Science.gov

Sample records for oil-free rotorcraft propulsion

  1. Advancements Toward Oil-Free Rotorcraft Propulsion

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.

    2010-01-01

    NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.

  2. Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2008-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.

  3. High-speed rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Rutherford, John W.; Fitzpatrick, Robert E.

    1991-01-01

    Recently completed high-speed rotorcraft design studies for NASA provide the basis to assess technology needs for the development of these aircraft. Preliminary analysis of several concepts possessing helicopter-like hover characteristics and cruise capabilities in the 450 knot regime, led to the selection of two concepts for further study. The concepts selected included the Rotor/Wing and the Tilt Wing. The two unique concepts use turbofan and turboshaft engines respectively. Designs, based on current technology for each, established a baseline configuration from which technology trade studies could be conducted. Propulsion technology goals from the IHPTET program established the advanced technolgy year. Due to high-speed requirements, each concept possesses its own unique propulsion challenges. Trade studies indicate that achieving th IHPTET Phase III goals significantly improves the effectiveness of both concepts. Increased engine efficiency is particularly important to VTOL aircraft by reducing gross weight.

  4. Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Bruckner, Robert J.

    2007-01-01

    An optimized rotorcraft propulsion system incorporating a foil air bearing supported Oil-Free engine coupled to a high power density gearbox using high viscosity gear oil is explored. Foil air bearings have adequate load capacity and temperature capability for the highspeed gas generator shaft of a rotorcraft engine. Managing the axial loads of the power turbine shaft (low speed spool) will likely require thrust load support from the gearbox through a suitable coupling or other design. Employing specially formulated, high viscosity gear oil for the transmission can yield significant improvements (approx. 2X) in allowable gear loading. Though a completely new propulsion system design is needed to implement such a system, improved performance is possible.

  5. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  6. System Analysis and Performance Benefits of an Optimized Rotorcraft Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2007-01-01

    The propulsion system of rotorcraft vehicles is the most critical system to the vehicle in terms of safety and performance. The propulsion system must provide both vertical lift and forward flight propulsion during the entire mission. Whereas propulsion is a critical element for all flight vehicles, it is particularly critical for rotorcraft due to their limited safe, un-powered landing capability. This unparalleled reliability requirement has led rotorcraft power plants down a certain evolutionary path in which the system looks and performs quite similarly to those of the 1960 s. By and large the advancements in rotorcraft propulsion have come in terms of safety and reliability and not in terms of performance. The concept of the optimized propulsion system is a means by which both reliability and performance can be improved for rotorcraft vehicles. The optimized rotorcraft propulsion system which couples an oil-free turboshaft engine to a highly loaded gearbox that provides axial load support for the power turbine can be designed with current laboratory proven technology. Such a system can provide up to 60% weight reduction of the propulsion system of rotorcraft vehicles. Several technical challenges are apparent at the conceptual design level and should be addressed with current research.

  7. Rotorcraft flight-propulsion control integration

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. G. C.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories have initiated and completed, in part, a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the T700 and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  8. Progress in NASA Rotorcraft Propulsion

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Johnson, Susan M.

    2008-01-01

    This presentation reviews recent progress made under NASA s Subsonic Rotary Wing (SRW) propulsion research activities. Advances in engines, drive systems and optimized propulsion systems are discussed. Progress in wide operability compressors, modeling of variable geometry turbine performance, foil gas bearings and multi-speed transmissions are presented.

  9. Development of a rotorcraft. Propulsion dynamics interface analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Hull, R.

    1982-01-01

    A study was conducted to establish a coupled rotor/propulsion analysis that would be applicable to a wide range of rotorcraft systems. The effort included the following tasks: (1) development of a model structure suitable for simulating a wide range of rotorcraft configurations; (2) defined a methodology for parameterizing the model structure to represent a particular rotorcraft; (3) constructing a nonlinear coupled rotor/propulsion model as a test case to use in analyzing coupled system dynamics; and (4) an attempt to develop a mostly linear coupled model derived from the complete nonlinear simulations. Documentation of the computer models developed is presented.

  10. Technical Seminar: Oil-Free Turbomachinery for Rotorcraft - Duration: 1 hour, 14 minutes.

    NASA Video Gallery

    Rotorcraft engines are among the most demanding applications for conventional oil-lubricated bearings because they must operate with extreme reliability and the highest possible power density. Rece...

  11. Rotorcraft flight-propulsion control integration: An eclectic design concept

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  12. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  13. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  14. A rotorcraft flight/propulsion control integration study

    NASA Technical Reports Server (NTRS)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  15. NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.

  16. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  17. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  18. Test stand performance of a convertible engine for advanced V/STOL and rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1987-01-01

    A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed V/STOL and rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque.

  19. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    NASA Technical Reports Server (NTRS)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  20. Oil-Free Turbomachinery Being Developed

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2001-01-01

    NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.

  1. Outdoor test stand performance of a convertible engine with variable inlet guide vanes for advanced rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1986-01-01

    A variable inlet guide van (VIGV) type convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip airflow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss than was originally estimated. The new calculations confirm that using convertible engines rather than separate lift and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

  2. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Goldstein, D. N.; Hirschkron, R.; Smith, C. E.

    1983-01-01

    Convertible propulsion systems for advanced rotorcraft are evaluated in terms of their impact on aircraft operating economics and fuel consumption. A variety of propulsion system concepts, including separate thrust and power producing engines, convertible fan/shaft engines, and auxiliary propeller configurations are presented. The merits of each are evaluated in two different rotorcraft missions: an intercity, commercial transport of the ABC(TM) type, and an offshore oil ring supply ship of the X-wing type. The variable inlet guide vane fan/shaft converting engine and auxiliary propeller configurations are shown to offer significant advantages over all the other systems evaluated, in terms of both direct operating cost and fuel consumption.

  3. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.

  4. Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel

    2013-01-01

    Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.

  5. Rotorcraft Health Management Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Dempsey, Paula J.; Huff, Edward M.; Augustin, Michael; Safa-Bakhsh, Robab; Ephraim, Piet; Grabil, Paul; Decker, Harry J.

    2006-01-01

    This paper presents an overview of health management issues and challenges that are specific to rotorcraft. Rotorcraft form a unique subset of air vehicles in that their propulsion system is used not only for propulsion, but also serves as the primary source of lift and maneuvering of the vehicle. No other air vehicle relies on the propulsion system to provide these functions through a transmission system with single critical load paths without duplication or redundancy. As such, health management of the power train is a critical and unique part of any rotorcraft health management system. This paper focuses specifically on the issues and challenges related to the dynamic mechanical components in the main power train. This includes the transmission and main rotor mechanisms. This paper will review standard practices used for rotorcraft health management, lessons learned from fielded trials, and future challenges.

  6. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  7. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  8. Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian J.; DellaCorte, Christopher

    2002-01-01

    The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.

  9. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  10. Rotorcraft transmissions

    NASA Technical Reports Server (NTRS)

    Coy, John J.

    1990-01-01

    Highlighted here is that portion of the Lewis Research Center's helicopter propulsion systems program that deals with drive train technology and the related mechanical components. The major goals of the program are to increase life, reliability, and maintainability, to reduce weight, noise, and vibration, and to maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development, followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

  11. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  12. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  13. Variable/Multispeed Rotorcraft Drive System Concepts

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2009-01-01

    Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.

  14. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  15. Rotorcraft as Mars Scouts

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Aiken, E. W.; Gulick, V.; Mancinelli, R.; Briggs, G. A.; Rutkowski, Michael (Technical Monitor)

    2002-01-01

    A new approach for the robotic exploration of Mars is detailed in this paper: the use of small, ultralightweight, autonomous rotary-wing aerial platforms. Missions based on robotic rotorcraft could make excellent candidates for NASA Mars Scout program. The paper details the work to date and future planning required for the development of such 'Mars rotorcraft.'

  16. NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine

    NASA Technical Reports Server (NTRS)

    Weaver, Harold F.

    2003-01-01

    In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

  17. Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2004-01-01

    Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.

  18. Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob

    2013-01-01

    In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.

  19. NDARC NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne R.

    2009-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  20. NDARC - NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2015-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  1. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey D.

    2010-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  2. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey

    2009-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  3. Oil-free compressor benefits explained.

    PubMed

    Allen, Mark

    2014-09-01

    Oil-free technology for the production of medical air is used in many medical gas systems around the world, and is a requirement of the standards in many places. Under the Department of Health's Health Technical Memorandum, HTM O2-O1, this is not the case, although 'oil-free' is an option. Mark Allen, vice-president of Medical Marketing at Atlas Copco/BeaconMedaes, who is involved with the National Fire Protection Association (NFPA) in the US, the Canadian Standards Association (CSA) in Canada, and the ISO SC-6 (a technical committee on indoor air), discusses how harnessing such technology impacts on production of medical air under the pharmacopeia, and the potential opportunities to reduce maintenance and system problems. PMID:25282984

  4. Solid Lubricants for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  5. Milestones in Rotorcraft Aeromechanics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2011-01-01

    The subject of this paper is milestones in rotorcraft aeromechanics. Aeromechanics covers much of what the engineer needs: performance, loads, vibration, stability, flight dynamics, noise. These topics cover many of the key performance attributes, and many of the often-encountered problems in rotorcraft designs. A milestone is a critical achievement, a turning point, an event marking a significant change or stage in development. The milestones identified and discussed include the beginnings of aeromechanics with autogyro analysis, ground resonance, aeromechanics books, unsteady aerodynamics and airloads, nonuniform inflow and wakes, beams and dynamics, comprehensive analysis, computational fluid dynamics, and rotor airloads tests. The focus on milestones limits the scope of the history, but allows the author to acknowledge his choices for key steps in the development of the science and engineering of rotorcraft.

  6. Rotorcraft Dynamics 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.

  7. Advanced Rotorcraft Transmission Program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The U.S. Army/NASA Advanced Rotorcraft Transmission (ART) program is charged with developing and demonstrating a light, quiet, and durable drivetrain for next-generation rotorcraft in two classes: a 10,000-20,000 Future Attack Air Vehicle capable of both tactical ground support and air-to-air missions, and a 60,000-80,000 lb Advanced Cargo Aircraft, for heavy-lift field-support operations. Specific ART objectives encompass a 25-percent reduction in drivetrain weight, a 10-dB noise level reduction at the transmission source, and the achievement of a 5000-hr MTBF. Four candidate drivetrain systems have been carried to a conceptual design stage, together with projections of their mission performance and life-cycle costs.

  8. Rotorcraft master plan

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, Peter V.

    1992-01-01

    The Rotorcraft Master Plan contains a comprehensive summary of active and planned FAA vertical flight research and development. Since the Master Plan is not sufficient for tracking project status and monitoring progress, the Vertical Flight Program Plan will provide that capability. It will be consistent with the Master Plan and, in conjunction with it, will serve to ensure a hospitable environment if the industry presents a practical vertical-flight initiative.

  9. Analysis of Advanced Rotorcraft Configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2000-01-01

    Advanced rotorcraft configurations are being investigated with the objectives of identifying vehicles that are larger, quieter, and faster than current-generation rotorcraft. A large rotorcraft, carrying perhaps 150 passengers, could do much to alleviate airport capacity limitations, and a quiet rotorcraft is essential for community acceptance of the benefits of VTOL operations. A fast, long-range, long-endurance rotorcraft, notably the tilt-rotor configuration, will improve rotorcraft economics through productivity increases. A major part of the investigation of advanced rotorcraft configurations consists of conducting comprehensive analyses of vehicle behavior for the purpose of assessing vehicle potential and feasibility, as well as to establish the analytical models required to support the vehicle development. The analytical work of FY99 included applications to tilt-rotor aircraft. Tilt Rotor Aeroacoustic Model (TRAM) wind tunnel measurements are being compared with calculations performed by using the comprehensive analysis tool (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD 11)). The objective is to establish the wing and wake aerodynamic models that are required for tilt-rotor analysis and design. The TRAM test in the German-Dutch Wind Tunnel (DNW) produced extensive measurements. This is the first test to encompass air loads, performance, and structural load measurements on tilt rotors, as well as acoustic and flow visualization data. The correlation of measurements and calculations includes helicopter-mode operation (performance, air loads, and blade structural loads), hover (performance and air loads), and airplane-mode operation (performance).

  10. The Role of Tribology in the Development of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1997-01-01

    Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.

  11. NASA propulsion controls research

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1983-01-01

    Multivariable control theory is applied to the design of multiple input and output engine controls. Highly-accurate, real-time engine simulations are utilized for control development and checkout. Electro-optical control components are developed for use in electronic control systems having fiber optic data links. Integrated controls are developed for VSTOL and Rotorcraft propulsion systems. Post-stall models of engine systems are developed to aid in understanding and control of post-stall engine behavior.

  12. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  13. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  14. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  15. Concepts for Variable/Multi-Speed Rotorcraft Drive System

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2008-01-01

    In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.

  16. Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Bruckner, Robert J.

    2010-01-01

    The application of Oil-Free technologies (foil gas bearings, solid lubricants and advanced analysis and predictive modeling tools) to advanced turbomachinery has been underway for several decades. During that time, full commercialization has occurred in aircraft air cycle machines, turbocompressors and cryocoolers and ever-larger microturbines. Emerging products in the automotive sector (turbochargers and superchargers) indicate that high volume serial production of foil bearings is imminent. Demonstration of foil bearings in APU s and select locations in propulsion gas turbines illustrates that such technology also has a place in these future systems. Foil bearing designs, predictive tools and advanced solid lubricants have been reported that can satisfy anticipated requirements but a major question remains regarding the scalability of foil bearings to ever larger sizes to support heavier rotors. In this paper, the technological history, primary physics, engineering practicalities and existing experimental and experiential database for scaling foil bearings are reviewed and the major remaining technical challenges are identified.

  17. Community rotorcraft air transportation benefits and opportunities

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.

    1981-01-01

    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.

  18. Rotorcraft and Enabling Robotic Rescue

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2010-01-01

    This paper examines some of the issues underlying potential robotic rescue devices (RRD) in the context where autonomous or manned rotorcraft deployment of such robotic systems is a crucial attribute for their success in supporting future disaster relief and emergency response (DRER) missions. As a part of this discussion, work related to proof-of-concept prototyping of two notional RRD systems is summarized.

  19. NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Conference Proceedings is a compilation of over 30 technical papers presented at this milestone event which reported on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry rotorcraft research programs over the last 5 to 10 years. The Conference brought together over 230 government, industry, and allied nation conferees to exchange technical information and hear invited technical papers by prominent NASA, Army, and industry researchers covering technology topics which included: aerodynamics, dynamics and elasticity, propulsion and drive systems, flight dynamics and control, acoustics, systems integration, and research aircraft.

  20. NASA's rotorcraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.; Miller, Thomas L.

    1988-01-01

    The objective of the NASA aircraft icing research program is to develop and make available icing technology to support the needs and requirements of industry for all weather aircraft designs. While a majority of the technology being developed is viewed to be generic (i.e., appropriate to all vehicle classes), vehicle specific emphasis is being placed on the helicopter due to its unique icing problems. In particular, some of the considerations for rotorcraft icing are indicated. The NASA icing research program emphasizes technology development in two key areas: ice protection concepts and icing simulation (analytical and experimental). The NASA research efforts related to rotorcraft icing in these two technology areas will be reviewed.

  1. Noise Prediction for Maneuvering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Jones, Henry E.

    2000-01-01

    This paper presents the initial work toward first-principles noise prediction for maneuvering rotors. Both the aeromechanical and acoustics aspects of the maneuver noise problem are discussed. The comprehensive analysis code, CAMRAD 2. was utilized to predict the time-dependent aircraft position and attitude, along - with the rotor blade airloads and motion. The major focus of this effort was the enhancement of the acoustic code WOPWOP necessary to compute the noise from a maneuvering rotorcraft. Full aircraft motion, including arbitrary transient motion, is modeled together with arbitrary rotor blade motions. Noise from a rotorcraft in turning and descending flight is compared to level flight. A substantial increase in the rotor noise is found both for turning flight and during a transient maneuver. Additional enhancements to take advantage of parallel computers and clusters of workstations, in addition to a new compact-chordwise loading formulation, are also described.

  2. Advanced Rotorcraft Transmission program summary

    NASA Astrophysics Data System (ADS)

    Bossler, Robert B., Jr.; Heath, Gregory F.

    1992-07-01

    The current status of the Advanced Rotorcraft Transmission (ART) program is reviewed. The discussion includes a general configuration and face gear description, weight analysis, stress analysis, reliability analysis, acoustic analysis, face gear testing, and planned torque split testing. Design descriptions include the face gear webs sized for equal stiffness, a positive engagement clutch, the lubrication system, and a high contact ratio planetary. Test results for five gear materials and three housing materials are presented.

  3. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  4. Advances in rotorcraft system identification

    NASA Astrophysics Data System (ADS)

    Hamel, Peter G.; Kaletka, Jrgen

    1997-03-01

    System identification can best be described as the extraction of system characteristics from measured flight test data. Therefore it provides an excellent tool for determining and improving mathematical models for a wide range of applications. The increasing need for accurate models for the design of high bandwidth control systems for rotorcraft has initiated a high interest in and a more intensive use of system identification. This development was supported by the AGARD FVP Working Group 18 on Rotorcraft System Identification, which brought together specialists from research organisations and industry, tasked with exploring the potential of this tool. In the Group, the full range of identification approaches was applied to dedicated helicopter flight-test-data including data quality checking and the determination and verification of flight mechanical models. It was mainly concentrated on the identification of six degrees of freedom rigid body models, which provide a realistic description of the rotorcraft dynamics for the lower and medium frequency range. The accomplishment of the Working Group has increased the demand for applying these techniques more routinely and, in addition, for extending the model order by including explicit rotor degrees of freedom. Such models also accurately characterize the higher frequency range needed for high bandwidth control system designs. In the specific case of the DLR In-Flight Simulator BO 105 ATTHeS, the application of the identified higher order models for the model-following control system was a major prerequisite for the obtained high simulation quality.

  5. Wireless Sensors Pinpoint Rotorcraft Troubles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Helicopters present many advantages over fixed-wing aircraft: they can take off from and land in tight spots, they can move in any direction with relative ease, and they can hover in one area for extended periods of time. But that maneuverability comes with costs. For example, one persistent issue in helicopter maintenance and operation is that their components are subject to high amounts of wear compared to fixed-wing aircraft. In particular, the rotor drive system that makes flight possible undergoes heavy vibration during routine performance, slowly degrading components in a way that can cause failures if left unmonitored. The level of attention required to ensure flight safety makes helicopters very expensive to maintain. As a part of NASA s Fundamental Aeronautics Program, the Subsonic Rotary Wing Project seeks to advance knowledge about and improve prediction capabilities for rotorcraft, with the aim of developing technology that will meet future civilian requirements like higher efficiency and lower noise flights. One of the program s goals is to improve technology to detect and assess the health of critical components in rotorcraft drive systems.

  6. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  7. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  8. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  9. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight...

  10. Oil-free centrifugal hydrogen compression technology demonstration

    SciTech Connect

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale performance testing of a single stage with helium similitude gas at full speed in accordance with ASME PTC-10. The experimental results indicated that aerodynamic performance, with respect to compressor discharge pressure, flow, power and efficiency exceeded theoretical prediction. Dynamic testing of a simulated multistage centrifugal compressor was also completed under a parallel program to validate the integrity and viability of the system concept. The results give strong confidence in the feasibility of the multi-stage design for use in hydrogen gas transportation and delivery from production locations to point of use.

  11. Oil-Free Shaft Support System Rotordynamics: Past, Present, and Future Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2011-01-01

    Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings, and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward.

  12. NASA Heavy Lift Rotorcraft Systems Investigation

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2005-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  13. Rotorcraft convertible engines for the 1980s

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1982-01-01

    Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.

  14. Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Bossler, Robert B., Jr.

    1993-01-01

    Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of $165K, per unit, and an average transmission direct operating cost savings of 33 percent, or $24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized.

  15. Shipboard/rotorcraft simulation and analysis

    NASA Astrophysics Data System (ADS)

    Akinyanju, Ted A.

    2007-12-01

    This research has simulated the rotorcraft on-deck dynamic interface for defining safe operational conditions and for the first time, compared the results of studies with measured performance stability data. A comprehensive interface simulation and analysis of rotorcraft shipboard on-deck operational envelopes were developed in FLIGHTLAB (a software tool for rapid prototyping and interactive evaluation of simulation models). The helicopter was modeled using a blade element model and the ship airwake was simulated using Computational Fluid Dynamics (CFD) data. Investigations showed that the ship speed, the ship heading, the rotor speed, and sea conditions significantly influence rotorcraft on-deck handling. Dynamic interface studies used the FLIGHTLAB to simulate the SH-60B Helicopter operating from an LHA class ship to properly quantify shipboard rotorcraft operational capabilities under various conditions. Hazardous flight conditions such as high winds, low visibility, a moving-landing platform and unusual airflows around ships can have significant effect on pilot workload and crew safety. The dynamic interface problem involved the determination of shipboard rotorcraft operational performance and envelope. The unique problem areas for current simulation studies include ship airwake, turbulence modeling and rotorcraft/ship aerodynamics. The rotorcraft/ship interaction is a problem of two-way interference. On the one side, the ship's induced airwake affects the rotors and airframe aerodynamics due to changes in their angles of attack and dynamic pressure variations. On the other side, the rotors or airframe induced wake impacts the ship's deck/structure to alter the airwake distribution. Encouragingly, results from research have shown good correlation with measured data.

  16. A review of NASA's propulsion programs for aviation

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Johnson, H. W.; Weber, R. J.

    1978-01-01

    A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.

  17. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  18. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable multi-speed capable rotors has been raised. Speed changes of up to 50 have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speedload range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  19. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  20. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Levine, William S.; Barlow, Jewel

    1993-01-01

    This report summarizes the work that was done on the project from 1 Apr. 1992 to 31 Mar. 1993. The main goal of this research is to develop a practical tool for rotorcraft control system design based on interactive optimization tools (CONSOL-OPTCAD) and classical rotorcraft design considerations (ADOCS). This approach enables the designer to combine engineering intuition and experience with parametric optimization. The combination should make it possible to produce a better design faster than would be possible using either pure optimization or pure intuition and experience. We emphasize that the goal of this project is not to develop an algorithm. It is to develop a tool. We want to keep the human designer in the design process to take advantage of his or her experience and creativity. The role of the computer is to perform the calculation necessary to improve and to display the performance of the nominal design. Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software package for optimizing parameters with respect to multiple performance criteria, to a simplified nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally, we have developed the additional software necessary to use CONSOL-OPTCAD for the design of rotorcraft controllers.

  1. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  2. Advanced Rotorcraft Transmission (ART) program summary

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Kish, J. G.

    1992-01-01

    The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct. and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART Program is summarized. A split path design was selected as best able to meet the program goals. Key part technologies needed for this design were identified, studied, and developed. Two of these technologies are discussed in detail: the load sharing of split path designs including the use of a compliant elastomeric torque splitter and the application of a high ratio, low pitch line velocity gear mesh. Development of an angular contact spherical roller bearing, transmission error analysis, and fretting fatigue testing are discussed. The technologies for a light weight, quiet, and reliable rotorcraft transmission were demonstrated.

  3. Planning for rotorcraft and commuter air transportationn

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.; Stowers, J.

    1981-01-01

    Community planning needs, criteria, and other considerations such as intermodal coordination and regulatory requirements, for rotorcraft and fixed wing commuter air transportation were identified. A broad range of community planning guidelines, issues, and information which can be used to: (1) direct anticipated aircraft technological improvements; (2) assist planners in identifying and evaluating the opportunities and tradeoffs presented by rotorcraft and commuter aircraft options relative to other modes; and (3) increase communication between aircraft technologists and planners for the purpose of on going support in capitalizing on rotorcraft and commuter air opportunities are provided. The primary tool for identifying and analyzing planning requirements was a detailed questionnaire administered to a selected sample of 55 community planners and other involved in planning for helicopters and commuter aviation.

  4. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General 21.5 Airplane or Rotorcraft Flight Manual. Link to an..., 2010. (a) With each airplane or rotorcraft that was not type certificated with an Airplane...

  5. Some rotorcraft applications of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1988-01-01

    The growing application of computational aerodynamics to nonlinear rotorcraft problems is outlined, with particular emphasis on the development of new methods based on the Euler and thin-layer Navier-Stokes equations. Rotor airfoil characteristics can now be calculated accurately over a wide range of transonic flow conditions. However, unsteady 3-D viscous codes remain in the research stage, and a numerical simulation of the complete flow field about a helicopter in forward flight is not now feasible. Nevertheless, impressive progress is being made in preparation for future supercomputers that will enable meaningful calculations to be made for arbitrary rotorcraft configurations.

  6. Passive obstacle location for rotorcraft guidance

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Chatterji, G. B.; Sridhar, B.

    1991-01-01

    Nap-of-the-earth flight mode is extremely demanding on the rotorcraft pilots. This fact has motivated the research in automating various components of low altitude rotorcraft flight operations. Concurrent with the development of guidance laws, efforts are under way to develop systems for locating the terrain and the obstacles using inputs from passive electrooptical sensors such as TV cameras and infrared imagers. A passive obstable location algorithm that uses image sequences from cameras undergoing translational and rotational motion is developed. The algorithm is in a general form and can operate in multicamera imaging environments. Performance results using an image sequence from an airborne camera are given.

  7. Rotorcraft Technology for HALE Aeroelastic Analysis

    NASA Technical Reports Server (NTRS)

    Young, Larry; Johnson, Wayne

    2008-01-01

    Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.

  8. Design of Quiet Rotorcraft Approach Trajectories

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Burley, Casey L.; Boyd, D. Douglas, Jr.; Marcolini, Michael A.

    2009-01-01

    A optimization procedure for identifying quiet rotorcraft approach trajectories is proposed and demonstrated. The procedure employs a multi-objective genetic algorithm in order to reduce noise and create approach paths that will be acceptable to pilots and passengers. The concept is demonstrated by application to two different helicopters. The optimized paths are compared with one another and to a standard 6-deg approach path. The two demonstration cases validate the optimization procedure but highlight the need for improved noise prediction techniques and for additional rotorcraft acoustic data sets.

  9. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

  10. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  11. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Rosen, D. I.

    1984-01-01

    An introduction to thermal laser propulsion is presented. This form of rocket propulsion uses a laser beam from a remotely-located laser to heat a propellant gas, which is then expanded in a conventional way to produce thrust. This propulsion scheme has the potential for producing high specific impulse (greater than 1000 s) at moderate to high thrust (1000 lbs). Laser propulsion can thus fill a niche in propulsion for spaceflight missions which can be filled by no other practical scheme. The system analyses and some of the experimental and theoretical studies which have been performed are briefly reviewed. Production of thrust by a pulsed laser has been demonstrated on a laboratory scale at an Isp of 1000 s in hydrogen. While more work is needed, it seems apparent that laser propulsion has an important and unique capability which should be pursued, and should be considered for space missions in the 1990's and beyond.

  12. In-Flight Rotorcraft Acoustics Program

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Warmbrodt, William (Technical Monitor)

    1996-01-01

    A key part of NASA's aeronautics research is reducing noise to make helicopters and tiltrotors more acceptable to the public. The objective of the In-Flight Rotorcraft Acoustics Program (IRAP) is to acquire rotorcraft. noise data in flight for comparison to wind tunnel data. The type of noise of concern is "blade-vortex-interaction," or BVI, noise. Microphones on the wing tips and tail fin of the quiet NASA YO-3A Acoustics Research Aircraft measure BVI noise while the YO-3A descends in close formation with the helicopter or tiltrotor emitting the noise.The data acquired through IRAP is needed to validate wind-tunnel test results, or, where the results cannot be validated, to provide researchers with clues as to how to improve testing methods.

  13. Rotorcraft noise: Status and recent developments

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.; Polak, David R.

    1993-01-01

    This paper briefly reviews rotorcraft noise mechanisms and their approximate importance for different types of rotorcraft in different flight regimes. Discrete noise is due to periodic flow disturbances and includes impulsive noise produced by phenomena which occur during a limited segment of a blade's rotation. Broadband noise results when rotors interact with random disturbances, such as turbulence, which can originate in a variety of sources. The status of analysis techniques for these mechanisms are reviewed. Also, some recent progress is presented on the understanding and analysis of tilt rotor aircraft noise due to: (1) recirculation and blockage effects of the rotor flow in hover; and (2) blade-vortex interactions in forward and descending flight.

  14. A model for rotorcraft flying qualities studies

    NASA Technical Reports Server (NTRS)

    Mittal, Manoj; Costello, Mark F.

    1993-01-01

    This paper outlines the development of a mathematical model that is expected to be useful for rotorcraft flying qualities research. A computer model is presented that can be applied to a range of different rotorcraft configurations. The algorithm computes vehicle trim and a linear state-space model of the aircraft. The trim algorithm uses non linear optimization theory to solve the nonlinear algebraic trim equations. The linear aircraft equations consist of an airframe model and a flight control system dynamic model. The airframe model includes coupled rotor and fuselage rigid body dynamics and aerodynamics. The aerodynamic model for the rotors utilizes blade element theory and a three state dynamic inflow model. Aerodynamics of the fuselage and fuselage empennages are included. The linear state-space description for the flight control system is developed using standard block diagram data.

  15. Electric propulsion

    NASA Technical Reports Server (NTRS)

    Garrison, Philip W.

    1992-01-01

    Electric propulsion (EP) is an attractive option for unmanned orbital transfer vehicles (OTV's). Vehicles with solar electric propulsion (SEP) could be used routinely to transport cargo between nodes in Earth, lunar, and Mars orbit. Electric propulsion systems are low-thrust, high-specific-impulse systems with fuel efficiencies 2 to 10 times the efficiencies of systems using chemical propellants. The payoff for this performance can be high, since a principal cost for a space transportation system is that of launching to low Earth orbit (LEO) the propellant required for operations between LEO and other nodes. Several aspects of electric propulsion, including candidate systems and the impact of using nonterrestrial materials, are discussed.

  16. Optimization-based controller design for rotorcraft

    NASA Technical Reports Server (NTRS)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  17. Applications of artificial intelligence to rotorcraft

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1987-01-01

    The application of AI technology may have significant potential payoff for rotorcraft. In the near term, the status of the technology will limit its applicability to decision aids rather than total automation. The specific application areas are categorized into onboard and nonflight aids. The onboard applications include: fault monitoring, diagnosis, and reconfiguration; mission and tactics planning; situation assessment; navigation aids, especially in nap-of-the-earth flight; and adaptive man-machine interfaces. The nonflight applications include training and maintenance diagnostics.

  18. A History of Rotorcraft Comprehensive Analyses

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2013-01-01

    A history of the development of rotorcraft comprehensive analyses is presented. Comprehensive analyses are digital computer programs that calculate the aeromechanical behavior of the rotor and aircraft, bringing together the most advanced models of the geometry, structure, dynamics, and aerodynamics available in rotary wing technology. The development of the major codes of the last five decades from industry, government, and universities is described. A number of common themes observed in this history are discussed.

  19. Rotorcraft Noise Abatement Flight Path Modeling

    NASA Technical Reports Server (NTRS)

    Murty, Hema; Berezin, Charles R.

    2000-01-01

    This report addresses development of a rotor state/trim modeling capability for noise modeling of decelerating rotorcraft approaches. The resulting technique employs discretization of the descent trajectory as multiple steady state segments for input to CAMRAD.Mod 1 to predict rotor states for acoustic analysis. Deceleration is included by modifying the CAMRAD.Mod 1 free flight trim options to allow trim to the specified acceleration/deceleration components.

  20. Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    Foil gas bearings are a key technology in many commercial and emerging Oil-Free turbomachinery systems. These bearings are non-linear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness and damping. Previous investigations led to an empirically derived method, a rule-of-thumb, to estimate load capacity. This method has been a valuable tool in system development. The current paper extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced Oil-Free machines operating on foil gas bearings

  1. Integration Methodology For Oil-Free Shaft Support Systems: Four Steps to Success

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Bruckner, Robert J.

    2010-01-01

    Commercial applications for Oil-Free turbomachinery are slowly becoming a reality. Micro-turbine generators, highspeed electric motors, and electrically driven centrifugal blowers are a few examples of products available in today's commercial marketplace. Gas foil bearing technology makes most of these applications possible. A significant volume of component level research has led to recent acceptance of gas foil bearings in several specialized applications, including those mentioned above. Component tests identifying such characteristics as load carrying capacity, power loss, thermal behavior, rotordynamic coefficients, etc. all help the engineer design foil bearing machines, but the development process can be just as important. As the technology gains momentum and acceptance in a wider array of machinery, the complexity and variety of applications will grow beyond the current class of machines. Following a robust integration methodology will help improve the probability of successful development of future Oil-Free turbomachinery. This paper describes a previously successful four-step integration methodology used in the development of several Oil-Free turbomachines. Proper application of the methods put forward here enable successful design of Oil-Free turbomachinery. In addition when significant design changes or unique machinery are developed, this four-step process must be considered.

  2. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen; Shepherd, Micah; Koudela, Kevin; Wess, Denis; Snider, Royce; May, Carl; Kendrick, Phil; Lee, Edward; Cai, Liang-Wu

    2015-01-01

    A rotorcraft roof sandwich panel has been redesigned to optimize sound power transmission loss (TL) and minimize structure-borne sound for frequencies between 1 and 4 kHz where gear meshing noise from the transmission has the most impact on speech intelligibility. The roof section, framed by a grid of ribs, was originally constructed of a single honeycomb core/composite face sheet panel. The original panel has coincidence frequencies near 700 Hz, leading to poor TL across the frequency range of 1 to 4 kHz. To quiet the panel, the cross section was split into two thinner sandwich subpanels separated by an air gap. The air gap was sized to target the fundamental mass-spring-mass resonance of the double panel system to less than 500 Hz. The panels were designed to withstand structural loading from normal rotorcraft operation, as well as 'man-on-the-roof' static loads experienced during maintenance operations. Thin layers of VHB 9469 viscoelastomer from 3M were also included in the face sheet ply layups, increasing panel damping loss factors from about 0.01 to 0.05. Measurements in the NASA SALT facility show the optimized panel provides 6-11 dB of acoustic transmission loss improvement, and 6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal frequencies. Analytic panel TL theory simulates the measured performance quite well. Detailed finite element/boundary element modeling of the baseline panel simulates TL slightly more accurately, and also simulates structure-borne sound well.

  3. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  4. Perception and control of rotorcraft flight

    NASA Technical Reports Server (NTRS)

    Owen, Dean H.

    1991-01-01

    Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.

  5. Advanced Rotorcraft Transmission program - A status report

    NASA Technical Reports Server (NTRS)

    Drago, Raymond J.; Lenski, Joseph W., Jr.

    1990-01-01

    The work being conducted under the first phase of the joint Army/NASA Advanced Rotorcraft Transmission program is reviewed. The work includes the selection of the Tactical Tilt Rotor (TTR) system and the development plans for assessing advanced component technologies. The TTR drive-system arrangement is outlined, and the comparisons and trade studies of self-aligning bearingless planetary, split torque, and conventional single-stage planetary configurations are presented. The effects of transmission improvements are evaluated, and component development testing is discussed, including noise reduction by active force cancellation, hybrid bidirectional tapered roller bearings, and precision net forged spur gears.

  6. Visual cueing aids for rotorcraft landings

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Andre, Anthony D.

    1993-01-01

    The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.

  7. 14 CFR 29.181 - Dynamic stability: Category A rotorcraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dynamic stability: Category A rotorcraft. 29.181 Section 29.181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics ...

  8. 14 CFR 29.181 - Dynamic stability: Category A rotorcraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Dynamic stability: Category A rotorcraft. 29.181 Section 29.181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....181 Dynamic stability: Category A rotorcraft. Any short-period oscillation occurring at any speed...

  9. 14 CFR 29.181 - Dynamic stability: Category A rotorcraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Dynamic stability: Category A rotorcraft. 29.181 Section 29.181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....181 Dynamic stability: Category A rotorcraft. Any short-period oscillation occurring at any speed...

  10. 14 CFR 29.181 - Dynamic stability: Category A rotorcraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Dynamic stability: Category A rotorcraft. 29.181 Section 29.181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....181 Dynamic stability: Category A rotorcraft. Any short-period oscillation occurring at any speed...

  11. REXOR 2 rotorcraft simulation model. Volume 1: Engineering documentation

    NASA Technical Reports Server (NTRS)

    Reaser, J. S.; Kretsinger, P. H.

    1978-01-01

    A rotorcraft nonlinear simulation called REXOR II, divided into three volumes, is described. The first volume is a development of rotorcraft mechanics and aerodynamics. The second is a development and explanation of the computer code required to implement the equations of motion. The third volume is a user's manual, and contains a description of code input/output as well as operating instructions.

  12. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  13. Digital control of highly augmented combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1987-01-01

    Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.

  14. A Novel Approach to Rotorcraft Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Everett, Richard A.; Newman, John A.

    2002-01-01

    Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.

  15. Obstacle Detection Algorithms for Rotorcraft Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia I.; Huang, Ying; Narasimhamurthy, Anand; Pande, Nitin; Ahumada, Albert (Technical Monitor)

    2001-01-01

    In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter.

  16. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  17. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 3: Aerodynamics and Structures Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advanced rotorcraft technology and tilt rotor aircraft were discussed. Rotorcraft performance, acoustics, and vibrations were discussed, as was the use of composite materials in rotorcraft structures. Rotorcraft aerodynamics, specifically the aerodynamic phenomena of a rotating and the aerodynamics of fuselages, was discussed.

  18. Finite-element analysis and multibody dynamics issues in rotorcraft dynamic analysis

    NASA Technical Reports Server (NTRS)

    Ruzicka, Gene C.; Ormiston, Robert A.

    1991-01-01

    There is general agreement that the development of effective rotorcraft analysis software will require the use of modern computational mechanics methodologies, especially finite element analysis and multibody dynamics. This paper examines the analysis of rotorcraft dynamics from the perspective of these methodologies. First, a general discussion of rotorcraft analysis and modeling is presented. Then, a hierarchy of rotorcraft analyses is presented, ranging from simple to complex kinematics, where it is shown that in comprehensive rotorcraft software, finite element analysis must be augmented by multibody dynamics in order to properly analyze large motions of rotorcraft components. Finally, a review of multibody dynamics is presented to further familiarize the rotorcraft community with this technology.

  19. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  20. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  1. Rotorcraft low-speed download drag definition and its reduction

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.

    1975-01-01

    Download drag for rotorcraft in hover and low-speed flight is a burden which significantly affects useful load, fuel, and payload. Reduction of the burden will enhance these aspects of rotorcraft and complement the forthcoming improvements in isolated rotor performance. Analyses and experimental data are available, though fragmentary, regarding gross drag, thrust recovery, and other characteristics which can be utilized to define interim rotorcraft design changes to reduce the burden. Eventually the experimental data and a comprehensive combination of rotor, rotor-wake, and potential-flow analyses can evolve to reduce the burden to an absolute minimum.

  2. Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Baggett, R.

    2004-11-01

    Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.

  3. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  4. Technology needs for high-speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Rutherford, John; Orourke, Matthew; Martin, Christopher; Lovenguth, Marc; Mitchell, Clark

    1991-01-01

    A study to determine the technology development required for high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission.

  5. Toward Right-Fidelity Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Sinsay, Jeffrey D.; Johnson, Wayne

    2010-01-01

    The aviation Advanced Design Office (ADO) of the US Army Aeroflightdynamics Directorate (AMRDEC) performs conceptual design of advanced Vertical Takeoff and Landing (VTOL) concepts in support of the Army's development and acquisition of new aviation systems. In particular, ADO engages in system synthesis to assess the impact of new technologies and their application to satisfy emerging warfighter needs and requirements. Fundamental to ADO being successful in accomplishing its role; is the ability to evaluate a wide array of proposed air vehicle concepts, and independently synthesize new concepts to inform Army and DoD decision makers about the tradespace in which decisions will be made (Figure 1). ADO utilizes a conceptual design (CD) process in the execution of its role. Benefiting from colocation with NASA rotorcraft researchers at the Ames Research Center, ADO and NASA have engaged in a survey of the current rotorcraft PD practices and begun the process of improving those capabilities to enable effective design and development of the next generation of VTOL systems. A unique aspect of CD in ADO is the fact that actual designs developed in-house are not intended to move forward in the development process. Rather, they are used as reference points in discussions about requirements development and technology impact. The ultimate products of ADO CD efforts are technology impact assessments and specifications which guide industry design activity. The fact that both the requirement and design are variables in the tradespace adds to the complexity of the CD process. A frequent need is ability to assess the relative "cost" of variations in requirement for a diverse set of VTOL configurations. Each of these configurations may have fundamentally different response characteristics to this requirement variation, and such insight into how different requirements drive different designs is a critical insight ADO attempts to provide decision makers. The processes and tools utilized are driven by the timeline in which questions must be answered. This can range from quick "back-of-the-envelope" assessments of a configuration made in an afternoon, to more detailed tradespace explorations that can take upwards of a year to complete. A variety of spreadsheet based tools and conceptual design codes are currently in use. The in-house developed conceptual sizing code RC (Rotorcraft) has been the preferred tool of choice for CD activity for a number of years. Figure 2 illustrates the long standing coupling between RC and solid modeling tools for layout, as well as a number of ad-hoc interfaces with external analyses. RC contains a sizing routine that is built around the use of momentum theory for rotors, classic finite wing theory, a referred parameter engine model, and semi-emperical weight estimation techniques. These methods lend themselves to rapid solutions, measured in seconds and minutes. The successful use of RC, however requires careful consideration of model input parameters and judicious comparison with existing aircraft to avoid unjustified extrapolation of results. RC is in fact a legacy of a series of codes whose development started in the early 1970s, and is best suited to the study of conventional helicopters and XV-15 style tiltrotors. Other concepts have been analyzed with RC, but typically it became necessary to modify the source code and methods for each unique configuration. Recent activity has lead to the development of a new code, NASA Design and Analysis of Rotorcraft (NDARC). NDARC uses a similar level of analytical fidelity as RC, but is built on a new framework intended to improve modularity and ability to rapidly model a wider array of concepts. Critical to achieving this capability is the decomposition of the aircraft system into a series of fundamental components which can then be assembled to form a wide-array of configurations. The paper will provide an overview of NDARC and its capabilities.

  6. Damage Tolerance of Integral Structure in Rotorcraft

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Urban, Michael R.

    2003-01-01

    The rotorcraft industry has rapidly implemented integral structures into aircraft to benefit from the weight and cost advantages over traditionally riveted structure. The cost to manufacture an integral structure, where the entire component is machined from a single plate of material, is about one-fifth that of a riveted structure. Furthermore, the integral structure can weigh only one-half that of a riveted structure through optimal design of stiffening structure and part reduction. Finally, inspection and repair of damage in the field can be less costly than riveted structure. There are no rivet heads to inspect under, reducing inspection time, and damage can be removed or patched readily without altering the primary structure, reducing replacement or repair costs. In this paper, the authors will investigate the damage tolerance implications of fielding an integral structure manufactured from thick plate aluminum.

  7. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Yudilevitch, Gil; Levine, William S.

    1994-01-01

    Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.

  8. Fundamental Rotorcraft Acoustic Modeling From Experiments (FRAME)

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric

    2011-01-01

    A new methodology is developed for the construction of helicopter source noise models for use in mission planning tools from experimental measurements of helicopter external noise radiation. The models are constructed by employing a parameter identification method to an assumed analytical model of the rotor harmonic noise sources. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. The method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor harmonic noise, allowing accurate estimates of the dominant rotorcraft noise sources to be made for operating conditions based on a small number of measurements taken at different operating conditions. The ability of this method to estimate changes in noise radiation due to changes in ambient conditions is also demonstrated.

  9. Advanced Rotorcraft Transmission (ART) program status

    NASA Technical Reports Server (NTRS)

    Bossler, Robert; Heath, Gregory

    1991-01-01

    Reported herein is work done on the Advanced Rotorcraft Transmission by McDonnell Douglas Helicopter Company under Army/NASA contract. The novel concept pursued includes the use of face gears for power transmission and a torque splitting arrangement. The design reduces the size and weight of the corner-turning hardware and the next reduction stage. New methods of analyzing face gears have increased confidence in their usefulness. Test gears have been designed and manufactured for power transmission testing on the NASA-Lewis spiral bevel test rig. Transmission design effort has included finite element modeling of the split torque paths to assure equal deflection under load. A finite element model of the Apache main transmission has been completed to substantiate noise prediction methods. A positive engagement overrunning clutch design is described. Test spur gears have been made by near-net-shape forging from five different materials. Three housing materials have been procured for evaluation testing.

  10. Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yeo, Hyeonsoo; Acree, C. W., Jr.

    2007-01-01

    The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover.

  11. Challenges in Rotorcraft Acoustic Flight Prediction and Validation

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2003-01-01

    Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.

  12. Designs and Technology Requirements for Civil Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2006-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  13. Rotorcraft Research at the NASA Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.

    2009-01-01

    In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.

  14. NASA's Role in Aeronautics: A Workshop. Volume 5: Rotorcraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential roles for NASA relating to rotorcraft are reviewed. The agency's participation is delineated for each role, a rationale is provided, the current level of activity is summarized, and suggestions are given for the kinds of research still needed. In examining opportunities for the most beneficial deployment of its resources, NASA should consider societal benefits as well as the military and civil markets in formulating the role it can play to support the development of a stronger rotorcraft technology base.

  15. U.S. Civil Rotorcraft Accidents, 1963 Through 1997

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.; Kasper, Eugene F.; Iseler, Laura E.

    2000-01-01

    Narrative summary data produced by the U.S. National Transportation Safety Board (NTSB) has been obtained and analyzed for all 8,436 U.S. civil registered rotorcraft accidents which occurred from mid-1963 through 1997. This analysis was based on the NTSB's assignment of each mishap into one of 21 "first event" categories. The number of U.S. civil registered rotorcraft as recorded by the Federal Aviation Administration (FAA) for the same period has also been obtained. Taken together, these data indicate the civil rotorcraft accident rate (on a per 1,000 registered rotorcraft basis) has decreased by almost a factor of 10 (i.e., from 130 accidents per 1,000 rotorcraft in 1964 to 13.4 per 1,000 in 1997). Analysis of the mishap data indicates over 70% of the rotorcraft accidents were associated with one of the following four NTSB "first event" categories: 2408 Loss of engine power (28.5%); 1,322 In-flight collisions with objects (15.7%); 1,114 Loss of control (13.2%); 1,083 Airframe/component/system failure or malfunction (12.8%).

  16. Mechanisms and actuators for rotorcraft blade morphing

    NASA Astrophysics Data System (ADS)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in this work is a conformal variable diameter rotor system suitable for implementation on a modern tilt-rotor aircraft, which can reduce power requirements in both cruise and hover configurations. An initial prototype variable span airfoil was constructed using a silicone elastomer matrix composite skin and a plastic rapid prototyped morphing substructure. Benchtop and wind tunnel tests verified the ability of this system to increase active wing area by 100%. The prototype technology was then matured for use in the harsh rotor blade environment, with a much stiffer polyurethane skin and a titanium substructure. Coupon testing verified the efficacy of this approach, and a final conceptual design was completed using the stiffness-tuning characteristics of the morphing substructure to create a self-actuating morphing blade tip.

  17. Propulsion materials

    SciTech Connect

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  18. Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Della-Corte, Christopher

    2012-01-01

    Foil gas bearings are a key technology in many commercial and emerging oilfree turbomachinery systems. These bearings are nonlinear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness, and damping. Previous investigations led to an empirically derived method to estimate load capacity. This method has been a valuable tool in system development. The current work extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced oil-free machines operating on foil gas bearings.

  19. An initiative in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1988-01-01

    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

  20. Rotorcraft handling-qualities design criteria development

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Lebacqz, J. Victor; Chen, Robert T. N.; Key, David L.

    1988-01-01

    Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.

  1. Large rotorcraft transmission technology development program

    NASA Technical Reports Server (NTRS)

    Mack, J. C.

    1983-01-01

    Testing of a U.S. Army XCH-62 HLH aft rotor transmission under NASA Contract NAS 3-22143 was successfully completed. This test establishes the feasibility of large, high power rotorcraft transmissions as well as demonstrating the resolution of deficiencies identified during the HLH advanced technology programs and reported by USAAMRDLTR-77-38. Over 100 hours of testing was conducted. At the 100% design power rating of 10,620 horsepower, the power transferred through a single spiral bevel gear mesh is more than twice that of current helicopter bevel gearing. In the original design of these gears, industry-wide design methods were employed and failures were experienced which identified problem areas unique to gear size. To remedy this technology shortfall, a program was developed to predict gear stresses using finite element analysis for complete and accurate representation of the gear tooth and supporting structure. To validate the finite element methodology gear strain data from the existing U.S. Army HLH aft transmission was acquired, and existing data from smaller gears were made available.

  2. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  3. Airfoil Dynamic Stall and Rotorcraft Maneuverability

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2000-01-01

    The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.

  4. Evaluation of Scaling Methods for Rotorcraft Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Kreeger, Richard E.

    2010-01-01

    This paper reports result of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the current recommended scaling methods developed for fixed-wing unprotected surface icing applications might apply to representative rotor blades at finite angle of attack. Unlike the fixed-wing case, there is no single scaling method that has been systematically developed and evaluated for rotorcraft icing applications. In the present study, scaling was based on the modified Ruff method with scale velocity determined by maintaining constant Weber number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocities of 76 and 100 kt (39 and 52 m/s), droplet MVDs of 150 and 195 fun, and with stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 0deg and 5deg. It was shown that good ice shape scaling was achieved for NACA 0012 airfoils with angle of attack lip to 5deg.

  5. Cost Analysis for Large Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Coy, John J.

    2006-01-01

    This paper presents cost analysis of purchase price and DOC+I (direct operating cost plus interest) that supports NASA s study of three advanced rotorcraft concepts that could enter commercial transport service within 10 to 15 years. The components of DOC+I are maintenance, flight crew, fuel, depreciation, insurance, and finance. The cost analysis aims at VTOL (vertical takeoff and landing) and CTOL (conventional takeoff and landing) aircraft suitable for regional transport service. The resulting spreadsheet-implemented cost models are semi-empirical and based on Department of Transportation and Army data from actual operations of such aircraft. This paper describes a rationale for selecting cost tech factors without which VTOL is more costly than CTOL by a factor of 10 for maintenance cost and a factor of two for purchase price. The three VTOL designs selected for cost comparisons meet the mission requirement to fly 1,200 nautical miles at 350 knots and 30,000 ft carrying 120 passengers. The lowest cost VTOL design is a large civil tilt rotor (LCTR) aircraft. With cost tech factors applied, the LCTR is reasonably competitive with the Boeing 737-700 when operated in economy regional service following the business model of the selected baseline operation, that of Southwest Airlines.

  6. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Astrophysics Data System (ADS)

    Kish, Jules G.

    1993-03-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  7. Technology needs for high speed rotorcraft (2)

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    1991-01-01

    An analytical study was conducted to identify rotorcraft concepts best capable of combining a cruise speed of 350 to 450 knots with helicopter-like low speed attributes, and to define the technology advancements needed to make them viable by the year 2000. A systematic approach was used to compare the relative attributes and mission gross weights for a wide range of concepts, resulting in a downselect to the most promising concept/mission pairs. For transport missions, tilt-wing and variable diameter tilt-rotor (VDTR) concepts were found to be superior. For a military scout/attack role, the VDTR was best, although a shrouded rotor concept could provide a highly agile, low observable alternative if its weight empty fraction could be reduced. A design speed of 375 to 425 knots was found to be the maximum desirable for transport missions, with higher speed producing rapidly diminishing benefits in productivity. The key technologies that require advancement to make the tilt-wing and VDTR concepts viable are in the areas of wing and proprotor aerodynamics, efficient structural design, flight controls, refinement of the geared flap pitch control system, expansion of the speed/descent envelope, and the structural and aerodynamic tradeoffs of wing thickness and forward sweep. For the shrouded rotor, weight reduction is essential, particularly with respect to the mechanism for covering the rotor in cruise.

  8. Assessment of noise metrics for application to rotorcraft

    NASA Astrophysics Data System (ADS)

    McMullen, Andrew L.

    It is anticipated that the use of rotorcraft passenger vehicles for shorter journeys will increase because their use can reduce the time between boarding and take-off. The characteristics of rotorcraft noise are very different to that of fixed wing aircraft. There can be strong tonal components, fluctuations that can also make the noise sound impulsive, and future rotorcraft may produce proportionally more low frequency noise content. Most metrics that are used today to predict noise impact on communities around airports (e.g., Ldn) are just functions of A-weighted sound pressure level. To build a better noise annoyance model that can be applied to assess impact of future and current rotorcraft, it is important to understand the perceived sound attributes and how they influence annoyance. A series of psychoacoustic tests were designed and performed to further our understanding of how rotorcraft sound characteristics affect annoyance as well as evaluate the applicability of existing noise metrics as predictors of annoyance due to rotorcraft noise. The effect of the method used to reproduce sounds in the psychoacoustics tests was also investigated, and so tests were conducted in the NASA Langley Exterior Effects Room using loudspeaker arrays to simulate flyovers and in a double walled sound booth using earphones for playback. A semantic differential test was performed, and analysis of subject responses showed the presence of several independent perceptual factors relating to: loudness, sharpness, roughness, tonality, and impulsiveness. A simulation method was developed to alter tonal components in existing rotorcraft flyover recordings to change the impulsiveness and tonality of the sounds. Flyover recordings and simulations with varied attributes were used as stimuli in an annoyance test. Results showed that EPNL and SELA performed well as predictors of annoyance, but outliers to generate trends have tonal related characteristics that could be contributing to annoyance. General trends in results were similar for both test environments, though differences were greater for the annoyance tests than the semantic differential tests.

  9. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Putre, H. A.

    1972-01-01

    The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

  10. An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation

    NASA Technical Reports Server (NTRS)

    Bauman, Steve

    2005-01-01

    New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

  11. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  12. Rotorcraft-based emergency medical services in the Caribbean Basin

    NASA Technical Reports Server (NTRS)

    Smith, R. W.; Alton, L. R.

    1987-01-01

    There is a pressing need for improved health care in general and emergency health care in particular throughout the Caribbean Basin. The importance of rotorcraft as an integral part of the needed system of emergency medical care in the region was investigated. Many of the larger countries in the region currently have the needed infrastructure to implement a national system of rotorcraft-based emergency medical centers within their borders. By helping to establish a system of rotorcraft based health care centers in strategic locations in the Lesser Antilles, the U.S. can assist the islands of the region by demonstrating the concept and establishing a potential training site for the other larger countries of the region. There is sufficient demand for rotorcraft based emergency health care within the Lesser Antilles to locate one center on the island of Puerto Rico and another one of the southern-most islands. With the use of fixed wing aircraft or long range helicopters, the two rotorcraft based centers could provide the region with rapid and efficient emergency health care. The superior speed and range of the XV-15 Tilt Rotor aircraft make it an attractive possibility for emergency transport and rescue in this region.

  13. Low-Altitude Operation of Unmanned Rotorcraft

    NASA Astrophysics Data System (ADS)

    Scherer, Sebastian

    Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized planning framework that enables reaching a goal point, searching for unknown landing sites, and approaching a landing zone. In the framework, sub-objective functions, constraints, and a state machine define the mission and behavior of an UAV. As the vehicle gathers information by moving through the environment, the objective functions account for this new information. The operator in this framework can directly specify his intent as an objective function that defines the mission rather than giving a sequence of pre-specified goal points. This allows the robot to react to new information received and adjust its path accordingly. The objective is used in a combined coarse planning and trajectory optimization algorithm to determine the best patch the robot should take. We show simulated results for several different missions and in particular focus on active landing zone search. We presented several effective approaches for perception and action for low-altitude flight and demonstrated their effectiveness in field experiments on three autonomous aerial vehicles: a 1m quadrocopter, a 36m helicopter, and a hill-size helicopter. These techniques permit rotorcraft to operate where they have their greatest advantage: In unstructured, unknown environments at low-altitude.

  14. Propulsion Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  15. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  16. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  17. Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1988-01-01

    In recent years, the development of aerodynamic technology for rotorcraft has continued successfully at NASA LaRC. Though the NASA Langley Research Center is not the lead NASA center in this area, the activity was continued due to facilities and individual capabilities which are recognized as contributing to helicopter research needs of industry and government. Noteworthy accomplishments which contribute to advancing the state of rotorcraft technology in the areas of rotor design, airfoil research, rotor aerodynamics, and rotor/fuselage interaction aerodynamics are described. Rotor designs were defined for current helicopters and evaluated in wind tunnel testing. These designs have incorporated advanced airfoils defined analytically and also proven in wind tunnel tests. A laser velocimetry system has become a productive tool for experimental definition of rotor inflow/wake and is providing data for rotorcraft aerodynamic code validation.

  18. Requirements for Next Generation Comprehensive Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Data, Anubhav

    2008-01-01

    The unique demands of rotorcraft aeromechanics analysis have led to the development of software tools that are described as comprehensive analyses. The next generation of rotorcraft comprehensive analyses will be driven and enabled by the tremendous capabilities of high performance computing, particularly modular and scaleable software executed on multiple cores. Development of a comprehensive analysis based on high performance computing both demands and permits a new analysis architecture. This paper describes a vision of the requirements for this next generation of comprehensive analyses of rotorcraft. The requirements are described and substantiated for what must be included and justification provided for what should be excluded. With this guide, a path to the next generation code can be found.

  19. Zero/zero rotorcraft certification issues. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is the zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will exptremely low visibility operations be economically feasible. This is Volume 1 of three. It provides an overview of the Certification Issues Forum held in Phoenix, Arizona in August of 1987. It presents a consensus of 48 experts from government, manufacturer, and research communities on 50 specific Certification Issues. The topics of Operational Requirements, Procedures, Airworthiness, and Engineering Capabilities are discussed.

  20. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was sized for a representative civil passenger transport mission, using current technology. Individual advanced technologies are quantified and applied to resize the aircraft, thereby quantifying the net benefit of that technology to the rotorcraft. Estimates of development cost, production cost and operating and support costs are made with a commercial cost estimating program, calibrated to Boeing products with adjustments for future civil production processes. A cost metric of cash direct operating cost per available seat-mile (DOC ASM) is used to compare the cost benefit of the technologies. The same metric is used to compare results with turboprop operating costs. Reduced engine SFC was the most advantageous advanced technology for both rotorcraft concepts. Structural weight reduction was the second most beneficial technology, followed by advanced drive systems and then by technology for rotorcraft performance. Most of the technologies evaluated in this report should apply similarly to conventional helicopters. The implicit assumption is that resources will become available to mature the technologies for fullscale production aircraft. That assumption is certainly the weak link in any forecast of future possibilities. The analysis serves the purpose of identifying which technologies offer the most potential benefit, and thus the ones that should receive the highest priority for continued development. This study directly addressed the following NASA Subsonic Rotary Wing (SRW) subtopics: SR W.4.8.I.J Establish capability for rotorcraft system analysis and SRW. 4.8.I.4 Conduct limited technology benefit assessment on baseline rotorcraft configurations.

  1. Computer vision techniques for rotorcraft low altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar

    1990-01-01

    Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or manmade objects to minimize the risk of being detected by an enemy. Increasing levels of concealment are achieved by adopting different tactics during low-altitude flight. Rotorcraft employ three tactics during low-altitude flight: low-level, contour, and nap-of-the-earth (NOE). The key feature distinguishing the NOE mode from the other two modes is that the whole rotorcraft, including the main rotor, is below tree-top whenever possible. This leads to the use of lateral maneuvers for avoiding obstacles, which in fact constitutes the means for concealment. The piloting of the rotorcraft is at best a very demanding task and the pilot will need help from onboard automation tools in order to devote more time to mission-related activities. The development of an automation tool which has the potential to detect obstacles in the rotorcraft flight path, warn the crew, and interact with the guidance system to avoid detected obstacles, presents challenging problems. Research is described which applies techniques from computer vision to automation of rotorcraft navigtion. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle-detection approach can be used as obstacle data for the obstacle avoidance in an automatic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. The presentation concludes with some comments on future work and how research in this area relates to the guidance of other autonomous vehicles.

  2. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  3. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  4. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  5. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  6. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  7. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This presentation provides an overview of the NASA Rotorcraft Program as an introduction to the technical sessions of the Advanced Rotorcraft Technology Workshop. It deals with the basis for NASA's increasing emphasis on rotorcraft technology, NASA's research capabilities, recent program planning efforts, highlights of its 10-year plan and future directions and opportunities.

  8. NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

  9. Oil-free bearing development for high-speed turbomachinery in distributed energy systems - dynamic and environmental evaluation

    NASA Astrophysics Data System (ADS)

    Tkacz, Eliza; Kozanecka, Dorota; Kozanecki, Zbigniew; Łagodziński, Jakub

    2015-09-01

    Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  10. Technology needs for high-speed rotorcraft, volume 1

    NASA Technical Reports Server (NTRS)

    Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.

    1991-01-01

    High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.

  11. Summary highlights of the Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1992-01-01

    The NASA/U.S. Army Advanced Rotorcraft Transmission (ART) program is charged with the development and demonstration of lightweight, durable drivetrains for next-generation rotorcraft: (1) a Future Air Attack Vehicle for tactical ground-support and air-to-air missions, and (2) an Advanced Cargo Aircraft for heavy-lift field-support operations. Both tilt-rotor and more conventional helicopter configurations have been studied by the ART program. ART performance goals are sought through the use of advanced component materials and lubrication systems, transmission and geartrain configurations, and airframe/drivetrain integrations.

  12. Vision-based obstacle detection for rotorcraft flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Suorsa, Ray; Smith, Phillip; Hussien, Bassam

    1992-01-01

    An obstacle detection approach to rotorcraft flight is described which is based on feature tracking and recursive range estimation. Flight characteristics are taken into account. A range map derived on the basis of this approach provides an advisory display to the pilot and can serve as input to an automatic obstacle-avoidance guidance system. A NASA CH-47 Chinook helicopter was used to develop an image and rotorcraft flight data base for verification of obstacle detection concepts. The performance of the passive range estimation algorithms is demonstrated using both laboratory image and flight image data.

  13. Rotorcraft aviation icing research requirements: Research review and recommendations

    NASA Technical Reports Server (NTRS)

    Peterson, A. A.; Dadone, L.; Bevan, A.

    1981-01-01

    The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification.

  14. Some recent applications of Navier-Stokes codes to rotorcraft

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1992-01-01

    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.

  15. A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.

  16. Solar Thermal Propulsion Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Harnessing the Sun's energy through Solar Thermal Propulsion will propel vehicles through space by significantly reducing weight, complexity, and cost while boosting performance over current conventional upper stages. Another solar powered system, solar electric propulsion, demonstrates ion propulsion is suitable for long duration missions. Pictured is an artist's concept of space flight using solar thermal propulsion.

  17. Electric propulsion, circa 2000

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Finke, R. C.

    1980-01-01

    This paper discusses the future of electric propulsion, circa 2000. Starting with the first generation Solar Electric Propulsion (SEP) technology as the first step toward the next century's advanced propulsion systems, the current status and future trends of other systems such as the magnetoplasmadynamic accelerator, the mass driver, the laser propulsion system, and the rail gun are described.

  18. Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben

    2014-01-01

    This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

  19. Advanced nuclear propulsion technologies

    SciTech Connect

    Cassenti, B.N. )

    1991-01-01

    Advanced nuclear propulsion can take on several forms. Radioactive thrust sheets directly use the decay of radioactive nuclei to provide propulsion. The fissioning of nuclei has been extensively studied for propulsion both analytically and experimentally. Fusion has been analytically examined as a means of providing propulsion during the last few decades. In the last decade, serious attention has been given to the direct annihilation of matter. Each of these technologies is discussed in this paper with the greatest emphasis on antiproton annihilation propulsion.

  20. Space propulsion

    NASA Astrophysics Data System (ADS)

    Kazaroff, John M.

    1993-02-01

    Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.

  1. Space propulsion

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.

    1993-01-01

    Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.

  2. U.S. Civil Rotorcraft Accidents, 1963 through 1997

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.; Kasper, Eugene F.

    1998-01-01

    The U.S. National Transportation Safety Board (NTSB) has recorded 8,436 rotorcraft accidents during the period mid - 1963 through the end of 1997. Review and analysis of the NTSB summary narrative for each accident has been completed. In addition, FAA (Federal Aviation Administration) counts of the growing registered rotorcraft fleet over this period has obtained. Taken together, a large and informative data base is now available, which indicates that the accident rate (on a per airframe basis) has changed very little since the mid 1970s. The data base, even in the summary form provided by this paper, offers suggestions for safer designs and improved flight operations. For analysis purposes, each accident has been placed in one of 21 top level categories as defined by the NTSB. Analysis of this grouping shows that 70 percent of rotorcraft accidents are associated with four categories. The accident count in these top four categories are: (1) 2,408 Loss of engine power (2) 1,322 In flight collision with object (3) 1,114 Loss of control (4) 1,083 Airframe/component/system failure or malfunction. Single engine rotorcraft dominate these accident statistics because of their sheer numbers over the study period. One-third of the loss of engine power accidents with these aircraft is fuel/air mixture related and fuel exhaustion is a common event. This appears to be the case whether a piston or turbine engine is installed. This paper provides similar study results in the other major mishap categories. It shows that both minor and major design and flight operations changes can -- and should -- be made to reduce rotorcraft accidents in the future. The paper outlines these changes and suggests how they may be made.

  3. Adverse rotorcraft pilot couplings—Past, present and future challenges

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Jump, Michael; Dang-Vu, Binh; Masarati, Pierangelo; Gennaretti, Massimo; Ionita, Achim; Zaichik, Larisa; Smaili, Hafid; Quaranta, Giuseppe; Yilmaz, Deniz; Jones, Michael; Serafini, Jacopo; Malecki, Jacek

    2013-10-01

    Fixed and rotary wing pilots alike are familiar with potential instabilities or with annoying limit cycle oscillations that arise from the effort of controlling aircraft with high response actuation systems. Understanding, predicting and suppressing these inadvertent and sustained aircraft oscillations, known as aircraft (rotorcraft)-pilot couplings (A/RPCs) is a challenging problem for the designers. The goal of the present paper is to give an overview on the state-of-the-art in RPC problem, underlining the future challenges in this field. It is shown that, exactly as in the case of fixed wing APCs, RPCs existed from the beginning of rotorcraft development and that the problem of eliminating them is not yet solved: the current rotorcraft modelling for RPC analysis is rather limited to the particular case analysed and there is a lack of quantitative pilot behavioural models to analyse RPCs. The paper underlines the importance of involuntary pilot control actions, generally attributed to biodynamic couplings in predicting RPCs in rotorcraft. It is also shown that recent experiences demonstrate that modern rotorcraft seem to embed tendencies predisposing the flight control system FCS system towards dangerous RPCs. As the level of automation is likely to increase in future designs, extending to smaller aircraft and to different kinds of operation, the consequences of the pilot ‘fighting’ the FCS system and inducing A/RPCs needs to be eradicated. In Europe, the ARISTOTEL project (2010-2013) has been launched with the aim of understanding and predicting modern aircraft's susceptibility to A/RPC. The present paper gives an overview of future challenges to be solved for RPC-free design and some new solutions herein.

  4. General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.

    1990-01-01

    The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.

  5. Technology needs for high speed rotorcraft (3)

    NASA Technical Reports Server (NTRS)

    Detore, Jack; Conway, Scott

    1991-01-01

    The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

  6. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.

  7. Pristine stratospheric collection of interplanetary dust on an oil-free polyurethane foam substrate

    NASA Astrophysics Data System (ADS)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.

    2015-08-01

    We performed chemical, mineralogical, and isotopic studies of the first interplanetary dust particles (IDPs) collected in the stratosphere without the use of silicone oil. The collection substrate, polyurethane foam, effectively traps impacting particles, but the lack of an embedding medium results in significant particle fragmentation. Two dust particles found on the collector exhibit the typical compositional and mineralogical properties of chondritic porous interplanetary dust particles (CP-IDPs). Hydrogen and nitrogen isotopic imaging revealed isotopic anomalies of typical magnitude and spatial variability observed in previous CP-IDP studies. Oxygen isotopic imaging shows that individual mineral grains and glass with embedded metal and sulfide (GEMS) grains are dominated by solar system materials. No systematic differences are observed in element abundance patterns of GEMS grains from the dry collection versus silicone oil-collected IDPs. This initial study establishes the validity of a new IDP collection substrate that avoids the use of silicone oil as a collection medium, removing the need for this problematic contaminant and the organic solvents necessary to remove it. Additional silicone oil-free collections of this type are needed to determine more accurate bulk element abundances of IDPs and to examine the indigenous soluble organic components of IDPs.

  8. Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Lukaszewicz, V.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    2000-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  9. Performance and Durability of High Temperature Foil Air Bearing for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    1999-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304, is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  10. Functional Evaluation and Characterization of a Newly Developed Silicone Oil-Free Prefillable Syringe System

    PubMed Central

    Yoshino, Keisuke; Nakamura, Koji; Yamashita, Arisa; Abe, Yoshihiko; Iwasaki, Kazuhiro; Kanazawa, Yukie; Funatsu, Kaori; Yoshimoto, Tsuyoshi; Suzuki, Shigeru

    2014-01-01

    The functionality of a newly developed silicone oil-free (SOF) syringe system, of which the plunger stopper is coated by a novel coating technology (i-coating™), was assessed. By scanning electron microscopy observations and other analysis, it was confirmed that the plunger stopper surface was uniformly covered with the designed chemical composition. A microflow imaging analysis showed that the SOF system drastically reduced both silicone oil (SO) doplets and oil-induced aggregations in a model protein formulation, whereas a large number of subvisible particles and protein aggregations were formed when a SO system was used. Satisfactory container closure integrity (CCI) was confirmed by means of dye and microorganism penetration studies. Furthermore, no significant difference between the break loose and gliding forces was observed in the former, and stability studies revealed that the SOF system could perfectly show the aging independence in break loose force observed in the SO system. The results suggest that the introduced novel SOF system has a great potential and represents an alternative that can achieve very low subvisible particles, secure CCI, and the absence of a break loose force. In particular, no risk of SO-induced aggregation can bring additional value in the highly sensitive biotech drug market. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1520–1528, 2014 PMID:24643749

  11. The design, selection, and application of oil-free screw compressors for fuel gas service

    SciTech Connect

    Lelgemann, K.D.

    1995-01-01

    Fuel gas compressors installed in cogeneration systems must be highly reliable and efficient machines. The screw compressor can usually be designed to meet most of the gas flow rates and pressure conditions generally required for such installations. To an ever-increasing degree, alternative sources are being found for the fuel gas supply, such as coke-oven gas, blast-furnace gas, flare gas, landfill gas, and synthesis gas from coal gasification or from pyrolysis. A feature of the oil-free screw compressor when such gases are being considered is the isolation of the gas compression space from the bearing and gear lubrication system by using positive shaft seals. This ensures that the process gas cannot be contaminated by the lubricating oil, and that there is not risk of loss of lubricant viscosity by gas solution in the oil. This feature enables the compressed gas to contain relatively high levels of particulate contamination without danger of ``sludge`` formation, and also permits the injection of water or liquid solvents into the compression space, to reduce the temperature rise due to the heat of compression, or to ``wash`` any particulate manner through the compressor.

  12. Thermal modelling and analysis of an oil-free linear compressor

    NASA Astrophysics Data System (ADS)

    Oliveira, M. J.; Diniz, M. C.; Deschamps, C. J.

    2015-08-01

    Gas superheating in the suction system may significantly reduce the volumetric and isentropic efficiencies of small reciprocating compressors adopted for household refrigeration. This paper reports a thermal modelling approach developed to predict superheating in an oil- free linear compressor. A simulation code based on the finite volume method was adopted to solve heat conduction in the solid components and gas flow inside the compressor shell. In order to reduce the computational cost, the compression cycle inside the cylinder was modelled with a transient lumped formulation, but in a coupled manner with the remainder of the solution domain. Comparisons between numerical and experimental results of temperature showed discrepancies in some solid components and in the gas path along the discharge system. However, the model was able to predict suction gas superheating in good agreement with measurements. A sensitivity analysis of the temperature distribution with respect to two design parameters was also carried out. The model is particularly useful for compressor design since no experimental calibration is required.

  13. Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines

    NASA Technical Reports Server (NTRS)

    Lucero, John M.; DellaCorte, Christopher

    2004-01-01

    The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.

  14. OTV Propulsion Issues

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The statistical technology needs of aero-assist maneuvering, propulsion, and usage of cryogenic fluids were presented. Industry panels discussed the servicing of reusable space based vehicles and propulsion-vehicle interation.

  15. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  16. Hybrid rocket propulsion

    NASA Technical Reports Server (NTRS)

    Holzman, Allen L.

    1993-01-01

    Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

  17. Application of Climate Impact Metrics to Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2013-01-01

    Multiple metrics are applied to the design of large civil rotorcraft, integrating minimum cost and minimum environmental impact. The design mission is passenger transport with similar range and capacity to a regional jet. Separate aircraft designs are generated for minimum empty weight, fuel burn, and environmental impact. A metric specifically developed for the design of aircraft is employed to evaluate emissions. The designs are generated using the NDARC rotorcraft sizing code, and rotor analysis is performed with the CAMRAD II aeromechanics code. Design and mission parameters such as wing loading, disk loading, and cruise altitude are varied to minimize both cost and environmental impact metrics. This paper presents the results of these parametric sweeps as well as the final aircraft designs.

  18. Image-based ranging and guidance for rotorcraft

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1991-01-01

    This report documents the research carried out under NASA Cooperative Agreement No. NCC2-575 during the period Oct. 1988 - Dec. 1991. Primary emphasis of this effort was on the development of vision based navigation methods for rotorcraft nap-of-the-earth flight regime. A family of field-based ranging algorithms were developed during this research period. These ranging schemes are capable of handling both stereo and motion image sequences, and permits both translational and rotational camera motion. The algorithms require minimal computational effort and appear to be implementable in real time. A series of papers were presented on these ranging schemes, some of which are included in this report. A small part of the research effort was expended on synthesizing a rotorcraft guidance law that directly uses the vision-based ranging data. This work is discussed in the last section.

  19. Handling Qualities of Large Rotorcraft in Hover and Low Speed

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Theodore, Colin R.; Lawrence , Ben; Blanken, Chris L.

    2015-01-01

    According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering.

  20. Measurement of Rotorcraft Blade Deformation using Projection Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Gorton, Susan Althoff

    1998-01-01

    Projection Moire Interferometry (PMI) has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  1. Structures technology for a new generation of rotorcraft

    NASA Technical Reports Server (NTRS)

    Bartlett, Felton D., Jr.

    1989-01-01

    This paper presents an overview of structures research at the U. S. Army Aerostructures Directorate. The objectives of this research are to investigate, explore, and demonstrate emerging technologies that will provide lighter, safer, more survivable, and more cost-effective structures for rotorcraft in the 1990s and beyond. The emphasis of today's R&D is to contribute proven structures technology to the U. S. rotorcraft industry and Army aviation that directly impacts tomorrow's fleet readiness and mission capabilities. The primary contributor toward meeting these challenges is the development of high-strength and durable composites to minimize structural weight while maximizing cost effectiveness. Special aviation issues such as delamination of dynamic components, impact damage to thin skins, crashworthiness, and affordable manufacturing need to be resolved before the full potential of composites technology can be realized. To that end, this paper highlights research into composites structural integrity, crashworthiness, and materials applications which addresses these issues.

  2. Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1991-01-01

    The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized.

  3. Introduction of the M-85 high-speed rotorcraft concept

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.

    1992-01-01

    As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor.

  4. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  5. Contributions to the Characterization and Mitigation of Rotorcraft Brownout

    NASA Astrophysics Data System (ADS)

    Tritschler, John Kirwin

    Rotorcraft brownout, the condition in which the flow field of a rotorcraft mobilizes sediment from the ground to generate a cloud that obscures the pilot's field of view, continues to be a significant hazard to civil and military rotorcraft operations. This dissertation presents methodologies for: (i) the systematic mitigation of rotorcraft brownout through operational and design strategies and (ii) the quantitative characterization of the visual degradation caused by a brownout cloud. In Part I of the dissertation, brownout mitigation strategies are developed through simulation-based brownout studies that are mathematically formulated within a numerical optimization framework. Two optimization studies are presented. The first study involves the determination of approach-to-landing maneuvers that result in reduced brownout severity. The second study presents a potential methodology for the design of helicopter rotors with improved brownout characteristics. The results of both studies indicate that the fundamental mechanisms underlying brownout mitigation are aerodynamic in nature, and the evolution of a ground vortex ahead of the rotor disk is seen to be a key element in the development of a brownout cloud. In Part II of the dissertation, brownout cloud characterizations are based upon the Modulation Transfer Function (MTF), a metric commonly used in the optics community for the characterization of imaging systems. The use of the MTF in experimentation is examined first, and the application of MTF calculation and interpretation methods to actual flight test data is described. The potential for predicting the MTF from numerical simulations is examined second, and an initial methodology is presented for the prediction of the MTF of a brownout cloud. Results from the experimental and analytical studies rigorously quantify the intuitively-known facts that the visual degradation caused by brownout is a space and time-dependent phenomenon, and that high spatial frequency features, i.e., fine-grained detail, are obscured before low spatial frequency features, i.e., large objects. As such, the MTF is a metric that is amenable to Handling Qualities (HQ) analyses.

  6. Envelope protection systems for piloted and unmanned rotorcraft

    NASA Astrophysics Data System (ADS)

    Sahani, Nilesh A.

    Performance and agility of rotorcraft can be improved using envelope protection systems (or carefree maneuvering systems), which allow the aircraft to use the full flight envelope without risk of exceeding structural or controllability limits. Implementation of such a system can be divided into two necessary parts: "Limit Prediction" which detects the impending violation of the limit parameter, and "Limit Avoidance" where a preventive action is taken in the form of pilot cueing or autonomous limiting. Depending upon the underlying flight control system, implementation of the envelope limiting system was categorized into two different structures: "Inceptor Constraint Architecture" and "Command Limiting Architecture". The Inceptor Constraint Architecture is applicable to existing rotorcraft with conventional flight control system where control input proportionally affects control surfaces. The relationship between control input and limit parameter is complex which requires advanced algorithms for predicting impending limit violations. This research focuses on limits that exceed in transient response. A new algorithm was developed for predicting transient response using non-linear functions of measured aircraft states. The functions were generated off-line using simulation data from a non-real-time simulation, model to demonstrate the procedure for extracting them from flight test data. Modern rotorcraft flight control systems are designed to accurately track certain aircraft states like roll and pitch attitudes which are either specified as command inputs in unmanned rotorcraft or mapped to control stick in piloted aircrafts. In the Command Limiting Architecture applicable to these systems, performance constraints were generated on the command input corresponding to the envelope limit. To simulate this flight control system, an adaptive model inversion controller was applied to a non-linear, blade element simulation model of a helicopter. The controller generated fully-coupled lateral, longitudinal, vertical and yaw axis control inputs using a single design point linear model. (Abstract shortened by UMI.)

  7. Improved finite-element methods for rotorcraft structures

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1991-01-01

    An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.

  8. NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    Validation and demonstration results from the development of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are presented. The principal tasks of NDARC are to design a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft chosen as NDARC development test cases are the UH-60A single main-rotor and tail-rotor helicopter, the CH-47D tandem helicopter, the XH-59A coaxial lift-offset helicopter, and the XV-15 tiltrotor. These aircraft were selected because flight performance data, a weight statement, detailed geometry information, and a correlated comprehensive analysis model are available for each. Validation consists of developing the NDARC models for these aircraft by using geometry and weight information, airframe wind tunnel test data, engine decks, rotor performance tests, and comprehensive analysis results; and then comparing the NDARC results for aircraft and component performance with flight test data. Based on the calibrated models, the capability of the code to size rotorcraft is explored.

  9. Airworthiness Qualification Criteria for Rotorcraft with External Sling Loads

    NASA Technical Reports Server (NTRS)

    Key, David L.

    2002-01-01

    This report presents the results of a study to develop airworthiness requirements for rotorcraft with external sling loads. The report starts with a review of the various phenomena that limit external sling load operations. Specifically discussed are the rotorcraft-load aeroservoelastic stability, load-on handling qualities, effects of automatic flight control system failure, load suspension system failure, and load stability at speed. Based on past experience and treatment of these phenomena, criteria are proposed to form a package for airworthiness qualification. The desired end objective is a set of operational flight envelopes for the rotorcraft with intended loads that can be provided to the user to guide operations in the field. The specific criteria proposed are parts of ADS-33E-PRF; MIL-F-9490D, and MIL-STD-913A all applied in the context of external sling loads. The study was performed for the Directorate of Engineering, U.S. Army Aviation and Missile Command (AMCOM), as part of the contract monitored by the Aerothermodynamics Directorate, U.S. Army AMCOM.

  10. Rotorcraft fatigue life-prediction: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.; Elber, W.

    1994-01-01

    In this paper the methods used for calculating the fatigue life of metallic dynamic components in rotorcraft is reviewed. In the past, rotorcraft fatigue design has combined constant amplitude tests of full-scale parts with flight loads and usage data in a conservative manner to provide 'safe life' component replacement times. This is in contrast to other industries, such as the automobile industry, where spectrum loading in fatigue testing is a part of the design procedure. Traditionally, the linear cumulative damage rule has been used in a deterministic manner using a conservative value for fatigue strength based on a one in a thousand probability of failure. Conservatism on load and usage are also often employed. This procedure will be discussed along with the current U.S. Army fatigue life specification for new rotorcraft which is the so-called 'six nines' reliability requirement. In order to achieve the six nines reliability requirement the exploration and adoption of new approaches in design and fleet management may also be necessary if this requirement is to be met with a minimum impact on structural weight. To this end a fracture mechanics approach to fatigue life design may be required in order to provide a more accurate estimate of damage progression. Also reviewed in this paper is a fracture mechanics approach for calculating total fatigue life which is based on a crack-closure small crack considerations.

  11. Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsay, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

  12. Structural Dynamics Verification of Rotorcraft Comprehensive Analysis System (RCAS)

    SciTech Connect

    Bir, G. S.

    2005-02-01

    The Rotorcraft Comprehensive Analysis System (RCAS) was acquired and evaluated as part of an ongoing effort by the U.S Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to provide state-of-the-art wind turbine modeling and analysis technology for Government and industry. RCAS is an interdisciplinary tool offering aeroelastic modeling and analysis options not supported by current codes. RCAS was developed during a 4-year joint effort among the U.S. Army's Aeroflightdynamics Directorate, Advanced Rotorcraft Technology Inc., and the helicopter industry. The code draws heavily from its predecessor 2GCHAS (Second Generation Comprehensive Helicopter Analysis System), which required an additional 14 years to develop. Though developed for the rotorcraft industry, its general-purpose features allow it to model or analyze a general dynamic system. Its key feature is a specialized finite element that can model spinning flexible parts. The code, therefore, appears particularly suited for wind turbines whose dynamics is dominated by massive flexible spinning rotors. In addition to the simulation capability of the existing codes, RCAS [1-3] offers a range of unique capabilities, including aeroelastic stability analysis, trim, state-space modeling, operating modes, modal reduction, multi-blade coordinate transformation, periodic-system-specific analysis, choice of aerodynamic models, and a controls design/implementation graphical interface.

  13. Robust crossfeed design for hovering rotorcraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  14. New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, E. W.; Johnson, J. L.; Demblewski, R.; Andrews, J.; Aiken, Irwin W. (Technical Monitor)

    2001-01-01

    A key part of the strategic vision for rotorcraft research as identified by senior technologists within the Army/NASA Rotorcraft Division at NASA Ames Research Center is the development and use of small autonomous rotorcraft. Small autonomous rotorcraft are defined for the purposes of this paper to be a class of vehicles that range in size from rotary-wing micro air vehicles (MAVs) to larger, more conventionally sized, rotorcraft uninhabited aerial vehicles (UAVs) - i.e. vehicle gross weights ranging from hundreds of grams to thousands of kilograms. The development of small autonomous rotorcraft represents both a technology challenge and a potential new vehicle class that will have substantial societal impact for: national security, personal transport, planetary science, and public service.

  15. Directions in propulsion control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1990-01-01

    Discussed here is research at NASA Lewis in the area of propulsion controls as driven by trends in advanced aircraft. The objective of the Lewis program is to develop the technology for advanced reliable propulsion control systems and to integrate the propulsion control with the flight control for optimal full-system control.

  16. European auxiliary propulsion, 1972

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1972-01-01

    The chemical and electric auxiliary propulsion technology of the United Kingdom, France, and West Germany is discussed in detail, and the propulsion technology achievements of Italy, India, Japan, and Russia are reviewed. A comparison is presented of Shell 405 catalyst and a European spontaneous hydrazine catalyst called CNESRO I. Finally, conclusions are drawn regarding future trends in European auxiliary propulsion technology development.

  17. Efficient assembly of finite-element subsystems with large relative rotations. [for rotorcraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Fuh, Jon-Shen; Panda, Brahmananda; Peters, David A.

    1988-01-01

    A finite element approach is presented for the modeling of rotorcraft undergoing elastic deformation in addition to large rigid body motion with respect to inertial space, with particular attention given to the coupling of the rotor and fuselage subsystems subject to large relative rotations. The component synthesis technique used here allows the coupling of rotors to the fuselage for different rotorcraft configurations. The formulation is general and applicable to any rotorcraft vibration, aeroelasticity, and dynamics problem.

  18. Mars Rotorcraft: Possibilities, Limitations, and Implications For Human/Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, Edwin; Lee, Pascal; Briggs, Geoffrey

    2005-01-01

    Several research investigations have examined the challenges and opportunities in the use of small robotic rotorcraft for the exploration of Mars. To date, only vehicles smaller than 150 kg have been studied. This paper proposes to examine the question of maximum Mars rotorcraft size, range, and payload/cargo capacity. Implications for the issue of whether or not (from an extreme design standpoint) a manned Mars rotorcraft is viable are also discussed.

  19. Analysis of image-based navigation system for rotorcraft low-altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Phatak, Anil V.

    1992-01-01

    Some of the issues in the location of objects using a sequence of images from a passive sensor are examined. Image-object differential equations for a rotorcraft executing an arbitrary maneuver are developed. Assuming an onboard inertial navigation system for rotorcraft, state estimation, this study considers how object location is affected by the choice of Kalman filter estimation technique, the rotorcraft, and the object. Simulation results are presented.

  20. Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2004-01-01

    A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.

  1. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  2. Identification of propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet

    1991-01-01

    This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.

  3. An Analysis of U.S. Civil Rotorcraft Accidents by Cost and Injury (1990-1996)

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; DeMaio, Joe; Rutkowski, Michael (Technical Monitor)

    2002-01-01

    A study of rotorcraft accidents was conducted to identify safety issues and research areas that might lead to a reduction in rotorcraft accidents and fatalities. The primary source of data was summaries of National Transportation Safety Board (NTSB) accident reports. From 1990 to 1996, the NTSB documented 1396 civil rotorcraft accidents in the United States in which 491 people were killed. The rotorcraft data were compared to airline and general aviation data to determine the relative safety of rotorcraft compared to other segments of the aviation industry. In depth analysis of the rotorcraft data addressed demographics, mission, and operational factors. Rotorcraft were found to have an accident rate about ten times that of commercial airliners and about the same as that of general aviation. The likelihood that an accident would be fatal was about equal for all three classes of operation. The most dramatic division in rotorcraft accidents is between flights flown by private pilots versus professional pilots. Private pilots, flying low cost aircraft in benign environments, have accidents that are due, in large part, to their own errors. Professional pilots, in contrast, are more likely to have accidents that are a result of exacting missions or use of specialized equipment. For both groups judgement error is more likely to lead to a fatal accident than are other types of causes. Several approaches to improving the rotorcraft accident rate are recommended. These mostly address improvement in the training of new pilots and improving the safety awareness of private pilots.

  4. Centralized versus distributed propulsion

    NASA Technical Reports Server (NTRS)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  5. Propulsive lift noise

    NASA Astrophysics Data System (ADS)

    Fink, Martin R.

    1991-08-01

    Propulsive life noise is the increase in noise that occurs when airframe surfaces are placed in the propulsive system's exhaust to increase their lift force. Increased local flow velocities and turbulence levels, due to the propulsive system exhaust gases passing along the airframe lifting surfaces, cause an increase in maximum lift coefficient. The airplane's flight speed required for takeoff and landing can then be significantly reduced, allowing operation from shorter runways than those of conventional commercial airports. Unfortunately, interaction of high velocity turbulent exhaust flow with the airframe's solid surfaces generates additional noise radiation. Aeroacoustic processes that cause propulsive lift noise also are present in airframe noise and propulsive system installation noise. Research studies of propulsive lift noise led to development of improved methods of predicting noise radiation from surfaces in turbulent flows. Noise reduction and prediction methods of aircraft noise are discussed.

  6. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  7. Introduction of the M-85 high-speed rotorcraft concept

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.

    1991-01-01

    As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to the M-85 concept such as passively controlling inplane vibration during starting and stopping of the rotor system, aircraft control system, and rotor drive technologies are discussed.

  8. Methodology development for evaluation of selective-fidelity rotorcraft simulation

    NASA Technical Reports Server (NTRS)

    Lewis, William D.; Schrage, D. P.; Prasad, J. V. R.; Wolfe, Daniel

    1992-01-01

    This paper addressed the initial step toward the goal of establishing performance and handling qualities acceptance criteria for realtime rotorcraft simulators through a planned research effort to quantify the system capabilities of 'selective fidelity' simulators. Within this framework the simulator is then classified based on the required task. The simulator is evaluated by separating the various subsystems (visual, motion, etc.) and applying corresponding fidelity constants based on the specific task. This methodology not only provides an assessment technique, but also provides a technique to determine the required levels of subsystem fidelity for a specific task.

  9. Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Malsbury, T.; Atencio, A., Jr.

    1992-01-01

    A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.

  10. Boeing Helicopters Advanced Rotorcraft Transmission (ART) program status

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.

    1990-01-01

    A review is presented of a program structured to incorporate key emerging component and material technologies into an advanced rotorcraft transmission with the intent of making significant improvements in the state-of-the-art (SOA). The specific goals of this program include a reduction of transmission weight by 25 percent relative to SOA trends, a reduction of transmission noise by 10 dB relative to SOA, and improvment of transmission life and reliability while extending the mean time between removal to 5000 hours. Attention is given to comparisons and trade studies between transmission configurations, component development testing, improved bearing technology, and the aircraft selection process for the program.

  11. The role of the research simulator in the systems development of rotorcraft

    NASA Technical Reports Server (NTRS)

    Statler, I. C.; Deel, A.

    1981-01-01

    The potential application of the research simulator to future rotorcraft systems design, development, product improvement evaluations, and safety analysis is examined. Current simulation capabilities for fixed-wing aircraft are reviewed and the requirements of a rotorcraft simulator are defined. The visual system components, vertical motion simulator, cab, and computation system for a research simulator under development are described.

  12. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Composite Rotorcraft Structures'' (76 FR 74655), published December 1, 2011, and ``Damage Tolerance and Fatigue Evaluation for Metallic Structures'' (76 FR 75435), published December 2, 2011. In the ``Composite... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655). On December 2,...

  13. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance... structure is able to withstand the repeated loads of variable magnitude expected in-service. In establishing... rotorcraft structure and: (1) Identify all PSEs considered in the fatigue evaluation; (2) Identify the...

  14. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance... structure is able to withstand the repeated loads of variable magnitude expected in-service. In establishing... rotorcraft structure and: (1) Identify all PSEs considered in the fatigue evaluation; (2) Identify the...

  15. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance... structure is able to withstand the repeated loads of variable magnitude expected in-service. In establishing... rotorcraft structure and: (1) Identify all PSEs considered in the fatigue evaluation; (2) Identify the...

  16. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance... structure is able to withstand the repeated loads of variable magnitude expected in-service. In establishing... rotorcraft structure and: (1) Identify all PSEs considered in the fatigue evaluation; (2) Identify the...

  17. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance... structure is able to withstand the repeated loads of variable magnitude expected in-service. In establishing... rotorcraft structure and: (1) Identify all PSEs considered in the fatigue evaluation; (2) Identify the...

  18. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance... structure is able to withstand the repeated loads of variable magnitude expected in-service. In establishing... rotorcraft structure and: (1) Identify all PSEs considered in the fatigue evaluation; (2) Identify the...

  19. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  20. Overview of electric propulsion

    NASA Astrophysics Data System (ADS)

    Dani?ko, Dariusz

    2014-11-01

    Space Electric Rocket Test (SERT 1) was the first experiment in which electric propulsion device was sent into space. The present year marks the 50th anniversary of that particular mission that opened the door for the application of electric propulsion on board spacecrafts. We present an overview of existing electric propulsion technology along with the description of the most successful missions that followed the success of the SERT 1mission.

  1. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  2. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  3. Acoustic Predictions of Manned and Unmanned Rotorcraft Using the Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) Code System

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2005-01-01

    The Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) is being developed under the Quiet Aircraft Technology Project within the NASA Vehicle Systems Program. The purpose of CARMA is to provide analysis tools for the design and evaluation of efficient low-noise rotorcraft, as well as support the development of safe, low-noise flight operations. The baseline prediction system of CARMA is presented and current capabilities are illustrated for a model rotor in a wind tunnel, a rotorcraft in flight and for a notional coaxial rotor configuration; however, a complete validation of the CARMA system capabilities with respect to a variety of measured databases is beyond the scope of this work. For the model rotor illustration, predicted rotor airloads and acoustics for a BO-105 model rotor are compared to test data from HART-II. For the flight illustration, acoustic data from an MD-520N helicopter flight test, which was conducted at Eglin Air Force Base in September 2003, are compared with CARMA full vehicle flight predictions. Predicted acoustic metrics at three microphone locations are compared for limited level flight and descent conditions. Initial acoustic predictions using CARMA for a notional coaxial rotor system are made. The effect of increasing the vertical separation between the rotors on the predicted airloads and acoustic results are shown for both aerodynamically non-interacting and aerodynamically interacting rotors. The sensitivity of including the aerodynamic interaction effects of each rotor on the other, especially when the rotors are in close proximity to one another is initially examined. The predicted coaxial rotor noise is compared to that of a conventional single rotor system of equal thrust, where both are of reasonable size for an unmanned aerial vehicle (UAV).

  4. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  5. Analysis of structures with rotating, flexible substructures applied to rotorcraft aeroelasticity in GRASP. [General Rotorcraft Aeromechanical Stability Program

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.

    1987-01-01

    Application to the General Rotorcraft Aeromechanical Stability Program (GRASP) of new methodology for structural dynamic analysis, including substructuring, frames of reference, nodes, finite elements, and constraints, is discussed. The structure is decomposed into a hierarchy of substructures, and discrete relative motion between substructures is analyzed exactly. The finite element method is used to treat deformation of continua, and the library of finite elements includes a nonlinear beam element incorporating aeroelastic effects. Analytical bases for the aeroelastic beam element and the screw constraint are considered, and the important role of geometric stiffness in the formulation is shown.

  6. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  7. Impact of Airfoils on Aerodynamic Optimization of Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Acree, Cecil W., Jr.; Martin Preston B.; Romander, Ethan A.

    2006-01-01

    Rotor airfoils were developed for two large tiltrotor designs, the Large Civil Tilt Rotor (LCTR) and the Military Heavy Tilt Rotor (MHTR). The LCTR was the most promising of several rotorcraft concepts produced by the NASA Heavy Lift Rotorcraft Systems Investigation. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots cruise at 30,000 ft altitude. A parallel design, the MHTR, had a notional mission of 40,000 Ib payload, 500 nm range, and 300 knots cruise at 4000 ft, 95 F. Both aircraft were sized by the RC code developed by the U. S. Army Aeroflightdynamics Directorate (AFDD). The rotors were then optimized using the CAMRAD II comprehensive analysis code. Rotor airfoils were designed for each aircraft, and their effects on performance analyzed by CAMRAD II. Airfoil design criteria are discussed for each rotor. Twist and taper optimization are presented in detail for each rotor, with discussions of performance improvements provided by the new airfoils, compared to current technology airfoils. Effects of stall delay and blade flexibility on performance are also included.

  8. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  9. A comparison of fatigue life prediction methodologies for rotorcraft

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1990-01-01

    Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.

  10. A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    1996-01-01

    Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.

  11. Optimal propulsive efficiency of vortex enhanced propulsion

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2013-11-01

    The formation of coherent vortex rings in the jet wake of a vehicle has been shown to increase the propulsive efficiency of self-propelled vehicles. However, the effect of varying vortex ring formation characteristics has not been explored for vehicles at Reynolds numbers comparable to autonomous or manned submersible vehicles. In this work, we considered a range of vortex ring formation characteristics and found a peak in the propulsive efficiency where the vortex rings generated are coincident with the onset of vortex ring pinch off. This peak corresponds to a 22% increase in the propulsive efficiency for the vortex-enhanced wake compared to a steady jet. We gratefully acknowledge the support of the Office of Naval Research Grants N000140810918 and N000141010137.

  12. Electric Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2013-01-01

    An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

  13. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  14. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.

  15. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  16. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  17. Electric propulsion cost estimation

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.

    1985-01-01

    A parametric cost model for mercury ion propulsion modules is presented. A detailed work breakdown structure is included. Cost estimating relationships were developed for the individual subsystems and the nonhardware items (systems engineering, software, etc.). Solar array and power processor unit (PPU) costs are the significant cost drivers. Simplification of both of these subsystems through applications of advanced technology (lightweight solar arrays and high-efficiency, self-radiating PPUs) can reduce costs. Comparison of the performance and cost of several chemical propulsion systems with the Hg ion module are also presented. For outer-planet missions, advanced solar electric propulsion (ASEP) trip times and O2/H2 propulsion trip times are comparable. A three-year trip time savings over the baselined NTO/MMH propulsion system is possible with ASEP.

  18. ESA Spacecraft Propulsion Activities

    NASA Astrophysics Data System (ADS)

    Saccoccia, G.

    2004-10-01

    ESA is currently involved in several activities related to spacecraft chemical and electric propulsion, from the basic research and development of conventional and new concepts to the manufacturing, AIV and flight control of the propulsion subsystems of several European satellites. In the commercial application field, the strong competition among satellite manufacturers is a major driver for advancements in the area of propulsion, where increasing better performance together with low prices are required. Furthermore, new scientific and Earth observation missions dictate new challenging requirements for propulsion systems and components based on advanced technologies. For all these reasons, the technology area of spacecraft propulsion is in strong evolution and this paper presents an overview of the current European programmes and initiatives in this technology field. Specific attention is devoted in the paper to the performance and flight experience of spacecraft currently in orbit or ready to be launched.

  19. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  20. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  1. Futuristic systems: Solar and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Byers, Dave

    1991-01-01

    The following topics are addressed: (1) in-space propulsion impacts; (2) electric propulsion; (3) mission impacts of electric propulsion; and (4) summaries of electric propulsion status and solar and nuclear propulsion.

  2. Propulsion Research and Technology: Overview

    NASA Technical Reports Server (NTRS)

    Cole, John; Schmidt, George

    1999-01-01

    Propulsion is unique in being the main delimiter on how far and how fast one can travel in space. It is the lack of truly economical high-performance propulsion systems that continues to limit and restrict the extent of human endeavors in space. Therefore the goal of propulsion research is to conceive and investigate new, revolutionary propulsion concepts. This presentation reviews the development of new propulsion concepts. Some of these concepts are: (1) Rocket-based Combined Cycle (RBCC) propulsion, (2) Alternative combined Cycle engines suc2 as the methanol ramjet , and the liquid air cycle engines, (3) Laser propulsion, (4) Maglifter, (5) pulse detonation engines, (6) solar thermal propulsion, (7) multipurpose hydrogen test bed (MHTB) and other low-G cryogenic fluids, (8) Electric propulsion, (9) nuclear propulsion, (10) Fusion Propulsion, and (11) Antimatter technology. The efforts of the NASA centers in this research is also spotlighted.

  3. Active vibration and noise alleviation in rotorcraft using microflaps

    NASA Astrophysics Data System (ADS)

    Padthe, Ashwani Kumar

    This work presents a comprehensive analysis of active Gurney flaps, or microflaps, for on blade control of noise and vibration in rotorcraft. The initial portion of the work considered the two-dimensional unsteady aerodynamic characteristics of three different oscillating microflap configurations using a compressible computational fluid dynamics (CFD) flow solver. Among these the configuration most suitable for rotorcraft applications was chosen. An unsteady reduced order aerodynamic model (ROM) was developed for the microflap using the Rational Function Approximation approach and CFD based oscillatory aerodynamic load data. The resulting ROM is a state-space, time-domain model that accounts for unsteadiness, compressibility and time-varying freestream effects. The ROM was validated against direct CFD calculations for a wide range of flow conditions showing excellent agreement. Subsequently, the ROM was then incorporated into a comprehensive rotorcraft simulation code featuring a free-wake model, an acoustic prediction tool, and fully coupled flap-lag-torsional blade dynamics. The higher harmonic control (HHC) algorithm was used to simulate closed-loop active control with a 1.5% chord microflap on a hingeless rotor configuration resembling the MBB BO-105. Three span-wise configurations, single, dual, and a five-microflap configuration were considered. Results indicate that the microflap can achieve reductions ranging from 3-6 dB in the blade-vortex interaction (BVI) noise. Vibration reduction ranging from 70-90% was also demonstrated at both low-speed and high-speed flight conditions. It was also found that reduction in BVI noise results in an increase in vibrations and vice versa, a trend also noted in previous active control studies employing HHC and conventional partial span trailing-edge flaps. Next, simultaneous BVI noise and vibration reduction was studied. A reduction of 2-3 dB in the advancing and retreating side noise combined with a 55% reduction in the vibratory loads was achieved using the five-microflap configuration. The 1.5% chord microflap was also compared to a 20% chord plain trailing-edge flap showing similar effectiveness in reducing vibration and noise. Finally, a new approach for dealing with actuator saturation in the HHC algorithm was developed using nonlinear constrained optimization techniques. The optimization approach takes less computational time compared to the previous approaches while yielding better performance in the case of multiple control surfaces.

  4. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  5. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  6. Advanced Propulsion Research Interest in Materials for Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  7. Recent studies of rotorcraft blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Preisser, J. S.; Brooks, T. F.; Martin, R. M.

    1994-01-01

    Recent results are presented from several research efforts aimed at the understanding of rotorcraft blade-vortex interaction (BVI) in terms of the noise generation, directivity, and control. The results are based on work performed by NASA Langley Research Center researchers, both alone and in collaboration with other research organizations. Based on analysis of a simplified physical model, the critical parameters controlling BVI noise generation have been identified. The detailed mapping of the acoustic radiation field of a model rotor in a wind tunnel has revealed the extreme sensitivity of directivity to rotor advance ratio and disk attitude. The control and reduction of BVI noise through the use of higher harmonic pitch control is discussed.

  8. Separation Control on Generic ROBIN Rotorcraft Fuselage Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Coleman, Dustin

    2011-11-01

    Active flow control, in the form of dielectric barrier discharge (DBD) plasma actuators, is applied to a NASA ROBIN mod7 generic rotorcraft fuselage model. The control objective is reduce the massive 3-D flow separation occurring over the aft ramp section of the fuselage, thereby improving the vehicle flight characteristics. The plasma actuation methods investigated include: plasma streamwise vortex generators (PSVGs), as well as steady and unsteady spanwise actuation, combined with passive geometric modifications to the ramp section. Experiments were conducted at freestream Mach and Reynolds numbers of M? = 0 . 12 and ReL = 2 . 65 106 , respectively. Aerodynamic loads from each technique were quantified by means of 3-component force balance measurements (drag, lift, and pitching moment), a 128 count static pressure array, and time-resolved PIV wake surveys. Results are compared with previous studies that utilized active flow control in the form of pulsed jets and combustion actuators.

  9. Passive range estimation for rotorcraft low-altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Suorsa, R.; Hussien, B.

    1991-01-01

    The automation of rotorcraft low-altitude flight presents challenging problems in control, computer vision and image understanding. A critical element in this problem is the ability to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory. This requirement is also necessary for the safe landing of an autonomous lander on Mars. This paper examines some of the issues in the location of objects using a sequence of images from a passive sensor, and describes a Kalman filter approach to estimate the range to obstacles. The Kalman filter is also used to track features in the images leading to a significant reduction of search effort in the feature extraction step of the algorithm. The method can compute range for both straight line and curvilinear motion of the sensor. A laboratory experiment was designed to acquire a sequence of images along with sensor motion parameters under conditions similar to helicopter flight. Range estimation results using this imagery are presented.

  10. Passive range estimation for rotorcraft low-altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Suorsa, R.; Hussien, B.

    1993-01-01

    The automation of rotorcraft low-altitude flight presents challenging problems in control, computer vision and image understanding. A critical element in this problem is the ability to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory. This requirement is also necessary for the safe landing of an autonomous lander on Mars. This paper examines some of the issues in the location of objects using a sequence of images from a passive sensor, and describes a Kalman filter approach to estimate the range to obstacles. The Kalman filter is also used to track features in the images leading to a significant reduction of search effort in the feature extraction step of the algorithm. The method can compute range for both straight line and curvilinear motion of the sensor. A laboratory experiment was designed to acquire a sequence of images along with sensor motion parameters under conditions similar to helicopter flight. Range estimation results using this imagery are presented.

  11. Design of Quiet Rotorcraft Approach Trajectories: Verification Phase

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    2010-01-01

    Flight testing that is planned for October 2010 will provide an opportunity to evaluate rotorcraft trajectory optimization techniques. The flight test will involve a fully instrumented MD-902 helicopter, which will be flown over an array of microphones. In this work, the helicopter approach trajectory is optimized via a multiobjective genetic algorithm to improve community noise, passenger comfort, and pilot acceptance. Previously developed optimization strategies are modified to accommodate new helicopter data and to increase pilot acceptance. This paper describes the MD-902 trajectory optimization plus general optimization strategies and modifications that are needed to reduce the uncertainty in noise predictions. The constraints that are imposed by the flight test conditions and characteristics of the MD-902 helicopter limit the testing possibilities. However, the insights that will be gained through this research will prove highly valuable.

  12. Advancements in frequency-domain methods for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1989-01-01

    A new method for frequency-domain identification of rotorcraft dynamics is presented. Nonparametric frequency-response identification and parametric transfer-function modeling methods are extended to allow the extraction of state-space (stability and control derivative) representations. An interactive computer program DERIVID is described for the iterative solution of the multi-input/multi-output frequency-response matching approach used in the identification. Theoretical accuracy methods are used to determine the appropriate model structure and degree-of-confidence in the identified parameters. The method is applied to XV-15 tilt-rotor aircraft data in hover. Bare-airframe stability and control derivatives for the lateral/directional dynamics are shown to compare favorably with models previously obtained using time-domain identification methods and the XV-15 simulation program.

  13. Computer vision techniques for rotorcraft low-altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Cheng, Victor H. L.

    1988-01-01

    A description is given of research that applies techniques from computer vision to automation of rotorcraft navigation. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle detection approach can be used as obstacle data for the obstacle avoidance in an automataic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data, however, presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. Some comments are made on future work and how research in this area relates to the guidance of other autonomous vehicles.

  14. Vision based techniques for rotorcraft low altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Suorsa, Ray; Smith, Philip

    1991-01-01

    An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.

  15. A new method for simulating atmospheric turbulence for rotorcraft applications

    NASA Technical Reports Server (NTRS)

    Prasad, J. V. R.; Schrage, D. P.; Gaonkar, G. H.; Riaz, J.

    1991-01-01

    Simulation of atmospheric turbulence as seen by a rotating blade element involves treatment of cyclostationary processes. Conventional filtering techniques do not lend themselves well to the generation of such turbulence sample functions as are required in rotorcraft flight dynamics simulation codes. A method to generate sample functions containing second-order statistics of mean and covariance is presented. Compared to ensemble averaging involving excessive computer time, the novelty is to exploit cycloergodicity and thereby, replace ensemble averaging by averaging over a single-path sample function of long duration. The method is validated by comparing its covariance results with the analytical and ensemble-averaged results for a widely used one-dimensional turbulence approximation.

  16. Application of modern structural optimization to vibration reduction in rotorcraft

    NASA Technical Reports Server (NTRS)

    Friedmann, P.

    1985-01-01

    This paper explores a number of techniques which are capable of reducing vibration levels in rotorcraft by redistributing the mass and stiffness properties of the structure. First, vibration reduction in the rotor is considered by using formal structural optimization for ensuring optimal frequency placement. Two cases are considered: in the first case aeroelastic constraints are not enforced and the blade is designed for minimum weight; in the second case aeroelastic constraints are enforced and vibration levels are minimized in forward flight. Next, vibration reduction in the fuselage is considered and the various methods available for vibration reduction by local structural modification are reviewed. The feasibility of combining local structural modification with modern structural optimization is discussed and some extensions of previous research are suggested.

  17. Data and performances of selected aircraft and rotorcraft

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2000-11-01

    The purpose of this article is to provide a synthetic and comparative view of selected aircraft and rotorcraft (nearly 300 of them) from past and present. We report geometric characteristics of wings (wing span, areas, aspect-ratios, sweep angles, dihedral/anhedral angles, thickness ratios at root and tips, taper ratios) and rotor blades (type of rotor, diameter, number of blades, solidity, rpm, tip Mach numbers); aerodynamic data (drag coefficients at zero lift, cruise and maximum absolute glide ratio); performances (wing and disk loadings, maximum absolute Mach number, cruise Mach number, service ceiling, rate of climb, centrifugal acceleration limits, maximum take-off weight, maximum payload, thrust-to-weight ratios). There are additional data on wing types, high-lift devices, noise levels at take-off and landing. The data are presented on tables for each aircraft class. A graphic analysis offers a comparative look at all types of data. Accuracy levels are provided wherever available.

  18. Time-Spectral Rotorcraft Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.

    2014-01-01

    The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.

  19. Technologies for automating rotorcraft nap-of-the-earth flight

    NASA Technical Reports Server (NTRS)

    Cheng, Victor H. L.; Sridhar, Banavar

    1992-01-01

    This paper discusses the technologies required for automating rotorcraft nap-of-the-earth flight, where the use of natural obstacles for masking from the enemy is intentional and the danger of undesirable obstacles such as enemy traps is real. Specifically, the automatic guidance structure is modeled by three decision-making levels: the far-field mission planning and the mid-field terrain-masking trajectory shaping are both driven by prestored terrain data, whereas the nearfield obstacle detection/avoidance is driven by real-time on-board sensor data. This paper summarizes the far-field and mid-field accomplishments, and reports on the status of the more-recent efforts in obstacle detection and avoidance development. Obstacle detection is based primarily on passive imaging sensors for the desirable properties of covertness and wide field of view, although active sensors are included in the structure to provide the much needed high resolution for thin-wire detection.

  20. In-flight performance optimization for rotorcraft with redundant controls

    NASA Astrophysics Data System (ADS)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.

  1. Advanced Rotor Aerodynamics Concepts with Application to Large Rotorcraft

    NASA Technical Reports Server (NTRS)

    Floros, Matthew W.; Johnson, Wayne; Scully, Michael P.

    2002-01-01

    A study was conducted using the comprehensive analysis CAMRAD II to explore performance enhancements to large rotorcraft. The aircraft considered were a 125 foot diameter six-bladed rotor helicopter and an 85 foot diameter four-bladed rotor tilt rotor. The objectives were to reduce power required and increase maximum lift. The effects of improved airfoils and active controls were investigated. Airfoils with higher maximum lift and with reduced drag were investigated. Results showed a moderate improvement in the maximum lift capability for the helicopter and a large improvement for the tilt rotor. For the helicopter, 2/rev individual blade control resulted in modest power savings in cruise flight, which increased with control amplitude and forward speed. The optimum phase for the individual blade control was relatively insensitive to both amplitude and forward speed. The influences of active twist, increased chord, increments in airfoil properties, and tilt rotor tip extensions were also investigated.

  2. Development of autonomous magnetometer rotorcraft for wide area assessment

    SciTech Connect

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of dynamic acquisition, i.e. survey mission inflight reprioritization). We describe and report on a one year effort with as primary goal to provide a recommendation to SERDP for a path forward in the implementation of one or more autonomous unmanned magnetometer rotorcraft platforms. This recommendation (which is provided in chapter 6) is based on the following three elements a) An assessment on the applicability of autonomous rotorcraft magnetometer systems to the current DoD site inventory, and an initial assessment of which type(s) of autonomous unmanned magnetometer rotorcraft platforms (in terms of performance characteristics such as payload, altitude, obstacle avoidance, production rate and flight time) would be most relevant to this inventory (chapter 3); b) An evaluation of the feasibility of assembling such platforms from commercial components (unmanned rotorcraft, control systems and sensors – both magnetometer sensors and supporting sensors). This evaluation included several highly successful field tests (chapter 4 and 5); c) A recommendation of the path forward, which includes a detailed outline of the efforts required in the design, assembly and testing of different modular platforms (chapter 6)

  3. Conceptual assessment of two high-speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Rutherford, John W.; O'Rourke, Matthew J.; Lovenguth, Marc A.; Mitchell, Clark A.

    1993-01-01

    Recently completed high-speed rotorcraft design studies for NASA provide the basis to assess technology needs for the development of these aircraft. Preliminary analysis of several concepts possessing helicopter-like hover characteristics and cruise capabilities in the 450-kt regime, led to the selection of two concepts for further study. The concepts selected included the rotor/wing and the tilt wing. Designs, based on current technology for each, established a baseline configuration from which technology trade studies could be conducted. Technology anticipated to be ready for application in the year 2005 set the goals for the trade studies. An assessment of the technologies' impact on the effectiveness of the concept served as the basis to determine potential risk, payoff, and criticality. Advanced technology, applied to either of these concepts, significantly improves the effectiveness and the attributes of the concepts.

  4. Advanced subsonic transport propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Ciepluch, C. C.; Chamberlain, R.; Meleason, E. T.; Kraft, G. A.

    1981-01-01

    A brief review of the current NASA Energy Efficient Engine (E(3)) Project is presented. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E(3) engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. The potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

  5. Propulsion systems analysis

    NASA Technical Reports Server (NTRS)

    Strack, Bill

    1990-01-01

    The following topics are discussed: major work elements; conceptual engineering system design/analysis; aircraft analysis procedure; traditional benefit determination procedure; current analysis system deficiency; current propulsion system analysis weaknesses; a vision for systems analysis; integrated propulsion-aircraft analysis system (IPAS); IPAS development roadmap; IPAS architecture; modular approach to heat engine simulation; turbomachine component performance; inlet design and analysis; supersonic propulsion-airframe integration; noise modeling capabilities; Mach 2.6 HSCT aircraft sizing; and expectations of AI/expert systems. The discussion is presented in viewgraph format.

  6. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Norman, A. M.; Briley, G. L.; Evans, S. A.

    1987-01-01

    The objectives of this program are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the initial operational capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion system (SSPS) to that required to support and interface with advanced station functions. These objectives were met by analytical studies and by furnishing a propulsion test bed to the Marshall Space Flight Center for testing.

  7. Ion propulsion cost effectivity

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Biess, J. J.

    1978-01-01

    Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.

  8. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  9. Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet

    NASA Technical Reports Server (NTRS)

    Antolick, Lance J.; Branning, Jeremy S.; Wade, Daniel R.; Dempsey, Paula J.

    2010-01-01

    The U.S. Army is currently expanding its fleet of Health Usage Monitoring Systems (HUMS) equipped aircraft at significant rates, to now include over 1,000 rotorcraft. Two different on-board HUMS, the Honeywell Modern Signal Processing Unit (MSPU) and the Goodrich Integrated Vehicle Health Management System (IVHMS), are collecting vibration health data on aircraft that include the Apache, Blackhawk, Chinook, and Kiowa Warrior. The objective of this paper is to recommend the most effective gear condition indicators for fleet use based on both a theoretical foundation and field data. Gear diagnostics with better performance will be recommended based on both a theoretical foundation and results of in-fleet use. In order to evaluate the gear condition indicator performance on rotorcraft fleets, results of more than five years of health monitoring for gear faults in the entire HUMS equipped Army helicopter fleet will be presented. More than ten examples of gear faults indicated by the gear CI have been compiled and each reviewed for accuracy. False alarms indications will also be discussed. Performance data from test rigs and seeded fault tests will also be presented. The results of the fleet analysis will be discussed, and a performance metric assigned to each of the competing algorithms. Gear fault diagnostic algorithms that are compliant with ADS-79A will be recommended for future use and development. The performance of gear algorithms used in the commercial units and the effectiveness of the gear CI as a fault identifier will be assessed using the criteria outlined in the standards in ADS-79A-HDBK, an Army handbook that outlines the conversion from Reliability Centered Maintenance to the On-Condition status of Condition Based Maintenance.

  10. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.

  11. MSFC Propulsion Research Center Overview

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2004-01-01

    The MSFC Propulsion Research Center (PRC) is housed in a new research laboratory and provides research and technology development capabilities in several areas related to space propulsion. These areas include advanced chemical propulsion and high power propulsion for in-space applications. The research directions and capabilities, including a description of the facilities, of the PRC will be discussed.

  12. Propulsion technology discipline

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.

    1990-01-01

    Viewgraphs on propulsion technology discipline for Space Station Freedom are presented. Topics covered include: water electrolysis O2/H2 system; hydrazine system advancements; common technology; fluids disposal; and storable bipropellant system.

  13. Polymer vesicles: Autonomous propulsion

    NASA Astrophysics Data System (ADS)

    Howse, Jonathan

    2012-04-01

    Polymer vesicles have been constructed that entrap platinum nanoparticles in their outer surface. These serve to break down a fuel of hydrogen peroxide, generating water and oxygen and in turn inducing a propulsive effect.

  14. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  15. Laser propulsion - 1980

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1980-01-01

    An overview of the current government sponsored work in laser propulsion is presented and the NASA program is discussed. Attention is given to the overall NASA plan in laser propulsion and the laser rocket engine technology program. Some results of an analytical effort at Physical Sciences Inc. are presented, as well as results of the NASA/Army Missile Command experimental effort. Finally, future plans are briefly summarized.

  16. Vehicle propulsion system

    SciTech Connect

    Ridgway, S.L.

    1981-11-17

    A hybrid vehicle propulsion system is disclosed which utilizes an internal combustion engine, an afterburner, and a steam engine in combination for improved efficiency and reduced emission of pollutants. The afterburner is provided to reduce the level of pollutants emitted and to increase the temperature of the exhaust gases from the internal combustion engine. The heat from the exhaust gases, together with the heat removed from the internal combustion cylinders, is then utilized in the steam engine to provide additional propulsion.

  17. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  18. Ion propulsion cost effectivity

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Biess, J. J.; Callens, R. A.

    1979-01-01

    Ion propulsion modules employing 8 cm thrusters and 30 cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and non-recurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power (reduced solar array size), simplified power processing units, and power processor output switching.

  19. Advanced propulsion on a shoestring

    SciTech Connect

    Lerner, E.J.

    1990-05-01

    Consideration is given to propulsion concepts under study by NASA Advanced Propulsion Research Program. These concepts include fusion, antimatter-matter annihilation, microwave electrothermal, and electron cyclotron resonance propulsion. Results from programs to develop fusion technologies are reviewed, including compact fusion devices and inertial confinement experiments. Problems concerning both antimatter and fusion propulsion concepts are examined and the economic issues related to propulsion research are discussed.

  20. Mission applications of electric propulsion

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1974-01-01

    This paper reviews the mission applications of electric propulsion. The energy requirements of candidate high-energy missions gaining in NASA priority are used to highlight the potential of electric propulsion. Mission-propulsion interfaces are examined to point out differences between chemical and electric applications. Brief comparisons between ballistic requirements and capabilities and those of electric propulsion show that electric propulsion is presently the most practical and perhaps the only technology which can accomplish missions with these energy requirements.

  1. General Rotorcraft Aeromechanical Stability Program (GRASP) version 1.03: User's manual

    NASA Technical Reports Server (NTRS)

    Hopkins, A. Stewart; Kunz, Donald L.

    1988-01-01

    The Rotorcraft Dynamics Division, Aeroflightdynamics Directorate, U.S. Army Aviation Research and Technology Activity has developed the General Rotorcraft Aeromechanical Stability Program (GRASP) to perform calculations that will assess the stability of rotorcraft in hovering flight and ground contact conditions. The program is designed to be state-of-the-art, hybrid, finite-element/multibody code that can be applied to all existing and future helicopter configurations. While GRASP was specifically designed to solve rotorcraft stability problems, its innovative structure and formulation allow for application to a wide range of structures. This manual describes the preparation of the input file required by Version 1.03 of GRASP, the procedures used to invoke GRASP on the NASA Ames Research Center CRAY X-MP 48 computer, and the interpretation of the output produced by GRASP. The parameters used by the input file are defined, and summaries of the input file and the job control language are included.

  2. Proceedings of the Monterey Conference on Planning for Rotorcraft and Commuter Air Transportation

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.

    1983-01-01

    Planning and technological issues involved in rotorcraft and commuter fixed-wing air transportation are discussed. Subject areas include the future community environment, aircraft technology, community transportation planning, and regulatory perspectives.

  3. 77 FR 50576 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; OMB Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... and Fatigue Evaluation of Composite Rotorcraft Structures,'' published in the Federal Register (76 FR... impractical. In a correction document (77 FR 4890), published February 1, 2012, the FAA revised the...

  4. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 6: Vehicle Configuration Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Five high speed rotorcraft configurations are considered: the high speed helicopter, compound helicopter, ABC, tilt rotor and the X wing. The technology requirements and the recommended actions are discussed.

  5. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. Transonic airframe propulsion integration

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.; Sanders, Bobby W.; Bencze, Daniel P.

    1992-01-01

    This chart shows the time line for HSR propulsion/airframe integration program. HSR Phase 1 efforts are underway in both propulsion and aerodynamics. The propulsion efforts focus on cycles, inlets combustors and nozzles that will be required to reduce nitrogen oxide (NOX) at cruise and noise at takeoff and landing to acceptable levels. The aerodynamic efforts concentrate on concepts that will reduce sonic booms and increase the lift/drag (L/D) ratio for the aircraft. The Phase 2 critical propulsion component technology program will focus on large scale demonstrators of the inlet, fan, combustor, and nozzle. The hardware developed here will feed into the propulsion system program which will demonstrate overall system technology readiness, particularly in the takeoff and supersonic cruise speed ranges. The Phase 2 aerodynamic performance and vehicle integration program will provide a validated data base for advanced airframe/control/integration concepts over the full HSR speed range. The results of this program will also feed into the propulsion system demonstration program, particularly in the critical transonic arena.

  7. White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings

    NASA Technical Reports Server (NTRS)

    Lucero, John M.

    2003-01-01

    A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

  8. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and engineering capabilities have been demonstrated for a fusion reactor gain (Q) of the order of unity (TFTR: 0.25, JET: 0.65, JT-60: Q(sub eq) approx. 1.25). These technological advances made it compelling for considering fusion for propulsion.

  9. Progress in Conceptual Design and Analysis of Advanced Rotorcraft

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2012-01-01

    This presentation will give information on Multi-Disciplinary Analysis and Technology Development, including it's objectives and how they will be met. In addition, it will also present recent highlights including the Lift-Offset Civil Design and it's study conclusions, as well as, the LCTR2 Propulsion Concept's study conclusions. Recent publications and future publications will also be discussed.

  10. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  11. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  12. Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

    2006-01-01

    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  13. Nanosatellite Propulsion Development Program

    NASA Technical Reports Server (NTRS)

    Gagosian, J. S.; Rhee, M. S.; Zakrzwski, C. M.

    1999-01-01

    Earth-orbiting nanosatellite constellations are a unique and exciting means toward fulfilling part of the mission of the Goddard Space Flight Center (GSFC). These constellations, which may consist of several hundred 10-kg spacecraft, present unique challenges in the area of propulsion. Many mission concepts require significant delta-v and attitude control capability to reside in the nanosatellites. In response to requirements from mission feasibility studies, such as the Magnetospheric Constellation study, the GSFC has initiated industry and government partnerships to develop enabling propulsion technologies. The largest challenge has been to meet the power constraints of nanosatellites. These power issues, combined with the high thrust required by many of the missions studied, have led the GSFC to concentrate its efforts on chemical propulsion technology. Electric propulsion technologies capable of performing efficiently at very low power are also of interest to the GSFC as potential candidates for nanosatellite formation flying missions. This paper provides the status of specific industrial or government partnerships undertaken by the GSFC to develop nano/micro propulsion components. Three specific technologies are described in detail: 1) Nanosatellite Solid Rocket Motor Prototype 2) Ultra-Low-Power Cold Gas Thruster for Spin-Axis Precession 3) Micro-Machined Solid-Propellant Gas Generators.

  14. A liquid propulsion panorama

    NASA Astrophysics Data System (ADS)

    Caisso, Philippe; Souchier, Alain; Rothmund, Christophe; Alliot, Patrick; Bonhomme, Christophe; Zinner, Walter; Parsley, Randy; Neill, Todd; Forde, Scott; Starke, Robert; Wang, William; Takahashi, Mamoru; Atsumi, Masahiro; Valentian, Dominique

    2009-12-01

    Liquid-propellant rocket engines are widely used all over the world, thanks to their high performances, in particular high thrust-to-weight ratio. The present paper presents a general panorama of liquid propulsion as a contribution of the IAF Advanced Propulsion Prospective Group. After a brief history of its past development in the different parts of the world, the current status of liquid propulsion, the currently observed trends, the possible areas of future improvement and a summarized road map of future developments are presented. The road map includes a summary of the liquid propulsion status presented in the "Year in review 2007" of Aerospace America. Although liquid propulsion is often seen as a mature technology with few areas of potential improvement, the requirements of an active commercial market and a renewed interest for space exploration has led to the development of a family of new engines, with more design margins, simpler to use and to produce associated with a wide variety of thrust and life requirements.

  15. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  16. Nuclear concepts/propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

  17. 75 FR 50688 - Special Conditions: Erickson Air-Crane Incorporated S-64E and S-64F Rotorcraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ...These special conditions are issued for the Erickson Air-Crane Incorporated (Erickson Air-Crane) model S-64E and S-64F rotorcraft. These rotorcraft have novel or unusual design features associated with being transport category rotorcraft designed only for use in heavy external-load operations. At the time of original type certification, a special condition was issued for each model helicopter......

  18. Nuclear-electric propulsion - Manned Mars propulsion options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  19. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  20. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  1. Nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Keaton, Paul W.; Tubb, David J.

    1986-05-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  2. Nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.; Tubb, David J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  3. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  4. Wake ingestion propulsion benefit

    NASA Astrophysics Data System (ADS)

    Smith, Leroy H., Jr.

    1991-06-01

    It is well known that the efficiency of propulsion is improved if part or all of the propulsive fluid comes from the wake of the craft being propelled. In this paper this propulsion benefit is quantified in terms of wake parameters and propulsor properties. The formulations apply directly to unducted fans or propellers, but the conclusions are also relevant to ducted propulsors. It is found that the power saving is greatest when the propulsor disk loading is high, when the wake form factor is high (flow near separation), and when the propulsor design is such that the wake profile tends to be flattened as it passes through the propulsor (high wake recovery). Examples are given showing that the benefit can be in the 20 percent range in some cases. Propeller design parameters that lead to high wake recovery are also given.

  5. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containme

  6. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  7. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  8. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  9. In-flight rotorcraft blade elastic twist sensor

    NASA Astrophysics Data System (ADS)

    Copp, P.

    2014-04-01

    A novel sensor network for measuring rotorcraft blade elastic twist in flight using an expansion of strain gage theory is proposed and demonstrated. The embedded sensor has negligible weight, small power draw, high bandwidth (≥100 kHz), works in the high centrifugal force environment of the rotating blade and does not disturb the blade airflow or structure. The sensor network can also be used to measure lead-lag and flap bending. The blade is idealized as an Euler-Bernoulli beam in bending and a rod in torsion. The theory is rigorously derived from first principles and shows that a sawtooth shaped sensor will measure twist directly without any numerical integration. The network is modeled computationally for a blade undergoing arbitrary torsional and bending moments. The model shows the twist sensor is not affected by arbitrary loading or noise or local structural discontinuities. The twist sensor is then embedded in a Mach scale rotor blade. The elastic twist measurement from the sensor exactly matched the actual twist angle on the benchtop for small (±0.08°), moderate (±0.3°) and large (±2.5°) elastic twist angles over a 4.6 in span (16% of total span). For the large twist deflections, the blade also had flap bending deflections of ±0.34 in (±7% of span).

  10. Design sensitivity analysis of rotorcraft airframe structures for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1987-01-01

    Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

  11. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2005-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  12. Rotorcraft Fuselage Flow Control Using Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Coleman, Dustin; Thomas, Flint

    2012-11-01

    Active flow control, in the form of dielectric barrier discharge (DBD) plasma actuators, is applied to a NASA ROBIN-mod7 generic rotorcraft fuselage model. The model is considered in what would be a typical cruise position i.e. a nose down position at ? = -5 . This configuration gives rise to a massive 3-D flow separation over the aft ramp section of the fuselage, characterized by two counter-rotating, streamwise vortices. The control objective is to minimize these concentrated vortices by means of flush fuselage-mounted plasma streamwise vortex generators (PSVGs), and consequently, reduce the form drag of the vehicle. Experiments were conducted at freestream Mach and Reynolds numbers of M? = 0 . 12 and ReL = 2 . 65 million, respectively. Aerodynamic loads under both natural and controlled conditions were acquired through use of an ATI Mini40 6-component force sensor. The pressure field on the ramp section was monitored by a 128 count static pressure array. Likewise, the flow field was captured by time-resolved PIV wake surveys. Results are compared with previous studies that utilized active flow control by way of pulsed jets or combustion actuators. This work is supported under NASA Cooperative Agreement NNX10AM32G.

  13. Embedded Data Acquisition Tools for Rotorcraft Diagnostic Sensors

    NASA Technical Reports Server (NTRS)

    Wagoner, Robert

    2014-01-01

    Rotorcraft drive trains must withstand enormous pressure while operating continuously in extreme temperature and vibration environments. Captive components, such as planetary and spiral bevel gears, see enormous strain but are not accessible to fixed instrumentation, such as a piezoelectric transducer. Thus, it is difficult to directly monitor components that are most susceptible to damage. This innovation is a self-contained data processing unit within a specialized fixture that installs directly inside the rotating pinion gear in the gearbox. From this location, it detects and transmits high-resolution prognostic data to a fixed transceiver. The sensor is based on microelectromechanical systems (MEMS) technology and uses innovative circuit designs to capture high-bandwidth data and transmit it wirelessly from inside an operational helicopter transmission. With Ridgetop's advanced MEMS-based sensor, researchers have, for the first time, been able to extract high-resolution acoustic signatures wirelessly from sensors within the transmission that would otherwise be muffled by background gear noises. Ridgetop's innovative instrument will help researchers perform dynamic analysis of gear interaction and develop improved designs for gear components. In addition, data from this instrument can be used to validate new algorithms that detect and predict faults based on external acoustic signatures, for prognostic purposes. The result of this work will be an improvement in safety, performance, and cost for future generations of rotating components.

  14. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2004-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  15. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  16. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  17. Space Transportation Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  18. Supersonic laser propulsion.

    PubMed

    Rezunkov, Yurii; Schmidt, Alexander

    2014-11-01

    To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of C(m)∼10(-3) N/W is shown. PMID:25402938

  19. Electric Propulsion: Experimental Research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1995-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  20. Electric propulsion: Experimental research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1992-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  1. Polar observation propulsion requirements

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Uphoff, Chauncey

    1987-01-01

    Orbit perturbations and their effect on polar earth-orbiting space-surveillance spacecraft propulsion requirements for hydrazine, nitrogen tetroxide/monomethyl hydrazine, resistojet, and arcjet propulsion systems are investigated. Estimates of the Delta V and propellant mass required to correct for perturbations for both low-altitude and Molniya spacecraft orbits are presented, and 400-36,000 km orbit altitudes, and 57-90 deg orbit inclinations, are considered. The dominant factors in perturbations to the orbit of low-altitude earth orbiters, resulting from the earth's nonsphericity, are the second zonal harmonic describing the earth's oblateness, and the perturbations due to the earth's north-south mass asymmetry.

  2. Space transportation propulsion USSR launcher technology, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  3. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  4. Fundamentals of electrical propulsion plant design

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. A.; Kuropatkin, P. V.; Khaykin, A. B.; Khomyakov, N. M.

    1982-04-01

    Contents: electrical propulsion plant equipment requirements; dc electrical propulsion plant main current circuits; dc electrical propulsion plant field and regulation circuits; dc electrical propulsion plant protection, indication, and blocking circuits; calculation of the static characteristics of dc electrical propulsion plants; electrical propulsion plant stability and control quality; transient processes in dc electrical propulsion plants (theory, analytical, and graphic-analytical calculation methods); mathematical modelling for analysis and synthesis of electrical propulsion plant transient processes; problems of ac electrical propulsion plant design and their prospective development; transient processes in ac electric propeller drive; geometrical and weight characteristics of electrical propulsion plant main machinery; and dual-current electrical propulsion plants.

  5. Propulsion by impinging laser beams.

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1972-01-01

    Evaluation of the best mission performance of a 'photon sail' system using an impinging laser beam. The results of calculations of nondimensional time history of distance, velocity, and acceleration for propulsion by laser beam reflection are presented. These calculations show that propulsion by impinging laser beams is not competitive with advanced onboard propulsion concepts for missions in the solar system.

  6. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  7. General Aviation Propulsion

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

  8. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propusive force.

  9. Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2006-01-01

    The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.

  10. Turboprop Propulsion Mechanic.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine

  11. Rotorcraft Trajectory Tracking Using the State-Dependent Riccati Equation Controller

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Joo; Sung, Sang Kyung; Yang, Chang Deok; Yu, Yung Hoon

    This paper deals with the State-Dependent Riccati Equation (SDRE) method for designing a rotorcraft flight controller. It focuses on the design of the SDRE controller when a highly complex rotorcraft mathematical model is used. The requirements of the rotorcraft model are investigated to design the SDRE controller and to validate the final designs. Since the SDRE method can be applied to a deterministic system, adequate fidelity in the rotorcraft mathematical model is crucial to guarantee controller performance. However, a complex mathematical model generally prevents us from analytically deriving the State Dependent Coefficient (SDC) form of the system equations, which conforms to the basic structure of the SDRE method. This paper proposes a pure numerical procedure for SDC factorization of the motion equation. The numerical methods available to solve the algebraic Riccati equation are selected to cope with the inherent system instability and are applied to the trajectory tracking problems. The overall feature of the present approach is highlighted through analysis of a bob-up and turn maneuver. The results can be utilized as a guide for appropriate selection of rotorcraft mathematical models and numerical methods in designing a robust SDRE controller.

  12. Gas Wave Bearings: A Stable Alternative to Journal Bearings for High-Speed Oil-Free Machines

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    2005-01-01

    To run both smoothly and efficiently, high-speed machines need stable, low-friction bearings to support their rotors. In addition, an oil-free bearing system is a common requirement in today's designs. Therefore, self-acting gas film bearings are becoming the bearing of choice in high-performance rotating machinery, including that used in the machine tool industry. Although plain journal bearings carry more load and have superior lift and land characteristics, they suffer from instability problems. Since 1992, a new type of fluid film bearing, the wave bearing, has been under development at the NASA Lewis Research Center in Cleveland, Ohio, by Dr. Florin Dimofte, a Senior Research Associate of the University of Toledo. One unique characteristic of the waved journal bearing that gives it improved capabilities over conventional journal bearings is the low-amplitude waves of its inner diameter surface. The radial clearance is on the order of one thousandth of the shaft radius, and the wave amplitude is nominally up to one-half the clearance. This bearing concept offers a load capacity which is very close to that of a plain journal bearing, but it runs more stably at nominal speeds.

  13. Design and development of an active Gurney flap for rotorcraft

    NASA Astrophysics Data System (ADS)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2013-03-01

    The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.

  14. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  15. Micro electric propulsion feasibility

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Aston, Martha

    1992-01-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability, minimal detectability and low cost are requirements. All these miniature spacecraft share a common characteristic: because of their on-board electronic equipment they have, by design, solar order 50-100 W. In a relative sense, such spacecraft are power rich when compared to other larger spacecraft. This power rich situation is offset by very tight mass budgets, which make reductions in propellant mass requirements a key issue in meeting overall spacecraft minimum mass goals. In principle, power rich and propellant poor brilliant pebbles class spacecraft can benefit from using high specific impulse electric propulsion to reduce chemical propellant mass requirements. However, at power levels of order 50 W, arcjets cannot be made to function, ion thrusters are too complex and heavy and resistojets have too low a specific impulse. Recognizing these capability limitations in existing electric propulsion technology, the SDIO/IST sponsored the Phase I SBIR Micro Electric Propulsion (MEP) thruster study described in this report. The objective of this study was to examine the feasibility of developing a very simple, low mass and small volume, electric thruster for operation on hydrazine at less than 100 W of input power. The feasibility of developing such a MEP thruster was successfully demonstrated by EPL by the discovery of a novel plasma acceleration process. The sections in this report summarize the approach, test results and major accomplishments of this proof-of-concept program.

  16. Micro electric propulsion feasibility

    NASA Astrophysics Data System (ADS)

    Aston, Graeme; Aston, Martha

    1992-11-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability, minimal detectability and low cost are requirements. All these miniature spacecraft share a common characteristic: because of their on-board electronic equipment they have, by design, solar order 50-100 W. In a relative sense, such spacecraft are power rich when compared to other larger spacecraft. This power rich situation is offset by very tight mass budgets, which make reductions in propellant mass requirements a key issue in meeting overall spacecraft minimum mass goals. In principle, power rich and propellant poor brilliant pebbles class spacecraft can benefit from using high specific impulse electric propulsion to reduce chemical propellant mass requirements. However, at power levels of order 50 W, arcjets cannot be made to function, ion thrusters are too complex and heavy and resistojets have too low a specific impulse. Recognizing these capability limitations in existing electric propulsion technology, the SDIO/IST sponsored the Phase I SBIR Micro Electric Propulsion (MEP) thruster study described in this report.

  17. The Propulsion Center at MSFC

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold; Schmidt, George R. (Technical Monitor)

    2000-01-01

    The Propulsion Research Center at MSFC serves as a national resource for research of advanced, revolutionary propulsion technologies. Our mission is to move the nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft like access to earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space. Current efforts cover a wide range of exciting areas, including high-energy plasma thrusters, advanced fission and fusion engines, antimatter propulsion systems, beamed energy rockets and sails, and fundamental motive physics. Activities involve concept investigation, proof-of-concept demonstration, and breadboard validation of new propulsion systems. The Propulsion Research Center at MSFC provides an environment where NASA, national laboratories, universities, and industry researchers can pool their skills together to perform landmark propulsion achievements. We offer excellent educational opportunities to students and young researchers-fostering a wellspring of innovation that will revolutionize space transportation.

  18. A Historical Overview of Aeroelasticity Branch and Transonic Dynamics Tunnel Contributions to Rotorcraft Technology and Development

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Kvaternik, Raymond G.

    2001-01-01

    A historical account of the contributions of the Aeroelasticity Branch (AB) and the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and a review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in AB/TDT are then described in separate sections. Both experimental and analytical studies are reported and include a description of the various physical and mathematical models employed, the specific objectives of the investigations, and illustrative experimental and analytical results.

  19. Zero/zero rotorcraft certification issues. Volume 2: Plenary session presentations

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 2 of three. It presents the operator perspectives (system needs), applicable technology and zero/zero concepts developed in the first 12 months of research of this project.

  20. Zero/zero rotorcraft certification issues. Volume 3: Working group results

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 3 of three. It provides the issue-by-issue deliberations of the experts involved in the Working Groups assigned to deal with them in the Issues Forum.

  1. Contributions of the Langley Transonic Dynamics Tunnel to Rotorcraft Technology and Development

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Kvaternik, Raymond G.

    2000-01-01

    A historical account of the contributions of the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in the TDT are then described in separate sections. The discussions include a description of the various models employed, the specific objectives of the tests, and illustrative results.

  2. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.

  3. Research Applications and Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Hindson, William S.

    1996-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60 Black Hawk helicopter that is being modified by NASA and the US Army for flight systems research. The principal systems that are being installed in the aircraft are a Helmet-Mounted Display (HMD) and associated imaging systems, and a programmable full-authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. This paper describes the design features of this modern rotorcraft in-flight simulation facility and their current state of development. A brief description of initial research applications is included.

  4. Application of GRASP to nonlinear analysis of a cantilever beam. [General Rotorcraft Aeromechanical Stability Program

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.; Hodges, Dewey H.

    1987-01-01

    The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyze the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformation. The correlation is excellent in all cases.

  5. Application of GRASP (General Rotorcraft Aeromechanical Stability Program) to nonlinear analysis of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.; Hodges, Dewey H.

    1987-01-01

    The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.

  6. Application of special-purpose digital computers to rotorcraft real-time simulation

    NASA Technical Reports Server (NTRS)

    Mackie, D. B.; Michelson, S.

    1978-01-01

    The use of an array processor as a computational element in rotorcraft real-time simulation is studied. A multilooping scheme was considered in which the rotor would loop over its calculations a number of time while the remainder of the model cycled once on a host computer. To prove that such a method would realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical host-array processor computing configuration. The multilooping of an expanded rotor model, which included appropriate kinematic equations, resulted in an accurate and stable simulation.

  7. An Adaptive Altitude Information Fusion Method for Autonomous Landing Processes of Small Unmanned Aerial Rotorcraft

    PubMed Central

    Lei, Xusheng; Li, Jingjing

    2012-01-01

    This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993

  8. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.

  9. Hypersonic missile propulsion system

    SciTech Connect

    Kazmar, R.R.

    1998-11-01

    Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technology base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.

  10. Hybrid propulsion technology program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  11. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  12. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  13. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  14. Laser thermal propulsion

    NASA Technical Reports Server (NTRS)

    Keefer, D.; Elkins, R.; Peters, C.; Jones, L.

    1984-01-01

    Laser thermal propulsion (LTP) is studied for the case in which laser power is absorbed by a small very high-temperature plasma (about 20,000 K) and transferred to the remainder of the pure hydrogen propellant by radiation and mixing. This concept could lead to the realization of a lightweight orbital transfer vehicle propulsion system having a specific impulse in the range 1000-2000 s. Approximately 12 percent of the input power may be radiated to the thruster walls, and 15 percent of the total propellant flow must be heated to 20,000 K to provide a bulk temperature of 5000 K prior to expansion. Three principal research issues identified are: (1) conditions for hydrogen plasma ignition, (2) control of the plasma position within the laser beam, plasma stability, and plasma absorption efficiency, and (3) characterization of the mixing of the plasma and buffer flows.

  15. STOL propulsion systems

    NASA Technical Reports Server (NTRS)

    Denington, R. J.; Koenig, R. W.; Vanco, M. R.; Sagerser, D. A.

    1972-01-01

    The selection and the characteristics of quiet, clean propulsion systems for STOL aircraft are discussed. Engines are evaluated for augmentor wing and externally blown flap STOL aircraft with the engines located both under and over the wings. Some supporting test data are presented. Optimum engines are selected based on achieving the performance, economic, acoustic, and pollution goals presently being considered for future STOL aircraft. The data and results presented were obtained from a number of contracted studies and some supporting NASA inhouse programs, most of which began in early 1972. The contracts include: (1) two aircraft and mission studies, (2) two propulsion system studies, (3) the experimental and analytic work on the augmentor wing, and (4) the experimental programs on Q-Fan. Engines are selected and discussed based on aircraft economics using the direct operating cost as the primary criterion. This cost includes the cost of the crew, fuel, aircraft, and engine maintenance and depreciation.

  16. Emerging Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

  17. Why Density Dependent Propulsion?

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  18. Space shuttle propulsion systems

    NASA Technical Reports Server (NTRS)

    Bardos, Russell

    1991-01-01

    This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.

  19. Interstellar Propulsion Concepts Assessment

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    2000-01-01

    NASA is investigating the feasibility of conducting extra-solar and interstellar missions over the next 10 to 50 years. An assessment of technologies supporting these near and far term objectives is required. To help meet these objectives the Principal Investigator assessed the feasibility of candidate propulsion systems for the proposed 'Interstellar Probe', a mission to send a spacecraft to the Heliopause at 250 AU and beyond.

  20. The MAP Propulsion Subsystem

    NASA Technical Reports Server (NTRS)

    Davis, Gary T.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    This paper describes the requirements, design, integration, test, performance, and lessons learned of NASA's Microwave Anisotropy Probe (MAP) propulsion subsystem. MAP was launched on a Delta-II launch vehicle from NASA's Kennedy Space Center on June 30, 2001. Due to instrument thermal stability requirements, the Earth-Sun L2 Lagrange point was selected for the mission orbit. The L2 trajectory incorporated phasing loops and a lunar gravity assist. The propulsion subsystem's requirements are to manage momentum, perform maneuvers during the phasing loops to set up the lunar swingby, and perform stationkeeping at L2 for 2 years. MAP's propulsion subsystem uses 8 thrusters which are located and oriented to provide attitude control and momentum management about all axes, and delta-V in any direction without exposing the instrument to the sun. The propellant tank holds 72 kg of hydrazine, which is expelled by unregulated blowdown pressurization. Thermal management is complex because no heater cycling is allowed at L2. Several technical challenges presented themselves during I and T, such as in-situ weld repairs and in-situ bending of thruster tubes to accommodate late changes in the observatory CG. On-orbit performance has been nominal, and all phasing loop, mid-course correction, and stationkeeping maneuvers have been successfully performed to date.

  1. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  2. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  3. Geosynchronous earth orbit base propulsion - Electric propulsion options

    NASA Technical Reports Server (NTRS)

    Palaszewski, B.

    1987-01-01

    Electric propulsion and chemical propulsion requirements for a geosynchronous earth orbit (GEO) base were analyzed. The base is resupplied from the Space Station's low earth orbit. Orbit-transfer Delta-Vs, nodal-regression Delta-Vs and orbit-maintenance Delta-Vs were considered. For resupplying the base, a cryogenic oxygen/hydrogen (O2/H2) orbital transfer vehicle (OTV) is currently-baselined. Comparisons of several electric propulsion options with the O2/H2 OTV were conducted. Propulsion requirements for missions related to the GEO base were also analyzed. Payload data for the GEO missions were drawn from current mission data bases. Detailed electric propulsion module designs are presented. Mission analyses and propulsion analyses for the GEO-delivered payloads are included.

  4. Geosynchronous earth orbit base propulsion - electric propulsion options

    SciTech Connect

    Palaszewski, B.

    1987-01-01

    Electric propulsion and chemical propulsion requirements for a geosynchronous earth orbit (GEO) base were analyzed. The base is resupplied from the Space Station's low earth orbit. Orbit-transfer Delta-Vs, nodal-regression Delta-Vs and orbit-maintenance Delta-Vs were considered. For resupplying the base, a cryogenic oxygen/hydrogen (O2/H2) orbital transfer vehicle (OTV) is currently-baselined. Comparisons of several electric propulsion options with the O2/H2 OTV were conducted. Propulsion requirements for missions related to the GEO base were also analyzed. Payload data for the GEO missions were drawn from current mission data bases. Detailed electric propulsion module designs are presented. Mission analyses and propulsion analyses for the GEO-delivered payloads are included. 23 references.

  5. CAMRAD - A COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The Comprehensive Analytical Model of Rotorcraft Aerodynamics, CAMRAD, program is designed to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is a consistent combination of structural, inertial, and aerodynamic models applicable to a wide range of problems and a wide class of vehicles. The CAMRAD analysis can be applied to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The rotor degrees of freedom included are blade/flap bending, rigid pitch and elastic torsion, and optionally gimbal or teeter motion. General two-rotor aircrafts can be modeled. Single main-rotor and tandem helicopter and sideby-side tilting proprotor aircraft configurations can be considered. The case of a rotor or helicopter in a wind tunnel can also be modeled. The aircraft degrees of freedom included are the six rigid body motion, elastic airframe motions, and the rotor/engine speed perturbations. CAMRAD calculates the load and motion of helicopters and airframes in two stages. First the trim solution is obtained; then the flutter, flight dynamics, and/or transient behavior can be calculated. The trim operating conditions considered include level flight, steady climb or descent, and steady turns. The analysis of the rotor includes nonlinear inertial and aerodynamic models, applicable to large blade angles and a high inflow ratio, The rotor aerodynamic model is based on two-dimensional steady airfoil characteristics with corrections for three-dimensional and unsteady flow effects, including a dynamic stall model. In the flutter analysis, the matrices are constructed that describe the linear differential equations of motion, and the equations are analyzed. In the flight dynamics analysis, the stability derivatives are calculated and the matrices are constructed that describe the linear differential equations of motion. These equations are analyzed. In the transient analysis, the rigid body equations of motion are numerically integrated, for a prescribed transient gust or control input. The CAMRAD program product is available by license for a period of ten years to domestic U.S. licensees. The licensed program product includes the CAMRAD source code, command procedures, sample applications, and one set of supporting documentation. Copies of the documentation may be purchased separately at the price indicated below. CAMRAD is written in FORTRAN 77 for the DEC VAX under VMS 4.6 with a recommended core memory of 4.04 megabytes. The DISSPLA package is necessary for graphical output. CAMRAD was developed in 1980.

  6. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem.

    PubMed

    Nilsson, Christa; Edwards, Katarina; Eriksson, Jonny; Larsen, Susan Weng; stergaard, Jesper; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2012-08-14

    The present study was designed to evaluate the effect of the negatively charged food-grade emulsifier citrem on the internal nanostructures of oil-free and oil-loaded aqueous dispersions of phytantriol (PHYT) and glyceryl monooleate (GMO). To our knowledge, this is the first report in the literature on the utilization of this charged stabilizing agent in the formation of aqueous dispersions consisting of well-ordered interiors (either inverted-type hexagonal (H(2)) phases or inverted-type microemulsion systems). Synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to characterize the dispersed and the corresponding nondispersed phases of inverted-type nonlamellar liquid-crystalline phases and microemulsions. The results suggest a transition between different internal nanostructures of the aqueous dispersions after the addition of the stabilizer. In addition to the main function of citrem as a stabilizer that adheres to the surface of the dispersed particles, it has a significant impact on the internal nanostructures, which is governed by the following factors: (1) its penetration between the hydrophobic tails of the lipid molecules and (2) its degree of incorporation into the lipid-water interfacial area. In the presence of citrem, the formation of aqueous dispersions with functionalized hydrophilic domains by the enlargement of the hydrophilic nanochannels of the internal H(2) phase in hexosomes and the hydrophilic core of the L(2) phase in emulsified microemulsions (EMEs) could be particularly attractive for solubilizing and controlling the release of positively charged drugs. PMID:22831645

  7. Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method.

    PubMed

    Oliveira, Mariana B; Kossover, Olga; Mano, Joo F; Seliktar, Dror

    2015-02-01

    A new methodology is reported for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photoreactive poly(ethylene glycol) (PEG)-fibrinogen (PF) polymer was transported through a transparent injector exposed to light irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data revealed the crosslinking kinetics of the PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture just prior to atomization. The partially polymerized drops of PF/cells fell into a gelation bath for further crosslinking until fully polymerized hydrogel microparticles were formed. As the drops of solution exited the air-in-jet nozzle, their viscosity was designed to be sufficiently high so as to prevent rapid mixing and/or dilution in the gelation bath, but without undergoing complete gelation in the nozzle. Several parameters of this system were varied to control the size and polydispersity of the microparticles, including the cell density, the flow rate and the air pressure in the nozzle. The system was capable of producing cell-laden microparticles with an average diameter of between 88.1 to 347.1 ?m, and a dispersity of between 1.1 and 2.4, depending on the parameters chosen. Varying the precursor flow rate and/or cell density was beneficial in controlling the size and polydispersity of the microparticles; all microparticles exhibited very high cell viability, which was not affected by these parameters. In conclusion, this dropwise photopolymerization methodology for preparing cell-laden microparticles is an attractive alternative to existing techniques that use harsh solvents/oils and offer limited control over particle size and polydispersity. PMID:25462849

  8. Oil-free transportation

    NASA Astrophysics Data System (ADS)

    Lovins, Amory B.

    2015-03-01

    Automotive efficiency can be cost-effectively improved ˜2-3× by integrated reductions in mass, drag, and rolling resistance. (Mass is the key because it causes two-thirds of tractive load.) These improvements make affordable a variety of electrified advanced powertrain options that can raise efficiency by a further ˜2×, achieving ˜1-2 L-gasoline-equivalent per 100 km. These innovations are starting to enter the market. They could spread more by competition than by regulation. So will 3× gains in truck and 3-6× gains in airplane efficiency. Such superefficient vehicles can profitably eliminate oil use and decouple mobility from climate change and pollution.

  9. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  10. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  11. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  12. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  13. Solar electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macie, T. W.

    1971-01-01

    Achievements in the solar electric propulsion system technology program (SEPST 3) are reported and certain propulsion system-spacecraft interaction problems are discussed. The basic solar electric propulsion system concept and elements are reviewed. Hardware is discussed only briefly, relying on detailed fabrication or assembly descriptions reported elsewhere. Emphasis is placed on recent performance data, which are presented to show the relationship between spacecraft requirements and present technology.

  14. A closed loop experiment of collective bounce aeroelastic Rotorcraft-Pilot Coupling

    NASA Astrophysics Data System (ADS)

    Masarati, Pierangelo; Quaranta, Giuseppe; Lu, Linghai; Jump, Michael

    2014-01-01

    This work presents an experimental study that investigated the possibility of destabilising a rotorcraft by coupling the biomechanical behaviour of human subjects with the dynamics of the vehicle. The results of a study focused on the behaviour of pilots holding the collective control inceptor in a flight simulator are discussed. The motion of the flight simulation model was restricted to the heave axis, and augmented to include an elastic mode of vibration in addition to the rigid heave degree of freedom. Four different pilots flew several alternative model configurations with different elastic mode frequency and different collective pitch gearing ratios. This resulted in several observable unstable pilot-vehicle interactions at frequencies that cannot be traced back to the rotorcraft dynamics. Unstable oscillatory events evolving into limit cycle oscillations occurred most often at frequencies related to the biomechanics of the flight simulator occupant. They appeared to be task dependent and, in some cases, the trigger could be attributed to specific events. Additionally, it was found that the presence of collective friction alleviates but does not completely eliminate the unstable interactions between the pilot and the rotorcraft. Although not statistically meaningful because of the small set of human subjects available for the study, the results confirmed that the biomechanics transfer function of the pilot is the most influential aspect of the pilot-vehicle system that gives rise to the adverse vertical bounce phenomenon. Additionally, this study gave useful insight into the vehicle parameters that can adversely influence the involuntary interaction of pilots with rotorcraft.

  15. NASA gear research and its probable effect on rotorcraft transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Townsend, D. P.; Coy, J. J.

    1979-01-01

    The results of the NASA gear research is reviewed as well as those programs which are presently being undertaken. Research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. The impact of advanced gear research technology on rotorcraft transmission design is discussed.

  16. 14 CFR 61.161 - Aeronautical experience: Rotorcraft category and helicopter class rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... category and helicopter class rating. 61.161 Section 61.161 Aeronautics and Space FEDERAL AVIATION... helicopter class rating. (a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot...

  17. 14 CFR 61.161 - Aeronautical experience: Rotorcraft category and helicopter class rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... category and helicopter class rating. 61.161 Section 61.161 Aeronautics and Space FEDERAL AVIATION... helicopter class rating. (a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot...

  18. 14 CFR 61.161 - Aeronautical experience: Rotorcraft category and helicopter class rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... category and helicopter class rating. 61.161 Section 61.161 Aeronautics and Space FEDERAL AVIATION... helicopter class rating. (a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot...

  19. 14 CFR 61.161 - Aeronautical experience: Rotorcraft category and helicopter class rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... category and helicopter class rating. 61.161 Section 61.161 Aeronautics and Space FEDERAL AVIATION... helicopter class rating. (a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot...

  20. Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.

    PubMed

    Goldman, Geoffrey H

    2013-02-01

    A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds. PMID:23363088

  1. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  2. Reactors for nuclear electric propulsion

    SciTech Connect

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  3. Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications

    NASA Technical Reports Server (NTRS)

    Howard, Samuel

    2012-01-01

    A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

  4. A comparison of chemical propulsion, nuclear thermal propulsion, and multimegawatt electric propulsion for Mars missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.; Blandino, John J.; Leifer, Stephanie D.

    1991-01-01

    Various propulsion systems are considered for a split-mission piloted exploration of Mars in terms of reducing total initial mass in low earth orbit (IMLEO) as well as trip time. Aerobraked nuclear thermal propulsion (NTP), multimegawatt (MMW) nuclear electric propulsion (NEP), and MMW solar electric propulsion (SEP) are discussed and compared to a baseline aerobraked chemical propulsion system. NTP offers low IMLEO, MMW NEP allows both low IMLEO and a short trip time, and both nuclear systems offer better mission characteristics than the chemical system. The MMW SEP is concluded to be less efficient in spite of a lower IMLEO because of the system's higher specific mass and nonconstant power production. It is recommended that MMW NEP and SEP systems be considered for application to Mars cargo missions. The NEP system is concluded to be the most effective propulsion configuration for piloted Mars missions and lunar base missions.

  5. Miniature propulsion systems

    NASA Astrophysics Data System (ADS)

    Campbell, John G.

    1992-07-01

    Miniature solenoid valves, check valves and a hydrazine gas generator typify the miniaturization used in the liquid propulsion system for the Army Light Weight Exo-Atmospheric Projectile (LEAP). The pressure control subsystem uses a solenoid valve weighing 24 grams to control flow of helium to pressurize the propellant tanks. The attitude control subsystem uses a gas generator weighing 71 grams to produce decomposed hydrazine as the gaseous propellant for miniature 1 lbf ACS thrusters weighing 5.4 grams. The successful use of these miniature components in development tests and a hover test of the LEAP is described.

  6. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  7. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  8. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  9. F-15 propulsion system

    NASA Technical Reports Server (NTRS)

    Bushman, Mark; Nobbs, Steven G.

    1995-01-01

    A brief description of the NASA F-15 research aircraft propulsion system is given. The F-15 is powered by two PW1128 afterburning turbofan engines which are growth versions of the F100-PW-100 engine. The PW1128 is controlled by a full-authority digital electronic engine control (DEEC). The F-15 inlet is a two-dimensional, three-ramp, external compression design with partially cut back side plates. Each inlet is independently controlled by an electronic air inlet controller (EAIC).

  10. Propulsion by tachyon beams

    SciTech Connect

    Powell, C.

    1989-07-01

    A possibility of generating collimated beams of faster-than-light particles (tachyons) and using them for rocket propulsion is explored. The relativistic rocket equations are derived, and are solved for a single-stage rocket with constant mass flow rate, constant exhaust velocity and no coasting period. The features of these solutions for faster-than-light exhaust velocities are discussed. It is shown that a tachyon drive would not violate the first law of thermodynamics. However, as seen in the Galactic frame, it would violate the second law.

  11. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.

  12. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  13. Overview on hybrid propulsion

    NASA Astrophysics Data System (ADS)

    Calabro, M.

    2011-10-01

    Aside of research works, this historical survey shows propulsion units used by students for small satellites and for gas generation, or those for the Space Ship One, even if LOx/HTPB was studied and tested in large motors for its potential very low cost; however, this combination highlights a series of technical problems without any performance advantage over the existing LOx/Kerosene family and never been operational for ETO applications. The particularity of hybrid propulsion is to use the state-of-the-art of both liquids and solids; the only show stopper is the propellant itself. The past work focused on LOx/HTPB (selected for its low cost) appears to be a dead-end (combustion problems and global low performances resulting from a high level of residuals). The solution that appears through the past experience is the addition of hydrides to a binder (HTPB or other) or to a binder and a homogeneous fuel or a mixture of both, with or without others additives; within these solutions some will not present any manufacturing problem and some may have a low cost. Nevertheless, the studies of the following phases have to demonstrate the compatibility of the potential regression rate range with a high-performance global design of a hybrid Motor and the manufacturing at a reasonable cost of a hydride giving a high level of performances.

  14. Jet propulsion without inertia

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio E.; Lauga, Eric

    2010-08-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e., jetting) surfaces are considered and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number, which corresponds to the potential flow created by a source dipole at the sphere center. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.

  15. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  16. Assessing potential propulsion breakthroughs.

    PubMed

    Millis, Marc G

    2005-12-01

    The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations have begun. During 1996-2002 NASA supported the breakthrough propulsion physics project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging, since the breakthroughs are still only notional concepts, but energy can serve as a basis for comparison. A hypothetical space drive would require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (1) research tasks are constrained to only address the immediate unknowns, curious effects, or critical issues; (2) reliability of assertions is more important than their implications; and (3) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum. PMID:16510425

  17. Ship propulsion system

    SciTech Connect

    Kimon, P.M.

    1986-01-21

    This patent describes an improved efficiency propulsion system for a ship operated at both deep and shallow water depths, and at variable loaded and ballast waterlines. This propulsion system consists of a number of elements interactive in their operation. The first component of the system detailed is a variable diameter propeller means equipped with a mechanism for varying the diameter of the propeller between a maximum extended diameter and a minimum diameter. The next component of the system depicted in the patent is a propeller shaft mounting which enables the propeller to rotate in the stern portion of the ship. The propeller shaft is characterized as extending parallel to the bottom keel of the ship and having an axis of rotation displaced from the bottom keel a distance less than one-half the maximum diameter of the propeller means but more than one-half of the minimum diameter of the propeller means. As a consequence of the systems design characteristics the ship may obtain maximum propeller efficiency by means of the extension in diameter of the propeller means when it is operated in a fully loaded condition in deep water.

  18. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  19. Numerical propulsion system simulation

    NASA Technical Reports Server (NTRS)

    Lytle, John K.; Remaklus, David A.; Nichols, Lester D.

    1990-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.

  20. Assessing Potential Propulsion Breakthroughs

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2005-01-01

    The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations into these goals have begun. From 1996 to 2002, NASA supported the Breakthrough Propulsion Physics Project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging since the breakthroughs are still only notional concepts, but kinetic energy can serve as a basis for comparison. In terms of kinetic energy, a hypothetical space drive could require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than their implications, and (c) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.

  1. Emergent Propulsion Systems

    NASA Astrophysics Data System (ADS)

    El-Fakdi Sencianes, Andres

    2002-01-01

    almost an Engineer (2002 will be my last year as student) and the studies that I'm now ending here, in Girona, are closely related not only with science and technology subjects but with optimization and economic result obtention, too. Huge distances that separate us from everything in space have launched scientists and engineers into a new challenge: How to reach maximum speeds keeping high ratios payload/total spacecraft mass? The key limitation of chemical rockets is that their exhaust velocity is relatively low. Because achieving Earth orbit requires a high velocity change a rocket must carry far more propellant than payload. The answer to all this complications seems to stare in one way: electric propulsion systems and the possibility of taking advantatge of solar winds to thrust our crafts. possible solutions, some of them have been studied for years and now they are not a project but a reality; also newest theories bring us the possibility of dream. Improve of commom propellants, search of new ones: Investigators continued research on use of atomic species as high-energy-density propellants, which could increase the specific impulse of hydrogen/oxygen rockets by 50-150%. Nuclear fission propulsion: Centered in development of reactors for nearterm nuclear electric propulsion aplications. Multimegawatt systems based on vapor core reactors and magnetohydrodynamic power conversion. Engineers investigated new fuels for compact nuclear thermal propulsion systems. What is called plasma state?: When a gas is heated to tens of thousands or millions of degrees, atoms lose their electrons. The result is a "soup" of charged particles, or plasma, made up of negatively charged electrons and positively charged ions. No known material can contain the hot plasma necessary for rocket propulsion, but specially designed magnetic fields can. Plasma rockets: This rockets are not powered by conventional chemical reactions as today's rockets are, but by electrical energy that heats the propellant. The propellant is a plasma that reaches extreme temperatures. Rockets tend to work much better the hotter the exhaust is. Thrust from the plasma engine could boost a spacecraft for a longer time and with better efficiency than conventional engines. Solar Windsurfing: A technology that uses a magnetic balloon to capture ionized particles shed by the Sun, "sailing" through space by taking use of the pressure of the sun's rays. All that is needed is a thin sheet of reflective material. Solar photons bounce off and transfer momentum to the sail, allowing the spacecraft to accelerate without expending fuel. General problems: -The electrostatic impact of the plasma created by electric thruster on spacecraft charging. -The influence of plasma ejected from the thruster on solar panel performances. -Creation of parasite currents in the structure that may disturb sensitive equipment. -... in 300 words but I think that you will have a general idea about my work and what The Astronautical Congres represents to me.

  2. Exotic power and propulsion concepts

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

  3. Modern Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Based on Project Orion, an interplanetary vehicle using pulsed fission propulsion would incorporate modern technologies for momentum transfer, thermal management, and habitation design.

  4. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Wasel, Robert A.

    1987-01-01

    The NASA OAST Propulsion, Power and Energy Division supports electric propulsion for a broad class of missions. Concepts with potential to significantly benefit or enable space exploration and exploitation are identified and advanced toward applications in the near to far term. Recent program progress in mission/system analyses and in electrothermal, ion, and electromagnetic technologies are summarized.

  5. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  6. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  7. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  8. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate that an MHD accelerator can be an effective augmentation system for increasing engine exhaust velocity. More specifically, the experiment is intended to show that electromagnetic effects are effective at producing flow acceleration whereas electrothermal effects do not cause unacceptable heating of the working fluid. The MHD accelerator was designed as an externally diagonalized segmented Faraday channel, which will be inserted into an existing 2-tesla electromagnet. This allows the external power to be connected through two terminals thereby minimizing the complexity and cost associated with powering each segment independently. The design of the accelerator and other components in the flow path has been completed and fabrication activities are underway. This paper provides a full description of MAPX including performance analysis, design, and test plans, and current status.

  9. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  10. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  11. Propulsion system assembly

    SciTech Connect

    Zysmaan, S.H.

    1993-06-08

    A propulsion system assembly for a vehicle is described having an engine and a nacelle disposed about the engine which has an exterior which comprises: a shroud disposed circumferentially about the nacelle which is spaced radially from the nacelle leaving an opening there between for cooling air from the exterior of the nacelle; structure which extends radially upstream of the opening to block flow from entering the opening, the structure extending between the shroud and nacelle and having at least one under cut portion forming a passage which diverges in the axial direction and which begins upstream of the opening and is bounded by an axially extending wall on the structure; wherein the passage provides a flow path to duct air from the exterior of the nacelle to a location downstream of the blocked portion of the opening on the interior of the shroud.

  12. Pulsed plasmoid electric propulsion

    NASA Technical Reports Server (NTRS)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  13. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation with alkali metal propellants.

  14. Anatomy of Nanoscale Propulsion.

    PubMed

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots. PMID:26098511

  15. Space station propulsion

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

  16. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  17. MSFC Nuclear Propulsion Materials Development

    NASA Technical Reports Server (NTRS)

    Rogers, J. R.; Cook, B.

    2004-01-01

    Nuclear propulsion systems for spacecraft applications present numerous technical challenges for propulsion systems. They have been the focus of a recent NRA. Challenges inclue: a nuclear reactor subsystem to produce thermal energy; a power conversion subsystem to convert the thermal energy into electrical energy; a propulsion subsystem that utilizes Hall effect thrusters; thruster technologies and high temperature materials to support subsystems. The MSFC Electrostatic Levitation (ESL) Facility provides an ideal platform for the study of high temperature and reactive materials. An overview of the facility and its capabilities will be presented.

  18. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.

  19. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  20. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  1. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2014-01-01

    Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  2. Manrating orbital transfer vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1985-01-01

    The expended capabilities for Orbital Transfer Vehicles (OTV) which will be needed to meet increased payload requirements for transporting materials and men to geosynchronous orbit are discussed. The requirement to provide manrating offers challenges and opportunities to the propulsion system designers. The propulsion approaches utilized in previous manned space vehicles of the United States are reviewed. The principals of reliability analysis are applied to the Orbit Transfer Vehicle. Propulsion system options are characterized in terms of the test requirements to demonstrate reliability goals and are compared to earlier vehicle approaches.

  3. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  4. Electric propulsion and interstellar flight

    SciTech Connect

    Matloff, G.L.

    1987-01-01

    Two general classes of interstellar space-flights are defined: endothermic and exothermic. Endothermic methods utilize power sources external to the vehicle and associated technology. Faster exothermic methods utilize on-board propulsive power sources or energy-beam technology. Various proposed endothermic electric propulsion methods are described. These include solar electric rockets, mass drivers, and ramjets. A review of previously suggested exothermic electric propulsion methods is presented. Following this review is a detailed discussion of possible near future application of the beamed-laser ramjet, mainly for ultimate relativistic travel. Electric/magnetic techniques offer an excellent possibility for decelerating an interstellar vehicle, regardless of the acceleration technique. 20 references.

  5. A robust direct-integration method for rotorcraft maneuver and periodic response

    NASA Technical Reports Server (NTRS)

    Panda, Brahmananda

    1992-01-01

    The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.

  6. Quantitative Feedback Theory (QFT) applied to the design of a rotorcraft flight control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Gorder, P. J.

    1992-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. Quantitative Feedback Theory is applied to the design of the longitudinal flight control system for a linear uncertain model of the AH-64 rotorcraft. In this model, the uncertainty is assigned, and is assumed to be attributable to actual uncertainty in the dynamic model and to the changes in the vehicle aerodynamic characteristics which occur near hover. The model includes an approximation to the rotor and actuator dynamics. The design example indicates the manner in which handling qualities criteria may be incorporated into the design of realistic rotorcraft control systems in which significant uncertainty exists in the vehicle model.

  7. Maneuvering Rotorcraft Noise Prediction: A New Code for a New Problem

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Bres, Guillaume A.; Perez, Guillaume; Jones, Henry E.

    2002-01-01

    This paper presents the unique aspects of the development of an entirely new maneuver noise prediction code called PSU-WOPWOP. The main focus of the code is the aeroacoustic aspects of the maneuver noise problem, when the aeromechanical input data are provided (namely aircraft and blade motion, blade airloads). The PSU-WOPWOP noise prediction capability was developed for rotors in steady and transient maneuvering flight. Featuring an object-oriented design, the code allows great flexibility for complex rotor configuration and motion (including multiple rotors and full aircraft motion). The relative locations and number of hinges, flexures, and body motions can be arbitrarily specified to match the any specific rotorcraft. An analysis of algorithm efficiency is performed for maneuver noise prediction along with a description of the tradeoffs made specifically for the maneuvering noise problem. Noise predictions for the main rotor of a rotorcraft in steady descent, transient (arrested) descent, hover and a mild "pop-up" maneuver are demonstrated.

  8. Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.

    2004-01-01

    Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.

  9. AHS National Specialists' Meeting on Rotorcraft Dynamics, Arlington, TX, Nov. 13, 14, 1989, Proceedings

    SciTech Connect

    Not Available

    1989-01-01

    Various papers on rotorcraft dynamics are presented. Individual topics addressed include: aeromechanical stability of helicopters, evolution and test history of the V-22 Aeroelastic Model Series, helicopter individual blade control through optimal output feedback, dynamic characteristics of composite beam structures, dynamic testing of thin-walled composite box beams in a vacuum chamber, fundamental dynamics issues for comprehensive rotorcraft analyses, and development of the second generation Comprehensive Helicopter Analysis System. Also considered are: experiences in NASTRAN airframe vibration predictions, application of CRFD program to total helicopter dynamics, vibration reduction on servoflap controlled rotor using HHC, V-22 MSC/NASTRAN airframe vibration analysis and correlation, responses of helicopter rotors to vibratory airloads, helicopter rotor load calculations, prediction and alleviation of V-22 rotor dynamic loads, free wake analysis of rotor configurations for reduced vibratory airloads.

  10. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  11. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  12. Effects of side-stick controllers on rotorcraft handling qualities for terrain flight

    NASA Technical Reports Server (NTRS)

    Aiken, E. W.

    1985-01-01

    Pertinent fixed and rotary-wing feasibility studies and handling-qualities research programs are reviewed and the effects of certain controller characteristics on handling qualities for specific rotorcraft flight tasks are summarized. The effects of the controller force-deflection relationship and the number of controlled axes that are integrated in a single controller are examined. Simulation studies were conducted which provide a significant part of the available handling qualities data. The studies demonstrate the feasibility of using a single, properly designed, limited-displacement, multiaxis controller for certain relatively routine flight tasks in a two-crew rotorcraft with nominal levels of stability and control augmentation with a high degree of reliability are incorporated, separated three or two-axis controller configurations are required for acceptable handling qualities.

  13. The '90's - Decade of quieter rotorcraft: An idea whose time is necessary

    NASA Astrophysics Data System (ADS)

    Sternfeld, Harry, Jr.

    1991-10-01

    A review is presented of the problems, research and design concepts for alleviating rotorcraft noise and meeting the civil aeronautics noise standards. The military has also been expressing concern for helicopter noise both as it affects the civilian population and, in some cases, detection by both human and electronic arrays. Attention is given to the impact on design, the principal sources of helicopter rotor noise, the effect of duct design on fan noise fundamental, and interface with the infrastructure.

  14. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 2: User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The use of a computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. The program calculates the loads and motion of helicopter rotors and airframe. First the trim solution is obtained, then the flutter, flight dynamics, and/or transient behavior can be calculated. Either a new job can be initiated or further calculations can be performed for an old job.

  15. Correlation of SA349/2 helicopter flight-test data with a comprehensive rotorcraft model

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; codes.

    1987-01-01

    A comprehensive rotorcraft analysis model was used to predict blade aerodynamic and structural loads for comparison with flight test data. The data were obtained from an SA349/2 helicopter with an advanced geometry rotor. Sensitivity of the correlation to wake geometry, blade dynamics, and blade aerodynamic effects was investigated. Blade chordwise pressure coefficients were predicted for the blade transonic regimes using the model coupled with two finite-difference codes.

  16. Versatile simulation testbed for rotorcraft speech I/O system design

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1986-01-01

    A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer command structure and features, feedback from the recognizer, and random access to controls via speech command.

  17. Design for manufacture by resin transfer molding of composite parts for rotorcraft

    NASA Astrophysics Data System (ADS)

    Korngold, J. C.; Larson, D. E.; Luscher, A. F.; Devries, W. R.

    1993-01-01

    The paper examines the features of resing transfer molding (RTM) that should be considered by a designed for insuring high performance and productivity. A case study is presented which illustrates the need for design for manufacture (DFM) guidelines in RTM, and a scenario describing the features of a prototype computer-aided DFM tool that supports a designer in following the guidelines is discussed. The design of rotorcraft transmission housings provides an example of the application of the DFM concept.

  18. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  19. SCI Identification (SCIDNT) program user's guide. [maximum likelihood method for linear rotorcraft models

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.

  20. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings - A design perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Masarati, Pierangelo; Gennaretti, Massimo; Jump, Michael; Zaichik, Larisa; Dang-Vu, Binh; Lu, Linghai; Yilmaz, Deniz; Quaranta, Giuseppe; Ionita, Achim; Serafini, Jacopo

    2015-07-01

    Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detection (2010-2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.

  1. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.

    2009-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  2. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris

    2008-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  3. Controls design with crossfeeds for hovering rotorcraft using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Biezad, Daniel J.; Cheng, Rendy

    1996-01-01

    A multi-input, multi-output controls design with dynamic crossfeed pre-compensation is presented for rotorcraft in near-hovering flight using Quantitative Feedback Theory (QFT). The resulting closed-loop control system bandwidth allows the rotorcraft to be considered for use as an inflight simulator. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets most handling qualities specifications relative to the decoupling of off-axis responses. Handling qualities are Level 1 for both low-gain tasks and high-gain tasks in the roll, pitch, and yaw axes except for the 10 deg/sec moderate-amplitude yaw command where the rotorcraft exhibits Level 2 handling qualities in the yaw axis caused by phase lag. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensators successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective. This is an area to be investigated in future research.

  4. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

    1991-01-01

    The work performed on the Ion Propulsion System Technology Task in FY90 is described. The objectives of this work fall under two broad categories. The first of these deals with issues associated with the application of xenon ion thrusters for primary propulsion of planetary spacecraft, and the second with the investigation of technologies which will facilitate the development of larger, higher power ion thrusters to support more advanced mission applications. Most of the effort was devoted to investigation of the critical issues associated with the use of ion thrusters for planetary spacecraft. These issues may be succinctly referred to as life time, system integration, and throttling. Chief among these is the engine life time. If the engines do not have sufficient life to perform the missions of interest, then the other issues become unimportant. Ion engine life time was investigated through two experimental programs: an investigation into the reduction of ion engine internal sputter erosion through the addition of small quantities of nitrogen, and a long duration cathode life test. In addition, a literature review and analysis of accelerator grid erosion were performed. The nitrogen addition tests indicated that the addition of between 0.5 and 1.0 percent of nitrogen by mass to the xenon propellant results in a reduction in the sputter erosion of discharge chamber components by a factor of between 20 and 50, with negligible reduction in thruster performance. The long duration test of a 6.35-mm dia. xenon hollow cathode is still in progress, and has accumulated more than 4,000 hours of operation at an emission current of 25 A at the time of this writing. One of the major system integration issues concerns possible interactions of the ion thruster produced charge exchange plasma with the spacecraft. A computer model originally developed to describe the behavior of mercury ion thruster charge exchange plasmas was resurrected and modified for xenon propellant. This model enables one to calculate the flow direction and local density of the charge exchange plasma, and indicates the degree to which this plasma can flow upstream of the thruster exhaust plane. A continuing effort to investigate the most desirable throttling technique for noble gas ion thrusters concentrated this year on experimentally determining the fixed flow rate throttling range of a 30-cm dia. thruster with a two-grid accelerator system. These experiments demonstrated a throttling capability which covers a 2.8 to 1 variation in input power. This throttling range is 55 percent greater than expected, and is due to better accelerator system performance at low net-to-total voltage ratios than indicated in the literature. To facilitate the development of large, higher power ion thrusters several brief studies were performed. These include the development of a technique which simulates ion thruster operation without beam extraction, the development of an optical technique to measure ion thruster grid distortion due to thermal expansion, tests of a capacitance measurement technique to quantify the accelerator system grid separation, and the development of a segmented thruster geometry which enables near term development of ion thrusters at power levels greater than 100 kW. Finally, a paper detailing the benefits of electric propulsion for the Space Exploration Initiative was written.

  5. Emerging Propulsion Technologies

    NASA Astrophysics Data System (ADS)

    Bonometti, J. A.

    2004-11-01

    The Emerging Propulsion Technologies (EPT) technology area is a branch of the In-Space Program that serves as a bridge to bring high-risk/high-payoff technologies to a higher level of maturity. Emerging technologies are innovative and, if successfully developed, could result in revolutionary science capabilities for NASA science missions. EPT is also charged with the responsibility of assessing the technology readiness level (TRL) of technologies under consideration for inclusion in the ISP portfolio. One such technology is the Momentum-eXchange/Electrodynamic Reboost (MXER) tether concept, which is the current, primary investment of EPT. The MXER tether is a long, rotating cable placed in an elliptical Earth orbit, whose rapid rotation allows its tip to catch a payload in a low Earth orbit and throw that payload to a high-energy orbit. Electrodynamic tether propulsion is used to restore the orbital energy transferred by the MXER tether to the payload and reboost the tether's orbit. This technique uses solar power to drive electrical current collected from the Earth's ionosphere through the tether, resulting in a magnetic interaction with the terrestrial field. Since the Earth itself serves as the reaction mass, the thrust force is generated without propellant and allows the MXER facility to be repeatedly reused without re-supply. Essentially, the MXER facility is a 'propellantless' upper stage that could assist nearly every mission going beyond low Earth orbit. Payloads to interplanetary destinations could especially benefit from the boost provided by the MXER facility, resulting in launch vehicle cost reductions, increased payload fractions and more frequent mission opportunities. Synergistic tether technologies resulting from MXER development could include science sampling in the upper atmosphere, remote probes or attached formation flying, artificial gravity experiments with low Coriolis forces, and other science needs that use long, ultra-light strength or conducting cables in space. Tether development additionally embraces the science investigation of ionospheric physics, micrometeorite and space particulates in LEO and precise earth environment knowledge of gravity fields, solar flux, .thermal environments and magnetic fields.

  6. Megawatt level electric propulsion perspectives

    NASA Technical Reports Server (NTRS)

    Jahn, Robert G.; Kelly, Arnold J.

    1987-01-01

    For long range space missions, deliverable payload fraction is an inverse exponential function of the propellant exhaust velocity or specific impulse of the propulsion system. The exhaust velocity of chemical systems are limited by their combustion chemistry and heat transfer to a few km/s. Nuclear rockets may achieve double this range, but are still heat transfer limited and ponderous to develop. Various electric propulsion systems can achieve exhaust velocities in the 10 km/s range, at considerably lower thrust densities, but require an external electrical power source. A general overview is provided of the currently available electric propulsion systems from the perspective of their characteristics as a terminal load for space nuclear systems. A summary of the available electric propulsion options is shown and generally characterized in the power vs. exhaust velocity plot. There are 3 general classes of electric thruster devices: neutral gas heaters, plasma devices, and space charge limited electrostatic or ion thrusters.

  7. Environmental benefits of chemical propulsion

    NASA Technical Reports Server (NTRS)

    Hayes, Joyce A.; Goldberg, Benjamin E.; Anderson, David M.

    1995-01-01

    This paper identifies the necessity of chemical propulsion to satellite usage and some of the benefits accrued through monitoring global resources and patterns, including the Global Climate Change Model (GCM). The paper also summarized how the satellite observations are used to affect national and international policies. Chemical propulsion, like all environmentally conscious industries, does provide limited, controlled pollutant sources through its manufacture and usage. However, chemical propulsion is the sole source which enables mankind to launch spacecraft and monitor the Earth. The information provided by remote sensing directly affects national and international policies designed to protect the environment and enhance the overall quality of life on Earth. The resultant of chemical propulsion is the capability to reduce overall pollutant emissions to the benefit of mankind.

  8. SSME propulsion performance reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Temple, Enoch C.

    1988-01-01

    In view of the complex flight operation of the Space Shuttle propulsion system together with an expected launch rate increase, the flight performance reconstruction process needs to be performed by automated computer programs. These programs must have the capability to quickly and reliably determine the true behavior of the various components of the propulsion system. For the flight reconstruction, measured values from the solid rocket motors, liquid engines, and trajectory are appraised through the Kalman filter technique to identify the most likely flight propulsion performance. A more detailed data collection program for the single SSME engine captive test firing evaluation is scheduled for startup in September of 1988. Engine performance evaluation for the captive test firing requires a reconstruction process that is similar to the process that is used for the flight reconstruction. Analytical tools that may be used to reconstruct a propulsion system's true performance under flight and/or test conditions are described.

  9. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  10. Nuclear thermal propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1993-01-01

    Viewgraphs on nuclear thermal propulsion technology overview are presented. Topics covered include non-nuclear material; instrumentation, controls, and health monitoring; turbopumps; nozzle and extension; and exhaust plume characteristics.

  11. Trajectory correction propulsion for TOPS

    NASA Technical Reports Server (NTRS)

    Long, H. R.; Bjorklund, R. A.

    1972-01-01

    A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.

  12. Vehicle Integrated Propulsion Research Tests

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Hunter, Gary W.; Simon, Don; Meredith, Roger; Wrbanek, John; Woike, Mark; Tokars, Roger; Guffanti, Marianne; Lyall, Eric

    2013-01-01

    Overview of the Vehicle Integrated Propulsion Research Tests in the Vehicle Systems Safety Technologies project. This overview covers highlights of the completed VIPR I and VIPR II tests and also covers plans for the VIPR III test.

  13. COGAS propulsion for LNG ships

    NASA Astrophysics Data System (ADS)

    Wiggins, Edwin G.

    2011-06-01

    Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.

  14. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2014-06-17

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  15. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  16. Theory for Plasma Rocket Propulsion

    NASA Astrophysics Data System (ADS)

    Grabbe, Crockett

    2009-11-01

    Electrical propulsion of rockets is developing potentially into the use of 3 different thrusters for future long-distance space missions that primarily involve plasma dynamics. These are the Magnetoplasmadynamic (MPD) Thruster, the Plasma Induction Thruster (PID), and the VASIMIR Thruster. The history of the development of electrical propulsion into these prospects and the current research of particularly the VASIMIR Thruster are reviewed. Theoretical questions that need to be addressed in that development are explored.

  17. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  18. LISA propulsion module separation study

    NASA Astrophysics Data System (ADS)

    Merkowitz, S. M.; Ahmad, A.; Hyde, T. T.; Sweetser, T.; Ziemer, J.; Conkey, S.; Kelly, W., III; Shirgur, B.

    2005-05-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three sciencecraft in heliocentric orbit. Each sciencecraft is delivered to its operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently included in the sciencecraft design are micronewton level thrusters, such as field emission electric propulsion (FEEP) or colloid thrusters, that are used to balance the 30 40 N of solar radiation pressure and provide the drag-free and attitude control of the sciencecraft. Due to these thrusters' limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a study of the propulsion module separation system requirements that are necessary to safely deliver the three LISA sciencecraft to their final operational orbits.

  19. Electric propulsion for small satellites

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Zhuang, Taisen; Shashurin, Alexey; Teel, George; Chiu, Dereck; Lukas, Joseph; Haque, Samudra; Brieda, Lubos

    2015-01-01

    Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (CAT). The CAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1-50 Hz producing thrust ranging from 1 N to 0.05 mN.

  20. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  1. Mars Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  2. Asymmetrical Capacitors for Propulsion

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Melcher, Cory; Winet, Edwin

    2004-01-01

    Asymmetrical Capacitor Thrusters have been proposed as a source of propulsion. For over eighty years, it has been known that a thrust results when a high voltage is placed across an asymmetrical capacitor, when that voltage causes a leakage current to flow. However, there is surprisingly little experimental or theoretical data explaining this effect. This paper reports on the results of tests of several Asymmetrical Capacitor Thrusters (ACTs). The thrust they produce has been measured for various voltages, polarities, and ground configurations and their radiation in the VHF range has been recorded. These tests were performed at atmospheric pressure and at various reduced pressures. A simple model for the thrust was developed. The model assumed the thrust was due to electrostatic forces on the leakage current flowing across the capacitor. It was further assumed that this current involves charged ions which undergo multiple collisions with air. These collisions transfer momentum. All of the measured data was consistent with this model. Many configurations were tested, and the results suggest general design principles for ACTs to be used for a variety of purposes.

  3. Mock Certification Basis for an Unmanned Rotorcraft for Precision Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Verstynen, Harry A.; Buelow, Barry; McCormick, G. Frank

    2015-01-01

    This technical report presents the results of a case study using a hazard-based approach to develop preliminary design and performance criteria for an unmanned agricultural rotorcraft requiring airworthiness certification. This case study is one of the first in the public domain to examine design and performance criteria for an unmanned aircraft system (UAS) in tandem with its concept of operations. The case study results are intended to support development of airworthiness standards that could form a minimum safety baseline for midsize unmanned rotorcraft performing precision agricultural spraying operations under beyond visual line-of-sight conditions in a rural environment. This study investigates the applicability of current methods, processes, and standards for assuring airworthiness of conventionally piloted (manned) aircraft to assuring the airworthiness of UAS. The study started with the development of a detailed concept of operations for precision agricultural spraying with an unmanned rotorcraft (pp. 5-18). The concept of operations in conjunction with a specimen unmanned rotorcraft were used to develop an operational context and a list of relevant hazards (p. 22). Minimum design and performance requirements necessary to mitigate the hazards provide the foundation of a proposed (or mock) type certification basis. A type certification basis specifies the applicable standards an applicant must show compliance with to receive regulatory approval. A detailed analysis of the current airworthiness regulations for normal-category rotorcraft (14 Code of Federal Regulations, Part 27) was performed. Each Part 27 regulation was evaluated to determine whether it mitigated one of the relevant hazards for the specimen UAS. Those regulations that did were included in the initial core of the type certification basis (pp. 26-31) as written or with some simple modifications. Those regulations that did not mitigate a recognized hazard were excluded from the certification basis. The remaining regulations were applicable in intent, but the text could not be easily tailored. Those regulations were addressed in separate issue papers. Exploiting established regulations avoids the difficult task of generating and interpreting novel requirements, through the use of acceptable, standardized language. The rationale for the disposition of the regulations was assessed and captured (pp. 58-115). The core basis was then augmented by generating additional requirements (pp. 38-47) to mitigate hazards for an unmanned sprayer that are not covered in Part 27.

  4. Magnetohydrodynamic sea water propulsion

    SciTech Connect

    Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

    1991-12-31

    An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

  5. Magnetohydrodynamic sea water propulsion

    SciTech Connect

    Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

    1991-01-01

    An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

  6. Megawatt Electromagnetic Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James; Lapointe, Michael; Mikellides, Pavlos

    2003-01-01

    The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive thruster and other electrodeless thrusters at a future date.

  7. Research Opportunities in Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used to get propellants off the ground to be burned later. A modem launch vehicle is usually able to put no more than 1.5%-3% of its total liftoff weight into low earth orbit.

  8. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  9. LISA Propulsion Module Separation Study

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three spacecraft in heliocentric orbit. Each spacecraft is delivered to it operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently baselined for the sciencecraft are micronewton level thrusters, such as FEEP or colloid thrusters, that are used to balance the 30-40 microN of solar radiation pressure and provide the drag-free and attitude control of the spacecraft. Due to these thrusters limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a design study of the propulsion module separation system that is shown to safely deliver the LISA sciencecraft to its final operational orbit.

  10. Space propulsion: The antimatter advantage

    SciTech Connect

    Sun, A.; Edwards, C.; Kane, A.; Pandipati, S. )

    1993-11-01

    With each century come new and exciting technologies, but perhaps the most challenging innovations have occurred in the modern era as a result of man's quest to explore the universe. While enormous advancements have occurred during the space age, there still remain significant obstacles in deep space exploration. A practical challenge to exploration is the development of a type of propulsion suitable for deep space endeavors. The development of such a propulsion system would greatly facilitate space research, while providing additional opportunities for other classes of exploration not yet defined. Based upon current research, there exist several possibilities for future propulsion techniques. Some of the most promising research has dealt with antimatter and its usefulness in energy production. The potential of antimatter as an efficient and renewable energy source exists, yet important practical and scientific concerns must be overcome to make this technology feasible. For deep space exploration to be successful, more advanced and powerful propulsion systems need to be devised. Current rocket technology is inadequate to meet these future needs. The authors predict that antimatter propulsion will emerge as the new standard for space exploration. At least the beginnings of this new technology are expected within the next twenty years.

  11. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  12. Propulsion on a superhydrophobic ratchet

    PubMed Central

    Dupeux, Guillaume; Bourrianne, Philippe; Magdelaine, Quentin; Clanet, Christophe; Qur, David

    2014-01-01

    Liquids in the Leidenfrost state were shown by Linke to self-propel if placed on ratchets. The vapour flow below the liquid rectified by the asymmetric teeth entrains levitating drops by viscosity. This effect is observed above the Leidenfrost temperature of the substrate, typically 200C for water. Here we show that coating ratchets with super-hydrophobic microtextures extends quick self-propulsion down to a substrate temperature of 100C, which exploits the persistence of Leidenfrost state with such coatings. Surprisingly, propulsion is even observed below 100C, implying that levitation is not necessary to induce the motion. Finally, we model the drop velocity in this novel cold regime of self-propulsion. PMID:24923358

  13. Automated Rocket Propulsion Test Management

    NASA Technical Reports Server (NTRS)

    Walters, Ian; Nelson, Cheryl; Jones, Helene

    2007-01-01

    The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.

  14. Main Propulsion Test Article (MPTA)

    NASA Technical Reports Server (NTRS)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  15. Propulsion on a superhydrophobic ratchet

    NASA Astrophysics Data System (ADS)

    Dupeux, Guillaume; Bourrianne, Philippe; Magdelaine, Quentin; Clanet, Christophe; Qur, David

    2014-06-01

    Liquids in the Leidenfrost state were shown by Linke to self-propel if placed on ratchets. The vapour flow below the liquid rectified by the asymmetric teeth entrains levitating drops by viscosity. This effect is observed above the Leidenfrost temperature of the substrate, typically 200C for water. Here we show that coating ratchets with super-hydrophobic microtextures extends quick self-propulsion down to a substrate temperature of 100C, which exploits the persistence of Leidenfrost state with such coatings. Surprisingly, propulsion is even observed below 100C, implying that levitation is not necessary to induce the motion. Finally, we model the drop velocity in this novel ``cold regime'' of self-propulsion.

  16. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  17. On-Board Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1997-01-01

    NASA Lewis Research Center's On-Board Propulsion program (OBP) is developing low-thrust chemical propulsion technologies for both satellite and vehicle reaction control applications. There is a vigorous international competition to develop new, highperformance bipropellant engines. High-leverage bipropellant systems are critical to both commercial competitiveness in the international communications market and to cost-effective mission design in government sectors. To significantly improve bipropellant engine performance, we must increase the thermal margin of the chamber materials. Iridium-coated rhenium (Ir/Re) engines, developed and demonstrated under OBP programs, can operate at temperatures well above the constraints of state-of-practice systems, providing a sufficient margin to maximize performance with the hypergolic propellants used in most satellite propulsion systems.

  18. Breakthrough Propulsion Physics Research Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

  19. Nuclear thermal propulsion workshop overview

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning.

  20. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.