 2015. Published by Elsevier B.V.

  11. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells.

    PubMed

    Montanari, Ricardo M; Barbosa, Luiz C A; Demuner, Antonio J; Silva, Cleber J; Andrade, Nelio J; Ismail, Fyaz M D; Barbosa, Maria C A

    2012-08-14

    The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  12. Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats.

    PubMed

    Mentang, Feny; Maita, Masashi; Ushio, Hideki; Ohshima, Toshiaki

    2011-08-01

    The effects of silkworm chrysalis oil, rich in n-3 α-linolenic acid (ALA), on lipid metabolism in Wistar rats were investigated. The rats were fed diets containing 7% soybean oil (control), silkworm chrysalis oil (SWO), or fish oil (FO) for 8weeks. Plasma triglyceride and glucose levels were significantly lower in the SWO group after 8weeks compared to the control and FO groups. The total cholesterol and blood urea nitrogen levels were higher in the control group than in the SWO and FO groups at 8weeks post-consumption. However, aspartate amino transferase and alanine amino transferase levels were not significantly different among all groups. A higher arachidonic acid (AA) content was detected in the control group, while lower AA levels were observed with the increase in EPA and DHA in the SWO and FO groups. These results suggest that n-3 α-linolenic acid-rich silkworm chrysalis oil can improve hyperlipidaemia and hyperglycaemia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Role of Transbilayer Distribution of Lipid Molecules on the Structure and Protein-Lipid Interaction of an Amyloidogenic Protein on the Membrane Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Kwan; Cheng, Sara

    We used molecular dynamics simulations to examine the effects of transbilayer distribution of lipid molecules, particularly anionic lipids with negatively charged headgroups, on the structure and binding kinetics of an amyloidogenic protein on the membrane surface and subsequent protein-induced structural disruption of the membrane. Our systems consisted of a model beta-sheet rich dimeric protein absorbed on asymmetric bilayers with neutral and anionic lipids and symmetric bilayers with neutral lipids. We observed larger folding, domain aggregation, and tilt angle of the absorbed protein on the asymmetric bilayer surfaces. We also detected more focused bilayer thinning in the asymmetric bilayer due to weak lipid-protein interactions. Our results support the mechanism that the higher lipid packing in the protein-contacting lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions of an amyloidogenic protein on the membrane surface. We speculate that the observed surface-induced structural and protein-lipid interaction of our model amyloidogenic protein may play a role in the early membrane-associated amyloid cascade pathway that leads to membrane structural damage of neurons in Alzheimer's disease. NSF ACI-1531594.

  14. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies

  15. Plant sterols from rapeseed and tall oils: effects on lipids, fat-soluble vitamins and plant sterol concentrations.

    PubMed

    Heggen, E; Granlund, L; Pedersen, J I; Holme, I; Ceglarek, U; Thiery, J; Kirkhus, B; Tonstad, S

    2010-05-01

    Data comparing the impact of different sources of plant sterols on CVD risk factors and antioxidant levels is scarce. We evaluated the effects of plant sterols from rapeseed and tall oils on serum lipids, lipoproteins, fat-soluble vitamins and plant sterol concentrations. This was a double-blinded, randomized, crossover trial in which 59 hypercholesterolemic subjects consumed 25 g/day of margarine for 4 weeks separated by 1 week washout periods. The two experimental margarines provided 2g/day of plant sterols from rapeseed or tall oil. The control margarine had no added plant sterols. The control margarine reduced LDL cholesterol by 4.5% (95% CI 1.4, 7.6%). The tall and rapeseed sterol margarines additionally reduced LDL cholesterol by 9.0% (95% CI 5.5, 12.4%) and 8.2% (95% CI 5.2, 11.4%) and apolipoprotein B by 5.3% (95% CI 1.0, 9.6%) and 6.9% (95% CI 3.6, 10.2%), respectively. Lipid-adjusted beta-carotene concentrations were reduced by both sterol margarines (P<0.017). alpha-Tocopherol concentrations were reduced by the tall sterol compared to the rapeseed sterol margarine (P=0.001). Campesterol concentrations increased more markedly with the rapeseed sterol versus tall sterol margarine (P<0.001). The rapeseed sterol margarine increased while the tall sterol margarine decreased brassicasterol concentrations (P<0.001). Plant sterols from tall and rapeseed oils reduce atherogenic lipids and lipoproteins similarly. The rapeseed sterol margarine may have more favorable effects on serum alpha-tocopherol concentrations. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Intrauterine programming of lipid metabolic alterations in the heart of the offspring of diabetic rats is prevented by maternal diets enriched in olive oil.

    PubMed

    Capobianco, Evangelina; Pelesson, Magalí; Careaga, Valeria; Fornes, Daiana; Canosa, Ivana; Higa, Romina; Maier, Marta; Jawerbaum, Alicia

    2015-10-01

    Maternal diabetes can program metabolic and cardiovascular diseases in the offspring. The aim of this work was to address whether an olive oil supplemented diet during pregnancy can prevent lipid metabolic alterations in the heart of the offspring of mild diabetic rats. Control and diabetic Wistar rats were fed during pregnancy with either a standard diet or a 6% olive oil supplemented diet. The heart of adult offspring from diabetic rats showed increases in lipid concentrations (triglycerides in males and phospholipids, cholesterol, and free fatty acids in females), which were prevented with the maternal diets enriched in olive oil. Maternal olive oil supplementation increased the content of unsaturated fatty acids in the hearts of both female and male offspring from diabetic rats (possibly due to a reduction in lipoperoxidation), increased the expression of Δ6 desaturase in the heart of male offspring from diabetic rats, and increased the expression of peroxisome proliferator activated receptor α in the hearts of both female and male offspring from diabetic rats. Relevant alterations in cardiac lipid metabolism were evident in the adult offspring of a mild diabetic rat model, and regulated by maternal diets enriched in olive oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Do lipids retard the evaporation of the tear fluid?

    PubMed

    Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M

    2012-09-21

    We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.

  18. Chaotic structure of oil prices

    NASA Astrophysics Data System (ADS)

    Bildirici, Melike; Sonustun, Fulya Ozaksoy

    2018-01-01

    The fluctuations in oil prices are very complicated and therefore, it is unable to predict its effects on economies. For modelling complex system of oil prices, linear economic models are not sufficient and efficient tools. Thus, in recent years, economists attached great attention to non-linear structure of oil prices. For analyzing this relationship, GARCH types of models were used in some papers. Distinctively from the other papers, in this study, we aimed to analyze chaotic pattern of oil prices. Thus, it was used the Lyapunov Exponents and Hennon Map to determine chaotic behavior of oil prices for the selected time period.

  19. The Effects of Polyunsaturated Lipid Components on bilayer Structure

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.

    2007-03-01

    Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.

  20. Monoacylglycerol-enriched oil increases EPA/DHA delivery to circulatory system in humans with induced lipid malabsorption conditions1

    PubMed Central

    Cruz-Hernandez, Cristina; Destaillats, Frédéric; Thakkar, Sagar K.; Goulet, Laurence; Wynn, Emma; Grathwohl, Dominik; Roessle, Claudia; de Giorgi, Sara; Tappy, Luc; Giuffrida, Francesca; Giusti, Vittorio

    2016-01-01

    It was hypothesized that under induced lipid malabsorption/maldigestion conditions, an enriched sn-1(3)-monoacylglycerol (MAG) oil may be a better carrier for n-3 long-chain PUFAs (LC-PUFAs) compared with triacylglycerol (TAG) from fish oil. This monocentric double blinded clinical trial examined the accretion of EPA (500 mg/day) and DHA (300 mg/day) when consumed as TAG or MAG, into the erythrocytes, plasma, and chylomicrons of 45 obese (BMI ≥30 kg/m2 and ≤40 kg/m2) volunteers who were and were not administered Orlistat, an inhibitor of pancreatic lipases. Intake of MAG-enriched oil resulted in higher accretion of LC-PUFAs than with TAG, the concentrations of EPA and DHA in erythrocytes being, respectively, 72 and 24% higher at 21 days (P < 0.001). In addition, MAG increased the plasma concentration of EPA by 56% (P < 0.001) as compared with TAG. In chylomicrons, MAG intake yielded higher levels of EPA with the area under the curve (0–10 h) of EPA being 55% greater (P = 0.012). In conclusion, in obese human subjects with Orlistat-induced lipid maldigestion/malabsorption conditions, LC-PUFA MAG oil increased LC-PUFA levels in erythrocytes, plasma, and chylomicrons to a greater extent than TAG. These results indicate that MAG oil might require minimal enzymatic digestion prior to intestinal uptake and transfer across the epithelial barrier. PMID:27707818

  1. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  2. Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design.

    PubMed

    Andalib, Sare; Varshosaz, Jaleh; Hassanzadeh, Farshid; Sadeghi, Hojjat

    2012-01-01

    Nanostructured lipid carriers (NLC) are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol), lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of -25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.

  3. Structural derivation of lipid A from Cronobacter sakazakii using tandem mass spectrometry.

    PubMed

    Li, Yanyan; Yoon, Sung Hwan; Wang, Xiaoyuan; Ernst, Robert K; Goodlett, David R

    2016-10-30

    Cronobacter sakazakii is a Gram-negative opportunistic pathogen that can cause necrotizing enterocolitis, bacteremia, and meningitis. Lipid A, the glycolipid membrane anchor of lipopolysaccharide (LPS), is a potential virulence factor for C. sakazakii. Given the potential importance of this molecule in infection and virulence, structural characterization of lipid A was carried out. The structural characterization of lipid A extracted from C. sakazakii was performed using electrospray ionization and collision-induced dissociation in a linear ion trap mass spectrometer. Specifically, for detailed structural characterization, hierarchical tandem mass spectrometry was performed on the dominant ions present in the precursor ion mass spectra. By comparing the C. sakazakii fragmentation pathways to those of the known structure of E. coli lipid A, a structure of C. sakazakii lipid A was derived. The precursor ion at m/z 1796 from C. sakazakii is produced from a lipid A molecule where the acyl chains between the 2'b (C14) and 3'b (C12) positions are reversed as compared to E. coli lipid A. Additionally, the precursor ion at m/z 1824 from C. sakazakii corresponds to an E. coli structure with the same acyl chain at the 2'b position (C14), but a longer acyl chain (C14) at the 3'b position versus m/z 1796. Two lipid A structures were derived for the C. sakazakii ions at m/z 1796 and 1824. They differed in composition at the 2'b and 3'b acyl chain substituents, which may be a result of differences in substrate specificity of the two lipid A acyl chain transferases: LpxL and LpxM. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

    PubMed

    Cheirsilp, Benjamas; Louhasakul, Yasmi

    2013-08-01

    Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion.

    PubMed

    Muhammed, Rafeeq; Bremner, Ronald; Protheroe, Sue; Johnson, Tracey; Holden, Chris; Murphy, M Stephen

    2012-06-01

    Resolution of parenteral nutrition (PN)-associated jaundice has been reported in children given a reduced dose of intravenous fat using a fish oil-derived lipid emulsion. The aim of the present study was to examine the effect on PN-associated jaundice of changing from a soybean oil-derived lipid to a mixed lipid emulsion derived from soybean, coconut, olive, and fish oils without reducing the total amount of lipid given. Retrospective cohort comparison examining serum bilirubin during 6 months in children with PN-associated jaundice who changed to SMOFlipid (n=8) or remained on Intralipid (n=9). At entry, both groups received most of their energy as PN (SMOFlipid 81.5%, range 65.5-100 vs Intralipid 92.2%, range 60.3-100; P=0.37). After 6 months, both tolerated increased enteral feeding but still received large proportions of their energy as PN (SMOFlipid 68.4%, range 36.6-100 vs Intralipid 50%, range 37.6-76; P=0.15). The median bilirubin at the outset was 143 μmol/L (range 71-275) in the SMOFlipid group and 91 μmol/L (range 78-176) in the Intralipid group. After 6 months, 5 of 8 children in the SMOFlipid and 2 of 9 children in the Intralipid group had total resolution of jaundice. The median bilirubin fell by 99 μmol/L in the SMOFlipid group but increased by 79 μmol/L in the Intralipid group (P=0.02). SMOFlipid may have important protective properties for the liver and may constitute a significant advance in PN formulation. Randomised trials are needed to study the efficacy of SMOFlipid in preventing PN liver disease.

  6. Automated Lipid A Structure Assignment from Hierarchical Tandem Mass Spectrometry Data

    NASA Astrophysics Data System (ADS)

    Ting, Ying S.; Shaffer, Scott A.; Jones, Jace W.; Ng, Wailap V.; Ernst, Robert K.; Goodlett, David R.

    2011-05-01

    Infusion-based electrospray ionization (ESI) coupled to multiple-stage tandem mass spectrometry (MS n ) is a standard methodology for investigating lipid A structural diversity (Shaffer et al. J. Am. Soc. Mass. Spectrom. 18(6), 1080-1092, 2007). Annotation of these MS n spectra, however, has remained a manual, expert-driven process. In order to keep up with the data acquisition rates of modern instruments, we devised a computational method to annotate lipid A MS n spectra rapidly and automatically, which we refer to as hierarchical tandem mass spectrometry (HiTMS) algorithm. As a first-pass tool, HiTMS aids expert interpretation of lipid A MS n data by providing the analyst with a set of candidate structures that may then be confirmed or rejected. HiTMS deciphers the signature ions (e.g., A-, Y-, and Z-type ions) and neutral losses of MS n spectra using a species-specific library based on general prior structural knowledge of the given lipid A species under investigation. Candidates are selected by calculating the correlation between theoretical and acquired MS n spectra. At a false discovery rate of less than 0.01, HiTMS correctly assigned 85% of the structures in a library of 133 manually annotated Francisella tularensis subspecies novicida lipid A structures. Additionally, HiTMS correctly assigned 85% of the structures in a smaller library of lipid A species from Yersinia pestis demonstrating that it may be used across species.

  7. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.

    PubMed

    Zhu, Zhenbao; Zhao, Cui; Yi, Jianhua; Liu, Ning; Cao, Yuangang; Decker, Eric A; McClements, David Julian

    2018-05-02

    The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.

  8. Preparation and physicochemical of microemulsion based on macadamia nut oil

    NASA Astrophysics Data System (ADS)

    Tu, Xinghao; Chen, Hong; Du, Liqing

    2018-03-01

    The objective of the present work was to study the preparation, optimization and characteristic of nanostructured lipid carriers(NLCs) based on macadamia nut oil. NLC with various macadamia nut oil content were successfully prepared by an optimized microfluidization method using stearic acid as solid lipid and pluronic F68 as surfactant. As a result, NLC with particle size about 286nm were obtained, and the polydispersity index(PI) of all developed NLC were below 0.2 which indicate a narrow size distribution. Furthermore, the encapsulation efficiency and loading capability were investigated as well. Physical stability of NLC demonstrated that particles of system were stable at room temperature and low temperature. Differential scanning calorimetry(DSC) investigation show that the inner structure and recrystallinity of lipid matrix within NLC were greatly influenced by the content of macadamia nut oil.

  9. [Investigation of the effect of oil and flour from wheat germ meal on lipid metabolism of students and teachers of the university].

    PubMed

    Rodionova, N S; Isaev, V A; Vishnyakov, A B; Popov, E S; Safonova, N V; Srorublyovtsev, S A

    2016-01-01

    The results of investigation of alimentary correction of lipid metabolism under the admin­istration of processed products from wheat germ - oil (with the content of policosanol at least 1.5-8.0 mg/100 g, vitamin E - 180-200 mg/100 g, PUFA - 60-65%) and cake flour (with the content of protein - 30-35%, oil with analogue composition -5-7%, digestible carbohydrates - 45-47%, fiber - 18-26%, vitamins B1, B3, B6, B9, E, PP, minerals and trace elements - Zn, Mn, K, Fe, Se, P) are presented. Volunteers among teachers and students of the university aged 16 to 65 years daily consumed wheat germ oil obtained by cold pressing in an amount of 3.5 g, regardless of the meal within 30 days. Then a part of them (30 persons) consumed daily 50 g of oil cake obtained after pressing oil, which provided the intake of the same amount of oil (3.5 g). Lipid metabolism param­eters were monitored in experiment participants before receiving the processed products of wheat germ, after germ meal intake and beyond 30 and 60 days after consumption of wheat germ. Data analysis was carried out on three age groups: 16-24, 25-44 and 45- 65 years. All participants of the experiment showed a reduction in total cholesterol level by 6-8%, increasing the concentration of HDL cholesterol by 3-24%, lowering LDL cholesterol concentrations by 4-21%, reduction of triglyceride concentration by 12-24%, a positive correction of atherogenic factor values by for 10-25%. Prolonged action of the investigated foods was established: lipid metabolism parameters in the tested group were better than in the control group after 30 days of intake discontinuation of oil or wheat germ flour, the positive adjustment effect disappeared 60 days after consuming the products. The findings demonstrate a positive effect on the normalization of lipid metabolism when cake flour of wheat germ was administered in daily food ration, similar to the effect of oil intake, which is important for the prevention of cardiovascular diseases

  10. Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism1[W][OA

    PubMed Central

    Tranbarger, Timothy J.; Dussert, Stéphane; Joët, Thierry; Argout, Xavier; Summo, Marilyne; Champion, Antony; Cros, David; Omore, Alphonse; Nouy, Bruno; Morcillo, Fabienne

    2011-01-01

    Fruit provide essential nutrients and vitamins for the human diet. Not only is the lipid-rich fleshy mesocarp tissue of the oil palm (Elaeis guineensis) fruit the main source of edible oil for the world, but it is also the richest dietary source of provitamin A. This study examines the transcriptional basis of these two outstanding metabolic characters in the oil palm mesocarp. Morphological, cellular, biochemical, and hormonal features defined key phases of mesocarp development. A 454 pyrosequencing-derived transcriptome was then assembled for the developmental phases preceding and during maturation and ripening, when high rates of lipid and carotenoid biosynthesis occur. A total of 2,629 contigs with differential representation revealed coordination of metabolic and regulatory components. Further analysis focused on the fatty acid and triacylglycerol assembly pathways and during carotenogenesis. Notably, a contig similar to the Arabidopsis (Arabidopsis thaliana) seed oil transcription factor WRINKLED1 was identified with a transcript profile coordinated with those of several fatty acid biosynthetic genes and the high rates of lipid accumulation, suggesting some common regulatory features between seeds and fruits. We also focused on transcriptional regulatory networks of the fruit, in particular those related to ethylene transcriptional and GLOBOSA/PISTILLATA-like proteins in the mesocarp and a central role for ethylene-coordinated transcriptional regulation of type VII ethylene response factors during ripening. Our results suggest that divergence has occurred in the regulatory components in this monocot fruit compared with those identified in the dicot tomato (Solanum lycopersicum) fleshy fruit model. PMID:21487046

  11. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: lipid polymorphism, structure-activity relationship, and implications for siRNA delivery.

    PubMed

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-08-02

    Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient si

  12. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    PubMed

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  14. Effects of dietary sesame oil on growth performance, chemical composition, lipid oxidation, and sensory characteristics of rainbow trout Oncorhynchus mykiss.

    PubMed

    Hematzadeh, Azar; Ali Jalali, Sayed Mohamad

    2017-09-28

    The present study, the effects of dietary sesame oil (SO) on growth performance and fillet composition of rainbow trout (Oncorhynchus mykiss) were investigated. Twenty-five fish were randomly allocated in three groups by three replication, in mean initial weight 53.3 g in each tank. Experimental diets consisted of fish oil (FO), sesame oil (SO) and 1:1 blends of two oils, fish oil and sesame oil (FOSO). Dietary sesame oil had no significant effect on growth rate or feed conversion ratio. Similarly, no significant differences were observed between dietary treatments for ash content in fillet of fish. The fillet lipid content was lower in fish fed by sesame oil, but the moisture and the protein were higher. Furthermore, Thiobarbituric acid (TBA) test was changed in different groups and it was lower in SO. The organoleptic indices were affected by dietary oils and FO group had more fishy flavour.

  15. Influence of ester-modified lipids on bilayer structure.

    PubMed

    Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B

    2013-11-19

    Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.

  16. Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils.

    PubMed

    Kassis, Nissan M; Gigliotti, Joseph C; Beamer, Sarah K; Tou, Janet C; Jaczynski, Jacek

    2012-01-15

    Cardiovascular disease has had an unquestioned status of the number one cause of death in the US since 1921. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have cardio-protective benefits. However, egg is typically a poor source of ω-3 PUFAs and, in general, the American diet is low in these cardio-protective fatty acids. Novel, nutritionally enhanced egg products were developed by substituting yolk with ω-3 PUFA-rich flaxseed, menhaden, algae, or krill oil. Experimental egg products matched composition of hen egg (whole egg). The experimental egg products, mixed whole egg, and a liquid egg product (Egg Beaters) were microwave-cooked and compared. Although fat, protein, and moisture contents of experimental egg products matched (P > 0.05) mixed whole egg, experimental egg products had more (P < 0.05) ω-3 PUFAs, lower (P < 0.05) ω-6/ω-3 ratio, and depending on oil added, a higher (P < 0.05) unsaturated/saturated fatty acids ratio compared to mixed whole egg. Triglycerides were the main lipid class in all experimental egg products except those developed with krill oil, which had even more phospholipids than mixed whole egg. Analysis of thiobarbituric acid reactive substances showed that lipid oxidation of experimental egg products was lower (P < 0.05) or similar (P > 0.05) to mixed whole egg, except for experimental egg products with krill oil. However, peroxide value showed that all egg samples had minimal oxidation. Experimental egg products developed with menhaden or flaxseed oil had the highest (P < 0.05) concentration of the antioxidant, ethyoxquin compared to all other egg samples. However, experimental egg products with krill oil likely contained a natural antioxidant, astaxanthin. This study demonstrated an alternative approach to developing novel, nutraceutical egg products. Instead of dietary modification of chicken feed, yolk substitution with ω-3 PUFAs oils resulted in enhancement of ω-3 PUFAs beyond levels possible to achieve by modifying

  17. A bicontinuous tetrahedral structure in a liquid-crystalline lipid

    NASA Astrophysics Data System (ADS)

    Longley, William; McIntosh, Thomas J.

    1983-06-01

    The structure of most lipid-water phases can be visualized as an ordered distribution of two liquid media, water and hydrocarbons, separated by a continuous surface covered by the polar groups of the lipid molecules1. In the cubic phases in particular, rod-like elements are linked into three-dimensional networks1,2. Two of these phases (space groups Ia3d and Pn3m) contain two such three-dimensional networks mutually inter-woven and unconnected. Under the constraints of energy minimization3, the interface between the components in certain of these `porous fluids' may well resemble one of the periodic minimal surface structures of the type described mathematically by Schwarz4,5. A structure of this sort has been proposed for the viscous isotropic (cubic) form of glycerol monooleate (GMO) by Larsson et al.6 who suggested that the X-ray diagrams of Lindblom et al.7 indicated a body-centred crystal structure in which lipid bilayers might be arranged as in Schwarz's octahedral surface4. We have now found that at high water contents, a primitive cubic lattice better fits the X-ray evidence with the material in the crystal arranged in a tetrahedral way. The lipid appears to form a single bilayer, continuous in three dimensions, separating two continuous interlinked networks of water. Each of the water networks has the symmetry of the diamond crystal structure and the bilayer lies in the space between them following a surface resembling Schwarz's tetrahedral surface4.

  18. The development of flow-through bio-catalyst microreactors from silica micro structured fibers for lipid transformations.

    PubMed

    Anuar, Sabiqah Tuan; Villegas, Carla; Mugo, Samuel M; Curtis, Jonathan M

    2011-06-01

    This study demonstrates the utility of a flow-through enzyme immobilized silica microreactor for lipid transformations. A silica micro structured fiber (MSF) consisting of 168 channels of internal diameter 4-5 μm provided a large surface area for the covalent immobilization of Candida antartica lipase. The specific activity of the immobilized lipase was determined by hydrolysis of p-nitrophenyl butyrate and calculated to be 0.81 U/mg. The catalytic performance of the lipase microreactor was demonstrated by the efficient ethanolysis of canola oil. The parameters affecting the performance of the MSF microreactor, including temperature and reaction flow rate, were investigated. Characterization of the lipid products exiting the microreactor was performed by non-aqueous reversed-phased liquid chromatography (NARP-LC) with evaporative light scattering detector (ELSD) and by comprehensive two-dimensional gas chromatography (GC x GC). Under optimized conditions of 1 μL/min flow rate of 5 mg/mL trioleoylglycerol (TO) in ethanol and 50 °C reaction temperature, 2-monooleoylglycerol was the main product at > 90% reaction yield. The regioselectivity of the Candida antartica lipase immobilized MSF microreactor in the presence of ethanol was found to be comparable to that obtained under conventional conditions. The ability of these reusable flow-through microreactors to regioselectively form monoacylglycerides in high yield from triacylglycerides demonstrate their potential use in small-scale lipid transformations or analytical lipids profiling.

  19. Improving Flavonoid Bioaccessibility using an Edible Oil-Based Lipid Nanoparticle for Oral Delivery.

    PubMed

    Ban, Choongjin; Park, So Jeong; Lim, Seokwon; Choi, Seung Jun; Choi, Young Jin

    2015-06-03

    To enhance the oral bioaccessibility of flavonoids, including quercetin, naringenin, and hesperetin, we prepared an edible oil-based lipid nanoparticle (LNP) system. Flavonoid-loaded LNPs were similar to the blank LNP in physicochemical characteristics (z average <154.8 nm, polydispersity index <0.17, and ζ potential < -40.8 mV), and their entrapment efficiency was >81% at 0.3 wt % flavonoid concentration of the lipid phase. In the simulated digestion assay (mouth, stomach, and small intestine), LNPs were hydrolyzed under small intestine conditions and protected successfully incorporated flavonoids (≥94%). Moreover, the relative bioaccessibility of flavonoids was >71%, which was otherwise <15%, although flavonoids were released rapidly from LNPs into the medium. In conclusion, since the flavonoids incorporated in LNPs were preserved well during oral digestion and had improved bioaccessibility, the designed LNP system may serve as an encapsulation strategy to enhance the bioavailability of nonbioaccessible nutraceuticals in foods.

  20. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    PubMed Central

    Xu, Jiqu; Rong, Shuang; Gao, Hui; Chen, Chang; Yang, Wei; Deng, Qianchun; Huang, Qingde; Xiao, Lingyun; Huang, Fenghong

    2017-01-01

    Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress. PMID:28335388

  1. Structure-function relationships of new lipids designed for DNA transfection.

    PubMed

    Dittrich, Matthias; Heinze, Martin; Wölk, Christian; Funari, Sergio S; Dobner, Bodo; Möhwald, Helmuth; Brezesinski, Gerald

    2011-08-22

    Cationic liposome/DNA complexes can be used as nonviral vectors for direct delivery of DNA-based biopharmaceuticals to damaged cells and tissues. To obtain more effective and safer liposome-based gene transfection systems, two cationic lipids with identical head groups but different chain structures are investigated with respect to their in vitro gene-transfer activity, their cell-damaging characteristics, and their physicochemical properties. The gene-transfer activities of the two lipids are very different. Differential scanning calorimetry and synchrotron small- and wide-angle X-ray scattering give valuable structural insight. A subgel-like structure with high packing density and high phase-transition temperature from gel to liquid-crystalline state are found for lipid 7 (N'-2-[(2,6-diamino-1-oxohexyl)amino]ethyl-2,N-bis(hexadecyl)propanediamide) containing two saturated chains. Additionally, an ordered head-group lattice based on formation of a hydrogen-bond network is present. In contrast, lipid 8 (N'-2-[(2,6-diamino-1-oxohexyl)amino]ethyl-2-hexadecyl-N-[(9Z)-octadec-9-enyl]propanediamide) with one unsaturated and one saturated chain shows a lower phase-transition temperature and a reduced packing density. These properties enhance incorporation of the helper lipid cholesterol needed for gene transfection. Both lipids, either pure or in mixtures with cholesterol, form lamellar phases, which are preserved after addition of DNA. However, the system separates into phases containing DNA and phases without DNA. On increasing the temperature, DNA is released and only a lipid phase without intercalated DNA strands is observed. The conversion temperatures are very different in the two systems studied. The important parameter seems to be the charge density of the lipid membranes, which is a result of different solubility of cholesterol in the two lipid membranes. Therefore, different binding affinities of the DNA to the lipid mixtures are achieved. Copyright © 2011

  2. Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats

    PubMed Central

    Kochikuzhyil, Benson Mathai; Devi, Kshama; Fattepur, Santosh Raghunandan

    2010-01-01

    Objective: To study the effect of saturated fatty acid (SFA)-rich dietary vegetable oils on the lipid profile, endogenous antioxidant enzymes and glucose tolerance in type 2 diabetic rats. Materials and Methods: Type 2 diabetes was induced by administering streptozotocin (90 mg/kg, i.p.) in neonatal rats. Twenty-eight-day-old normal (N) and diabetic (D) male Wistar rats were fed for 45 days with a fat-enriched special diet (10%) prepared with coconut oil (CO) – lauric acid-rich SFA, palm oil (PO) – palmitic acid-rich SFA and groundnut oil (GNO) – control (N and D). Lipid profile, endogenous antioxidant enzymes and oral glucose tolerance tests were monitored. Results: D rats fed with CO (D + CO) exhibited a significant decrease in the total cholesterol and non-high-density lipoprotein cholesterol. Besides, they also showed a trend toward improving antioxidant enzymes and glucose tolerance as compared to the D + GNO group, whereas D + PO treatment aggravated the dyslipidemic condition while causing a significant decrease in the superoxide dismutase levels when compared to N rats fed with GNO (N + GNO). D + PO treatment also impaired the glucose tolerance when compared to N + GNO and D + GNO. Conclusion: The type of FA in the dietary oil determines its deleterious or beneficial effects. Lauric acid present in CO may protect against diabetes-induced dyslipidemia. PMID:20871763

  3. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    PubMed

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  4. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    PubMed Central

    Kadzińska, Justyna

    2016-01-01

    Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396

  5. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    PubMed

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  6. Structural interactions between lipids, water and S1-S4 voltage-sensing domains

    PubMed Central

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J.

    2012-01-01

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains, and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids, and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains, and that these interactions have lifetimes on the timescale of 10−3s. Arg residues within S1-S4 domains are well-hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid head groups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane, yet are well-hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. PMID:22858867

  7. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  8. Effects of green tea extract and α-tocopherol on the lipid oxidation rate of omega-3 oils, incorporated into table spreads, prepared using multiple emulsion technology.

    PubMed

    Dwyer, Sandra P O'; O'Beirne, David; Ní Eidhin, Deirdre; O'Kennedy, Brendan T

    2012-12-01

    This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)-3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil-in-water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil-in-water-in-oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α-Tocopherol), or both. Spreads containing α-Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5°C, while p-Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G' values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). © 2012 Institute of Food Technologists®

  9. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture.

    PubMed

    Mohamed, Ibrahim O

    2015-01-01

    The main goal of the present research is to restructure olive oil triacylglycerol (TAG) using enzymatic acidolysis reaction to produce structured lipids that is close to cocoa butter in terms of TAG structure and melting characteristics. Lipase-catalyzed acidolysis of refined olive oil with a mixture of palmitic-stearic acids at different substrate ratios was performed in an agitated batch reactor maintained at constant temperature and agitation speed. The reaction attained steady-state conversion in about 5 h with an overall conversion of 92.6 % for the olive oil major triacylglycerol 1-palmitoy-2,3-dioleoyl glycerol (POO). The five major TAGs of the structured lipids produced with substrate mass ratio of 1:3 (olive oil/palmitic-stearic fatty acid mixture) were close to that of the cocoa butter with melting temperature between 32.6 and 37.7 °C. The proposed kinetics model used fits the experimental data very well.

  10. Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats.

    PubMed

    Chiu, Chen-Yuan; Wang, Lou-Pin; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2018-04-25

    This study investigated the effects of dietary supplementation of fish oil on the signals of lipid metabolism involved in hepatic cholesterol and triglyceride influx and excretion in high-fat diet (HFD)-fed rats. Fish oil (FO) repressed body (HFD, 533 ± 18.2 g; HFD+FO, 488 ± 28.0 g, p < 0.05) and liver weights (HFD, 5.7 ± 0.6 g/100 g of body weight; HFD+FO, 4.8 ± 0.4 g/100 g of body weight, p < 0.05) in HFD-fed rats. Fish oil could also improve HFD-induced imbalance of lipid metabolism in blood, liver, and adipose tissues including the significant decreases in plasma and liver total cholesterol (TC) (plasma-HFD, 113 ± 33.6 mg/dL; HFD+FO, 50.0 ± 5.95 mg/dL, p < 0.05; liver-HFD, 102 ± 13.0 mg/dL; HFD+FO, 86.6 ± 7.81 mg/dL, p < 0.05), blood, liver, and adipose triglyceride (TG) (blood-HFD, 52.5 ± 20.4 mg/dL; HFD+FO, 29.8 ± 4.30 mg/dL, p < 0.05; liver-HFD, 56.2 ± 10.0 mg/dL; HFD+FO, 30.3 ± 5.28 mg/dL, p < 0.05; adipose-HFD, 614 ± 73.2 mg/dL; HFD+FO, 409 ± 334 mg/dL, p < 0.05), and low density (HFD, 79.8 ± 40.9 mg/dL; HFD+FO, 16.6 ± 5.47 mg/dL, p < 0.05) and very-low-density (HFD, 49.7 ± 33.3 mg/dL; HFD+FO, 10.4 ± 3.45 mg/dL, p < 0.05) lipoprotein and the significant increases in fecal TC (HFD, 12.2 ± 0.67 mg/dL; HFD+FO, 16.3 ± 2.04 mg/dL, p < 0.05) and TG (HFD, 2.09 ± 0.10 mg/dL; HFD+FO, 2.38 ± 0.22 mg/dL, p < 0.05) and lipoprotein lipase activity of adipose tissues (HFD, 16.6 ± 3.64 μM p-nitrophenol; HFD+FO, 24.5 ± 4.19 μM p-nitrophenol, p < 0.05). Moreover, fish oil significantly activated the protein expressions of hepatic lipid metabolism regulators (AMPKα and PPARα) and significantly regulated the lipid-transport-related signaling molecules (ApoE, MTTP, ApoB, Angptl4, ApoCIII, ACOX1, and SREBPF1) in blood or liver of HFD-fed rats. These results suggest that fish oil supplementation improves HFD-induced imbalance of lipid homeostasis in blood, liver, and adipose tissues in rats.

  11. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.

    PubMed

    Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2006-08-29

    The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.

  12. A Rice Bran Oil Diet Improves Lipid Abnormalities and Suppress Hyperinsulinemic Responses in Rats with Streptozotocin/Nicotinamide-Induced Type 2 Diabetes

    PubMed Central

    Chou, Tsui-Wei; Ma, Chien-Ya; Cheng, Hsing-Hsien; Chen, Ya-Yen; Lai, Ming-Hoang

    2009-01-01

    The aim of this study was to determine the effects of rice bran oil (RBO) on lipid metabolism and insulin resistance in rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM). Rats were divided into two groups: the control group (15% soybean oil, contains 0 g γ-oryzanol and 0 g γ-tocotrienol/150 g oil for 5 weeks) and the RBO group (15% RBO, contains 5.25 g γ-oryzanol and 0.9 g γ-tocotrienol/150 g oil for 5 weeks). Compared with the control group, the RBO group had a lower plasma nonesterified fatty acid concentration, ratio of total to high-density-lipoprotein cholesterol, hepatic cholesterol concentration, and area under the curve for insulin. The RBO group had a higher high-density-lipoprotein cholesterol concentration and greater excretion of fecal neutral sterols and bile acid than did the control group. RBO may improve lipid abnormalities, reduce the atherogenic index, and suppress the hyperinsulinemic response in rats with streptozotocin/nicotinamide-induced T2DM. In addition, RBO can lead to increased fecal neutral sterol and bile acid excretion. PMID:19590704

  13. Diacylglycerol oil does not affect portal vein transport of nonesterified fatty acids but decreases the postprandial plasma lipid response in catheterized pigs.

    PubMed

    Kristensen, Janni Brogaard; Jørgensen, Henry; Mu, Huiling

    2006-07-01

    Studies have shown several beneficial effects of dietary diacylglycerol oil (DAG oil), but the mechanism behind these effects is still not clear. One hypothesis is that an increase in portal vein transport of nonesterified fatty acids (NEFA) with subsequent oxidation in the liver might be responsible for the positive effects. We examined the portal vein transport of NEFA and other lipid related variables, in response to DAG and triacylglycerol (TAG) bolus feeding and a bolus of standard pig feed in 4 portal vein and mesenteric artery catheterized pigs. Also, the effect of the boluses on postprandial lipid variables was examined. Portal vein transport of NEFA did not differ when pigs were administered the 2 oil bolus diets, consistent with the similar portal plasma concentrations of oleic and linolenic acids during h 1 after feeding. Glycerol, on the contrary, was transported by the portal vein to a much higher degree after intake of DAG oil (P < 0.001; 20, 40, and 60 min). The postprandial arterial TAG response at 5 and 6 h postprandially was significantly lower after the DAG bolus intake. Analysis of Delta AUC for the 6-h postprandial period of selected and total fatty acids showed a lower concentration of vaccenic acid (P = 0.002) after the DAG bolus diet. In conclusion, DAG bolus feeding did not increase the portal transport of NEFA, but it did increase the portal transport of glycerol and lower the postprandial lipid concentration in arterial plasma.

  14. From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids.

    PubMed

    Wang, Jun; Wang, Xu-Dong; Zhao, Xing-Yu; Liu, Xi; Dong, Tao; Wu, Fu-An

    2015-05-01

    Novel structured triacylglycerols (STAGs) enriched with unsaturated fatty acids (UFAs) and low palmitic acid (PA) content were firstly synthesized from Schizochytrium sp. oil and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. The results indicated that, the PA content decreased from 24.49% to 6.95%, while the UFAs content increased from 70.20% to 90.9% at the sn-1,3 positions in the STAGs under the optimal condition (i.e., lipase load of 7%, molar ratio of microalgae oil TAGs to OA of 1:3, and temperature of 65 °C). The lipase Lipozyme RM IM could be reused 16 times without significant loss of activity. The improved plastic and storage ranges of STAGs are useful for infant formula formulations, by which a possible method is blending of this product and 1,3-dioleoyl-2-palmitoylglycerol enriched fats and minor lipids based on the corresponding chemical compositions of human milk fat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide.

    PubMed

    Wang, Zhan; Li, Jianjun; Altman, Eleonora

    2006-12-11

    The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.

  16. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers.

    PubMed

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-02-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

  17. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    PubMed

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Serum fatty acid composition in normal Japanese and its relationship with dietary fish and vegetable oil contents and blood lipid levels.

    PubMed

    Nakamura, T; Takebe, K; Tando, Y; Arai, Y; Yamada, N; Ishii, M; Kikuchi, H; Machida, K; Imamura, K; Terada, A

    1995-01-01

    A survey was conducted on 110 normal Japanese adults (55 men and 55 women) to determine their caloric intake, dietary fat content and its origin (animal, plant, or marine). In addition, their blood lipid levels and fatty acid compositions were examined. Men in their 30s-50s consumed 2,600-2,800 calories and 60 g of fats, while women in the same age range consumed 2,000-2,200 calories and 52-58 g of fats. In both sexes, caloric, fat, and cholesterol intakes were lower for those in their 60s but protein and crude fiber consumption remained generally unchanged. When the dietary fats were classified according to origin, men and women in their 30s were found to consume less oil of marine origin. This appeared to be the result of a western style diet for Japanese adults in their 30s. Compared with men, women exhibited lower blood lipid levels. As age increased, the total cholesterol level of the blood rose in women. Thus the blood lipid level was generally equal in the two groups in their 60s. There was a positive correlation between the blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and dietary consumption of fish oil. The marine/plant lipid ratio was positively correlated with the blood EPA/arachidonic acid ratio. Therefore, it was believed that the origin of the dietary fats consumed is a factor in determining the blood fatty acid profile. The linoleic acid (18:2), arachidonic acid (20:4), and 18:2 + 20:4 contents were negatively correlated to the total cholesterol level in the blood but positively correlated to the HDL-cholesterol level. Polyunsaturated fatty acids (18:2 + 20:4 + 20:5 + 22:6) were negatively correlated with the blood triglyceride level. From the findings presented above, we concluded that dietary fats not derived from animal sources should be classified into fish and vegetable oils to evaluate their dietary significance. We also noted that Japanese in their 30s consume less fish oil, indicating the western trend in their

  19. The chemopreventive activity of butyrate-containing structured lipids in experimental rat hepatocarcinogenesis.

    PubMed

    Heidor, Renato; de Conti, Aline; Ortega, Juliana F; Furtado, Kelly S; Silva, Roberta C; Tavares, Paulo E L M; Purgatto, Eduardo; Ract, Juliana N R; de Paiva, Sérgio A R; Gioielli, Luiz A; Pogribny, Igor P; Moreno, Fernando S

    2016-02-01

    Emerging evidence indicates that the use of bioactive food components is a promising strategy to prevent the development of liver cancer. The goal of this study was to examine the chemopreventive effect of butyrate-containing structured lipids (STLs) produced by an enzymatic interesterification of tributyrin and flaxseed oil on rat hepatocarcinogenesis. Male Wistar rats were subjected to a classic "resistant hepatocyte" model of liver carcinogenesis and treated with STLs, tributyrin or flaxseed oil during the initial phases of hepatocarcinogenesis. Treatment with STLs and tributyrin strongly inhibited the development of preneoplastic liver lesions. The chemopreventive activity of tributyrin was associated with the induction of apoptosis and reduction of the expression of major activated hepatocarcinogenesis-related oncogenes. Treatment with STLs caused substantially greater inhibitory effects than tributyrin on oncogene expression. These results demonstrate that the tumor-suppressing activity of butyrate-containing STLs is associated with its ability to prevent and inhibit activation of major hepatocarcinogenesis-related oncogenes. Enrichment of histone H3K9me3 and H3K27me3 at the promoter of Myc and Ccnd1 genes may be related to the inhibitory effect on oncogene expression in the livers of STL-treated rats. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Performance and lipid profiles of native chickens fed diet containing skipjack fish oil as by-product of fish canning factory

    NASA Astrophysics Data System (ADS)

    Leke, J. R.; Mandey, J. S.; Laihad, J. T.; Tinangon, R. M.; Tangkau, L.; Junus, C.

    2018-01-01

    The study was conducted to determine the use of fish oil as by-product of fish canning factory in diet on the performance and lipid profiles of native chickens. The experiment used 100 native chicken with an average initial body weight of 48,9 gram (sd + 9.9), was used in this study for 8 weeks experiment. These were arranged by a completely randomized design with 5 treatments, 5 replications and 4 hens in replication each. The diets were: R0 = 100% Based Diet (BD) + 0% Fish Oil (FO); R1 = 98.5% BD + 1.5% FO; R2 = 98% BD + 2% FO; R3 = 97.5% BD + 2.5% FO; R4 = 97 % BD + 3% FO. Feed and water were provided ad libitum. Variables were performance parameters and lipid profiles. Results showed that fish oil inclusion in diets were significantly increased feed intake, body weight gain, carcass percentage, liver, breast and thigh weight, and decreased blood cholesterol, carbohydrate and meat cholesterol, and also tended to decrease abdominal fat. However, there were no affected on feed conversion, water, protein, fat and ash of breast meat. It can be concluded that the use of fish oil in diet up to 3% could improved performance parameters of native chickens.

  1. [Fish oil containing lipid emulsions in critically ill patients: Critical analysis and future perspectives].

    PubMed

    Manzanares, W; Langlois, P L

    2016-01-01

    Third-generation lipid emulsions (LE) are soybean oil sparing strategies with immunomodulatory and antiinflammatory effects. Current evidence supporting the use of intravenous (i.v) fish oil (FO) LE in critically ill patients requiring parenteral nutrition or receiving enteral nutrition (pharmaconutrient strategy) mainly derives from small phase ii clinical trials in heterogenous intensive care unit patient's population. Over the last three years, there have been published different systematic reviews and meta-analyses evaluating the effects of FO containing LE in the critically ill. Recently, it has been demonstrated that i.v FO based LE may be able to significantly reduce the incidence of infections as well as mechanical ventilation days and hospital length of stay. Nonetheless, more robust evidence is required before giving a definitive recommendation. Finally, we strongly believe that a dosing study is required before new phase iii clinical trials comparing i.v FO containing emulsions versus other soybean oil strategies can be conducted. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  2. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles

    PubMed Central

    Montenegro, Lucia; Zappalà, Agata; Parenti, Carmela

    2017-01-01

    Although rosemary essential oil (EO) shows many biological activities, its topical benefits have not been clearly demonstrated. In this work, we assessed the effects on skin hydration and elasticity of rosemary EO after topical application via gel vehicles in human volunteers. To improve its topical efficacy, rosemary EO was loaded into lipid nanoparticles (NLCs) consisting of cetyl palmitate as a solid lipid, and non-ionic surfactants. Such NLCs were prepared using different ratios of EO/solid lipid and those containing EO 3% w/w and cetyl pamitate 7% w/w were selected for in vivo studies, showing the best technological properties (small particle size, low polydispersity index and good stability). Gels containing free EO or EO-loaded NLCs were applied on the hand skin surface of ten healthy volunteers twice a day for one week. Skin hydration and elasticity changes were recorded using the instrument Soft Plus. Gels containing EO-loaded NLCs showed a significant increase in skin hydration in comparison with gels containing free EO. Skin elasticity increased, as well, although to a lesser extent. The results of this study point out the usefulness of rosemary EO-loaded NLCs for the treatment of cutaneous alterations involving loss of skin hydration and elasticity. PMID:29065483

  3. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.

    PubMed

    Kovacevic, A; Savic, S; Vuleta, G; Müller, R H; Keck, C M

    2011-03-15

    The two polyhydroxy surfactants polyglycerol 6-distearate (Plurol(®)Stearique WL1009 - (PS)) and caprylyl/capryl glucoside (Plantacare(®) 810 - (PL)) are a class of PEG-free stabilizers, made from renewable resources. They were investigated for stabilization of aqueous solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Production was performed by high pressure homogenization, analysis by photon correlation spectroscopy (PCS), laser diffraction (LD), zeta potential measurements and differential scanning calorimetry (DSC). Particles were made from Cutina CP as solid lipid only (SLN) and its blends with Miglyol 812 (NLC, the blends containing increasing amounts of oil from 20% to 60%). The obtained particle sizes were identical for both surfactants, about 200 nm with polydispersity indices below 0.20 (PCS), and unimodal size distribution (LD). All dispersions with both surfactants were physically stable for 3 months at room temperature, but Plantacare (PL) showing a superior stability. The melting behaviour and crystallinity of bulk lipids/lipid blends were compared to the nanoparticles. Both were lower for the nanoparticles. The crystallinity of dispersions stabilized with PS was higher, the zeta potential decreased with storage time associated with this higher crystallinity, and leading to a few, but negligible larger particles. The lower crystallinity particles stabilized with PL remained unchanged in zeta potential (about -50 mV) and in size. These data show that surfactants have a distinct influence on the particle matrix structure (and related stability and drug loading), to which too little attention was given by now. Despite being from the same surfactant class, the differences on the structure are pronounced. They are attributed to the hydrophobic-lipophilic tail structure with one-point anchoring in the interface (PL), and the loop conformation of PS with two hydrophobic anchor points, i.e. their molecular structure and its

  4. Structure, inhibition, and regulation of essential lipid A enzymes.

    PubMed

    Zhou, Pei; Zhao, Jinshi

    2017-11-01

    The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Impact of polyunsaturated vegetable oils on adiponectin levels, glycaemia and blood lipids in individuals with type 2 diabetes: a randomised, double-blind intervention study.

    PubMed

    Müllner, E; Plasser, E; Brath, H; Waldschütz, W; Forster, E; Kundi, M; Wagner, K-H

    2014-10-01

    Low adiponectin levels are discussed as risk factor for cardiovascular events. This is of special importance in individuals with type 2 diabetes (T2DM) because they are at higher risk for cardiovascular diseases. The present study aimed to investigate the effect of two plant oils rich in polyunsaturated fatty acids (PUFA), with different content of omega-3 fatty acids, on adiponectin levels, glucose and lipid metabolism in T2DM individuals treated either with insulin or oral anti-diabetics (OAD). Ninety-two subjects with T2DM [34 treated with insulin (T2DM-Ins) and 58 treated with OAD (T2DM-OAD)] participated in this randomised, double-blind, parallel intervention study. Individuals received either 9 g of nut oil (n-3:n-6 ratio: 1.3 : 6.1) or mixed oil (n-3:n-6 ratio: 0.6 : 5.7) per day for 10 weeks. The fatty acid profile, tocopherol, adiponectin levels and parameters regarding glucose and lipid metabolism were assessed at baseline, during and after the intervention. Compliance was confirmed by significant increases in γ-tocopherol and PUFA in both oil groups. An increase in adiponectin levels in T2DM-Ins participants (+6.84% in nut oil and +4.47% in mixed oil group after 10 weeks compared to baseline) was observed, albeit not significantly different from T2DM-OAD individuals (P = 0.051). Lipid and glucose metabolism were not affected by the intervention. The present study provides evidence that a small and easy change in dietary behaviour towards better fat quality moderately increases adiponectin levels in T2DM-Ins subjects, independently of the administered plant oil. © 2013 The British Dietetic Association Ltd.

  6. Elimination of soybean lipid emulsion in parenteral nutrition and supplementation with enteral fish oil improve cholestasis in infants with short bowel syndrome.

    PubMed

    Rollins, Michael D; Scaife, Eric R; Jackson, W Daniel; Meyers, Rebecka L; Mulroy, Cecilia W; Book, Linda S

    2010-04-01

    Parenteral nutrition-associated liver disease (PNALD) is a potentially fatal complication for children with intestinal failure. Fish oil-based lipid emulsions have shown promise for the treatment of PNALD but are not readily available. Six cases are presented in which cholestasis resolved after soybean lipid emulsion (SLE) was removed from parenteral nutrition (PN) and enteral fish oil was given. A retrospective review at a tertiary children's hospital (July 2003 to August 2008) identified 6 infants with intestinal failure requiring PN for >6 months who developed severe hepatic dysfunction that was managed by eliminating SLE and providing enteral fish oil. Twenty-three infants with short bowel syndrome requiring prolonged PN developed cholestasis. SLE was removed in 6 of these patients, and 4 of the 6 received enteral fish oil. Standard PN included 2-3 g/kg/d SLE with total PN calories ranging from 57 to 81 kcal/kg/d at the time of SLE removal. Hyperbilirubinemia resolved after elimination of SLE within 1.8-5.4 months. Total PN calories required to maintain growth generally did not change. Temporary elimination of SLE and supplementation with enteral fish oil improved cholestasis in PN-dependent infants. Further trials are needed to evaluate this management strategy.

  7. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    PubMed

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  8. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems.

    PubMed

    Tamilvanan, S

    2004-11-01

    Lipid emulsions (LEs) are heterogenous dispersions of two immiscible liquids (oil-in-water or water-in-oil) and they are subjected to various instability processes like aggregation, flocculation, coalescence and hence eventual phase separation according to the second law of thermodynamics. However, the physical stability of the LE can substantially be improved with help of suitable emulsifiers that are capable of forming a mono- or multi-layer coating film around the dispersed liquid droplets in such a way to reduce interfacial tension or to increase droplet-droplet repulsion. Depending on the concentrations of these three components (oil-water-emulsifier) and the efficiency of the emulsification equipments used to reduce droplet size, the final LE may be in the form of oil-in-water (o/w), water-in-oil (w/o), micron, submicron and double or multiple emulsions (o/w/o and w/o/w). The o/w type LEs (LE) are colloidal drug carriers, which have various therapeutic applications. As an intravenous delivery system it incorporates lipophilic water non-soluble drugs, stabilize drugs that tend to undergo hydrolysis and reduce side effects of various potent drugs. When the LE is used as an ocular delivery systems they increase local bioavailability, sustain the pharmacological effect of drugs and decrease systemic side effects of the drugs. Thus, the rationale of using LE as an integral part of effective treatment is clear. Following administration of LE through these routes, the biofate of LE associated bioactive molecules are somehow related to the vehicles disposition kinetics inside blood or eyeball. However, the LE is not devoid from undergoing various bio-process while exerting their efficacious actions. The purpose of this review is therefore to give an implication of LE for parenteral and ocular delivering systems.

  9. Controlling lipid accumulation in cereal grains.

    PubMed

    Barthole, Guillaume; Lepiniec, Loïc; Rogowsky, Peter M; Baud, Sébastien

    2012-04-01

    Plant oils have so far been mostly directed toward food and feed production. Nowadays however, these oils are more and more used as competitive alternatives to mineral hydrocarbon-based products. This increasing demand for vegetable oils has led to a renewed interest in elucidating the metabolism of storage lipids and its regulation in various plant systems. Cereal grains store carbon in the form of starch in a large endosperm and as oil in an embryo of limited size. Complementary studies on kernel development and metabolism have paved the way for breeding or engineering new varieties with higher grain oil content. This could be achieved either by increasing the relative proportion of the oil-rich embryo within the grain, or by enhancing oil synthesis and accumulation in embryonic structures. For instance, diacylglycerol acyltransferase (DGAT) that catalyses the ultimate reaction in the biosynthesis of triacylglycerol appears to be a promising target for increasing oil content in maize embryos. Similarly, over-expression of the maize transcriptional regulators ZmLEAFY COTYLEDON1 and ZmWRINKLED1 efficiently stimulates oil accumulation in the kernels of transgenic lines. Redirecting carbon from starch to oil in the endosperm, though not yet realized, is discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. High rates of resolution of cholestasis in parenteral nutrition-associated liver disease with fish oil-based lipid emulsion monotherapy

    USDA-ARS?s Scientific Manuscript database

    Our research was conducted to determine factors leading to resolution of cholestasis in patients with parenteral nutrition-associated liver disease treated with fish-oil-based lipid emulsion (FOLE). We used a prospective observational study of 57 infants <6 months of age with parenteral nutrition-as...

  11. NMR spectroscopy for evaluation of lipid oxidation

    USDA-ARS?s Scientific Manuscript database

    During storage and use of edible oils and other lipid-containing foods, reactions between lipids and oxygen occur, resulting in lipid oxidation and the subsequent development of off-flavors and odors. Accurate and timely assessment of lipid oxidation is critical for effective quality control of food...

  12. Relationship between the omega-3 index and specialized pro-resolving lipid mediators in patients with peripheral arterial disease taking fish oil supplements.

    PubMed

    Schaller, Melinda S; Zahner, Greg J; Gasper, Warren J; Harris, William S; Conte, Michael S; Hills, Nancy K; Grenon, S Marlene

    Oral supplementation with n-3 polyunsaturated fatty acids (PUFA) increases the omega-3 index, a biomarker of red blood cell eicosapentaenoic acid and docosahexaenoic acid, and plasma levels of biosynthesis pathway markers and potent lipid mediators involved in the resolution of inflammation among patients with peripheral arterial disease (PAD). We aimed to quantify the association between an upstream change in the omega-3 index and downstream changes in lipid mediator production. We conducted a secondary analysis of the OMEGA-PAD I Trial, a randomized, placebo controlled trial investigating high-dose n-3 PUFA oral supplementation in PAD patients. Eighty subjects were randomized to either 4.4 g of fish oil or placebo for 1 month. Regression analyses using generalized estimating equation techniques were used to investigate the relationship between changes in the omega-3 index and changes in lipid mediators, pre- and post-intervention. In the fish oil group, there was a significant increase in the omega-3 index (5 ± 1% to 9 ± 2%, P < .001) as well as in the plasma levels of several downstream lipid mediator pathway markers of resolution, which are involved with the regulation of leukocyte effector function and host defense. A doubling of the omega-3 index correlated with increases of 2.3-fold in 18-hydroxy-eicosapentaenoic acid (HEPE; P < .0001), 1.7-fold in 15-HEPE (P = .03), 1.9-fold in 5-HEPE (P = .04), and 3.6-fold in 4-hydroxy-docosahexaenoic acid (P < .001). Among subjects with symptomatic PAD who took oral fish oil supplements for 1 month, observed changes in the omega-3 index were strongly associated with increases in downstream mediators in the biochemical pathways of resolution. Copyright © 2017 National Lipid Association. All rights reserved.

  13. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.

    PubMed

    Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, J E; Escribá, P V

    2008-09-16

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.

  14. Molecular composition and surface properties of storage lipid particles in wax bean (Phaseolus vulgaris).

    PubMed

    Froese, Carol D; Nowack, Linda; Cholewa, Ewa; Thompson, John E

    2003-03-01

    Lipid particles have been isolated from seeds of wax bean (Phaseolus vulgaris), a species in which starch and protein rather than lipid are the major seed storage reserves. These lipid particles resemble oil bodies present in oil-rich seeds in that > 90% of their lipid is triacylglycerol. Moreover, this triacylglycerol is rapidly metabolized during seed germination indicating that it is a storage reserve. The phospholipid surfaces of oil bodies are known to be completely coated with oleosin which prevents their coalescence, particularly during desiccation of the developing seed. This would appear to be necessary since lipid is the major storage reserve in oil seeds, and there are very few alternate types of storage particles in the cytoplasm of oil seed endosperm to provide a buffer against coalescence of oil bodies by isolating them from one another. The present study indicates that the surfaces of lipid particles from wax bean are not completely coated with oleosin and feature regions of naked phospholipid. This finding has been interpreted as reflecting the fact that lipid particles in wax been seeds are less prone to coalescence than oil bodies of oil-rich seeds. This arises because the individual lipid particles are interspersed in situ among highly abundant protein bodies and starch grains and hence less likely to come in contact with one another, even during desiccation of the developing seed.

  15. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure.

    PubMed

    Zhou, Zhongkai; Wang, Yuyang; Jiang, Yumei; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris

    2016-04-28

    Deep frying in oil is a popular cooking method around the world. However, the safety of deep-fried edible oil, which is ingested with fried food, is a concern, because the oil is exposed continuously to be re-used at a high temperature, leading to a number of well-known chemical reactions. Thus, this study investigates the changes in energy metabolism, colon histology and gut microbiota in rats following deep-fried oil consumption and explores the mechanisms involved in above alterations. Deep-fried oil was prepared following a published method. Adult male Wistar rats were randomly divided into three groups (n = 8/group). Group 1: basal diet without extra oil consumption (control group); Group 2: basal diet supplemented with non-heated canola oil (NEO group); Group 3: basal diet supplemented with deep-fried canola oil (DFEO group). One point five milliliters (1.5 mL) of non-heated or heated oil were fed by oral gavage using a feeding needle once daily for 6 consecutive weeks. Effect of DFEO on rats body weight, KEGG pathway regarding lipids metabolism, gut histology and gut microbiota were analyzed using techniques of RNA sequencing, HiSeq Illumina sequencing platform, etc. Among the three groups, DFEO diet resulted in a lowest rat body weight. Metabolic pathway analysis showed 13 significantly enriched KEGG pathways in Control versus NEO group, and the majority of these were linked to carbohydrate, lipid and amino acid metabolisms. Comparison of NEO group versus DFEO group, highlighted significantly enriched functional pathways were mainly associated with chronic diseases. Among them, only one metabolism pathway (i.e. glycerolipid metabolism pathway) was found to be significantly enriched, indicating that inhibition of this metabolism pathway (glycerolipid metabolism) may be a response to the reduction in energy metabolism in the rats of DFEO group. Related gene analysis indicated that the down-regulation of Lpin1 seems to be highly associated with the inhibition

  16. Liver lipid composition and antioxidant enzyme activities of spontaneously hypertensive rats after ingestion of dietary fats (fish, olive and high-oleic sunflower oils).

    PubMed

    Ruiz-Gutiérrez, V; Vázquez, C M; Santa-Maria, C

    2001-06-01

    Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n - 3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n - 3 lipids may enhance the

  17. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids.

    PubMed

    Zhang, Jun-Hui; Jiang, Yu-Yan; Lin, Ying; Sun, Yu-Fei; Zheng, Sui-Ping; Han, Shuang-Yan

    2013-01-01

    To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease) and tripalmitin (7.55 KJ/mol decrease) were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type). The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.

  18. Fish Oil Contaminated with Persistent Organic Pollutants Reduces Antioxidant Capacity and Induces Oxidative Stress without Affecting Its Capacity to Lower Lipid Concentrations and Systemic Inflammation in Rats.

    PubMed

    Hong, Mee Young; Lumibao, Jan; Mistry, Prashila; Saleh, Rhonda; Hoh, Eunha

    2015-05-01

    Numerous studies have investigated the benefits of fish, fish oil, and ω-3 (n-3) polyunsaturated fatty acids against cardiovascular diseases. However, concern surrounding contamination with persistent organic pollutants (POPs) prompts caution in the recommendation to consume fish and fish oil. The present study compared the effects of fish oil contaminated with polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs) on serum lipid profiles, inflammation, and oxidative stress. Twenty eight-day-old male Sprague-Dawley rats (n = 30) consumed diets of unmodified fish oil (FO) consisting of 15% fat by weight, persistent organic pollutant-contaminated fish oil (POP FO) (PCBs at 2.40 μg/g; OCs at 3.80 μg/g FO), or corn oil (control; CO) for 9 wk. Lipid profiles and C-reactive protein concentrations were assessed. Hepatic gene expression related to lipid metabolism was determined by real time quantitative polymerase chain reaction analysis. After 9 wk of feeding, accumulation of PCBs and OCs in the fat tissue of the POP FO group compared with the other 2 groups was confirmed (P < 0.01). Both fish oil groups showed greater HDL cholesterol (FO 53 ± 5.3 and POP FO 55 ± 7.7 vs. CO 34 ± 2.3 mg/dL), but lower triglycerides (24 ± 2.8 and 22 ± 3.0 vs. 43 ± 5.6 mg/dL), LDL cholesterol (38 ± 14 and 34 ± 9.2 vs. 67 ± 4.4 mg/dL), and C-reactive protein (113 ± 20 and 120 ± 26 vs. 189 ± 22 μg/dL) compared with the CO group (P < 0.05). Gene expression of fatty acid synthase in both fish oil groups was also less than in the CO group (P < 0.05). However, the POP FO group showed greater lipid peroxidation (5.1 ± 0.7 vs. 2.9 ± 0.9 and 2.6 ± 0.6 μM) and less antioxidant capacity (0.08 ± 0.06 vs. 0.5 ± 0.1 and 0.4 ± 0.1 mM) than the CO and FO groups (P < 0.05). These findings indicate that, despite exhibiting benefits on serum lipid concentrations and inflammation, contamination with PCBs and OCs showed significant negative effects on oxidative stress and

  19. Corn oil enhancing hepatic lipid peroxidation induced by CCl4 does not aggravate liver fibrosis in rats.

    PubMed

    Fang, Hsun-Lang; Lin, Wen-Chuan

    2008-06-01

    Lipid peroxidation (LPO) is known to be associated with liver fibrosis in chronic liver injury. However, direct effects of the products of LPO on liver fibrogenesis have not been demonstrated. In this study, we examined the LPO products of carbon tetrachloride (CCl4)+corn oil to evaluate the effect of LPO products on liver fibrosis. CCl4 was given twice a week for 8 weeks. Corn oil was given daily to rats at a dose of 2 or 10ml/kg via gastrogavage throughout the whole experiment period. CCl4 induced both cyclooxygenase (COX)-2 independent and COX-2 dependent LPO. COX-2 independent LPO was enhanced by corn oil treatment while no effect was reflected on COX-2 dependent LPO. CCl4-induced liver fibrosis in rats was not aggravated by corn oil treatment. In addition, the amount of fatty liver induced by CCl4 was increased by corn oil treatment. Though the inflammation-related UCP-2 mRNA expression was induced by CCl4, it was not aggravated by the enhancement of corn oil. corn oil enriches polyunsaturated fatty acids through COX-2 independent pathways to increase LPO products that do not enhance liver fibrosis induced by CCl4.

  20. The SwissLipids knowledgebase for lipid biology

    PubMed Central

    Liechti, Robin; Hyka-Nouspikel, Nevila; Niknejad, Anne; Gleizes, Anne; Götz, Lou; Kuznetsov, Dmitry; David, Fabrice P.A.; van der Goot, F. Gisou; Riezman, Howard; Bougueleret, Lydie; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. Results: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology—SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. Availability: SwissLipids is freely available at http://www.swisslipids.org/. Contact: alan.bridge@isb-sib.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25943471

  1. Simulation studies of structure and edge tension of lipid bilayer edges: effects of tail structure and force-field.

    PubMed

    West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T

    2013-08-15

    Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.

  2. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants.

    PubMed

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-05-30

    The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.

  3. Effect of ionizing radiation on the protein and lipid quality characteristics of mutton kheema treated with rice bran oil and sunflower oil

    NASA Astrophysics Data System (ADS)

    Jalarama Reddy, K.; Jayathilakan, K.; Pandey, M. C.

    2015-12-01

    Effect of rice bran oil (RBO) and irradiation (0, 1, 2 and 3 kGy) on lipid and protein quality of ready-to-eat mutton kheema were established during refrigerated storage (4±1 °C). Total carbonyls, thiobarbituric acid reactive substance (TBARS), non-heme iron and total volatiles in irradiated RBO samples were significantly lower (p<0.05) from the corresponding sunflower oil (SFO) treated samples initially and during storage. Product with RBO and Flaxseed oil (FSO) at the optimized level yielded a designer meat product having an SFA:MUFA:PUFA and n-6/n-3 ratio of 1:1.3:1.3 and 3.6:1 respectively. Degradation in PUFA levels in SFO samples were significantly higher (p<0.05) and an increase of 31% in metmyoglobin after 50 days was noticed in comparison with RBO samples. Non-linear correlation analysis of chemical markers established polynomial fit equations. 2 kGy radiation processing with RBO yielded a product having 50 days of shelf stability in terms of its chemical characteristics.

  4. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids

    USDA-ARS?s Scientific Manuscript database

    An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% of soybean oil (SO), choice white grease (CWG), palm oil (PO), or 2 different distillers corn oils (DCO-1 and DC...

  5. Lipid-Encapsulated Echium Oil (Echium plantagineum) Increases the Content of Stearidonic Acid in Plasma Lipid Fractions and Milk Fat of Dairy Cows.

    PubMed

    Bainbridge, Melissa L; Lock, Adam L; Kraft, Jana

    2015-05-20

    The objective of this study was to evaluate the impact of feeding lipid-encapsulated echium oil (EEO) on animal performance and milk fatty acid profile. Twelve Holstein dairy cows were used in a 3 × 3 Latin Square design with 14 day periods. Treatments were a control diet (no supplemental fat), 1.5% dry matter (DM) as EEO and 3.0% DM as EEO. Treatments had no negative effect on animal performance (dry matter intake, milk yield, and fat yield). The milk fat content of total n-3 fatty acids and stearidonic acid (SDA) increased with EEO supplementation (P < 0.001). The proportion of SDA increased in all plasma lipid fractions with EEO supplementation (P < 0.001). Transfer of SDA from EEO into milk fat was 3.4 and 3.2% for the 1.5 and 3% EEO treatments, respectively. In conclusion, EEO increases the content of n-3 fatty acids in milk fat; however, the apparent transfer efficiency was low.

  6. Hypolipidemic effect of oils with balanced amounts of fatty acids obtained by blending and interesterification of coconut oil with rice bran oil or sesame oil.

    PubMed

    Reena, Malongil B; Lokesh, Belur R

    2007-12-12

    Blended oils comprising coconut oil (CNO) and rice bran oil (RBO) or sesame oil (SESO) with saturated fatty acid/monounsaturated fatty acid/polyunsaturated fatty acid at a ratio of 1:1:1 and polyunsaturated/saturated ratio of 0.8-1 enriched with nutraceuticals were prepared. Blended oils (B) were subjected to interesterification reaction using sn-1,3 specific Lipase from Rhizomucor miehei. Fatty acid composition and nutraceutical contents of the blended oil were not affected by interesterification reaction. Male Wistar rats were fed with AIN-76 diet containing 10% fat from CNO, RBO, SESO, CNO+RBO blend (B), CNO+SESO(B), CNO+RBO interesterified (I), or CNO+SESO(I) for 60 days. Serum total cholesterol (TC), low-density lipoprotein cholesterol, and triacylglycerols (TAGs) were reduced by 23.8, 32.4, and 13.9%, respectively, in rats fed CNO+RBO(B) and by 20.5, 34.1, and 12.9%, respectively, in rats fed CNO+SESO(B) compared to rats given CNO. Rats fed interesterified oils showed a decrease in serum TC, low-density lipoprotein cholesterol (LDL-C), and TAGs in CNO+RBO(I) by 35, 49.1, and 23.2 and by 33.3, 47, and 19.8% in CNO+SESO(I), respectively, compared to rats given CNO. Compared to rats fed CNO+RBO blended oils, rats on CNO+RBO interesterified oil showed a further decrease of 14.6, 24.7, and 10% in TC, LDL-C, and TAG. Rats fed CNO+SESO interesterified oils showed a decrease in serum TC, LDL-C, and TAG by 16.2, 19.6, and 7.8%, respectively, compared to rats given blended oils of CNO+SESO (B). Liver lipid analysis also showed significant change in the TC and TAG concentration in rats fed blended and interesterified oils of CNO+RBO and CNO+SESO compared to the rats given CNO. The present study suggests that feeding fats containing blended oils with balanced fatty acids lowers serum and liver lipids. Interesterified oils prepared using Lipase have a further lowering effect on serum and liver lipids even though the fatty acid composition of blended and interesterified

  7. Addition of electrophilic lipids to actin alters filament structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is importantmore » for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.« less

  8. Effects of partially hydrogenated, semi-saturated, and high oleate vegetable oils on inflammatory markers and lipids.

    PubMed

    Teng, Kim-Tiu; Voon, Phooi-Tee; Cheng, Hwee-Ming; Nesaretnam, Kalanithi

    2010-05-01

    Knowledge about the effects of dietary fats on subclinical inflammation and cardiovascular disease risk are mainly derived from studies conducted in Western populations. Little information is available on South East Asian countries. This current study investigated the chronic effects on serum inflammatory markers, lipids, and lipoproteins of three vegetable oils. Healthy, normolipidemic subjects (n = 41; 33 females, 8 males) completed a randomized, single-blind, crossover study. The subjects consumed high oleic palm olein (HOPO diet: 15% of energy 18:1n-9, 9% of energy 16:0), partially hydrogenated soybean oil (PHSO diet: 7% of energy 18:1n-9, 10% of energy 18:1 trans) and an unhydrogenated palm stearin (PST diet: 11% of energy 18:1n-9, 14% of energy 16:0). Each dietary period lasted 5 weeks with a 7 days washout period. The PHSO diet significantly increased serum concentrations of high sensitivity C-reactive protein compared to HOPO and PST diets (by 26, 23%, respectively; P < 0.05 for both) and significantly decreased interleukin-8 (IL-8) compared to PST diet (by 12%; P < 0.05). In particular PHSO diet, and also PST diet, significantly increased total:HDL cholesterol ratio compared to HOPO diet (by 23, 13%, respectively; P < 0.05), with the PST diet having a lesser effect than the PHSO diet (by 8%; P < 0.05). The use of vegetable oils in their natural state might be preferred over one that undergoes the process of hydrogenation in modulating blood lipids and inflammation.

  9. Benefits of Structured and Free Monoacylglycerols to Deliver Eicosapentaenoic (EPA) in a Model of Lipid Malabsorption

    PubMed Central

    Cruz-Hernandez, Cristina; Thakkar, Sagar K.; Moulin, Julie; Oliveira, Manuel; Masserey-Elmelegy, Isabelle; Dionisi, Fabiola; Destaillats, Frédéric

    2012-01-01

    In the present study, we used a preclinical model of induced lipolytic enzyme insufficiency, and hypothesized that the use of monoacylglycerols (MAG) will enhance their bioavailability and delivery to the tissues. Experimental diets containing 20% lipids were fed to rats for 21 days with or without Orlistat. The control diet of fish oil (FO), a source of EPA and DHA, was tested against: structured (A) vanillin acetal of sn-2 MAG (Vanil + O) and (B) diacetyl derivative of sn-2 MAG (Acetyl + O) and (C) free MAG (MAG + O). FA profiles with an emphasis on EPA and DHA levels were determined in plasma, red blood cells (RBC), liver, spleen, brain and retina. We observed significant reduction of lipid absorption when rats co-consumed Orlistat. As expected, the FO groups with and without Orlistat showed the biggest difference. The Vanil + O, Acetyl + O and MAG + O groups, demonstrated higher levels of EPA (5.5 ± 1.9, 4.6 ± 1.6 and 5.6 ± 0.6, respectively) in RBC compared with FO + O diets (3.3 ± 0.2, 2.6 ± 0.2). Levels of EPA incorporation, in plasma, were similar to those obtained for RBC, and similar trends were observed for the collected tissues and even with DHA levels. These observations with two MAG derivatives providing the fatty acid esterified in the sn-2 position, show that these molecules are efficient vehicles of EPA in malabsorption conditions which is in line with our hypothesis. Free MAG, characterized as having exclusively sn-1(3) isomers of EPA, demonstrated better absorption efficiencies and accretion to tissues when compared to structured MAG. The study demonstrated that structured and free MAG can be used efficiently as an enteral vehicle to supply bioactive fatty acids such as EPA and DHA in lipid malabsorption where diminished lipolytic activity is the underlying cause. PMID:23201848

  10. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: a randomised, double-blind clinical trial in premature infants requiring parenteral nutrition.

    PubMed

    Tomsits, Erika; Pataki, Margit; Tölgyesi, Andrea; Fekete, György; Rischak, Katalin; Szollár, Lajos

    2010-10-01

    Safety, tolerability, and efficacy of a novel lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOFlipid 20%) with reduced n-6 fatty acids (FA), increased monounsaturated and n-3 FA, and enriched in vitamin E were evaluated in premature infants compared with a soybean oil-based emulsion. Sixty (30/30) premature neonates (age 3-7 days, gestational age ≤ 34 weeks, birth weights 1000-2500 g) received parenteral nutrition (PN) with either SMOFlipid 20% (study group) or a conventional lipid emulsion (Intralipid 20%, control group) for a minimum of 7 up to 14 days. Lipid supply started at 0.5 g · kg body weight(-1) · day(-1) on day 1 and increased stepwise (by 0.5 g) up to 2 g · kg body weight(-1) · day(-1) on days 4 to 14. Safety and efficacy parameters were assessed on days 0, 8, and 15 if PN was continued. Adverse events, serum triglycerides, vital signs, local tolerance, and clinical laboratory did not show noticeable group differences, confirming the safety of study treatment. At study end, γ-glutamyl transferase was lower in the study versus the control group (107.8 ± 81.7 vs 188.8 ± 176.7 IU/L, P < 0.05). The relative increase in body weight (day 8 vs baseline) was 5.0% ± 6.5% versus 5.1% ± 6.6% (study vs control, not significant). In the study group, an increase in n-3 FA in red blood cell phospholipids and n-3:n-6 FA ratio was observed. Plasma α-tocopherol (study vs control) was increased versus baseline on day 8 (26.35 ± 10.03 vs 3.67 ± 8.06 μmol/L, P < 0.05) and at study termination (26.97 ± 18.32 vs 8.73 ± 11.41 μmol/L, P < 0.05). Parenteral infusion of SMOFlipid was safe and well tolerated and showed a potential beneficial influence on cholestasis, n-3 FA, and vitamin E status in premature infants requiring PN.

  11. Curcuma oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation.

    PubMed

    Singh, Vishal; Rana, Minakshi; Jain, Manish; Singh, Niharika; Naqvi, Arshi; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-14

    In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1β and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-β (TGF-β) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the expression of TGF-β in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1β and increased the levels of TGF-β. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.

  12. Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies.

    PubMed

    Ribeiro, Lígia N M; Breitkreitz, Márcia C; Guilherme, Viviane A; da Silva, Gustavo H R; Couto, Verônica M; Castro, Simone R; de Paula, Bárbara O; Machado, Daisy; de Paula, Eneida

    2017-08-30

    In a nanotechnological approach we have investigated the use of natural lipids in the preparation of nanostructured lipid carriers (NLC). Three different NLC composed of copaiba oil and beeswax, sweet almond oil and shea butter, and sesame oil and cocoa butter as structural matrices were optimized using factorial analysis; Pluronic® 68 and lidocaine (LDC) were used as the colloidal stabilizer and model encapsulated drug, respectively. The optimal formulations were characterized by different techniques (IR-ATR, DSC, and TEM), and their safety and efficacy were also tested. These nanocarriers were able to upload high amounts of the anesthetic with a sustained in vitro release profile for 24h. The physicochemical stability in terms of size (nm), PDI, zeta potential (mV), pH, nanoparticle concentration (particles/mL), and visual inspection was followed during 12months of storage at 25°C. The formulations exhibited excellent structural properties and stability. They proved to be nontoxic in vitro (cell viability tests with Balb/c 3T3 fibroblasts) and significantly improved the in vivo effects of LDC, over the heart rate of zebra fish larvae and in the blockage of sciatic nerve in mice. The results from this study support that the proper combination of natural excipients is promising in DDS, taking advantage of the biocompatibility, low cost, and diversity of lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Contribution of galloylation and polymerization to the antioxidant activity of polyphenols in fish lipid systems.

    PubMed

    Iglesias, Jacobo; Pazos, Manuel; Lois, Salomé; Medina, Isabel

    2010-06-23

    Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.

  14. Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids.

    PubMed

    Louie, Sharon M; Roberts, Lindsay S; Mulvihill, Melinda M; Luo, Kunxin; Nomura, Daniel K

    2013-10-01

    De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer. © 2013.

  15. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease.

    PubMed

    Vijayakumar, Maniyal; Vasudevan, D M; Sundaram, K R; Krishnan, Sajitha; Vaidyanathan, Kannan; Nandakumar, Sandya; Chandrasekhar, Rajiv; Mathew, Navin

    2016-01-01

    Coronary artery disease (CAD) and its pathological atherosclerotic process are closely related to lipids. Lipids levels are in turn influenced by dietary oils and fats. Saturated fatty acids increase the risk for atherosclerosis by increasing the cholesterol level. This study was conducted to investigate the impact of cooking oil media (coconut oil and sunflower oil) on lipid profile, antioxidant mechanism, and endothelial function in patients with established CAD. In a single center randomized study in India, patients with stable CAD on standard medical care were assigned to receive coconut oil (Group I) or sunflower oil (Group II) as cooking media for 2 years. Anthropometric measurements, serum, lipids, Lipoprotein a, apo B/A-1 ratio, antioxidants, flow-mediated vasodilation, and cardiovascular events were assessed at 3 months, 6 months, 1 year, and 2 years. Hundred patients in each arm completed 2 years with 98% follow-up. There was no statistically significant difference in the anthropometric, biochemical, vascular function, and in cardiovascular events after 2 years. Coconut oil even though rich in saturated fatty acids in comparison to sunflower oil when used as cooking oil media over a period of 2 years did not change the lipid-related cardiovascular risk factors and events in those receiving standard medical care. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  17. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad; Akhtar, Saeed; Sohaib, Muhammad

    2013-11-04

    Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010-11 & 2011-12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in

  18. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  19. Detailed Distribution of Lipids in Greenshell™ Mussel (Perna canaliculus)

    PubMed Central

    Miller, Matthew R.; Pearce, Luke; Bettjeman, Bodhi I.

    2014-01-01

    Greenshell™ mussels (GSM–Perna canaliculus) are a source of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). Farmed GSM are considered to be a sustainable source of LC-PUFA as they require no dietary inputs, gaining all of their oil by filter-feeding microorganisms from sea water. GSM oil is a high-value product, with a value as much as 1000 times that of fish oils. GSM oil has important health benefits, for example, anti-inflammatory activity. It also contains several minor lipid components that are not present in most fish oil products, and that have their own beneficial effects on human health. We have shown the lipid content of the female GSM (1.9 g/100 g ww) was significantly greater than that of the male (1.4 g/100 g ww). Compared with male GSM, female GSM contained more n-3 LC-PUFA, and stored a greater proportion of total lipid in the gonad and mantle. The higher lipid content in the female than the male GSM is most likely related to gamete production. This information will be useful to optimize extraction of oils from GSM, a local and sustainable source of n-3 LC-PUFA. PMID:24732016

  20. How relevant are assembled equilibrium samples in understanding structure formation during lipid digestion?

    PubMed

    Phan, Stephanie; Salentinig, Stefan; Hawley, Adrian; Boyd, Ben J

    2015-10-01

    Lipid-based formulations are gaining interest for use as drug delivery systems for poorly water-soluble drug compounds. During digestion, the lipolysis products self-assemble with endogenous surfactants in the gastrointestinal tract to form colloidal structures, enabling enhanced drug solubilisation. Although earlier studies in the literature focus on assembled equilibrium systems, little is known about structure formation under dynamic lipolysis conditions. The purpose of this study was to investigate the likely colloidal structure formation in the small intestine after the ingestion of lipids, under equilibrium and dynamic conditions. The structural aspects were studied using small angle X-ray scattering and dynamic light scattering, and were found to depend on lipid composition, lipid chain length, prandial state and emulsification. Incorporation of phospholipids and lipolysis products into bile salt micelles resulted in swelling of the structure. At insufficient bile salt concentrations, a co-existing lamellar phase was observed, due to a reduction in the solubilisation capacity for lipolysis products. Emulsification accelerated the rate of lipolysis and structure formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G

    2014-06-01

    The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  3. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  4. Studies on the regulation of lipid biosynthesis in plants: application of control analysis to soybean.

    PubMed

    Guschina, Irina A; Everard, John D; Kinney, Anthony J; Quant, Patti A; Harwood, John L

    2014-06-01

    Although there is much knowledge of the enzymology (and genes coding the proteins) of lipid biosynthesis in higher plants, relatively little attention has been paid to regulation. We have demonstrated the important role for cholinephosphate cytidylyltransferase in the biosynthesis of the major extra-plastidic membrane lipid, phosphatidylcholine. We followed this work by applying control analysis to light-induced fatty acid synthesis. This was the first such application to lipid synthesis in any organism. The data showed that acetyl-CoA carboxylase was very important, exerting about half of the total control. We then applied metabolic control analysis to lipid accumulation in important oil crops - oilpalm, olive, and rapeseed. Recent data with soybean show that the block of fatty acid biosynthesis reactions exerts somewhat more control (63%) than lipid assembly although both are clearly very important. These results suggest that gene stacks, targeting both parts of the overall lipid synthesis pathway will be needed to increase significantly oil yields in soybean. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Review: Lipid Formulations for the Adult and Pediatric Patient: Understanding the Differences

    PubMed Central

    Anez-Bustillos, Lorenzo; Dao, Duy T.; Baker, Meredith A.; Fell, Gillian L.; Puder, Mark; Gura, Kathleen M.

    2017-01-01

    Intravenous lipid emulsions (IVLE) provide essential fatty acids (FA) and are a dense source of energy in parenteral nutrition (PN). Parenterally administered lipid was introduced in the 17th century but plagued with side effects. The formulation of lipid emulsions later on made it a relatively safe component for administration to patients. Many ingredients are common to all IVLE, yet the oil source(s) and its (their) percentage(s) makes them different from each other. The oil used dictates how IVLE are metabolized and cleared from the body. The FA present in each type of oil provide unique beneficial and detrimental properties. This review provides an overview of IVLE and discuss factors that would help clinicians choose the optimal product for their patients. Elucidating the characteristics of each oil source over time has resulted in an evolution of the different formulations currently available. Emulsions have gone from being solely made with soybean oil, to being combined with medium-chain triglycerides (i.e., coconut oil), olive oil, and more recently, fish oil. Unfortunately, the lipid, among other constituents in PN formulations, has been associated with the development of liver disease. Lipid-sparing or lipid-reduction strategies have therefore been proposed to avoid these complications. The ideal IVLE would reverse or prevent essential FA deficiency without leading to complications, while simultaneously providing energy to facilitate normal growth and development. Modifications in their ingredients, formulation, and dosing have made IVLE a relatively safe component alone or when added to PN formulations. The ideal emulsion, however, has yet to be developed. PMID:27533942

  6. Parenteral lipid administration to very-low-birth-weight infants--early introduction of lipids and use of new lipid emulsions: a systematic review and meta-analysis.

    PubMed

    Vlaardingerbroek, Hester; Veldhorst, Margriet A B; Spronk, Sandra; van den Akker, Chris H P; van Goudoever, Johannes B

    2012-08-01

    The use of intravenous lipid emulsions in preterm infants has been limited by concerns regarding impaired lipid tolerance. As a result, the time of initiation of parenteral lipid infusion to very-low-birth-weight (VLBW) infants varies widely among different neonatal intensive care units. However, lipids provide energy for protein synthesis and supply essential fatty acids that are necessary for central nervous system development. The objective was to summarize the effects of initiation of lipids within the first 2 d of life and the effects of different lipid compositions on growth and morbidities in VLBW infants. A systematic review and meta-analysis of publications identified in a search of PubMed, EMBASE, and Cochrane databases was undertaken. Randomized controlled studies were eligible if information on growth was available. The search yielded 14 studies. No differences were observed in growth or morbidity with early lipid initiation. We found a weak favorable association of non-purely soybean-based emulsions with the incidence of sepsis (RR: 0.75; 95% CI: 0.56, 1.00). The initiation of lipids within the first 2 d of life in VLBW infants appears to be safe and well tolerated; however, beneficial effects on growth could not be shown for this treatment nor for the type of lipid emulsion. Emulsions that are not purely soybean oil-based might be associated with a lower incidence of sepsis. Large-scale randomized controlled trials in preterm infants are warranted to determine whether early initiation of lipids and lipid emulsions that are not purely soybean oil-based results in improved long-term outcomes.

  7. Quality and stability of edible oils enriched with hydrophilic antioxidants from the olive tree: the role of enrichment extracts and lipid composition.

    PubMed

    Sánchez de Medina, Verónica; Priego-Capote, Feliciano; Jiménez-Ot, Carlos; Luque de Castro, María Dolores

    2011-11-09

    Phenolic extracts from olive tree leaves and olive pomace were used to enrich refined oils (namely, maize, soy, high-oleic sunflower, sunflower, olive, and rapeseed oils) at two concentration levels (200 and 400 μg/mL, expressed as gallic acid). The concentration of characteristic olive phenols in these extracts together with the lipidic composition of the oils to be enriched influenced the mass transfer of the target antioxidants, which conferred additional stability and quality parameters to the oils as a result. In general, all of the oils experienced either a noticeable or dramatic improvement of their quality-stability parameters (e.g., peroxide index and Rancimat) as compared with their nonenriched counterparts. The enriched oils were also compared with extra virgin olive oil with a natural content in phenols of 400 μg/mL. The healthy properties of these phenols and the scarce or nil prices of the raw materials used can convert oils in supplemented foods or even nutraceuticals.

  8. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lipid chain geometry of C14 glycerol-based lipids: effect on lipoplex structure and transfection.

    PubMed

    Kudsiova, Laila; Ho, Jimmy; Fridrich, Barbara; Harvey, Richard; Keppler, Melanie; Ng, Tony; Hart, Stephen L; Tabor, Alethea B; Hailes, Helen C; Lawrence, M Jayne

    2011-02-01

    The effects have been determined of a systematic alteration of the alkyl chain geometry of a C14 analogue of DOTMA on the detailed molecular architecture of the resulting cationic vesicles formed both in the absence and presence of 50 mol% DOPE, and of the lipoplexes prepared from these vesicles using either calf thymus or plasmid DNA. The C14 DOTMA analogues studied involved cis- or trans-double bonds at positions Δ9 or Δ11, and a compound (ALK) featuring an alkyne at position C9. For all of these analogues, examination by light scattering and neutron scattering, zeta potential measurement, and negative staining electron microscopy showed that there were no significant differences in the structures or charges of the vesicles or of the resulting lipoplexes, regardless of the nature of the DNA incorporated. Differences were observed, however, between the complexes formed by the various lipids when examining the extent of complexation and release by gel electrophoresis, where the E-lipids appeared to complex the DNA more efficiently than all other lipids tested. Moreover, the lipoplexes prepared from the E-lipids were the most effective in transfection of MDA-MB-231 breast cancer cells. As indicated through confocal microscopy studies, the E-lipids also showed a higher internalisation capacity and a more diffuse cellular distribution, possibly indicating a greater degree of endosomal escape and/or nuclear import. These observations suggest that the extent of complexation is the most important factor in determining the transfection efficiency of the complexes tested. At present it is unclear why the E-lipids were more effective at complexing DNA, although it is thought that the effective area per molecule occupied by the cationic lipid and DOPE head groups, and therefore the density of positive charges on the surface of the bilayer most closely matches the negative charge density of the DNA molecule. From a consideration of the geometry of the cationic lipids it is

  10. Interactive effects of dietary palm oil concentration and water temperature on lipid digestibility in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Ng, Wing-Keong; Campbell, Patrick J; Dick, James R; Bell, J Gordon

    2003-10-01

    An experiment was conducted to evaluate the interactive effects of dietary crude palm oil (CPO) concentration and water temperature on lipid and FA digestibility in rainbow trout. Four isolipidic diets with 0, 5, 10, or 20% (w/w) CPO, at the expense of fish oil, were formulated and fed to groups of trout maintained at water temperatures of 7, 10, or 15 degrees C. The apparent digestibility (AD) of the FA, measured using yttrium oxide as an inert marker, decreased with increasing chain length and increased with increasing unsaturation within each temperature regimen irrespective of CPO level fed to the fish. PUFA of the n-3 series were preferentially absorbed compared to n-6 PUFA in all diet and temperature treatments. Except for a few minor FA, a significant (P < 0.05) interaction between diet and temperature effects on FA digestibility was found. Increasing dietary levels of CPO lead to significant reductions in the AD of saturates and, to a lesser extent, also of the other FA. Lowering water temperature reduced total saturated FA digestibility in trout regardless of CPO level. Based on the lipid class composition of trout feces, this reduction in AD of saturates was due in part to the increasing resistance of dietary TAG to digestion. Increasing CPO level and decreasing water temperature significantly increased TAG content in trout fecal lipids, with saturates constituting more than 60% of the FA composition. Total monoene and PUFA digestibilities were not significantly affected by water temperature in fish fed up to 10% CPO in their diet. The potential impact of reduced lipid and FA digestibility in cold-water fish fed diets supplemented with high levels of CPO on fish growth performance requires further research.

  11. Lipid monolayer structure and interactions in the presence of peptides and proteins

    NASA Astrophysics Data System (ADS)

    Freites, Juan Alfredo

    Structural aspects of two simple model systems, protein-lipid monolayer and peptide-lipid monolayer, were studied by experimental and computer simulation techniques. In both cases, both the choice of system and the approach employed to studying it, were motivated by specific biological problems. The interaction of annexin A1 with monolayers of dipalmitoylphosphatidylcholine (DPPC) was studied by fluorescence microscopy as a function of lipid monolayer phase and pH. It was shown that the annexin A1-DPPC interaction depends strongly on both the domain structure and phase behavior of the DPPC monolayer, and only weakly on the subphase pH. Annexin A1 was found to be line-active, adsorbing preferentially at phase boundaries. Also, annexin A1 was found to form networks in the presence of a domain structure in the lipid monolayer. Molecular dynamics simulations were carried out on a model system composed of a surfactant protein B peptide, SP-B1--25, and a monolayer of hexadecanoic acid. A detailed structural characterization was performed as a function of the lipid monolayer specic area. It was found that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the pure hexadecanoic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure, and effectively constitutes a unique disordered lipid-peptide monolayer phase. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic residues of the peptide with the anionic headgroups of the lipids, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions of the system. A direct comparison between molecular dynamics simulations and laboratory experiments was performed for hexadecanoic acid monolayer systems. In order to simulate specific points on the

  12. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis

    PubMed Central

    2014-01-01

    Background Sesame, Sesamum indicum L., is considered the queen of oilseeds for its high oil content and quality, and is grown widely in tropical and subtropical areas as an important source of oil and protein. However, the molecular biology of sesame is largely unexplored. Results Here, we report a high-quality genome sequence of sesame assembled de novo with a contig N50 of 52.2 kb and a scaffold N50 of 2.1 Mb, containing an estimated 27,148 genes. The results reveal novel, independent whole genome duplication and the absence of the Toll/interleukin-1 receptor domain in resistance genes. Candidate genes and oil biosynthetic pathways contributing to high oil content were discovered by comparative genomic and transcriptomic analyses. These revealed the expansion of type 1 lipid transfer genes by tandem duplication, the contraction of lipid degradation genes, and the differential expression of essential genes in the triacylglycerol biosynthesis pathway, particularly in the early stage of seed development. Resequencing data in 29 sesame accessions from 12 countries suggested that the high genetic diversity of lipid-related genes might be associated with the wide variation in oil content. Additionally, the results shed light on the pivotal stage of seed development, oil accumulation and potential key genes for sesamin production, an important pharmacological constituent of sesame. Conclusions As an important species from the order Lamiales and a high oil crop, the sesame genome will facilitate future research on the evolution of eudicots, as well as the study of lipid biosynthesis and potential genetic improvement of sesame. PMID:24576357

  13. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation.

    PubMed

    Tavárez, M A; Boler, D D; Bess, K N; Zhao, J; Yan, F; Dilger, A C; McKeith, F K; Killefer, J

    2011-04-01

    The objective of the present study was to evaluate the effect of antioxidant inclusion and oil quality on broiler performance, meat quality, shelf life, and tissue oxidative status. Ross 308 male broilers were allotted to a randomized complete block design in a 2 × 2 factorial arrangement. Factors consisted of antioxidant (ethoxyquin and propyl gallate) inclusion at 2 levels (0 or 135 mg/kg) and oil quality (fresh soybean oil, control diet peroxide value <1 mEq/kg, or oxidized soybean oil, diet peroxide value 7 mEq/kg). Each treatment included 12 pen replicates comprising 24 birds for a total of 1,152 birds on trial allotted to 48 pens. On the final day of the study, 1 bird from each pen was killed by cervical dislocation and used for determination of tissue oxidative status. Another 5 broilers from each pen were processed at a commercial slaughtering facility. Immediately after processing, carcasses were transported to the University of Illinois Meat Science Laboratory (Urbana) for further analysis. With the exception of 2 responses (liver vitamin A and serum vitamin A), no interactions were found between antioxidant inclusion and oil quality. Body weight and weight gain were increased by dietary antioxidant inclusion (P < 0.001) and fresh oil (P < 0.001). Feed intake was increased in broilers fed the antioxidant (P = 0.047) and fresh oil (P = 0.062). Antioxidant inclusion had no effect on G:F (P = 0.18). Antioxidant supplementation had no effect on carcass weight (P = 0.202), dressing percentage (P = 0.906), breast yield (P = 0.708), or breast ultimate pH (P = 0.625) and had minimal effect on breast color. Antioxidant supplementation (P = 0.057) reduced breast thiobarbituric acid reactive substances after 7 d of display. Fresh oil decreased liver thiobarbituric acid reactive substances, whereas antioxidant inclusion increased serum and liver vitamin A and E concentration. The presence of an antioxidant in the feed protects lipids from further oxidizing

  14. Cyclen-based double-tailed lipids for DNA delivery: Synthesis and the effect of linking group structures.

    PubMed

    Zhang, Yi-Mei; Chang, De-Chun; Zhang, Ji; Liu, Yan-Hong; Yu, Xiao-Qi

    2015-09-01

    The gene transfection efficiency (TE) of cationic lipids is largely influenced by the lipid structure. Six novel 1, 4, 7, 10-tetraazacyclododecane (cyclen)-based cationic lipids L1-L6, which contain double oleyl as hydrophobic tails, were designed and synthesized. The difference between these lipids is their diverse backbone. Liposomes prepared by the lipids and DOPE showed good DNA affinity, and full DNA condensation could be achieved at N/P of 4 to form lipoplexes with proper size and zeta-potentials for gene transfection. Structure-activity relationship of these lipids as non-viral gene delivery vectors was investigated. It was found that minor backbone structural variations, including linking group and the structural symmetry would affect the TE. The diethylenetriamine derived lipid L4 containing amide linking bonds gave the best TE, which was several times higher than commercially available transfection reagent lipofectamine 2000. Besides, these lipids exhibited low cytotoxicity, suggesting their good biocompatibility. Results reveal that such type of cationic lipids might be promising non-viral gene vectors, and also afford us clues for the design of novel vectors with higher TE and biocompatibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation.

    PubMed

    Delgado-Pando, Gonzalo; Cofrades, Susana; Ruiz-Capillas, Claudia; Solas, Maria Teresa; Triki, Mehdi; Jiménez-Colmenero, Francisco

    2011-09-01

    Oil (healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI), and microbial transglutaminase (MTG)) were used as pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation of frankfurters were analyzed and found to be affected by the type of oil-in-water emulsion and by chilling storage (2° C, 41 days). Although the lipid oxidation levels attained were low, replacement of animal fat by healthier oil combinations in frankfurter formulation did promote a slight increase in lipid oxidation. Residual nitrite was affected (P < 0.05) by formulation and storage. Only 51-61% of the added nitrite was detectable in the product after processing and 17-46% at the end of storage. The microbial population was low in all formulations during chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in level to all samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of feeding lambs with a tanniferous shrub (rockrose) and a vegetable oil blend on fatty acid composition of meat lipids.

    PubMed

    Francisco, A; Alves, S P; Portugal, P V; Pires, V M R; Dentinho, M T; Alfaia, C M; Jerónimo, E; Prates, J A M; Santos-Silva, J; Bessa, R J B

    2016-12-01

    The effects of feeding Cistus ladanifer (Cistus) and a blend of soybean and linseed oil (1 : 2 vol/vol) on fatty acid (FA) composition of lamb meat lipids and messenger RNA (mRNA) expression of desaturase enzymes was assessed. In total, 54 male lambs were randomly assigned to 18 pens and to nine diets, resulting from the combination of three inclusion levels of Cistus (50 v. 100 v. 200 g/kg of dry matter (DM)) and three inclusion levels of oil (0 v. 40 v. 80 g/kg of DM). The forage-to-concentrate ratio of the diets was 1 : 1. Longissimus muscle lipids were extracted, fractionated into neutral (NL) and polar lipid (PL) and FA methyl esters obtained and analyzed by GLC. The expression of genes encoding Δ5, Δ6 and Δ9 desaturases (fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and stearoyl CoA desaturase (SCD)) was determined. Intramuscular fat, NL and PL contents were not affected by oil or Cistus. Oil supplementation reduced (P<0.05) 16:0, c9-16:1, 17:0, c9-17:1 and c9-18:1 FA and increased (P<0.05) 18:2n-6, 18:3n-3 and the majority of biohydrogenation intermediates in NL. Cistus alone had few effects on FA of NL but interacted with oil (P<0.05) by increasing t10-18:1,t10,t12-18:2,t10,c12-18:2 and t7,c9-18:2. The t10-/t11-18:1 ratio increased with both Cistus and oil levels. The c9, t11-18:2 did not increase (P<0.05) with both oil and Cistus dietary inclusion. Oil reduced c9-16:1, 17:0, c9-17:1,c9-18:1, 20:4n-6, 22:4n-6 and 20:3n-9 proportions in PL, and increased 18:2n-6, 18:3n-3, 20:3n-3 and of most of the biohydrogenation intermediates. The Cistus had only minor effects on FA composition of PL. Cistus resulted in a reduction (P<0.05) of 20:5n-3 and 22:6n-3 in the meat PL. The expression level of SCD mRNA increased (P=0.015) with Cistus level, although a linear relationship with condensed tannins intake (P=0.11) could not be established. FADS1 mRNA expressed levels increased linearly (P=0.019) with condensed tannins intake. In summary, the

  17. Effects of Different Lipophilized Ferulate Esters in Fish Oil-Enriched Milk: Partitioning, Interaction, Protein, and Lipid Oxidation.

    PubMed

    Qiu, Xujian; Jacobsen, Charlotte; Villeneuve, Pierre; Durand, Erwann; Sørensen, Ann-Dorit Moltke

    2017-11-01

    Antioxidant effects of ferulic acid and lipophilized ferulate esters were investigated in fish oil-enriched milk. Methyl ferulate (C1) and ethyl ferulate (C2) more efficiently prevented lipid oxidation than dodecyl ferulate (C12) did, followed by ferulic acid (C0). The combination of C1 or C2 with C12 could have a "synergistic" effect indicated by peroxide value, hexanal, and 1-penten-3-ol analysis results. These antioxidants also showed protein oxidation inhibition effects. The most effective antioxidants (C1 and C2) had the highest concentration in the precipitate phase but the lowest concentration in the aqueous phase, which was the opposite of the partitioning of C0. C12 had the highest concentration in the oil and emulsion phase. In particular, the interaction between ferulates esterified with short and medium alkyl chain lengths could lead to their "synergistic" effects in fish oil-enriched milk, which could be caused by the change in their partitioning or localization at the interface.

  18. DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures.

    PubMed Central

    May, S; Ben-Shaul, A

    1997-01-01

    A molecular level theory is presented for the thermodynamic stability of two (similar) types of structural complexes formed by (either single strand or supercoiled) DNA and cationic liposomes, both involving a monolayer-coated DNA as the central structural unit. In the "spaghetti" complex the central unit is surrounded by another, oppositely curved, monolayer, thus forming a bilayer mantle. The "honeycomb" complex is a bundle of hexagonally packed DNA-monolayer units. The formation free energy of these complexes, starting from a planar cationic/neutral lipid bilayer and bare DNA, is expressed as a sum of electrostatic, bending, mixing, and (for the honeycomb) chain frustration contributions. The electrostatic free energy is calculated using the Poisson-Boltzmann equation. The bending energy of the mixed lipid layers is treated in the quadratic curvature approximation with composition-dependent bending rigidity and spontaneous curvature. Ideal lipid mixing is assumed within each lipid monolayer. We found that the most stable monolayer-coated DNA units are formed when the charged/neutral lipid composition corresponds (nearly) to charge neutralization; the optimal monolayer radius corresponds to close DNA-monolayer contact. These conclusions are also valid for the honeycomb complex, as the chain frustration energy is found to be negligible. Typically, the stabilization energies for these structures are on the order of 1 k(B)T/A of DNA length, reflecting mainly the balance between the electrostatic and bending energies. The spaghetti complexes are less stable due to the additional bending energy of the external monolayer. A thermodynamic analysis is presented for calculating the equilibrium lipid compositions when the complexes coexist with excess bilayer. PMID:9370436

  19. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils.

    PubMed

    Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E

    2017-08-01

    The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is

  20. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits.

    PubMed

    Mason, R Preston; Sherratt, Samuel C R

    2017-01-29

    Widely available fish oil dietary supplements (DS) may contain fats and oxidized lipids in addition to the beneficial omega-3 fatty acids (OM3FAs) for which they are purchased. Little is known about the potential biological effects of these oxidized lipids. The objective of this study was to assess the fatty acid content, oxidation products, and biological effects of leading fish oil DS available in the United States. Three top-selling fish oil DS in the US were included in this analysis. Fatty acid composition was measured using gas chromatography. Lipid oxidation (primary and secondary products) was measured by spectroscopy in both DS and a prescription OM3FA product. OM3FAs were also isolated and concentrated from DS and were tested for the ability to inhibit copper-induced oxidation of human small dense low-density lipoprotein particles (sdLDL) in vitro. Fish oil DS were found to contain more than 30 different fatty acids, including 10 to 14 different saturated species comprising up to 36% of the total fatty acid content. Levels of OM3FAs also varied widely among DS (33%-79%). Primary (peroxide), secondary (anisidine), and total oxidation products exceeded maximum levels established by international standards of quality in the DS but not the prescription OM3FA product. Oxidation of sdLDL was inhibited by >95% (P < 0.001) with non-oxidized forms of OM3FA but not with OM3FAs isolated from DS, which were a mixture of oxidized and non-oxidized OM3FAs. These data indicate that levels of saturated fat and oxidized OM3FAs found in common DS may interfere with their intended/potential biological benefits. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The effect of β-sitosterol on the metabolism of cholesterol and lipids in rats on a diet containing coconut oil

    PubMed Central

    Gerson, T.; Shorland, F. B.; Dunckley, G. G.

    1965-01-01

    1. Intraperitoneal injection of β-sitosterol (5mg./rat/day for 25 days) into 1-year-old male Wistar rats fed on a low-fat diet supplemented with 10% of coconut oil resulted in a lowering of cholesterol and lipid concentrations in the tissues. 2. β-Sitosterol increased the rate of biosynthesis of cholesterol and lipids in the tissues, but to an even greater extent enhanced their oxidative degradation. 3. The present results are similar to those previously obtained on a low-fat diet, indicating that the presence of fat had no marked effect on the action of β-sitosterol. PMID:5891218

  2. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  3. Anti-rancidity effect of essential oils, application in the lipid stability of cooked turkey meat patties and potential implications for health.

    PubMed

    Loizzo, Monica R; Tundis, Rosa; Menichini, Francesco; Duthie, Garry

    2015-02-01

    Twenty-three commercial essential oils were tested for their anti-rancidity effect and potential implications to prolong the induction time of corn oil and extend the shelf life of cooked turkey patties. Moreover, the potential health benefit was investigated through DPPH, ABTS, β-carotene bleaching, FRAP, and α-amylase inhibitory assays. Essential oils' composition was investigated by GC-MS. Cumin, thyme, clove, and cinnamon oils improved oxidative stability and increased the induction time of the corn oil 1.5-3 fold. Clove and cinnamon oils were particularly effective in delaying lipid oxidation of cooked turkey patties (time of induction 11.04 and 9.43 h) compared with the plain burger (5.04 h). Both oils are also characterized by a potent radical scavenging activity in ABTS test (IC(50) values of 1.43 and 2.05 μg/ml for cinnamon and clove, respectively). In the α-amylase inhibitory assay, cumin and grape fruits were the most potent with IC(50) values of 21.88 and 23.95 μg/ml, respectively.

  4. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  5. Steroidal compounds in commercial parenteral lipid emulsions.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  6. Postprandial lipid responses of butter blend containing fish oil in a single-meal study in humans.

    PubMed

    Overgaard, Julie; Porsgaard, Trine; Guo, Zheng; Lauritzen, Lotte; Mu, Huiling

    2008-10-01

    The postprandial effects of a butter product containing fish oil were investigated in a single-meal, randomized crossover study with a commercial butter product as the control. Twelve healthy males consumed two test meals with (13)C-labelled cholesterol (45 mg) and either an interesterified butter blend with fish oil (352 mg n-3 long-chain PUFA (LCPUFA)) or the commercial butter blend. Blood samples were collected after the meals and in the fasting condition on the test day and the following morning, and were analysed for cholesterol absorption, plasma lipid profile and fatty acid composition. No significant difference in the postprandial plasma fatty acid composition was observed between the groups, neither difference in cholesterol absorption, plasma cholesterol or the cholesterol contents of plasma lipoproteins. The incorporation of fish oil in the butter resulted in a significant lower concentration of triacylglycerols in the plasma 2 h after the meal in comparison with the commercial butter blend (p = 0.02); there was, however, no significant difference 24 h after the meal. In conclusion, fish oil-enriched butter blend provides a source to increase the intake of n-3 LCPUFA in the population, but has no acute effect on cholesterol absorption and plasma cholesterol concentration in human.

  7. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.

    PubMed

    Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F

    2017-07-19

    The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.

  8. Small particle size lipid emulsions, satiety and energy intake in lean men.

    PubMed

    Chan, Y K; Budgett, S C; MacGibbon, A K; Quek, S Y; Kindleysides, S; Poppitt, S D

    2017-02-01

    Lipid emulsions have been proposed to suppress hunger and food intake. Whilst there is no consensus on optimal structural properties or mechanism of action, small particle size (small-PS) stable emulsions may have greatest efficacy. Fabuless®, a commercial lipid emulsion reported in some studies to decrease energy intake (EI), is a small-PS, 'hard' fat emulsion comprising highly saturated palm oil base (PS, 82nm). To determine whether small-PS dairy lipid emulsions can enhance satiety, firstly, we investigated 2 'soft' fat dairy emulsions generated using dairy and soy emulsifying agents (PS, 114nm and 121nm) and a non-emulsified dairy control. Secondly, we investigated a small-PS palmolein based 'hard' fat emulsion (fractionated palm oil, PS, 104nm) and non-emulsified control. This was a 6 arm, randomized, cross-over study in 18 lean men, with test lipids delivered in a breakfast meal: (i) Fabuless® emulsion (F EM ); (ii) dairy emulsion with dairy emulsifier (DE DE ); (iii) dairy emulsion with soy lecithin emulsifier (DE SE ); (iv) dairy control (DC ON ); (v) palmolein emulsion with dairy emulsifier (PE DE ); (vi) palmolein control (PC ON ). Participants rated postprandial appetite sensations using visual analogue scales (VAS), and ad libitum energy intake (EI) was measured at a lunch meal 3.5h later. Dairy lipid emulsions did not significantly alter satiety ratings or change EI relative to dairy control (DE DE , 4035kJ; DE SE , 3904kJ; DC ON , 3985kJ; P>0.05) nor did palm oil based emulsion relative to non-emulsified control (PE DE, 3902 kJ; PC ON, 3973kJ; P>0.05). There was no evidence that small-PS dairy lipid emulsions or commercial Fabuless altered short-term appetite or food intake in lean adults. Copyright © 2016. Published by Elsevier Inc.

  9. Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources.

    PubMed

    Ruíz-Gutiérrez, V; Muriana, F J; Guerrero, A; Cert, A M; Villar, J

    1996-12-01

    To study the effect of a diet rich in mono-unsaturated fatty acids (MUFA), from high-oleic sunflower oil (HOSO) and olive oil, on plasma lipids, erythrocyte membrane lipids (including fatty acid composition) and blood pressure of hypertensive (normocholesterolaemic or hypercholesterolaemic) women. There were 16 participants who were hypertensive women aged 56.2 +/- 5.4 years. The participants ate a diet enriched with HOSO or olive oil for two 4-week periods with a 4-week washout period before starting the second type of MUFA diet. At entry and during study of each diet, plasma lipids and apolipoproteins were measured by conventional enzymatic methods. Erythrocyte membrane lipid and fatty acid compositions were analysed by means of the latroscan thin-layer chromatography/flame ionization detection technique and by gas chromatography, respectively. Blood pressure was also measured. The statistical analysis was conducted by using Student's two-tailed paired t-test. In both groups of hypertensive patients, there was a significant increase in plasma high-density lipoprotein (HDL) cholesterol concentration after the HOSO or olive oil diets, with regard to baseline. Additionally, a significant decrease in plasma HDL2 cholesterol concentration and an increase in plasma HDL3 cholesterol concentration were evident. The membrane free-cholesterol concentration increased significantly and the phospholipid concentration decreased significantly in erythrocytes after the olive oil diet, though both MUFA diets produced a significant decrease in the concentration of membrane esterified cholesterol. Therefore, the molar ratio of cholesterol to phospholipids was raised significantly in the erythrocyte membrane of hypertensive women after the dietary olive oil, but not after the HOSO diet. In the hypertensive and normo-cholesterolaemic group the HOSO diet significantly increased the content in the erythrocyte membrane of oleic, eicosenoic, arachidonic and docosapentaenoic acids

  10. Intravenous lipids in preterm infants: impact on laboratory and clinical outcomes and long-term consequences.

    PubMed

    Vlaardingerbroek, Hester; van Goudoever, Johannes B

    2015-01-01

    Postnatal growth failure is still one of the most commonly observed morbidities in preterm infants. Intolerance of enteral nutrition is a common problem in these infants and in neonates with surgical conditions. Therefore, adequate parenteral nutrition is crucial to support organ development, including that of the brain. Short-term studies on the early introduction of parenteral lipids have demonstrated that early lipid administration seems safe and well tolerated and prevents essential fatty acid deficiency. Further well-designed and adequately powered studies are necessary to determine the optimal dose of lipid infusion and the long-term effects on morbidity, growth, and neurodevelopment. Administration of a pure soybean oil emulsion might result in excess formation of proinflammatory eicosanoids and peroxidation, and their use reduces the availability of the long-chain polyunsaturated fatty acids necessary for central nervous system development and immune function. Alternatives to the use of pure soybean oils include emulsions with partial replacement of soybean oil with medium-chain triglycerides, olive oil, and/or fish oil. These newer lipid emulsions offer many theoretical advantages. Future large-scale randomized controlled trials in premature infants should demonstrate whether these newer lipid emulsions are truly safe and result in improved short- and long-term outcomes. It seems safe to start lipid emulsions from birth onward at a rate of 2 g lipids/kg/day (based on short-term results only). Mixed lipid emulsions, including those containing fish oil, seem to reduce nosocomial infections in preterm infants and might reduce bile acid accumulation. Liver damage may be reduced by decreasing or removing lipids from parenteral nutrition or may be reduced by using fish oil-containing lipid emulsions containing high levels of vitamin E. © 2015 S. Karger AG, Basel.

  11. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  12. Xenon and Other Volatile Anesthetics Change Domain Structure in Model Lipid Raft Membranes

    PubMed Central

    Weinrich, Michael; Worcester, David L.

    2014-01-01

    Inhalation anesthetics have been in clinical use for over 160 years, but the molecular mechanisms of action continue to be investigated. Direct interactions with ion channels received much attention after it was found that anesthetics do not change the structure of homogeneous model membranes. However, it was recently found that halothane, a prototypical anesthetic, changes domain structure of a binary lipid membrane. The noble gas xenon is an excellent anesthetic and provides a pivotal test of the generality of this finding, extended to ternary lipid raft mixtures. We report that xenon and conventional anesthetics change the domain equilibrium in two canonical ternary lipid raft mixtures. These findings demonstrate a membrane-mediated mechanism whereby inhalation anesthetics can affect the lipid environment of trans-membrane proteins. PMID:24299622

  13. Imaging lipid droplets in Arabidopsis mutants

    USDA-ARS?s Scientific Manuscript database

    Confocal fluorescence microscopy was adapted for the imaging of neutral lipids in plant leaves with defects in normal lipid metabolism using two different fluorescent dyes. Disruptions in a gene locus, At4g24160, yielded Arabidopsis thaliana plants with a preponderance of oil bodies in their leaves ...

  14. Effects of fish oil on lipid profile and other metabolic outcomes in HIV-infected patients on antiretroviral therapy: a randomized placebo-controlled trial.

    PubMed

    Oliveira, Julicristie M; Rondó, Patrícia H C; Yudkin, John S; Souza, José M P; Pereira, Tatiane N; Catalani, Andrea W; Picone, Camila M; Segurado, Aluisio A C

    2014-02-01

    Although antiretroviral therapy has revolutionized the care of HIV-infected patients, it has been associated with metabolic abnormalities. Hence, this study was planned to investigate the effects of fish oil on lipid profile, insulin resistance, and body fat distribution in HIV-infected Brazilian patients on antiretroviral therapy, considering that marine omega-3 fatty acids seem to improve features of the metabolic syndrome. We conducted a randomized, parallel, placebo-controlled trial that assessed the effects of 3 g fish oil/day (540 mg of eicosapentaenoic acid plus 360 mg of docosahexaenoic acid) or 3 g soy oil/day (placebo) on 83 HIV-infected Brazilian men and non-pregnant women on antiretroviral therapy. No statistically significant relationships between fish oil supplementation and longitudinal changes in triglyceride (p = 0.335), low-density lipoprotein cholesterol (p = 0.078), high-density lipoprotein cholesterol (p = 0.383), total cholesterol (p = 0.072), apolipoprotein B (p = 0.522), apolipoprotein A1 (p = 0.420), low-density lipoprotein cholesterol/apolipoprotein B ratio (p = 0.107), homeostasis model assessment for insulin resistance index (p = 0.387), body mass index (p = 0.068), waist circumference (p = 0.128), and waist/hip ratio (p = 0.359) were observed. A low dose of fish oil did not alter lipid profile, insulin resistance, and body fat distribution in HIV-infected patients on antiretroviral therapy.

  15. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    NASA Astrophysics Data System (ADS)

    Woo, Sun Young; Lee, Hwankyu

    2016-03-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.

  16. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics.

    PubMed

    Woo, Sun Young; Lee, Hwankyu

    2016-03-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.

  17. Droplet-size distribution and stability of commercial injectable lipid emulsions containing fish oil.

    PubMed

    Gallegos, Críspulo; Valencia, Concepción; Partal, Pedro; Franco, José M; Maglio, Omay; Abrahamsson, Malin; Brito-de la Fuente, Edmundo

    2012-08-01

    The droplet size of commercial fish oil-containing injectable lipid emulsions, including conformance to United States Pharmacopeia (USP) standards on fat-globule size, was investigated. A total of 18 batches of three multichamber parenteral products containing the emulsion SMOFlipid as a component were analyzed. Samples from multiple lots of the products were evaluated to determine compliance with standards on the volume-weighted percentage of fat exceeding 0.05% (PFAT(5)) specified in USP chapter 729 to ensure the physical stability of i.v. lipid emulsions. The products were also analyzed to determine the effects of various storage times (3, 6, 9, and 12 months) and storage temperatures (25, 30, and 40 °C) on product stability. Larger-size lipid particles were quantified via single-particle optical sensing (SPOS). The emulsion's droplet-size distribution was determined via laser light scattering. SPOS and light-scattering analysis demonstrated mean PFAT(5) values well below USP-specified globule-size limits for all the tested products under all study conditions. In addition, emulsion aging at any storage temperature in the range studied did not result in a significant increase of PFAT(5) values, and mean droplet-size values did not change significantly during storage of up to 12 months at temperatures of 25-40 °C. PFAT(5) values were below the USP upper limits in SMOFlipid samples from multiple lots of three multichamber products after up to 12 months of storage at 25 or 30 °C or 6 months of storage at 40 °C.

  18. Comparative Transcriptome Analysis in the Hepatopancreas Tissue of Pacific White Shrimp Litopenaeus vannamei Fed Different Lipid Sources at Low Salinity

    PubMed Central

    Chen, Ke; Li, Erchao; Xu, Zhixin; Li, Tongyu; Xu, Chang; Qin, Jian G.; Chen, Liqiao

    2015-01-01

    RNA-seq was used to compare the transcriptomic response of hepatopancreas in juvenile Litopenaeus vannamei fed three diets with different lipid sources, including beef tallow (BT), fish oil (FO), and an equal combination of soybean oil + BT + linseed oil (SBL) for 8 weeks at 3 practical salinity unit (psu). A total of 9622 isogenes were annotated in 316 KEGG pathways and 39, 42 and 32 pathways significantly changed in the paired comparisons of FO vs SBL, BT vs SBL, or FO vs BT, respectively. The pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, fatty acid biosynthesis, fatty acid elongation, fatty acid degradation, and biosynthesis of unsaturated fatty acid were significantly changed in all paired comparisons between dietary lipid sources, and the pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism and glycerophospholipid metabolism significantly changed in the FO vs SBL and BT vs SBL comparisons. These pathways are associated with energy metabolism and cell membrane structure. The results indicate that lipids sources affect the adaptation of L. vannamei to low salinity by providing extra energy or specific fatty acids to change gill membrane structure and control iron balance. The results of this study lay a foundation for further understanding lipid or fatty acid metabolism in L. vannamei at low salinity. PMID:26670122

  19. Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor.

    PubMed

    Cheirsilp, Benjamas; Thawechai, Tipawan; Prasertsan, Poonsuk

    2017-10-01

    Oleaginous microalga Nannochloropsis sp. was immobilized in alginate gel beads and cultivated under optimal conditions that their growth and lipid production were comparable to those of free cells. The immobilized cells were used in phytoremediation of secondary effluent from palm oil mill and easily recovered by simple sieving method. The immobilized cells contributed to removal of nitrogen and phosphorus >90% and CO 2 mitigation >99%. They also gave the biomass and lipid production of 1.300±0.050g/L and 0.356±0.097g/L, respectively. The repeated-batch cultivation improved the biomass and lipid production by 2.66 folds and 1.41 folds, respectively. The scale up in 3L-fluidized bed photobioreactor gave the maximum biomass of 3.280±0.049g/L and lipid production of 0.362±0.010g/L. Fatty acid compositions of Nannochloropsis sp. lipids showed their suitability as biodiesel feedstocks. This system not only contributes as tertiary treatment of industrial effluent and CO 2 mitigation but also low-cost production of renewable energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizatullina, Albina K.; Moscow Institute of Physics and Technology; Finkina, Ekaterina I.

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeledmore » analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.« less

  1. The effects of diets containing standard soybean oil, soybean oil enhanced with conjugated linoleic acids, menhaden fish oil, or an algal docosahexaenoic acid supplement on juvenile channel catfish performance, hematology

    USDA-ARS?s Scientific Manuscript database

    Current commercial diets for Channel Catfish contain little or no marine fish oil to reduce diet cost and address environmental concerns. However, there is conflicting data on the effects of fish oil and other lipid sources in juvenile Channel Catfish, and some novel lipids have not been tested agai...

  2. Black Lipid Membranes at Bifaces

    PubMed Central

    Ti Tien, H.

    1968-01-01

    Black lipid membranes (BLM) less than 90 A thick have been shown to be the most realistic approach to biological membrane models. This paper describes the formation characteristics, optical properties, and thermodynamics of BLM at water/oil/water bifaces. In particular, the nature of the Plateau-Gibbs border which supports the black membrane is analyzed in some detail. The formation of BLM at the biface involves a spontaneous reduction of the free energy of the system. As long as the integrity of the membrane is maintained, the limiting structure of the BLM represents the lowest free energy configuration. PMID:19873618

  3. Fat emulsions based on structured lipids (1,3-specific triglycerides): an investigation of the in vivo fate.

    PubMed

    Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S

    1996-05-01

    Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.

  4. 3D confocal Raman imaging of oil-rich emulsion from enzyme-assisted aqueous extraction of extruded soybean powder.

    PubMed

    Wu, Longkun; Wang, Limin; Qi, Baokun; Zhang, Xiaonan; Chen, Fusheng; Li, Yang; Sui, Xiaonan; Jiang, Lianzhou

    2018-05-30

    The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing (EAEP) was a critical step to break the oil-rich emulsion structure in order to recover oil. Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method, the structure morphology of oil-rich emulsion was still unclear. The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3D confocal Raman imaging technique. With increasing the enzymatic hydrolysis duration from 1 to 3 h, the stability of oil-rich emulsion was decreased as visualized in the 3D confocal Raman images that the protein and oil were mixed together. The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions. The conformational transfer in protein indicated the formation of a compact structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    PubMed

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.

  6. Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship.

    PubMed

    Scott, Alison J; Oyler, Benjamin L; Goodlett, David R; Ernst, Robert K

    2017-11-01

    Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparative effects of short- and long-term feeding of safflower oil and perilla oil on lipid metabolism in rats.

    PubMed

    Ihara, M; Umekawa, H; Takahashi, T; Furuichi, Y

    1998-10-01

    Diets high in linoleic acid (20% safflower oil contained 77.3% linoleic acid, SO-diet) and alpha-linolenic acid (20% perilla oil contained 58.4% alpha-linolenic acid, PO-diet) were fed to rats for 3, 7, 20, and 50 days, and effects of the diets on lipid metabolism were compared. Levels of serum total cholesterol and phospholipids in the rats fed the PO-diet were markedly lower than those fed the SO-diet after the seventh day. In serum and hepatic phosphatidylcholine and phosphatidylethanolamine, the proportion of n-3 fatty acids showed a greater increase in the PO group than in the SO group in the respective feeding-term. At the third and seventh days after the commencement of feeding the experimental diets, expressions of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA were significantly higher in the SO group than those in the PO group, although the difference was not observed in the longer term. There were no significant differences in the LDL receptor mRNA levels between the two groups through the experimental term, except 3-days feeding. These results indicate that alpha-linolenic acid has a more potent serum cholesterol-lowering ability than linoleic acid both in short and long feeding-terms.

  8. Influence of medium-chain triglycerides on lipid metabolism in the chick.

    PubMed

    Leveille, G A; Pardini, R S; Tillotson, J A

    1967-11-01

    The effect of corn oil, coconut oil, and medium-chain triglyceride (MCT, a glyceride mixture consisting almost exclusively of fatty acids of 8 and 10 carbons in length) ingestion on lipid metabolism was studied in chicks. In chicks fed cholesterol-free diets, MCT ingestion elevated plasma total lipids and cholesterol and depressed liver total lipids and cholesterol when compared to chicks receiving the corn oil diet. As a consequence of the opposite effects of MCT ingestion on plasma and liver cholesterol and total lipids, the plasma-liver cholesterol pool was not altered. When cholesterol was included in the diets, dietary MCT depressed liver and plasma total lipids and cholesterol as compared with corn oil, consequently also lowered the plasmaliver cholesterol pool.The in vitro cholesterol and fatty acid synthesis from acetate-1-(14)C was higher in liver slices from chicks fed MCT than in those from chicks fed corn oil. The percentage of radioactivity from acetate-1-(14)C incorporated into the carboxyl carbon of fatty acids by liver slices was not altered by MCT feeding, indicating that the increased acetate incorporation represented de novo fatty acid synthesis. The conversion of palmitate-1-(14)C to C(18) acids was increased in liver of chicks fed MCT, implying that fatty acid chain elongating activity was also increased. Studies on the conversion of stearate-2-(14)C to mono- and di-unsaturated C(18) acids showed that hepatic fatty acid desaturation activity was enhanced by MCT feeding. Data are presented on the plasma and liver fatty acid composition of chicks fed MCT-, corn oil-, or coconut oil-supplemented diets.

  9. Edible oil structuring: an overview and recent updates.

    PubMed

    Patel, Ashok R; Dewettinck, Koen

    2016-01-01

    In recent years, research dealing with edible oil structuring has received considerable interest from scientific community working in the area of food formulation. Much of this interest is linked to the possibility of using structured oil in development of newer product formats with improved nutritional profile (trans fat-free, low in saturated fats and high in mono and/or poly unsaturated fatty acids). In addition to the obvious industrial need of finding the alternative formulation approach, the interesting properties of structured systems (particularly, oleogels) also makes them a fascinating subject for fundamental studies. In this paper, we attempt to give a comprehensive and concise overview of the field of oil structuring with special emphasis on the updates from recent years. Specifically, several categories of food-grade oleogelators and their potential food applications are summarized with typical examples along with a discussion on the general principles and unresolved challenges related to this emerging area.

  10. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    PubMed

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  11. Effect of dietary sunflower oil and coconut oil on adipose tissue gene expression, fatty acid composition and serum lipid profile of grower pigs.

    PubMed

    Iyer, Mohan N Harihara; Sarmah, Babul C; Tamuli, Madan K; Das, Anubrata; Kalita, Dhireswar

    2012-08-01

    The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.

  12. Functionalization of Lipid-Based Nutrient Supplement with β-Cyclodextrin Inclusions of Oregano Essential Oil.

    PubMed

    Gaur, Shashank; Lopez, Emely C; Ojha, Ankur; Andrade, Juan E

    2018-06-01

    Intestinal parasitic infection is one of the main causes of acute undernutrition in children. Oral consumption of oregano essential oil (OEO) can reduce intestinal parasitic infections, however, its addition to therapeutic and supplementary foods is hampered by its undesirable flavor. The objective of this study was to develop a functional lipid-based nutrient supplement (LNS) containing OEO, which is stable, acceptable and provides targeted intestinal delivery of bioactive. β-cyclodextrin (β-CyD) inclusion complexes of OEO (β-CyD-OEO), and carvacrol (β-CyD-CV) (1:1 molar) were prepared using slurry complexation (-20 °C) method and characterized based on encapsulation efficiency, moisture content, morphology, and 2-phase in vitro digestion stability. Carvacrol (CV) content was measured using reverse phase HPLC-UV. LNS containing β-CyD-OEO (27.2 mg encapsulate/20 g LNS) was formulated using Indian staples and ingredients. Discriminatory sensory tests (triangle) were performed with college students (n = 58) and low-income women (n = 25), with young children at home (1 to 6 years), living in Mehsana, India to evaluate differences between LNS with and without bioactive ingredient (β-CyD-OEO only). Moisture of dried complexes ranged 9.1% to 9.7% d.b., whereas water activity 0.35 to 0.412. The complex size and encapsulation efficiency of β-CyD-OEO and β-CyD-CV were 1.5 to 7 μm and 4 to 20 μm, and 86.04 ± 4.48% and 81.39 ± 3.34%, respectively. The bioactive complexes were stable through the gastric and intestinal phases. Bioaccessibility of encapsulated CV ranged 6.0% to 7.7%. Sensory tests revealed no differences (P > 0.05) in color, aroma, and taste between LNS with and without β-CyD-OEO complexes. Functionalization of LNS with β-CyD-OEO is feasible based on in vitro stability and sensory studies. Despite its antiparasitic activities, the addition of oregano essential oil into foods is limited due to its strong flavor and volatility. In this

  13. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Avocado, sunflower and olive oils as replacers of pork back-fat in burger patties: effect on lipid composition, oxidative stability and quality traits.

    PubMed

    Rodríguez-Carpena, J G; Morcuende, D; Estévez, M

    2012-01-01

    The present study investigates the effects of avocado, sunflower and olive oils used as back-fat replacers, on the fatty acid composition, oxidative stability, volatiles profile and color and texture properties of cooked pork patties. The vegetable oils modified the fatty acid profiles of the patties by lowering the percentages of SFA (from 36.96% to ~25.30%) and reducing the atherogenic index (from 0.41 to ~0.24). Vegetable oils had higher amounts of antioxidant compounds such as tocopherols (10.8-53.9 mg/100 g) than back-fat (5.9 mg/100 g). Consistently, patties manufactured with the oils had significantly lower amounts of lipid and protein oxidation products than control patties. Avocado oil contributed with specific aroma-active terpenes to patties and had a significant impact on particular color and texture parameters. The results from this study highlight the technological applications of the vegetable oils as food ingredients in the design of healthier meat commodities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  16. Sequential transformation of the structural and thermodynamic parameters of the complex particles, combining covalent conjugate (sodium caseinate + maltodextrin) with polyunsaturated lipids stabilized by a plant antioxidant, in the simulated gastro-intestinal conditions in vitro.

    PubMed

    Antipova, Anna S; Zelikina, Darya V; Shumilina, Elena A; Semenova, Maria G

    2016-10-01

    The present work is focused on the structural transformation of the complexes, formed between covalent conjugate (sodium caseinate + maltodextrin) and an equimass mixture of the polyunsaturated lipids (PULs): (soy phosphatidylcholine + triglycerides of flaxseed oil) stabilized by a plant antioxidant (an essential oil of clove buds), in the simulated conditions of the gastrointestinal tract. The conjugate was used here as a food-grade delivery vehicle for the PULs. The release of these PULs at each stage of the simulated digestion was estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    PubMed

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  18. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    PubMed

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3  ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA

  19. The effects of coconut oil supplementation on the body composition and lipid profile of rats submitted to physical exercise.

    PubMed

    Resende, Nathália M; Félix, Henrique R; Soré, Murillo R; M M, Aníbal; Campos, Kleber E; Volpato, Gustavo T

    2016-05-13

    This study aims to verify the effects of coconut oil supplementation (COS) in the body composition and lipid profile of rats submitted to physical exercise. The animals (n=6 per group) were randomly assigned to: G1=Sedentary and Non-supplemented (Control Group), G2=Sedentary and Supplemented, G3=Exercised and Non-supplemented and G4=Exercised and Supplemented. The COS protocol used was 3 mL/Kg of body mass by gavage for 28 days. The physical exercise was the vertical jumping training for 28 days. It was determined the body mass parameters, Lee Index, blood glucose and lipid profile. The COS did not interfere with body mass, but the lean body mass was lower in G3 compared to G2. The final Lee Index classified G1 and G2 as obese (>30g/cm). The lipid profile showed total cholesterol was decreased in G3, LDL-c concentration was decreased in G2, triglycerides, VLDL-c and HDL-c concentrations were increased in G2 and G4 in relation to G1 and G3. The COS decreased LDL-c/HDL-c ratio. In conclusion, the COS associated or not to physical exercise worsen others lipid parameters, like triglycerides and VLDL-c level, showing the care with the use of lipid supplements.

  20. Volatile release from self-assembly structured emulsions: effect of monoglyceride content, oil content, and oil type.

    PubMed

    Mao, Like; Roos, Yrjö H; Miao, Song

    2013-02-20

    Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p < 0.05). However, volatiles had higher release rates in emulsions with higher MG contents. When oil content was reduced from 20 to 10%, C(initial) and C(max) increased for limonene and hexanal and decreased for propanol and diacetyl. When different oils were applied, both C(initial) and C(max) were significantly lower in medium-chain triglyceride emulsions than in soybean oil emulsions (p < 0.05). Static headspace analysis revealed that volatile compounds had significantly lower air-emulsion partition coefficients in the structured emulsions than in unstructured emulsions (p < 0.05). These results indicated that MG structured emulsions can be potentially used as delivery systems to modulate volatile release.

  1. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation.

    PubMed

    Wang, Jingxue; Singh, Sanjay K; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed ( Brassica napus ) is an important oil seed crop, providing more than 13% of the world's supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus . Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B . napus genome. B. rapa and B. oleracea , two diploid progenitors of B. napus , contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5 , and WRINKLED1 , as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE , and LONG - CHAIN ACYL-CoA SYNTHETASES . We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B . napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  2. Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes

    PubMed Central

    Maiti, Prabal K

    2018-01-01

    Abstract Engineering the synthetic nanopores through lipid bilayer membrane to access the interior of a cell is a long persisting challenge in biotechnology. Here, we demonstrate the stability and dynamics of a tile-based 6-helix DNA nanotube (DNT) embedded in POPC lipid bilayer using the analysis of 0.2 μs long equilibrium MD simulation trajectories. We observe that the head groups of the lipid molecules close to the lumen cooperatively tilt towards the hydrophilic sugar-phosphate backbone of DNA and form a toroidal structure around the patch of DNT protruding in the membrane. Further, we explore the effect of ionic concentrations to the in-solution structure and stability of the lipid-DNT complex. Transmembrane ionic current measurements for the constant electric field MD simulation provide the I-V characteristics of the water filled DNT lumen in lipid membrane. With increasing salt concentrations, the measured values of transmembrane ionic conductance of the porous DNT lumen vary from 4.3 to 20.6 nS. Simulations of the DNTs with ssDNA and dsDNA overhangs at the mouth of the pore show gating effect with remarkable difference in the transmembrane ionic conductivities for open and close state nanopores. PMID:29136243

  3. Effects of extra virgin olive oil supplementation at two different low doses on lipid profile in mild hypercholesterolemic subjects: a randomised clinical trial.

    PubMed

    Violante, B; Gerbaudo, L; Borretta, G; Tassone, F

    2009-11-01

    Olive oil, the principal fat of Mediterranean Diet, is known to improve several cardiovascular risk factors at relatively high doses together with intensive modifications of dietary habits. Since this is hard to obtain in the long term, an intervention with encapsulated oil supplements might be more feasible. Aim of this preliminary study was to investigate the effects of the supplementation of a moderate amount of encapsulated extra virgin olive oil vs a lower dose in mildly hypercholesterolemic subjects, as part of their established diet, on blood lipid profile. A prospective randomized study was performed. Thirty-four mildly hypercholesterolemic subjects [age, mean+/-SD: 46+/-7 yr; total cholesterol (TC): 235+/-28 mg/dl] were randomly assigned to receive 2 g (group A) or 4 g (group B) per os of extra-virgin olive oil for 3 months. TC, triglycerides (TG), LDL cholesterol, HDL cholesterol, apolipoprotein A1 (Apo-AI), apolipoprotein B (Apo-B), and atherogenic index of plasma (AIP) were evaluated at the beginning and at the end of the study. In group B, but not in group A, a significant reduction of Apo-B values (7%) was observed; TG concentrations showed a trend towards reduction and Apo-A1 values a trend towards increase (9%). A significant decrease in Apo-B/Apo-A1 ratio (p<0.01) was also observed in group B. Extra virgin olive oil supplementation significantly decreased AIP from baseline in group B (p<0.05). The results of the present study seem to suggest that the daily supplementation, on top of the normal diet, of at least 4 g of extra virgin olive oil, in mildly hypercholesterolemic subjects, is associated to favorable modifications of the plasmatic lipid profile.

  4. Keratin-lipid structural organization in the corneous layer of snake.

    PubMed

    Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo

    2009-12-01

    The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss.

  5. Nanoscale structure of the oil-water interface

    DOE PAGES

    Fukuto, M.; Ocko, B. M.; Bonthuis, D. J.; ...

    2016-12-15

    X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. As a result, the XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.

  6. Effect of dietary alternative lipid sources on haematological parameters and serum constituents of Heterobranchus longifilis fingerlings.

    PubMed

    Babalola, T O O; Adebayo, M A; Apata, D F; Omotosho, J S

    2009-03-01

    The worldwide increase in aquaculture production and the decrease of wild fish stocks has made the replacement of fish oil (FO) in aquafeed industry a priority. Therefore, the use of terrestrial animal fats and vegetable oils, which has lower cost and larger supplies, may be good as substitute for FO. This study investigate the effects of total replacement of FO by two terrestrial animal fats (pork lard and poultry fat) and three vegetable oils (palm kernel oil, sheabutter oil and sunflower oil) on haematological and serum biochemical profile of Heterobranchus longifilis over 70 days. FO-diet was used as the control. The haematological parameters were significantly affected by dietary lipid sources. Serum total protein was not influenced by the dietary lipids. However, serum cholesterol was significantly higher in fish fed diet containing sunflower oil. Glucose and activities of liver enzymes in blood serum were significantly reduced in fish fed alternative lipids when compared with the control. These results indicate that FO can be replaced completely with alternative lipids without any serious negative health impacts.

  7. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface

    PubMed Central

    Cheng, Sara Y.; Chou, George; Buie, Creighton; Vaughn, Mark W.; Compton, Campbell; Cheng, Kwan H.

    2016-01-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein–lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein–protein but weaker protein–lipid interactions for a dimeric

  8. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    PubMed

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  9. The Impact of Virgin Coconut Oil and High-Oleic Safflower Oil on Body Composition, Lipids, and Inflammatory Markers in Postmenopausal Women.

    PubMed

    Harris, Margaret; Hutchins, Andrea; Fryda, Lisa

    2017-04-01

    This randomized crossover study compared the impact of virgin coconut oil (VCO) to safflower oil (SO) on body composition and cardiovascular risk factors. Twelve postmenopausal women (58.8 ± 3.7 year) consumed 30 mL VCO or SO for 28 days, with a 28-day washout. Anthropometrics included body weight and hip and waist circumference. Fat percent for total body, android and gynoid, fat mass, and lean mass were measured using dual-energy X-ray absorptiometry. Women maintained their typical diet recording 28 days of food records during the study. Results were analyzed with SPSS v24 with significance at P ≤ .05. Comparisons are reported as paired t-test since no intervention sequence effect was observed. VCO significantly raised total cholesterol, TC (+18.2 ± 22.8 mg/dL), low-density lipoprotein (+13.5 ± 16.0 mg/dL), and high-density lipoprotein, HDL (+6.6 ± 7.5 mg/dL). SO did not significantly change lipid values. TC and HDL were significantly different between test oils. The TC/HDL ratio change showed a neutral effect of both VCO and SO. One person had adverse reactions to VCO and increased inflammation. VCO decreased IL-1β for each person who had a detected sample. The impact of VCO and SO on other cytokines varied on an individual basis. This was the first study evaluating the impact of VCO on body composition in Caucasian postmenopausal women living in the United States. Results are suggestive that individuals wishing to use coconut oil in their diets can do so safely, but more studies need to be conducted with larger sample sizes, diverse populations, and more specific clinical markers such as particle size.

  10. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    PubMed

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  11. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice.

    PubMed

    DeCoffe, Daniella; Quin, Candice; Gill, Sandeep K; Tasnim, Nishat; Brown, Kirsty; Godovannyi, Artem; Dai, Chuanbin; Abulizi, Nijiati; Chan, Yee Kwan; Ghosh, Sanjoy; Gibson, Deanna L

    2016-06-01

    Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Interfacial & colloidal aspects of lipid digestion.

    PubMed

    Wilde, P J; Chu, B S

    2011-06-09

    Amongst the main issues challenging the food manufacturing sector, health and nutrition are becoming increasingly important. Global concerns such as obesity, the ageing population and food security will have to be addressed. Food security is not just about assuring food supply, but is also about optimising nutritional delivery from the food that is available [1]. Therefore one challenge is to optimise the health benefits from the lipids and lipid soluble nutrients. Colloid scientists have an affinity for lipids because they are water insoluble, however this presents a challenge to the digestive system, which has to convert them to structures that are less insoluble so they are available for uptake. Despite this, the human digestive system is remarkably effective at digesting and absorbing most lipids. This is primarily driven through maximising energy intake, as lipids possess the highest calorific value, which was a survival trait to survive times of famine, but is now an underlying cause of obesity in developed countries with high food availability. The critical region here is the lipid-water interface, where the key reactions take place to solubilise lipids and lipid soluble nutrients. Digestive lipases have to adsorb to the oil water interface in order to hydrolyse triacylglycerols into fatty acids and mono glycerides, which accumulate at the interface [2], and inhibit lipase activity. Pancreatic lipase, which is responsible for the majority of lipid hydrolysis, also requires the action of bile salts and colipase to function effectively. Bile salts both aid the adsorption of co-lipase and lipase, and help solubilise the lipolysis products which have accumulated at the interface, into mixed micelles composing bile salts and a range of other lipids, to facilitate transport to the gut mucosal surface prior to uptake and absorption. The process can be affected by the lipid type, as shorter chain, fatty acids are more easily absorbed, whereas the uptake of longer

  14. Time to face the fats: what can mass spectrometry reveal about the structure of lipids and their interactions with proteins?

    PubMed

    Brown, Simon H J; Mitchell, Todd W; Oakley, Aaron J; Pham, Huong T; Blanksby, Stephen J

    2012-09-01

    Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

  15. Time to Face the Fats: What Can Mass Spectrometry Reveal about the Structure of Lipids and Their Interactions with Proteins?

    NASA Astrophysics Data System (ADS)

    Brown, Simon H. J.; Mitchell, Todd W.; Oakley, Aaron J.; Pham, Huong T.; Blanksby, Stephen J.

    2012-09-01

    Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

  16. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.

    PubMed

    Pera, H; Kleijn, J M; Leermakers, F A M

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus kc and k̄ and the preferred monolayer curvature J(0)(m), and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of kc and the area compression modulus kA are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k̄ and J(0)(m) can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k̄ and J(0)(m) change sign with relevant parameter changes. Although typically k̄ < 0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J(0)(m) > 0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as

  17. Identification of a new class of lipid droplet-associated proteins in plants

    USDA-ARS?s Scientific Manuscript database

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  18. Investigation of Phenols Activity in Early Stage Oxidation of Edible Oils by Electron Paramagnetic Resonance and 19F NMR Spectroscopies Using Novel Lipid Vanadium Complexes As Radical Initiators.

    PubMed

    Drouza, Chryssoula; Dieronitou, Anthi; Hadjiadamou, Ioanna; Stylianou, Marios

    2017-06-21

    A novel dynamic method for the investigation of the phenols activity in early stage oxidation of edible oils based on the formation of α-tocopheryl radicals initiated by oil-soluble vanadium complexes is developed. Two new vanadium complexes in oxidation states V and IV were synthesized by reacting 2,2'-((2-hydroxyoctadecyl)azanediyl)bis(ethan-1-ol) (C18DEA) with [VO(acac) 2 ] and 1-(bis(pyridin-2-ylmethyl)amino)octadecan-2-ol (C18DPA) with VOCl 2 . Addition of a solution of either complex in edible oils resulted in the formation of α-tocopheryl radical, which was monitored by electron paramagnetic resonance (EPR) spectroscopy. The intensity of the α-tocopheryl signal in the EPR spectra was measured versus time. It was found that the profile of the intensity of the α-tocopheryl signal versus time depends on the type of oil, the phenolic content, and the storage time of the oil. The time interval until the occurrence of maximum peak intensity be reached (t m ), the height of the maximum intensity, and the rate of the quenching of the α-tocopheryl radical were used for the investigation of the mechanism of the edible oils oxidation. 19 F NMR of the 19 F labeled phenolic compounds (through trifluoroacetate esters) and radical trap experiments showed that the vanadium complexes in edible oil activate the one electron reduction of dioxygen to superperoxide radical. Superperoxide reacts with the lipids to form alkoperoxyl and alkoxyl lipid radicals, and all these radicals react with the phenols contained in oils.

  19. The Effect of Dietary Fish Oil in addition to Lifestyle Counselling on Lipid Oxidation and Body Composition in Slightly Overweight Teenage Boys

    PubMed Central

    Pedersen, Maiken Højgaard; Mølgaard, Christian; Hellgren, Lars Ingvar; Matthiessen, Jeppe; Holst, Jens Juul; Lauritzen, Lotte

    2011-01-01

    Objective. n-3 long-chain polyunsaturated fatty acids (LCPUFAs) have shown potential to increase lipid oxidation and prevent obesity. Subjects. Seventy-eight boys aged 13–15 y with whole-body fat% of 30 ± 9% were randomly assigned to consume bread with fish oil (FO) (1.5 g n-3 LCPUFA/d) or vegetable oil for 16 weeks. All boys were counselled to improve diet and exercise habits. Results. Lifestyle counselling resulted in decreased sugar intake but did not change the physical activity level. Whole-body fat% decreased 0.7 ± 2.5% and 0.6 ± 2.2%, resting metabolic rate after the intervention was 7150 ± 1134 kJ/d versus 7150 ± 1042 kJ/d, and the respiratory quotient was 0.89 ± 0.05 versus 0.88 ± 0.05, in the FO and control group, respectively. No group differences were significant. Conclusion. FO-supplementation to slightly overweight teenage boys did not result in beneficial effects on RMR, lipid oxidation, or body composition. PMID:21773017

  20. Characterization of interactions of eggPC lipid structures with different biomolecules.

    PubMed

    Corrales Chahar, F; Díaz, S B; Ben Altabef, A; Gervasi, C; Alvarez, P E

    2018-01-01

    In this paper we study the interactions of two biomolecules (ascorbic acid and Annonacin) with a bilayer lipid membrane. Egg yolk phosphatidylcholine (eggPC) liposomes (in crystalline liquid state) were prepared in solutions of ascorbic acid (AA) at different concentration levels. On the other hand, liposomes were doped with Annonacin (Ann), a mono-tetrahydrofuran acetogenin (ACG), which is an effective citotoxic substance. While AA pharmacologic effect and action mechanisms are widely known, those of Ann's are only very recently being studied. Both Fourier Transformed Infrared (FTIR) and Raman spectroscopic techniques were used to study the participation of the main functional groups of the lipid bilayer involved in the membrane-solution interaction. The obtained spectra were comparatively analyzed, studying the spectral bands corresponding to both the hydrophobic and the hydrophilic regions in the lipid bilayer. Electrochemical experiments namely; impedance spectroscopy (EIS) and cyclic voltamperometry (CV) were used as the main characterization techniques to analyse stability and structural changes of a model system of supported EggPC bilayer in connection with its interactions with AA and Ann. At high molar ratios of AA, there is dehydration in both populations of the carbonyl group of the polar head of the lipid. On the other hand, Ann promotes the formation of hydrogen bonds with the carbonyl groups. No interaction between AA and phosphate groups is observed at low and intermediate molar ratios. Ann is expected to be able to induce the dehydration of the phosphate groups without the subsequent formation of H bonds with them. According to the electrochemical analysis, the interaction of AA with the supported lipid membrane does not alter its dielectric properties. This fact can be related to the conservation of structured water of the phosphate groups in the polar heads of the lipid. On the other hand, the incorporation of Ann into the lipid membrane generates

  1. Fatty acid profile of 25 alternative lipid feedstocks

    USDA-ARS?s Scientific Manuscript database

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  2. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution.

    PubMed Central

    Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M

    1997-01-01

    The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species. PMID:9171426

  3. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution.

    PubMed

    Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M

    1997-06-01

    The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species.

  4. In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester:oil ratios.

    PubMed

    Wen, Chih-Jen; Yen, Tzu-Chen; Al-Suwayeh, Saleh A; Chang, Hui-Wen; Fang, Jia-You

    2011-11-01

    The objective of the present work was to investigate the influence of the inner cores of lipid nanocarriers on the efficiency of brain targeting. Cetyl palmitate and squalene were respectively chosen as the solid lipid and liquid oil in the inner phase of the nanocarriers. Nanoparticulate systems with different cetyl palmitate/squalene ratios were compared by evaluating the size, zeta potential, molecular environment, and mobility of lipids in the systems. The particulate diameter ranged from 190 to 210 nm, with systems containing 100% cetyl palmitate in the matrix (solid lipid nanoparticles [SLN]) showing the smallest size, followed by systems with both cetyl palmitate and squalene (nanostructured lipid carriers [NLC]) and with 100% squalene (lipid emulsions [LE]). A cationic surfactant, Forestall, was used to produce a positive surface charge of 40-55 mW. The in vitro release was evaluated using various dyes located in different phases of the nanocarriers. The release of sulforhodamine B occurred in a sustained manner from the shell of the nanocarriers. The in vivo brain distribution of lipid nanosystems after an intravenous injection into rats was monitored by a real-time fluorescence imaging system. LE showed higher brain accumulation than SLN and NLC. NLC only exhibited a slightly higher brain accumulation compared with the aqueous control. Incorporation of sulforhodamine B into LE could prolong its retention in the brain from 20 to 50 min. The results were further confirmed by imaging the entire brain and brain slices. The specific association of lipid nanocarriers with rat brain endothelial cells (bEnd3) was demonstrated using fluorescence microscopy. The cellular uptake of LE and SLN was higher compared with NLC and the aqueous control. LE were observed to be internalized by cells through caveola-mediated and macropinocytotic energy-dependent endocytosis. The experimental profiles indicated that LE with moderate additives are a promising brain

  5. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  6. Prompt inhibition of fMLP-induced Ca2+ mobilization by parenteral lipid emulsions in human neutrophils.

    PubMed

    Wanten, Geert; Rops, Angelique; van Emst-De Vries, Sjenet E; Naber, Ton; Willems, Peter H G M

    2002-04-01

    It remains unclear whether modulation of immune system functions by lipids contributes to the increased infection rate observed in patients treated with parenteral nutrition. We therefore evaluated the effects of lipid emulsions derived from fish oil [very long chain triglycerides (VLCT)], olive oil [long-chain triglycerides- mono-unsaturated fatty acid (LCT-MUFA)], soya oil [long-chain triglycerides (LCT)], or a physical mixture of coconut and soya oil [mixed long- and medium-chain triglycerides (LCT-MCT)] on neutrophil activation. N-formyl-methionyl-leucyl-phenylalanine (fMLP) evoked an immediate increase of the cytosolic Ca2+ concentration ([Ca2+](i,av)) in a suspension of neutrophils. When added 3 min before fMLP, however, all four lipid emulsions reduced the hormone-induced increase in [Ca2+](i,av) with the same efficacy but with different potency. Half-maximal inhibition was reached at emulsion concentrations of 0.24 mM VLCT, 0.32 mM LCT-MCT, 0.52 mM LCT, and 0.82 mM LCT-MUFA. Similarly to the lipids, the protein kinase C (PKC) activator PMA markedly reduced the fMLP-induced increase in [Ca2+](i,av). PMA inhibition was abolished by the PKC inhibitor staurosporine. In contrast, however, this drug did not interfere with the inhibitory lipid effect, indicating that the lipids act primarily in a PKC-independent manner. In summary, this study shows that nutritional lipids can evoke a prompt and significant attenuation of hormone-induced neutrophil stimulation and that the emulsions based on fish oil and a mixture of coconut oil and soya oil are among the most potent ones in this respect.

  7. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils.

    PubMed

    Xia, Wei; Budge, Suzanne M

    2018-02-16

    Epoxy and hydroxy fatty acids are important intermediates during lipid oxidation; quantification of both structures may help evaluate the extent of competition among various lipid oxidation pathways. This article describes a method to simultaneously determine saturated- and unsaturated- epoxy and hydroxy fatty acids derived from oxidation of vegetable oils. The experimental procedures employed transesterification with sodium methoxide, separation of epoxy and hydroxy fatty acid methyl esters (FAME) using solid-phase extraction (SPE), and trimethylsilyl (TMS) derivatization of hydroxy groups. GC-MS was used to identify the epoxy and hydroxy FAME in two different SPE fractions, while GC-flame ionization detection (GC-FID) was used to determine their quantities. Epoxy-octadecanoate/octadecenoate and hydroxy-octadecanoate/octadecenoate/octadecadienoate were determined as lipid oxidation products generated from oxidation of sunflower and canola oils. An isomer of methyl 13-hydroxyoctadeca-9,11-dienoate (13-HODE) TMS ether co-eluted with methyl 15-hydroxyoctadeca-9,12-dienoate TMS ether, which was only present in canola oil; thus, GC-MS-selected ion monitoring (GC-MS-SIM) was used to determine the concentration of 13-HODE. The proposed method has been successfully applied to monitor epoxy and hydroxy fatty acids in sunflower oil and canola oil oxidized at 40 °C. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structure stability of lytic peptides during their interactions with lipid bilayers.

    PubMed

    Chen, H M; Lee, C H

    2001-10-01

    In this work, molecular dynamics simulations were used to examine the consequences of a variety of analogs of cecropin A on lipid bilayers. Analog sequences were constructed by replacing either the N- or C-terminal helix with the other helix in native or reverse sequence order, by making palindromic peptides based on both the N- and C-terminal helices, and by deleting the hinge region. The structure of the peptides was monitored throughout the simulation. The hinge region appeared not to assist in maintaining helical structure but help in motion flexibility. In general, the N-terminal helix of peptides was less stable than the C-terminal one during the interaction with anionic lipid bilayers. Sequences with hydrophobic helices tended to regain helical structure after an initial loss while sequences with amphipathic helices were less able to do this. The results suggests that hydrophobic design peptides have a high structural stability in an anionic membrane and are the candidates for experimental investigation.

  9. Agglutination of intravenously administered phosphatidylcholine-containing lipid emulsions with serum C-reactive protein.

    PubMed

    Tugirimana, Pierrot; Speeckaert, Marijn M; Fiers, Tom; De Buyzere, Marc L; Kint, Jos; Benoit, Dominique; Delanghe, Joris R

    2013-04-01

    C-reactive protein (CRP) is able to bind phospholipids in the presence of calcium. We wanted to investigate the reaction of CRP with various commercial fat emulsions and to explore the impact of CRP agglutination on serum CRP levels. Serum specimens were mixed with Intralipid 20% (soybean oil-based fat emulsion), Structolipid (structured oil-based fat emulsion), Omegaven (fish oil-based fat emulsion), or SMOFlipid (mixed soybean oil-, olive oil-, and fish oil-based emulsion) in Tris-calcium buffer (pH 7.5). After 30 minutes of incubation at 37°C, CRP-phospholipid complexes were turbidimetrically quantified and flow cytometric analysis was performed. Similarly, CRP complexes were monitored in vivo, following administration of fat emulsion. CRP was able to agglutinate phospholipid-containing lipid droplets present in the soybean oil-based fat emulsion and the structured oil-based fat emulsion. To a lesser extent, agglutination was observed for fish oil-containing fat emulsions, whereas no agglutination was noticed for the mixed soybean oil-, olive oil-, and fish oil-based emulsion. Results for propofol-containing emulsions were comparable. Agglutination correlated with phospholipid content of the emulsions. When in vivo agglutination occurred, plasma CRP values dropped due to consumption of CRP by phospholipid-induced agglutination. In this in vitro experiment, we demonstrated agglutination of CRP with phospholipids in various fat emulsions. Research studies are required in patients to determine which effects occur with various intravenous fat emulsions.

  10. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    DOE PAGES

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less

  11. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  12. Repeatedly heated palm kernel oil induces hyperlipidemia, atherogenic indices and hepatorenal toxicity in rats: Beneficial role of virgin coconut oil supplementation.

    PubMed

    Famurewa, Ademola C; Nwankwo, Onyebuchi E; Folawiyo, Abiola M; Igwe, Emeka C; Epete, Michael A; Ufebe, Odomero G

    2017-01-01

    The literature reports that the health benefits of vegetable oil can be deteriorated by repeated heating, which leads to lipid oxidation and the formation of free radicals. Virgin coconut oil (VCO) is emerging as a functional food oil and its health benefits are attributed to its potent polyphenolic compounds. We investigated the beneficial effect of VCO supplementation on lipid profile, liver and kidney markers in rats fed repeatedly heated palm kernel oil (HPO). Rats were divided into four groups (n = 5). The control group rats were fed with   a normal diet; group 2 rats were fed a 10% VCO supplemented diet; group 3 administered 10 ml HPO/kg b.w. orally; group 4 were fed 10% VCO + 10 ml HPO/kg for 28 days. Subsequently, serum markers of liver damage (ALT, AST, ALP and albumin), kidney damage (urea, creatinine and uric acid), lipid profile and lipid ratios as cardiovascular risk indices were evaluated. HPO induced a significant increase in serum markers of liver and kidney damage as well as con- comitant lipid abnormalities and a marked reduction in serum HDL-C. The lipid ratios evaluated for atherogenic and coronary risk indices in rats administered HPO only were remarkably higher than control. It was observed that VCO supplementation attenuated the biochemical alterations, including the indices of cardiovascular risks. VCO supplementation demonstrates beneficial health effects against HPO-induced biochemical alterations in rats. VCO may serve to modulate the adverse effects associated with consumption of repeatedly heated palm kernel oil.

  13. Key glycolytic branch influences mesocarp oil content in oil palm.

    PubMed

    Ruzlan, Nurliyana; Low, Yoke Sum Jaime; Win, Wilonita; Azizah Musa, Noor; Ong, Ai-Ling; Chew, Fook-Tim; Appleton, David; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna

    2017-08-29

    The fructose-1,6-bisphosphate aldolase catalyzed glycolysis branch that forms dihydroxyacetone phosphate and glyceraldehyde-3-phosphate was identified as a key driver of increased oil synthesis in oil palm and was validated in Saccharomyces cerevisiae. Reduction in triose phosphate isomerase (TPI) activity in a yeast knockdown mutant resulted in 19% increase in lipid content, while yeast strains overexpressing oil palm fructose-1,6-bisphosphate aldolase (EgFBA) and glycerol-3-phosphate dehydrogenase (EgG3PDH) showed increased lipid content by 16% and 21%, respectively. Genetic association analysis on oil palm SNPs of EgTPI SD_SNP_000035801 and EgGAPDH SD_SNP_000041011 showed that palms harboring homozygous GG in EgTPI and heterozygous AG in EgGAPDH exhibited higher mesocarp oil content based on dry weight. In addition, AG genotype of the SNP of EgG3PDH SD_SNP_000008411 was associated with higher mean mesocarp oil content, whereas GG genotype of the EgFBA SNP SD_SNP_000007765 was favourable. Additive effects were observed with a combination of favourable alleles in TPI and FBA in Nigerian x AVROS population (family F7) with highest allele frequency GG.GG being associated with a mean increase of 3.77% (p value = 2.3E -16 ) oil content over the Family 1. An analogous effect was observed in yeast, where overexpressed EgFBA in TPI - resulted in a 30% oil increment. These results provide insights into flux balances in glycolysis leading to higher yield in mesocarp oil-producing fruit.

  14. STRUCTURAL FEATURES OF LIPID A PREPARATIONS ISOLATED FROM ESCHERICHIA COLI AND SHIGELLA FLEXNERI,

    DTIC Science & Technology

    to 4 in contrast to those of S . marcescens ; the configurations are probably beta. Possible structures for both lipid A’s are proposed. (Author)...An earlier report stated that the D-glucosamine units in the lipid A of Serratia marcescens were linked I to 6 and were probably in the beta

  15. The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high‐value products

    PubMed Central

    Sabirova, Julia S.; Haddouche, R.; Van Bogaert, I. N.; Mulaa, F.; Verstraete, W.; Timmis, K. N.; Schmidt‐Dannert, C.; Nicaud, J. M.; Soetaert, W.

    2011-01-01

    Summary The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high‐value biotechnological, nutritional or pharmacological products. Under the EU‐sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high‐throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid‐derived compounds like wax esters (WE), isoprenoid‐derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added‐value products. PMID:21255371

  16. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Balatti, Galo E; Ambroggio, Ernesto E; Fidelio, Gerardo D; Martini, M Florencia; Pickholz, Mónica

    2017-10-20

    In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.

  17. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    PubMed

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  18. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    PubMed

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  19. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation.

    PubMed

    Xia, Chunjie; Wei, Wei; Hu, Bo

    2014-04-01

    Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.

  20. Effects of dietary fats (fish, olive and high-oleic-acid sunflower oils) on lipid composition and antioxidant enzymes in rat liver.

    PubMed

    Ruiz-Gutiérrez, V; Pérez-Espinosa, A; Vázquez, C M; Santa-María, C

    1999-09-01

    The effects of two oleic-acid-rich diets (containing olive oil, OO, and high-oleic-acid sunflower oil, HOSO) on plasma and liver lipid composition detoxification enzyme activities, were compared with those of a fish-oil (FO) diet and a control diet. Compared with the control diet, plasma and hepatic total triacylglycerol concentrations were increased in the animals fed on the HOSO and OO diets and decreased in those fed on the FO diet. The animals fed on FO showed the highest level of cholesterol in the liver and had lower plasma cholesterol concentrations when compared with those fed on the two oleic-acid-rich diets. In comparison with the animals fed on the diets enriched in oleic acid, the FO group showed higher hepatic levels of polyunsaturated fatty acids of the n-3 series and lower levels of fatty acids of the n-6 series. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (1) significantly higher activities of catalase (EC 1.11.1.6) glutathione peroxidase (EC 1.11.1.9) and Cu/Zn superoxide dismutase (EC 1.15.1.1); (2) no differences in the NADPH-cytochrome c reductase (EC 1.6.99.3) activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n-3 lipids may enhance the efficiency of the antioxidant defence system. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid but different contents of natural antioxidants, had similar effects on the antioxidant enzyme activities measured.

  1. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.

    PubMed

    Mukai, Masaru; Minamikawa, Hiroyuki; Aoyagi, Masaru; Asakawa, Masumi; Shimizu, Toshimi; Kogiso, Masaki

    2013-04-01

    This work presents a novel bola-type peptide lipid which can gelate water, organic solvents, and water/organic-solvent mixtures. In its molecular structure, an amphiphilic dipeptide aspartame (L-α-aspartyl-L-phenylalanine methyl ester) is connected at both ends of an alkylene linker. The different morphologies in the hydrogel (helical nanotapes) and the organogel (tape-like nanostructures) were visualized by energy-filtering transmission electron microscopy (EF-TEM) and energy-filtering scanning electron microscopy (FE-SEM), and the molecular arrangement was examined using X-ray diffraction (XRD), infrared (IR) spectroscopy, and circular dichroism (CD) spectroscopy. Possessing a hydrophilic aspartic acid group and a (relatively) hydrophobic phenylalanine methyl ester group, the dipeptide head group can turn about in response to solvent polarity. As a consequence, the solvent condition changed the molecular packing of the gelator and affected the overall supramolecular structure of the gel. It is noted that the peptide lipid gelated mixed solvents of water and organic solvents such as dichloromethane, liquid-paraffin, olive-oil, silicone-oils, and so on. The present hybrid gel can simultaneously hold hydrophilic and hydrophobic functional materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Leaf blade structure of Verbesina macrophylla (Cass.) F. S. Blake (Asteraceae): ontogeny, duct secretion mechanism and essential oil composition.

    PubMed

    Bezerra, L D A; Mangabeira, P A O; de Oliveira, R A; Costa, L C D B; Da Cunha, M

    2018-05-01

    Secretory structures are common in Asteraceae, where they exhibit a high degree of morphological diversity. The species Verbesina macrophylla, popularly known as assa-peixe, is native to Brazil where it is widely used for medicinal purposes. Despite its potential medical importance, there have been no studies of the anatomy of this species, especially its secretory structures and secreted compounds. This study examined leaves of V. macrophylla with emphasis on secretory structures and secreted secondary metabolites. Development of secretory ducts and the mechanism of secretion production are described for V. macrophylla using ultrastructure, yield and chemical composition of its essential oils. Verbesina macrophylla has a hypostomatic leaf blade with dorsiventral mesophyll and secretory ducts associated with vascular bundles of schizogenous origin. Histochemistry identified the presence of lipids, terpenes, alkaloids and mucopolysaccharides. Ultrastructure suggests that the secretion released into the duct lumen is produced in plastids of transfer cells, parenchymal sheath cells and stored in vacuoles in these cells and duct epithelial cells. The essential oil content was 0.8%, and its major components were germacrene D, germacrene D-4-ol, β-caryophyllene, bicyclogermacrene and α-cadinol. Secretory ducts of V. macrophylla are squizogenous. Substances identified in tissues suggest that both secretions stored in the ducts and in adjacent parenchyma cells are involved in chemical defence. The essential oil is rich in sesquiterpenes, with germacrene D and its derivatives being notable components. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  3. Bioconversion of oil sludge into biomass of lipid metabolites for use as a source of biofuel

    NASA Astrophysics Data System (ADS)

    Shchemelinina, T. N.; Matistov, N. V.; Markarova, M. Yu; Anchugova, E. M.

    2018-01-01

    The possibilities for the generation of biofuel from the results of the accumulation of lipids in oil-contaminated environments were studied. This type of accumulation occurs in the biomass of yeast strains Rhodotorula sp. VKM Y-2993D; in bacteria like Pseudomonas libanensis B-3041D and in consortia of microalgal strains such as Acutodesmus obliquus Syko-A Ch-055-12, Chlorella sp. SYKO A Ch-011-10, Monoraphidium sp., and Anabaena sp. The most promising of these for processing petroleum hydrocarbons into biofuels was found to be the consortium of microalgal strains, the content of palmitic acid of which reached 49.0 %, thereby achieving a mid-range cetane number.

  4. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  5. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids.

    PubMed

    Dias, Cintia B; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2015-04-01

    Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.

  6. A plural role for lipids in motor neuron diseases: energy, signaling and structure

    PubMed Central

    Schmitt, Florent; Hussain, Ghulam; Dupuis, Luc; Loeffler, Jean-Philippe; Henriques, Alexandre

    2013-01-01

    Motor neuron diseases (MNDs) are characterized by selective death of motor neurons and include mainly adult-onset amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Neurodegeneration is not the single pathogenic event occurring during disease progression. There are multiple lines of evidence for the existence of defects in lipid metabolism at peripheral level. For instance, hypermetabolism is well characterized in ALS, and dyslipidemia correlates with better prognosis in patients. Lipid metabolism plays also a role in other MNDs. In SMA, misuse of lipids as energetic nutrients is described in patients and in related animal models. The composition of structural lipids in the central nervous system is modified, with repercussion on membrane fluidity and on cell signaling mediated by bioactive lipids. Here, we review the main epidemiologic and mechanistic findings that link alterations of lipid metabolism and motor neuron degeneration, and we discuss the rationale of targeting these modifications for therapeutic management of MNDs. PMID:24600344

  7. Effects of dietary lipid sources on performance and apparent total tract digestibility of lipids and energy when fed to nursery pigs.

    PubMed

    Mendoza, S M; van Heugten, E

    2014-02-01

    Acidulated fats and oils are by-products of the fat-refining industry. They contain high levels of FFA and are 10% to 20% less expensive than refined fats and oils. Two studies were designed to measure the effects of dietary lipid sources low or high in FFA on growth performance and apparent total tract digestibility (ATTD) of lipids and GE in nursery pigs. In Exp. 1, 189 pigs at 14 d postweaning (BW of 9.32 ± 0.11 kg) were used for 21 d with 9 replicate pens per treatment and 3 pigs per pen. Dietary treatments consisted of a control diet without added lipids and 6 diets with 6% inclusion of lipids. Four lipid sources were combined to create the dietary treatments with 2 levels of FFA (0.40% or 54.0%) and 3 degrees of fat saturation (iodine value [IV] = 77, 100, or 123) in a 2 × 3 factorial arrangement. Lipid sources were soybean oil (0.3% FFA and IV = 129.4), soybean-cottonseed acid oil blend (70.5% FFA and IV = 112.9), choice white grease (0.6% FFA and IV = 74.8), and choice white acid grease (56.0% FFA and IV = 79.0). Addition of lipid sources decreased ADFI (810 vs. 872 g/d; P = 0.018) and improved G:F (716 vs. 646 g/kg; P < 0.001). Diets high in FFA tended (P = 0.08) to improve final BW (21.35 vs. 21.01 kg) and ADG (576 vs. 560 g/d). Lipid-supplemented diets had greater ATTD of lipids than control diets (67.4% vs. 29.7%; P < 0.001). Apparent total tract digestibility of lipids was greater in diets with low FFA (69.9% vs. 64.9%; P < 0.001) and decreased linearly with increasing IV (73.2%, 69.1%, and 67.2%). For GE, ATTD was greater in diets with low FFA (83.1% vs. 80.9%; P = 0.001). In Exp. 2, 252 pigs at 7 d postweaning (BW of 7.0 ± 0.2 kg) were used for 28 d with 9 replicate pens per treatment and 4 pigs per pen. Diets included a control diet without added lipids and 6 treatments with 2.5%, 5.0%, or 7.5% of lipids from either poultry fat (1.9% FFA) or acidulated poultry fat (37.8% FFA) in a 2 × 3 factorial arrangement. Addition of lipids increased (P < 0

  8. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure.

    PubMed

    Cerqueira, Miguel A; Fasolin, Luiz H; Picone, Carolina S F; Pastrana, Lorenzo M; Cunha, Rosiane L; Vicente, António A

    2017-06-01

    This work aims at evaluating the influence of oil and gelator structure on organogels' properties through rheological measurements, polarized microscopy and small-angle X-ray scattering (SAXS). Four different food-grade gelators (glyceryl tristearate - GT; sorbitan tristearate - ST; sorbitan monostearate - SM and glyceryl monostearate - GM) were tested in medium-chain triglyceride and high oleic sunflower (MCT and LCT, respectively) oil phases. Organogels were prepared by mixing the oil phase and gelator at different concentrations (5, 10, 15, 20 and 25%) at 80°C during 30min. All organogels presented birefringence confirming the formation of a crystalline structure that changed with the increase of the gelator concentration. Through the evaluation of SAXS peaks it has been confirmed that all structures were organized as lamellas but with different d-spacing values. These particularities at micro- and nanoscale level lead to differences in rheological properties of organogels. Results showed that the oil type (i.e. medium- and long-chain triglyceride) and hydrophilic head of gelators (i.e. sorbitan versus glyceryl) exert influence on the organogels physical properties, but the presence of monostearate leads to the formation of stronger organogels. Moreover, gels produced with LCT were stronger and gelled at lower organogelator concentration than MCT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of feeding quandong (Santalum acuminatum) oil to rats on tissue lipids, hepatic cytochrome P-450 and tissue histology.

    PubMed

    Jones, G P; Birkett, A; Sanigorski, A; Sinclair, A J; Hooper, P T; Watson, T; Rieger, V

    1994-06-01

    Quandong kernels are a traditional Aboriginal food item; they are rich in oil and contain large amounts of an unusual fatty acid, trans-11-octadecen-9-ynoic acid (santalbic acid), but it is not known whether this acid is absorbed and/or metabolized. The oil was fed at 12.6% of total energy content in semi-synthetic diets to groups of male Sprague-Dawley rats for 10 and 20 days. Santalbic acid was found in the lipids of plasma, adipose tissue, skeletal muscle, kidney, heart and liver but not in brain. Hepatic microsomal cytochrome P-450 activity in animals fed for 20 days was significantly higher (P < 0.05) than in controls. Histopathological examination did not reveal any lesions in the tissues of any animal fed quandong oil. The fact that santalbic acid was readily absorbed, widely distributed in tissues and was associated with an elevated level of hepatic cytochrome P-450 indicates that further studies are required to investigate whether or not there is a hazard associated with the human practice of consuming quandong kernels.

  10. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    PubMed

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  11. Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane: Biodiesel and Ethanol Co-Production from Lipid-Producing Sugarcane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haibo; Long, Stephen; Singh, Vijay

    Biodiesel production from vegetable oils has progressively increased over the past two decades. However, due to the low amounts of oil produced per hectare from temperate oilseed crops (e.g. soybean), the opportunities for further increasing biodiesel production are limited. Genetically modified lipid-producing sugarcane (lipid-cane) possesses great potential for producing biodiesel as an alternative feedstock because of sugarcane’s much higher productivity compared with soybean. In this study, techno-economic models were developed for biodiesel and ethanol coproduction from lipid-cane, assuming 2, 5, 10, or 20% lipid concentration in the harvested stem (dry mass basis). The models were compared with a conventional soybeanmore » biodiesel process model to assess lipid-cane’s competiveness. In the lipid-cane process model, the extracted lipids were used to produce biodiesel by transesterifi cation, and the remaining sugar was used to produce ethanol by fermentation. The results showed that the biodiesel production cost from lipid-cane decreased from $0.89/L to $0.59 /L as the lipid content increased from 2 to 20%; this cost was lower than that obtained for soybeans ($1.08/L). The ethanol production costs from lipid-cane were between $0.40/L and $0.46/L. The internal rate of return (IRR) for the soybean biodiesel process was 15.0%, and the IRR for the lipid-cane process went from 13.7 to 24.0% as the lipid content increased from 2 to 20%. Because of its high productivity, lipid-cane with 20% lipid content can produce 6700 L of biodiesel from each hectare of land, whereas soybean can only produce approximately 500 L of biodiesel from each hectare of land. This would indicate that continued efforts to achieve lipid-producing sugarcane could make large-scale replacement of fossil-fuel-derived diesel without unrealistic demands on land area.« less

  12. Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane: Biodiesel and Ethanol Co-Production from Lipid-Producing Sugarcane

    DOE PAGES

    Huang, Haibo; Long, Stephen; Singh, Vijay

    2016-03-07

    Biodiesel production from vegetable oils has progressively increased over the past two decades. However, due to the low amounts of oil produced per hectare from temperate oilseed crops (e.g. soybean), the opportunities for further increasing biodiesel production are limited. Genetically modified lipid-producing sugarcane (lipid-cane) possesses great potential for producing biodiesel as an alternative feedstock because of sugarcane’s much higher productivity compared with soybean. In this study, techno-economic models were developed for biodiesel and ethanol coproduction from lipid-cane, assuming 2, 5, 10, or 20% lipid concentration in the harvested stem (dry mass basis). The models were compared with a conventional soybeanmore » biodiesel process model to assess lipid-cane’s competiveness. In the lipid-cane process model, the extracted lipids were used to produce biodiesel by transesterifi cation, and the remaining sugar was used to produce ethanol by fermentation. The results showed that the biodiesel production cost from lipid-cane decreased from $0.89/L to $0.59 /L as the lipid content increased from 2 to 20%; this cost was lower than that obtained for soybeans ($1.08/L). The ethanol production costs from lipid-cane were between $0.40/L and $0.46/L. The internal rate of return (IRR) for the soybean biodiesel process was 15.0%, and the IRR for the lipid-cane process went from 13.7 to 24.0% as the lipid content increased from 2 to 20%. Because of its high productivity, lipid-cane with 20% lipid content can produce 6700 L of biodiesel from each hectare of land, whereas soybean can only produce approximately 500 L of biodiesel from each hectare of land. This would indicate that continued efforts to achieve lipid-producing sugarcane could make large-scale replacement of fossil-fuel-derived diesel without unrealistic demands on land area.« less

  13. An infant formula containing dairy lipids increased red blood cell membrane Omega 3 fatty acids in 4 month-old healthy newborns: a randomized controlled trial.

    PubMed

    Gianni, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Fressange-Mazda, Catherine; Galli, Claudio; Agostoni, Carlo; le Ruyet, Pascale; Mosca, Fabio

    2018-02-13

    When breastfeeding is not possible, infants are fed formulas (IF) in which lipids are usually of plant origin. However, the use of dairy fat in combination with plant oils enables a lipid profile closer to breast milk in terms of fatty acid (FA) composition, triglyceride structure, polar lipids and cholesterol contents. The objective of this study was to determine the effect of an IF containing a mix of dairy fat and plant oils on Omega-3 FA content in red blood cells (RBC). This study was a monocentric, double-blind, controlled, randomized trial. Healthy term infants were fed formulas containing a mix of dairy fat and plant oils (D), plant oils (P) or plant oils supplemented with ARA and DHA (PDHA). Breastfed infants were enrolled as a reference group (BF). FA in RBC phosphatidylethanolamine was evaluated after 4 months and FA in whole blood were evaluated at enrollment and after 4 months by gas chromatography. Differences between groups were assessed using an analysis of covariance with sex and gestational age as covariates. Seventy IF-fed and nineteen BF infants completed the protocol. At 4 months, RBC total Omega-3 FA levels in infants fed formula D were significantly higher than in group P and similar to those in groups PDHA and BF. RBC DHA levels in group D were also higher than in group P but lower than in groups PDHA and BF. RBC n-3 DPA levels in group D were higher than in groups P, PDHA and BF. A decrease in proportions of Omega-3 FA in whole blood was observed in all groups. A formula containing a mix of dairy lipids and plant oils increased the endogenous conversion of Omega-3 long-chain FA from precursor, leading to higher total Omega-3, DPA and DHA status in RBC than a plant oil-based formula. Modifying lipid quality in IF by adding dairy lipids should be considered as an interesting method to improve Omega-3 FA status. Identifier NCT01611649 , retrospectively registered on May 25, 2012.

  14. High-throughput analysis of lipid hydroperoxides in edible oils and fats using the fluorescent reagent diphenyl-1-pyrenylphosphine.

    PubMed

    Santas, Jonathan; Guzmán, Yeimmy J; Guardiola, Francesc; Rafecas, Magdalena; Bou, Ricard

    2014-11-01

    A fluorometric method for the determination of hydroperoxides (HP) in edible oils and fats using the reagent diphenyl-1-pyrenylphosphine (DPPP) was developed and validated. Two solvent media containing 100% butanol or a mixture of chloroform/methanol (2:1, v/v) can be used to solubilise lipid samples. Regardless of the solvent used to solubilise the sample, the DPPP method was precise, accurate, sensitive and easy to perform. The HP content of 43 oil and fat samples was determined and the results were compared with those obtained by means of the AOCS Official Method for the determination of peroxide value (PV) and the ferrous oxidation-xylenol orange (FOX) method. The proposed method not only correlates well with the PV and FOX methods, but also presents some advantages such as requiring low sample and solvent amounts and being suitable for high-throughput sample analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition.

    PubMed

    Craig, S R; Gatlin, D M

    1995-12-01

    The ability of juvenile red drum (Sciaenops ocellatus) to utilize medium-chain triglycerides (MCT) and other saturated dietary lipids was investigated in two 6-wk feeding experiments. Diets contained solvent-extracted menhaden fish meal to which menhaden fish oil (control), coconut oil, corn oil, beef tallow or various levels of MCT as tricaprylin (30, 46, 65 and 80% of total lipid) were added. Diets were fed to triplicate groups of juvenile red drum in aquaria containing brackish (6%) water. In the first feeding experiment, red drum fed the control diet had the greatest weight gains and feed efficiencies. Weight gain, but not feed was slightly, of fish fed corn oil and fish fed coconut oil was slightly (P < 0.05) lower. In the second feeding experiment, fish fed coconut oil and those fed beef tallow had significantly higher weight gains and feed efficiencies than did fish fed the control diet. Fish fed the diets containing tricaprylin at all inclusion levels in both feeding experiments had significantly lower weight gains and feed efficiencies and higher levels of beta-hydroxybutyric acid in plasma. Fish fed diets with high levels of MCT also had lower (n-3) and greater (n-6) fatty acid levels in the neutral lipid fraction of muscle tissue compared with fish fed the control diet. Coconut oil and beef tallow consistently resulted in greater liver lipid deposition but had variable effects on other tissue indices. Saturated dietary lipids had variable effects on fatty acid composition of muscle polar and neutral lipid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Structural basis of nSH2 regulation and lipid binding in PI3Kα.

    PubMed

    Miller, Michelle S; Schmidt-Kittler, Oleg; Bolduc, David M; Brower, Evan T; Chaves-Moreira, Daniele; Allaire, Marc; Kinzler, Kenneth W; Jennings, Ian G; Thompson, Philip E; Cole, Philip A; Amzel, L Mario; Vogelstein, Bert; Gabelli, Sandra B

    2014-07-30

    We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α (PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, the second in complex with the lipid substrate, diC4-PIP₂, respectively. The first structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with the activation loop that suggest a mechanism by which the enzyme is inhibited in its basal state. In the second structure, the lipid substrate binds in a positively charged pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop and the iSH2 domain. An additional lipid-binding site was identified at the interface of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP₂ molecule was confirmed in vitro by fluorescence quenching experiments. The crystal structures reveal key differences in the way the nSH2 domain interacts with wild-type p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area and two unique salt-bridges observed only in the wild-type structure suggest tighter inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences may be partially responsible for the increased basal lipid kinase activity and increased membrane binding of the oncogenic mutant.

  17. Lipid effects on neutrophil calcium signaling induced by opsonized particles: platelet activating factor is only part of the story.

    PubMed

    Wanten, Geert; Kusters, Anneke; van Emst-de Vries, Sjenet E; Tool, Anton; Roos, Dirk; Naber, Ton; Willems, Peter

    2004-08-01

    Total parenteral nutrition is frequently used in clinical practice to improve the nutritional status of patients. However, the risk for infectious complications remains a drawback in which immune-modulating effects of the lipid component may play a role. To characterize these lipid effects we investigated neutrophil activation by opsonized yeast particles under influence of lipid emulsions derived from fish oil (VLCT), olive oil (LCT-MUFA), soybean oil (LCT), and a physical mixture of coconut and soybean oil (LCT-MCT). Serum-treated zymosan (STZ) evoked a biphasic increase in cytosolic Ca2+ concentration ([Ca2+]c) with an initial slow rise that turned into a second fast rise until a plateau was reached. LCT-MCT (5 mM) pretreatment markedly increased the rate of [Ca2+]c rise during the initial phase, abolished the second phase and lowered the plateau. These effects of LCT-MCT were mimicked by the protein kinase C (PKC) activating phorbol ester PMA. LCT, LCT-MUFA and VLCT, on the other hand, decreased the rate of [Ca2+]c rise during both phases and lowered the plateau. The platelet-activating factor (PAF) receptor antagonist WEB 2086 inhibited the second phase, demonstrating that PAF acts as an intercellular messenger in STZ-induced Ca2+ mobilization, but did not interfere with the stimulatory effect of LCT-MCT or PMA on the initial rate of [Ca2+]c rise. Structurally different lipids act only in part through PAF to distinctively modulate neutrophil calcium signaling in response to activation by opsonized particles. Copyright 2003 Elsevier Ltd.

  18. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  19. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    PubMed

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and

  20. Peroxisome proliferator-activated receptor ligands regulate lipid content, metabolism, and composition in fetal lungs of diabetic rats.

    PubMed

    Kurtz, M; Capobianco, E; Careaga, V; Martinez, N; Mazzucco, M B; Maier, M; Jawerbaum, A

    2014-03-01

    Maternal diabetes impairs fetal lung development. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors relevant in lipid homeostasis and lung development. This study aims to evaluate the effect of in vivo activation of PPARs on lipid homeostasis in fetal lungs of diabetic rats. To this end, we studied lipid concentrations, expression of lipid metabolizing enzymes and fatty acid composition in fetal lungs of control and diabetic rats i) after injections of the fetuses with Leukotriene B4 (LTB4, PPARα ligand) or 15deoxyΔ(12,14)prostaglandin J2 (15dPGJ2, PPARγ ligand) and ii) fed during pregnancy with 6% olive oil- or 6% safflower oil-supplemented diets, enriched with PPAR ligands were studied. Maternal diabetes increased triglyceride concentrations and decreased expression of lipid-oxidizing enzymes in fetal lungs of diabetic rats, an expression further decreased by LTB4 and partially restored by 15dPGJ2 in lungs of male fetuses in the diabetic group. In lungs of female fetuses in the diabetic group, maternal diets enriched with olive oil increased triglyceride concentrations and fatty acid synthase expression, while those enriched with safflower oil increased triglyceride concentrations and fatty acid transporter expression. Both olive oil- and safflower oil-supplemented diets decreased cholesterol and cholesteryl ester concentrations and increased the expression of the reverse cholesterol transporter ATP-binding cassette A1 in fetal lungs of female fetuses of diabetic rats. In fetal lungs of control and diabetic rats, the proportion of polyunsaturated fatty acids increased with the maternal diets enriched with olive and safflower oils. Our results revealed important changes in lipid metabolism in fetal lungs of diabetic rats, and in the ability of PPAR ligands to modulate the composition of lipid species relevant in the lung during the perinatal period.

  1. New Features in the Lipid A Structure of Brucella suis and Brucella abortus Lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Casabuono, Adriana C.; Czibener, Cecilia; Del Giudice, Mariela G.; Valguarnera, Ezequiel; Ugalde, Juan E.; Couto, Alicia S.

    2017-12-01

    Brucellaceae are Gram-negative bacteria that cause brucellosis, one of the most distributed worldwide zoonosis, transmitted to humans by contact with either infected animals or their products. The lipopolysaccharide exposed on the cell surface has been intensively studied and is considered a major virulence factor of Brucella. In the last years, structural studies allowed the determination of new structures in the core oligosaccharide and the O-antigen of this lipopolysaccharide. In this work, we have reinvestigated the lipid A structure isolated from B. suis and B. abortus lipopolysaccharides. A detailed study by MALDI-TOF mass spectrometry in the positive and negative ion modes of the lipid A moieties purified from both species was performed. Interestingly, a new feature was detected: the presence of a pyrophosphorylethanolamine residue substituting the backbone. LID-MS/MS analysis of some of the detected ions allowed assurance that the Lipid A structure composed by the diGlcN3N disaccharide, mainly hexa-acylated and penta-acylated, bearing one phosphate and one pyrophosphorylethanolamine residue. [Figure not available: see fulltext.

  2. New Features in the Lipid A Structure of Brucella suis and Brucella abortus Lipopolysaccharide.

    PubMed

    Casabuono, Adriana C; Czibener, Cecilia; Del Giudice, Mariela G; Valguarnera, Ezequiel; Ugalde, Juan E; Couto, Alicia S

    2017-12-01

    Brucellaceae are Gram-negative bacteria that cause brucellosis, one of the most distributed worldwide zoonosis, transmitted to humans by contact with either infected animals or their products. The lipopolysaccharide exposed on the cell surface has been intensively studied and is considered a major virulence factor of Brucella. In the last years, structural studies allowed the determination of new structures in the core oligosaccharide and the O-antigen of this lipopolysaccharide. In this work, we have reinvestigated the lipid A structure isolated from B. suis and B. abortus lipopolysaccharides. A detailed study by MALDI-TOF mass spectrometry in the positive and negative ion modes of the lipid A moieties purified from both species was performed. Interestingly, a new feature was detected: the presence of a pyrophosphorylethanolamine residue substituting the backbone. LID-MS/MS analysis of some of the detected ions allowed assurance that the Lipid A structure composed by the diGlcN3N disaccharide, mainly hexa-acylated and penta-acylated, bearing one phosphate and one pyrophosphorylethanolamine residue. Graphical abstract ᅟ.

  3. [Effects of low doses of essential oil on the antioxidant state of the erythrocytes, liver, and the brains of mice].

    PubMed

    Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B

    2014-01-01

    We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.

  4. Comparison of lipid emulsions on antioxidant capacity in preterm infants receiving parenteral nutrition.

    PubMed

    Köksal, Nilgün; Kavurt, Ahmet V; Cetinkaya, Merih; Ozarda, Yesim; Ozkan, Hilal

    2011-08-01

    Although a variety of different lipid emulsions with varying fatty acid contents have been developed, there are some concerns about the administration of these lipid emulsions because of potential adverse effects, including oxidative stress-related morbidity. The aim of the present study was to evaluate and compare the effects of the standard soybean oil-based and olive oil-based i.v. lipid emulsions (ILE) on oxidative stress, determined by total antioxidant capacity (TAC), and to investigate the safety of the use of these two emulsions in terms of biochemical indices. In this prospective study, premature infants were randomly assigned to two groups, each group consisting of 32 patients who received parenteral ILE of either 20% olive oil or 20% soybean oil. They were given ILE for 7 days and then were evaluated with regard to TAC. No statistically significant difference was observed between the groups in terms of routine biochemical parameters. TAC for both groups on day 7 was significantly lower compared with that on day 0. Although the decrease in TAC within 7 days of ILE administration was greater in the soybean group compared with that in the olive oil group, it was not statistically significant. Olive oil-based ILE exhibit similar antioxidant activity and can be used as an alternative to soybean oil-based ILE. TAC significantly decreased in infants following administration of either lipid emulsion, and premature infants tolerated either ILE well, both biochemically and clinically. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  5. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    PubMed

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  6. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  7. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    PubMed

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2018-06-01

    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  8. A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the 3H-labelled structural lipids after pulmonary delivery in rats.

    PubMed

    Haque, Shadabul; Whittaker, Michael; McIntosh, Michelle P; Pouton, Colin W; Phipps, Simon; Kaminskas, Lisa M

    2018-04-01

    The utility of biodegradable nanosized drug carriers for the local and controlled delivery of therapeutics to the lungs has prompted significant interest in the development of inhalable nanomedicines. Still, little is known about how these systems are cleared from the lungs, including the kinetics of the structural lipids. Most preclinical and clinical studies to date have evaluated the lung clearance of loaded drugs, which in many cases poorly reflects the kinetics of the nanocarrier, or the bulk-labelled particles. This study therefore aimed to describe and compare the pulmonary pharmacokinetic behaviour and patterns of lung clearance of two commonly explored inhalable nanocarriers (anionic ∼150 nm liposomes and solid lipid nanoparticles [SLNs]) in rats by following the 3 H-labelled structural lipids (phosphatidylcholine and tristearin respectively). The data showed that SLNs and liposomes were cleared from the lungs at similar rates, despite SLNs being deposited after intratracheal instillation in the upper respiratory track, and primarily via the mucociliary escalator, but this process was more pronounced for SLNs. Structural lipids were mainly associated with plasma proteins rather than nanocarrier in plasma. The lipids also exhibit prolonged lung exposure and are associated with the lung tissue (rather than BALF) over 2 weeks. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    PubMed

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  10. No effect of adding dairy lipids or long chain polyunsaturated fatty acids on formula tolerance and growth in full term infants: a randomized controlled trial.

    PubMed

    Gianni, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Fressange-Mazda, Catherine; le Ruyet, Pascale; Mosca, Fabio

    2018-01-22

    When breastfeeding is not possible, infants are fed formulas in which lipids are usually of plant origin. However, the use of dairy fat in combination with plant oils enables a lipid profile in formula closer to breast milk in terms of fatty acid composition, triglyceride structure and cholesterol content. The objectives of this study were to investigate the impact on growth and gastrointestinal tolerance of a formula containing a mix of dairy lipids and plant oils in healthy infants. This study was a monocentric, double-blind, controlled, randomized trial. Healthy term infants aged less than 3 weeks whose mothers did not breastfeed were randomly allocated to formula containing either: a mix of plant oils and dairy fat (D), only plant oils (P) or plant oils supplemented with long-chain polyunsaturated fatty acids (PDHA). Breastfed infants were included in a reference group (BF). Anthropometric parameters and body composition were measured after 2 and 4 months. Gastrointestinal tolerance was evaluated during 2 day-periods after 1 and 3 months thanks to descriptive parameters reported by parents. Nonrandomized BF infants were not included in the statistical analysis. Eighty eight formula-fed and 29 BF infants were enrolled. Gains of weight, recumbent length, cranial circumference and fat mass were similar between the 3 formula-fed groups at 2 and 4 months and close to those of BF. Z-scores for weight, recumbent length and cranial circumference in all groups were within normal ranges for growth standards. No significant differences were noted among the 3 formula groups in gastrointestinal parameters (stool frequency/consistency/color), occurrence of gastrointestinal symptoms (abdominal pain, flatulence, regurgitation) or infant's behavior. A formula containing a mix of dairy lipids and plant oils enables a normal growth in healthy newborns. This formula is well tolerated and does not lead to abnormal gastrointestinal symptoms. Consequently, reintroduction of

  11. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.

    PubMed

    Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya

    2018-03-05

    The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.

  12. A Systematic Review of High-Oleic Vegetable Oil Substitutions for Other Fats and Oils on Cardiovascular Disease Risk Factors: Implications for Novel High-Oleic Soybean Oils12

    PubMed Central

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-01-01

    High–oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)6 risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n–6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n–6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: −8.0%, −10.9%, −7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: −5.7%, −9.2%, −7.3%, −11.7%, −12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n–6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n–6 PUFAs would have favorable and comparable effects on

  13. Electroporation of the photosynthetic membrane: structural changes in protein and lipid-protein domains.

    PubMed Central

    Rosemberg, Y; Rotenberg, M; Korenstein, R

    1994-01-01

    A biological membrane undergoes a reversible permeability increase through structural changes in the lipid domain when exposed to high external electric fields. The present study shows the occurrence of electric field-induced changes in the conductance of the proton channel of the H(+)-ATPase as well as electric field-induced structural changes in the lipid-protein domain of photosystem (PS) II in the photosynthetic membrane. The study was carried out by analyzing the electric field-stimulated delayed luminescence (EPL), which originates from charge recombination in the protein complexes of PS I and II of photosynthetic vesicles. We established that a small fraction of the total electric field-induced conductance change was abolished by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the H(+)-ATPase. This reversible electric field-induced conductance change has characteristics of a small channel and possesses a lifetime < or = 1 ms. To detect electric field-induced changes in the lipid-protein domains of PS II, we examined the effects of phospholipase A2 (PLA2) on EPL. Higher values of EPL were observed from vesicles that were exposed in the presence of PLA2 to an electroporating electric field than to a nonelectroporating electric field. The effect of the electroporating field was a long-lived one, lasting for a period > or = 2 min. This effect was attributed to long-lived electric field-induced structural changes in the lipid-protein domains of PS II. PMID:7811916

  14. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions.

    PubMed

    Ma, Da; Tu, Zong-Cai; Wang, Hui; Zhang, Zipei; McClements, David Julian

    2018-04-18

    Structural design principles are increasingly being used to develop colloidal delivery systems for bioactive agents. In this study, oil droplets were encapsulated within microgel-in-microgel systems. Initially, a nanoemulsion was formed that contained small whey protein-coated oil droplets ( d 43 = 211 nm). These oil droplets were then loaded into either carrageenan-in-alginate (O/M C /M A ) or alginate-in-carrageenan (O/M A /M C ) microgels. A vibrating nozzle encapsulation unit was used to form the smaller inner microgels ( d 43 = 170-324 μm), while a hand-held syringe was used to form the larger outer microgels ( d 43 = 2200-3400 μm). Calcium alginate microgels (O/M A ) were more stable to simulated gastrointestinal tract (GIT) conditions than potassium carrageenan microgels (O/M C ), which was attributed to the stronger cross-links formed by divalent calcium ions than the monovalent potassium ions. As a result, the microgel-in-microgel systems had different gastrointestinal fates depending upon the nature of the external microgel phase; i.e., the O/M C /M A system was more resistant to rupture than the O/M A /M C system. The rate of lipid digestion under simulated small intestine conditions decreased in the following order: free oil droplets > O/M C > O/M A > O/M A /M C > O/M C /M A . This effect was attributed to differences in the integrity and dimensions of the microgels in the small intestine, because a hydrogel network surrounding the oil droplets inhibits lipid hydrolysis by lipase. The structured microgels developed in this study may have interesting applications for the protection or controlled release of bioactive agents.

  15. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach

    PubMed Central

    Buyukozturk, Fulden; Di Maio, Selena; Budil, David E.; Carrier, Rebecca L.

    2014-01-01

    Purpose To mechanistically study and model the effect of lipids, either from food or self-emulsifying drug delivery systems (SEDDS), on drug transport in the intestinal lumen. Methods Simultaneous lipid digestion, dissolution/release, and drug partitioning were experimentally studied and modeled for two dosing scenarios: solid drug with a food-associated lipid (soybean oil) and drug solubilized in a model SEDDS (soybean oil and Tween 80 at 1:1 ratio). Rate constants for digestion, permeability of emulsion droplets, and partition coefficients in micellar and oil phases were measured, and used to numerically solve the developed model. Results Strong influence of lipid digestion on drug release from SEDDS and solid drug dissolution into food-associated lipid emulsion were observed and predicted by the developed model. 90 minutes after introduction of SEDDS, there was 9% and 70% drug release in the absence and presence of digestion, respectively. However, overall drug dissolution in the presence of food-associated lipids occurred over a longer period than without digestion. Conclusion A systems-based mechanistic model incorporating simultaneous dynamic processes occurring upon dosing of drug with lipids enabled prediction of aqueous drug concentration profile. This model, once incorporated with a pharmacokinetic model considering processes of drug absorption and drug lymphatic transport in the presence of lipids, could be highly useful for quantitative prediction of impact of lipids on bioavailability of drugs. PMID:24234918

  16. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    PubMed

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  18. Lipids from yeasts and fungi: physiology, production and analytical considerations.

    PubMed

    Athenaki, M; Gardeli, C; Diamantopoulou, P; Tchakouteu, S S; Sarris, D; Philippoussis, A; Papanikolaou, S

    2018-02-01

    The last years there has been a significant rise in the number of publications in the international literature that deal with the production of lipids by microbial sources (the 'single cell oils; SCOs' that are produced by the so-called 'oleaginous' micro-organisms). In the first part of the present review article, a general overview of the oleaginous micro-organisms (mostly yeasts, algae and fungi) and their potential upon the production of SCOs is presented. Thereafter, physiological and kinetic events related with the production of, mostly, yeast and fungal lipids when sugars and related substrates like polysaccharides, glycerol, etc. (the de novo lipid accumulation process) or hydrophobic substrates like oils and fats (the ex novo lipid accumulation process) were employed as microbial carbon sources, are presented and critically discussed. Considerations related with the degradation of storage lipid that had been previously accumulated inside the cells, are also presented. The interplay of the synthesis of yeast and fungal lipids with other intracellular (i.e. endopolysaccharides) or extracellular (i.e. citric acid) secondary metabolites synthesized is also presented. Finally, aspects related with the lipid extraction and lipidome analysis of the oleaginous micro-organisms are presented and critically discussed. © 2017 The Society for Applied Microbiology.

  19. Elucidation of penetration enhancement mechanism of Emu oil using FTIR microspectroscopy at EMIRA laboratory of SESAME synchrotron.

    PubMed

    Mansour, Randa S H; Sallam, Alsayed A; Hamdan, Imad I; Khalil, Enam A; Yousef, Ibraheem

    2017-10-05

    It has been proposed that Emu oil possesses skin permeation-enhancing effect. This study aimed to address its possible penetration enhancement mechanism(s) using IR microscopy, in accordance with LPP theory. The penetration of Emu oil through the layers of human skin was accomplished by monitoring oil-IR characteristic feature at 3006cm -1 . The unsaturated components of Emu oil accumulated at about 270μm depth of skin surface. The interaction of Emu oil with lipid and protein constituents of SC was investigated in comparison with a commonly used enhancer, IPM. Inter-sample spectral differences were identified using PCA and linked with possible enhancement mechanisms. Emu oil treatment caused a change in the slope of the right contour of amide I band of the protein spectral range. This was also clear in the second derivative spectra where the emergence of a new shoulder at higher frequency was evident, suggesting disorganization of keratin α-helix structure. This effect could be a result of disruption of some hydrogen bonds in which amide CO and NH groups of keratin are involved. The low intensity of the emerged shoulder is also in agreement with formation of weaker hydrogen bonds. IPM did not affect the protein component. No conclusions regarding the effect of penetration enhancers on the SC lipids were obtained. This was due to the overlap of the endogenous (skin) and exogenous (oil) CH stretching and scissoring frequencies. The SC carbonyl stretching peak disappeared as a result of IPM treatment which may reflect some degree of lipid extraction. Copyright © 2017. Published by Elsevier B.V.

  20. Elucidation of penetration enhancement mechanism of Emu oil using FTIR microspectroscopy at EMIRA laboratory of SESAME synchrotron

    NASA Astrophysics Data System (ADS)

    Mansour, Randa S. H.; Sallam, Alsayed A.; Hamdan, Imad I.; Khalil, Enam A.; Yousef, Ibraheem

    2017-10-01

    It has been proposed that Emu oil possesses skin permeation-enhancing effect. This study aimed to address its possible penetration enhancement mechanism(s) using IR microscopy, in accordance with LPP theory. The penetration of Emu oil through the layers of human skin was accomplished by monitoring oil-IR characteristic feature at 3006 cm- 1. The unsaturated components of Emu oil accumulated at about 270 μm depth of skin surface. The interaction of Emu oil with lipid and protein constituents of SC was investigated in comparison with a commonly used enhancer, IPM. Inter-sample spectral differences were identified using PCA and linked with possible enhancement mechanisms. Emu oil treatment caused a change in the slope of the right contour of amide I band of the protein spectral range. This was also clear in the second derivative spectra where the emergence of a new shoulder at higher frequency was evident, suggesting disorganization of keratin α-helix structure. This effect could be a result of disruption of some hydrogen bonds in which amide Cdbnd O and Nsbnd H groups of keratin are involved. The low intensity of the emerged shoulder is also in agreement with formation of weaker hydrogen bonds. IPM did not affect the protein component. No conclusions regarding the effect of penetration enhancers on the SC lipids were obtained. This was due to the overlap of the endogenous (skin) and exogenous (oil) CH stretching and scissoring frequencies. The SC carbonyl stretching peak disappeared as a result of IPM treatment which may reflect some degree of lipid extraction.

  1. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Structured lipid emulsion as nutritional therapy for the elderly patients with severe sepsis.

    PubMed

    Chen, Jin; Yan, Jing; Cai, Guo-Long; Xu, Qiang-Hong; Gong, Shi-Jin; Dai, Hai-Wen; Yu, Yi-Hua; Li, Li

    2013-06-01

    The nutritional support is one of the important therapeutic strategies for the elderly patients with severe sepsis, but there is controversial in choosing a parenteral nutrition formulation. This study was designed to compare the therapeutic effects of structured lipid emulsion, physically mixed medium, and long-chain fat emulsion in the treatment of severe sepsis in elderly patients. A total number of 64 elder patients with severe sepsis were enrolled in the study. After a week of enteral nutritional support, the patients were randomly divided into research (structured lipid emulsion as parenteral alimentation) and control groups (physically mixed medium and long-chain fat emulsion as parenteral alimentation). The alterations of plasma albumin, lipid metabolism, and blood glucose level were recorded after parenteral alimentation and were compared between the two groups. The plasma levels of albumin, prealbumin, cholesterol, and triglyceride were decreased in all the patients after one week of enteral nutritional support treatment (t = 7.78, P = 0.000; t = 10.21, P = 0.000; t = 7.99, P = 0.000; and t = 10.99, P = 0.000). Further parenteral alimentation with different lipid emulsions had significant effects on the serum prealbumin and albumin (t = 3.316, P = 0.002; t = 3.200, P = 0.002), whilst had no effects on the blood glucose and triglyceride level (t = 7.78, P = 0.000; t = 4.228, P = 0.000). In addition, the two groups had a significantly different Apache II score, ventilator time, and hospital stay time (t = -2.213, P = 0.031; t = 2.317, P = 0.024; t = 2.514, P = 0.015). The structured lipid emulsion was safe as parenteral nutrition for elderly patients with severe sepsis. It was demonstrated to be superior to the physically mixed medium and long-chain fat emulsion with respect to the protein synthesis and prognosis.

  3. The Biophysics and Cell Biology of Lipid Droplets

    PubMed Central

    Thiam, A. Rachid; Farese, Robert V.; Walther, Tobias C.

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that are found in most cells, where they have fundamental and dynamic roles in metabolism. Recent investigations showed the importance of basic biophysical principles of emulsions for LD biology. At their essence, LDs are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, LDs require specialized mechanisms for their formation, growth, and shrinkage. Such mechanisms enable cells to use emulsified oil in a controlled manner (e.g., when demands for metabolic energy or membrane synthesis increase). Regulation of the composition of the phospholipid surfactants at the LD surface is crucial for LD growth and catabolism and also modifies protein targeting to LD surfaces. Here, we review new insights into the cell biology of LDs, with an emphasis on concepts of emulsion science and biophysics that apply to this organelle. PMID:24220094

  4. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO), and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl, and n-butyl, using radical initiator. A staged addition of the lipid and the initiator was needed...

  5. The smooth-hound lipolytic system: Biochemical characterization of a purified digestive lipase, lipid profile and in vitro oil digestibility.

    PubMed

    Achouri, Neila; Smichi, Nabil; Gargouri, Youssef; Miled, Nabil; Fendri, Ahmed

    2017-09-01

    In order to identify fish enzymes displaying novel biochemical properties, we choose the common smooth-hound (Mustelus mustelus) as a starting biological material to characterize the digestive lipid hydrolyzing enzyme. A smooth-hound digestive lipase (SmDL) was purified from a delipidated pancreatic powder. The SmDL molecular weight was around 50kDa. Specific activities of 2200 and 500U/mg were measured at pH 9 and 40°C using tributyrin and olive oil emulsion as substrates, respectively. Unlike known mammal pancreatic lipases, the SmDL was stable at 50°C and it retained 90% of its initial activity after 15min of incubation at 60°C. Interestingly, bile salts act as an activator of the SmDL. It's worth to notice that the SmDL was also salt-tolerant since it was active in the presence of high salt concentrations reaching 0.8M. Fatty acid (FA) analysis of oil from the smooth-hound viscera showed a dominance of unsaturated ones (UFAs). Interestingly, the major n-3 fatty acids were DHA and EPA with contents of 18.07% and 6.14%, respectively. In vitro digestibility model showed that the smooth hound oil was efficiently hydrolyzed by pancreatic lipases, which suggests the higher assimilation of fish oils by consumers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation and characterization of carnauba wax nanostructured lipid carriers containing benzophenone-3.

    PubMed

    Lacerda, S P; Cerize, N N P; Ré, M I

    2011-08-01

    Nanostructured lipid carriers (NLCs) are potential active delivery systems based on mixtures of solid lipids and liquid oil. In this paper, aqueous dispersions of NLCs were prepared by a hot high-pressure homogenization technique using carnauba wax as the solid lipid and isodecyl oleate as the liquid oil. The preparation and stability parameters of benzophenone-3-loaded NLCs have been investigated concerning particle size, zeta potential and loading capacity to encapsulate benzophenone-3, a molecular sunscreen. The current investigation illustrates the effect of the composition of the lipid mixture on the entrapment efficiency, in vitro release and stability of benzophenone-3-loaded in these NLCs. A loading capacity of approximately 5% of benzophenone-3 (m(BZ-3) /m(lipids) ) was characteristic of these systems. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation.

    PubMed

    Tang, Mingguo; Guschina, Irina A; O'Hara, Paul; Slabas, Antoni R; Quant, Patti A; Fawcett, Tony; Harwood, John L

    2012-10-01

    Metabolic control analysis allows the study of metabolic regulation. We applied both single- and double-manipulation top-down control analysis to examine the control of lipid accumulation in developing oilseed rape (Brassica napus) embryos. The biosynthetic pathway was conceptually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block B)) connected by a single system intermediate, the acyl-coenzyme A (acyl-CoA) pool. Single manipulation used exogenous oleate. Triclosan was used to inhibit specifically Block A, whereas diazepam selectively manipulated flux through Block B. Exogenous oleate inhibited the radiolabelling of fatty acids from [1-(14)C]acetate, but stimulated that from [U-14C]glycerol into acyl lipids. The calculation of group flux control coefficients showed that c. 70% of the metabolic control was in the lipid assembly block of reactions. Monte Carlo simulations gave an estimation of the error of the resulting group flux control coefficients as 0.27±0.06 for Block A and 0.73±0.06 for Block B. The two methods of control analysis gave very similar results and showed that Block B reactions were more important under our conditions. This contrasts notably with data from oil palm or olive fruit cultures and is important for efforts to increase oilseed rape lipid yields. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  8. Blood lipid-lowering and antioxidant effects of a structured lipid containing monoacylglyceride enriched with monounsaturated fatty acids in C57BL/6 mice.

    PubMed

    Cho, Kyung-Hyun; Lee, Jeung-Hee; Kim, Jin-Man; Park, Sang Hyun; Choi, Myung-Sook; Lee, Yun-Mi; Choi, Inho; Lee, Ki-Teak

    2009-04-01

    We recently reported that a synthetic edible oil-containing monoacylglyceride (MAG) and diacylglyceride (DAG) exerted anti-atherosclerotic effects. In order to further investigate the activities and individual effects of MAG and DAG on the atherosclerotic process, we prepared a structured oil with various MAG and DAG contents and tested them both in vitro and in vivo, using C57BL/6 mice. The structured oil to be tested was mixed (final concentration 5%, wt/wt) with a high-cholesterol high-fat diet (1.2% cholesterol/15% fat/0.5% sodium cholate) and provided to the mice for 7 weeks. After administration, the mice consuming MAG97%-oil and DAG50%/MAG10%-oil evidenced 17% and 24% decreases in plasma total cholesterol (TC) level, respectively, as compared to a group of mice fed on lard. The experimental mice also had reduced plasma triglyceride concentrations and elevated high-density lipoprotein-cholesterol to TC ratios, by up to 31% in the case of the DAG50%/MAG10%-oil fed mice. The mice fed on MAG97%-oil exhibited elevated plasma antioxidant activity and lecithin:cholesterol acyltransferase activity. Histological assessments of the livers of the mice showed that the consumption of MAG-containing oil attenuated the adhesion of inflammatory cells and also ameliorated fatty liver changes, as compared to what was observed in the case of DAG85%-oil consumption. In conclusion, the MAG-containing oil exhibited anti-inflammatory and antioxidant activities in vivo, as well as in vitro inhibitory activity against human cholesteryl ester transfer protein. These results provide us with new insights into MAG-containing oil in terms of hypocholesterolemic effects and antioxidant activities.

  9. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains.

    PubMed

    Tarafdar, Pradip K; Swamy, Musti J

    2009-11-01

    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  10. Prevention and reversal of intestinal failure-associated liver disease in premature infants with short bowel syndrome using intravenous fish oil in combination with omega-6/9 lipid emulsions.

    PubMed

    Lilja, Helene Engstrand; Finkel, Yigael; Paulsson, Mattias; Lucas, Steven

    2011-07-01

    Although premature infants with short bowel syndrome are at the highest risk of developing intestinal failure-associated liver disease (IFALD), they have great capacity for intestinal growth and adaptation if IFALD can be prevented. Conventional soybean oil-based intravenous lipid emulsions have been associated with IFALD. This study presents data on 5 premature neonates with short bowel syndrome treated with a combination of parenteral fish oil- and olive/soybean-based lipid emulsion for periods ranging between 7 and 17 months. Despite an enteral tolerance of less than 50% in 4 of these patients during their first year of life, direct bilirubin levels normalized while on this combination of ClinOleic (Baxter, Maurepas, France)/Omegaven (Fresenius Kabi, Bad Homburg, Germany) at a 1:1 ratio. None of our patients developed irreversible IFALD even though all of them were premature, had undergone multiple major surgical procedures, and had experienced several episodes of sepsis. Thus far, we have not seen any adverse effects of this mixed lipid emulsion in these preterm infants. All 5 patients are growing and developing well and have normal liver function. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.

    PubMed

    Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel

    2015-12-01

    Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.

  12. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity.

    PubMed

    Puglia, Carmelo; Lauro, Maria Rosaria; Offerta, Alessia; Crascì, Lucia; Micicchè, Lucia; Panico, Anna Maria; Bonina, Francesco; Puglisi, Giovanni

    2017-03-01

    Sesamol is a natural phenolic compound extracted from Sesamum indicum seed oil. Sesamol is endowed with several beneficial effects, but its use as a topical agent is strongly compromised by unfavorable chemical-physical properties. Therefore, to improve its characteristics, the aim of the present work was the formulation of nanostructured lipid carriers as drug delivery systems for topical administration of sesamol.Two different nanostructured lipid carrier systems have been produced based on the same solid lipid (Compritol® 888 ATO) but in a mixture with two different kinds of oil phase such as Miglyol® 812 (nanostructured lipid carrier-M) and sesame oil (nanostructured lipid carrier-PLUS). Morphology and dimensional distribution of nanostructured lipid carriers have been characterized by differential scanning calorimetry and photon correlation spectroscopy, respectively. The release pattern of sesamol from nanostructured lipid carriers was evaluated in vitro determining drug percutaneous absorption through excised human skin. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity.From the results obtained, the method used to formulate nanostructured lipid carriers led to a homogeneous dispersion of particles in a nanometric range. Sesamol has been encapsulated efficiently in both nanostructured lipid carriers, with higher encapsulation efficiency values (> 90 %) when sesame oil was used as the oil phase (nanostructured lipid carrier-PLUS). In vitro evidences show that nanostructured lipid carrier dispersions were able to control the rate of sesamol diffusion through the skin, with respect to the reference formulations.Furthermore, the oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of sesamol, especially when vehiculated by nanostructured lipid carrier-PLUS. Georg Thieme Verlag KG Stuttgart · New York.

  13. Effects of parenteral infusion with medium-chain triglycerides and safflower oil emulsions on hepatic lipids, plasma amino acids and inflammatory mediators in septic rats.

    PubMed

    Yeh, S; Chao, C; Lin, M; Chen, W

    2000-04-01

    This study was designed to investigate the effects of preinfusion with total parenteral nutrition (TPN) using medium-chain triglycerides (MCT) versus safflower oil (SO) emulsion as fat sources on hepatic lipids, plasma amino acid profiles, and inflammatory-related mediators in septic rats. Normal rats, with internal jugular catheters, were divided into two groups and received TPN. TPN provided 300kcal/kg/day with 40% of the non-protein energy provided as fat. All TPN solutions were isonitrogenous and identical in nutrient composition except for the fat emulsion, which was made of SO or a mixture of MCT and soybean oil (9:1) (MO). After receiving TPN for 6 days, each group of rats was further divided into control and sepsis subgroups. Sepsis was induced by cecal ligation and puncture, whereas control rats received sham operation. All rats were classified into four groups as follows: MCT control group (MOC, n= 8), MCT sepsis group (MOS, n= 8), safflower oil control group (SOC, n= 8), and safflower oil sepsis group (SOS, n= 11). The results of the study demonstrated that the MOS group had lower hepatic lipids than did the SOS group. Plasma leucine and isoleucine levels were significantly lower in the SOS than in the SOC group, but no differences in these two amino acids were observed between the MOC and MOS groups. Plasma arginine levels were significantly lower in septic groups than in those without sepsis despite whether MCT or safflower oil was infused. Plasma glutamine and alanine levels, however, did not differ between septic and non-septic groups either in the SO or MO groups. No differences in interleukin-1b, interleukin-6, tumor necrosis factor-alpha, and leukotriene B(4)concentrations in peritoneal lavage fluid were observed between the two septic groups. These results suggest that catabolic reaction is septic rats preinfused MCT is not as obvious as those preinfused safflower oil. Compared with safflower oil, TPN with MCT administration has better effects on

  14. Palm oil and the heart: A review

    PubMed Central

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-01-01

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono

  15. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers.

    PubMed

    Clarke, R J

    1997-07-25

    A fluorescent ratio method utilizing styrylpyridinium dyes has recently been suggested for the measurement of the membrane dipole potential. Up to now only qualititative measurements have been possible. Here the fluorescence excitation ratio of the dye di-8-ANEPPS has been measured in lipid vesicles composed of a range of saturated and unsaturated phosphatidylcholines. It has been found that the fluorescence ratio is inversely proportional to the surface area occupied by the lipid in its fully hydrated state. This finding allows, by extra- and interpolation, the packing density to be estimated of phosphatidylcholines for which X-ray crystallographic data are not yet available. Comparison of the fluorescence data with literature data of the dipole potential from electrical measurements on monolayers and bilayers allows a calibration curve to be constructed, so that a quantitative determination of the dipole potential using di-8-ANEPPS is possible. It has been found that the value of the dipole potential decreases with increasing unsaturation and, in the case of unsaturated lipids, with increasing length of the hydrocarbon chains. This effect can be explained by the effects of chain packing on the spacing between the headgroups. In addition to the effects of lipid structure on membrane fluidity, these measurements demonstrate the possibility of a direct electrical mechanism for lipid regulation of protein function, in particular of ion transport proteins.

  16. Evidence of health benefits of canola oil

    PubMed Central

    Lin, Lin; Allemekinders, Hanja; Dansby, Angela; Campbell, Lisa; Durance-Tod, Shaunda; Berger, Alvin; Jones, Peter JH

    2013-01-01

    Canola oil-based diets have been shown to reduce plasma cholesterol levels in comparison with diets containing higher levels of saturated fatty acids. Consumption of canola oil also influences biological functions that affect various other biomarkers of disease risk. Previous reviews have focused on the health effects of individual components of canola oil. Here, the objective is to address the health effects of intact canola oil, as this has immediate practical implications for consumers, nutritionists, and others deciding which oil to consume or recommend. A literature search was conducted to examine the effects of canola oil consumption on coronary heart disease, insulin sensitivity, lipid peroxidation, inflammation, energy metabolism, and cancer cell growth. Data reveal substantial reductions in total cholesterol and low-density lipoprotein cholesterol, as well as other positive actions, including increased tocopherol levels and improved insulin sensitivity, compared with consumption of other dietary fat sources. In summary, growing scientific evidence supports the use of canola oil, beyond its beneficial actions on circulating lipid levels, as a health-promoting component of the diet. PMID:23731447

  17. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    PubMed

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  18. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein

    PubMed Central

    Dominguez, Laura; Foster, Leigh; Straub, John E.; Thirumalai, D.

    2016-01-01

    Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer’s disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923−55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923−55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991−55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition. PMID:27559086

  19. Structural organisation and lipid composition of the epicuticular accessory layer of infective larvae of Trichinella spiralis.

    PubMed

    Gounaris, K; Smith, V P; Selkirk, M E

    1996-05-22

    The epicuticle of infective larvae of Trichinella spiralis represents the interface between this intracellular nematode parasite and the cytosol of mammalian skeletal muscle. The macromolecular structures that make up the epicuticle were studied by freeze-fracture electron microscopy and compositional analysis. Three fracture planes were observed: one with a typical plasma membrane-type bilayer organisation which was overlaid by two extended layers of lipid in an inverted cylindrical configuration. This overall structure remained unchanged in response to variations in temperature between 20 degrees C and 45 degrees C. The lipid cylinders were on average 6.8 nm in diameter, with randomly-associated particles that were not dissociated by high-salt treatment, indicative of hydrophobically associated proteins. The majority of the lipids were non-polar, consisting of cholesterol, cholesterol esters, mono- and tri-glycerides, and free fatty acids. Three major classes of phospholipids were identified: phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. Total lipid extracts did not adopt an inverted cylindrical or micellar configuration on isolation, but formed flat sheets of lamellae as did the purified polar and non-polar fractions of the lipids. Isolated lipids did not undergo thermally-induced polymorphism between 20 degrees C and 60 degrees C and there was no pH dependency of the structures adopted. The fatty acid saturation levels of the phospholipids were compatible with the observation that they did not form polymorphic structures on isolation. We suggest that this unusual configuration is probably stabilised by the associated (glyco)proteins and may be required for selective permeation of nutrients from the host cell cytosol and/or for maintaining the high curvature of the parasite within the cell.

  20. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator to the dia...

  1. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the

  2. Edible lipid nanoparticles: digestion, absorption, and potential toxicity.

    PubMed

    McClements, David Julian

    2013-10-01

    Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    PubMed

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  4. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    PubMed Central

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  5. Impact of oil on bacterial community structure in bioturbated sediments.

    PubMed

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria

  6. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Christine S.; Mi, Li-Zhi; Rastinejad, Fraydoon

    2010-11-16

    GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2 {angstrom} crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement ofmore » two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.« less

  7. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania

    PubMed Central

    2012-01-01

    Background A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. Results The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. Conclusions All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils. PMID:22995716

  8. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania.

    PubMed

    Dulf, Francisc V

    2012-09-20

    A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils.

  9. Characterization of 3D Voronoi Tessellation Nearest Neighbor Lipid Shells Provides Atomistic Lipid Disruption Profile of Protein Containing Lipid Membranes

    PubMed Central

    Cheng, Sara Y.; Duong, Hai V.; Compton, Campbell; Vaughn, Mark W.; Nguyen, Hoa; Cheng, Kwan H.

    2015-01-01

    Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data. PMID:25637891

  10. Dietary intake of rapeseed oil as the sole fat nutrient in Wistar rats--lack of increase in plasma lipids and renal lesions.

    PubMed

    Ohara, Naoki; Naito, Yukiko; Nagata, Tomoko; Tachibana, Shigehiro; Okimoto, Mari; Okuyama, Harumi

    2008-12-01

    Dietary rapeseed (canola) oil (CO) given as the only fat nutrient shortens life in stroke-prone spontaneously hypertensive rats (SHRSP), compared with SHRSP given soybean oil (SO) instead of CO. CO ingestion increases plasma lipids and causes renal lesions in SHRSP and in spontaneously hypertensive rats (SHR), and increases plasma lipids also in Wistar Kyoto (WKY) rats, a normotensive counterpart of SHR. This study examined whether or not such unfavorable effects of CO are restricted to these closely related strains. For this purpose Wistar rats, the strain from which these strains were derived, were fed a diet containing 10% CO or SO as the sole fat nutrient for 10 weeks, and changes in clinical signs, urinalysis, blood biochemistry and pathology were compared. CO ingestion did not induce any abnormalities in Wistar rats, except significant increases in plasma concentrations of aldosterone and Na(+), compared with the SO group. Thus, the unfavorable effects of CO ingestion appear to be restricted to SHRSP and its closely related strains. The role of increased aldosterone and Na(+ )in the unfavorable events caused by CO in SHRSP, SHR and WKY rats, and any factors which could induce such increases in aldosterone and Na(+), remain to be elucidated.

  11. Molecular and structural changes induced by essential oils treatments in Vicia faba roots detected by genotoxicity testing.

    PubMed

    Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Donnarumma, Lucia; Mercurio, Giuseppe; Mecozzi, Mauro

    2016-01-01

    Over the last few years, there has been an increased interest in exploiting allelopathy in organic agriculture. The aim of this investigation was to examine the effects of essential oil mixtures in order to establish their allelopathic use in agriculture. Two mixtures of essential oils consisting respectively of tea tree oil (TTO) and clove plus rosemary (C + R) oils were tested. Phytotoxicity and genotoxicity tests on the root meristems of Vicia faba minor were performed. A phytotoxic influence was particularly relevant for C + R mixture, while genotoxicity tests revealed significant results with both C + R oil mixture and TTO. Phenotypic analysis on Vicia faba minor primary roots following C + R oil mixture treatment resulted in callose production, an early symptom attributed to lipid peroxidation. The approach described in this study, based on genotoxicity bioassays, might identify specific DNA damage induced by essential oil treatments. These tests may represent a powerful method to evaluate potential adverse effects of different mixtures of essential oils that might be useful in alternative agriculture. Future studies are focusing on the positive synergism of more complex mixtures of essential oils in order to reduce concentrations of potentially toxic components while at the same time maintaining efficacy in antimicrobial and antifungal management.

  12. Fingerprinting of egg and oil binders in painted artworks by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of lipid oxidation by-products.

    PubMed

    Calvano, C D; van der Werf, I D; Palmisano, F; Sabbatini, L

    2011-06-01

    A matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based approach was applied for the detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products in extracts of small (50-100 μg) samples obtained from painted artworks. Ageing of test specimens under various conditions, including the presence of different pigments, was preliminarily investigated. During ageing, the TAGs and PLs content decreased, whereas the amount of diglycerides, short-chain oxidative products arising from TAGs and PLs, and oxidized TAGs and PLs components increased. The examination of a series of model paint samples gave a clear indication that specific ions produced by oxidative cleavage of PLs and/or TAGs may be used as markers for egg and drying oil-based binders. Their elemental composition and hypothetical structure are also tentatively proposed. Moreover, the simultaneous presence of egg and oil binders can be easily and unambiguously ascertained through the simultaneous occurrence of the relevant specific markers. The potential of the proposed approach was demonstrated for the first time by the analysis of real samples from a polyptych of Bartolomeo Vivarini (fifteenth century) and a "French school" canvas painting (seventeenth century).

  13. Structure of a Bacterial Dynamin-like Protein Lipid Tube Provides a Mechanism For Assembly and Membrane Curving

    PubMed Central

    Low, Harry H.; Sachse, Carsten; Amos, Linda A.; Löwe, Jan

    2009-01-01

    Summary Proteins of the dynamin superfamily mediate membrane fission, fusion, and restructuring events by polymerizing upon lipid bilayers and forcing regions of high curvature. In this work, we show the electron cryomicroscopy reconstruction of a bacterial dynamin-like protein (BDLP) helical filament decorating a lipid tube at ∼11 Å resolution. We fitted the BDLP crystal structure and produced a molecular model for the entire filament. The BDLP GTPase domain dimerizes and forms the tube surface, the GTPase effector domain (GED) mediates self-assembly, and the paddle region contacts the lipids and promotes curvature. Association of BDLP with GMPPNP and lipid induces radical, large-scale conformational changes affecting polymerization. Nucleotide hydrolysis seems therefore to be coupled to polymer disassembly and dissociation from lipid, rather than membrane restructuring. Observed structural similarities with rat dynamin 1 suggest that our results have broad implication for other dynamin family members. PMID:20064379

  14. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study [Atomic-level structure of carbon nanotube porins in lipid bilayers: an in-situ small-angle x-ray scattering (SAXS) study

    DOE PAGES

    Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon; ...

    2016-06-20

    Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less

  15. Effect of Grape Seed Proanthocyanidin-Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions.

    PubMed

    Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long

    2015-11-25

    The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.

  16. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    PubMed

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  17. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation

    PubMed Central

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-01-01

    Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763

  18. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.

    PubMed

    Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J

    2014-01-15

    Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. © 2013.

  19. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  20. Synthesis, activity, and structure--activity relationship studies of novel cationic lipids for DNA transfer.

    PubMed

    Byk, G; Dubertret, C; Escriou, V; Frederic, M; Jaslin, G; Rangara, R; Pitard, B; Crouzet, J; Wils, P; Schwartz, B; Scherman, D

    1998-01-15

    We have designed and synthesized original cationic lipids for gene delivery. A synthetic method on solid support allowed easy access to unsymmetrically monofunctionalized polyamine building blocks of variable geometries. These polyamine building blocks were introduced into cationic lipids. To optimize the transfection efficiency in the novel series, we have carried out structure-activity relationship studies by introduction of variable-length lipids, of variable-length linkers between lipid and cationic moiety, and of substituted linkers. We introduce the concept of using the linkers within cationic lipids molecules as carriers of side groups harboring various functionalities (side chain entity), as assessed by the introduction of a library composed of cationic entities, additional lipid chains, targeting groups, and finally the molecular probes rhodamine and biotin for cellular traffic studies. The transfection activity of the products was assayed in vitro on Hela carcinoma, on NIH3T3, and on CV1 fibroblasts and in vivo on the Lewis Lung carcinoma model. Products from the series displayed high transfection activities. Results indicated that the introduction of a targeting side chain moiety into the cationic lipid is permitted. A primary physicochemical characterization of the DNA/lipid complexes was demonstrated with this leading compound. Selected products from the series are currently being developed for preclinical studies, and the labeled lipopolyamines can be used to study the intracellular traffic of DNA/cationic lipid complexes.

  1. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects.

    PubMed

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-06-07

    Lipid metabolism has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids ( d = 11 markers), ceramides ( d = 10), and lyosophosphatidic acids ( d = 6). They were analyzed in cohorts of MS patients ( n = 102) and healthy subjects ( n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS.

  2. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects

    PubMed Central

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-01-01

    Lipid signaling has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids (d = 11 markers), ceramides (d = 10), and lyosophosphatidic acids (d = 6). They were analyzed in cohorts of MS patients (n = 102) and healthy subjects (n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS. PMID:28590455

  3. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation

    DOE PAGES

    Cai, Yingqi; Goodman, Joel M.; Pyc, Michal; ...

    2015-09-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especiallymore » SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Finally, overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.« less

  4. Structure- and oil type-based efficacy of emulsion adjuvants.

    PubMed

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  5. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    PubMed

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  6. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  7. Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots.

    PubMed

    Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Xiao, Hang; Zhang, Guodong; Decker, Eric Andrew; McClements, David Julian

    2015-12-09

    The influence of the nature of the lipid phase in excipient emulsions on the bioaccessibility and transformation of carotenoid from carrots was investigated using a gastrointestinal tract (GIT) model. Excipient emulsions were fabricated using whey protein as an emulsifier and medium-chain triglycerides (MCT), fish oil, or corn oil as the oil phase. Changes in particle size, charge, and microstructure were measured as the carrot-emulsion mixtures were passed through simulated mouth, stomach, and small intestine regions. Carotenoid bioaccessibility depended on the type of lipids used to form the excipient emulsions (corn oil > fish oil ≫ MCT), which was attributed to differences in the solubilization capacity of mixed micelles formed from different lipid digestion products. The transformation of carotenoids was greater for fish oil and corn oil than for MCT, which may have been due to greater oxidation or isomerization. The bioaccessibility of the carotenoids was higher from boiled than raw carrots, which was attributed to greater disruption of the plant tissue facilitating carotenoid release. In conclusion, excipient emulsions are highly effective at increasing carotenoid bioaccessibility from carrots, but lipid type must be optimized to ensure high efficacy.

  8. Wheat germ oil and α-lipoic acid predominantly improve the lipid profile of broiler meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad

    2013-11-20

    In response to recent assertions that synthetic antioxidants may have the potential to cause toxic effects and to consumers' increased attention to consuming natural products, the poultry industry has been seeking sources of natural antioxidants, alone or in combination with synthetic antioxidants that are currently being used by the industry. The present study was conducted to determine the effect of α-lipoic acid, α-tocopherol, and wheat germ oil on the status of antioxidant enzymes, fatty acid profile, and serum biochemical profile of broiler blood. One-day-old (180) broiler birds were fed six different feeds varying in their antioxidant content: no addition (T1), natural α-tocopherol (wheat germ oil, T2), synthetic α-tocopherol (T3), α-lipoic acid (T4), α-lipoic acid together with natural α-tocopherol (T5), and α-lipoic acid together with synthetic α-tocopherol (T6). The composition of saturated and unsaturated fatty acids in the breast and leg meat was positively influenced by the different dietary supplements. The content of fatty acid was significantly greater in broilers receiving T2 both in breast (23.92%) and in leg (25.82%) meat, whereas lower fatty acid levels was found in broilers receiving diets containing T6 in the breast (19.57%) and leg (21.30%) meat. Serum total cholesterol (113.42 mg/dL) and triglycerides (52.29 mg/dL) were lowest in the group given natural α-tocopherol and α-lipoic acid. Wheat germ oil containing natural α-tocopherol alone or with α-lipoic acid was more effective than synthetic α-tocopherol in raising levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase while lowering plasma total cholesterol, low-density lipoprotein, and triglycerides and raising high-density lipoprotein and plasma protein significantly. It was concluded that the combination of wheat germ oil and α-lipoic acid is helpful in improving the lipid profile of broilers.

  9. Marsh canopy structure changes and the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  10. Molecular simulations of lipid systems: Edge stability and structure in pure and mixed bilayers

    NASA Astrophysics Data System (ADS)

    Jiang, Yong

    2007-12-01

    Understanding the structural, mechanical and dynamical properties of lipid self-assembled systems is fundamental to understand the behavior of the cell membrane. This thesis has investigated the equilibrium properties of lipid systems with edge defects through various molecular simulation techniques. The overall goal of this study is to understand the free energy terms of the edges and to develop efficient methods to sample equilibrium distributions of mixed-lipid systems. In the first main part of my thesis, an atomistic molecular model is used to study lipid ribbon which has two edges on both sides. Details of the edge structures, such as area per lipid and tail torsional statistics are presented. Line tension, calculated from pressure tensor in MD simulation has good agreement with result from other sources. To further investigate edge properties on a longer timescale and larger length scale, we have applied a coarse-grained forcefield on mixed lipid systems and try to interpret the edge fluctuations in terms of free energy parameters such as line tension and bending modulus. We have identified two regimes with quite different edge behavior: a high line tension regime and a low line tension regime. The last part of this thesis focuses on a hybrid Molecular dynamics and Configurational-bias Monte Carlo (MCMD) simulation method in which molecules can change their type by growing and shrinking the terminal acyl united carbon atoms. A two-step extension of the MCMD method has been developed to allow for a larger difference in the components' tail lengths. Results agreed well with previous one-step mutation results for a mixture with a length difference of four carbons. The current method can efficiently sample mixtures with a length difference of eight carbons, with a small portion of lipids of intermediate tail length. Preliminary results are obtained for "bicelle"-type (DMPC/DHPC) ribbons.

  11. Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization.

    PubMed

    Pintado, T; Ruiz-Capillas, C; Jiménez-Colmenero, F; Carmona, P; Herrero, A M

    2015-10-15

    This paper reports on the development of olive oil-in-water emulsion gels containing chia (Salvia hispanica L.) (flour or seed) and cold gelling agents (transglutaminase, alginate or gelatin). The technological and structural characteristics of these emulsion gels were evaluated. Both structural and technological changes in emulsion gels resulting from chilled storage were also determined. The color and texture of emulsion gels depend on both the cold gelling agents used and chilled storage. Lipid oxidation increased (p < 0.05) during storage in emulsion gels containing transglutaminase or alginate. Analyses of the half-bandwidth of the 2923 cm(-1) band and the area of the 3220 cm(-1) band suggest that the order/disorder of the oil lipid chain related to lipid interactions and droplet size in the emulsion gels could be decisive in determining their textural properties. The half-bandwidth of 2923 cm(-1) band and area of 3220 cm(-1) band did not show significant differences during chilled storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optimization of lipid profile and hardness of low-fat mortadella following a sequential strategy of experimental design.

    PubMed

    Saldaña, Erick; Siche, Raúl; da Silva Pinto, Jair Sebastião; de Almeida, Marcio Aurélio; Selani, Miriam Mabel; Rios-Mera, Juan; Contreras-Castillo, Carmen J

    2018-02-01

    This study aims to optimize simultaneously the lipid profile and instrumental hardness of low-fat mortadella. For lipid mixture optimization, the overlapping of surface boundaries was used to select the quantities of canola, olive, and fish oils, in order to maximize PUFAs, specifically the long-chain n-3 fatty acids (eicosapentaenoic-EPA, docosahexaenoic acids-DHA) using the minimum content of fish oil. Increased quantities of canola oil were associated with higher PUFA/SFA ratios. The presence of fish oil, even in small amounts, was effective in improving the nutritional quality of the mixture, showing lower n-6/n-3 ratios and significant levels of EPA and DHA. Thus, the optimal lipid mixture comprised of 20, 30 and 50% fish, olive and canola oils, respectively, which present PUFA/SFA (2.28) and n-6/n-3 (2.30) ratios within the recommendations of a healthy diet. Once the lipid mixture was optimized, components of the pre-emulsion used as fat replacer in the mortadella, such as lipid mixture (LM), sodium alginate (SA), and milk protein concentrate (PC), were studied to optimize hardness and springiness to target ranges of 13-16 N and 0.86-0.87, respectively. Results showed that springiness was not significantly affected by these variables. However, as the concentration of the three components increased, hardness decreased. Through the desirability function, the optimal proportions were 30% LM, 0.5% SA, and 0.5% PC. This study showed that the pre-emulsion decreases hardness of mortadella. In addition, response surface methodology was efficient to model lipid mixture and hardness, resulting in a product with improved texture and lipid quality.

  13. Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2016-07-01

    Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.

  14. [Fatty acid of Rkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seeds oil and its comparative byological activity].

    PubMed

    Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A

    2012-11-01

    The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.

  15. Approaches of Russian oil companies to optimal capital structure

    NASA Astrophysics Data System (ADS)

    Ishuk, T.; Ulyanova, O.; Savchitz, V.

    2015-11-01

    Oil companies play a vital role in Russian economy. Demand for hydrocarbon products will be increasing for the nearest decades simultaneously with the population growth and social needs. Change of raw-material orientation of Russian economy and the transition to the innovative way of the development do not exclude the development of oil industry in future. Moreover, society believes that this sector must bring the Russian economy on to the road of innovative development due to neo-industrialization. To achieve this, the government power as well as capital management of companies are required. To make their optimal capital structure, it is necessary to minimize the capital cost, decrease definite risks under existing limits, and maximize profitability. The capital structure analysis of Russian and foreign oil companies shows different approaches, reasons, as well as conditions and, consequently, equity capital and debt capital relationship and their cost, which demands the effective capital management strategy.

  16. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Influence of medium-chain triglycerides on lipid metabolism in the rat.

    PubMed

    Leveille, G A; Pardini, R S; Tillotson, J A

    1967-07-01

    Lipid metabolism was studied in rats fed diets containing corn oil, coconut oil, or medium-chain triglyceride (MCT), a glyceride mixture containing fatty acids of 8 and 10 carbons in length. The ingestion of MCT-supplemented, cholesterolfree diets depressed plasma and liver total lipids and cholesterol as compared with corn oil-supplemented diets. In rats fed cholesterol-containing diets, plasma cholesterol levels were not influenced by dietary MCT, but liver cholesterol levels were significantly lower than in animals fed corn oil. In vitro cholesterol synthesis from acetate-1-(14)C was lower in liver slices of rats that consumed MCT than in similar preparations from corn oil-fed rats. Studies of fatty acid carboxyl labeling from acetate-1-(14)C and the conversion of palmitate-1-(14)C to C(18) acids by liver slices showed that chain-lengthening activity is greater in the liver tissue of rats fed MCT than in the liver of animals fed corn oil. The hepatic fatty acid desaturation mechanisms, evaluated by measuring the conversion of stearate-2-(14)C to oleate, was also enhanced by feeding MCT.Adipose tissue of rats fed MCT converts acetate-1-(14)C to fatty acids at a much faster rate than does tissue from animals fed corn oil. Evidence is presented to show that the enhanced incorporation of acetate into fatty acids by the adipose tissue of rats fed MCT represents de novo synthesis of fatty acids and not chain-lengthening activity. Data are also presented on the fatty acid composition of plasma, liver, and adipose tissue lipids of rats fed the different fats under study.

  18. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    PubMed Central

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.

    2011-01-01

    Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815

  19. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    PubMed

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G

    2011-02-14

    SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  20. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    PubMed

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.