These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Advancements Toward Oil-Free Rotorcraft Propulsion  

NASA Technical Reports Server (NTRS)

NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.

Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.

2010-01-01

2

Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept  

NASA Technical Reports Server (NTRS)

Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.

Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

2008-01-01

3

High-speed rotorcraft propulsion  

NASA Technical Reports Server (NTRS)

Recently completed high-speed rotorcraft design studies for NASA provide the basis to assess technology needs for the development of these aircraft. Preliminary analysis of several concepts possessing helicopter-like hover characteristics and cruise capabilities in the 450 knot regime, led to the selection of two concepts for further study. The concepts selected included the Rotor/Wing and the Tilt Wing. The two unique concepts use turbofan and turboshaft engines respectively. Designs, based on current technology for each, established a baseline configuration from which technology trade studies could be conducted. Propulsion technology goals from the IHPTET program established the advanced technolgy year. Due to high-speed requirements, each concept possesses its own unique propulsion challenges. Trade studies indicate that achieving th IHPTET Phase III goals significantly improves the effectiveness of both concepts. Increased engine efficiency is particularly important to VTOL aircraft by reducing gross weight.

Rutherford, John W.; Fitzpatrick, Robert E.

1991-01-01

4

Propulsion System Models for Rotorcraft Conceptual Design  

NASA Technical Reports Server (NTRS)

The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

Johnson, Wayne

2014-01-01

5

Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System  

NASA Technical Reports Server (NTRS)

An optimized rotorcraft propulsion system incorporating a foil air bearing supported Oil-Free engine coupled to a high power density gearbox using high viscosity gear oil is explored. Foil air bearings have adequate load capacity and temperature capability for the highspeed gas generator shaft of a rotorcraft engine. Managing the axial loads of the power turbine shaft (low speed spool) will likely require thrust load support from the gearbox through a suitable coupling or other design. Employing specially formulated, high viscosity gear oil for the transmission can yield significant improvements (approx. 2X) in allowable gear loading. Though a completely new propulsion system design is needed to implement such a system, improved performance is possible.

DellaCorte, Christopher; Bruckner, Robert J.

2007-01-01

6

Rotorcraft flight-propulsion control integration  

NASA Technical Reports Server (NTRS)

The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories have initiated and completed, in part, a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the T700 and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. G. C.

1988-01-01

7

Development of a rotorcraft. Propulsion dynamics interface analysis, volume 1  

NASA Technical Reports Server (NTRS)

The details of the modeling process and its implementation approach are presented. A generic methodology and model structure for performing coupled propulsion/rotor response analysis that is applicable to a variety of rotorcraft types was developed. A method for parameterizing the model structure to represent a particular rotorcraft is defined. The generic modeling methodology, the development of the propulsion system and the rotor/fuselage models, and the formulation of the resulting coupled rotor/propulsion system model are described. A test case that was developed is described.

Hull, R.

1982-01-01

8

Rotorcraft flight-propulsion control integration: An eclectic design concept  

NASA Technical Reports Server (NTRS)

The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

1988-01-01

9

Technical Seminar: Oil-Free Turbomachinery for Rotorcraft - Duration: 1:14:34.  

NASA Video Gallery

Rotorcraft engines are among the most demanding applications for conventional oil-lubricated bearings because they must operate with extreme reliability and the highest possible power density. Rece...

10

Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion  

NASA Technical Reports Server (NTRS)

The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

Doernbach, Jay

1990-01-01

11

A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies  

NASA Technical Reports Server (NTRS)

A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

2012-01-01

12

A rotorcraft flight/propulsion control integration study  

NASA Technical Reports Server (NTRS)

An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

Ruttledge, D. G. C.

1986-01-01

13

NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics  

NASA Technical Reports Server (NTRS)

The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.

1988-01-01

14

Rotorcraft convertible engine study  

NASA Technical Reports Server (NTRS)

The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

Gill, J. C.; Earle, R. V.; Mar, H. M.

1982-01-01

15

Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics  

NASA Technical Reports Server (NTRS)

This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

2013-01-01

16

Test stand performance of a convertible engine for advanced V/STOL and rotorcraft propulsion  

NASA Technical Reports Server (NTRS)

A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed V/STOL and rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque.

Mcardle, Jack G.

1987-01-01

17

NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 5: Propulsion Session  

NASA Technical Reports Server (NTRS)

The expressed needs and priorities of the civil helicopter users, the existing research efforts, and technology requirements as perceived by leading airframe and engine manufacturers were addressed, compared, and evaluated. Specifically, the observations and conclusions of these areas as they relate to the helicopter propulsion system are reported.

1980-01-01

18

Recent developments in the simulation of steady and transient transverse jet interactions for missile, rotorcraft, and propulsive applications  

NASA Astrophysics Data System (ADS)

A review of recent activities focused on the simulation of transverse jet interaction problems using advanced time-asymptotic and time-accurate Navier-Stokes methodology is presented. Missile work has involved the simulation of short-duration control jets issued from solid rocket motor nozzles. For the simulation of time-accurate particle-laden flows, a new Eulerian-based upwind/implicit particle-solver was developed and coupled with the gas-phase solver. Rotorcraft work has involved simulating the interaction of the exhaust plumes with the rotor wake and body aerodynamic flow. Hybrid vortex tracking/Navier-stokes methodology has been implemented with gridding of this complex 3D interactive flow being an issue of primary concern. Propulsive work has emphasized turbulence modeling. For scramjet fuel-injection applications, compressible-dissipation extensions to the k-epsilon turbulence model which provided marked improvements in simulating fundamental high-speed shear layers, have proven to work quite well for transverse jet injection.

Dash, S. M.; York, B. J.; Sinha, N.; Lee, R. A.; Hosangadi, A.; Kenzakowski, D. C.

1993-11-01

19

Recent developments in the simulation of steady and transient transverse jet interactions for missile, rotorcraft, and propulsive applications  

Microsoft Academic Search

A review of recent activities focused on the simulation of transverse jet interaction problems using advanced time-asymptotic and time-accurate Navier-Stokes methodology is presented. Missile work has involved the simulation of short-duration control jets issued from solid rocket motor nozzles. For the simulation of time-accurate particle-laden flows, a new Eulerian-based upwind\\/implicit particle-solver was developed and coupled with the gas-phase solver. Rotorcraft

S. M. Dash; B. J. York; N. Sinha; R. A. Lee; A. Hosangadi; D. C. Kenzakowski

1993-01-01

20

Oil-Free Turbomachinery Being Developed  

NASA Technical Reports Server (NTRS)

NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.

DellaCorte, Christopher; Valco, Mark J.

2001-01-01

21

Outdoor test stand performance of a convertible engine with variable inlet guide vanes for advanced rotorcraft propulsion  

NASA Technical Reports Server (NTRS)

A variable inlet guide van (VIGV) type convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip airflow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss than was originally estimated. The new calculations confirm that using convertible engines rather than separate lift and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

Mcardle, Jack G.

1986-01-01

22

Rotorcraft Health Management Issues and Challenges  

NASA Technical Reports Server (NTRS)

This paper presents an overview of health management issues and challenges that are specific to rotorcraft. Rotorcraft form a unique subset of air vehicles in that their propulsion system is used not only for propulsion, but also serves as the primary source of lift and maneuvering of the vehicle. No other air vehicle relies on the propulsion system to provide these functions through a transmission system with single critical load paths without duplication or redundancy. As such, health management of the power train is a critical and unique part of any rotorcraft health management system. This paper focuses specifically on the issues and challenges related to the dynamic mechanical components in the main power train. This includes the transmission and main rotor mechanisms. This paper will review standard practices used for rotorcraft health management, lessons learned from fielded trials, and future challenges.

Zakrajsek, James J.; Dempsey, Paula J.; Huff, Edward M.; Augustin, Michael; Safa-Bakhsh, Robab; Ephraim, Piet; Grabil, Paul; Decker, Harry J.

2006-01-01

23

Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft  

NASA Technical Reports Server (NTRS)

Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.

Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel

2013-01-01

24

Propulsion  

ERIC Educational Resources Information Center

An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

Air and Space, 1978

1978-01-01

25

Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings  

NASA Technical Reports Server (NTRS)

Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

Howard, Samuel A.

2007-01-01

26

Variable/Multispeed Rotorcraft Drive System Concepts  

NASA Technical Reports Server (NTRS)

Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.

Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

2009-01-01

27

Advanced rotorcraft technology: Task force report  

NASA Technical Reports Server (NTRS)

The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

1978-01-01

28

Rotorcraft transmissions  

NASA Technical Reports Server (NTRS)

Highlighted here is that portion of the Lewis Research Center's helicopter propulsion systems program that deals with drive train technology and the related mechanical components. The major goals of the program are to increase life, reliability, and maintainability, to reduce weight, noise, and vibration, and to maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development, followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

Coy, John J.

1990-01-01

29

Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

Bauman, Steven W.

2003-01-01

30

Rotorcraft air transportation  

NASA Technical Reports Server (NTRS)

Intermodal relationships and the particular ways in which they affect public transportation applications of rotorcraft are addressed. Some aspects of integrated services and general comparisons with other transportation modes are reviewed. Two potential application scenarios are discussed: down-to-downtown rotorcraft service and urban public transport rotorcraft service. It is concluded that to integrate well with ground access modes community rotorcraft service should be limited stop service with published schedules, and operate on a few specific routes between a few specific destinations. For downtown-to-downtown service, time savings favorable to rotorcraft are benefits that reflect its more direct access, relatively higher line-haul travel speeds, and less circuitous travel. For the scenario of public transport within urban areas, first, improving cruise speeds has a limited potential due to allowing for a ""station spacing'' effect. Secondly, public acceptance of higher acceleration/deceleration rates may be just as effective as a technological innovation as achieving higher cruise speeds.

Gilbert, G. A.

1983-01-01

31

NDARC NASA Design and Analysis of Rotorcraft  

NASA Technical Reports Server (NTRS)

The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

Johnson, Wayne R.

2009-01-01

32

Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft  

NASA Technical Reports Server (NTRS)

In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.

Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob

2013-01-01

33

Rotorcraft Conceptual Design Environment  

NASA Technical Reports Server (NTRS)

Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

Johnson, Wayne; Sinsay, Jeffrey

2009-01-01

34

Rotorcraft Conceptual Design Environment  

NASA Technical Reports Server (NTRS)

Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

Johnson, Wayne; Sinsay, Jeffrey D.

2010-01-01

35

NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine  

NASA Technical Reports Server (NTRS)

In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

Weaver, Harold F.

2003-01-01

36

Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines  

NASA Technical Reports Server (NTRS)

Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.

DellaCorte, Christopher

2004-01-01

37

Milestones in Rotorcraft Aeromechanics  

NASA Technical Reports Server (NTRS)

The subject of this paper is milestones in rotorcraft aeromechanics. Aeromechanics covers much of what the engineer needs: performance, loads, vibration, stability, flight dynamics, noise. These topics cover many of the key performance attributes, and many of the often-encountered problems in rotorcraft designs. A milestone is a critical achievement, a turning point, an event marking a significant change or stage in development. The milestones identified and discussed include the beginnings of aeromechanics with autogyro analysis, ground resonance, aeromechanics books, unsteady aerodynamics and airloads, nonuniform inflow and wakes, beams and dynamics, comprehensive analysis, computational fluid dynamics, and rotor airloads tests. The focus on milestones limits the scope of the history, but allows the author to acknowledge his choices for key steps in the development of the science and engineering of rotorcraft.

Johnson, Wayne

2011-01-01

38

Oil-free compressor benefits explained.  

PubMed

Oil-free technology for the production of medical air is used in many medical gas systems around the world, and is a requirement of the standards in many places. Under the Department of Health's Health Technical Memorandum, HTM O2-O1, this is not the case, although 'oil-free' is an option. Mark Allen, vice-president of Medical Marketing at Atlas Copco/BeaconMedaes, who is involved with the National Fire Protection Association (NFPA) in the US, the Canadian Standards Association (CSA) in Canada, and the ISO SC-6 (a technical committee on indoor air), discusses how harnessing such technology impacts on production of medical air under the pharmacopeia, and the potential opportunities to reduce maintenance and system problems. PMID:25282984

Allen, Mark

2014-09-01

39

Solid Lubricants for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

DellaCorte, Christopher

2005-01-01

40

Advanced Rotorcraft Transmission Program  

NASA Technical Reports Server (NTRS)

The U.S. Army/NASA Advanced Rotorcraft Transmission (ART) program is charged with developing and demonstrating a light, quiet, and durable drivetrain for next-generation rotorcraft in two classes: a 10,000-20,000 Future Attack Air Vehicle capable of both tactical ground support and air-to-air missions, and a 60,000-80,000 lb Advanced Cargo Aircraft, for heavy-lift field-support operations. Specific ART objectives encompass a 25-percent reduction in drivetrain weight, a 10-dB noise level reduction at the transmission source, and the achievement of a 5000-hr MTBF. Four candidate drivetrain systems have been carried to a conceptual design stage, together with projections of their mission performance and life-cycle costs.

Bill, Robert C.

1990-01-01

41

Rotorcraft Dynamics 1984  

NASA Technical Reports Server (NTRS)

In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.

1985-01-01

42

The Role of Tribology in the Development of an Oil-Free Turbocharger  

NASA Technical Reports Server (NTRS)

Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.

Dellacorte, Christopher

1997-01-01

43

Advanced rotorcraft transmission program  

NASA Technical Reports Server (NTRS)

The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

Bill, Robert C.

1990-01-01

44

Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures  

NASA Technical Reports Server (NTRS)

The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

Bauman, Steven W.

1990-01-01

45

Concepts for Variable/Multi-Speed Rotorcraft Drive System  

NASA Technical Reports Server (NTRS)

In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.

Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

2008-01-01

46

NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity  

NASA Technical Reports Server (NTRS)

The Conference Proceedings is a compilation of over 30 technical papers presented at this milestone event which reported on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry rotorcraft research programs over the last 5 to 10 years. The Conference brought together over 230 government, industry, and allied nation conferees to exchange technical information and hear invited technical papers by prominent NASA, Army, and industry researchers covering technology topics which included: aerodynamics, dynamics and elasticity, propulsion and drive systems, flight dynamics and control, acoustics, systems integration, and research aircraft.

1988-01-01

47

Community rotorcraft air transportation benefits and opportunities  

NASA Technical Reports Server (NTRS)

Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.

Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.

1981-01-01

48

Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

The application of Oil-Free technologies (foil gas bearings, solid lubricants and advanced analysis and predictive modeling tools) to advanced turbomachinery has been underway for several decades. During that time, full commercialization has occurred in aircraft air cycle machines, turbocompressors and cryocoolers and ever-larger microturbines. Emerging products in the automotive sector (turbochargers and superchargers) indicate that high volume serial production of foil bearings is imminent. Demonstration of foil bearings in APU s and select locations in propulsion gas turbines illustrates that such technology also has a place in these future systems. Foil bearing designs, predictive tools and advanced solid lubricants have been reported that can satisfy anticipated requirements but a major question remains regarding the scalability of foil bearings to ever larger sizes to support heavier rotors. In this paper, the technological history, primary physics, engineering practicalities and existing experimental and experiential database for scaling foil bearings are reviewed and the major remaining technical challenges are identified.

DellaCorte, Christopher; Bruckner, Robert J.

2010-01-01

49

Rotorcraft and Enabling Robotic Rescue  

NASA Technical Reports Server (NTRS)

This paper examines some of the issues underlying potential robotic rescue devices (RRD) in the context where autonomous or manned rotorcraft deployment of such robotic systems is a crucial attribute for their success in supporting future disaster relief and emergency response (DRER) missions. As a part of this discussion, work related to proof-of-concept prototyping of two notional RRD systems is summarized.

Young, Larry A.

2010-01-01

50

NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture  

NASA Technical Reports Server (NTRS)

The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

Johnson, Wayne

2010-01-01

51

Notes 15. Gas Bearings for oil-free MTM  

E-print Network

in an oil-free environment. DOE, DARPA, NASA interests range from applications as portable fuel cells (< 60 kW) in microengines to midsize gas turbines (< 250 kW) for distributed power and hybrid vehicles. Gas Bearings allow ? weight reduction, energy...

San Andres, Luis

2010-01-01

52

14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5...PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type...

2010-01-01

53

Development of large rotorcraft transmissions  

NASA Technical Reports Server (NTRS)

The U.S. Army Heavy Lift Helicopter (HLH) represents a large rotorcraft which was developed by an American aerospace company. In the early 1970's with the HLH Advanced Technology Components (ATC) program, the development of large rotorcraft transmission and drive systems was started. Failures in the spiral bevel gearing were experienced in tests because the employed method of analysis had not considered the effect of rim bending. Consequently, new gears with strengthened rims were designed and fabricated. For a more accurate prediction of the load capacity of the gears, an extensive Finite Element Method (FEM) system was developed. The U.S. Army's XCH-62 HLH aft rotor transmission was finally successfully tested at full design torque and speed. A description of the test program is provided, and the analytical program is discussed. The analytical phase includes the development of a preprocessing program which aids in the review of calculated FEM stresses.

Samanich, N. E.; Drago, R. J.; Mack, J. C.

1984-01-01

54

NASA's rotorcraft icing research program  

NASA Technical Reports Server (NTRS)

The objective of the NASA aircraft icing research program is to develop and make available icing technology to support the needs and requirements of industry for all weather aircraft designs. While a majority of the technology being developed is viewed to be generic (i.e., appropriate to all vehicle classes), vehicle specific emphasis is being placed on the helicopter due to its unique icing problems. In particular, some of the considerations for rotorcraft icing are indicated. The NASA icing research program emphasizes technology development in two key areas: ice protection concepts and icing simulation (analytical and experimental). The NASA research efforts related to rotorcraft icing in these two technology areas will be reviewed.

Shaw, Robert J.; Reinmann, John J.; Miller, Thomas L.

1988-01-01

55

Advanced Rotorcraft Transmission (ART) Program summary  

Microsoft Academic Search

The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART

T. L. Krantz; J. G. Kish

1992-01-01

56

Wireless Sensors Pinpoint Rotorcraft Troubles  

NASA Technical Reports Server (NTRS)

Helicopters present many advantages over fixed-wing aircraft: they can take off from and land in tight spots, they can move in any direction with relative ease, and they can hover in one area for extended periods of time. But that maneuverability comes with costs. For example, one persistent issue in helicopter maintenance and operation is that their components are subject to high amounts of wear compared to fixed-wing aircraft. In particular, the rotor drive system that makes flight possible undergoes heavy vibration during routine performance, slowly degrading components in a way that can cause failures if left unmonitored. The level of attention required to ensure flight safety makes helicopters very expensive to maintain. As a part of NASA s Fundamental Aeronautics Program, the Subsonic Rotary Wing Project seeks to advance knowledge about and improve prediction capabilities for rotorcraft, with the aim of developing technology that will meet future civilian requirements like higher efficiency and lower noise flights. One of the program s goals is to improve technology to detect and assess the health of critical components in rotorcraft drive systems.

2013-01-01

57

Rotorcraft convertible engines for the 1980s  

NASA Technical Reports Server (NTRS)

Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.

Eisenberg, J. D.

1982-01-01

58

NASA Heavy Lift Rotorcraft Systems Investigation  

NASA Technical Reports Server (NTRS)

The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

2005-01-01

59

Oil-Free Shaft Support System Rotordynamics: Past, Present, and Future Challenges and Opportunities  

NASA Technical Reports Server (NTRS)

Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings, and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward.

DellaCorte, Christopher

2011-01-01

60

Oil-Free shaft support system rotordynamics: Past, present and future challenges and opportunities  

NASA Astrophysics Data System (ADS)

Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward.

DellaCorte, Christopher

2012-05-01

61

14 CFR 29.181 - Dynamic stability: Category A rotorcraft.  

Code of Federal Regulations, 2010 CFR

...Space 1 2010-01-01 2010-01-01 false Dynamic stability: Category A rotorcraft. 29.181 Section 29... Flight Flight Characteristics § 29.181 Dynamic stability: Category A rotorcraft. Any short-period...

2010-01-01

62

Advanced Rotorcraft Transmission (ART) program  

NASA Technical Reports Server (NTRS)

Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of $165K, per unit, and an average transmission direct operating cost savings of 33 percent, or $24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized.

Heath, Gregory F.; Bossler, Robert B., Jr.

1993-01-01

63

Techniques for designing rotorcraft control systems  

NASA Technical Reports Server (NTRS)

This report summarizes the work that was done on the project from 1 Apr. 1992 to 31 Mar. 1993. The main goal of this research is to develop a practical tool for rotorcraft control system design based on interactive optimization tools (CONSOL-OPTCAD) and classical rotorcraft design considerations (ADOCS). This approach enables the designer to combine engineering intuition and experience with parametric optimization. The combination should make it possible to produce a better design faster than would be possible using either pure optimization or pure intuition and experience. We emphasize that the goal of this project is not to develop an algorithm. It is to develop a tool. We want to keep the human designer in the design process to take advantage of his or her experience and creativity. The role of the computer is to perform the calculation necessary to improve and to display the performance of the nominal design. Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software package for optimizing parameters with respect to multiple performance criteria, to a simplified nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally, we have developed the additional software necessary to use CONSOL-OPTCAD for the design of rotorcraft controllers.

Levine, William S.; Barlow, Jewel

1993-01-01

64

Influence of Lift Offset on Rotorcraft Performance  

NASA Technical Reports Server (NTRS)

The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

Johnson, Wayne

2009-01-01

65

Influence of Lift Offset on Rotorcraft Performance  

NASA Technical Reports Server (NTRS)

The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

Johnson, Wayne

2008-01-01

66

Advanced Rotorcraft Transmission (ART) Program summary  

NASA Astrophysics Data System (ADS)

The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART Program is summarized. A split path design was selected as best able to meet the program goals. Key part technologies needed for this design were identified, studied, and developed. Two of these technologies are discussed in detail: the load sharing of split path designs including the use of a compliant elastomeric torque splitter and the application of a high ratio, low pitch line velocity gear mesh. Development of an angular contact spherical roller bearing, transmission error analysis, and fretting fatigue testing are discussed. The technologies for a light weight, quiet, and reliable rotorcraft transmission were demonstrated.

Krantz, T. L.; Kish, J. G.

1992-07-01

67

The selection of convertible engines with current gas generator technology for high speed rotorcraft  

NASA Technical Reports Server (NTRS)

NASA-Lewis has sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and VIGV fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

Eisenberg, Joseph D.

1990-01-01

68

The selection of convertible engines with current gas generator technology for high speed rotorcraft  

NASA Technical Reports Server (NTRS)

NASA-Lewis sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and Variable Inlet Guide Vane (VIGV) fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

Eisenberg, Joseph D.

1990-01-01

69

Design of Quiet Rotorcraft Approach Trajectories  

NASA Technical Reports Server (NTRS)

A optimization procedure for identifying quiet rotorcraft approach trajectories is proposed and demonstrated. The procedure employs a multi-objective genetic algorithm in order to reduce noise and create approach paths that will be acceptable to pilots and passengers. The concept is demonstrated by application to two different helicopters. The optimized paths are compared with one another and to a standard 6-deg approach path. The two demonstration cases validate the optimization procedure but highlight the need for improved noise prediction techniques and for additional rotorcraft acoustic data sets.

Padula, Sharon L.; Burley, Casey L.; Boyd, D. Douglas, Jr.; Marcolini, Michael A.

2009-01-01

70

Rotorcraft Technology for HALE Aeroelastic Analysis  

NASA Technical Reports Server (NTRS)

Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.

Young, Larry; Johnson, Wayne

2008-01-01

71

ROTORCRAFT AEROMECHANICS APPLICATIONS OF A COMPREHENSIVE ANALYSIS  

Microsoft Academic Search

Results from the comprehensive analysis CAMRAD II are presented, illustrating recent developments in the aerodynamics and dynamics models, and demonstrating the technology that is needed for an adequate calculation of rotorcraft behavior. Calculations of rotor performance, airloads, structural loads, and stability are presented, including comparisons with experimental data.

Wayne Johnson; Johnson Aeronautics

1998-01-01

72

Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance  

NASA Technical Reports Server (NTRS)

The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

DellaCorte, Christopher; Valco, Mark J.

2002-01-01

73

77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...  

Federal Register 2010, 2011, 2012, 2013

...Fatigue Evaluation for Composite Rotorcraft Structures...75435). In the ``Composite Rotorcraft Structures...static strength of composite rotorcraft structures...fatigue substantiation technology for metallic structures...damage occur during manufacturing or within the...

2012-02-01

74

77 FR 50576 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; OMB Approval of...  

Federal Register 2010, 2011, 2012, 2013

...Fatigue Evaluation of Composite Rotorcraft Structures; OMB Approval of Information Collection...Fatigue Evaluation of Composite Rotorcraft Structures,'' which was published on December...Fatigue Evaluation of Composite Rotorcraft Structures,'' published in the Federal...

2012-08-22

75

Electric Propulsion  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center's electric propulsion technology program is developing and transferring new, innovative propulsion technologies to industry. Next-generation, high-performance arcjets are now operational on communications satellites. The improved fuel efficiency provided by this innovative, new arcjet technology was used both to reduce launch vehicle requirements and to extend satellite life.

Sankovic, John M.

1997-01-01

76

Mathematical biodynamic feedthrough model applied to rotorcraft.  

PubMed

Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the human body and cause involuntary control inputs. This paper proposes a model to quantitatively predict this effect in rotorcraft. This mathematical BDFT model aims to fill the gap between the currently existing black box BDFT models and physical BDFT models. The model structure was systematically constructed using asymptote modeling, a procedure described in detail in this paper. The resulting model can easily be implemented in many typical rotorcraft BDFT studies, using the provided model parameters. The model's performance was validated in both the frequency and time domain. Furthermore, it was compared with several recent BDFT models. The results show that the proposed mathematical model performs better than typical black box models and is easier to parameterize and implement than a recent physical model. PMID:24013832

Venrooij, Joost; Mulder, Mark; Abbink, David A; van Paassen, Marinus M; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H

2014-07-01

77

In-Flight Rotorcraft Acoustics Program  

NASA Technical Reports Server (NTRS)

A key part of NASA's aeronautics research is reducing noise to make helicopters and tiltrotors more acceptable to the public. The objective of the In-Flight Rotorcraft Acoustics Program (IRAP) is to acquire rotorcraft. noise data in flight for comparison to wind tunnel data. The type of noise of concern is "blade-vortex-interaction," or BVI, noise. Microphones on the wing tips and tail fin of the quiet NASA YO-3A Acoustics Research Aircraft measure BVI noise while the YO-3A descends in close formation with the helicopter or tiltrotor emitting the noise.The data acquired through IRAP is needed to validate wind-tunnel test results, or, where the results cannot be validated, to provide researchers with clues as to how to improve testing methods.

Peterson, Randall L.; Warmbrodt, William (Technical Monitor)

1996-01-01

78

A History of Rotorcraft Comprehensive Analyses  

NASA Technical Reports Server (NTRS)

A history of the development of rotorcraft comprehensive analyses is presented. Comprehensive analyses are digital computer programs that calculate the aeromechanical behavior of the rotor and aircraft, bringing together the most advanced models of the geometry, structure, dynamics, and aerodynamics available in rotary wing technology. The development of the major codes of the last five decades from industry, government, and universities is described. A number of common themes observed in this history are discussed.

Johnson, Wayne

2013-01-01

79

Robust Crossfeed Design for Hovering Rotorcraft  

NASA Technical Reports Server (NTRS)

Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

Catapang, David R.

1993-01-01

80

78 FR 12254 - Interest in Restructure of Rotorcraft Airworthiness Standards  

Federal Register 2010, 2011, 2012, 2013

...existing applicability standards for maximum weight and number of passenger seats for either...in increasing the 7,000 pound maximum weight limit for the modern normal category rotorcraft...normal category rotorcraft with maximum weights of 7,000 pounds or less and nine...

2013-02-22

81

Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

Foil gas bearings are a key technology in many commercial and emerging Oil-Free turbomachinery systems. These bearings are non-linear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness and damping. Previous investigations led to an empirically derived method, a rule-of-thumb, to estimate load capacity. This method has been a valuable tool in system development. The current paper extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced Oil-Free machines operating on foil gas bearings

DellaCorte, Christopher

2010-01-01

82

Visual cueing aids for rotorcraft landings  

NASA Technical Reports Server (NTRS)

The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.

Johnson, Walter W.; Andre, Anthony D.

1993-01-01

83

Finite-element analysis and multibody dynamics issues in rotorcraft dynamic analysis  

NASA Technical Reports Server (NTRS)

There is general agreement that the development of effective rotorcraft analysis software will require the use of modern computational mechanics methodologies, especially finite element analysis and multibody dynamics. This paper examines the analysis of rotorcraft dynamics from the perspective of these methodologies. First, a general discussion of rotorcraft analysis and modeling is presented. Then, a hierarchy of rotorcraft analyses is presented, ranging from simple to complex kinematics, where it is shown that in comprehensive rotorcraft software, finite element analysis must be augmented by multibody dynamics in order to properly analyze large motions of rotorcraft components. Finally, a review of multibody dynamics is presented to further familiarize the rotorcraft community with this technology.

Ruzicka, Gene C.; Ormiston, Robert A.

1991-01-01

84

Smart structures for rotorcraft control (SSRC) II  

NASA Astrophysics Data System (ADS)

The Smart Structures for Rotor Control (SSRC) is a consortium under the Defense Advanced Research Projects Agency (DARPA) Smart Structures program. Phase I of the program was administered by the Air Force Office of Scientific Research, with Boeing Seattle as the consortium administrator, and MIT, PSU and Boeing Helicopters as the other principal consortium members. Phase II, renamed Smart Materials and Structures Demonstration Consortium (SMSDC), is a combination of the proposed Phase II efforts of SSRC and the Boeing MESA Smart Materials Actuated Rotor Technology (SMART) program. This paper summarizes the SSRC efforts, introduces the SMSDC program, and provides a framework for the relationships between specific SSRC technical papers in this conference. The SSRC objectives were to research smart structure methods to achieve reduced rotorcraft vibration, reduce acoustic noise, and increased performance. The SSRC program includes dynamic piezoelectric actuation of flaps on the rotor blades, distributed dynamic piezo actuation of the rotor twist, and quasi-steady rotor twist control using shape memory alloys. The objective of Phase II is then to fly a rotorcraft to demonstrate such a system.

Jacot, A. Dean; Dadone, Leo

1998-06-01

85

Advanced Rotorcraft Transmission (ART) program status  

NASA Technical Reports Server (NTRS)

A weight reduction of 23 percent, noise reduction greater than 10 dB, and almost a fourfold increase in mean time between transmission removals has been demonstrated for a helicopter gearbox having a high output reduction ratio split path gear arrangement. These performance gains have been achieved by application of advanced transmission technology concepts in areas which offer high gain but are outside of normal design practices. New technology is being developed in such areas as split power gear concepts, composites, double helical gears, new gear materials, high speed spring clutches, and ceramic rolling element bearings. The programs, when completed, will provide demonstrated component and drive arrangement technology supported by analytical tools. The work is being accomplished under a CR&D program funded by NASA/Army termed the Advanced Rotorcraft transmission (ART) program. It is expected that the ART technology will be incorporated in future rotorcraft of the 1990s and 2000s. This paper summarizes the work accomplished to date on the program by Sikorsky Aircraft.

Kish, Jules

1991-01-01

86

Obstacle Detection Algorithms for Rotorcraft Navigation  

NASA Technical Reports Server (NTRS)

In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter.

Kasturi, Rangachar; Camps, Octavia I.; Huang, Ying; Narasimhamurthy, Anand; Pande, Nitin; Ahumada, Albert (Technical Monitor)

2001-01-01

87

Digital control of highly augmented combat rotorcraft  

NASA Technical Reports Server (NTRS)

Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.

Tischler, Mark B.

1987-01-01

88

Electric Propulsion  

NASA Astrophysics Data System (ADS)

Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.

Baggett, R.

2004-11-01

89

Integration Methodology For Oil-Free Shaft Support Systems: Four Steps to Success  

NASA Technical Reports Server (NTRS)

Commercial applications for Oil-Free turbomachinery are slowly becoming a reality. Micro-turbine generators, highspeed electric motors, and electrically driven centrifugal blowers are a few examples of products available in today's commercial marketplace. Gas foil bearing technology makes most of these applications possible. A significant volume of component level research has led to recent acceptance of gas foil bearings in several specialized applications, including those mentioned above. Component tests identifying such characteristics as load carrying capacity, power loss, thermal behavior, rotordynamic coefficients, etc. all help the engineer design foil bearing machines, but the development process can be just as important. As the technology gains momentum and acceptance in a wider array of machinery, the complexity and variety of applications will grow beyond the current class of machines. Following a robust integration methodology will help improve the probability of successful development of future Oil-Free turbomachinery. This paper describes a previously successful four-step integration methodology used in the development of several Oil-Free turbomachines. Proper application of the methods put forward here enable successful design of Oil-Free turbomachinery. In addition when significant design changes or unique machinery are developed, this four-step process must be considered.

Howard, Samuel A.; DellaCorte, Christopher; Bruckner, Robert J.

2010-01-01

90

Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations  

NASA Technical Reports Server (NTRS)

The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover.

Johnson, Wayne; Yeo, Hyeonsoo; Acree, C. W., Jr.

2007-01-01

91

Rotorcraft low-speed download drag definition and its reduction  

NASA Technical Reports Server (NTRS)

Download drag for rotorcraft in hover and low-speed flight is a burden which significantly affects useful load, fuel, and payload. Reduction of the burden will enhance these aspects of rotorcraft and complement the forthcoming improvements in isolated rotor performance. Analyses and experimental data are available, though fragmentary, regarding gross drag, thrust recovery, and other characteristics which can be utilized to define interim rotorcraft design changes to reduce the burden. Eventually the experimental data and a comprehensive combination of rotor, rotor-wake, and potential-flow analyses can evolve to reduce the burden to an absolute minimum.

Wilson, J. C.

1975-01-01

92

Rotorcraft digital advanced avionics system (RODAAS) functional description  

NASA Technical Reports Server (NTRS)

A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

1985-01-01

93

Designs and Technology Requirements for Civil Heavy Lift Rotorcraft  

NASA Technical Reports Server (NTRS)

The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

2006-01-01

94

System analysis in rotorcraft design: The past decade  

NASA Technical Reports Server (NTRS)

Rapid advances in the technology of electronic digital computers and the need for an integrated synthesis approach in developing future rotorcraft programs has led to increased emphasis on system analysis techniques in rotorcraft design. The task in systems analysis is to deal with complex, interdependent, and conflicting requirements in a structured manner so rational and objective decisions can be made. Whether the results are wisdom or rubbish depends upon the validity and sometimes more importantly, the consistency of the inputs, the correctness of the analysis, and a sensible choice of measures of effectiveness to draw conclusions. In rotorcraft design this means combining design requirements, technology assessment, sensitivity analysis and reviews techniques currently in use by NASA and Army organizations in developing research programs and vehicle specifications for rotorcraft. These procedures span simple graphical approaches to comprehensive analysis on large mainframe computers. Examples of recent applications to military and civil missions are highlighted.

Galloway, Thomas L.

1988-01-01

95

Future Directions in Rotorcraft Technology at Ames Research Center  

NASA Technical Reports Server (NTRS)

Members of the NASA and Army rotorcraft research community at Ames Research Center have developed a vision for 'Vertical Flight 2025'. This paper describes the development of that vision and the steps being taken to implement it. In an effort to realize the vision, consistent with both NASA and Army Aviation strategic plans, two specific technology development projects have been identified: (1) one focused on a personal transportation system capable of vertical flight (the 'Roto-Mobile') and (2) the other on small autonomous rotorcraft (which is inclusive of vehicles which range in grams of gross weight for 'MicroRotorcraft' to thousands of kilograms for rotorcraft uninhabited aerial vehicles). The paper provides a status report on these projects as well as a summary of other revolutionary research thrusts being planned and executed at Ames Research Center.

Aiken, Edwin W.; Ormiston, Robert A; Young, Larry A.

2000-01-01

96

Challenges in Rotorcraft Acoustic Flight Prediction and Validation  

NASA Technical Reports Server (NTRS)

Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.

Boyd, D. Douglas, Jr.

2003-01-01

97

Techniques for designing rotorcraft control systems  

NASA Technical Reports Server (NTRS)

Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.

Yudilevitch, Gil; Levine, William S.

1994-01-01

98

Fundamental Rotorcraft Acoustic Modeling From Experiments (FRAME)  

NASA Technical Reports Server (NTRS)

A new methodology is developed for the construction of helicopter source noise models for use in mission planning tools from experimental measurements of helicopter external noise radiation. The models are constructed by employing a parameter identification method to an assumed analytical model of the rotor harmonic noise sources. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. The method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor harmonic noise, allowing accurate estimates of the dominant rotorcraft noise sources to be made for operating conditions based on a small number of measurements taken at different operating conditions. The ability of this method to estimate changes in noise radiation due to changes in ambient conditions is also demonstrated.

Greenwood, Eric

2011-01-01

99

Advanced Rotorcraft Transmission (ART) program review  

NASA Technical Reports Server (NTRS)

This paper summarizes the work accomplished to date on the NASA/Army Advanced Rotorcraft Transmission (ART) program. A 23-percent weight reduction has been demonstrated for a high output reduction ratio split path transmission compared to an aggressive program goal of 25-percent. Greater than 10 dB noise reduction in the cabin is achieved by the use of high contact ratio spur and double helical gears. In addition, mean times between transmission removals have been increased by almost four fold. These performance gains have been achieved by application of advanced transmission technology concepts. Technology areas are being explored which offer high gain but at relatively high risk in such areas as composites, split power gear concepts, double helical gears, new gear materials, high speed spring clutches, and ceramic rolling element bearings.

Kish, Jules

1990-01-01

100

Toward Right-Fidelity Rotorcraft Conceptual Design  

NASA Technical Reports Server (NTRS)

The aviation Advanced Design Office (ADO) of the US Army Aeroflightdynamics Directorate (AMRDEC) performs conceptual design of advanced Vertical Takeoff and Landing (VTOL) concepts in support of the Army's development and acquisition of new aviation systems. In particular, ADO engages in system synthesis to assess the impact of new technologies and their application to satisfy emerging warfighter needs and requirements. Fundamental to ADO being successful in accomplishing its role; is the ability to evaluate a wide array of proposed air vehicle concepts, and independently synthesize new concepts to inform Army and DoD decision makers about the tradespace in which decisions will be made (Figure 1). ADO utilizes a conceptual design (CD) process in the execution of its role. Benefiting from colocation with NASA rotorcraft researchers at the Ames Research Center, ADO and NASA have engaged in a survey of the current rotorcraft PD practices and begun the process of improving those capabilities to enable effective design and development of the next generation of VTOL systems. A unique aspect of CD in ADO is the fact that actual designs developed in-house are not intended to move forward in the development process. Rather, they are used as reference points in discussions about requirements development and technology impact. The ultimate products of ADO CD efforts are technology impact assessments and specifications which guide industry design activity. The fact that both the requirement and design are variables in the tradespace adds to the complexity of the CD process. A frequent need is ability to assess the relative "cost" of variations in requirement for a diverse set of VTOL configurations. Each of these configurations may have fundamentally different response characteristics to this requirement variation, and such insight into how different requirements drive different designs is a critical insight ADO attempts to provide decision makers. The processes and tools utilized are driven by the timeline in which questions must be answered. This can range from quick "back-of-the-envelope" assessments of a configuration made in an afternoon, to more detailed tradespace explorations that can take upwards of a year to complete. A variety of spreadsheet based tools and conceptual design codes are currently in use. The in-house developed conceptual sizing code RC (Rotorcraft) has been the preferred tool of choice for CD activity for a number of years. Figure 2 illustrates the long standing coupling between RC and solid modeling tools for layout, as well as a number of ad-hoc interfaces with external analyses. RC contains a sizing routine that is built around the use of momentum theory for rotors, classic finite wing theory, a referred parameter engine model, and semi-emperical weight estimation techniques. These methods lend themselves to rapid solutions, measured in seconds and minutes. The successful use of RC, however requires careful consideration of model input parameters and judicious comparison with existing aircraft to avoid unjustified extrapolation of results. RC is in fact a legacy of a series of codes whose development started in the early 1970s, and is best suited to the study of conventional helicopters and XV-15 style tiltrotors. Other concepts have been analyzed with RC, but typically it became necessary to modify the source code and methods for each unique configuration. Recent activity has lead to the development of a new code, NASA Design and Analysis of Rotorcraft (NDARC). NDARC uses a similar level of analytical fidelity as RC, but is built on a new framework intended to improve modularity and ability to rapidly model a wider array of concepts. Critical to achieving this capability is the decomposition of the aircraft system into a series of fundamental components which can then be assembled to form a wide-array of configurations. The paper will provide an overview of NDARC and its capabilities.

Sinsay, Jeffrey D.; Johnson, Wayne

2010-01-01

101

NASA's Role in Aeronautics: A Workshop. Volume 5: Rotorcraft  

NASA Technical Reports Server (NTRS)

The potential roles for NASA relating to rotorcraft are reviewed. The agency's participation is delineated for each role, a rationale is provided, the current level of activity is summarized, and suggestions are given for the kinds of research still needed. In examining opportunities for the most beneficial deployment of its resources, NASA should consider societal benefits as well as the military and civil markets in formulating the role it can play to support the development of a stronger rotorcraft technology base.

1981-01-01

102

U.S. Civil Rotorcraft Accidents, 1963 Through 1997  

NASA Technical Reports Server (NTRS)

Narrative summary data produced by the U.S. National Transportation Safety Board (NTSB) has been obtained and analyzed for all 8,436 U.S. civil registered rotorcraft accidents which occurred from mid-1963 through 1997. This analysis was based on the NTSB's assignment of each mishap into one of 21 "first event" categories. The number of U.S. civil registered rotorcraft as recorded by the Federal Aviation Administration (FAA) for the same period has also been obtained. Taken together, these data indicate the civil rotorcraft accident rate (on a per 1,000 registered rotorcraft basis) has decreased by almost a factor of 10 (i.e., from 130 accidents per 1,000 rotorcraft in 1964 to 13.4 per 1,000 in 1997). Analysis of the mishap data indicates over 70% of the rotorcraft accidents were associated with one of the following four NTSB "first event" categories: 2408 Loss of engine power (28.5%); 1,322 In-flight collisions with objects (15.7%); 1,114 Loss of control (13.2%); 1,083 Airframe/component/system failure or malfunction (12.8%).

Harris, Franklin D.; Kasper, Eugene F.; Iseler, Laura E.

2000-01-01

103

Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications  

NASA Technical Reports Server (NTRS)

Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

Dellacorte, Christopher

2013-01-01

104

Mechanisms and actuators for rotorcraft blade morphing  

NASA Astrophysics Data System (ADS)

The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in this work is a conformal variable diameter rotor system suitable for implementation on a modern tilt-rotor aircraft, which can reduce power requirements in both cruise and hover configurations. An initial prototype variable span airfoil was constructed using a silicone elastomer matrix composite skin and a plastic rapid prototyped morphing substructure. Benchtop and wind tunnel tests verified the ability of this system to increase active wing area by 100%. The prototype technology was then matured for use in the harsh rotor blade environment, with a much stiffer polyurethane skin and a titanium substructure. Coupon testing verified the efficacy of this approach, and a final conceptual design was completed using the stiffness-tuning characteristics of the morphing substructure to create a self-actuating morphing blade tip.

Vocke, Robert D., III

105

Laser propulsion  

NASA Technical Reports Server (NTRS)

The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

Rom, F. E.; Putre, H. A.

1972-01-01

106

14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space ...Loads § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type...

2010-01-01

107

14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.  

...2014-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space ...Loads § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type...

2014-01-01

108

14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space ...Loads § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type...

2013-01-01

109

14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space ...Loads § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type...

2011-01-01

110

14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space ...Loads § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type...

2012-01-01

111

Propulsion Systems Panel deliberations  

NASA Technical Reports Server (NTRS)

The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

1993-01-01

112

Cost Analysis for Large Civil Transport Rotorcraft  

NASA Technical Reports Server (NTRS)

This paper presents cost analysis of purchase price and DOC+I (direct operating cost plus interest) that supports NASA s study of three advanced rotorcraft concepts that could enter commercial transport service within 10 to 15 years. The components of DOC+I are maintenance, flight crew, fuel, depreciation, insurance, and finance. The cost analysis aims at VTOL (vertical takeoff and landing) and CTOL (conventional takeoff and landing) aircraft suitable for regional transport service. The resulting spreadsheet-implemented cost models are semi-empirical and based on Department of Transportation and Army data from actual operations of such aircraft. This paper describes a rationale for selecting cost tech factors without which VTOL is more costly than CTOL by a factor of 10 for maintenance cost and a factor of two for purchase price. The three VTOL designs selected for cost comparisons meet the mission requirement to fly 1,200 nautical miles at 350 knots and 30,000 ft carrying 120 passengers. The lowest cost VTOL design is a large civil tilt rotor (LCTR) aircraft. With cost tech factors applied, the LCTR is reasonably competitive with the Boeing 737-700 when operated in economy regional service following the business model of the selected baseline operation, that of Southwest Airlines.

Coy, John J.

2006-01-01

113

Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program  

NASA Technical Reports Server (NTRS)

The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

Kish, Jules G.

1993-01-01

114

Evaluation of Scaling Methods for Rotorcraft Icing  

NASA Technical Reports Server (NTRS)

This paper reports result of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the current recommended scaling methods developed for fixed-wing unprotected surface icing applications might apply to representative rotor blades at finite angle of attack. Unlike the fixed-wing case, there is no single scaling method that has been systematically developed and evaluated for rotorcraft icing applications. In the present study, scaling was based on the modified Ruff method with scale velocity determined by maintaining constant Weber number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocities of 76 and 100 kt (39 and 52 m/s), droplet MVDs of 150 and 195 fun, and with stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 0deg and 5deg. It was shown that good ice shape scaling was achieved for NACA 0012 airfoils with angle of attack lip to 5deg.

Tsao, Jen-Ching; Kreeger, Richard E.

2010-01-01

115

Technology needs for high speed rotorcraft (2)  

NASA Technical Reports Server (NTRS)

An analytical study was conducted to identify rotorcraft concepts best capable of combining a cruise speed of 350 to 450 knots with helicopter-like low speed attributes, and to define the technology advancements needed to make them viable by the year 2000. A systematic approach was used to compare the relative attributes and mission gross weights for a wide range of concepts, resulting in a downselect to the most promising concept/mission pairs. For transport missions, tilt-wing and variable diameter tilt-rotor (VDTR) concepts were found to be superior. For a military scout/attack role, the VDTR was best, although a shrouded rotor concept could provide a highly agile, low observable alternative if its weight empty fraction could be reduced. A design speed of 375 to 425 knots was found to be the maximum desirable for transport missions, with higher speed producing rapidly diminishing benefits in productivity. The key technologies that require advancement to make the tilt-wing and VDTR concepts viable are in the areas of wing and proprotor aerodynamics, efficient structural design, flight controls, refinement of the geared flap pitch control system, expansion of the speed/descent envelope, and the structural and aerodynamic tradeoffs of wing thickness and forward sweep. For the shrouded rotor, weight reduction is essential, particularly with respect to the mechanism for covering the rotor in cruise.

Scott, Mark W.

1991-01-01

116

Large rotorcraft transmission technology development program  

NASA Technical Reports Server (NTRS)

Testing of a U.S. Army XCH-62 HLH aft rotor transmission under NASA Contract NAS 3-22143 was successfully completed. This test establishes the feasibility of large, high power rotorcraft transmissions as well as demonstrating the resolution of deficiencies identified during the HLH advanced technology programs and reported by USAAMRDLTR-77-38. Over 100 hours of testing was conducted. At the 100% design power rating of 10,620 horsepower, the power transferred through a single spiral bevel gear mesh is more than twice that of current helicopter bevel gearing. In the original design of these gears, industry-wide design methods were employed and failures were experienced which identified problem areas unique to gear size. To remedy this technology shortfall, a program was developed to predict gear stresses using finite element analysis for complete and accurate representation of the gear tooth and supporting structure. To validate the finite element methodology gear strain data from the existing U.S. Army HLH aft transmission was acquired, and existing data from smaller gears were made available.

Mack, J. C.

1983-01-01

117

Rotorcraft handling-qualities design criteria development  

NASA Technical Reports Server (NTRS)

Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.

Aiken, Edwin W.; Lebacqz, J. Victor; Chen, Robert T. N.; Key, David L.

1988-01-01

118

An initiative in multidisciplinary optimization of rotorcraft  

NASA Technical Reports Server (NTRS)

Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

Adelman, Howard M.; Mantay, Wayne R.

1989-01-01

119

NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 1: Executive Summary  

NASA Technical Reports Server (NTRS)

This presentation provides an overview of the NASA Rotorcraft Program as an introduction to the technical sessions of the Advanced Rotorcraft Technology Workshop. It deals with the basis for NASA's increasing emphasis on rotorcraft technology, NASA's research capabilities, recent program planning efforts, highlights of its 10-year plan and future directions and opportunities.

1980-01-01

120

NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry  

NASA Technical Reports Server (NTRS)

This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

1988-01-01

121

Zero/zero rotorcraft certification issues. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is the zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will exptremely low visibility operations be economically feasible. This is Volume 1 of three. It provides an overview of the Certification Issues Forum held in Phoenix, Arizona in August of 1987. It presents a consensus of 48 experts from government, manufacturer, and research communities on 50 specific Certification Issues. The topics of Operational Requirements, Procedures, Airworthiness, and Engineering Capabilities are discussed.

Adams, Richard J.

1988-01-01

122

Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts  

NASA Technical Reports Server (NTRS)

The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

vanAken, Johannes M.; Sinsay, Jeffrey D.

2006-01-01

123

Requirements for Next Generation Comprehensive Analysis of Rotorcraft  

NASA Technical Reports Server (NTRS)

The unique demands of rotorcraft aeromechanics analysis have led to the development of software tools that are described as comprehensive analyses. The next generation of rotorcraft comprehensive analyses will be driven and enabled by the tremendous capabilities of high performance computing, particularly modular and scaleable software executed on multiple cores. Development of a comprehensive analysis based on high performance computing both demands and permits a new analysis architecture. This paper describes a vision of the requirements for this next generation of comprehensive analyses of rotorcraft. The requirements are described and substantiated for what must be included and justification provided for what should be excluded. With this guide, a path to the next generation code can be found.

Johnson, Wayne; Data, Anubhav

2008-01-01

124

Computer vision techniques for rotorcraft low altitude flight  

NASA Technical Reports Server (NTRS)

Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or manmade objects to minimize the risk of being detected by an enemy. Increasing levels of concealment are achieved by adopting different tactics during low-altitude flight. Rotorcraft employ three tactics during low-altitude flight: low-level, contour, and nap-of-the-earth (NOE). The key feature distinguishing the NOE mode from the other two modes is that the whole rotorcraft, including the main rotor, is below tree-top whenever possible. This leads to the use of lateral maneuvers for avoiding obstacles, which in fact constitutes the means for concealment. The piloting of the rotorcraft is at best a very demanding task and the pilot will need help from onboard automation tools in order to devote more time to mission-related activities. The development of an automation tool which has the potential to detect obstacles in the rotorcraft flight path, warn the crew, and interact with the guidance system to avoid detected obstacles, presents challenging problems. Research is described which applies techniques from computer vision to automation of rotorcraft navigtion. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle-detection approach can be used as obstacle data for the obstacle avoidance in an automatic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. The presentation concludes with some comments on future work and how research in this area relates to the guidance of other autonomous vehicles.

Sridhar, Banavar

1990-01-01

125

Low-Altitude Operation of Unmanned Rotorcraft  

NASA Astrophysics Data System (ADS)

Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized planning framework that enables reaching a goal point, searching for unknown landing sites, and approaching a landing zone. In the framework, sub-objective functions, constraints, and a state machine define the mission and behavior of an UAV. As the vehicle gathers information by moving through the environment, the objective functions account for this new information. The operator in this framework can directly specify his intent as an objective function that defines the mission rather than giving a sequence of pre-specified goal points. This allows the robot to react to new information received and adjust its path accordingly. The objective is used in a combined coarse planning and trajectory optimization algorithm to determine the best patch the robot should take. We show simulated results for several different missions and in particular focus on active landing zone search. We presented several effective approaches for perception and action for low-altitude flight and demonstrated their effectiveness in field experiments on three autonomous aerial vehicles: a 1m quadrocopter, a 36m helicopter, and a hill-size helicopter. These techniques permit rotorcraft to operate where they have their greatest advantage: In unstructured, unknown environments at low-altitude.

Scherer, Sebastian

126

Solar Thermal Propulsion Concept  

NASA Technical Reports Server (NTRS)

Harnessing the Sun's energy through Solar Thermal Propulsion will propel vehicles through space by significantly reducing weight, complexity, and cost while boosting performance over current conventional upper stages. Another solar powered system, solar electric propulsion, demonstrates ion propulsion is suitable for long duration missions. Pictured is an artist's concept of space flight using solar thermal propulsion.

2004-01-01

127

Rotorcraft aviation icing research requirements: Research review and recommendations  

NASA Technical Reports Server (NTRS)

The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification.

Peterson, A. A.; Dadone, L.; Bevan, A.

1981-01-01

128

Technology needs for high-speed rotorcraft, volume 1  

NASA Technical Reports Server (NTRS)

High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.

Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.

1991-01-01

129

Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

Foil gas bearings are a key technology in many commercial and emerging oilfree turbomachinery systems. These bearings are nonlinear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness, and damping. Previous investigations led to an empirically derived method to estimate load capacity. This method has been a valuable tool in system development. The current work extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced oil-free machines operating on foil gas bearings.

Della-Corte, Christopher

2012-01-01

130

The design and development of an oil-free compressor for Spacelab Refrigerator/Freezer  

NASA Technical Reports Server (NTRS)

Design features and test results of an oil-free compressor developed for Spacelab Mission-4 Refrigerator/Freezer are detailed. The compressor has four identical pistons activated by a common eccentric shaft, operated by a brushless dc motor at 1300 rpm. The stroke of each piston is 0.28 cm, with the piston ends connected to the shaft by means of sealed needle bearings, eliminating the ned for oil. The mass flow rates produced by the compressor are by over 100 percent higher compared to the original Amfridge unit. Test results show that the compressor can meet the Spacelab refrigerator/freezer requirements.

Hye, A.

1984-01-01

131

Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications  

NASA Technical Reports Server (NTRS)

This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

DellaCorte, Christopher; Valco, Mark J.

2000-01-01

132

An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation  

NASA Technical Reports Server (NTRS)

New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

Bauman, Steve

2005-01-01

133

Neural dynamic programming applied to rotorcraft flight control and reconfiguration  

Microsoft Academic Search

This dissertation introduces a new rotorcraft flight control methodology based on a relatively new form of neural control, neural dynamic programming (NDP). NDP is an on-line learning control scheme that is in its infancy and has only been applied to simple systems, such as those possessing a single control and a handful of states. This dissertation builds on the existing

Russell James Enns

2001-01-01

134

Advanced Rotor Aerodynamics Concepts with Application to Large Rotorcraft  

Microsoft Academic Search

A study was conducted using the comprehensive analysis CAMRAD II to explore performance enhancements to large rotorcraft. The aircraft considered were a 125 foot diameter six-bladed rotor helicopter and an 85 foot diameter four- bladed rotor tilt rotor. The objectives were to reduce power required and increase maximum lift. The effects of improved airfoils and active controls were investigated. Airfoils

Matthew W. Floros; Michael P. Scully

2002-01-01

135

Data and performances of selected aircraft and rotorcraft  

Microsoft Academic Search

The purpose of this article is to provide a synthetic and comparative view of selected aircraft and rotorcraft (nearly 300 of them) from past and present. We report geometric characteristics of wings (wing span, areas, aspect-ratios, sweep angles, dihedral\\/anhedral angles, thickness ratios at root and tips, taper ratios) and rotor blades (type of rotor, diameter, number of blades, solidity, rpm,

Antonio Filippone

2000-01-01

136

ANATOMY, MODELLING AND PREDICTION OF AEROSERVOELASTIC ROTORCRAFT-PILOT-COUPLING  

E-print Network

ANATOMY, MODELLING AND PREDICTION OF AEROSERVOELASTIC ROTORCRAFT-PILOT-COUPLING Massimo Gennaretti and results obtained within the European project ARISTOTEL (2010-2013) are presented. It deals with anatomy project ARISTO- TEL (2010-2013) and specifically on the anatomy, mod- elling and prediction

137

Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design  

NASA Technical Reports Server (NTRS)

This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

Lawrence, Ben

2014-01-01

138

U.S. Civil Rotorcraft Accidents, 1963 through 1997  

NASA Technical Reports Server (NTRS)

The U.S. National Transportation Safety Board (NTSB) has recorded 8,436 rotorcraft accidents during the period mid - 1963 through the end of 1997. Review and analysis of the NTSB summary narrative for each accident has been completed. In addition, FAA (Federal Aviation Administration) counts of the growing registered rotorcraft fleet over this period has obtained. Taken together, a large and informative data base is now available, which indicates that the accident rate (on a per airframe basis) has changed very little since the mid 1970s. The data base, even in the summary form provided by this paper, offers suggestions for safer designs and improved flight operations. For analysis purposes, each accident has been placed in one of 21 top level categories as defined by the NTSB. Analysis of this grouping shows that 70 percent of rotorcraft accidents are associated with four categories. The accident count in these top four categories are: (1) 2,408 Loss of engine power (2) 1,322 In flight collision with object (3) 1,114 Loss of control (4) 1,083 Airframe/component/system failure or malfunction. Single engine rotorcraft dominate these accident statistics because of their sheer numbers over the study period. One-third of the loss of engine power accidents with these aircraft is fuel/air mixture related and fuel exhaustion is a common event. This appears to be the case whether a piston or turbine engine is installed. This paper provides similar study results in the other major mishap categories. It shows that both minor and major design and flight operations changes can -- and should -- be made to reduce rotorcraft accidents in the future. The paper outlines these changes and suggests how they may be made.

Harris, Franklin D.; Kasper, Eugene F.

1998-01-01

139

General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual  

NASA Technical Reports Server (NTRS)

The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.

Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.

1990-01-01

140

Beamed energy propulsion  

NASA Technical Reports Server (NTRS)

Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

Shoji, James M.

1992-01-01

141

Hybrid rocket propulsion  

NASA Technical Reports Server (NTRS)

Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

Holzman, Allen L.

1993-01-01

142

A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig  

NASA Technical Reports Server (NTRS)

A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.

Howard, Samuel A.

2007-01-01

143

European auxiliary propulsion, 1972  

NASA Technical Reports Server (NTRS)

The chemical and electric auxiliary propulsion technology of the United Kingdom, France, and West Germany is discussed in detail, and the propulsion technology achievements of Italy, India, Japan, and Russia are reviewed. A comparison is presented of Shell 405 catalyst and a European spontaneous hydrazine catalyst called CNESRO I. Finally, conclusions are drawn regarding future trends in European auxiliary propulsion technology development.

Holcomb, L. B.

1972-01-01

144

New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles  

NASA Technical Reports Server (NTRS)

A key part of the strategic vision for rotorcraft research as identified by senior technologists within the Army/NASA Rotorcraft Division at NASA Ames Research Center is the development and use of small autonomous rotorcraft. Small autonomous rotorcraft are defined for the purposes of this paper to be a class of vehicles that range in size from rotary-wing micro air vehicles (MAVs) to larger, more conventionally sized, rotorcraft uninhabited aerial vehicles (UAVs) - i.e. vehicle gross weights ranging from hundreds of grams to thousands of kilograms. The development of small autonomous rotorcraft represents both a technology challenge and a potential new vehicle class that will have substantial societal impact for: national security, personal transport, planetary science, and public service.

Young, Larry A.; Aiken, E. W.; Johnson, J. L.; Demblewski, R.; Andrews, J.; Aiken, Irwin W. (Technical Monitor)

2001-01-01

145

Technology needs for high speed rotorcraft (3)  

NASA Technical Reports Server (NTRS)

The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

Detore, Jack; Conway, Scott

1991-01-01

146

Efficient assembly of finite-element subsystems with large relative rotations. [for rotorcraft dynamic characteristics  

NASA Technical Reports Server (NTRS)

A finite element approach is presented for the modeling of rotorcraft undergoing elastic deformation in addition to large rigid body motion with respect to inertial space, with particular attention given to the coupling of the rotor and fuselage subsystems subject to large relative rotations. The component synthesis technique used here allows the coupling of rotors to the fuselage for different rotorcraft configurations. The formulation is general and applicable to any rotorcraft vibration, aeroelasticity, and dynamics problem.

Fuh, Jon-Shen; Panda, Brahmananda; Peters, David A.

1988-01-01

147

Analysis of image-based navigation system for rotorcraft low-altitude flight  

NASA Technical Reports Server (NTRS)

Some of the issues in the location of objects using a sequence of images from a passive sensor are examined. Image-object differential equations for a rotorcraft executing an arbitrary maneuver are developed. Assuming an onboard inertial navigation system for rotorcraft, state estimation, this study considers how object location is affected by the choice of Kalman filter estimation technique, the rotorcraft, and the object. Simulation results are presented.

Sridhar, Banavar; Phatak, Anil V.

1992-01-01

148

Solar Thermal Propulsion  

NASA Technical Reports Server (NTRS)

This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

Gerrish, Harold P., Jr.

2003-01-01

149

Impact of pilots' biodynamic feedthrough on rotorcraft by robust stability  

NASA Astrophysics Data System (ADS)

The coupling of rotorcraft dynamics with the dynamics of one of the main systems devoted to its control, the pilot, may lead to several peculiar phenomena, known as Rotorcraft-Pilot Couplings (RPCs), all characterized by an abnormal behavior that may jeopardize flight safety. Among these phenomena, there is a special class of couplings which is dominated by the biodynamic behavior of the pilot's limbs that close the loop between the vibrations and the control inceptors in the cockpit. Leveraging robust stability analysis, the inherently uncertain pilot biodynamics can be treated as the uncertain portion of a feedback system, making analytical, numerical or graphical determination of proneness to RPC possible by comparing robust stability margins of helicopter models with experimental Biodynamic Feedthrough (BDFT) data. The application of the proposed approach to collective bounce is exemplified using simple analytical helicopter and pilot models. The approach is also applied to detailed helicopter models and experimental BDFT measurement data.

Quaranta, Giuseppe; Masarati, Pierangelo; Venrooij, Joost

2013-09-01

150

Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report  

NASA Technical Reports Server (NTRS)

The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized.

Lenski, Joseph W., Jr.; Valco, Mark J.

1991-01-01

151

Image-based ranging and guidance for rotorcraft  

NASA Technical Reports Server (NTRS)

This report documents the research carried out under NASA Cooperative Agreement No. NCC2-575 during the period Oct. 1988 - Dec. 1991. Primary emphasis of this effort was on the development of vision based navigation methods for rotorcraft nap-of-the-earth flight regime. A family of field-based ranging algorithms were developed during this research period. These ranging schemes are capable of handling both stereo and motion image sequences, and permits both translational and rotational camera motion. The algorithms require minimal computational effort and appear to be implementable in real time. A series of papers were presented on these ranging schemes, some of which are included in this report. A small part of the research effort was expended on synthesizing a rotorcraft guidance law that directly uses the vision-based ranging data. This work is discussed in the last section.

Menon, P. K. A.

1991-01-01

152

Blade vortex interaction noise reduction techniques for a rotorcraft  

NASA Technical Reports Server (NTRS)

An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

1996-01-01

153

Measurement of Rotorcraft Blade Deformation using Projection Moire Interferometry  

NASA Technical Reports Server (NTRS)

Projection Moire Interferometry (PMI) has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

Fleming, Gary A.; Gorton, Susan Althoff

1998-01-01

154

Blade vortex interaction noise reduction techniques for a rotorcraft  

NASA Technical Reports Server (NTRS)

An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

1998-01-01

155

Structures technology for a new generation of rotorcraft  

NASA Technical Reports Server (NTRS)

This paper presents an overview of structures research at the U. S. Army Aerostructures Directorate. The objectives of this research are to investigate, explore, and demonstrate emerging technologies that will provide lighter, safer, more survivable, and more cost-effective structures for rotorcraft in the 1990s and beyond. The emphasis of today's R&D is to contribute proven structures technology to the U. S. rotorcraft industry and Army aviation that directly impacts tomorrow's fleet readiness and mission capabilities. The primary contributor toward meeting these challenges is the development of high-strength and durable composites to minimize structural weight while maximizing cost effectiveness. Special aviation issues such as delamination of dynamic components, impact damage to thin skins, crashworthiness, and affordable manufacturing need to be resolved before the full potential of composites technology can be realized. To that end, this paper highlights research into composites structural integrity, crashworthiness, and materials applications which addresses these issues.

Bartlett, Felton D., Jr.

1989-01-01

156

Application of Climate Impact Metrics to Rotorcraft Design  

NASA Technical Reports Server (NTRS)

Multiple metrics are applied to the design of large civil rotorcraft, integrating minimum cost and minimum environmental impact. The design mission is passenger transport with similar range and capacity to a regional jet. Separate aircraft designs are generated for minimum empty weight, fuel burn, and environmental impact. A metric specifically developed for the design of aircraft is employed to evaluate emissions. The designs are generated using the NDARC rotorcraft sizing code, and rotor analysis is performed with the CAMRAD II aeromechanics code. Design and mission parameters such as wing loading, disk loading, and cruise altitude are varied to minimize both cost and environmental impact metrics. This paper presents the results of these parametric sweeps as well as the final aircraft designs.

Russell, Carl; Johnson, Wayne

2013-01-01

157

Time spectral method for rotorcraft flow with vorticity confinement  

NASA Astrophysics Data System (ADS)

This thesis shows that simulation of helicopter flows can adhere to engineering accuracy without the need of massive computing resources or long turnaround time by choosing an alternative framework for rotorcraft simulation. The method works in both hovering and forward flight regimes. The new method has shown to be more computationally efficient and sufficiently accurate. By utilizing the periodic nature of the rotorcraft flow field, the Fourier based Time Spectral method lends itself to the problem and significantly increases the rate of convergence compared to traditional implicit time integration schemes such as the second order backward difference formula (BDF). A Vorticity Confinement method has been explored and has been shown to work well in subsonic and transonic simulations. Vortical structure can be maintained after long distances without resorting to the traditional mesh refinement technique.

Butsuntorn, Nawee

2008-10-01

158

An Analysis of U.S. Civil Rotorcraft Accidents by Cost and Injury (1990-1996)  

NASA Technical Reports Server (NTRS)

A study of rotorcraft accidents was conducted to identify safety issues and research areas that might lead to a reduction in rotorcraft accidents and fatalities. The primary source of data was summaries of National Transportation Safety Board (NTSB) accident reports. From 1990 to 1996, the NTSB documented 1396 civil rotorcraft accidents in the United States in which 491 people were killed. The rotorcraft data were compared to airline and general aviation data to determine the relative safety of rotorcraft compared to other segments of the aviation industry. In depth analysis of the rotorcraft data addressed demographics, mission, and operational factors. Rotorcraft were found to have an accident rate about ten times that of commercial airliners and about the same as that of general aviation. The likelihood that an accident would be fatal was about equal for all three classes of operation. The most dramatic division in rotorcraft accidents is between flights flown by private pilots versus professional pilots. Private pilots, flying low cost aircraft in benign environments, have accidents that are due, in large part, to their own errors. Professional pilots, in contrast, are more likely to have accidents that are a result of exacting missions or use of specialized equipment. For both groups judgement error is more likely to lead to a fatal accident than are other types of causes. Several approaches to improving the rotorcraft accident rate are recommended. These mostly address improvement in the training of new pilots and improving the safety awareness of private pilots.

Iseler, Laura; DeMaio, Joe; Rutkowski, Michael (Technical Monitor)

2002-01-01

159

Elementary Applications of a Rotorcraft Dynamic Stability Analysis  

NASA Technical Reports Server (NTRS)

A number of applications of a rotorcraft aeroelastic analysis are presented to verify that the analysis encompasses the classical solutions of rotor dynamics, and to examine the influence of certain features of the model. Results are given for the following topics: flapping frequency response to pitch control; forward flight flapping stability; pitch/flap flutter and divergence; ground resonance instability; and the flight dynamics of several representative helicopters.

Johnson, W.

1976-01-01

160

Contributions to the Characterization and Mitigation of Rotorcraft Brownout  

NASA Astrophysics Data System (ADS)

Rotorcraft brownout, the condition in which the flow field of a rotorcraft mobilizes sediment from the ground to generate a cloud that obscures the pilot's field of view, continues to be a significant hazard to civil and military rotorcraft operations. This dissertation presents methodologies for: (i) the systematic mitigation of rotorcraft brownout through operational and design strategies and (ii) the quantitative characterization of the visual degradation caused by a brownout cloud. In Part I of the dissertation, brownout mitigation strategies are developed through simulation-based brownout studies that are mathematically formulated within a numerical optimization framework. Two optimization studies are presented. The first study involves the determination of approach-to-landing maneuvers that result in reduced brownout severity. The second study presents a potential methodology for the design of helicopter rotors with improved brownout characteristics. The results of both studies indicate that the fundamental mechanisms underlying brownout mitigation are aerodynamic in nature, and the evolution of a ground vortex ahead of the rotor disk is seen to be a key element in the development of a brownout cloud. In Part II of the dissertation, brownout cloud characterizations are based upon the Modulation Transfer Function (MTF), a metric commonly used in the optics community for the characterization of imaging systems. The use of the MTF in experimentation is examined first, and the application of MTF calculation and interpretation methods to actual flight test data is described. The potential for predicting the MTF from numerical simulations is examined second, and an initial methodology is presented for the prediction of the MTF of a brownout cloud. Results from the experimental and analytical studies rigorously quantify the intuitively-known facts that the visual degradation caused by brownout is a space and time-dependent phenomenon, and that high spatial frequency features, i.e., fine-grained detail, are obscured before low spatial frequency features, i.e., large objects. As such, the MTF is a metric that is amenable to Handling Qualities (HQ) analyses.

Tritschler, John Kirwin

161

Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories  

NASA Technical Reports Server (NTRS)

NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

Morris, Robert A.; Venable, K. Brent; Lindsay, James

2012-01-01

162

Airworthiness Qualification Criteria for Rotorcraft with External Sling Loads  

NASA Technical Reports Server (NTRS)

This report presents the results of a study to develop airworthiness requirements for rotorcraft with external sling loads. The report starts with a review of the various phenomena that limit external sling load operations. Specifically discussed are the rotorcraft-load aeroservoelastic stability, load-on handling qualities, effects of automatic flight control system failure, load suspension system failure, and load stability at speed. Based on past experience and treatment of these phenomena, criteria are proposed to form a package for airworthiness qualification. The desired end objective is a set of operational flight envelopes for the rotorcraft with intended loads that can be provided to the user to guide operations in the field. The specific criteria proposed are parts of ADS-33E-PRF; MIL-F-9490D, and MIL-STD-913A all applied in the context of external sling loads. The study was performed for the Directorate of Engineering, U.S. Army Aviation and Missile Command (AMCOM), as part of the contract monitored by the Aerothermodynamics Directorate, U.S. Army AMCOM.

Key, David L.

2002-01-01

163

Robust crossfeed design for hovering rotorcraft. M.S. Thesis  

NASA Technical Reports Server (NTRS)

Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

Catapang, David R.

1993-01-01

164

Rotorcraft fatigue life-prediction: Past, present, and future  

NASA Technical Reports Server (NTRS)

In this paper the methods used for calculating the fatigue life of metallic dynamic components in rotorcraft is reviewed. In the past, rotorcraft fatigue design has combined constant amplitude tests of full-scale parts with flight loads and usage data in a conservative manner to provide 'safe life' component replacement times. This is in contrast to other industries, such as the automobile industry, where spectrum loading in fatigue testing is a part of the design procedure. Traditionally, the linear cumulative damage rule has been used in a deterministic manner using a conservative value for fatigue strength based on a one in a thousand probability of failure. Conservatism on load and usage are also often employed. This procedure will be discussed along with the current U.S. Army fatigue life specification for new rotorcraft which is the so-called 'six nines' reliability requirement. In order to achieve the six nines reliability requirement the exploration and adoption of new approaches in design and fleet management may also be necessary if this requirement is to be met with a minimum impact on structural weight. To this end a fracture mechanics approach to fatigue life design may be required in order to provide a more accurate estimate of damage progression. Also reviewed in this paper is a fracture mechanics approach for calculating total fatigue life which is based on a crack-closure small crack considerations.

Everett, Richard A., Jr.; Elber, W.

1994-01-01

165

NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration  

NASA Technical Reports Server (NTRS)

Validation and demonstration results from the development of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are presented. The principal tasks of NDARC are to design a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft chosen as NDARC development test cases are the UH-60A single main-rotor and tail-rotor helicopter, the CH-47D tandem helicopter, the XH-59A coaxial lift-offset helicopter, and the XV-15 tiltrotor. These aircraft were selected because flight performance data, a weight statement, detailed geometry information, and a correlated comprehensive analysis model are available for each. Validation consists of developing the NDARC models for these aircraft by using geometry and weight information, airframe wind tunnel test data, engine decks, rotor performance tests, and comprehensive analysis results; and then comparing the NDARC results for aircraft and component performance with flight test data. Based on the calibrated models, the capability of the code to size rotorcraft is explored.

Johnson, Wayne

2010-01-01

166

14 CFR 129.22 - Communication and navigation equipment for rotorcraft operations under VFR over routes navigated...  

Code of Federal Regulations, 2010 CFR

(a) No foreign air carrier may operate a rotorcraft under VFR over routes that can be navigated by pilotage unless the rotorcraft is equipped with the radio communication equipment necessary under normal operating conditions to fulfill the...

2010-01-01

167

Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines  

NASA Technical Reports Server (NTRS)

The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.

Lucero, John M.; DellaCorte, Christopher

2004-01-01

168

The design, selection, and application of oil-free screw compressors for fuel gas service  

SciTech Connect

Fuel gas compressors installed in cogeneration systems must be highly reliable and efficient machines. The screw compressor can usually be designed to meet most of the gas flow rates and pressure conditions generally required for such installations. To an ever-increasing degree, alternative sources are being found for the fuel gas supply, such as coke-oven gas, blast-furnace gas, flare gas, landfill gas, and synthesis gas from coal gasification or from pyrolysis. A feature of the oil-free screw compressor when such gases are being considered is the isolation of the gas compression space from the bearing and gear lubrication system by using positive shaft seals. This ensures that the process gas cannot be contaminated by the lubricating oil, and that there is not risk of loss of lubricant viscosity by gas solution in the oil. This feature enables the compressed gas to contain relatively high levels of particulate contamination without danger of ``sludge`` formation, and also permits the injection of water or liquid solvents into the compression space, to reduce the temperature rise due to the heat of compression, or to ``wash`` any particulate manner through the compressor.

Lelgemann, K.D. [MAN Gutehoffnungshuette AG, Oberhausen (Germany)

1995-01-01

169

Performance and Durability of High Temperature Foil Air Bearing for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304, is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

DellaCorte, C.; Valco, M. J.; Radil, K. C.; Heshmat, H.

1999-01-01

170

Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

DellaCorte, C.; Lukaszewicz, V.; Valco, M. J.; Radil, K. C.; Heshmat, H.

2000-01-01

171

Performance of G-M Cryocooler with Oil-Free Linear Compressor  

NASA Astrophysics Data System (ADS)

A completely oil-free compressor for use with GM cryocoolers has been designed, built, and tested. The compressor uses two, fully-balanced, STAR linear motors together with friction-free reed valves. This arrangement eliminates all possibility of oil contamination in the helium working fluid, and therefore also eliminates the regular servicing that is required by conventional GM compressors. The compressor delivers high-pressure flows comparable to those delivered by well-developed conventional compressors, and is designed to match the operating point pressures and flow for a Sumitomo model 408 cold head. The design of the compressor is briefly reviewed. The measured performance of the compressor when integrated with a Sumitomo model 408 GM cold head is presented. The performance is mapped as a function of the refrigeration load and temperature at both the first and second stage heat exchangers and is compared with the both the manufacturer specified performance and separate baseline tests for the same cold head integrated with a conventional oil-flooded GM compressor.

Maddocks, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Hoch, D. W.; Nellis, G. F.; Corey, J. A.; James, E. L.; Rhoads, G. L.

2006-04-01

172

The role of the research simulator in the systems development of rotorcraft  

NASA Technical Reports Server (NTRS)

The potential application of the research simulator to future rotorcraft systems design, development, product improvement evaluations, and safety analysis is examined. Current simulation capabilities for fixed-wing aircraft are reviewed and the requirements of a rotorcraft simulator are defined. The visual system components, vertical motion simulator, cab, and computation system for a research simulator under development are described.

Statler, I. C.; Deel, A.

1981-01-01

173

Field resonance propulsion concept  

NASA Technical Reports Server (NTRS)

A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

Holt, A. C.

1979-01-01

174

Active control rotor model testing at Princeton's Rotorcraft Dynamics Laboratory  

NASA Technical Reports Server (NTRS)

A description of the model helicopter rotor tests currently in progress at Princeton's Rotorcraft Dynamics Laboratory is presented. The tests are designed to provide data for rotor dynamic modeling for use with active control system design. The model rotor to be used incoporates the capability for Individual Blade Control (IBC) or Higher Harmonic Control through the use of a standard swashplate on a three bladed hub. Sample results from the first series of tests are presented, along with the methodology used for state and parameter identification. Finally, pending experiments and possible research directions using this model and test facility are outlined.

Mckillip, Robert M., Jr.

1988-01-01

175

Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains  

NASA Technical Reports Server (NTRS)

This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

Roberts, Gary D.

2011-01-01

176

Methodology development for evaluation of selective-fidelity rotorcraft simulation  

NASA Technical Reports Server (NTRS)

This paper addressed the initial step toward the goal of establishing performance and handling qualities acceptance criteria for realtime rotorcraft simulators through a planned research effort to quantify the system capabilities of 'selective fidelity' simulators. Within this framework the simulator is then classified based on the required task. The simulator is evaluated by separating the various subsystems (visual, motion, etc.) and applying corresponding fidelity constants based on the specific task. This methodology not only provides an assessment technique, but also provides a technique to determine the required levels of subsystem fidelity for a specific task.

Lewis, William D.; Schrage, D. P.; Prasad, J. V. R.; Wolfe, Daniel

1992-01-01

177

Nuclear Pulse Propulsion  

Microsoft Academic Search

A general technical description and programmatic review of nuclear pulse propulsion activities over the last decade is presented. Major problem areas are reviewed together with the status of current research efforts. Sufficient technical information is now available to predict achievable propulsion systems performance with a rather high degree of confidence based on current materials and nuclear technology. Expected performance is

J. C. Nance

1965-01-01

178

Electric Propulsion Apparatus  

NASA Technical Reports Server (NTRS)

An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

Patterson, Michael J. (Inventor)

2013-01-01

179

NASA's Propulsion Research Laboratory  

NASA Technical Reports Server (NTRS)

The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

2004-01-01

180

Electric propulsion cost estimation  

NASA Technical Reports Server (NTRS)

A parametric cost model for mercury ion propulsion modules is presented. A detailed work breakdown structure is included. Cost estimating relationships were developed for the individual subsystems and the nonhardware items (systems engineering, software, etc.). Solar array and power processor unit (PPU) costs are the significant cost drivers. Simplification of both of these subsystems through applications of advanced technology (lightweight solar arrays and high-efficiency, self-radiating PPUs) can reduce costs. Comparison of the performance and cost of several chemical propulsion systems with the Hg ion module are also presented. For outer-planet missions, advanced solar electric propulsion (ASEP) trip times and O2/H2 propulsion trip times are comparable. A three-year trip time savings over the baselined NTO/MMH propulsion system is possible with ASEP.

Palaszewski, B. A.

1985-01-01

181

Laser Propulsion - Quo Vadis  

SciTech Connect

First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

Bohn, Willy L. [Institute of Technical Physics, German Aerospace Center (DLR) D-70569 Pfaffenwaldring 38-40, Stuttgart (Germany)

2008-04-28

182

Acoustic Predictions of Manned and Unmanned Rotorcraft Using the Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) Code System  

NASA Technical Reports Server (NTRS)

The Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) is being developed under the Quiet Aircraft Technology Project within the NASA Vehicle Systems Program. The purpose of CARMA is to provide analysis tools for the design and evaluation of efficient low-noise rotorcraft, as well as support the development of safe, low-noise flight operations. The baseline prediction system of CARMA is presented and current capabilities are illustrated for a model rotor in a wind tunnel, a rotorcraft in flight and for a notional coaxial rotor configuration; however, a complete validation of the CARMA system capabilities with respect to a variety of measured databases is beyond the scope of this work. For the model rotor illustration, predicted rotor airloads and acoustics for a BO-105 model rotor are compared to test data from HART-II. For the flight illustration, acoustic data from an MD-520N helicopter flight test, which was conducted at Eglin Air Force Base in September 2003, are compared with CARMA full vehicle flight predictions. Predicted acoustic metrics at three microphone locations are compared for limited level flight and descent conditions. Initial acoustic predictions using CARMA for a notional coaxial rotor system are made. The effect of increasing the vertical separation between the rotors on the predicted airloads and acoustic results are shown for both aerodynamically non-interacting and aerodynamically interacting rotors. The sensitivity of including the aerodynamic interaction effects of each rotor on the other, especially when the rotors are in close proximity to one another is initially examined. The predicted coaxial rotor noise is compared to that of a conventional single rotor system of equal thrust, where both are of reasonable size for an unmanned aerial vehicle (UAV).

Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

2005-01-01

183

A comparison of fatigue life prediction methodologies for rotorcraft  

NASA Technical Reports Server (NTRS)

Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.

Everett, R. A., Jr.

1990-01-01

184

Free Flight Rotorcraft Flight Test Vehicle Technology Development  

NASA Technical Reports Server (NTRS)

A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

Hodges, W. Todd; Walker, Gregory W.

1994-01-01

185

A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour  

NASA Technical Reports Server (NTRS)

Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.

Leyland, Jane Anne

1996-01-01

186

A physics based investigation of Gurney flaps for enhancement of rotorcraft flight characteristics  

NASA Astrophysics Data System (ADS)

Helicopters are versatile vehicles that can vertically take off and land, hover, and perform maneuver at very low forward speeds. These characteristics make them unique for a number of civilian and military applications. However, the radial and azimuthal variation of dynamic pressure causes rotors to experience adverse phenomena such as transonic shocks and 3-D dynamic stall. Adverse interactions such as blade vortex interaction and rotor-airframe interaction may also occur. These phenomena contribute to noise and vibrations. Finally, in the event of an engine failure, rotorcraft tends to descend at high vertical velocities causing structural damage and loss of lives. A variety of techniques have been proposed for reducing the noise and vibrations. These techniques include on-board control (OBC) devices, individual blade control (IBC), and higher harmonic control (HHC). Addition of these devices adds to the weight, cost, and complexity of the rotor system, and reduces the reliability of operations. Simpler OBC concepts will greatly alleviate these drawbacks and enhance the operating envelope of vehicles. In this study, the use of Gurney flaps is explored as an OBC concept using a physics based approach. A three dimensional Navier-Stokes solver developed by the present investigator is coupled to an existing free wake model of the wake structure. The method is further enhanced for modeling of Blade-Vortex-Interactions (BVI). Loose coupling with an existing comprehensive structural dynamics analysis solver (DYMORE) is implemented for the purpose of rotor trim and modeling of aeroelastic effects. Results are presented for Gurney flaps as an OBC concept for improvements in autorotation, rotor vibration reduction, and BVI characteristics. As a representative rotor, the HART-II model rotor is used. It is found that the Gurney flap increases propulsive force in the driving region while the drag force is increased in the driven region. It is concluded that the deployable Gurney flap may improve autorotation characteristics if deployed only over the driving region. Although the net effect of the increased propulsive and drag force results in a faster descent rate when the trim state is maintained for identical thrust, it is found that permanently deployed Gurney flaps with fixed control settings may be useful in flare operations before landing by increasing thrust and lowering the descent rate. The potential of deployable Gurney flap is demonstrated for rotor vibration reduction. The 4P harmonic of the vertical vibratory load is reduced by 80% or more, while maintaining the trim state. The 4P and 8P harmonic loads are successfully suppressed simultaneously using individually controlled multi-segmented flaps. Finally, simulations aimed at BVI avoidance using deployable Gurney flaps are also presented.

Min, Byung-Young

187

Distributed Propulsion Vehicles  

NASA Technical Reports Server (NTRS)

Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

Kim, Hyun Dae

2010-01-01

188

Advanced subsonic transport propulsion  

NASA Technical Reports Server (NTRS)

A brief review of the current NASA Energy Efficient Engine (E(3)) Project is presented. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E(3) engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. The potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

Nored, D. L.; Ciepluch, C. C.; Chamberlain, R.; Meleason, E. T.; Kraft, G. A.

1981-01-01

189

Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

2012-01-01

190

Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program  

NASA Technical Reports Server (NTRS)

Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

Handschuh, Robert F.; Zakrajsek, James J.

2006-01-01

191

Advanced Space Propulsion  

NASA Technical Reports Server (NTRS)

This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.

Frisbee, Robert H.

1996-01-01

192

Advanced subsonic transport propulsion  

NASA Technical Reports Server (NTRS)

Examination of future subsonic commercial aircraft propulsion trends begins with a brief review of the current NASA Energy Efficient Engine (E3) Project. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E3 engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. And finally, the potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

Nored, D. L.; Ciepluch, C. C.; Chamberlin, R.; Meleason, E. T.; Kraft, G. A.

1981-01-01

193

Viscous Marangoni propulsion  

E-print Network

Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.

Eric Lauga; Anthony M. J. Davis

2012-12-05

194

Active vibration and noise alleviation in rotorcraft using microflaps  

NASA Astrophysics Data System (ADS)

This work presents a comprehensive analysis of active Gurney flaps, or microflaps, for on blade control of noise and vibration in rotorcraft. The initial portion of the work considered the two-dimensional unsteady aerodynamic characteristics of three different oscillating microflap configurations using a compressible computational fluid dynamics (CFD) flow solver. Among these the configuration most suitable for rotorcraft applications was chosen. An unsteady reduced order aerodynamic model (ROM) was developed for the microflap using the Rational Function Approximation approach and CFD based oscillatory aerodynamic load data. The resulting ROM is a state-space, time-domain model that accounts for unsteadiness, compressibility and time-varying freestream effects. The ROM was validated against direct CFD calculations for a wide range of flow conditions showing excellent agreement. Subsequently, the ROM was then incorporated into a comprehensive rotorcraft simulation code featuring a free-wake model, an acoustic prediction tool, and fully coupled flap-lag-torsional blade dynamics. The higher harmonic control (HHC) algorithm was used to simulate closed-loop active control with a 1.5% chord microflap on a hingeless rotor configuration resembling the MBB BO-105. Three span-wise configurations, single, dual, and a five-microflap configuration were considered. Results indicate that the microflap can achieve reductions ranging from 3-6 dB in the blade-vortex interaction (BVI) noise. Vibration reduction ranging from 70-90% was also demonstrated at both low-speed and high-speed flight conditions. It was also found that reduction in BVI noise results in an increase in vibrations and vice versa, a trend also noted in previous active control studies employing HHC and conventional partial span trailing-edge flaps. Next, simultaneous BVI noise and vibration reduction was studied. A reduction of 2-3 dB in the advancing and retreating side noise combined with a 55% reduction in the vibratory loads was achieved using the five-microflap configuration. The 1.5% chord microflap was also compared to a 20% chord plain trailing-edge flap showing similar effectiveness in reducing vibration and noise. Finally, a new approach for dealing with actuator saturation in the HHC algorithm was developed using nonlinear constrained optimization techniques. The optimization approach takes less computational time compared to the previous approaches while yielding better performance in the case of multiple control surfaces.

Padthe, Ashwani Kumar

195

Advanced propulsion concepts  

NASA Technical Reports Server (NTRS)

A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

Frisbee, Robert H.

1991-01-01

196

Solar Thermal Propulsion Test  

NASA Technical Reports Server (NTRS)

Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1999-01-01

197

NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 6: Vehicle Configuration Session  

NASA Technical Reports Server (NTRS)

Five high speed rotorcraft configurations are considered: the high speed helicopter, compound helicopter, ABC, tilt rotor and the X wing. The technology requirements and the recommended actions are discussed.

1980-01-01

198

Preliminary design capability enhancement via development of rotorcraft operating economics model  

E-print Network

The purpose of this thesis is to develop a means of predicting direct operating cost (DOC) for new commercial rotorcraft early in the design process. This project leverages historical efforts to model operating costs in ...

Giansiracusa, Michael P

2010-01-01

199

A comparative analysis of technological learning systems in emerging rotorcraft companies  

E-print Network

The aim of this research is to understand how emerging rotorcraft companies in various countries accomplished technological learning over the last sixty years. Owing to its unique products and growing market demand, ...

Gan, Thiam Soon

2011-01-01

200

75 FR 24502 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; Reopening of Comment...  

Federal Register 2010, 2011, 2012, 2013

...address advances in composite structures technology and provide internationally...submitting written comments, data, or views. We also invite...change, and include supporting data. To ensure the docket does...Evaluation of Composite Rotorcraft Structures'' that proposed to...

2010-05-05

201

Computational Analysis of a Prototype Martian Rotorcraft Experiment  

NASA Technical Reports Server (NTRS)

This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.

Corfeld, Kelly J.; Strawn, Roger C.; Long, Lyle N.

2002-01-01

202

Time-Spectral Rotorcraft Simulations on Overset Grids  

NASA Technical Reports Server (NTRS)

The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.

Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.

2014-01-01

203

Development of autonomous magnetometer rotorcraft for wide area assessment  

SciTech Connect

Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of dynamic acquisition, i.e. survey mission inflight reprioritization). We describe and report on a one year effort with as primary goal to provide a recommendation to SERDP for a path forward in the implementation of one or more autonomous unmanned magnetometer rotorcraft platforms. This recommendation (which is provided in chapter 6) is based on the following three elements a) An assessment on the applicability of autonomous rotorcraft magnetometer systems to the current DoD site inventory, and an initial assessment of which type(s) of autonomous unmanned magnetometer rotorcraft platforms (in terms of performance characteristics such as payload, altitude, obstacle avoidance, production rate and flight time) would be most relevant to this inventory (chapter 3); b) An evaluation of the feasibility of assembling such platforms from commercial components (unmanned rotorcraft, control systems and sensors – both magnetometer sensors and supporting sensors). This evaluation included several highly successful field tests (chapter 4 and 5); c) A recommendation of the path forward, which includes a detailed outline of the efforts required in the design, assembly and testing of different modular platforms (chapter 6)

Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

2010-04-01

204

Passive range estimation for rotorcraft low-altitude flight  

NASA Technical Reports Server (NTRS)

The automation of rotorcraft low-altitude flight presents challenging problems in control, computer vision and image understanding. A critical element in this problem is the ability to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory. This requirement is also necessary for the safe landing of an autonomous lander on Mars. This paper examines some of the issues in the location of objects using a sequence of images from a passive sensor, and describes a Kalman filter approach to estimate the range to obstacles. The Kalman filter is also used to track features in the images leading to a significant reduction of search effort in the feature extraction step of the algorithm. The method can compute range for both straight line and curvilinear motion of the sensor. A laboratory experiment was designed to acquire a sequence of images along with sensor motion parameters under conditions similar to helicopter flight. Range estimation results using this imagery are presented.

Sridhar, B.; Suorsa, R.; Hussien, B.

1991-01-01

205

Technologies for automating rotorcraft nap-of-the-earth flight  

NASA Technical Reports Server (NTRS)

This paper discusses the technologies required for automating rotorcraft nap-of-the-earth flight, where the use of natural obstacles for masking from the enemy is intentional and the danger of undesirable obstacles such as enemy traps is real. Specifically, the automatic guidance structure is modeled by three decision-making levels: the far-field mission planning and the mid-field terrain-masking trajectory shaping are both driven by prestored terrain data, whereas the nearfield obstacle detection/avoidance is driven by real-time on-board sensor data. This paper summarizes the far-field and mid-field accomplishments, and reports on the status of the more-recent efforts in obstacle detection and avoidance development. Obstacle detection is based primarily on passive imaging sensors for the desirable properties of covertness and wide field of view, although active sensors are included in the structure to provide the much needed high resolution for thin-wire detection.

Cheng, Victor H. L.; Sridhar, Banavar

1992-01-01

206

Computer vision techniques for rotorcraft low-altitude flight  

NASA Technical Reports Server (NTRS)

A description is given of research that applies techniques from computer vision to automation of rotorcraft navigation. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle detection approach can be used as obstacle data for the obstacle avoidance in an automataic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data, however, presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. Some comments are made on future work and how research in this area relates to the guidance of other autonomous vehicles.

Sridhar, Banavar; Cheng, Victor H. L.

1988-01-01

207

Vision based techniques for rotorcraft low altitude flight  

NASA Technical Reports Server (NTRS)

An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.

Sridhar, Banavar; Suorsa, Ray; Smith, Philip

1991-01-01

208

Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet  

NASA Technical Reports Server (NTRS)

The U.S. Army is currently expanding its fleet of Health Usage Monitoring Systems (HUMS) equipped aircraft at significant rates, to now include over 1,000 rotorcraft. Two different on-board HUMS, the Honeywell Modern Signal Processing Unit (MSPU) and the Goodrich Integrated Vehicle Health Management System (IVHMS), are collecting vibration health data on aircraft that include the Apache, Blackhawk, Chinook, and Kiowa Warrior. The objective of this paper is to recommend the most effective gear condition indicators for fleet use based on both a theoretical foundation and field data. Gear diagnostics with better performance will be recommended based on both a theoretical foundation and results of in-fleet use. In order to evaluate the gear condition indicator performance on rotorcraft fleets, results of more than five years of health monitoring for gear faults in the entire HUMS equipped Army helicopter fleet will be presented. More than ten examples of gear faults indicated by the gear CI have been compiled and each reviewed for accuracy. False alarms indications will also be discussed. Performance data from test rigs and seeded fault tests will also be presented. The results of the fleet analysis will be discussed, and a performance metric assigned to each of the competing algorithms. Gear fault diagnostic algorithms that are compliant with ADS-79A will be recommended for future use and development. The performance of gear algorithms used in the commercial units and the effectiveness of the gear CI as a fault identifier will be assessed using the criteria outlined in the standards in ADS-79A-HDBK, an Army handbook that outlines the conversion from Reliability Centered Maintenance to the On-Condition status of Condition Based Maintenance.

Antolick, Lance J.; Branning, Jeremy S.; Wade, Daniel R.; Dempsey, Paula J.

2010-01-01

209

Fusion for Space Propulsion  

NASA Technical Reports Server (NTRS)

The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and engineering capabilities have been demonstrated for a fusion reactor gain (Q) of the order of unity (TFTR: 0.25, JET: 0.65, JT-60: Q(sub eq) approx. 1.25). These technological advances made it compelling for considering fusion for propulsion.

Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

2002-01-01

210

High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

DellaCorte, Christopher; Valco, Mark J.

1999-01-01

211

Propulsion IVHM Technology Experiment  

NASA Technical Reports Server (NTRS)

The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

2006-01-01

212

Nuclear concepts/propulsion  

NASA Technical Reports Server (NTRS)

Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

Miller, Thomas J.

1993-01-01

213

Laser Propulsion Standardization Issues  

SciTech Connect

It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

Scharring, Stefan; Eckel, Hans-Albert [Institute of Technical Physics, German Aerospace Center (DLR), D-70569 Stuttgart, Pfaffenwaldring 38-40 (Germany); Roeser, Hans-Peter [Institute of Space Systems, University of Stuttgart, D-70569 Stuttgart, Pfaffenwaldring 31 (Germany); Sinko, John E. [Micro-Nano Global Center of Excellence, Nagoya University (Niue), Nagoya, Aichi, 464-8603 (Japan); Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Nagoya, Aichi, 464-8603 (Japan)

2010-10-08

214

The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory  

NASA Technical Reports Server (NTRS)

Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

1997-01-01

215

Electric Propulsion Applications and Impacts  

NASA Technical Reports Server (NTRS)

Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

Curran, Frank M.; Wickenheiser, Timothy J.

1996-01-01

216

Fusion for Space Propulsion  

NASA Technical Reports Server (NTRS)

There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containme

Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

2001-01-01

217

Advanced Chemical Propulsion Study  

NASA Technical Reports Server (NTRS)

A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

2004-01-01

218

Nuclear thermal propulsion program overview  

NASA Technical Reports Server (NTRS)

Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

Bennett, Gary L.

1991-01-01

219

Space Transportation Propulsion Systems  

NASA Technical Reports Server (NTRS)

This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

2001-01-01

220

CFD applications - propulsion perspective  

SciTech Connect

The current status of Computational Fluid Dynamics (CFD) as applied to propulsion devices is discussed. The traditional code development cycle is described, and it is argued that this cycle needs to be improved if the explosive growth in CFD codes is to be harnessed profitably. It is also argued that the government funding agencies have to take a leading role in the modification of this cycle. The technical issues relating to internal flows in propulsion systems are discussed, and it is suggested that mesh generation, mesh adaptation, and turbulence model development require major emphasis in the future. 16 references.

Syed, S.A.; Pickett, G.F.

1989-01-01

221

Supersonic laser propulsion.  

PubMed

To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of Cm?10-3??N/W is shown. PMID:25402938

Rezunkov, Yurii; Schmidt, Alexander

2014-11-01

222

Bionic hydrofoil propulsion experiments research  

Microsoft Academic Search

In order to discuss hydrofoil propulsion method, the experimental research of bionic turtle hydrofoil propulsion was carried out. Based on the analysis of living prototype motion principle, the bionic hydrofoil propulsion experimental sample was developed including bio-hydrofoil motion machine, bio-palmiped motion machine and centralized control module. Then, the direct navigation and yawing performance test experiments of bionic sample in the

Mingjun Zhang; Xiaobai Liu; Jian'an Xu; Na Yan; Shaobo Guo

2010-01-01

223

Jet Propulsion Laboratory Introduction 1  

E-print Network

JPL Annual Report 1989 Jet Propulsion Laboratory #12;#12;CONTENTS Introduction 1 Director's Message for the period January 1 through December 31, 1989. JET PROPULSION LABORATORY California Institute of Technology Pasadena, California #12;INTRODUCTION TheJet Propulsion Laboratory QPL) of the California Institute

Waliser, Duane E.

224

JET PROPULSION LABORATORY COVER: FROM  

E-print Network

4-00 -4-11 5/q'd.... JET PROPULSION LABORATORY 1991 Annual Report #12;COVER: FROM ~IODEST BEGIN Aeronautlcs and Space Adnurustratlon for the peaod January 1 through December 31, 1991. Jet Propulsion Laboratory Cahforrua Instltute ofTechnology Pasadena,~orrua .-. III #12;IINTRODUCTION Propulsion Laboratory

Waliser, Duane E.

225

SPE propulsion electrolyzer for NASA's integrated propulsion test article  

NASA Astrophysics Data System (ADS)

Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

1991-08-01

226

SPE propulsion electrolyzer for NASA's integrated propulsion test article  

NASA Technical Reports Server (NTRS)

Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

1991-01-01

227

General Aviation Propulsion  

NASA Technical Reports Server (NTRS)

Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

1980-01-01

228

Progress in colloid propulsion  

E-print Network

In the early decades of the Space Age, a great deal of work was put into the development of the Colloid Thruster as an electric propulsion system for spacecraft. In spite of the effort by the end of the 70s the programs ...

López Urdiales, Jóse Mariano, 1977-

2004-01-01

229

Jet Propulsion Laboratory Homepage  

NSDL National Science Digital Library

The Jet Propulsion Laboratory's (JPL) homepage provides links to spacecraft and mission information, imagery, news articles, events, features, and public services. Users can access articles and imagery from the Mars Rover and Cassini missions, images from the Spitzer Space Telescope, and an El Nino/La Nina Watch.

230

White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings  

NASA Technical Reports Server (NTRS)

A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

Lucero, John M.

2003-01-01

231

Design sensitivity analysis of rotorcraft airframe structures for vibration reduction  

NASA Technical Reports Server (NTRS)

Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

Murthy, T. Sreekanta

1987-01-01

232

Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics  

NASA Technical Reports Server (NTRS)

The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

Johnson, Wayne

2004-01-01

233

Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics  

NASA Technical Reports Server (NTRS)

The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

Johnson, Wayne

2005-01-01

234

Contributions of the Langley Transonic Dynamics Tunnel to Rotorcraft Technology and Development  

NASA Technical Reports Server (NTRS)

A historical account of the contributions of the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in the TDT are then described in separate sections. The discussions include a description of the various models employed, the specific objectives of the tests, and illustrative results.

Yeager, William T., Jr.; Kvaternik, Raymond G.

2000-01-01

235

Zero/zero rotorcraft certification issues. Volume 3: Working group results  

NASA Technical Reports Server (NTRS)

This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 3 of three. It provides the issue-by-issue deliberations of the experts involved in the Working Groups assigned to deal with them in the Issues Forum.

Adams, Richard J.

1988-01-01

236

A Historical Overview of Aeroelasticity Branch and Transonic Dynamics Tunnel Contributions to Rotorcraft Technology and Development  

NASA Technical Reports Server (NTRS)

A historical account of the contributions of the Aeroelasticity Branch (AB) and the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and a review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in AB/TDT are then described in separate sections. Both experimental and analytical studies are reported and include a description of the various physical and mathematical models employed, the specific objectives of the investigations, and illustrative experimental and analytical results.

Yeager, William T., Jr.; Kvaternik, Raymond G.

2001-01-01

237

The role of the research simulator in the systems development of rotorcraft  

NASA Technical Reports Server (NTRS)

Over the last 20 years, flight simulators became widely accepted as training tools. Moreover, research simulators were used extensively by the fixed-wing industry: in the design, testing, and certification of new aircraft. The rotorcraft industry, however, was slow to use man-in-the-loop simulation to solve its design problems, primarily because of the difficulty of modeling complex rotorcraft for realtime simulation and because of the need for a wide-angle visual system for low-level flight. A joint U.S. Army and NASA program was initiated to provide this simulation capability for exploitation by both government and industry. The potential application of the research simulator to future rotorcraft systems design, development, product improvement evaluations, and safety analysis is discussed.

Statler, I. C.; Deel, A.

1981-01-01

238

Hypersonic missile propulsion system  

SciTech Connect

Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technology base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.

Kazmar, R.R.

1998-11-01

239

Electromagnetic propulsion for spacecraft  

NASA Technical Reports Server (NTRS)

Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

Myers, Roger M.

1993-01-01

240

Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

Jones, David

2011-01-01

241

Deuterium microbomb rocket propulsion  

E-print Network

Large scale manned space flight within the solar system is still confronted with the solution of two problems: 1. A propulsion system to transport large payloads with short transit times between different planetary orbits. 2. A cost effective lifting of large payloads into earth orbit. For the solution of the first problem a deuterium fusion bomb propulsion system is proposed where a thermonuclear detonation wave is ignited in a small cylindrical assembly of deuterium with a gigavolt-multimegampere proton beam, drawn from the magnetically insulated spacecraft acting in the ultrahigh vacuum of space as a gigavolt capacitor. For the solution of the second problem, the ignition is done by argon ion lasers driven by high explosives, with the lasers destroyed in the fusion explosion and becoming part of the exhaust.

Friedwardt Winterberg

2008-12-02

242

Plasmas for space propulsion  

NASA Astrophysics Data System (ADS)

Plasma thrusters are challenging the monopoly of chemical thrusters in space propulsion. The specific energy that can be deposited into a plasma beam is orders of magnitude larger than the specific chemical energy of known fuels. Plasma thrusters constitute a vast family of devices ranging from already commercial thrusters to incipient laboratory prototypes. Figures of merit in plasma propulsion are discussed. Plasma processes and conditions differ widely from one thruster to another, with the pre-eminence of magnetized, weakly collisional plasmas. Energy is imparted to the plasma via either energetic electron injection, biased electrodes or electromagnetic irradiation. Plasma acceleration can be electrothermal, electrostatic or electromagnetic. Plasma-wall interaction affects energy deposition and erosion of thruster elements, and thus is central for thruster efficiency and lifetime. Magnetic confinement and magnetic nozzles are present in several devices. Oscillations and turbulent transport are intrinsic to the performances of some thrusters. Several thrusters are selected in order to discuss these relevant plasma phenomena.

Ahedo, Eduardo

2011-12-01

243

Hybrid propulsion technology program  

NASA Technical Reports Server (NTRS)

Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

1990-01-01

244

Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications  

NASA Technical Reports Server (NTRS)

A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

Howard, Samuel

2012-01-01

245

Emerging Propulsion Technologies  

NASA Technical Reports Server (NTRS)

The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

Keys, Andrew S.

2006-01-01

246

Why Density Dependent Propulsion?  

NASA Technical Reports Server (NTRS)

In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

Robertson, Glen A.

2011-01-01

247

Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion  

Microsoft Academic Search

Boninger ML, Souza AL, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil 2002;83:718-23. Objectives: To classify stroke patterns of manual wheelchair users and to determine if different patterns of propulsion lead to different biomechanics. Design: Case series. Setting: Biomechanics laboratory. Participants: Thirty-eight individuals with paraplegia who use

Michael L. Boninger; Aaron L. Souza; Rory A. Cooper; Shirley G. Fitzgerald; Alicia M. Koontz; Brian T. Fay

2002-01-01

248

Analysis of computational modeling techniques for complete rotorcraft configurations  

NASA Astrophysics Data System (ADS)

Computational fluid dynamics (CFD) provides the helicopter designer with a powerful tool for identifying problematic aerodynamics. Through the use of CFD, design concepts can be analyzed in a virtual wind tunnel long before a physical model is ever created. Traditional CFD analysis tends to be a time consuming process, where much of the effort is spent generating a high quality computational grid. Recent increases in computing power and memory have created renewed interest in alternative grid schemes such as unstructured grids, which facilitate rapid grid generation by relaxing restrictions on grid structure. Three rotor models have been incorporated into a popular fixed-wing unstructured CFD solver to increase its capability and facilitate availability to the rotorcraft community. The benefit of unstructured grid methods is demonstrated through rapid generation of high fidelity configuration models. The simplest rotor model is the steady state actuator disk approximation. By transforming the unsteady rotor problem into a steady state one, the actuator disk can provide rapid predictions of performance parameters such as lift and drag. The actuator blade and overset blade models provide a depiction of the unsteady rotor wake, but incur a larger computational cost than the actuator disk. The actuator blade model is convenient when the unsteady aerodynamic behavior needs to be investigated, but the computational cost of the overset approach is too large. The overset or chimera method allows the blades loads to be computed from first-principles and therefore provides the most accurate prediction of the rotor wake for the models investigated. The physics of the flow fields generated by these models for rotor/fuselage interactions are explored, along with efficiencies and limitations of each method.

O'Brien, David M., Jr.

249

Application of GRASP (General Rotorcraft Aeromechanical Stability Program) to nonlinear analysis of a cantilever beam  

NASA Technical Reports Server (NTRS)

The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.

Hinnant, Howard E.; Hodges, Dewey H.

1987-01-01

250

A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual  

NASA Technical Reports Server (NTRS)

The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.

Johnson, W.

1980-01-01

251

Application of special-purpose digital computers to rotorcraft real-time simulation  

NASA Technical Reports Server (NTRS)

The use of an array processor as a computational element in rotorcraft real-time simulation is studied. A multilooping scheme was considered in which the rotor would loop over its calculations a number of time while the remainder of the model cycled once on a host computer. To prove that such a method would realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical host-array processor computing configuration. The multilooping of an expanded rotor model, which included appropriate kinematic equations, resulted in an accurate and stable simulation.

Mackie, D. B.; Michelson, S.

1978-01-01

252

NASA Breakthrough Propulsion Physics Program  

NASA Technical Reports Server (NTRS)

In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

Millis, Marc G.

1998-01-01

253

The Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

2014-01-01

254

Electrolysis Propulsion for Spacecraft Applications  

NASA Technical Reports Server (NTRS)

Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

1997-01-01

255

A comparison of chemical propulsion, nuclear thermal propulsion, and multimegawatt electric propulsion for Mars missions  

NASA Technical Reports Server (NTRS)

Various propulsion systems are considered for a split-mission piloted exploration of Mars in terms of reducing total initial mass in low earth orbit (IMLEO) as well as trip time. Aerobraked nuclear thermal propulsion (NTP), multimegawatt (MMW) nuclear electric propulsion (NEP), and MMW solar electric propulsion (SEP) are discussed and compared to a baseline aerobraked chemical propulsion system. NTP offers low IMLEO, MMW NEP allows both low IMLEO and a short trip time, and both nuclear systems offer better mission characteristics than the chemical system. The MMW SEP is concluded to be less efficient in spite of a lower IMLEO because of the system's higher specific mass and nonconstant power production. It is recommended that MMW NEP and SEP systems be considered for application to Mars cargo missions. The NEP system is concluded to be the most effective propulsion configuration for piloted Mars missions and lunar base missions.

Frisbee, Robert H.; Blandino, John J.; Leifer, Stephanie D.

1991-01-01

256

46 CFR 130.120 - Propulsion control.  

...2014-10-01 2014-10-01 false Propulsion control. 130.120 Section 130...SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1) A propulsion-control system operable from the...

2014-10-01

257

46 CFR 130.120 - Propulsion control.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Propulsion control. 130.120 Section 130...SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1) A propulsion-control system operable from the...

2012-10-01

258

46 CFR 130.120 - Propulsion control.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Propulsion control. 130.120 Section 130...SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1) A propulsion-control system operable from the...

2011-10-01

259

46 CFR 130.120 - Propulsion control.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Propulsion control. 130.120 Section 130...SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1) A propulsion-control system operable from the...

2013-10-01

260

46 CFR 130.120 - Propulsion control.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130...SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1) A propulsion-control system operable from the...

2010-10-01

261

Electromagnetic propulsion test facility  

NASA Technical Reports Server (NTRS)

A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

Gooder, S. T.

1984-01-01

262

Electrospray Propulsion: a Review  

NASA Astrophysics Data System (ADS)

The phenomenon of colloidal electrospray has been known for some time, and attempts have been made to exploit it for space propulsion. New developments in both the basic science and the fabrication techniques have recently rekindled interest, and this talk will briefly review the field and present recent results of our MIT work as well as from other laboratories. This includes the use of new fluids, such a Organic Ionic Liquids, new supply schemes, such as external capillary feeding of the liquid, new emission regimes, such as emission of pure ions with no droplets, and new operating modes, such as polarity alternation to suppress electrochemistry.

Martinez-Sanchez, Manuel

2004-11-01

263

Nuclear propulsion systems engineering  

SciTech Connect

The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

1992-01-01

264

Nuclear propulsion systems engineering  

SciTech Connect

The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

1992-12-31

265

Gas Wave Bearings: A Stable Alternative to Journal Bearings for High-Speed Oil-Free Machines  

NASA Technical Reports Server (NTRS)

To run both smoothly and efficiently, high-speed machines need stable, low-friction bearings to support their rotors. In addition, an oil-free bearing system is a common requirement in today's designs. Therefore, self-acting gas film bearings are becoming the bearing of choice in high-performance rotating machinery, including that used in the machine tool industry. Although plain journal bearings carry more load and have superior lift and land characteristics, they suffer from instability problems. Since 1992, a new type of fluid film bearing, the wave bearing, has been under development at the NASA Lewis Research Center in Cleveland, Ohio, by Dr. Florin Dimofte, a Senior Research Associate of the University of Toledo. One unique characteristic of the waved journal bearing that gives it improved capabilities over conventional journal bearings is the low-amplitude waves of its inner diameter surface. The radial clearance is on the order of one thousandth of the shaft radius, and the wave amplitude is nominally up to one-half the clearance. This bearing concept offers a load capacity which is very close to that of a plain journal bearing, but it runs more stably at nominal speeds.

Dimofte, Florin

2005-01-01

266

Rotorcraft Downwash Flow Field Study to Understand the Aerodynamics of Helicopter Brownout  

Microsoft Academic Search

Rotorcraft brownout is caused by the entrainment of dust and sand particles in helicopter downwash, resulting in reduced pilot visibility during low, slow flight and landing. Recently, brownout has become a high-priority problem for military operations because of the risk to both pilot and equipment. Mitigation of this problem has focused on flight controls and landing maneuvers, but current knowledge

Alan J. Wadcock; Lindsay A. Ewing; Eduardo Solis; Mark Potsdam; Ganesh Rajagopalan

267

Department of Mechanical Engineering Fall 2010 Exotic Blade Shapes in Rotorcraft Acoustics  

E-print Network

Acoustics Overview The team was charged with developing a blade tip modification by which rotorcraft noise were conducted followed by acoustic testing. The results were validated by using two different acoustic data collection systems. Outcomes The team's serrated tip design achieved an audible reduction

Demirel, Melik C.

268

Evaluation of innovative concepts for semi-active and active rotorcraft control  

NASA Astrophysics Data System (ADS)

Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or "damping on demand," is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving "truss-core" configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.

Van Weddingen, Yannick

2011-12-01

269

Engineering approach for Rotorcraft Pilot's Associate cognitive decision aiding systems development  

Microsoft Academic Search

This paper describes our concurrent engineering approach for the Rotorcraft Pilots Associate (RPA) program. The process integrates knowledge acquisition, rapid prototyping, and evaluation into a system development process. The approach is an iterative process which gathers knowledge, uses rapid prototyping to develop Cognitive Decision Aiding System software, uses simulation and embedded measures of effectiveness and measures of performance to evaluate

B. McBryan; J. Hall

1994-01-01

270

A closed loop experiment of collective bounce aeroelastic Rotorcraft-Pilot Coupling  

NASA Astrophysics Data System (ADS)

This work presents an experimental study that investigated the possibility of destabilising a rotorcraft by coupling the biomechanical behaviour of human subjects with the dynamics of the vehicle. The results of a study focused on the behaviour of pilots holding the collective control inceptor in a flight simulator are discussed. The motion of the flight simulation model was restricted to the heave axis, and augmented to include an elastic mode of vibration in addition to the rigid heave degree of freedom. Four different pilots flew several alternative model configurations with different elastic mode frequency and different collective pitch gearing ratios. This resulted in several observable unstable pilot-vehicle interactions at frequencies that cannot be traced back to the rotorcraft dynamics. Unstable oscillatory events evolving into limit cycle oscillations occurred most often at frequencies related to the biomechanics of the flight simulator occupant. They appeared to be task dependent and, in some cases, the trigger could be attributed to specific events. Additionally, it was found that the presence of collective friction alleviates but does not completely eliminate the unstable interactions between the pilot and the rotorcraft. Although not statistically meaningful because of the small set of human subjects available for the study, the results confirmed that the biomechanics transfer function of the pilot is the most influential aspect of the pilot-vehicle system that gives rise to the adverse vertical bounce phenomenon. Additionally, this study gave useful insight into the vehicle parameters that can adversely influence the involuntary interaction of pilots with rotorcraft.

Masarati, Pierangelo; Quaranta, Giuseppe; Lu, Linghai; Jump, Michael

2014-01-01

271

Propulsion considerations for supersonic oblique flying wings  

E-print Network

Propulsion considerations unique to the supersonic oblique flying wing, including cycle selection, sizing, and integration were investigated via the development and interrogation of aerodynamic and propulsive synthesis ...

Shinagawa, Yuto

2006-01-01

272

Advanced technologies for nuclear propulsion  

Microsoft Academic Search

The Mission Requirements and Resources Allocation Model is presently used to examine nuclear propulsion alternatives on the basis of projected performance levels. All calculations are based on a complete vehicle design, including habitat subsystem masses, external services, propulsion system component performance, power subsystems, tankage factors, and the allocations for both propellant boiloff volumes and the accumulation of unusable residuals. Attention

Benton Clark; Scott Geels; Brian Sutter; Rohan Zaveri; Robert Zubrin

1992-01-01

273

Exotic power and propulsion concepts  

NASA Technical Reports Server (NTRS)

The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

Forward, Robert L.

1990-01-01

274

Ship propulsion system  

SciTech Connect

This patent describes an improved efficiency propulsion system for a ship operated at both deep and shallow water depths, and at variable loaded and ballast waterlines. This propulsion system consists of a number of elements interactive in their operation. The first component of the system detailed is a variable diameter propeller means equipped with a mechanism for varying the diameter of the propeller between a maximum extended diameter and a minimum diameter. The next component of the system depicted in the patent is a propeller shaft mounting which enables the propeller to rotate in the stern portion of the ship. The propeller shaft is characterized as extending parallel to the bottom keel of the ship and having an axis of rotation displaced from the bottom keel a distance less than one-half the maximum diameter of the propeller means but more than one-half of the minimum diameter of the propeller means. As a consequence of the systems design characteristics the ship may obtain maximum propeller efficiency by means of the extension in diameter of the propeller means when it is operated in a fully loaded condition in deep water.

Kimon, P.M.

1986-01-21

275

Assessing Potential Propulsion Breakthroughs  

NASA Technical Reports Server (NTRS)

The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations into these goals have begun. From 1996 to 2002, NASA supported the Breakthrough Propulsion Physics Project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging since the breakthroughs are still only notional concepts, but kinetic energy can serve as a basis for comparison. In terms of kinetic energy, a hypothetical space drive could require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than their implications, and (c) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.

Millis, Marc G.

2005-01-01

276

Jet propulsion without inertia  

NASA Astrophysics Data System (ADS)

A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e., jetting) surfaces are considered and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number, which corresponds to the potential flow created by a source dipole at the sphere center. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.

Spagnolie, Saverio E.; Lauga, Eric

2010-08-01

277

Jet propulsion without inertia  

E-print Network

A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate, and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.

Saverio E. Spagnolie; Eric Lauga

2010-05-04

278

Emergent Propulsion Systems  

NASA Astrophysics Data System (ADS)

almost an Engineer (2002 will be my last year as student) and the studies that I'm now ending here, in Girona, are closely related not only with science and technology subjects but with optimization and economic result obtention, too. Huge distances that separate us from everything in space have launched scientists and engineers into a new challenge: How to reach maximum speeds keeping high ratios payload/total spacecraft mass? The key limitation of chemical rockets is that their exhaust velocity is relatively low. Because achieving Earth orbit requires a high velocity change a rocket must carry far more propellant than payload. The answer to all this complications seems to stare in one way: electric propulsion systems and the possibility of taking advantatge of solar winds to thrust our crafts. possible solutions, some of them have been studied for years and now they are not a project but a reality; also newest theories bring us the possibility of dream. Improve of commom propellants, search of new ones: Investigators continued research on use of atomic species as high-energy-density propellants, which could increase the specific impulse of hydrogen/oxygen rockets by 50-150%. Nuclear fission propulsion: Centered in development of reactors for nearterm nuclear electric propulsion aplications. Multimegawatt systems based on vapor core reactors and magnetohydrodynamic power conversion. Engineers investigated new fuels for compact nuclear thermal propulsion systems. What is called plasma state?: When a gas is heated to tens of thousands or millions of degrees, atoms lose their electrons. The result is a "soup" of charged particles, or plasma, made up of negatively charged electrons and positively charged ions. No known material can contain the hot plasma necessary for rocket propulsion, but specially designed magnetic fields can. Plasma rockets: This rockets are not powered by conventional chemical reactions as today's rockets are, but by electrical energy that heats the propellant. The propellant is a plasma that reaches extreme temperatures. Rockets tend to work much better the hotter the exhaust is. Thrust from the plasma engine could boost a spacecraft for a longer time and with better efficiency than conventional engines. Solar Windsurfing: A technology that uses a magnetic balloon to capture ionized particles shed by the Sun, "sailing" through space by taking use of the pressure of the sun's rays. All that is needed is a thin sheet of reflective material. Solar photons bounce off and transfer momentum to the sail, allowing the spacecraft to accelerate without expending fuel. General problems: -The electrostatic impact of the plasma created by electric thruster on spacecraft charging. -The influence of plasma ejected from the thruster on solar panel performances. -Creation of parasite currents in the structure that may disturb sensitive equipment. -... in 300 words but I think that you will have a general idea about my work and what The Astronautical Congres represents to me.

El-Fakdi Sencianes, Andres

2002-01-01

279

The NASA Electric Propulsion Program  

NASA Technical Reports Server (NTRS)

Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

Callahan, Lisa Wood; Curran, Francis M.

1996-01-01

280

Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database  

NASA Technical Reports Server (NTRS)

The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

Levack, Daniel

1993-01-01

281

Magnetohydrodynamic Augmented Propulsion Experiment  

NASA Technical Reports Server (NTRS)

A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate that an MHD accelerator can be an effective augmentation system for increasing engine exhaust velocity. More specifically, the experiment is intended to show that electromagnetic effects are effective at producing flow acceleration whereas electrothermal effects do not cause unacceptable heating of the working fluid. The MHD accelerator was designed as an externally diagonalized segmented Faraday channel, which will be inserted into an existing 2-tesla electromagnet. This allows the external power to be connected through two terminals thereby minimizing the complexity and cost associated with powering each segment independently. The design of the accelerator and other components in the flow path has been completed and fabrication activities are underway. This paper provides a full description of MAPX including performance analysis, design, and test plans, and current status.

Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

2002-01-01

282

Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method.  

PubMed

A new methodology is reported for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photoreactive poly(ethylene glycol) (PEG)-fibrinogen (PF) polymer was transported through a transparent injector exposed to light irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data revealed the crosslinking kinetics of the PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture just prior to atomization. The partially polymerized drops of PF/cells fell into a gelation bath for further crosslinking until fully polymerized hydrogel microparticles were formed. As the drops of solution exited the air-in-jet nozzle, their viscosity was designed to be sufficiently high so as to prevent rapid mixing and/or dilution in the gelation bath, but without undergoing complete gelation in the nozzle. Several parameters of this system were varied to control the size and polydispersity of the microparticles, including the cell density, the flow rate and the air pressure in the nozzle. The system was capable of producing cell-laden microparticles with an average diameter of between 88.1 to 347.1?m, and a dispersity of between 1.1 and 2.4, depending on the parameters chosen. Varying the precursor flow rate and/or cell density was beneficial in controlling the size and polydispersity of the microparticles; all microparticles exhibited very high cell viability, which was not affected by these parameters. In conclusion, this dropwise photopolymerization methodology for preparing cell-laden microparticles is an attractive alternative to existing techniques that use harsh solvents/oils and offer limited control over particle size and polydispersity. PMID:25462849

Oliveira, Mariana B; Kossover, Olga; Mano, Joăo F; Seliktar, Dror

2015-02-01

283

Pressure-Sensitive Paints Advance Rotorcraft Design Testing  

NASA Technical Reports Server (NTRS)

The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.

2013-01-01

284

Pulsed plasmoid electric propulsion  

NASA Technical Reports Server (NTRS)

A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

1990-01-01

285

Electric propulsion system technology  

NASA Technical Reports Server (NTRS)

The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation with alkali metal propellants.

Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

1992-01-01

286

Magnetohydrodynamic Augmented Propulsion Experiment  

NASA Technical Reports Server (NTRS)

Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

Litchford, Ron J.

2008-01-01

287

Electric propulsion system technology  

NASA Astrophysics Data System (ADS)

The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements.

Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

1992-11-01

288

Space station propulsion  

NASA Technical Reports Server (NTRS)

Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

1987-01-01

289

Solar Thermal Propulsion Test Facility  

NASA Technical Reports Server (NTRS)

Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1999-01-01

290

MSFC Nuclear Propulsion Materials Development  

NASA Technical Reports Server (NTRS)

Nuclear propulsion systems for spacecraft applications present numerous technical challenges for propulsion systems. They have been the focus of a recent NRA. Challenges inclue: a nuclear reactor subsystem to produce thermal energy; a power conversion subsystem to convert the thermal energy into electrical energy; a propulsion subsystem that utilizes Hall effect thrusters; thruster technologies and high temperature materials to support subsystems. The MSFC Electrostatic Levitation (ESL) Facility provides an ideal platform for the study of high temperature and reactive materials. An overview of the facility and its capabilities will be presented.

Rogers, J. R.; Cook, B.

2004-01-01

291

Enabling Electric Propulsion for Flight  

NASA Technical Reports Server (NTRS)

Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

Ginn, Starr

2014-01-01

292

Nuclear thermal propulsion engine cost trade studies  

Microsoft Academic Search

The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA\\/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is

Robert K. Paschall; Rocketdyne Division

1993-01-01

293

Oil-Free Compressor  

NASA Technical Reports Server (NTRS)

Compressor pistons moved by eccentric shaft need no lubricants. Compressor has shaft, middle section is eccentric in relation to end sections. Driven by brushless dc motor, shaft turns inner races of set of four cam bearings. Outer cam-bearing races in turn actuate four pistons spaced equally apart, around and along shaft. Each outer bearing race held in position by pressure exerted on it by piston. Because no frictional motion between piston and outer bearing race, lubricant between them unnecessary. Cam bearings themselves contain potted internal lubricant. Originally proposed for use in space, new compressor for refrigerators or freezers does not depend on pool of oil for lubricating its pistons. Operated in any orientation.

Fitzjerrell, D. G.; Belver, T. L.; Moore, H. E.

1986-01-01

294

Propulsion issues, options and trades  

NASA Technical Reports Server (NTRS)

Several different types of propulsion concepts are discussed: pulsed fission; continuous nuclear fission; chemical; and chemical boost with advanced nuclear fission. Some of the key characteristics of each type are provided, and typical concepts of each are shown.

Forsythe, Doug J.

1986-01-01

295

Trajectory correction propulsion for TOPS  

NASA Technical Reports Server (NTRS)

A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.

Long, H. R.; Bjorklund, R. A.

1972-01-01

296

SSME propulsion performance reconstruction techniques  

NASA Technical Reports Server (NTRS)

In view of the complex flight operation of the Space Shuttle propulsion system together with an expected launch rate increase, the flight performance reconstruction process needs to be performed by automated computer programs. These programs must have the capability to quickly and reliably determine the true behavior of the various components of the propulsion system. For the flight reconstruction, measured values from the solid rocket motors, liquid engines, and trajectory are appraised through the Kalman filter technique to identify the most likely flight propulsion performance. A more detailed data collection program for the single SSME engine captive test firing evaluation is scheduled for startup in September of 1988. Engine performance evaluation for the captive test firing requires a reconstruction process that is similar to the process that is used for the flight reconstruction. Analytical tools that may be used to reconstruct a propulsion system's true performance under flight and/or test conditions are described.

Temple, Enoch C.

1988-01-01

297

The Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

2014-01-01

298

Megawatt level electric propulsion perspectives  

NASA Technical Reports Server (NTRS)

For long range space missions, deliverable payload fraction is an inverse exponential function of the propellant exhaust velocity or specific impulse of the propulsion system. The exhaust velocity of chemical systems are limited by their combustion chemistry and heat transfer to a few km/s. Nuclear rockets may achieve double this range, but are still heat transfer limited and ponderous to develop. Various electric propulsion systems can achieve exhaust velocities in the 10 km/s range, at considerably lower thrust densities, but require an external electrical power source. A general overview is provided of the currently available electric propulsion systems from the perspective of their characteristics as a terminal load for space nuclear systems. A summary of the available electric propulsion options is shown and generally characterized in the power vs. exhaust velocity plot. There are 3 general classes of electric thruster devices: neutral gas heaters, plasma devices, and space charge limited electrostatic or ion thrusters.

Jahn, Robert G.; Kelly, Arnold J.

1987-01-01

299

Electric propulsion system technology  

NASA Astrophysics Data System (ADS)

The work performed on the Ion Propulsion System Technology Task in FY90 is described. The objectives of this work fall under two broad categories. The first of these deals with issues associated with the application of xenon ion thrusters for primary propulsion of planetary spacecraft, and the second with the investigation of technologies which will facilitate the development of larger, higher power ion thrusters to support more advanced mission applications. Most of the effort was devoted to investigation of the critical issues associated with the use of ion thrusters for planetary spacecraft. These issues may be succinctly referred to as life time, system integration, and throttling. Chief among these is the engine life time. If the engines do not have sufficient life to perform the missions of interest, then the other issues become unimportant. Ion engine life time was investigated through two experimental programs: an investigation into the reduction of ion engine internal sputter erosion through the addition of small quantities of nitrogen, and a long duration cathode life test. In addition, a literature review and analysis of accelerator grid erosion were performed. The nitrogen addition tests indicated that the addition of between 0.5 and 1.0 percent of nitrogen by mass to the xenon propellant results in a reduction in the sputter erosion of discharge chamber components by a factor of between 20 and 50, with negligible reduction in thruster performance. The long duration test of a 6.35-mm dia. xenon hollow cathode is still in progress, and has accumulated more than 4,000 hours of operation at an emission current of 25 A at the time of this writing. One of the major system integration issues concerns possible interactions of the ion thruster produced charge exchange plasma with the spacecraft. A computer model originally developed to describe the behavior of mercury ion thruster charge exchange plasmas was resurrected and modified for xenon propellant. This model enables one to calculate the flow direction and local density of the charge exchange plasma, and indicates the degree to which this plasma can flow upstream of the thruster exhaust plane. A continuing effort to investigate the most desirable throttling technique for noble gas ion thrusters concentrated this year on experimentally determining the fixed flow rate throttling range of a 30-cm dia. thruster with a two-grid accelerator system. These experiments demonstrated a throttling capability which covers a 2.8 to 1 variation in input power. This throttling range is 55 percent greater than expected, and is due to better accelerator system performance at low net-to-total voltage ratios than indicated in the literature. To facilitate the development of large, higher power ion thrusters several brief studies were performed. propulsion for the Space Exploration Initiative was written.

Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

1991-12-01

300

Electric propulsion system technology  

NASA Technical Reports Server (NTRS)

The work performed on the Ion Propulsion System Technology Task in FY90 is described. The objectives of this work fall under two broad categories. The first of these deals with issues associated with the application of xenon ion thrusters for primary propulsion of planetary spacecraft, and the second with the investigation of technologies which will facilitate the development of larger, higher power ion thrusters to support more advanced mission applications. Most of the effort was devoted to investigation of the critical issues associated with the use of ion thrusters for planetary spacecraft. These issues may be succinctly referred to as life time, system integration, and throttling. Chief among these is the engine life time. If the engines do not have sufficient life to perform the missions of interest, then the other issues become unimportant. Ion engine life time was investigated through two experimental programs: an investigation into the reduction of ion engine internal sputter erosion through the addition of small quantities of nitrogen, and a long duration cathode life test. In addition, a literature review and analysis of accelerator grid erosion were performed. The nitrogen addition tests indicated that the addition of between 0.5 and 1.0 percent of nitrogen by mass to the xenon propellant results in a reduction in the sputter erosion of discharge chamber components by a factor of between 20 and 50, with negligible reduction in thruster performance. The long duration test of a 6.35-mm dia. xenon hollow cathode is still in progress, and has accumulated more than 4,000 hours of operation at an emission current of 25 A at the time of this writing. One of the major system integration issues concerns possible interactions of the ion thruster produced charge exchange plasma with the spacecraft. A computer model originally developed to describe the behavior of mercury ion thruster charge exchange plasmas was resurrected and modified for xenon propellant. This model enables one to calculate the flow direction and local density of the charge exchange plasma, and indicates the degree to which this plasma can flow upstream of the thruster exhaust plane. A continuing effort to investigate the most desirable throttling technique for noble gas ion thrusters concentrated this year on experimentally determining the fixed flow rate throttling range of a 30-cm dia. thruster with a two-grid accelerator system. These experiments demonstrated a throttling capability which covers a 2.8 to 1 variation in input power. This throttling range is 55 percent greater than expected, and is due to better accelerator system performance at low net-to-total voltage ratios than indicated in the literature. To facilitate the development of large, higher power ion thrusters several brief studies were performed. These include the development of a technique which simulates ion thruster operation without beam extraction, the development of an optical technique to measure ion thruster grid distortion due to thermal expansion, tests of a capacitance measurement technique to quantify the accelerator system grid separation, and the development of a segmented thruster geometry which enables near term development of ion thrusters at power levels greater than 100 kW. Finally, a paper detailing the benefits of electric propulsion for the Space Exploration Initiative was written.

Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

1991-01-01

301

Quantitative Feedback Theory (QFT) applied to the design of a rotorcraft flight control system  

NASA Technical Reports Server (NTRS)

Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. Quantitative Feedback Theory is applied to the design of the longitudinal flight control system for a linear uncertain model of the AH-64 rotorcraft. In this model, the uncertainty is assigned, and is assumed to be attributable to actual uncertainty in the dynamic model and to the changes in the vehicle aerodynamic characteristics which occur near hover. The model includes an approximation to the rotor and actuator dynamics. The design example indicates the manner in which handling qualities criteria may be incorporated into the design of realistic rotorcraft control systems in which significant uncertainty exists in the vehicle model.

Hess, R. A.; Gorder, P. J.

1992-01-01

302

Status of NASA/Army rotorcraft research and development piloted flight simulation  

NASA Technical Reports Server (NTRS)

The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

Condon, Gregory W.; Gossett, Terrence D.

1988-01-01

303

Theory for Plasma Rocket Propulsion  

NASA Astrophysics Data System (ADS)

Electrical propulsion of rockets is developing potentially into the use of 3 different thrusters for future long-distance space missions that primarily involve plasma dynamics. These are the Magnetoplasmadynamic (MPD) Thruster, the Plasma Induction Thruster (PID), and the VASIMIR Thruster. The history of the development of electrical propulsion into these prospects and the current research of particularly the VASIMIR Thruster are reviewed. Theoretical questions that need to be addressed in that development are explored.

Grabbe, Crockett

2009-11-01

304

Nuclear Propulsion in Space (1968)  

ScienceCinema

Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

None

2014-06-17

305

Nuclear Propulsion in Space (1968)  

SciTech Connect

Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

None

2012-06-23

306

Solar Thermal Propulsion Test Facility  

NASA Technical Reports Server (NTRS)

Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1999-01-01

307

Electric propulsion for small satellites  

NASA Astrophysics Data System (ADS)

Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (µCAT). The µCAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1–50 Hz producing thrust ranging from 1 µN to 0.05 mN.

Keidar, Michael; Zhuang, Taisen; Shashurin, Alexey; Teel, George; Chiu, Dereck; Lukas, Joseph; Haque, Samudra; Brieda, Lubos

2015-01-01

308

Autonomous Flight of the Rotorcraft-Based UAV Using RISE Feedback and NN Feedforward Terms  

Microsoft Academic Search

A position tracking control system is developed for a rotorcraft-based unmanned aerial vehicle (RUAV) using robust integral of the signum of the error (RISE) feedback and neural network (NN) feedforward terms. While the typical NN-based adaptive controller guarantees uniformly ultimately bounded stability, the proposed NN-based adaptive control system guarantees semi-global asymptotic tracking of the RUAV using the RISE feedback control.

Jongho Shin; H. Jin Kim; Youdan Kim; Warren E. Dixon

2012-01-01

309

A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory  

NASA Technical Reports Server (NTRS)

Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

Gorder, Peter James

1993-01-01

310

Fully automatic guidance for rotorcraft nap-of-the-earth (NOE) flight following planned profiles  

NASA Technical Reports Server (NTRS)

Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated in a fourfold research effort that will culminate in the real-time piloted simulation of promising alternatives for automatic guidance and control of rotorcraft in NOE operations, thereby providing a practical demonstration for evaluating pilot acceptance of the automated concepts.

Gorder, Peter J.; Clement, Warren F.; Jewell, Wayne F.

1989-01-01

311

An Investigation of the Use of Bandwidth Criteria for Rotorcraft Handling-Qualities Specifications  

NASA Technical Reports Server (NTRS)

The objective of this study was to investigate bandwidth concepts for deriving rotorcraft handling-qualities criteria from data obtained in two simulator experiments conducted at the Aeromechanics Laboratory. The first experiment was an investigation of the effects of helicopter vertical-thrust-response characteristics on handling qualities; the second experiment investigated the effects of helicopter yaw-control-response characteristics. In both experiments, emphasis was on low-speed Nap-of-the-Earth (NOE) tasks.

Blanken, C. L.; Bivens, C. C.; Whalley, M. S.

1985-01-01

312

The Rotorcraft Pilot's Associate: design and evaluation of an intelligent user interface for cockpit information management  

Microsoft Academic Search

The US Army's Rotorcraft Pilot's Associate (RPA) program is developing an advanced, intelligent “associate” system for flight demonstration in a future attack\\/scout helicopter. A significant RPA component is the intelligent user interface known as the Cockpit Information Manager (CIM). This paper describes the high-level architecture of the CIM, with emphasis on its pilot-perceptible behaviors: Crew Intent Estimation, Page Selection, Symbol

Christopher A. Miller; Matthew D. Hannen

1999-01-01

313

MultiSensor Track Classification in Rotorcraft Pilot's Associate Data Fusion  

Microsoft Academic Search

The objective of the Rotorcraft Pilot's Associate (RPA) Advanced Technology Demonstration (ATD) is to apply artificial intelligence and state-of-the-art computing tech- nologies to manage and integrate next generation mission equipment and battlefield information in order to enhance the lethality, survivability, and mission effectiveness of combat helicopters. Lockheed Martin Advanced Technol- ogy Laboratories is responsible for the real-time, compute- intensive Data

Martin O. Hofmann

1997-01-01

314

Controls design with crossfeeds for hovering rotorcraft using quantitative feedback theory  

NASA Technical Reports Server (NTRS)

A multi-input, multi-output controls design with dynamic crossfeed pre-compensation is presented for rotorcraft in near-hovering flight using Quantitative Feedback Theory (QFT). The resulting closed-loop control system bandwidth allows the rotorcraft to be considered for use as an inflight simulator. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets most handling qualities specifications relative to the decoupling of off-axis responses. Handling qualities are Level 1 for both low-gain tasks and high-gain tasks in the roll, pitch, and yaw axes except for the 10 deg/sec moderate-amplitude yaw command where the rotorcraft exhibits Level 2 handling qualities in the yaw axis caused by phase lag. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensators successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective. This is an area to be investigated in future research.

Tischler, Mark B.; Biezad, Daniel J.; Cheng, Rendy

1996-01-01

315

Hybrid Propulsion Technology Program  

NASA Technical Reports Server (NTRS)

Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

Jensen, G. E.; Holzman, A. L.

1990-01-01

316

Optimal aeroelastic trim for rotorcraft with constrained, non-unique trim solutions  

NASA Astrophysics Data System (ADS)

New rotorcraft configurations are emerging, such as the optimal speed helicopter and slowed-rotor compound helicopter which, due to variable rotor speed and redundant lifting components, have non-unique trim solution spaces. The combination of controls and rotor speed that produce the best steady-flight condition is sought among all the possible solutions. This work develops the concept of optimal rotorcraft trim and explores its application to advanced rotorcraft configurations with non-unique, constrained trim solutions. The optimal trim work is based on the nonlinear programming method of the generalized reduced gradient (GRG) and is integrated into a multi-body, comprehensive aeroelastic rotorcraft code. In addition to the concept of optimal trim, two further developments are presented that allow the extension of optimal trim to rotorcraft with rotors that operate over a wide range of rotor speeds. The first is the concept of variable rotor speed trim with special application to rotors operating in steady autorotation. The technique developed herein treats rotor speed as a trim variable and uses a Newton-Raphson iterative method to drive the rotor speed to zero average torque simultaneously with other dependent trim variables. The second additional contribution of this thesis is a novel way to rapidly approximate elastic rotor blade stresses and strains in the aeroelastic trim analysis for structural constraints. For rotors that operate over large angular velocity ranges, rotor resonance and increased flapping conditions are encountered that can drive the maximum cross-sectional stress and strain to levels beyond endurance limits; such conditions must be avoided. The method developed herein captures the maximum cross-sectional stress/strain based on the trained response of an artificial neural network (ANN) surrogate as a function of 1-D beam forces and moments. The stresses/strains are computed simultaneously with the optimal trim and are used as constraints in the optimal trim solution. Finally, an optimal trim analysis is applied to a high-speed compound gyroplane configuration, which has two distinct rotor speed control methods, with the purpose of maximizing the vehicle cruise efficiency while maintaining rotor blade strain below endurance limit values.

Schank, Troy C.

317

Magnetohydrodynamic sea water propulsion  

SciTech Connect

An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

1991-12-31

318

Magnetohydrodynamic sea water propulsion  

SciTech Connect

An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

1991-01-01

319

Megawatt Electromagnetic Plasma Propulsion  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive thruster and other electrodeless thrusters at a future date.

Gilland, James; Lapointe, Michael; Mikellides, Pavlos

2003-01-01

320

Propulsion System Modeling and Simulation  

NASA Technical Reports Server (NTRS)

The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

2002-01-01

321

LISA Propulsion Module Separation Study  

NASA Technical Reports Server (NTRS)

The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three spacecraft in heliocentric orbit. Each spacecraft is delivered to it operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently baselined for the sciencecraft are micronewton level thrusters, such as FEEP or colloid thrusters, that are used to balance the 30-40 microN of solar radiation pressure and provide the drag-free and attitude control of the spacecraft. Due to these thrusters limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a design study of the propulsion module separation system that is shown to safely deliver the LISA sciencecraft to its final operational orbit.

Merkowitz, Stephen

2004-01-01

322

Space station propulsion test bed  

NASA Technical Reports Server (NTRS)

A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

Briley, G. L.; Evans, S. A.

1989-01-01

323

The Need for Fusion Propulsion  

NASA Technical Reports Server (NTRS)

Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

Cassibry, Jason

2005-01-01

324

Main Propulsion Test Article (MPTA)  

NASA Technical Reports Server (NTRS)

Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

Snoddy, Cynthia

2010-01-01

325

Breakthrough Propulsion Physics Research Program  

NASA Technical Reports Server (NTRS)

In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

Millis, Marc G.

1996-01-01

326

Automated Rocket Propulsion Test Management  

NASA Technical Reports Server (NTRS)

The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.

Walters, Ian; Nelson, Cheryl; Jones, Helene

2007-01-01

327

Propulsion on a superhydrophobic ratchet  

PubMed Central

Liquids in the Leidenfrost state were shown by Linke to self-propel if placed on ratchets. The vapour flow below the liquid rectified by the asymmetric teeth entrains levitating drops by viscosity. This effect is observed above the Leidenfrost temperature of the substrate, typically 200°C for water. Here we show that coating ratchets with super-hydrophobic microtextures extends quick self-propulsion down to a substrate temperature of 100°C, which exploits the persistence of Leidenfrost state with such coatings. Surprisingly, propulsion is even observed below 100°C, implying that levitation is not necessary to induce the motion. Finally, we model the drop velocity in this novel “cold regime” of self-propulsion. PMID:24923358

Dupeux, Guillaume; Bourrianne, Philippe; Magdelaine, Quentin; Clanet, Christophe; Quéré, David

2014-01-01

328

Elastic tail propulsion at low Reynolds number  

E-print Network

A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...

Yu, Tony S. (Tony Sheung)

2007-01-01

329

46 CFR 109.555 - Propulsion boilers.  

Code of Federal Regulations, 2012 CFR

... Shipping 4 2012-10-01 2012-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping ...DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the...

2012-10-01

330

46 CFR 109.555 - Propulsion boilers.  

Code of Federal Regulations, 2011 CFR

... Shipping 4 2011-10-01 2011-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping ...DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the...

2011-10-01

331

46 CFR 109.555 - Propulsion boilers.  

... Shipping 4 2014-10-01 2014-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping ...DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the...

2014-10-01

332

46 CFR 109.555 - Propulsion boilers.  

Code of Federal Regulations, 2010 CFR

... Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping ...DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the...

2010-10-01

333

46 CFR 109.555 - Propulsion boilers.  

Code of Federal Regulations, 2013 CFR

... Shipping 4 2013-10-01 2013-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping ...DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the...

2013-10-01

334

Z-Pinch Fusion Propulsion  

NASA Technical Reports Server (NTRS)

Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

Miernik, Janie

2011-01-01

335

Recent Developments in Electric Propulsion under NASA's In-Space Propulsion Technology Project  

Microsoft Academic Search

The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA GRC for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science mission while minimizing risk and cost to the end user. Major hardware tasks include

Leonard A. Dudzinski; John W. Dankanich

2007-01-01

336

M. Bahrami ENSC 461 (S 11) Jet Propulsion Cycle 1 Ideal JetPropulsion Cycle  

E-print Network

M. Bahrami ENSC 461 (S 11) Jet Propulsion Cycle 1 Ideal JetPropulsion Cycle Gas-turbine engines. Aircraft gas turbines operate on an open cycle called jet-propulsion cycle. Some of the major differences between the gas-turbine and jet-propulsion cycles are: gases are expanded in the turbine to a pressure

Bahrami, Majid

337

Jet Propulsion Laboratory 1965 Annual Report JET PROPULSION LABORATORY 1965 ANNUAL REPORT  

E-print Network

Jet Propulsion Laboratory 1965 Annual Report #12;JET PROPULSION LABORATORY 1965 ANNUAL REPORT on March 24, 1965. #12;#12;Jet Propulsion Laboratory 1965 Annual Report #12;1965Wi:S :p:::re:;l::~~:na~:;n;:: Jet Propulsion Laboratory. It saw the culmination of man's effort to extend his knowledge beyond

Waliser, Duane E.

338

Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion  

NASA Technical Reports Server (NTRS)

An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

deGroot, Wim A.

1999-01-01

339

Advanced NSTS propulsion system verification study  

NASA Technical Reports Server (NTRS)

The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.

Wood, Charles

1989-01-01

340

The Future of Spacecraft Nuclear Propulsion  

NASA Astrophysics Data System (ADS)

This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

Jansen, F.

2014-06-01

341

Some Interplanetary Missions Using IEC Fusion Propulsion  

NASA Technical Reports Server (NTRS)

IEC fusion offers the possibility of very efficient space propulsion with substantial thrust, examine human travel to the planets in order to determine the impact this technology could have reduced travel time and reduced fuel mass, travel via IEC propulsion is from earth orbit to another planetary orbit. Propulsion to a planet's or moon's surface assumed separate.

Hanson, John M.; Brandon, Larry B. (Technical Monitor)

2001-01-01

342

A fusion based plasma propulsion system  

NASA Technical Reports Server (NTRS)

The Fusion Plasma Propulsion System scoping study was performed to investigate the possibilities of a fusion powered plasma propulsion system for space applications. Specifically, it was to be compared against existing electric propulsion concepts for a manned Mars mission. Design parameters consist of 1000 N thrust for 500 days, and the minimum mass possible. This investigation is briefly presented and conclusions drawn.

George, J. A.; Anderson, B.; Bryant, D.; Creese, C.; Djordjevic, V.; Peddicord, K. L.

1987-01-01

343

JET PROPULSION LASORATORY 1984 Annual Report  

E-print Network

JET PROPULSION LASORATORY 1984 Annual Report #12;(Cover) This charge-couplecklevice picture and the National Aeronautics and Space Administration for the period January 1 to December 31, 1984. JET PROPULSION, marked the 40th anniversary of the formal establishment of the Jet Propulsion Laboratory. Throughout four

Waliser, Duane E.

344

JET PROPULSION WITHOUT INERTIA Saverio E. Spagnolie  

E-print Network

JET PROPULSION WITHOUT INERTIA By Saverio E. Spagnolie and Eric Lauga IMA Preprint Series # 2322://www.ima.umn.edu #12;Jet propulsion without inertia Saverio E. Spagnolie and Eric Lauga Department of Mechanical in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia

345

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY  

E-print Network

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY NATIONAL in which the solar wind is thought to originate." The mission operations team at Jet Propulsion Laboratory by NASA's Deep Space Network, which is managed by the Jet Propulsion Laboratory. ##### #1385/JPL-PIO #12;

Christian, Eric

346

Jet Propulsion Laboratory California Institute of Technology  

E-print Network

1 Jet Propulsion Laboratory California Institute of Technology JPL Software Plan For BepiColombo MORE Sami Asmar Bill Folkner 17 February 2009 Rome #12;2 Jet Propulsion Laboratory California Institute system data processing program) · Used to integrate and fit planetary ephemeris #12;3 Jet Propulsion

Milani, Andrea

347

In Silico Reconstitution of Listeria Propulsion  

E-print Network

In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation Jonathan B. Alberts monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical reconstitution of Listeria propulsion exhibits nano-saltation. PLoS Biol 2(12): e412. Introduction Cellular

Munro, Ed

348

Cover: Mariner 9 spacecraft. JET PROPULSION  

E-print Network

#12;Cover: Mariner 9 spacecraft. #12;JET PROPULSION LABORATORY 1971 ANNUAL REPORT A descrtptlon Jet Propulsion Laboratory CALIFORNIA INSTITUTE OF TECHNOLOGY 4800 OAK GROVE DRIVE PASADENA, CALIFORNIA and the subsequent imaging and data return were the most sig- nificant achievements of the Jet Propulsion Laboratory

Waliser, Duane E.

349

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY  

E-print Network

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY NATIONAL manager at NASA'Ă­s Jet Propulsion Laboratory. Distance from Earth at perihelion, or closest approach above the Sun's poles. The Jet Propulsion Laboratory manages the U.S. portion of the mission for NASA

Christian, Eric

350

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY  

E-print Network

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY NATIONAL FOR IMMEDIATE RELEASE December 5, 1994 Scientists from NASA's Jet Propulsion Laboratory and the European Space, NASA project scientist at the Jet Propulsion Laboratory, who is participating in today's press

Christian, Eric

351

JET PROPULSION LABORATORY 1979 Annual Report  

E-print Network

JET PROPULSION LABORATORY 1979 Annual Report #12;(Cover) 10, one of Jupiter's largest moons JPL Technology Institutional Activities JET PROPULSION LABORATORY California Institute of Technology the 1980's as adecade ofreal promise and challenging opportunity for the let Propulsion Laboratory, both

Waliser, Duane E.

352

General Space Propulsion & MXER Plasma Requirements  

Microsoft Academic Search

The development of advanced in-space propulsion concepts and systems requires extensive plasma physics knowledge at many levels. The In-Space Propulsion Technology Projects Office (ISP) at the NASA Marshall Space Flight Center (MSFC) is actively managing a portfolio of technologies that include a wide range of plasma physics interaction studies. These investigations apply directly to hardware development for space propulsion in

Joseph Bonometti; Kirk Sorensen

2004-01-01

353

Artist's concept of Pulse Detonation Propulsion System  

NASA Technical Reports Server (NTRS)

Pictured is an artist's concept of an advanced chemical propulsion system called Pulse Detonation. Long term technology research in this advanced propulsion system has the potential to dramatically change the way we think about space propulsion systems. This research is expected to significantly reduce the cost of space travel within the next 25 years.

1999-01-01

354

Probabilistic structural analysis for nuclear thermal propulsion  

Microsoft Academic Search

Viewgraphs of probabilistic structural analysis for nuclear thermal propulsion are presented. The objective of the study was to develop a methodology to certify Space Nuclear Propulsion System (SNPS) Nozzle with assured reliability. Topics covered include: advantage of probabilistic structural analysis; space nuclear propulsion system nozzle uncertainties in the random variables; SNPS nozzle natural frequency; and sensitivity of primitive variable uncertainties

Ashwin Shah

1993-01-01

355

One Engine Inoperative (OEI) and Autorotation For Heavy Lift Rotorcraft Systems  

NASA Technical Reports Server (NTRS)

Federal Aviation Administration will certainly require the Heavy Lift Rotorcraft to be operated under Category A performance and operations requirements. Because of the weight, no operation will be allowed except Category A according to FAA Part 29.1(c). This means that any where along the flight path, the aircraft must be able to land safely following an engine failure or continue flight. A repeatable flight profile must be developed and executed to ensure that the aircraft can be safely landed or flown away depending on its location on the flight profile. This means that there will be no Height-Velocity testing required as is currently required for Part 29 Category B. Since all the configurations shown to date are different than existing rotorcraft, each type would have to develop their individual requirements under existing special conditions FAA Part 21.17(b). This means the FAA will take the opportunity to negotiate additional requirements or change requirements to ensure safety. For example, since the tiltrotor did not fit normal rotorcraft category, new rules were negotiated between the applicant and the FAA. As a result of this negotiation, performance requirements for Category A were increased. The rules were written in terms of guaranteed performance instead of Category A requirements. Detailed discussion will follow later. The proposed tiltrotor would likely follow along with the current tiltrotor rules with the possibility of increase Category A performance requirements. Compounding with addition of wing and auxiliary thrust to both the tandem and coaxial rotor would result in new special condition aircraft. To my knowledge, no compound tandem or compound coaxial rotor has ever been certified by FAA.

Wood, Tom

2012-01-01

356

Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)  

NASA Technical Reports Server (NTRS)

Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

Burley, Casey L.; Smith, Charles D.; Conner, David A.

2006-01-01

357

Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis  

NASA Astrophysics Data System (ADS)

Dynamic stall deeply affects the response of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented in a comprehensive code, validated, and contrasted to provide improved analysis accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of potential instabilities and the determination of damping ratios for all modes of interest. If the governing equations of motion of a system can be formulated as linear, ordinary differential equations with constant coefficients, classical stability evaluation methodologies based on the characteristic exponents of the system can rapidly and accurately provide the system's stability characteristics. For systems described by linear, ordinary differential equations with periodic coefficients, Floquet's theory is the preferred approach. While these methods provide excellent results for simplified linear models with a moderate number of degrees of freedom, they become quickly unwieldy as the number of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic periodic systems, a fully nonlinear, coupled simulation tool is used to determine the response of the system to perturbations about an equilibrium configuration and determine the presence of instabilities and damping ratios. The stability analysis is undertaken using an algorithm based on a Partial Floquet approach that has been successfully applied with computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally inexpensive and consists of post processing aeroelastic data, which can be used with any aeroelastic rotorcraft code or with experimental data.

Zaki, Afifa Adel

358

Improved gas core propulsion model  

SciTech Connect

A thermodynamic, radiation transport model of a gas core nuclear propulsion reactor has been developed in one-dimensional, spherical geometry, which satisfies local energy balance and allows for arbitrary variation of fuel/propellant ratio and flow rate as functions of radius. Initial cases calculated yield specific impulses of about 1150 sec, but very low thrusts ranging 5--10 kN.

Tanner, J.E.

1993-10-01

359

PROPULSION AND ENERGY Terrestrial energy  

E-print Network

PROPULSION AND ENERGY Terrestrial energy On the morning of Monday, August 29, Hurri- cane Katrina, hydro, and nuclear, have not come to the forefront, and what can be done to remedy this situation, nuclear, solar, and geothermal energy. New initiatives by the Dept. of Energy are focusing

Aggarwal, Suresh K.

360

Innovative electric propulsion thruster modeling  

NASA Technical Reports Server (NTRS)

The objective of this program is to model and evaluate advanced nuclear electric propulsion (NEP) system concepts as an aid to the performance of NEP mission benefits studies. The two primary goals are as follows: (1) provide scaling relationships for mass, power, and efficiency, as functions of Isp, propellant type, and other important quantities. The discussion is presented in vugraph form.

Frisbee, Robert H.

1993-01-01

361

Innovative electric propulsion thruster modeling  

NASA Astrophysics Data System (ADS)

The objective of this program is to model and evaluate advanced nuclear electric propulsion (NEP) system concepts as an aid to the performance of NEP mission benefits studies. The two primary goals are as follows: (1) provide scaling relationships for mass, power, and efficiency, as functions of Isp, propellant type, and other important quantities. The discussion is presented in vugraph form.

Frisbee, Robert H.

362

MAP Propulsion System Thermal Design  

NASA Technical Reports Server (NTRS)

The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.

Mosier, Carol L.

2003-01-01

363

Propulsive Performances of Pulsed Detonations  

Microsoft Academic Search

The propulsive potential of a reactive mixture that uses detonation as a combustion process is studied. An experimental set up is built up to determine the thrust and the impulse developed in single and multi-operating cycles by the detonation products of a reactive mixture contained in a cylindrical combustion chamber (CC). One end of the CC, called the thrust wall

R. ZITOUN; D. DESBORDES

1999-01-01

364

In-space nuclear propulsion  

NASA Astrophysics Data System (ADS)

The past and the recent status of nuclear propulsion (NP) for application to space mission is presented. The case for using NP in manned space missions is made based on fundamental physics and on the necessity to ensure safe radiation doses to future astronauts. In fact, the presence of solar and galactic-cosmic radiation poses substantial risks to crews traveling for months in a row to destinations such as asteroids and Mars. Since passive or active shields would be massive to protect against the more energetic part of the radiation energy spectrum, the only alternative is to reduce dose by traveling faster. Hence the importance of propulsion systems with much higher specific impulse than that of current chemical systems, and thus the use of nuclear propulsion. Nuclear-thermal and nuclear-electric propulsions are then discussed in view of their potential application to missions now in the preliminary planning stage by space agencies and industries and being considered by the ISECG international panel. In this context, recent ideas for future use of the ISS that may require NP are also presented.

Bruno, C.; Dujarric, C.

2013-02-01

365

Semi-active magnetorheological seat suspensions for enhanced crashworthiness and vibration isolation of rotorcraft seats  

NASA Astrophysics Data System (ADS)

This research focuses on the use of magnetorheological (MR) dampers for enhanced occupant protection during harsh vertical landings as well as isolation of the occupant from cockpit vibrations. The capabilities of the current state-of-the-art in helicopter crew seat energy absorption systems are highly limited because they cannot be optimally adapted to each individual crash scenario (i.e. variations in both occupant weight and crash load level). They also present an unnecessarily high risk of injury by not minimizing the load transmitted to the occupant during a crash. Additionally, current rotorcraft seats provide no means of isolating the occupant from harmful cockpit vibrations. The objective of this research was to investigate and demonstrate the feasibility and benefits of an MR-based suspension for rotorcraft seats. As such, this research began with an in-depth investigation into design feasibility. Three MR seat suspension design cases are investigated: (1) for only vibration isolation, (2) for adaptive occupant protection, and (3) for combined adaptive occupant protection and vibration isolation. It is shown that MR-based suspensions are feasible for each of these cases and the performance benefits and tradeoffs are discussed for each case. Next, to further illustrate the occupant protection benefits gained with an MR-based suspension, three control strategies were developed and performance metrics were compared. It was shown that MR dampers can be controlled such that they will automatically adapt to the crash load level as well as occupant weight. By using feedback of sensor signals, MR dampers were adjusted to utilize the full stroke capability of the seat suspension regardless crash level and occupant weight. The peak load transmitted to the occupant and the risk of spinal injury, therefore, was always minimized. Because this control significantly reduced or eliminated injury risk during less severe landings, it is a significant advance over the current state-of-the-art rotorcraft seat suspensions which can provide no better than 20% risk of occupant injury. Finally, an MR-based seat suspension designed solely for the purposes of vibration isolation was designed, analyzed, and experimentally demonstrated. MR dampers were integrated into the current crashworthy SH-60 crew seat with minimal weight impact such that the original crashworthy capabilities were maintained. Then, utilizing semi-active control, experimental vibration testing demonstrated that the system reduced vertical cockpit vibrations transmitted to the occupant by 76%. This is a significant advance over current state-of-the-art rotorcraft seats which provide no attenuation of cockpit vibrations.

Hiemenz, Gregory J.

366

Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models  

NASA Astrophysics Data System (ADS)

This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed hydraulic device models are implemented in a multibody code and calibrated by comparing their predictions with test bench measurements for the UH-60 helicopter lead-lag damper. Predicted peak damping forces were found to be in good agreement with measurements, while the model did not predict the entire time history of damper force to the same level of accuracy. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airloads method is developed in a finite-element method based multibody dynamics formulation, DYMORE. To validate this aerodynamic interface, a CFD code, OVERFLOW-2, is loosely coupled with a CSD program, DYMORE, to compute the airloads of different flight conditions for Sikorsky UH-60 aircraft. This loose coupling approach has good convergence characteristics. The predicted airloads are found to be in good agreement with the experimental data, although not for all flight conditions. In addition, the tight coupling interface between the CFD program, OVERFLOW-2, and the CSD program, DYMORE, is also established. The ability to accurately capture the wake structure around a helicopter rotor is crucial for rotorcraft performance analysis. In the third part of this thesis, a new representation of the wake vortex structure based on Non-Uniform Rational B-Spline (NURBS) curves and surfaces is proposed to develop an efficient model for prescribed and free wakes. NURBS curves and surfaces are able to represent complex shapes with remarkably little data. The proposed formulation has the potential to reduce the computational cost associated with the use of Helmholtz's law and the Biot-Savart law when calculating the induced flow field around the rotor. An efficient free-wake analysis will considerably decrease the computational cost of comprehensive rotorcraft analysis, making the approach more attractive to routine use in industrial settings.

Liu, Haiying

367

A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 1: Analysis development  

NASA Technical Reports Server (NTRS)

Structural, inertia, and aerodynamic models were combined to form a comprehensive model of rotor aerodynamics and dynamics that is applicable to a wide range of problems and a wide class of vehicles. A digital computer program is used to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft, and to be a basis for further development of rotary wing theories.

Johnson, W.

1980-01-01

368

A rotorcraft flight database for validation of vision-based ranging algorithms  

NASA Technical Reports Server (NTRS)

A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.

Smith, Phillip N.

1992-01-01

369

Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4  

NASA Technical Reports Server (NTRS)

This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

1995-01-01

370

Mission-oriented requirements for updating MIL-H-8501. Volume 1: STI proposed structure. [military rotorcraft  

NASA Technical Reports Server (NTRS)

The structure of a new flying and ground handling qualities specification for military rotorcraft is presented. This preliminary specification structure is intended to evolve into a replacement for specification MIL-H-8501A. The new structure is designed to accommodate a variety of rotorcraft types, mission flight phases, flight envelopes, and flight environmental characteristics and to provide criteria for three levels of flying qualities, a systematic treatment of failures and reliability, both conventional and multiaxis controllers, and external vision aids which may also incorporate synthetic display content. Existing and new criteria were incorporated into the new structure wherever they could be substantiated.

Clement, W. F.; Hoh, R. H.; Ferguson, S. W., III; Mitchell, D. G.; Ashkenas, I. L.; Mcruer, D. T.

1985-01-01

371

NASA Glenn Research Center's Hypersonic Propulsion Program  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center (GRC), as NASA's lead center for aeropropulsion, is responding to the challenge of reducing the cost of space transportation through the integration of air-breathing propulsion into launch vehicles. Air- breathing launch vehicle (ABLV) propulsion requires a marked departure from traditional propulsion applications. and stretches the technology of both rocket and air-breathing propulsion. In addition, the demands of the space launch mission require an unprecedented level of integration of propulsion and vehicle systems. GRC is responding with a program with rocket-based combined cycle (RBCC) propulsion technology as its main focus. RBCC offers the potential for simplicity, robustness, and performance that may enable low-cost single-stage-to-orbit (SSTO) transportation. Other technologies, notably turbine-based combined cycle (TBCC) propulsion, offer benefits such as increased robustness and greater mission flexibility, and are being advanced, at a slower pace, as part of GRC's program in hypersonics.

Palac, Donald T.

1999-01-01

372

Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System  

NASA Technical Reports Server (NTRS)

This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.

Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo

2000-01-01

373

Automatic helical rotorcraft descent and landing using a Microwave Landing System  

NASA Technical Reports Server (NTRS)

A helical-approach concept is presented for Instrument Flight Rules (IFR) operation of rotorcraft into congested terminal areas where separation from high-speed jet traffic is highly desirable and the airport-precision-approach aid is a Microwave Landing System (MLS). The concept takes advantage of the fact that rotorcraft need not land on the main runway but can operate from a pad that lies on an MLS radial offset from the centerline. The results of 48 flights using a UH-1H helicopter and a research avionics system are presented. Three levels of navigation sophistication were also investigated. It is shown that an approach helix can be contained in a relatively small volume and that being within the Instrument Landing System (ILS) Category II window at a 30-m (100-ft) altitude is not a requirement for a successful hover over a landing pad. Only two of the three navigation systems provided estimates that allowed all flights to descend from hover to touchdown.

Mcgee, L. A.; Foster, J. D.; Xenakis, G.

1981-01-01

374

Deriving Function-failure Similarity Information for Failure-free Rotorcraft Component Design  

NASA Technical Reports Server (NTRS)

Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the design that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. The aircraft design needs to be passed through a general technique to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to certain components, which are described by their functionality. In turn, the failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using the technique proposed in this paper, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. This method was previously applied to a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

Roberts, Rory A.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

2002-01-01

375

Application of Function-Failure Similarity Method to Rotorcraft Component Design  

NASA Technical Reports Server (NTRS)

Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the designs that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. During the design of aircraft, a general technique is needed to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to specific components, which are described by their functionality. The failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using this technique, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. The fundamentals of this method were previously introduced for a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

Roberts, Rory A.; Stone, Robert E.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

2002-01-01

376

Preliminary design features of the RASCAL: A NASA /Army rotorcraft in-flight simulator  

NASA Technical Reports Server (NTRS)

Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

1993-01-01

377

Status of automatic guidance systems for rotorcraft in low altitude flight  

NASA Technical Reports Server (NTRS)

Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or man-made objects to minimize the risk of being detected by an enemy. The piloting of the rotorcraft is at best a very demanding task and the pilots need help from on-board automation tools in order to devote more time to mission-related activities. The Automated Nap-of-the-Earth (NOE) Flight Program is a cooperative NASA/Army program aimed at the development of technologies for enhancing piloted low-altitude/NOE flight path management and control through computer and sensor aiding. The long-term objective is to work towards achieving automation for aiding the pilot in NOE flight with a flight demonstration of resulting computer/sensor aiding concepts at an established course. The technology for pilot-centered NOE automation is not currently available. Success in automating NOE functions will depend on major breakthroughs in real-time flight path planning algorithms, effective methods for the pilot to interface to the automatic modes, understanding of visual images, sensor data processing/fusion, and sensor development. Our approach to developing the technologies required to solve this problem consist of the following phases: (1) algorithm development, (2) laboratory evaluation, (3) piloted ground simulation, and (4) evaluation in flight. An overview of the research in this area at NASA Ames Research Center is given.

Sridhar, Banavar; Cheng, Victor H. L.; Swenson, Harry N.

1992-01-01

378

Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades  

NASA Technical Reports Server (NTRS)

Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

2002-01-01

379

Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator  

NASA Technical Reports Server (NTRS)

Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

1992-01-01

380

Applications of flight control system methods to an advanced combat rotorcraft  

NASA Technical Reports Server (NTRS)

Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

1989-01-01

381

"Novel Techniques in Non-Stationary Analysis of Rotorcraft Vibration Signitures"  

NASA Technical Reports Server (NTRS)

This research effort produced new methods to analyze the performance of linear predictors that track non-stationary processes. Specifically, prediction methods have been applied to the vibration pattern of rotorcraft drivetrains. This analysis is part or a larger rotorcraft Health and Usage Monitoring System (HUMS) that can diagnose immediate failures of the subsystems, as indicated by abrupt change in the vibration signature, and prognosticate future health, by examining the vibration patterns against long-term trends. This problem is described by a earlier joint paper co-authored by members of the funding agency and the recipient institutions prior to this grant effort. Specific accomplishments under this grant include the following: (1) Definition of a framework for analysis of non-stationary time-series estimation using the coefficients of an adaptive filter. (2) Description of a novel method of combining short-term predictor error and long-term regression error to analyze the performance of a non-stationary predictor. (3) Formulation of a multi-variate probability density function that quantifies the performance of a adaptive predictor by using the short- and long-term error variables in a Gamma function distribution. and (4) Validation of the mathematical formulations with empirical data from NASA flight tests and simulated data to illustrate the utility beyond the domain of vibrating machinery.

Meng, Teresa

1999-01-01

382

NASA electrothermal auxiliary propulsion technology  

NASA Technical Reports Server (NTRS)

Electrothermal auxiliary propulsion systems provide high performance options which can have major mission benefits. There are several electrothermal concepts which offer a range of characteristics and benefits. Resistojets are the highest thrust to power option and are currently operational at mission average values of specific impulse, I sub sp approximately 295 sec. Long life, multipropellant resistojets are being developed for the space station, and resistojet technology advancements are being pursued to improve the I sub sp by more than 20 percent for resistojets used in satellite applications. Direct current arcjets have the potential of I sub sp over 400 sec with storable propellants and should provide over 1000 sec with hydrogen. Advanced concepts are being investigated to provide high power density options and possible growth to primary propulsion applications. Broad based experimental and analytical research and technology programs of NASA are summarized and recent significant advances are reviewed.

Stone, J. R.

1986-01-01

383

Attitude propulsion technology for TOPS  

NASA Technical Reports Server (NTRS)

The thermoelectric outer planet spacecraft (TOPS) attitude propulsion subsystem (APS) effort is discussed. It includes the tradeoff rationale that went into the selection of an anhydrous hydrazine baseline system, followed by a discussion of the 0.22 N thruster and its integration into a portable, self-contained propulsion module that was designed, developed, and man rated to support the TOPS single-axis attitude control tests. The results of a cold-start feasibility demonstration with a modified thruster are presented. A description of three types of 0.44 thrusters that were procured for in-house evaluation is included along with the results of the test program. This is followed by a description of the APS feed system components, their evaluations, and a discussion of an evaluation of elastomeric material for valve seat seals. A list of new technology items which will be of value for application to future systems of this type is included.

Moynihan, P. I.

1972-01-01

384

Planetary explorer liquid propulsion study  

NASA Technical Reports Server (NTRS)

An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

1971-01-01

385

Progress in revolutionary propulsion physics  

E-print Network

Prior to 1988, traversable wormholes were just science fiction. Prior to 1994, warp drives were just fiction. Since then, these notions matured into published scientific discourse, where key issues and unknowns continue to be raised and investigated. In 2009, the American Institute of Aeronautics and Astronautics published a peer-reviewed, expansive technical volume on these and other investigations toward breakthrough propulsion. This paper summarizes the key assertions from that 739-page volume, describing the collective state-of-the-art and candidate research steps that will lead to discovering if, or how, such breakthroughs might finally be achieved. Coverage includes: prerequisites for space drive physics, manipulating gravity or inertia for propulsion, lessons from superconductor experiments, null results with "lifters", implications of photon momentum in media, quantum vacuum physics, and the faster-than-light implications of general relativity and quantum non-locality.

Marc G. Millis

2011-01-05

386

Heavy Vehicle Propulsion Materials Program  

SciTech Connect

The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

Sidney Diamond; D. Ray Johnson

1999-04-26

387

A Closed-Loop Optimal Neural-Network Controller to Optimize Rotorcraft Aeromechanical Behaviour. Volume 1; Theory and Methodology  

NASA Technical Reports Server (NTRS)

Given the predicted growth in air transportation, the potential exists for significant market niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft aeromechanical behaviour can contribute significantly to both their commercial and military development, acceptance, and sales. Examples of the optimisation of rotorcraft aeromechanical behaviour which are of interest include the minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads is an important means to extend the useful life of the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using passive dampers and/or tuned masses, active closed-loop control has the potential to reduce vibration and loads throughout a.wider flight regime whilst requiring less additional weight to the aircraft man that obtained by using passive methads. It is ernphasised that the analysis described herein is applicable to all those rotorcraft aeromechanical behaviour optimisation problems for which the relationship between the harmonic control vector and the measurement vector can be adequately described by a neural-network model.

Leyland, Jane Anne

2001-01-01

388

Rugged COTS 12.1-in. diagonal AMLCD multipurpose display for the U.S. Army's Rotorcraft Pilot's Associate cockpit  

Microsoft Academic Search

The primary objective of the Rotorcraft pilot's Associate (RPA) program is to enhance mission effectiveness of future combat helicopters through development and application of knowledge based associate systems for cognitive decision aiding. Enhanced mission capability is supported by an increase in pilot situational awareness made possible through the development of the associate and the integration of advanced sensors, controls, and

Randall C. Pyles; Richard Hetherington

1997-01-01

389

The 21st century propulsion  

NASA Technical Reports Server (NTRS)

The prediction of future space travel in the next millennium starts by examining the past and extrapolating into the far future. Goals for the 21st century include expanded space travel and establishment of permanent manned outposts, and representation of Lunar and Mars outposts as the most immediate future in space. Nuclear stage design/program considerations; launch considerations for manned Mars missions; and far future propulsion schemes are outlined.

Haloulakos, V. E.; Boehmer, C.

1990-01-01

390

Propulsion in the Chameleon Model  

Microsoft Academic Search

The Chameleon model-thin-shell mechanism-proposed by Khoury and Weltman presents a likeness to a stationary warp bubble about masses of significant size and interest to space propulsion. A difference being that the thin-shell mechanism masks the mass of an object from an external Chameleon field comparable to the gravitational field in warp-drive theory. However, the thin-shell mechanism couples to the gravitational

Glen A. Robertson

2008-01-01

391

Propulsion in the Chameleon Model  

Microsoft Academic Search

The Chameleon model—thin-shell mechanism—proposed by Khoury and Weltman presents a likeness to a stationary warp bubble about masses of significant size and interest to space propulsion. A difference being that the thin-shell mechanism masks the mass of an object from an external Chameleon field comparable to the gravitational field in warp-drive theory. However, the thin-shell mechanism couples to the gravitational

Glen A. Robertson

2008-01-01

392

Quiet powered-lift propulsion  

NASA Technical Reports Server (NTRS)

Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.

1979-01-01

393

Space Shuttle Propulsion Finishing Strong  

NASA Technical Reports Server (NTRS)

Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the SRB's on STS-4 and shutdown of an SSME during ascent on STS- 51F. On STS-112 only half the pyrotechnics fired to release the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early Program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. Human rating of solid rocket motors was truly achieved. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. These major events and lessons for the future are discussed. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The propulsion system elements evolved to high reliability and heavy lift capability. The Shuttle system, though not a operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS) and provided significant logistics and down mass for ISS operations. By the end of the Program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and is a heavy lift earth to orbit propulsion system. The story of this amazing system is discussed in detail in the paper.

Owen, James W.; Singer, Jody

2011-01-01

394

Space station propulsion requirements study  

NASA Technical Reports Server (NTRS)

Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

Wilkinson, C. L.; Brennan, S. M.

1985-01-01

395

Advanced propulsion for the Mars Rover Sample Return Mission  

NASA Technical Reports Server (NTRS)

The present evaluation of highly detailed advanced propulsion system design concepts for the Mars Rover Sample Return Mission proceeded by comparing a baseline chemical propulsion option with both storable and cryogenic advanced chemical propulsion alternatives and solar- and nuclear-based electric propulsion OTVs. Substantial launch mass reductions and commensurate payload mass increases were obtainable with both advanced chemical and electric propulsion cycles.

Palaszewski, Bryan; Frisbee, Robert

1988-01-01

396

Components of the Solar Thermal Propulsion Engine  

NASA Technical Reports Server (NTRS)

Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1997-01-01

397

Advanced onboard propulsion benefits and status  

NASA Technical Reports Server (NTRS)

Future commercial space systems may include geosynchronous-orbit communication satellites; Earth-observing satellites in polar, sun-synchronous orbits; and tended low-earth-orbit platforms. All such space systems require onboard propulsion for a variety of functions, including stationkeeping and drag makeup, apogee motors, and delivery and return. In many cases, the onboard propulsion exerts a major influence on the overall mission performance, lifetime, and integration. NASA has established a Low Thrust Propulsion Program, which is developing chemical and electric propulsion concepts that offer potential for significant benefits for onboard propulsion for the various classes of commercial spacecraft. The onboard propulsion requirements of future commercial space systems are briefly discussed, followed by a summary of the characteristics and status of relevant elements of the NASA Low Thrust program.

Byers, David C.

1989-01-01

398

Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test  

NASA Technical Reports Server (NTRS)

In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats, legacy troop bench seats, and a three-tiered patient litter. In addition, two standing ATDs were used to evaluate the benefit of Mobile Aircrew Restraint Systems (MARS) versus a standard gunner's belt. The ATD with the MARS survived the impact, while fatal head blunt trauma occurred for the standing ATD held by the legacy gunner's belt. In addition to occupant loading, the structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation.

Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph

2014-01-01

399

Nuclear gas core propulsion research program  

NASA Technical Reports Server (NTRS)

Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

1993-01-01

400

A Conceptual Tree of Laser Propulsion  

SciTech Connect

An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely.

Pakhomov, Andrew V.; Sinko, John E. [Department of Physics, The University of Alabama in Huntsville (United States)

2008-04-28

401

Biomimetic robotic propulsion using polymeric artificial muscles  

Microsoft Academic Search

Biomimetic fish-like propulsion using polyelectrolyte ion-exchange membrane metal composites as a propulsion fin for a robotic swimming structure, such as a boat swimming in water medium, was investigated. The membrane was chemically plated with platinum. The resulting membrane was cut in a strip to resemble fish-like caudal fin for propulsion. A small function generator circuit was designed and built to

Mehran Mojarrad; Mohsen Shahinpoor

1997-01-01

402

Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion  

Microsoft Academic Search

Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft.

George R. Schmidt; David H. Manzella; Hani Kamhawi; Tibor Kremic; Steven R. Oleson; John W. Dankanich; Leonard A. Dudzinski

2010-01-01

403

In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development  

NASA Technical Reports Server (NTRS)

An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

Montgomery, Edward E., IV

2004-01-01

404

Green space propulsion: Opportunities and prospects  

NASA Astrophysics Data System (ADS)

Currently, toxic and carcinogenic hydrazine propellants are commonly used in spacecraft propulsion. These propellants impose distinctive environmental challenges and consequential hazardous conditions. With an increasing level of future space activities and applications, the significance of greener space propulsion becomes even more pronounced. In this article, a selected number of promising green space propellants are reviewed and investigated for various space missions. In-depth system studies in relation to the aforementioned propulsion architectures further unveil possible approaches for advanced green propulsion systems of the future.

Gohardani, Amir S.; Stanojev, Johann; Demairé, Alain; Anflo, Kjell; Persson, Mathias; Wingborg, Niklas; Nilsson, Christer

2014-11-01

405

Nuclear Propulsion Technical Interchange Meeting, volume 1  

NASA Technical Reports Server (NTRS)

The Nuclear Propulsion Technical Interchange Meeting (NP-TIM-92) was sponsored and hosted by the Nuclear Propulsion Office at the NASA Lewis Research Center. The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are a compilation of the presentations given at the meeting (many of the papers are presented in outline or viewgraph form). Volume 1 covers the introductory presentations and the system concepts and technology developments related to nuclear thermal propulsion.

1993-01-01

406

Explosive propulsion applications. [to future unmanned missions  

NASA Technical Reports Server (NTRS)

The feasibility and application of an explosive propulsion concept capable of supporting future unmanned missions in the post-1980 era were examined and recommendations made for advanced technology development tasks. The Venus large lander mission was selected as the first in which the explosive propulsion concept can find application. A conceptual design was generated and its performance, weight, costs, and interaction effects determined. Comparisons were made with conventional propulsion alternatives. The feasibility of the explosive propulsion system was verified for planetology experiments within the dense atmosphere of Venus as well as the outer planets. Additionally, it was determined that the Venus large lander mission could be augmented ballistically with a significant delivery margin.

Nakamura, Y.; Varsi, G.; Back, L. H.

1974-01-01

407

Linear Parameter Varying Model Identification for Control of Rotorcraft-based UAV  

E-print Network

A rotorcraft-based unmanned aerial vehicle exhibits more complex properties compared to its full-size counterparts due to its increased sensitivity to control inputs and disturbances and higher bandwidth of its dynamics. As an aerial vehicle with vertical take-off and landing capability, the helicopter specifically poses a difficult problem of transition between forward flight and unstable hover and vice versa. The LPV control technique explicitly takes into account the change in performance due to the real-time parameter variations. The technique therefore theoretically guarantees the performance and robustness over the entire operating envelope. In this study, we investigate a new approach implementing model identification for use in the LPV control framework. The identification scheme employs recursive least square technique implemented on the LPV system represented by dynamics of helicopter during a transition. The airspeed as the scheduling of parameter trajectory is not assumed to vary slowly. The exclu...

Budiyono, Agus

2008-01-01

408

NLSCIDNT user's guide maximum likehood parameter identification computer program with nonlinear rotorcraft model  

NASA Technical Reports Server (NTRS)

A nonlinear, maximum likelihood, parameter identification computer program (NLSCIDNT) is described which evaluates rotorcraft stability and control coefficients from flight test data. The optimal estimates of the parameters (stability and control coefficients) are determined (identified) by minimizing the negative log likelihood cost function. The minimization technique is the Levenberg-Marquardt method, which behaves like the steepest descent method when it is far from the minimum and behaves like the modified Newton-Raphson method when it is nearer the minimum. Twenty-one states and 40 measurement variables are modeled, and any subset may be selected. States which are not integrated may be fixed at an input value, or time history data may be substituted for the state in the equations of motion. Any aerodynamic coefficient may be expressed as a nonlinear polynomial function of selected 'expansion variables'.

1979-01-01

409

Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound  

NASA Technical Reports Server (NTRS)

New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

2004-01-01

410

NASA/Army Rotorcraft Transmission Research, a Review of Recent Significant Accomplishments  

NASA Technical Reports Server (NTRS)

A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Research Lab has existed since 1970. Research goals are to reduce weight and noise while increasing life, reliability, and safety. These research goals are achieved by the NASA/Army Mechanical Systems Technology Branch through both in-house research and cooperative research projects with university and industry partners. Some recent significant technical accomplishments produced by this cooperative research are reviewed. The following research projects are reviewed: oil-off survivability of tapered roller bearings, design and evaluation of high contact ratio gearing, finite element analysis of spiral bevel gears, computer numerical control grinding of spiral bevel gears, gear dynamics code validation, computer program for life and reliability of helicopter transmissions, planetary gear train efficiency study, and the Advanced Rotorcraft Transmission (ART) program.

Krantz, Timothy L.

1994-01-01

411

The development and evaluation of advanced Kevlar sandwich structure for application to rotorcraft airframes  

NASA Astrophysics Data System (ADS)

The results of an evaluation of DuPont Kevlar-based material systems in sandwich structure designed for rotorcraft primary airframe structure are presented in this report. The focus of this work has been to evaluate the durability and compression strength of thin-gage Kevlar sandwich panels and investigate means of improvement. It was found that sandwich panels made with Kevlar 149 fibers can be as strong as Kevlar 49 structures but have reduced compression stiffness properties at typical operating strain levels. Thermal cycling was found to affect permeability but not strength in thin facesheet sandwich structure. Any increased permeability can be prevented with the use of an interleaf or surfacing plies. The surfacing plies investigated also had a beneficial effect on sandwich strength due to their stabilizing effect on the facesheet in compression. Finally, a previously developed model was used to analyze the residual strength of a sandwich panel after impact damage.

Minguet, Pierre; Llorente, Steven; Fay, Russell

1991-05-01

412

Simulation evaluation of the effects of time delay and motion on rotorcraft handling qualities  

NASA Technical Reports Server (NTRS)

A study aimed at determining the effects of simulator characteristics on perceived handling qualities is discussed. Evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual and overall time delays. As the visual and motion parameters were changed, differences in pilot opinion were found reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. It is concluded that it is necessary to tailor the motion washout dynamics to suit the task, with reduced washouts for precision maneuvering as compared to aggressive maneuvering. Visual-delay data suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.; Key, David L.

1991-01-01

413

Some lessons learned in three years with ADS-33C. [rotorcraft handling qualities specification  

NASA Technical Reports Server (NTRS)

Three years of using the U.S. Army's rotorcraft handling qualities specification, Aeronautical Design Standard - 33, has shown it to be surprisingly robust. It appears to provide an excellent basis for design and for assessment, however, as the subtleties become more well understood, several areas needing refinement became apparent. Three responses to these needs have been documented in this paper: (1) The yaw-axis attitude quickness for hover target acquisition and tracking can be relaxed slightly. (2) Understanding and application of criteria for degraded visual environments needed elaboration. This and some guidelines for testing to obtain visual cue ratings have been documented. (3) The flight test maneuvers were an innovation that turned out to be very valuable. Their extensive use has made it necessary to tighten definitions and testing guidance. This was accomplished for a good visual environment and is underway for degraded visual environments.

Key, David L.; Blanken, Chris L.; Hoh, Roger H.

1993-01-01

414

Benefits assessment of active control technology and related cockpit technology for rotorcraft  

NASA Technical Reports Server (NTRS)

Two main-rotor active control concepts, one incorporating multicyclic actuators located just below the swashplate, and the other providing for the actuators and power supplies to be located in the rotating frame are considered. Each design concept is integrated with cockpit controllers and displays appropriate to the actuation concept in each case. The benefits of applying the defined ACT/RCT concepts to rotorcraft are quantified by comparison to the baseline model 412 helicopter. These benefits include, in the case of one active control concept; (1) up to 91% reduction in 4/rev hub shears; (2) a flight safety failure rate of 1.96 x 10 to the 8th power failures per flight-hour; (3) rotating controls/rotor hub drag reduction of 40%; (4) a 9% reduction in control system weight; and (5) vibratory deicing. The related cockpit concept reduces pilot workload for critical mission segments as much as 178% visual and 25% manual.

Hampton, B. J.

1982-01-01

415

NASA/Army rotorcraft transmission research, a review of recent significant accomplishments  

SciTech Connect

A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Research Lab has existed since 1970. Research goals are to reduce weight and noise while increasing life, reliability, and safety. These research goals are achieved by the NASA/Army Mechanical Systems Technology Branch through both in-house research and cooperative research projects with university and industry partners. Some recent significant technical accomplishments produced by this cooperative research are reviewed. The following research projects are reviewed: oil-off survivability of tapered roller bearings, design and evaluation of high contact ratio gearing, finite element analysis of spiral bevel gears, computer numerical control grinding of spiral bevel gears, gear dynamics code validation, computer program for life and reliability of helicopter transmissions, planetary gear train efficiency study, and the Advanced Rotorcraft Transmission (ART) program.

Krantz, T.L.

1994-03-01

416

Electric Propulsion Platforms at DFRC  

NASA Technical Reports Server (NTRS)

NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.

Baraaclough, Jonathan

2009-01-01

417

Rotorcraft noise  

NASA Technical Reports Server (NTRS)

The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

Huston, R. J. (compiler)

1982-01-01

418

An Investigation of Rotorcraft Stability-Phase Margin Requirements in Hover  

NASA Technical Reports Server (NTRS)

A cooperative study was performed to investigate the handling quality effects from reduced flight control system stability margins, and the trade-offs with higher disturbance rejection bandwidth (DRB). The piloted simulation study, perform on the NASA-Ames Vertical Motion Simulator, included three classes of rotorcraft in four configurations: a utility-class helicopter; a medium-lift helicopter evaluated with and without an external slung load; and a large (heavy-lift) civil tiltrotor aircraft. This large aircraft also allowed an initial assessment of ADS-33 handling quality requirements for an aircraft of this size. Ten experimental test pilots representing the U.S. Army, Marine Corps, NASA, rotorcraft industry, and the German Aerospace Center (DLR), evaluated the four aircraft configurations, for a range of flight control stability-margins and turbulence levels, while primarily performing the ADS-33 Hover and Lateral Reposition MTEs. Pilot comments and aircraft-task performance data were analyzed. The preliminary stability margin results suggest higher DRB and less phase margin cases are preferred as the aircraft increases in size. Extra care will need to be taken to assess the influence of variability when nominal flight control gains start with reduced margins. Phase margins as low as 20-23 degrees resulted in low disturbance-response damping ratios, objectionable oscillations, PIO tendencies, and a perception of an incipient handling qualities cliff. Pilot comments on the disturbance response of the aircraft correlated well to the DRB guidelines provided in the ADS-33 Test Guide. The A D-3S3 mid-term response-to-control damping ratio metrics can be measured and applied to the disturbance-response damping ratio. An initial assessment of LCTR yaw bandwidth shows the current Level 1 boundary needs to be relaxed to help account for a large pilot off-set from the c.g. Future efforts should continue to investigate the applicability/refinement of the current ADS-33 requirements to large vehicles, like an LCTR.

Blanken, Chris L.; Lusardi, Jeff A.; Ivler, Christina M.; Tischler, Mark B.; Hoefinger, Marc T.; Decker, William A.; Malpica, Carlos A.; Berger, Tom; Tucker, George E.

2009-01-01

419

Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)  

NASA Technical Reports Server (NTRS)

A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

2011-01-01

420

46 CFR 111.35-1 - Electrical propulsion installations.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Electrical propulsion installations. 111.35-1...OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL...Electric Propulsion § 111.35-1 Electrical propulsion...

2012-10-01

421

46 CFR 111.35-1 - Electrical propulsion installations.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Electrical propulsion installations. 111.35-1...OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL...Electric Propulsion § 111.35-1 Electrical propulsion...

2013-10-01

422

46 CFR 111.35-1 - Electrical propulsion installations.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Electrical propulsion installations. 111.35-1...OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL...Electric Propulsion § 111.35-1 Electrical propulsion...

2011-10-01

423

46 CFR 111.35-1 - Electrical propulsion installations.  

...2014-10-01 2014-10-01 false Electrical propulsion installations. 111.35-1...OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL...Electric Propulsion § 111.35-1 Electrical propulsion...

2014-10-01

424

46 CFR 111.33-11 - Propulsion systems.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Propulsion systems. 111.33-11 Section...Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections...

2011-10-01

425

46 CFR 121.620 - Propulsion engine control systems.  

...2014-10-01 2014-10-01 false Propulsion engine control systems. 121.620...Communications Systems § 121.620 Propulsion engine control systems. (a) A...independent means of controlling each propulsion engine. Control must be provided...

2014-10-01

426

46 CFR 111.33-11 - Propulsion systems.  

...2014-10-01 2014-10-01 false Propulsion systems. 111.33-11 Section...Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections...

2014-10-01

427

46 CFR 58.01-35 - Main propulsion auxiliary machinery.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Main propulsion auxiliary machinery. 58.01-35...Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in...

2013-10-01

428

46 CFR 111.33-11 - Propulsion systems.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Propulsion systems. 111.33-11 Section...Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections...

2012-10-01

429

46 CFR 111.33-11 - Propulsion systems.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Propulsion systems. 111.33-11 Section...Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections...

2013-10-01

430

46 CFR 184.620 - Propulsion engine control systems.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Propulsion engine control systems. 184.620...Communications Systems § 184.620 Propulsion engine control systems. (a) A...independent means of controlling each propulsion engine. Control must be...

2013-10-01

431

46 CFR 58.01-35 - Main propulsion auxiliary machinery.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Main propulsion auxiliary machinery. 58.01-35...Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in...

2012-10-01

432

46 CFR 58.01-35 - Main propulsion auxiliary machinery.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Main propulsion auxiliary machinery. 58.01-35...Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in...

2011-10-01

433

46 CFR 58.01-35 - Main propulsion auxiliary machinery.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false Main propulsion auxiliary machinery. 58.01-35...Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in...

2010-10-01

434

46 CFR 121.620 - Propulsion engine control systems.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Propulsion engine control systems. 121.620...Communications Systems § 121.620 Propulsion engine control systems. (a) A...independent means of controlling each propulsion engine. Control must be provided...

2013-10-01

435

Initial Cassini propulsion system in-flight characterization  

NASA Technical Reports Server (NTRS)

The Cassini Propulsion Module Subsystem has performed excellently throughout the first four years of mission operations. The PMS is the most complex interplanetary propulsion subsystem ever flown, with separate monopropellant and bipropellant propulsion modules, each replete with many redundant components.

Barber, T. J.; Crowley, R. T.

2002-01-01

436

Low thrust propulsion literature survey  

NASA Technical Reports Server (NTRS)

A literature search was performed to investigate the area of low thrust propulsion. In an effort to evaluate this technology, a number of articles, obtained through the use of the NASA-RECON database, were collected and categorized. The study indicates that although much was done, particularly in the 1960's and 1970's, more can be done in the area of practical navigation and guidance. It is suggested that the older studies be reinvestigated to see what potential there exists for future low thrust applications.

Monroe, Darrel

1989-01-01

437

Pure Nuclear Fusion Bomb Propulsion  

E-print Network

Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials

Winterberg, F

2008-01-01

438

Space station propulsion system technology  

NASA Technical Reports Server (NTRS)

Two propulsion systems have been selected for the space station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.

Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.

1987-01-01

439

In-Space Propulsion for Science and Exploration  

NASA Technical Reports Server (NTRS)

This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.

Bishop-Behel, Karen; Johnson, Les

2004-01-01

440

Propulsion Structure Rapid Model Generation Tool (RMG)  

Microsoft Academic Search

Demands of airplane customers have necessitated compaction of the design-and-build cycle of commercial airplane manufacturers. This shorter design cycle requires innovative robust automated analysis tools. The Propulsion Structures Group at Boeing Commercial Company has developed a Propulsion Structure Modeling & Analysis Tool, Rapid Model Generation (RMG), an automated design process that is both accurate and efficient. Utilizing CATIA, FORTRAN, MSC.

Shaun Allahyari; Donald T. Powell

441

Ultrahigh Specific Impulse Nuclear Thermal Propulsion  

Microsoft Academic Search

Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them

Anne Charmeau; Brandon Cunningham; Samim Anghaie

2009-01-01

442

Institute for Computational Mechanics in Propulsion (ICOMP)  

NASA Technical Reports Server (NTRS)

The Institute for Computational Mechanics in Propulsion (ICOMP) is operated jointly by Case Western Reserve University and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOMP during 1988.

1989-01-01

443

Missions to asteroids using solar electric propulsion  

Microsoft Academic Search

Future interplanetary missions will use conventional rockets to leave the Earth's sphere of influence, and solar electric propulsion to carry out deep-space maneuvers. Optimization of this kind of mission is the subject of the paper. Attention is mainly paid to a mission concept that exploits high specific impulse and steering capabilities of electric propulsion to obtain a gravity assist from

Guido Colasurdo; Lorenzo Casalino

2002-01-01

444

In-Space Transportation Propulsion Architecture Assessment  

NASA Technical Reports Server (NTRS)

Almost all space propulsion development and application has been chemical. Aerobraking has been used at Venus and Mars, and for entry at Jupiter. One electric propulsion mission has been flown (DS-1) and electric propulsion is in general use by commercial communications satellites for stationkeeping. Gravity assist has been widely used for high-energy missions (Voyager, Galileo, Cassini, etc.). It has served as a substitute for high-energy propulsion but is limited in energy gain, and adds mission complexity as well as launch opportunity restrictions. It has very limited value for round trip missions such as humans to Mars and return. High-energy space propulsion has been researched for many years, and some major developments, such as nuclear thermal propulsion (NTP), undertaken. With the exception of solar electric propulsion at a scale of a few kilowatts, high-energy space propulsion has never been used on a mission. Most mission studies have adopted TRL 6 technology because most have looked for a near-term start. The current activity is technology planning aimed at broadening the options available to mission planners. Many of the illustrations used in this report came from various NASA sources; their use is gratefully acknowledged.

Woodcock, Gordon

2000-01-01

445

MICROMACHINED ACOUSTIC RESONATORS FOR MICROJET PROPULSION  

Microsoft Academic Search

The thrust produced by synthetic jets designed for micro jet propulsion is discussed. The proposed propulsion system consists of synthetic wall jets located at the throat of an ejector shroud that are powered by Helmholtz-type acoustic resonators. The theory of acoustic resonators is described and the thrust produced by the resonators calculated. Theoretical results of the exit velocity and thrust

Michael O. Müller; Luis P. Bernal; Robert P. Moran; Peter D. Washabaugh

2000-01-01

446

US in-space electric propulsion experiments  

NASA Technical Reports Server (NTRS)

Arcjet and ion propulsion offer potentially significant reductions in the mass of propulsion systems required for Earth orbiting satellites and planetary spacecraft. For this reason, they have been the subject of validation and demonstration programs. After examining the benefits of electric propulsion, this paper discusses the technology base for the Electric Propulsion Space Experiment (ESEX) arcjet demonstration experiment and the NASA Technology Application Readiness (NSTAR) ion propulsion validation program. As part of the Advanced Research Global Observation Spacecraft (ARGOS), ESEX will perform ten 15-min firings of a 30-kW ammonia arcjet. NASA's validation program, NSTAR, consists of two major elements: a ground-test element and an in-space experiment. The ground element will validate the life, integrability, and performance of low-power ion propulsion. The in-space element will demonstrate the feasibility of integrating and flying an ion propulsion system. The experiment will measure the interactions among the ion propulsion system, the host spacecraft, and the surrounding space plasma. It will provide a quantitative assessment of the ability of ground testing to replicate the in-space performance ion thrusters. By involving industry in NSTAR, a commercial source for this technology will be ensured. Furthermore, the successful completion of the NSTAR validation program will stimulate commercial and government (both civilian and military) uses of this technology.

Stocky, John F.; Vondra, Robert; Sutton, Alan M.

1995-01-01

447

Conceptual design of space drive propulsion system  

Microsoft Academic Search

This paper presents the results of a conceptual design study for a crewed interplanetary spaceship powered by space drive propulsion system. The principle of space drive propulsion system is derived from General Relativity and the theory of continuum mechanics. We assume the so-called ``vacuum'' of space as an infinite elastic body like rubber. The curvature of space plays a significant

Yoshinari Minami

1998-01-01

448

Advanced gel propulsion controls for kill vehicles  

Microsoft Academic Search

A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded