Sample records for oily waste water

  1. Contained recovery of oily waste

    DOEpatents

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  2. Navy Shipboard Investigation of Oily Wastes

    DTIC Science & Technology

    1975-01-01

    of bilge oily waste conducted on 32 ships, bilge fluld conservatively applicable to all the other smaller diesel and non generation rates, while in...visits, Indicate that approximately 10% of all shipboard oily waste Is comprised of ballast waters of which 73% Is contributed by Sh modes logers: over...50% of the remaining ship population accounts for less than 3% of the ballast oily waste. Additional oily waste sources are defined. Principal bilge

  3. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  4. Development of a membrane-based process for the treatment of oily waste waters. Final report, March 4, 1992--March 5, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, S.B.

    1994-05-25

    This is a final report from Bend Research, Inc., (BRI) to the U.S. Department of Energy (DOE) for work performed under Contract No. DE-AC22-92MT92005, titled {open_quotes}Development of a Membrane-Based Process for the Treatment of Oily Waste Waters.{close_quotes} This report covers the period from March 4, 1992, to March 5, 1994. The overall goal of this program was to develop an economical oily-water treatment system based on reverse osmosis (RO). The RO system would be used to (1) reduce oil production costs by reducing the volume of waste water that must be disposed of, (2) form the basis of a genericmore » waste-water treatment system that can easily be integrated into oil-field operations, especially at production facilities that are small or in remote locations; and (3) produce water clean enough to meet existing and anticipated environmental regulations. The specific focus of this program was the development of a hollow-fiber membrane module capable of treating oily waste waters.« less

  5. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    PubMed

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  6. Slurry-phase biodegradation of weathered oily sludge waste.

    PubMed

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  7. Research on Treatment Technology and Device of Oily Sludge

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Shui, F. S.; Li, Q. F.

    2017-12-01

    Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.

  8. USCG Oily Water Separator System Cartridge Usage Data Survey

    DTIC Science & Technology

    1976-03-01

    where a separate system is installed). 3. What spaces that have bilge water are not piped? Non- oily spaces. 4. Is existing ships piping used...NO. 4305.2/12 00 CO o ÄS! USC6 OILY WATER SEPARATOR SYSTEM CARTRIDGE USAGE DATA SURVEY ROBERT L. SKEWES U. S. CfAST GUARD (6-DET-l) OFFIU... Oily Water Separator Systems installed were surveyed. These cutters range in size from 65 foot river buoy tenders to 378 foot high endurance

  9. Influence of Biopreparations on the Bacterial Community of Oily Waste

    NASA Astrophysics Data System (ADS)

    Biktasheva, L. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Oil pollution is reported to be one the most serious environmental problems nowadays. Therefore, methods of remediation of oily polluted soils and oily wastes are of great importance. Bioremediation being a perspective method of sanitation of oil pollutions, includes biostimulation of the polluted sites’ indigenous microflora, and in some cases additional introduction of active strains able to decompose hydrocarbon. The efficacy of introducing such biopreparations depends on the interactions between the introduced microbes and the indigenous ones. In this study, the influence of bacterial consortium (Rhodococcus jialingiae, Stenotrophomonas rhizophila and Pseudomonas gessardii) introduction on the bioremediation of an oily waste sampled from a refinery situated in the Mari El region (Russia) was estimated. Single and multiple inoculations of the consortium in addition to moistening and aeration were compared with a control sample, which included only aeration and moistening of the waste. It was shown, that two of the three introduced strains (Rh. jialingiae and Ps.gessardii) gene copy numbers were higher in the inoculated variants than in the control sample and with their initial counts, which meant that these strains survived and included into the bacterial community of the wastes. At the same time, bacterial counts were significantly lower, and the physiological profile of waste microflora slightly altered in the inoculated remediation variants as compared with the control sample. Interestingly, no difference in the degradation rates of hydrocarbons was revealed in the inoculated remediation variants and the control sample.

  10. Remediation of an oily leachate pond in Estonia.

    PubMed

    Kriipsalu, Mait; Marques, Marcia; Hogland, William

    2005-12-01

    Until recent years, waste oil and oil-contaminated waters commonly ended up in landfills. At some dump sites, ponds of oily liquids and leachate were formed. To remediate such ponds, an interdisciplinary approach is now required, keeping costs at an affordable level, particularly in countries with changing economies. From 1974 to 1993, liquid oily wastes taken to the Laguja landfill, in Estonia, were disposed of in a pond with a surface area of 9800 m2. It was estimated that the pond contained 4500-6000 m3 of oily water and 3500 m3 of oil-containing bottom sediments. This study aimed at developing an environmentally sound and cost-effective method for remediation of the oily liquids, leachate and contaminated underlying sediment material, to meet the existing legal demands. It was concluded that treatment of contaminated water is well established and the procedures carried out to meet the regulatory demands achieved satisfactory results. However, regarding treatment of sediments it was concluded that legal and technological aspects, as well as monitoring procedures are not fully established and are usually underestimated. Laboratory investigations can provide valuable information in decision-making, and contribute to effective full-scale remediation planning.

  11. Recycling soil nitrate nitrogen by amending agricultural lands with oily food waste.

    PubMed

    Rashid, M T; Voroney, R P

    2003-01-01

    With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.

  12. LABORATORY STUDY ON THE USE OF HOT WATER TO RECOVER LIGHT OILY WASTES FROM SANDS

    EPA Science Inventory

    This laboratory research project investigated the use of hot water to recover oily contaminants that are less dense than water, highly viscous at ambient temperatures, and essentially nonvolatile. Displacement experiments were conducted at constant temperatures in the range from ...

  13. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  15. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  16. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  17. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  18. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water

    NASA Astrophysics Data System (ADS)

    Su, Changhong; Xu, Youqian; Zhang, Wei; Liu, Yang; Li, Jun

    2012-01-01

    A porous ceramic tube with superhydrophobic and superoleophilic surface was fabricated by sol-gel and then surface modification with polyurethane-polydimethysiloxane, and an oil-water separator based on the porous ceramic tube was erected to characterize superhydrophobic and superoleophilic surface's separation efficiency and velocity when being used to reclaim oil from oily water and complex oily water containing clay particle. The separator is fit for reclaiming oil from oily water.

  19. A review of the technological solutions for the treatment of oily sludges from petroleum refineries.

    PubMed

    da Silva, Leonardo Jordão; Alves, Flávia Chaves; de França, Francisca Pessôa

    2012-10-01

    The activities of the oil industry have several impacts on the environment due to the large amounts of oily wastes that are generated. The oily sludges are a semi-solid material composed by a mixture of clay, silica and iron oxides contaminated with oil, produced water and the chemicals used in the production of oil. Nowadays both the treatment and management of these waste materials is essential to promote sustainable management of exploration and exploitation of natural resources. Biological, physical and chemical processes can be used to reduce environmental contamination by petroleum hydrocarbons to acceptable levels. The choice of treatment method depends on the physical and chemical properties of the waste as well as the availability of facilities to process these wastes. Literature provides some operations for treatment of oily sludges, such as landfilling, incineration, co-processing in clinkerization furnaces, microwave liquefaction, centrifugation, destructive distillation, thermal plasma, low-temperature conversion, incorporation in ceramic materials, development of impermeable materials, encapsulation and biodegradation in land farming, biopiles and bioreactors. The management of the technology to be applied for the treatment of oily wastes is essential to promote proper environmental management, and provide alternative methods to reduce, reuse and recycle the wastes.

  20. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  1. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  2. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  3. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  4. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    NASA Astrophysics Data System (ADS)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  5. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    PubMed Central

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-01-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h−1 m−2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life. PMID:27160349

  6. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel... MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.330 Oily mixture (bilge slops.... (b) A U.S. non-oceangoing ship may retain all oily mixtures on board in the ship's bilges. An oil...

  7. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel... MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.330 Oily mixture (bilge slops.... (b) A U.S. non-oceangoing ship may retain all oily mixtures on board in the ship's bilges. An oil...

  8. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel... MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.330 Oily mixture (bilge slops.... (b) A U.S. non-oceangoing ship may retain all oily mixtures on board in the ship's bilges. An oil...

  9. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel... MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.330 Oily mixture (bilge slops.... (b) A U.S. non-oceangoing ship may retain all oily mixtures on board in the ship's bilges. An oil...

  10. Recent development in the treatment of oily sludge from petroleum industry: a review.

    PubMed

    Hu, Guangji; Li, Jianbing; Zeng, Guangming

    2013-10-15

    Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. New technology for recyclingmaterials from oily cold rollingmill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Meng, Ling; Liu, Yang

    2013-12-01

    Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.

  12. 33 CFR 157.37 - Discharge of oily mixtures from oil cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recent year must be retained on board the vessel. (e) Ballast water containing an oily mixture may be... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharge of oily mixtures from... CARRYING OIL IN BULK Vessel Operation § 157.37 Discharge of oily mixtures from oil cargoes. (a) A tank...

  13. 33 CFR 157.37 - Discharge of oily mixtures from oil cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recent year must be retained on board the vessel. (e) Ballast water containing an oily mixture may be... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Discharge of oily mixtures from... CARRYING OIL IN BULK Vessel Operation § 157.37 Discharge of oily mixtures from oil cargoes. (a) A tank...

  14. 33 CFR 157.37 - Discharge of oily mixtures from oil cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recent year must be retained on board the vessel. (e) Ballast water containing an oily mixture may be... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Discharge of oily mixtures from... CARRYING OIL IN BULK Vessel Operation § 157.37 Discharge of oily mixtures from oil cargoes. (a) A tank...

  15. 33 CFR 157.37 - Discharge of oily mixtures from oil cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recent year must be retained on board the vessel. (e) Ballast water containing an oily mixture may be... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Discharge of oily mixtures from... CARRYING OIL IN BULK Vessel Operation § 157.37 Discharge of oily mixtures from oil cargoes. (a) A tank...

  16. 33 CFR 157.37 - Discharge of oily mixtures from oil cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recent year must be retained on board the vessel. (e) Ballast water containing an oily mixture may be... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Discharge of oily mixtures from... CARRYING OIL IN BULK Vessel Operation § 157.37 Discharge of oily mixtures from oil cargoes. (a) A tank...

  17. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD).

    PubMed

    Zhang, Sui; Wang, Peng; Fu, Xiuzhu; Chung, Tai-Shung

    2014-04-01

    This study proposed and investigated a hybrid forward osmosis - membrane distillation (FO-MD) system for sustainable water recovery from oily wastewater by employing lab-fabricated FO and MD hollow fiber membranes. Stable oil-in-water emulsions of different concentrations with small droplet sizes (<1 μm) were firstly prepared and applied as the feed solution in the FO process. Fouling was immediately observed in the FO mode and was low on the cellulose triacetate (CTA) - based thin film composite (TFC) membranes. Moreover, slight increment of fouling was observed in the first few hours and the water flux was then stabilized over 24 h. The characterizations of water flux and solute rejection in separate FO and MD processes revealed that a high water flux, good NaCl rejection, impressively high retention of oil droplets and partial permeation of acetic acid could be achieved. Finally, an integrated FO-MD system was developed to treat the oily wastewater containing petroleum, surfactant, NaCl and acetic acid at 60 °C in the batch mode. The water flux in FO undergoes three-stage decline due to fouling and reduction in osmotic driving force, but is quite stable in MD regardless of salt concentration. Oily wastewater with relatively high salinity could be effectively recovered by the FO-MD hybrid system while maintaining large water flux, at least 90% feed water recovery could be readily attained with only trace amounts of oil and salts, and the draw solution was re-generated for the next rounds of FO-MD run. Interestingly, significant amount of acetic acid was also retained in the permeate for further reuse as a chemical additive during the production of crude oil. The work has demonstrated that not only water but also organic additives in the wastewater could be effectively recovered by FO-MD systems for reuse or other utilizations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Treatment of oily bilge water by electrocoagulation process using aluminum electrodes

    NASA Astrophysics Data System (ADS)

    Soeprijanto, Perdani, Adela Dea; Nury, Dennis Farina; Pudjiastuti, Lily

    2017-05-01

    Electrocoagulation is electrochemical water and wastewater treatment technology which is the simplest technology using an electrochemical cell where the supply of DC power is applied to the electrodes, made of aluminum metals, and the electrolyte is oily bilge water. The electrocoagulation of oily bilge water was experimentally conducted in a batch system. Aluminum plates with dimensions of 20 cm ×8 cm × 0.2 cm were used for electrodes and mounted vertically with a distance of 4 cm. These electrodes were then connected to the direct current power supply of 10 V and 10 A. The total area of the effective working plate was 160 cm2 when immersed at a depth of 10 cm to the solutions. The results showed that total dissolved Solids (TDS) decreased from 31.2 to 7.54 mg/l and formation of sludge increased up to 12.54 g/l with oil concentration of 50 g/l for 15 min. The largest oil removal of 99.5% was obtained using the initial oil concentration of 55 g/l and the lowest of 96.25% was obtained with the initial oil concentration of 146.04 g/l. A current density of 62.3 mA/cm2 was achieved for a maximum oil removal.

  19. Characterization of oily mature skin by biophysical and skin imaging techniques.

    PubMed

    de Melo, M O; Maia Campos, P M B G

    2018-02-13

    The skin is a complex biological system and may suffer change according to the environmental factors, as higher temperatures can increase sebum excretion, presenting oiliness and acne. These alterations can persist during the aging and provoke more changes in aged skin. In this study we evaluated the mature oily skin characteristics using biophysical and skin imaging techniques. Sixty healthy female subjects, aged between 39 and 55 years old were recruited and separated into 2 groups according to their skin type: normal/dry and oily skin. The skin was evaluated in terms of stratum corneum water content, transepidermal water loss (TEWL) sebum content, dermis thickness and echogenicity, skin microrelief, and pores content. The mature oily skin presented no significant differences when compared to the normal/dry skin on the stratum corneum water content and TEWL parameters. The sebum content was significantly higher on the oily skin group. The microrelief analysis showed an increase of skin roughness values in the oily skin and increase of scaliness in the normal/dry skin. The oily skin showed lower dermis echogenicity mainly in the frontal region and higher dermis thickness when compared to normal/dry skin. The mature oily skin showed different characteristics from normal/dry skin in terms of sebum content, microrelief parameters, and dermis thickness. This way, the characterization of mature oily skin in an objective way is very important to development of dermocosmetic products for more effective treatments focused specially on this type of skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Study on heat transfer performance of water-borne and oily graphene coatings using anti-/de-icing component

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zhang, Yidu; Wu, Qiong; Jie, Zhang

    2018-02-01

    A graphene coating anti-/de-icing experiment was proposed by employing water-borne and oily graphene coatings on the composite material anti-/de-icing component. Considering the characteristics of helicopter rotor sensitivity to icing, a new graphene coating enhancing thermal conductivity of anti-/de-icing component was proposed. The anti-/de-icing experiment was conducted to validate the effectiveness of graphene coating. The results of the experiment show that the graphene coatings play a prominent role in controlling the heat transfer of anti-/de-icing component. The anti-/de-icing effect of oily graphene coating is superior to water-borne graphene.

  1. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    PubMed

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  2. Oily Waste Water Treatment System

    DTIC Science & Technology

    1998-01-22

    from three 6 series connected, ceramic membrane type of filtration units 82, 84 and 86 through a conduit 80. 7 The flow rate and pressure of the...hereinbefore described is of the silica-coated 4 P- ceramic membrane type through which effluent from the oil/water separator 20 may be processed

  3. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities.

    PubMed

    Jamaly, Sanaa; Giwa, Adewale; Hasan, Shadi Wajih

    2015-11-01

    Oily wastewater poses significant threats to the soil, water, air and human beings because of the hazardous nature of its oil contents. The objective of this review paper is to highlight the current and recently developed methods for oily wastewater treatment through which contaminants such as oil, fats, grease, and inorganics can be removed for safe applications. These include electrochemical treatment, membrane filtration, biological treatment, hybrid technologies, use of biosurfactants, treatment via vacuum ultraviolet radiation, and destabilization of emulsions through the use of zeolites and other natural minerals. This review encompasses innovative and novel approaches to oily wastewater treatment and provides scientific background for future work that will be aimed at reducing the adverse impact of the discharge of oily wastewater into the environment. The current challenges affecting the optimal performance of oily wastewater treatment methods and opportunities for future research development in this field are also discussed. Copyright © 2015. Published by Elsevier B.V.

  4. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.330 Oily mixture (bilge slops...

  5. FOULING-RESISTANT CERAMIC MEMBRANES FOR TREATMENT OF METASTABLE OIL/WATER EMULSIONS - PHASE I

    EPA Science Inventory

    Billions of gallons of oily wastewaters are generated daily by a variety of industrial sources. One class of oily wastewaters, metastable oil/water emulsions, encompasses waste streams for which a need exists for more cost-effective and reliable treatment. Current treatment...

  6. 33 CFR 155.360 - Oily mixture (bilge slops) discharges on oceangoing ships of 400 gross tons and above but less...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops... POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.360 Oily mixture (bilge slops... in its fuel oil tanks, unless it is fitted with approved 15 parts per million (ppm) oily-water...

  7. 33 CFR 155.360 - Oily mixture (bilge slops) discharges on oceangoing ships of 400 gross tons and above but less...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops... POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.360 Oily mixture (bilge slops... in its fuel oil tanks, unless it is fitted with approved 15 parts per million (ppm) oily-water...

  8. 33 CFR 155.360 - Oily mixture (bilge slops) discharges on oceangoing ships of 400 gross tons and above but less...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops... POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.360 Oily mixture (bilge slops... in its fuel oil tanks, unless it is fitted with approved 15 parts per million (ppm) oily-water...

  9. 33 CFR 155.360 - Oily mixture (bilge slops) discharges on oceangoing ships of 400 gross tons and above but less...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops... POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.360 Oily mixture (bilge slops... in its fuel oil tanks, unless it is fitted with approved 15 parts per million (ppm) oily-water...

  10. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    PubMed

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Novel Membrane Separation System for Shipboard Oily Wastewater Treatment

    DTIC Science & Technology

    2010-12-01

    OPNAVINST 5090.1B CH-2 regulates Navy ships to the same discharge limit for bilgewater and other oily waste discharges . Future discharge limits of...applicable to all Navy ship classes. An additional benefit is the potential to remove additional constituents of concern from bilgewater discharge ...treatment system on a Navy ship ................................................................ 26! 19. Shipboard Membrane Resistance of Full-Scale

  12. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  13. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  14. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  15. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  16. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  17. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....350 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.350 Oily... this section by the date of its initial survey prior to receiving its International Oil Pollution...

  18. Converting environmental wastes into valuable resources

    NASA Technical Reports Server (NTRS)

    Duval, Leonard A.

    1993-01-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  19. Converting environmental wastes into valuable resources

    NASA Astrophysics Data System (ADS)

    Duval, Leonard A.

    1993-02-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  20. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....370 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.370 Oily... prior to receiving its International Oil Pollution Prevention (IOPP) certificate. (ii) Any ship, other...

  1. Heavy equipment maintenance wastes and environmental management in the mining industry.

    PubMed

    Guerin, Turlough F

    2002-10-01

    Maintenance wastes, if not managed properly, represent significant environmental issues for mining operations. Petroleum hydrocarbon liquid wastes were studied at an Australian site and a review of the literature and technology vendors was carried out to identify oil/water separation technologies. Treatment technologies and practices for managing oily wastewater, used across the broader mining industry in the Asia-Pacific region, were also identified. Key findings from the study were: (1) primary treatment is required to remove grease oil contamination and to protect secondary oily wastewater treatment systems from being overloaded; (2) selection of an effective secondary treatment system is dependent on influent oil droplet size and concentration, suspended solids concentration, flow rates (and their variability), environmental conditions, maintenance schedules and effectiveness, treatment targets and costs; and (3) oily wastewater treatment systems, based on mechanical separation, are favoured over those that are chemically based, as they simplify operational requirements. Source reduction, through housekeeping, equipment and reagent modifications, and segregation and/or consolidation of hydrocarbon waste streams, minimizes treatment costs, safety and environmental impact.

  2. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  3. Marine Ship Automatic Identification System (AIS) for Enhanced Coastal Security Capabilities: An Oil Spill Tracking Application

    DTIC Science & Technology

    2007-09-01

    in port, harbor or waterway incidents; and, oil or oily wastes illegally dumped at sea, including illegal discharge of oily bilge or ballast waters ...quantities of oily waste and oily bilge water and sludge at sea using specially installed pipes, which they were careful to have removed and hidden...detailing specifics for oil and bilge water handling equipment, oil hold washing protocols, and a 15 part per million discharge limit of oil content in

  4. The flocculation mechanism and treatment of oily wastewater by flocculation.

    PubMed

    Zhang, Zhenchao

    2017-11-01

    In the present study, the performance of compound flocculants composed of different concentrations of polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM), the influencing mechanism of the flocculation process and the effects of temperature, settling time, and speed and time of stirring were investigated. The results show that the poor water quality with high concentrations of oil, suspended solids (SS) and polymer greatly increases the oily wastewater emulsion stability and the difficulty of the flocculation treatment process. The compound flocculant in oily wastewater treatment can achieve best results at optimum conditions of temperature 45 °C, settling time 60 min, and two stirring stages, 250 r·min -1 for 3 min followed by 100 r·min -1 for 7 min. At the PAC dosage of 80 mg·L -1 and the CPAM dosage of 0.8 mg·L -1 , the turbidity of oily wastewater is reduced from 153.8 NTU to 11.2 NTU, and the turbidity removal rate reaches 92.69%. Through further measurements, oil content and SS content are less than 10 mg·L -1 , which meets the requirement of the Daqing oilfield re-injection standard.

  5. Modeling the distribution of illicit oily discharges detected by aerial surveillance in western Canadian marine waters.

    PubMed

    Serra-Sogas, Norma; O'Hara, Patrick D; Canessa, Rosaline

    2014-10-15

    Oily discharges from vessel operations have been documented in Canada's Pacific region by the National Aerial Surveillance Program (NASP) since the early 1990s. We explored a number of regression methods to explain the distribution and counts per grid cell of oily discharges detected from 1998 to 2007 using independent predictor variables, while trying to address the large number of zeros present in the data. Best-fit models indicate that discharges are generally concentrated close to shore typically in association with small harbours, and with major commercial and tourist centers. Oily discharges were also concentrated in Barkley Sound and at the entrance of Juan de Fuca Strait. The identification of important factors associated with discharge patterns, and predicting discharge rates in areas with surveillance effort can be used to inform future surveillance. Model output can also be used as inputs for risk models for existing conditions and as baseline for future scenarios. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. Research on the treatment of oily wastewater by coalescence technology.

    PubMed

    Li, Chunbiao; Li, Meng; Zhang, Xiaoyan

    2015-01-01

    Recently, oily wastewater treatment has become a hot research topic across the world. Among the common methods for oily wastewater treatment, coalescence is one of the most promising technologies because of its high efficiency, easy operation, smaller land coverage, and lower investment and operational costs. In this research, a new type of ceramic filter material was chosen to investigate the effects of some key factors including particle size of coarse-grained materials, temperature, inflow direction and inflow velocity of the reactor. The aim was to explore the optimum operating conditions for coarse-graining. Results of a series of tests showed that the optimum operating conditions were a combination of grain size 1-3 mm, water temperature 35 °C and up-flow velocity 8 m/h, which promised a maximum oil removal efficiency of 93%.

  7. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation.

    PubMed

    Ao, Chenghong; Yuan, Wei; Zhao, Jiangqi; He, Xu; Zhang, Xiaofang; Li, Qingye; Xia, Tian; Zhang, Wei; Lu, Canhui

    2017-11-01

    Inspired from fishscales, membranes with special surface wettability have been applied widely for the treatment of oily waste water. Herein, a novel superhydrophilic graphene oxide (GO)@electrospun cellulose nanofiber (CNF) membrane was successfully fabricated. This membrane exhibited a high separation efficiency, excellent antifouling properties, as well as a high flux for the gravity-driven oil/water separation. Moreover, the GO@CNF membrane was capable to effectively separate oil/water mixtures in a broad pH range or with a high concentration of salt, suggesting that this membrane was quite promising for future real-world practice in oil spill cleanup and oily wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  9. An Analysis of the National Defense Reserve Fleet, the Ready Reserve Force Component and Their Capability to Meet National Emergency.

    DTIC Science & Technology

    1979-09-01

    Capacity to retain on board oily waste and oily bilge slops that may accumulate while operating in the navigable waters or contiguous zones. 2. For...requirements imposed by Federal law impact on the NDRP . First, new requirements necessitate that oily waste and oily bilge slops be retained aboard for later...discharge oily bilge slops or ballast through a fixed pipe system which shall have at least one standard discharge outlet on each side of the weather deck . 4

  10. Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment.

    PubMed

    Yang, Yang; Wang, Hong; Li, Jianxin; He, Benqiao; Wang, Tonghua; Liao, Shijun

    2012-06-19

    Membrane fouling is a critical problem in membrane filtration processes for water purification. Electrocatalytic membrane reactor (ECMR) was an effective method to avoid membrane fouling and improve water quality. This study focuses on the preparation and characterization of a novel functionalized nano-TiO(2) loading electrocatalytic membrane for oily wastewater treatment. A TiO(2)/carbon membrane used in the reactor is prepared by coating TiO(2) as an electrocatalyst via a sol-gel process on a conductive microporous carbon membrane. In order to immobilize TiO(2) on the carbon membrane, the carbon membrane is first pretreated with HNO(3) to generate the oxygen-containing functional groups on its surface. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the morphology and microstructure of the membranes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements are employed to illustrate the eletrochemical activity of the TiO(2)/carbon membrane. The membrane performance is investigated by treating oily wastewater. The oil removal rate increases with a decrease in the liquid hourly space velocity (LHSV) through the ECMR. The COD removal rate was 100% with a LHSV of 7.2 h(-1) and 87.4% with a LHSV of 21.6 h(-1) during the treatment of 200 mg/L oily water. It suggests that the synergistic effect of electrocatalytic oxidation and membrane separation in the ECMR plays a key role.

  11. [Isolation of an excellent bio-flocculant-producing strain and its application in the treatment of cold-rolling waste oily water].

    PubMed

    Lei, Guo-Yuan; Ding, Cui-Ping; Yang, Jia-Xuan

    2011-09-01

    An excellent strain (designated as T-3) which produces bio-flocculants was isolated from soil samples, and identified as Klebsiella sp. species based on the analysis of morphology, physiology and biochemistry and 16S rDNA sequences measurement. The effects of culture conditions such as pH values, temperature, carbon sources and nitrogen sources on bio-flocculants production by T-3 strain were studied. The experiment results show that T-3 strain has better adaptability to carbon sources and nitrogen sources, and higher capacity of bio-flocculants was obtained when the initial pH value of culture and temperature were 9 and 25 degrees C respectively. Based on the colorimetric reactions of proteins and polysaccharide substance, ultraviolet scanning analysis and Fourier Transform Infrared Spectroscopy analysis, it is found that the bio-flocculants produced by T-3 strain contains -OH and -COO(-) groups and belongs to anionic type flocculant. Moreover, the main component is polysaccharides. The treatment of oily cold-rolling wastewater by the bio-flocculant was investigated and the better result was obtained. When the dosages of CaCl2, bio-flocculants and poly aluminium chloride were 4 g x L(-1), 10% (volume fraction) and 1 g x L(-1) respectively, and the pH value was 7.0, the oil concentration, COD and turbidity were decreased to 10 mg x L(-1), 218.4 mg x L(-1) and 1.36 from 4 819 mg x L(-1), 28 456.8 mg x L(-1) and 3 950 with the removal efficiencies of 99.79%, 92.32% and 99.97% respectively. The interaction between flocculant and oily droplets is achieved by the interaction of Van der Waals force, hydrogen bond and the bridged coordination of Ca2+, in which the bridged coordination of Ca2+ is the dominant.

  12. Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater).

    PubMed

    Stamper, David M; Montgomery, Michael T

    2008-08-01

    The biodegradability and toxicity of low concentrations of oily wastewater (bilgewater) were tested under simulated sanitary wastewater treatment conditions. This was done to establish the feasibility of a combined shipboard oily and nonoily wastewater treatment system. The biodegradability of oily wastewater was determined by proxy; 14C-labeled dodecane, toluene, and phenanthrene (representing alkane, aromatic, and polyaromatic compounds, respectively) were mineralized in petroleum fuels and lubricants. We found that low concentrations of oily wastewater components were mineralized, even in the presence of more abundant substrates (such as synthetic graywater, containing vegetable oil, detergent, gelatin, and starch). The toxic effects of diesel fuel and several other components of oily wastewater (such as surfactants and a synthetic lubricant) on a naïve wastewater assemblage was also tested. In concentrations much higher than would be expected under normal shipboard conditions, we found no evidence of toxic effects of the bilgewater compounds tested. Thus, a combined shipboard bilgewater and sanitary wastewater system might be feasible.

  13. Nitrogen fertilizer recommendations for corn grown on soils amended with oily food waste.

    PubMed

    Rashid, M T; Voroney, R P

    2005-01-01

    Soil and plant indices of soil fertility status have traditionally been developed using conventional soil and crop management practices. Data on managing N fertilizer for corn (Zea mays L.) produced on soils amended with C-rich organic materials, such as oily food waste (OFW) is scarce. Identification of a reliable method for making N fertilizer recommendations under these conditions is imperative. The objective of this research was to evaluate soil NO(3)-N (0- to 30-cm depth) at preplant and presidedress (PSNT) times of sampling for predicting N requirements for corn grown on fields receiving OFW. Experiments were conducted at two locations in Ontario, Canada over 3 yr (1995-1997) where OFW was applied at different rates (0, 10, and 20 Mg ha(-1)), times (fall and spring), and slope positions (upper, mid, and lower) within the same field. Presidedress soil NO(3)-N contents were higher compared with preplant time of sampling under all OFW management conditions. Corn grain yields were significantly affected by OFW management and N fertilizer application rates. Maximum economic rate of N application (MERN) varied depending on OFW management conditions. Presidedress soil NO(3)-N contents had a higher inverse relationship with MERN (r = -0.88) compared with soil NO(3)-N at preplant (r = -0.74) time of sampling. A linear regression model (Y = 180.1 - 8.22 NO(3)-N at PSNT) is proposed for making N fertilizer recommendations to corn grown on soils amended with OFW in this geographical region.

  14. Oily Sludge Biodetoxification

    DTIC Science & Technology

    2011-05-01

    Sustainability Development to Integration NAVSTA Naval Station NT not tested O&M operation and maintenance OSHA Occupational Safety and Health ...Safety and Health Administration The results presented here and data from previous pilot scale and prototype (Hawaii) demonstrations of oily sludge...designed to treat. While additional degradation may have occurred if the system was supplemented with micronutrients and operated in series, it is

  15. Monitoring of biopile composting of oily sludge.

    PubMed

    Kriipsalu, Mait; Nammari, Diauddin

    2010-05-01

    This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.

  16. Oily Bilgewater Separators

    DTIC Science & Technology

    2011-11-01

    International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978 (MARPOL 73/78). Under MARPOL, all ships...of oily bilgewater discharge from vessels are based on Annex I of the International Convention for the Prevention of Pollution from Ships, 1973 as...to the Convention . MARPOL includes six annexes, covering six categories of vessel discharges: oil (Annex I), noxious liquid substances (Annex II

  17. Purification of oily wastewater by hybrid UF/MD.

    PubMed

    Gryta, M; Karakulski, K; Morawski, A W

    2001-10-01

    Investigations on the treatment of oily wastewater by a combination of ultrafiltration (UF) and membrane distillation (MD) as a final purification method have been performed. A tubular UF module equipped with polyvinylidene fluoride (PVDF) membranes and a capillary MD module with polypropylene membranes were tested using a typical bilge water collected from a harbour without pretreatment. The permeate obtained from the UF process generally contains less than 5 ppm of oil. A further purification of the UF permeate by membrane distillation results in a complete removal of oil from wastewater and a very high reduction of the total organic carbon (99.5%) and total dissolved solids (99.9%).

  18. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fire regulations. (e) All solvent waste, oily rags, and flammable liquids shall be kept in fire... 29 Labor 8 2014-07-01 2014-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than...

  19. Oil recovery from refinery oily sludge via ultrasound and freeze/thaw.

    PubMed

    Zhang, Ju; Li, Jianbing; Thring, Ronald W; Hu, Xuan; Song, Xinyuan

    2012-02-15

    The effective disposal of oily sludge generated from the petroleum industry has received increasing concerns, and oil recovery from such waste was considered as one feasible option. In this study, three different approaches for oil recovery were investigated, including ultrasonic treatment alone, freeze/thaw alone and combined ultrasonic and freeze/thaw treatment. The results revealed that the combined process could achieve satisfactory performance by considering the oil recovery rate and the total petroleum hydrocarbon (TPH) concentrations in the recovered oil and wastewater. The individual impacts of five different factors on the combined process were further examined, including ultrasonic power, ultrasonic treatment duration, sludge/water ratio in the slurry, as well as bio-surfactant (rhamnolipids) and salt (NaCl) concentrations. An oil recovery rate of up to 80.0% was observed with an ultrasonic power of 66 W and an ultrasonic treatment duration of 10 min when the sludge/water ratio was 1:2 without the addition of bio-surfactant and salt. The examination of individual factors revealed that the addition of low concentration of rhamnolipids (<100mg/L) and salt (<1%) to the sludge could help improve the oil recovery from the combined treatment process. The experimental results also indicated that ultrasound and freeze/thaw could promote the efficiency of each other, and the main mechanism of oil recovery enhancement using ultrasound was through enhanced desorption of petroleum hydrocarbons (PHCs) from solid particles. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Treatment of phosphate-containing oily wastewater by coagulation and microfiltration.

    PubMed

    Zhang, Jin; Sun, Yu-xin; Huang, Zhi-feng; Liu, Xing-qin; Meng, Guang-yao

    2006-01-01

    The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 microm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.

  1. Effect of ultrasonic reactor and auxiliary stirring on oil removal from oily sludge.

    PubMed

    Zhao, Xiaofei; Zhang, Xiaoyang; Liu, Lixin; Fan, Lei; Ge, Dan

    2017-12-01

    In this paper, oily sludge cleaning by using ultrasonic waves was further studied to ensure how the ultrasonic reactor, such as material, bottom thickness, diameter, and auxiliary mixing, effects oil removal from oily sludge. Oily sludge (S) with an initial oil content of 19.29% was mixed with distilled water (W) and treated in an ultrasonic cleaning tank, f = 40,000 Hz at 30°C. This paper was carried out around the ultrasonic reactor, such as material, diameter, and bottom thickness. The results show that acoustic resistance is the main factor affecting the material of the ultrasonic reactor. The larger the diameter of the reaction, the lower the thickness of the S-W mixture of the same quality; the smaller the diffusion attenuation of the ultrasonic wave, the higher the oil removal rate. In this paper, the cleaning efficiency seems to be independent of the bottom thickness of the reactor. This may be due to the hale wavelengths (λ/2) in polyethylene (λ/2 = 2.4 cm) and glass (λ/2 = 7.08 cm) being far greater than the range of bottom thickness. Proper mixing (200 rmin -1 ) can improve the oil removal rate (92.8%), increased by 8.69%, but when the strength is too large, the oil removal rate is reduced.

  2. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  3. Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6.

    PubMed

    Sood, Nitu; Patle, Sonali; Lal, Banwari

    2010-03-01

    the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants. This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions. Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.

  4. 33 CFR 155.430 - Standard discharge connections for oceangoing ships of 400 gross tons and above.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a standard shore connection for reception facilities to discharge oily mixtures from machinery space bilges or ballast water containing an oily mixture from fuel oil tanks. The discharge connection must... paragraph (a) of this section and that fits the discharge shore connection, for the discharge of oily wastes...

  5. 33 CFR 155.430 - Standard discharge connections for oceangoing ships of 400 gross tons and above.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a standard shore connection for reception facilities to discharge oily mixtures from machinery space bilges or ballast water containing an oily mixture from fuel oil tanks. The discharge connection must... paragraph (a) of this section and that fits the discharge shore connection, for the discharge of oily wastes...

  6. 33 CFR 155.430 - Standard discharge connections for oceangoing ships of 400 gross tons and above.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a standard shore connection for reception facilities to discharge oily mixtures from machinery space bilges or ballast water containing an oily mixture from fuel oil tanks. The discharge connection must... paragraph (a) of this section and that fits the discharge shore connection, for the discharge of oily wastes...

  7. 33 CFR 155.430 - Standard discharge connections for oceangoing ships of 400 gross tons and above.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a standard shore connection for reception facilities to discharge oily mixtures from machinery space bilges or ballast water containing an oily mixture from fuel oil tanks. The discharge connection must... paragraph (a) of this section and that fits the discharge shore connection, for the discharge of oily wastes...

  8. Anti-Fouling Double-Skinned Forward Osmosis Membrane with Zwitterionic Brush for Oily Wastewater Treatment.

    PubMed

    Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong

    2017-07-31

    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.

  9. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.

    PubMed

    Zhou, Xiehong; Jia, Hanzhong; Qu, Chengtun; Fan, Daidi; Wang, Chuanyi

    2017-02-01

    Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and its kinetics and efficiency are expected to be affected by additives. In the present study, the pyrolysis parameters, including heating rate, final pyrolysis temperature, and pyrolysis time of oily sludge in the presence of agricultural biomass, apricot shell, were systematically explored. As a result, maximum oil recovery is achieved when optimizing the pyrolysis conditionas15 K/min, 723 K, and 3 h for heating rate, final pyrolysis temperature, and pyrolysis time, respectively. Thermogravimetric experiments of oily sludge samples in the presence of various biomasses conducted with non-isothermal temperature programmes suggest that the pyrolysis process contains three stages, and the main decomposition reaction occurs in the range of 400-740 K. Taking Flynn-Wall-Ozawa analysis of the derivative thermogravimetry and thermogravimetry results, the activation energy (E a ) values for the pyrolysis of oily sludge in the presence and absence of apricot shell were derived to be 35.21 and 39.40 kJ mol -1 , respectively. The present work supports that the presence of biomass promotes the pyrolysis of oily sludge, implying its great potential as addictive in the industrial pyrolysis of oily sludge.

  10. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode.

    PubMed

    Han, Gang; de Wit, Jos S; Chung, Tai-Shung

    2015-09-15

    By using a novel hydrophilic cellulose acetate butyrate (CAB) as the membrane material for the hollow fiber substrate and modifying its outer surface by polydopamine (PDA) coating and inner surface by interfacial polymerization, we have demonstrated that the thin-film composite (TFC) membranes can be effectively used for sustainable water reclamation from emulsified oil/water streams via forward osmosis (FO) under the pressure retarded osmosis (PRO) mode. The newly developed TFC-FO hollow fiber membrane shows characteristics of high water flux, outstanding salt and oil rejection, and low fouling propensity. Under the PRO mode, the newly developed TFC-FO membrane exhibits a water flux of 37.1 L m(-2) h(-1) with an oil rejection of 99.9% using a 2000 ppm soybean oil/water emulsion as the feed and 1 M NaCl as the draw solution. Remarkable anti-fouling behaviors have also been observed. Under the PRO mode, the water flux decline is only 10% of the initial value even after a 12 h test for oil/water separation. The water flux of the fouled membrane can be effectively restored to 97% of the original value by water rinses on the fiber outer surface without using any chemicals. Furthermore, the flux declines are only 25% and 52% when the water recovery of a 2000 ppm soybean oil/water emulsion and a 2000 ppm petroleum oil/water emulsion containing 0.04 M NaCl reaches 82%, respectively. This study may not only provide insightful guidelines for the fabrication of effective TFC-FO membranes with high performance and low fouling behaviors for oily wastewater under the PRO mode but also add an alternative perspective to the design of new materials for water purification purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge.

    PubMed

    Habashi, Nima; Mehrdadi, Nasser; Mennerich, Artur; Alighardashi, Abolghasem; Torabian, Ali

    2016-07-01

    Application of hydrodynamic cavitation (HC) was investigated with the objective of biogas production enhancement from co-digestion of oily wastewater (OWW) and waste activated sludge (WAS). Initially, the effect of HC on the OWW was evaluated in terms of energy consumption and turbidity increase. Then, several mixtures of OWW (with and without HC pretreatment) and WAS with the same concentration of total volatile solid were prepared as a substrate for co-digestion. Following, several batch co-digestion trials were conducted. To compare the biogas production, a number of digestion trials were also conducted with a mono substrate (OWW or WAS alone). The best operating condition of HC was achieved in the shortest retention time (7.5 min) with the application of 3mm diameter orifice and maximum pump rotational speed. Biogas production from all co-digestion reactors was higher than the WAS mono substrate reactors. Moreover, biogas production had a direct relationship with OWW ratio and no major inhibition was observed in any of the reactors. The biogas production was also enhanced by HC pretreatment and almost all of the reactors with HC pretreatment had higher reaction rates than the reactors without pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biodegradation of bilge waste from Patagonia with an indigenous microbial community.

    PubMed

    Nievas, M L; Commendatore, M G; Olivera, N L; Esteves, J L; Bucalá, V

    2006-12-01

    Oily residues that are generated in normal ship operation are considered hazardous wastes. A biodegradation assay with autochthonous microbiota of Bilge Waste Oily Phase (BWOP) was performed in a bioreactor under controlled conditions. Petroleum, diesel oil, and PAH degraders were isolated from bilge wastes. These bacteria belong to the genus Pseudomonas and are closely related to Pseudomonas stutzeri as shown by 16S rDNA phylogenetic analysis. The indigenous microbial community of the bilge waste was capable of biodegrading the BWOP (1% v/v) with biodegradation efficiencies of 70% for hexane extractable material (HEM), 68% for total hydrocarbons (TH) and 90% for total aromatics hydrocarbons (TA) in 14 days. Solid phase microextraction (SPME) was successfully applied to evaluate hydrocarbon evaporation in a control experiment and demonstrated a mass balance closure of 88%. The SPME and biodegradation results give useful information to improve and scale up the process for BWOP treatment.

  13. Study on the effect of innovative leaching solvent on the oil removal for oily drilling cuttings

    NASA Astrophysics Data System (ADS)

    Li, Long; Ma, Cha; Hao, Weiwei; Li, Mu; Huang, Zhao; Liu, Yushuang

    2018-02-01

    A new type of leaching solvent for oily drilling cuttings was developed, and the effect of leaching solvent on the oil removal for oily cuttings was investigated. The results indicated that the leaching solvent had good capacity of oil removal for oily cuttings, and the oil content of treated cuttings is less than 0.6%. The leaching solvent could be separated from the oil phase through distillation, and the recyclable solvent could be reused to treat other cuttings. Moreover, oil resources adsorbed on the oily cuttings could be recycled and reused to prepare new drilling fluids, so the drilling cost could be reduced greatly. As a result, the leaching solvent could treat the oily cuttings effectively, and recycle and reuse oil resources, and thus produce great economic benefits. It can play an essential role in safe drilling jobs and improvement of drilling efficiency in the future.

  14. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  15. 33 CFR 155.360 - Oily mixture (bilge slops) discharges on oceangoing ships of 400 gross tons and above but less...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.360 Oily mixture (bilge slops... the date of its initial survey prior to receiving its International Oil Pollution Prevention (IOPP...

  16. Improving biogas production from continuous co-digestion of oily wastewater and waste-activated sludge by hydrodynamic cavitation pre-treatment.

    PubMed

    Habashi, Nima; Alighardashi, Abolghasem; Mennerich, Artur; Mehrdadi, Nasser; Torabian, Ali

    2018-04-01

    Hydrodynamic cavitation (HC) was evaluated as a pretreatment for synthetic oily wastewater (OWW) to be co-digested with waste-activated sludge (WAS). The main objective of the present research was the enhancement of biogas production by the application of HC pretreatment. HC was applied to the OWW, and the OWW and WAS were added to a 50 L continuous digestion reactor. As a control system, an identical digestion reactor was set up for co-digestion of the WAS and the OWW without pretreatment. The reactors were initially filled with inoculum and the hydraulic retention time (HRT) was set to 22 d. The HRT was gradually reduced to 19, 16, and finally 13 d, but the substrate quality was kept constant. The loading rate, accordingly, increased from 0.86 to 1.46 g TVS/(L d). The biogas volume was recorded online and its quality was analyzed regularly. The HC improved biogas production up to 43% at 22 d of HRT. Reducing the HRT decreased biogas production from the main reactor while that of the control reactor was more or less constant. HC also increased the biogas methane content; the methane concentration of the main reactor was about 3% higher than the methane concentration of the control reactor. The main reactor experienced no clogging or accumulation of fatty materials.

  17. One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water

    NASA Astrophysics Data System (ADS)

    Xiang, Yuqian; Pang, Youyou; Jiang, Xiaomei; Huang, Jie; Xi, Fengna; Liu, Jiyang

    2018-01-01

    Absorbent materials integrated with superhydrophobicity, superoleophilicity and flame-retardancy are highly desired in the adsorption/removal of flammable oils/organic compounds as well as reducing the risk of fire and explosion. Here, one-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy was presented. Using raw melamine (ME) sponge as the supporting matrix, the formation of polydopamine (PDA) nanoaggregates via in-situ self-polymerization of high-concentrated dopamine and the covalent grafting of hydrophobic n-dodecylthiol (DT) onto PDA were combined in a feasible alkaline water/ethanol medium. As investigated by scanning electron microscopy (SEM) and X-ray energy-dispersive spectroscopy (EDS), the as-prepared ME/PDA/DT sponge possessed hierarchical structure with submicron PDA nanoaggregates containing DT motif (low surface energy) on 3D interconnected porous network. It exhibited superhydrophobic (water contact angle 157.7°) and superoleophilic (oily/organic solvent contact angle 0° properties. Owing to the highly porous structure, superhydrophobic property, chemical and mechanical stability, the ME/PDA/DT sponge exhibited outstanding absorbency properties of oily organic solvents including fast absorption kinetics, high absorption capacity, and easy reusability. Also, the ME/PDA/DT sponge could be used for one-line continuous organic solvent/water separation. More interestingly, the ME/PDA/DT sponge demonstrated improved flame-retardant property as compared to the intrinsic flame-retardant nature of the raw melamine sponge. Consequently, the risk of fire and explosion was expected to reduce when the fabricated sponge was used as an absorbent for flammable oils and organic compounds. The ease of the one-step superhydrophobic/superoleophilic modification and the promising feature of the obtained materials exhibit great potential for application in oils/organic solvents clean-up.

  18. Treatment of aging oily wastewater by demulsification/flocculation.

    PubMed

    Yang, Jing Y; Yan, Liang; Li, Shao P; Xu, Xin R

    2016-08-23

    The aging oily wastewater (AOW) from Tarim oilfield in China was treated by demulsification/flocculation. A novel sewage treatment agent (YL-7) was developed using a cationic surfactant (LY) and flocculants (polydimethyl diallyl ammonium chloride (PDMDAAC)/polyaluminum chloride (PAC)). At an YL-7 dosage of 320 mg L(-1) at 323 K for 90 min, the oil content of AOW was reduced from 728.8 mg L(-1) to 23.7 mg L(-1), and oil removal efficiency reached 96.7%. Microorganism flocs (extracted from AOW) with high negative zeta potential enhanced the stability of oil/water emulsion. LY and PDMDAAC neutralized the negative charge on the oil droplet surface. PDMDAAC and PAC mainly bridged and swept flocs during the flocculation process. YL-7 was found to be a suitable sewage treatment agent in removing oil from AOW.

  19. Bioprocess for treating coproduced oily sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munnecke, D.M.; Ireland, J.

    1996-12-31

    The production of oil from certain oil fields creates significant amounts of oily sand which in many regulatory jurisdictions is regulated as a hazardous material, thus disposal costs can be significant. Environmental BioTechnologies, Inc. (San Carlos, CA) has developed a physical/biological treatment process that is able to economically treat these coproduced sands and produce a product that contains less than 2,000 ppm total petroleum hydrocarbons.

  20. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  1. Experimental investigation of oily wastewater treatment using combined membrane systems.

    PubMed

    Salahi, A; Mohammadi, T

    2010-01-01

    Investigations were carried out for purification of oily wastewater by a combined of ultrafiltration/reverse osmosis (UF/RO) processes. Laboratory-scale UF using polysulfone (PS) and polyacrylonitrile (PAN) membranes were employed with typical oily wastewater collected from API unit of Tehran refinery. The PAN membrane showed higher rejection, more permeation flux and less fouling resistance than the PS membrane. Both membranes produced permeate with oil and grease contents generally less than 5 ppm. Rejection of chemical oxygen demand (COD) and biological oxygen demand (BOD5) were found to be 65% for UF treatment. In this work, Hermia's models were used to investigate the fouling mechanism involved in UF of the oily wastewater. The results showed that the best fit to experimental data corresponds to the cake layer formation model followed by the intermediate blocking model for both the UF membranes. For further treatment of the UF permeates, RO was applied using a thin film composite polyamide membrane. The rejection of COD, BOD5 and total dissolved solid (TDS) after UF/RO treatment increased up to 98%, 98% and 95%, respectively. The results showed that the final permeate has very high quality and even better than that is currently introduced to the cooling towers in Tehran refinery.

  2. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  3. Waste Minimization Program. Air Force Plant 6.

    DTIC Science & Technology

    1986-02-01

    coolant’s life, it can cause the formation of gummy residues on machines and parts and cause corrosion of the machine and work tools . i 3-91e 0 _ b-4 LA...2-9 3.0 Waste Minimization Program, AFP 6 3-1 3.1 Machine Coolant Waste 3-1 3.2 Engine Oil and Hydraulic Fluid Waste 3-12 3.3 Paint Sludge 3-14 3.4...Incineration 3-54 LIST OF FIGURES Figure Page 3-1 Annual Machine Coolant Use 3-5 n 3-2 oily Industrial Waste Treatment System 3-7 3-3 Schematic of Paint

  4. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  5. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system*

    PubMed Central

    Zhang, Hong-zi; Long, Xu-wei; Sha, Ru-yi; Zhang, Guo-liang; Meng, Qin

    2009-01-01

    Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 °C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 °C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 °C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater. PMID:19882761

  6. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  7. Stability of penethamate, a benzylpenicillin ester prodrug, in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Tucker, Ian G

    2015-01-01

    Penethamate (PNT) is an ester prodrug of benzylpenicillin which is marketed as dry powder for reconstitution with aqueous vehicle prior to injection. The purpose of this paper was to investigate the chemical stability of PNT in oily formulations to provide a basis for a ready-to-use (RTU) oil-based PNT formulation. The chemical stability of PNT solutions and suspensions in light liquid paraffin (LP), medium chain triglyceride (MIG), ethyl oleate (EO) and sunflower oil (SO) was investigated at 30 °C. Solid state stability of PNT powder and stability of PNT in EO suspensions with different moisture contents were also evaluated. The solubility of PNT in the oils was in order SO > EO > MIG > LP. Degradation of PNT was rapid in oily solutions and less than 10% remained after 7-15 days. Stability of PNT decreased with increase in moisture content in ethyl oleate suspensions. PNT was stable over four weeks in the solid state. Hydrolysis, due to moisture in the oil formulation is not the only degradation mechanism. PNT stability (% drug remaining) in oily suspensions after 3.5 months was in the order LP (96.2%) > MIG (95.4%) > EO (94.1%) > SO (86%). A shelf-life of up to 5.5 years at 30 °C may be achieved for PNT suspension in these oils.

  8. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  9. Characterization of oily sludge from a Tehran oil refinery.

    PubMed

    Heidarzadeh, Nima; Gitipour, Saeid; Abdoli, Mohammad Ali

    2010-10-01

    In this study, oily sludge samples generated from a Tehran oil refinery (Pond I) were evaluated for their contamination levels and to propose an adequate remediation technique for the wastes. A simple, random, sampling method was used to collect the samples. The samples were analyzed to measure Total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH) and heavy metal concentrations in the sludge. Statistical analysis showed that seven samples were adequate to assess the sludge with respect to TPH analyses. The mean concentration of TPHs in the samples was 265,600 mg kg⁻¹. A composite sample prepared from a mix of the seven samples was used to determine the sludge's additional characteristics. Composite sample analysis showed that there were no detectable amounts of PAHs in the sludge. In addition, mean concentrations of the selected heavy metals Ni, Pb, Cd and Zn were 2700, 850, 100, 6100 mg kg⁻¹, respectively. To assess the sludge contamination level, the results from the analysis above were compared with soil clean-up levels. Due to a lack of national standards for soil clean-up levels in Iran, sludge pollutant concentrations were compared with standards set in developed countries. According to these standards, the sludge was highly polluted with petroleum hydrocarbons. The results indicated that incineration, biological treatment and solidification/stabilization treatments would be the most appropriate methods for treatment of the sludges. In the case of solidification/stabilization, due to the high organic content of the sludge, it is recommended to use organophilic clays prior to treatment of the wastes.

  10. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  11. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  12. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  13. Water: Too Precious to Waste.

    ERIC Educational Resources Information Center

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  14. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  15. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge.

    PubMed

    Shahzad, Asim; Saddiqui, Samina; Bano, Asghari

    2016-01-01

    The objective of this study was to evaluate the role of PGPR consortium and fertilizer alone and in combination on the physiology of maize grown under oily sludge stress environment as well on the soil nutrient status. Consortium was prepared from Bacillus cereus (Acc KR232400), Bacillus altitudinis (Acc KF859970), Comamonas (Delftia) belonging to family Comamonadacea (Acc KF859971) and Stenotrophomonasmaltophilia (Acc KF859973). The experiment was conducted in pots with complete randomized design with four replicates and kept in field. Oily sludge was mixed in ml and Ammonium nitrate and Diammonium phosphate (DAP) were added at 70 ug/g and 7 ug/g at sowing. The plant was harvested at 21 d for estimation of protein, proline and antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). To study the degradation, total petroleum hydrocarbon was extracted by soxhelt extraction and extract was analyzed by GC-FID at different period after incubation. Combined application of consortium and fertilizer enhanced the germination %, protein and, proline content by 90,130 and 99% higher than untreated maize plants. Bioavailability of macro and micro nutrient was also enhanced with consortium and fertilizer in oily sludge. The consortium and fertilizer in combined treatment decreased the superoxide dismutase (SOD), peroxidase dismutase (POD) of the maize leaves grown in oily sludge. Degradation of total petroleum hydrocarbon (TPHs) was 59% higher in combined application of consortium and fertilizer than untreated maize at 3 d. The bacterial consortium can enhanced the maize tolerance to oily sludge and enhanced degradation of total petroleum hydrocarbon (TPHs). The maize can be considered as tolerant plant species to remediate oily sludge contaminated soils.

  16. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  17. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  18. Development and validation of a questionnaire to evaluate how a cosmetic product for oily skin is able to improve well-being in women.

    PubMed

    Segot-Chicq, E; Compan-Zaouati, D; Wolkenstein, P; Consoli, S; Rodary, C; Delvigne, V; Guillou, V; Poli, F

    2007-10-01

    Skin diseases are known to negatively affect self-image and to have detrimental psychosocial effects. Oily skin is a cosmetic skin problem that women often describe as 'invalidating'. To develop and validate a questionnaire to assess the psychological and psychosocial effects of oily skin condition in women and the outcome of a targeted cosmetic skincare treatment. We developed and validated a concise 18-item questionnaire [oily skin self-image questionnaire (OSSIQ)] to assess perception, behavioural, and emotional consequences associated with oily skin condition. The questionnaire was then used to assess the effects of a skincare treatment for oily skin and compare them with sebum level measurements. The 18-item questionnaire clearly distinguished the oily skin group from the control group. Responsiveness, reliability, and construct validity showed satisfactory performance. The questionnaire provided a relevant assessment of the psychological benefits associated with the skincare programme. The OSSIQ is a valid tool that can be used to monitor the benefits of cosmetic skincare treatments.

  19. Development of chitosan/pluronic F108/polyethersulfone (PES) nanofiltration (NF) membrane for oily wastewater treatment

    NASA Astrophysics Data System (ADS)

    Hamzah, Norzakiah; Rohani, Rosiah; Hassan, Abdul Rahman; Sharifuddin, Syazrin Syima; Isa, Mohd Hafez Mohd

    2018-06-01

    This study discusses a new finding for nanofiltration membrane development using phase inversion technique whereby polyethersulfone (PES) polymer was added with surfactant and additive. This research focuses on the development of a membrane that is efficient in treating oily wastewater and reducing membrane's low permeation flux issues. Five PES nanofiltration membranes were synthesized with pluronic F108 surfactant and different amounts of chitosan additive for each formulation. Subsequently, the effect of adding surfactant and additive on membrane performance was studied. Results showed that the membrane with the optimal amount of chitosan gave the highest flux and the rejection of oily wastewater with up to 90%. In addition, Fourier transform-infrared (FTIR) spectroscopy technique was used to characterize and analyse the membrane's properties. Hence, the developed membranes were successfully characterized and proved to be a good treatment for oily wastewater.

  20. A cell extraction method for oily sediments

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Kallmeyer, J.

    2012-04-01

    Hydrocarbons can be found in many different habitats and represent an important carbon source for microbes. As fossil fuels, they are an important economical resource and, through natural seepage or accidental release, they can be major pollutants. Oil sands from Alberta, Canada, and samples from the seafloor of the Gulf of Mexico represent typical examples of either natural or anthropogenically affected oily sediments. DNA-specific stains and molecular probes bind to hydrocarbons, causing massive background fluorescence and thereby massively hampering cell enumeration. The cell extraction procedure of Kallmeyer et al. (2008) separates the cells from the sediment matrix, producing a sediment free cell extract that can then be used for subsequent staining and cell enumeration under a fluorescence microscope. In principle, this technique can also be used to separate cells from oily sediments, but it was not originally optimized for this application and does not provide satisfactory results. Here we present a modified extraction method in which the hydrocarbons are removed prior to cell extraction by a solvent treatment. Due to the reduced background fluorescence the microscopic image becomes clearer, making cell identification and enumeration much easier. Consequently, the resulting cell counts from oily samples treated according to our new protocol were significantly higher than those treated according to Kallmeyer et al. (2008). We tested different amounts of a variety of solvents for their ability to remove hydrocarbons and found that n-hexane and - in samples containing more biodegraded oils - methanol, delivered the best results. Because solvents also tend to lyse cells, it was important to find the optimum solvent to sample ratio, at which the positive effect of hydrocarbon extraction overcomes the negative effect of cell lysis. A volumetric ratio of 1:2 to 1:5 between a formalin-fixed sediment slurry and solvent delivered highest cell counts. Extraction

  1. Organics removal in oily bilgewater by electrocoagulation process.

    PubMed

    Asselin, Mélanie; Drogui, Patrick; Brar, Satinder Kaur; Benmoussa, Hamel; Blais, Jean-François

    2008-03-01

    This study investigated the treatment of oily bilgewater using an electrocoagulation technique. Electrocoagulation process was evaluated at laboratory scale (1.7 l electrolytic cell) and involved utilization of two kinds of electrodes (iron and aluminium) arranged either in bipolar (BP) or monopolar (MP) configuration. Results showed that the best performance was obtained using mild steel MP electrode system operated at a current intensity of 1.5A, through 60 or 90 min of treatment. Under these conditions, removal yields of 93.0+/-3.3% and 95.6+/-0.2% were measured for BOD and O&G, respectively, whereas CODs and CODt were removed by 61.3+/-3.6% and 78.1+/-0.1%, respectively. Likewise, 99.4+/-0.1% of n-C10 to n-C50 hydrocarbons was removed from oily bilgewater. Electrocoagulation was also efficient for clarification of OBW. Removal yields of 99.8+/-0.4% and 98.4+/-0.5% have been measured for TSS and turbidity, respectively. Electrocoagulation process operated under the optimal conditions involves a total cost of 0.46 US$ per cubic meter of treated OBW. This cost only includes energy and electrode consumptions, chemicals, and sludge disposal.

  2. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    PubMed

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  3. Recycle of valuable products from oily cold rolling mill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  4. Electrical process in the breaking of dilute oil-in-water emulsions. Completion report, 1 July 1973-30 June 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orr, C. Jr.; Keng, E.Y.H.

    1974-06-01

    Oils, greases, and waxes frequently occur in industrial waste waters. Simultaneously, soaps and detergents enter most waste waters from domestic and other sources. When the mixtures of waste particles in water, known as emulsions, come in contact with the soaps and detergents, they generally become quite stable. One way to break such emulsions and thereby separate out the wastes is to add chemicals that will cause the oil droplet to agglomerate into larger drops. This study sought to assess the usefulness of electrical measurements, particularly the so-called zeta potential, in guiding the treatment process to chemicals and application rates thatmore » can break measured emulsions. When the zeta potential, which for a highly stable emulsion may be as negative as -0.090 volt, is made to approach -0.015 volt, the stability of the emulsion deteriorates rapidly. Past this poin oil-in-water emulsions often break spontaneously. The larger drops will then rise to the water surface and form a distinct oil layer that can be easily removed. Laboratory applications of various chemicals to emulsion samples and subsequent zeta potential measurement should thus provide a ready guide to those trying to remove oily waste water discharge.« less

  5. Noise control of waste water pipes

    NASA Astrophysics Data System (ADS)

    Lilly, Jerry

    2005-09-01

    Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.

  6. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  7. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright

  8. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Oily Skin: A review of Treatment Options

    PubMed Central

    Miller, Richard A.

    2017-01-01

    One of the most common dermatologic concerns is oily skin, and the demand for effective treatment options is ever apparent. This review article addresses numerous topical treatment options such as retinoids, olumacostat glasaretil, and various cosmeceutical agents. several systemic and procedural techniques that incorporate isotretinoin, spironolactone, oral contraceptives, botulinum toxin, photodynamic therapy, and lasers are reviewed as well. Each treatment option is analyzed in terms of the proposed mechanism of action, efficacy reported in the literature, and potential adverse effects. PMID:28979664

  10. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness in the child at age 9 years.

    PubMed

    Bryant, Jennifer; Hanson, Mark; Peebles, Charles; Davies, Lucy; Inskip, Hazel; Robinson, Sian; Calder, Philip C; Cooper, Cyrus; Godfrey, Keith M

    2015-03-27

    Higher pulse wave velocity (PWV) reflects increased arterial stiffness and is an established cardiovascular risk marker associated with lower long-chain n-3 polyunsaturated fatty acid intake in adults. Experimentally, maternal fatty acid intake in pregnancy has lasting effects on offspring arterial stiffness. To examine the association between maternal consumption of oily fish, a source of long-chain n-3 polyunsaturated fatty acids, in pregnancy and child's aortic stiffness age 9 years. In a mother-offspring study (Southampton Women's Survey), the child's descending aorta PWV was measured at the age of 9 years using velocity-encoded phase-contrast MRI and related to maternal oily fish consumption assessed prospectively during pregnancy. Higher oily fish consumption in late pregnancy was associated with lower childhood aortic PWV (sex-adjusted β=-0.084 m/s per portion per week; 95% confidence interval, -0.137 to -0.031; P=0.002; n=226). Mother's educational attainment was independently associated with child's PWV. PWV was not associated with the child's current oily fish consumption. Level of maternal oily fish consumption in pregnancy may influence child's large artery development, with potential long-term consequences for later cardiovascular risk. © 2015 American Heart Association, Inc.

  11. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition.

    PubMed

    Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang

    2017-11-01

    Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of industrial wastes as raw materials for Emulsified Modified Bitumen (EMB) formulation

    NASA Astrophysics Data System (ADS)

    Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd

    2018-04-01

    This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.

  13. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  14. Phytoremediation for Oily Desert Soils

    NASA Astrophysics Data System (ADS)

    Radwan, Samir

    This chapter deals with strategies for cleaning oily desert soils through rhizosphere technology. Bioremediation involves two major approaches; seeding with suitable microorganisms and fertilization with microbial growth enhancing materials. Raising suitable crops in oil-polluted desert soils fulfills both objectives. The rhizosphere of many legume and non-legume plants is richer in oil-utilizing micro-organisms than non-vegetated soils. Furthermore, these rhizospheres also harbour symbiotic and asymbiotic nitrogen-fixing bacteria, and are rich in simple organic compounds exuded by plant roots. Those exudates are excellent nutrients for oil-utilizing microorganisms. Since many rhizospheric bacteria have the combined activities of hydrocarbon-utilization and nitrogen fixation, phytoremediation provides a feasible and environmentally friendly biotechnology for cleaning oil-polluted soils, especially nitrogen-poor desert soils.

  15. Effect of St.John's wort (Hypericum perforatum) oily extract for the care and treatment of pressure sores; a case report.

    PubMed

    Yücel, Ali; Kan, Yüksel; Yesilada, Erdem; Akın, Onat

    2017-01-20

    Topical formulations such as oily extracts or ointments prepared with the flowering aerial parts of St. John's wort (Hypericum perforatum L., Hypericaceae) have been used in the management of a wide range dermatological problems including superficial wounds and burns, bruises, contusions and many others in the worldwide traditional medicines. This is the first case study reporting the beneficial effects of an oily extract of St. John's wort in the treatment of pressure sores in a intensive care unit (ICU) patient. The oily extract of St. John's wort was applied to a volunteer patient at ICU daily for forty successive days for wound care and treatment. Healing status was monitored macroscopically by measuring the wound size and stages at certain intervals as well as histopathological evaluation of the tissue sections taken at the initial and final dates of treatment. Evaluation of the results obtained from the macroscopical and histopathological experimentation have shown that oily extract of St. John's wort provided significant efficacy for the treatment of pressure sore wounds. St. John's wort oily extract may be suggested as a cost-effective option for the prevention or treatment of pressure sores in ICU patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system.

    PubMed

    Kang, Jian-xiong; Lu, Lu; Zhan, Wei; Li, Bo; Li, Dao-sheng; Ren, Yong-zheng; Liu, Dong-qi

    2011-02-15

    The present study aims at investigating the performance of a vacuum ultraviolet (VUV, 185 nm) and TiO(2) oxidation system for the pretreatment of oily wastewater from restaurant. The influence of irradiation time, pH, dissolved oxygen (DO), the dosage of TiO(2) and the initial chemical oxygen demand (COD) concentration on COD removal efficiency was ascertained and optimum process conditions for stable and effective operation were determined. Under the optimum conditions of irradiation 10 min, initial COD 3981 mg/L, TiO(2) 150 mg/L, pH 7.0 and flow rate of air 40 L/h, the process of VUV and TiO(2)/VUV achieved removal efficiencies of COD, BOD(5) and oil as 50±3%, 37±2%, 86±3%, and 63±3%, 43±2%, 70±3%, respectively. The biodegradability factor f(B) of the wastewater was determined as 1.56 which indicated that the VUV/TiO(2) process improved the biodegradability of the oily wastewater significantly. Results clearly indicate that VUV/TiO(2) photolysis tends to destruct parts of COD, BOD(5), and ammonia, as well as enhances the biodegradability of the oily wastewater simultaneously. Thus, this technique could be used as a pretreatment step for conventional biological treatment of oily wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  18. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The anaerobic digestion of biologically and physicochemically pretreated oily wastewater.

    PubMed

    Peng, Liyu; Bao, Meidan; Wang, Qingfeng; Wang, Fangchao; Su, Haijia

    2014-01-01

    To enhance the degradation of oily wastewater and its biogas production, a biological-physicochemical pretreatment was introduced prior to the anaerobic digestion system. The digestion thereafter proceeded more efficiently due to the inoculation by oil degrading bacteria (Bacillus). A 2-stage pre-mixing is more effective than directly mixing. The effects on the methane production were also investigated by pre-treatment with ultrasonic (US) treatment, combined with citric acid (CA) addition. US pre-treatment was found to improve the initial methane production, and CA pre-treatment could maintain this improvement during the whole digestion stage. Pre-mixing Bacillus at 9 wt.% inoculation, combined with US for 10 min and a CA concentration of 500 mg/L provided the optimum conditions. The most effective enhancement of methane yield was 1100.46 ml/g VS, exceeding that of the control by 280%. The change of coenobium shape and fatty acid content further proved that such pretreatment of oily wastewater can facilitate digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    EPA Science Inventory

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  1. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  2. Modeling marine oily wastewater treatment by a probabilistic agent-based approach.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong

    2018-02-01

    This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  4. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texasmore » A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.« less

  5. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    PubMed

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  7. The public health significance of trace chemicals in waste water utilization

    PubMed Central

    Shuval, Hillel I.

    1962-01-01

    The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826

  8. Electrooxidation of organics in waste water

    NASA Technical Reports Server (NTRS)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  9. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  10. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  11. False positive 18FDG PET-CT results due to exogenous lipoid pneumonia secondary to oily drug inhalation: A case report.

    PubMed

    Chardin, David; Nivaggioni, Guillaume; Viau, Philippe; Butori, Caherine; Padovani, Bernard; Grangeaon, Caroline; Razzouk-Cadet, Micheline

    2017-06-01

    Exogenous lipoid pneumonia is a rare condition due to abnormal presence of oily substances in the lungs. It is a rarely known cause for false positive FDG PET-CT results and can sometimes lead to invasive investigations. Searching and finding the source of the oily substance is one of the keys to the diagnosis. Inhalation of oily drugs during snorting has rarely been described. A patient with well controlled HIV infection was referred for an FDG PET-CT to assess extension of Kaposi's disease, recently removed from his right foot. The patient had no particular symptoms. Abnormal uptake of FDG was found in a suspicious lung nodule. An experienced radiologist thought the nodule was due to lipoid pneumonia. Bronchoalveolar lavage fluid did not contain lipid-laden macrophages but bronchoscopy showed violet lesions resembling Kaposi's disease lesions. Lobectomy was performed after a multidisciplinary discussion. Anatomopathological analysis revealed the nodule was due to lipoid pneumonia. The patient's quality of life did not diminish after the operation and he is still in good health. The source of the oily substance causing lipoid pneumonia was found after the surgery: the patient used to snort oily drugs. The presence of a suspicious lung nodule possibly due to lipoid pneumonia in a patient with known Kaposi's disease was difficult to untangle and lead to invasive surgery. It is possible that if a source of exogenous lipoid pneumonia had been found beforehand, surgery could have been prevented.

  12. CASE STUDY: IN-SITU SOLIDIFICATION/STABILIZATION OF HAZARDOUS ACID WASTE OIL SLUDGE AND LESSONS LEARNED

    EPA Science Inventory

    The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...

  13. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    PubMed

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  14. Biomimetic Multilayer Nanofibrous Membranes with Elaborated Superwettability for Effective Purification of Emulsified Oily Wastewater.

    PubMed

    Ge, Jianlong; Jin, Qing; Zong, Dingding; Yu, Jianyong; Ding, Bin

    2018-05-09

    Creating a porous membrane to effectively separate the emulsified oil-in-water emulsions with energy-saving property is highly desired but remains a challenge. Herein, a multilayer nanofibrous membrane was developed with the inspiration of the natural architectures of earth for gravity-driven water purification. As a result, the obtained biomimetic multilayer nanofibrous membranes exhibited three individual layers with designed functions; they were the inorganic nanofibrous layer to block the serious intrusion of oil to prevent the destructive fouling of the polymeric matrix; the submicron porous layer with designed honeycomb-like cavities to catch the smaller oil droplets and ensures a satisfactory water permeability; and the high porous fibrous substrate with larger pore size provided a template support and allows water to pass through quickly. Consequently, with the cooperation of these three functional layers, the resultant composite membrane possessed superior anti-oil-fouling property and robust oil-in-water emulsion separation performance with good separation efficiency and competitive permeation flux solely under the drive of gravity. The permeation flux of the membrane for the emulsion was up to 5163 L m -2 h -1 with a separation efficiency of 99.5%. We anticipate that our strategy could provide a facile route for developing a new generation of specific membranes for oily wastewater remediation.

  15. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  16. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    PubMed

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  17. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  18. Section 10: Ground Water - Waste Characteristics & Targets

    EPA Pesticide Factsheets

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  19. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  20. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  1. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  2. 33 CFR 155.450 - Placard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... film or discoloration of the surface of the water or causes a sludge or emulsion beneath the surface of... pump control station, stating the following: Discharge of Oil Prohibited The Federal Water Pollution Control Act prohibits the discharge of oil or oily waste into or upon the navigable waters of the United...

  3. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  4. Review of technologies for oil and gas produced water treatment.

    PubMed

    Fakhru'l-Razi, Ahmadun; Pendashteh, Alireza; Abdullah, Luqman Chuah; Biak, Dayang Radiah Awang; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2009-10-30

    Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

  5. Tracing Waste Water with Li isotopes

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  6. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  7. N-SINK - reduction of waste water nitrogen load

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  8. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  9. Ecotoxicity of waste water from industrial fires fighting

    NASA Astrophysics Data System (ADS)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  10. Performance characterization of water recovery and water quality from chemical/organic waste products

    NASA Technical Reports Server (NTRS)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  11. A Study of Rapid Biodegradation of Oily Wastes through Composting.

    DTIC Science & Technology

    1979-10-01

    effective method for large-scale composting of organic wastes. This research project was based on the principles of the forced aeration technique. The...carbon results in heat loss and subsequent reduction in effectiveness of pathogen destruction. It is therefore desirable to maintain the C/N ratio at a...investigated the effect of composting on the degradation of hydrocarbons in sewage sludge. Sludge extracts were fractionated into classes of compounds and a

  12. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ..., purification, or distribution of water; and for the collection, treatment, or disposal of waste in rural areas... requirements, Rural areas, Waste treatment and disposal, Water supply, Watersheds. For the reasons discussed in...

  13. 33 CFR 155.450 - Placard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of durable material fixed in a conspicuous place in each machinery space, or at the bilge and ballast pump control station, stating the following: Discharge of Oil Prohibited The Federal Water Pollution Control Act prohibits the discharge of oil or oily waste into or upon the navigable waters of the United...

  14. 33 CFR 155.450 - Placard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of durable material fixed in a conspicuous place in each machinery space, or at the bilge and ballast pump control station, stating the following: Discharge of Oil Prohibited The Federal Water Pollution Control Act prohibits the discharge of oil or oily waste into or upon the navigable waters of the United...

  15. 33 CFR 155.450 - Placard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of durable material fixed in a conspicuous place in each machinery space, or at the bilge and ballast pump control station, stating the following: Discharge of Oil Prohibited The Federal Water Pollution Control Act prohibits the discharge of oil or oily waste into or upon the navigable waters of the United...

  16. 33 CFR 155.450 - Placard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of durable material fixed in a conspicuous place in each machinery space, or at the bilge and ballast pump control station, stating the following: Discharge of Oil Prohibited The Federal Water Pollution Control Act prohibits the discharge of oil or oily waste into or upon the navigable waters of the United...

  17. Combination gas producing and waste-water disposal well

    DOEpatents

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  18. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  19. QUANTITATIVE ELISA OF POLYCHLORINATED BIPHENYLS IN AN OILY SOIL MATRIX USING SUPERCRITICAL FLUID EXTRACTION

    EPA Science Inventory

    Soil samples from the GenCorp Lawrence Brownfields site were analyzed with a commercial semi-quantitative enzyme-linked immunosorbent assay (ELISA) using a methanol shake extraction. Many of the soil samples were extremely oily, with total petroleum hydrocarbon levels up to 240...

  20. Waste-water characterization and hazardous-waste technical assistance survey, Bergstrom AFB tTxas. Final report, 6-15 March 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedgecock, N.S.

    1990-01-01

    At the request of 67 Combat Support Group/DEEV the Air Force Occupational and Environmental Health Laboratory conducted a waste-water characterization and hazardous-waste technical assistance survey at Bergstrom AFB (BAFB) from 6-15 Mar 89. The scope of the waste-water survey was to characterize the effluent exiting the base and the effluent from 23 industrial facilities and 10 food-serving facilities. The scope of the hazardous-waste survey was to address hazardous-waste-management practices and explore opportunities for hazardous waste minimization. Specific recommendations from the survey include: (1) Accompany City of Austin personnel during waste-water sampling procedures; (2) Sample at the manhole exiting the mainmore » lift station rather than at the lift station wet well; (3) Split waste-water samples with the City of Austin for comparison of results; (4) Ensure that oil/water separators and grease traps are functioning properly and are cleaned out regularly; (5) Limit the quantity of soaps and solvents discharged down the drain to the sanitary sewer; (6) Establish a waste disposal contract for the removal of wastes in the Petroleum Oils and Lubricants underground storage tanks. (7) Remove, analyze, and properly dispose of oil contaminated soil from accumulation sites. (8) Move indoors or secure, cover, and berm the aluminum sign reconditioning tank at 67 Civil Engineering Squadron Protective Coating. (9) Connect 67 Combat Repair Squadron Test Cell floor drains to the sanitary sewer.« less

  1. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  2. Comparison of cytotoxicity in vitro and irritation in vivo for aqueous and oily solutions of surfactants.

    PubMed

    Czajkowska-Kośnik, Anna; Wolska, Eliza; Chorążewicz, Juliusz; Sznitowska, Małgorzata

    2015-01-01

    The in vivo model on rabbit eyes and the in vitro cytotoxicity on fibroblasts were used to compare irritation effect of aqueous and oily (Miglyol 812) solutions of surfactants. Tween 20, Tween 80 and Cremophor EL were tested in different concentrations (0.1, 1 or 5%) and the in vitro test demonstrated that surfactants in oil are less cytotoxic than in aqueous solutions. In the in vivo study, the aqueous solutions of surfactants were characterized as non-irritant while small changes in conjunctiva were observed after application the oily solutions of surfactants and the preparations were classified as slightly irritant, however this effect was similar when Miglyol was applied alone. In conclusion, it is reported that the MTT assay does not correlate well with the Draize scores.

  3. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    USGS Publications Warehouse

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  4. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    PubMed

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. AGOR 28

    DTIC Science & Technology

    2013-09-12

    16 DWG Report - AUXILIARY SYSTEMS REPORT ( BILGE BALLAST & OILY WATER WASTE DIAGRAM)(R/ASR) 14/4 AGOR27 A024 STD Report - REGULATORY BODY... WATER )(R/ASR) 8/2 AGOR27 A027- 16 DWG Report - AUXILIARY SYSTEMS REPORT (SANITARY SYSTEMS DIAGRAM)(R/ASR) 12/4 AGOR27 A027- 16 DWG Report

  6. Waste-water characterization and hazardous-waste technical assistance survey, Mather AFB California. Final report, 28 November-9 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.P.; Hedgecock, N.S.

    1989-10-01

    Personnel from the AFOEHL conducted a waste-water characterization and hazardous-waste technical assistance survey at MAFB from 28 Nov to 9 Dec 1988. The scope of this survey was to characterize the waste-water, address hazardous-waste-management practices, and explore opportunities for hazardous waste minimization. The waste water survey team analyzed the base's industrial effluent, effluent from oil/water separators, and storm water. The team performed a shop-by-shop evaluation of chemical-waste-management practices. Survey results showed that MAFB needs to improve its hazardous-waste-management program. Recommendations for improvement include: (1) Collecting two additional grab samples on separate days from the hospital discharge. Analyze for EPA Methodmore » 601 to determine if the grab sample from the survey gives a true indication of what is being discharged. (2) Locate the source and prevent mercury from the hospital from discharging into the sanitary sewer. (3) Dilute the soaps used for cleaning at the Fuels Lab, Building 7060. (4) Investigate the source of chromium from the Photo Lab. (5) Clean out the sewer system manhole directly downgradient from the Photo Lab. (6) Locate the source of contamination in the West Ditch Outfall. (7) Reconnect the two oil/water separators that discharge into the storm sewerage system. (8) Investigate the source of methylene chloride coming on the base. (9) Investigate the source of mercury at Fuel Cell Repair, building 7005.« less

  7. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  8. Lost water and nitrogen resources due to EU consumer food waste

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bouraoui, F.; Leip, A.; Grizzetti, B.; Bidoglio, G.

    2015-08-01

    The European Parliament recently called for urgent measures to halve food waste in the EU, where consumers are responsible for a major part of total waste along the food supply chain. Due to a lack of data on national food waste statistics, uncertainty in (consumer) waste quantities (and the resulting associated quantities of natural resources) is very high, but has never been previously assessed in studies for the EU. Here we quantify: (1) EU consumer food waste, and (2) associated natural resources required for its production, in term of water and nitrogen, as well as estimating the uncertainty of these values. Total EU consumer food waste averages 123 (min 55-max 190) kg/capita annually (kg/cap/yr), i.e. 16% (min 7-max 24%) of all food reaching consumers. Almost 80%, i.e. 97 (min 45-max 153) kg/cap/yr is avoidable food waste, which is edible food not consumed. We have calculated the water and nitrogen (N) resources associated with avoidable food waste. The associated blue water footprint (WF) (the consumption of surface and groundwater resources) averages 27 litre per capita per day (min 13-max 40 l/cap/d), which slightly exceeds the total blue consumptive EU municipal water use. The associated green WF (consumptive rainwater use) is 294 (min 127-max 449) l/cap/d, equivalent to the total green consumptive water use for crop production in Spain. The nitrogen (N) contained in avoidable food waste averages 0.68 (min 0.29-max 1.08) kg/cap/yr. The food production N footprint (any remaining N used in the food production process) averages 2.74 (min 1.02-max 4.65) kg/cap/yr, equivalent to the use of mineral fertiliser by the UK and Germany combined. Among all the food product groups wasted, meat accounts for the highest amounts of water and N resources, followed by wasted cereals. The results of this study provide essential insights and information on sustainable consumption and resource efficiency for both EU policies and EU consumers.

  9. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    NASA Astrophysics Data System (ADS)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  10. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  11. Treatment of oily wastewater of a gas refinery by electrocoagulation using aluminum electrodes.

    PubMed

    Saeedi, Mohesn; Khalvati-Fahlyani, Amin

    2011-03-01

    Oily wastewaters are the most important discharges of gas refineries from an environmental point-of-view. In the present study, treatment of gas refinery oily wastewater by electrocoagulation using aluminum electrodes was investigated. The effects of electrode distance, initial pH, sodium sulfate (Na2SO4) as a supporting electrolyte, polyaluminum chloride dosage as a coagulant aid, and current density on the efficiency of chemical oxygen demand (COD) removal were examined. The results revealed that the COD removal rate increases by applying more current density and polyaluminum chloride and, to a lesser extent, Na2SO4 dosage. The results also showed that 97% COD can be removed at optimum operational conditions. Specific electrical energy consumption could be reduced from 19.48 kWh (kg COD removal)(-1) to 11.057 kWh (kg COD removal)(-1) using Na2SO4 as a supporting electrolyte. Gas chromatographic analysis of raw and treated wastewater also revealed that most normal hydrocarbons (nearly 99%) were removed during the electrocoagulation process.

  12. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less

  13. Membrane technology for treating of waste nanofluids coolant: A review

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  14. Army Reserve Expands Net Zero Energy, Water, Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  15. Identification of Entamoeba moshkovskii in Treated Waste Water Used for Agriculture.

    PubMed

    Fonseca, Jairo Andres; Heredia, Rubén Darío; Ortiz, Carolina; Mazo, Martín; Clavijo-Ramírez, Carlos Arturo; Lopez, Myriam Consuelo

    2016-03-01

    We conducted an observational study to determine the prevalence of Entamoeba spp., in samples collected in a waste water treatment plant that provides water for agricultural irrigation. Samples were collected weekly over a period of 10 weeks at representative contamination stages from within the treatment plant. Protozoan identification was performed via light microscopy and culture. PCR amplification of small subunit rRNA gene sequences of E. histolytica/dispar/moshkovskii was performed in culture positive samples. Light microscopy revealed the presence of Entamoeba spp., in 70% (14/20) of the raw waste water samples and in 80% (8/10) of the treated water samples. PCR amplification after culture at both 24 and 37°C revealed that 100% (29/29) of the raw waste water samples and 78.6% (11/14) of the treated waste water were positive for E. moshkovskii. We report the first isolation of E. moshkovskii in Colombia, confirmed by PCR. Recent reports of E. moshkovskii pathogenic potential suggest this finding could constitute a public health risk for people exposed to this water.

  16. Removal of nitrosamines from waste water by potassium ferrate oxidation.

    PubMed

    Bartzatt, R; Nagel, D

    1991-01-01

    Potassium ferrate (K2FeO4) is useful in the advanced treatment of waste water. Additional evidence of this capability is presented in this study. Potassium ferrate is a very strong oxidant and is highly soluble in water. The nitrosamine studied in this work was toxic and was a potent pancreatic tumorigen in laboratory animals. Nitrosamines, which are potent carcinogens, are widespread throughout the environment and can be eliminated from waste water effluent by the action of potassium ferrate. Potassium ferrate and the nitrosamine was placed in aqueous solution and allowed to react to completion. Analysis by photospectroscopy revealed that the nitrosamine was completely degraded. This result suggests that potassium ferrate is useful for decontamination of some waste water collections.

  17. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    NASA Astrophysics Data System (ADS)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  18. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    USGS Publications Warehouse

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  19. Oily fraction of Semecarpus anacardium Linn nuts involves protein kinase C activation for its pro-inflammatory response.

    PubMed

    Tripathi, Yamini B; Pandey, Nidhi; Tripathi, Deepshikha; Tripathi, Pratibha

    2010-12-01

    The oily fraction (non polar fraction-NPF) of S. anacardium (SA) significantly increased the expression of protein kinase C-delta (PKC-delta) in macrophages in concentration dependent manner, which was similar to phorbol myristate acetate (PMA) response. Further, H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine), an inhibitor of PKC significantly inhibited this NPF mediated response in a concentration dependent manner. In the post treatment kinetics, H-7 showed this inhibition only up to 6 min post NPF/PMA addition, but in similar condition, quercetin, a flavone with reported antioxidant property, showed this inhibition only up to 2 min. The results clearly suggest that oily fraction of SA nuts enhances the expression of PKC protein, which may be responsible for its reported pro-inflammatory property.

  20. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  1. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    PubMed

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  3. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  4. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  5. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  6. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less

  7. Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling.

    PubMed

    Shokrkar, H; Salahi, A; Kasiri, N; Mohammadi, T

    2011-01-01

    In this paper, results of an experimental and modeling of separation of oil from industrial oily wastewaters (desalter unit effluent of Seraje, Ghom gas wells, Iran) with mullite ceramic membranes are presented. Mullite microfiltration symmetric membranes were synthesized from kaolin clay and alpha-alumina powder. The results show that the mullite ceramic membrane has a high total organic carbon and chemical oxygen demand rejection (94 and 89%, respectively), a low fouling resistance (30%) and a high final permeation flux (75 L/m2 h). Also, an artificial neural network, a predictive tool for tracking the inputs and outputs of a non-linear problem, is used to model the permeation flux decline during microfiltration of oily wastewater. The aim was to predict the permeation flux as a function of feed temperature, trans-membrane pressure, cross-flow velocity, oil concentration and filtration time, using a feed-forward neural network. Finally the structure of hidden layers and nodes in each layer with minimum error were reported leading to a 4-15 structure which demonstrated good agreement with the experimental measurements with an average error of less than 2%.

  8. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  9. Evaluation of commercial ultrafiltration systems for treating automotive oily wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B.R.; Kalis, E.M.; Florkey, D.L.

    1998-11-01

    Currently at Ford Motor Company, oily wastewater is batch treated by chemical demulsification whose performance depends on determining optimum chemical dosages and is occasionally inconsistent because of influent fluctuations. Therefore, a pilot study was conducted at the Ford Romeo Engine Plant, Romeo, Michigan, to study treatment of raw oily wastewater and skim oil (from chemical deemulsification) using commercially available ultrafiltration (UF) systems as an alternative to chemical deemulsification. The study found that most UF membranes performed consistently and reliably, producing average permeate oil and grease (O and G) concentrations of less than 100 mg/L, a typical discharge limit for anmore » automotive plant. In addition, tubular membranes typically outperformed spiral-wound membranes in permeate flux and washing frequency. While all UF systems performed consistently well for removing O and G, the treated effluent still had a chemical oxygen demand (COD) of 100 to 2,000 mg/L, which is comparable to that found in typical chemically treated wastewater. This indicates that many dissolved organics are not removed by either chemical or UF treatment. Metals (such as copper and zinc) were found to be effectively removed by UF when the pH was greater than 8. Most membranes used as a second stage produced retentate with O and G of more than 40%. All attempts at UF skim oil treatment were unsuccessful because of high oil viscosity, which made pumping it through a membrane system almost impossible. Chemical reactions during the chemical deemulsification process might have been responsible for the high viscosity.« less

  10. Waste stream recycling: Its effect on water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornwell, D.A.; Lee, R.G.

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  11. Improved waste water treatment by bio-synthesized Graphene Sand Composite.

    PubMed

    Poornima Parvathi, V; Umadevi, M; Bhaviya Raj, R

    2015-10-01

    The photocatalytic and antibacterial properties of graphene biosynthesized from sugar and anchored on sand particles has been focused here. The morphology and composition of the synthesized Graphene Sand Composite (GSC) was investigated by means of X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDAX), Fourier Transform Infra-red Spectroscopy (FTIR) and UV-Visible spectroscopy. SEM images show wrinkly edges. This is characteristic of graphenic morphology. Three types of waste water samples namely, textile waste (TW), sugarcane industrial waste water (SW) and domestic waste water from a local purification center at Kodaikanal (KWW) were collected and treated. Adsorption experiments showed effective removal of impurities at 0.2 g of GSC. Photocatalytic activity was analyzed under visible and ultraviolet irradiation. The rate constant for TW increased to 0.0032/min for visible light irradiation from 0.0029/min under UV irradiation. SW showed similar improved activity with rate constant as 0.0023/min in visible irradiation compared to 0.0016/min under UV irradiation. For KWW enhanced activity was seen only in visible light irradiation with rate constant 0.0025/min. GSC showed an inhibition zone of 20 mm against the bacterium Escherichia coli. Results suggest development of economic and effective waste water management systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. NEARBY LAKE SEDIMENT QUALITY AND SEEDLING TREE SURVIVAL ON ERODED OILY WASTE/BRINE CONTAMINATED SOIL

    EPA Science Inventory

    An ecosystem restoration study is being conducted at an old oil production area in Northeast Oklahoma. Surface soil samples from areas impacted by discarded crude oil and brine wastes have been chemically characterized. Surface erosion has occurred in areas impacted by waste disc...

  13. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  14. [Potentiometric concentration determination of cyanide ions in waste water].

    PubMed

    Börner, J; Martin, G; Götz, C

    1990-06-01

    Electrodic systems, consist of gold or silver and metals of the IV, or V, subsidiary groups of the periodic system of elements are qualified for that, because they based strength of their electrodic steepness, selectivity, potentionel stability and sensibility by destination of cyanid ions in waste-water. We are going to introduce a fast-analysis-method for cyanid ions in waste-water of technical processes, which had been tested practically by the continuous control of limits, demanded by the legislator.

  15. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  16. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  17. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2011-10-01 2011-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...

  18. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...

  19. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.

    PubMed

    Ellison, Michael B; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  20. [Effects of polyacrylamide on settling and separation of oil droplets in polymer flooding produced water].

    PubMed

    Deng, Shubo; Zhou, Fusheng; Chen, Zhongxi; Xia, Fujun; Yu, Gang; Jiang, Zhanpeng

    2002-03-01

    The research found anion polyacrylamide (HPAM) had positive and negative effects on oil-water separation. Polymer made oily wastewater's viscosity increase and reduce rising velocity, and polymer can also increase intensity of water films between oil droplets and lengthen coalescence time of oil droplets. Those were not in favor of settling and separation for oil droplets. The positive effects on separation were that polyacrylamide had flocculating activity and made small droplets contact each other and combine into big droplets. When polymer's molecular weight was 2.72 x 10(6), and concentration was less than 800 mg/L, polymer was in favor of oil droplets settling and separation. The prime reason for oily wastewater of polymer flooding difficult to dispose was that initial median diameters of oil droplets were small. The transverse flow oil separator can intensify oil droplets combination and shorten rising time. The locale experiments showed the separator was suitable for dealing with oily wastewater of polymer flooding.

  1. Integrated water and waste management system for future spacecraft

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  2. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  3. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics.

    PubMed

    Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William

    2007-09-30

    The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.

  4. 78 FR 60218 - Safety Zone; Old Mormon Slough, Stockton, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... decontaminate soil, groundwater, and sediment in Old Mormon Slough and the surrounding basin. This safety zone... safety zone in Old Mormon Slough to further the efforts of the EPA to rehabilitate soil, sediment, and... water collection ponds. The unlined oily waste ponds were closed in 1981. Sampling has shown that soils...

  5. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  6. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    PubMed

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of

  7. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  8. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers

  9. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  10. Soil and solid poultry waste nutrient management and water quality.

    PubMed

    Chapman, S L

    1996-07-01

    Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production.

  11. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    NASA Astrophysics Data System (ADS)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  12. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    USDA-ARS?s Scientific Manuscript database

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  13. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    NASA Astrophysics Data System (ADS)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  14. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin Michael; Spencer, LaShelle E.; Ruby, Anna Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  15. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  16. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.

    PubMed

    Ortega, Ryan A; Carter, Erin S; Ortega, Albert E

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric.

  17. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions

    PubMed Central

    Carter, Erin S.; Ortega, Albert E.

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric. PMID:27411088

  18. Increased intake of oily fish in pregnancy: effects on neonatal immune responses and on clinical outcomes in infants at 6 mo.

    PubMed

    Noakes, Paul S; Vlachava, Maria; Kremmyda, Lefkothea-Stella; Diaper, Norma D; Miles, Elizabeth A; Erlewyn-Lajeunesse, Mich; Williams, Anthony P; Godfrey, Keith M; Calder, Philip C

    2012-02-01

    Long-chain n-3 PUFAs found in oily fish may have a role in lowering the risk of allergic disease. The objective was to assess whether an increased intake of oily fish in pregnancy modifies neonatal immune responses and early markers of atopy. Women (n = 123) were randomly assigned to continue their habitual diet, which was low in oily fish, or to consume 2 portions of salmon per week (providing 3.45 g EPA plus DHA) from 20 wk gestation until delivery. In umbilical cord blood samples (n = 101), we measured n-3 fatty acids, IgE concentrations, and immunologic responses. Infants were clinically evaluated at age 6 mo (n = 86). Cord blood mononuclear cell (CBMC) production of interleukin (IL)-2, IL-4, IL-5, IL-10, and tumor necrosis factor-α in response to phytohemagglutinin (PHA) and of IL-2 in response to Dermatophagoides pteronyssinus allergen 1 (Derp1) was lower in the salmon group (all P ≤ 0.03). In the subgroup of CBMCs in which an allergic phenotype was confirmed in the mother or father, IL-10 production in response to Toll-like receptor 2, 3, and 4 agonists, ovalbumin, salmon parvalbumin, or Derp1 and prostaglandin E(2) production in response to lipopolysaccharide or PHA was lower in the salmon group (all P ≤ 0.045). Total IgE at birth and total IgE, incidence and severity of atopic dermatitis, and skin-prick-test positivity at 6 mo of age were not different between the 2 groups. Oily fish intervention in pregnancy modifies neonatal immune responses but may not affect markers of infant atopy assessed at 6 mo of age. This trial is registered at clinicaltrials.gov as NCT00801502.

  19. Methods for chemical analysis of water and wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  20. Impacts of waste from concentrated animal feeding operations on water quality

    USGS Publications Warehouse

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  1. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality

    PubMed Central

    Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784

  2. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    PubMed Central

    Hill, Dagne D.; Owens, William E.; Tchounwou, Paul B.

    2005-01-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers

  3. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  4. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOEpatents

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  5. Treatment of industrial oily wastewaters by wet oxidation.

    PubMed

    Zerva, C; Peschos, Z; Poulopoulos, S G; Philippopoulos, C J

    2003-02-28

    In the present work, the homogeneous wet oxidation (WO) of an oily wastewater (COD approximately 11,000 mg l(-1)), composed mainly of alcohols and phenolic compounds, was studied in a high-pressure agitated autoclave reactor in the temperature range of 180-260 degrees C and oxygen pressure 1 MPa. Temperature was found to have a significant impact on the oxidation of the contaminants in the wastewater. Among the compounds contained in the wastewater, ethylene glycol showed great resistance to wet oxidation. Temperatures above 240 degrees C were required for its effective degradation. Organic acids, mainly acetic acid, were the intermediate products of the wet oxidation process and their conversion to carbon dioxide was very slow. A generalised model based on a parallel reaction scheme was used to interpret the experimental data obtained. The activation energies obtained were in the range of 90-130 kJ mol(-1).

  6. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  7. Water balance at a low-level radioactive-waste disposal site

    USGS Publications Warehouse

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  8. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water

    PubMed Central

    Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  9. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  10. Development of an advanced spacecraft water and waste materials processing system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  11. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  12. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  13. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are

  14. Treatment of waste water by coagulation and flocculation using biomaterials

    NASA Astrophysics Data System (ADS)

    Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh

    2017-11-01

    The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.

  15. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  16. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry

    NASA Astrophysics Data System (ADS)

    Widayat; Philia, John; Wibisono, Jessica

    2018-02-01

    Chlorella sp. is a microalgae that potential for food supplement, pharmaceuticals, animal feed, aqua culture and cosmetics. Chlorella sp. commonly growth in sea water. Indonesia as a producer of tofu generated more liquid waste. Nutrient that contained in the tofu wastewater are very useful for the production of microalgae. Cultivation carried out for 7 days at different percent volume of tofu liquid waste showed that the more volume of tofu liquid waste make them longer process decipherment of polymer compounds in the waste, that's make the growth rate of Chlorella sp. are slowness. Variable of10%V has the fastest growth rate. While, 90% v/v variable has the highest concentration of algae. It shows that Chlorella sp. better to grows in tofu wastewater than seawater.

  18. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  19. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, Frederick A.

    1992-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges.The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals on dye tracing with emphasis on the expanded use of time-of-travel type data.

  20. Potential Impacts of Organic Wastes on Small Stream Water Quality

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  1. Treatment of oily waters using vermiculite.

    PubMed

    Mysore, Deepa; Viraraghavan, Thiruvenkatachari; Jin, Yee-Chung

    2005-07-01

    The main objective of this study was to examine the removal of oil from water by expanded and hydrophobized vermiculite. A pH of 9 showed a higher removal efficiency of oil by vermiculite. Oil removal efficiencies at pH 9 were found to be 79%, 93%, 90%, 57% for standard mineral oil (SMO), Canola oil (CO), Kutwell oil (KUT45), refinery effluent (RE), respectively, in the case of expanded vermiculite, and 56%, 58%, 47%, 43% for SMO, CO, KUT45 and RE, respectively, for hydrophobized vermiculite. Kinetic data satisfied both the Lagergren and Ho models. Equilibrium studies showed that the Langmuir isotherm was the best-fit isotherm for oil removal by both expanded and hydrophobized vermiculite. The data showed a higher adsorptive capacity by the expanded vermiculite compared to the hydrophobized vermiculite. Desorption studies showed that the expanded vermiculite did not desorb oil to the same extent compared to hydrophobized vermiculite. The Freundlich isotherm was the best-fit model for desorption. Expanded vermiculite showed better retention than hydrophobic vermiculite. The results showed that the expanded vermiculite had a greater affinity for oil than hydrophobized vermiculite.

  2. Intensification of oily waste waters purification by means of liquid atomization

    NASA Astrophysics Data System (ADS)

    Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.

    2017-10-01

    In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.

  3. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    PubMed

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  4. LCA of waste prevention activities: a case study for drinking water in Italy.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2012-10-15

    The strategic relevance of waste prevention has considerably increased worldwide during recent years, such that the current European legislation requires the preparation of national waste prevention programmes in which reduction objectives and measures are identified. In such a context, it is possible to recognise how, in order to correctly evaluate the environmental consequences of a prevention activity, a life cycle perspective should be employed. This allows us to go beyond the simple reduction of the generated waste which, alone, does not automatically imply achieving better overall environmental performance, especially when this reduction is not pursued through the simple reduction of consumption. In this study, the energetic and environmental performance of two waste prevention activities considered particularly meaningful for the Italian context were evaluated using life cycle assessment (LCA) methodology. The two activities were the utilisation of public network water (two scenarios) and of refillable bottled water (two scenarios) for drinking purposes, instead of one-way bottled water (three scenarios). The energy demand and specific potential impacts of the four waste prevention scenarios and of the three baseline scenarios were compared with the aim of evaluating whether, and under what conditions, the analysed prevention activities are actually associated with overall energetic and environmental benefits. In typical conditions, the use of public network water directly from the tap results in the best scenario, while if water is withdrawn from public fountains, its further transportation by private car can involve significant impacts. The use of refillable PET bottled water seems the preferable scenario for packaged water consumption, if refillable bottles are transported to local distributors along the same (or a lower) distance as one-way bottles to retailers. The use of refillable glass bottled water is preferable to one-way bottled water only if a

  5. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    NASA Astrophysics Data System (ADS)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  6. 77 FR 6548 - Environmental Impact Statement for the Implementation of Energy, Water, and Solid Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, TX AGENCY: Department of... associated with the implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These initiatives will work to enhance the energy and water security of Fort Bliss, Texas, which is operationally...

  7. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.

    PubMed

    Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D

    2017-09-06

    Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.

  8. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  9. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruhlke, J.M.; Galpin, F.L.

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less

  10. Relocation of net-acid-generating waste to improve post-mining water chemistry.

    PubMed

    Morin, K A; Hutt, N M

    2001-01-01

    Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.

  11. Upgrading and extended testing of the MSC integrated water and waste management hardware

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.

    1972-01-01

    The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.

  12. Movement and fate of creosote waste in ground water, Pensacola, Florida; U.S. Geological Survey toxic waste--ground-water contamination program

    USGS Publications Warehouse

    Mattraw, H. C.; Franks, B.J.

    1984-01-01

    In 1983, the U.S. Geological Survey, Office of Hazardous Waste Hydrology, selected the former American Creosote Works site near Pensacola, Florida as a national research demonstration area. Seventy-nine years (1902-81) of seepage from unlined discharge impoundments had released creosote, diesel fuel, and pentachlorophenol (since 1950) wastes into the ground-water system. A cluster of from 2 to 5 wells constructed at different depths at 9 sites yielded water which revealed contamination 600 feet downgradient and to a depth of 100 feet below land surface near the site. The best cross-sectional representation of the contaminant plume was obtained from samples collected and analyzed for oxidation-reduction sensitive inorganic chemical constituents. Energy dispersive x-ray fluorescence detected recently formed iron carbonate in soil samples from highly reducing ground-water zones. Approximately eighty specific organic contaminants were isolated from ground-water samples by gas-chromotography/mass spectrometry. Column studies indicate the dimethyl phenols are not sorbed or degraded by the sand-and-gravel aquifer materials. Five of nineteen individual phenolic and related compounds are biodegradable based on anaerobic digestor experiments with ACW site bacterial populations. The potential impacts in the nearby Pensacola Bay biotic community are being evaluated. (USGS)

  13. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  14. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  15. Movement and fate of creosote waste in ground water, Pensacola, Florida; U.S. Geological Survey toxic waste-ground-water contamination program

    USGS Publications Warehouse

    Mattraw, Harold C.; Franks, Bernard J.

    1986-01-01

    Ground- and surface-water contamination by pesticides used in the wood-preserving industry is widespread in the United States. Pine poles were treated with wood preservatives from 1902 to 1981 at a creosote works near Pensacola, Florida. Diesel fuel, creosote, and pentachlorophenol were discharged to two unlined impoundments that had a direct hydraulic connection to the sand-and-gravel aquifer. Evidence of wood-preserving waste contamination appears to be confined to the upper 30 meters of the aquifer. The waste plume extends downgradient approximately 300 meters south toward Pensacola Bay. In 1983, the creosote works site was selected by the U.S. Geological Survey's Office of Hazardous Waste Hydrology as a national research demonstration area to apply the latest techniques for characterizing hazardous waste problems. The multidisciplinary research effort is aimed at studying processes that affect the occurrence, transport, transformations, and fate of the toxic contaminants associated with wood preservatives in the environment. Clusters of two to five wells were constructed at different depths at nine sites to define the depth of contamination. Research studies are investigating sorption, dispersion, dilution, chemical reactions, bacterially mediated transformations, quality assurance, plume hydrodynamics, and the ultimate fate of these complex organic wastes.

  16. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  17. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    NASA Astrophysics Data System (ADS)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  18. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    PubMed

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Study of Material Used in Nanotechnology for the Recycling of Industrial Waste Water

    NASA Astrophysics Data System (ADS)

    Larbi, L.; Fertikh, N.; Toubal, A.

    The objective of our study is to recycle the industrial waste water of a industrial Complex after treatment by the bioprocess MBR (membrane bioreactor). In order to apply this bioprocess, the water quality in question was first of all studied. To characterize this industrial waste water, a series of physicochemical analysis was carried out according to standardized directives and methods. Following-up the water quality to meet the regulatory requirements with rejection of this industrial waste water, a study was done thanks to the permanently monitoring of the following relevant parameters(P): the flow, the potential of hydrogen (pH), the total suspended solids(TSS), the turbidity (Turb), the chemical oxygen demand (COD),the biochemical oxygen demand (BOD), the Kjeldahl total nitrogen (KTN) and ammonia (NH4+), the total phosphorus (Ptot), the fluorine (F), the oils (O), the fats (F) and the phenols (Ph). According to collected information, it was established the sampling rates to which the quality control was done, the selected analytical methods were validated by the control charts and the analysis test number was determined by the Cochran test. The results of the quality control show that some rejected water contents are not in the Algerian standards, but, in our case, the objective is the preoccupation for a standard setting of these industrial water parameters so as to recycle it. The process adopted by MBR for waste water treatment is being studied, first in the development of the experimental characterizing of the reactor and the selected membrane.

  20. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat

  1. Feasibility of treating emulsified oily and salty wastewaters through coagulation and bio-regenerated GAC filtration.

    PubMed

    Mancini, Giuseppe; Panzica, Michele; Fino, Debora; Cappello, Simone; Yakimov, Michail M; Luciano, Antonella

    2017-12-01

    In the present study, chemical oxygen demand (COD) removal by coagulation and packed-columns of both fresh and bioregenerated granular activated carbon (GAC) is reported as a feasible treatment for saline and oily wastewaters (slops) generated from marine oil tankers cleaning. The use of Ferric chloride (FeCl 3 ), Aluminium sulphate (Al 2 (SO 4 ) 3 ) and Polyaluminum chloride (Al 2 (OH 3 )Cl 3 ) was evaluated in the pre-treatment by coagulation of a real slop, after a de-oiling phase in a tank skimmer Comparison of coagulation process indicated that Polyaluminum chloride and Aluminium sulphate operate equally well (20-30% of COD removal) when applied at their optimal dose (40 and 90 mg/l respectively) but the latter should be preferred in order to significantly control the sludge production. The results from the column filtration tests indicated the feasibility of using the selected GAC (Filtrasorb 400 -Calgon Carbon Corporation) to achieve the respect of the discharge limits in the slops treatment with a carbon usage rate in the range 0.1-0.3 kg/m 3 of treated effluent. Moreover, biological regeneration through Alcalinovorax borkumensis SK2 was proved to be a cost-effective procedure since the reuse of spent GAC through such regeneration process for further treatment could still achieve approximately 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Abatement of waste gases and water during the processes of semiconductor fabrication.

    PubMed

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  3. Facility for generating crew waste water product for ECLSS testing

    NASA Technical Reports Server (NTRS)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  4. Interaction of potato production systems and the environment: a case of waste water irrigation in central Washington.

    PubMed

    Wang, H Holly; Tan, Tih Koon; Schotzko, R Thomas

    2007-02-01

    Potato production and processing are very important activities in the agricultural economy of the Pacific Northwest. Part of the reason for the development of this industry has been the availability of water for both growing and processing. A great amount of water is used in processing potato products, such as frozen French fries, and the waste water is a pollutant because it contains high levels of nitrate and other nutrients. Using this waste water to irrigate the fields can be a suitable disposal method. Field application will reduce potato fertilizer costs, but it can also cause underground water contamination if over-applied to the field. In this econometric study, we used field data associated with current waste water applications in central Washington to examine the yield response as well as the soil nitrogen content response to waste water applications. Our results from the production model show that both water and nitrogen positively affect crop yields at the current levels of application, but potassium has been over applied. This implies that replacing some waste water with fresh water and nitrogen fertilizer will increase production. The environmental model results show that applying more nitrogen to the soil leads to more movement below the root zone. The results also suggest that higher crop yields lead to less nitrogen in the soil, and applying more water increases crop yields, which can reduce the nitrogen left in the soil. Therefore, relative to the current practice, waste water application rates should be reduced and supplemented with fresh water to enhance nitrogen use by plants and reduce residual nitrogen in the soil.

  5. "It's a Bit like Flying": Developing Participatory Theatre with the Under-Twos--A Case Study of Oily Cart

    ERIC Educational Resources Information Center

    Young, Susan

    2004-01-01

    This article describes a case study of a new venture by the children's theatre company Oily Cart to develop a participatory theatre piece for carers and their under-two-year-olds, entitled Clouds. Given what little is known about how to design and conduct arts events with this age phase, a case study offered the opportunity to identify features…

  6. Oily Fish Intake during Pregnancy--Association with Lower Hyperactivity but Not with Higher Full-Scale IQ in Offspring

    ERIC Educational Resources Information Center

    Gale, Catharine R.; Robinson, Sian M.; Godfrey, Keith M.; Law, Catherine M.; Schlotz, Wolff; O'Callaghan, F. J.

    2008-01-01

    Background: Long-chain omega-3 polyunsaturated fatty acids are thought to be important for fetal neurodevelopment. Animal studies suggest that a deficiency of omega-3 fatty acids may lead to behavioural or cognitive deficits. As oily fish is a major dietary source of omega-3 fatty acids, it is possible that low intake of fish during pregnancy may…

  7. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  8. A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.

    PubMed

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-03-06

    Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  9. Risk management in waste water treatment.

    PubMed

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  10. Domestic applications for aerospace waste and water management technologies

    NASA Technical Reports Server (NTRS)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  11. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  12. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  13. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was

  14. Theoretical Insight into the Biodegradation of Solitary Oil Microdroplets Moving through a Water Column.

    PubMed

    Kapellos, George E; Paraskeva, Christakis A; Kalogerakis, Nicolas; Doyle, Patrick S

    2018-02-12

    In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil-water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate.

  15. A new procedure for treatment of oily slurry using geotextile filters.

    PubMed

    Mendonça, M B; Cammarota, M C; Freire, D D C; Ehrlich, M

    2004-07-05

    A new procedure to mitigate the environmental impacts and reduce the cost of disposal of oil slurry is present in this paper. Waste from the petroleum industry has a high environmental impact. Systems for oil-water separation have been used to mitigate the contamination potential of these types of effluents. At the outlet of these systems, the oil is skimmed-off the surface, while the slurry is removed from the base. Due to the high concentration of contaminants, the disposal of this slurry is an environmentally hazardous practice. Usually this type of waste is disposed of in tanks or landfills after removal from the industrial plant. Basically, the proposed procedure utilizes drying beds with geotextile filters to both reduce the water content in the slurry and obtain a less contaminated effluent. Laboratory tests were carried out to simulate the drying system. Four types of filters were analyzed: two non-woven geotextiles, one woven geotextile, and a sand filter.

  16. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes.

    PubMed

    Ge, Qingchun; Amy, Gary Lee; Chung, Tai-Shung

    2017-10-01

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH 4 -Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH 4 -Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. STS-55 crewmembers repair waste water tank under OV-102's middeck subfloor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Pilot Terence T. Henricks uses a spotlight and pen to point out a possible problem area on a waste water tank in the bilge area below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross records the activity with a video camcorder. The crewmembers are participating in an inflight maintenance (IFM) exercise to counter problems experienced with the waste water tank.

  18. Measuring household consumption and waste in unmetered, intermittent piped water systems

    NASA Astrophysics Data System (ADS)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  19. Assessing Waste Water Treatment Plant Effluents For Thyroid Hormone Disrupting Activity

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two ass...

  20. Effects of oils and pharmaceutical excipients on the bioavailability of ampicillin orally administered, different oily and aqueous suspensions in rabbit.

    PubMed

    Alhamami, Omran M O

    2003-01-01

    The in vivo bioavailability and in vitro drug-release studies of ampicillin trihydrate in different oily and aqueous suspensions have been investigated. In addition, partition, solubility, and rheological measurements have also been carried out. The in vivo experimental design was based on a 6 x 6 latin square using the rabbit as the test animal. The bioavailability of ampicillin was determined using the plasma levels, which were measured microbiologically. Results of the study showed that oily and sucrose-containing aqueous formulations enhanced the extent of ampicillin absorption, although not statistically significantly, but was close to the borderline of significance. Ampicillin appears to be absorbed at essentially the same rate from both aqueous and oily formulations. The latter showed plasma-level time curves with biphasic absorption and are likely to produce prolonged plasma concentrations of ampicillin because of the effects of enterohepatic recycling. Viscosity appears to play an insignificant role in the results obtained since the bioavailability parameters correlate poorly with the viscosity except Cmax. It is suggested that enhancement in the bioavailability of ampicillin is due to the decrease in the gut transit rate brought about by the oil which predominates and masks the other effects of viscosity and osmotic effects of sucrose. The existence of a correlation between the in vitro drug-release rate (t50%) and viscosity and the lack of a correlation between in vivo and in vitro parameters support the above suggestion and indicate that traditional dissolution rate tests, such as flask-stirrer method, are unsatisfactory as bioavailability indicators when applied to dosage forms that caused marked changes in physiological factors like GER and biliary excretion.

  1. Falluja Waste Water Treatment System, Falluja, Iraq

    DTIC Science & Technology

    2008-10-27

    NAME(S) AND ADDRESS(ES) Office of the Special Inspector General for Iraq Reconstruction,400 Army Navy Drive,Arlington,VA,22202 8. PERFORMING...waterways. In addition, another problem was the illegal discharge of septic sewage collected from homes into rivers or on land. The nonoperational...and the storm water collection system, which resulted in the disposal of sanitary waste directly into the Euphrates River. The discharge of raw

  2. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  3. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    PubMed

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  5. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  6. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less

  7. INTRINSIC BIOREMEDIATION OF FUEL CONTAMINATION IN GROUND WATER AT A FIELD SITE

    EPA Science Inventory

    A spill of gasoline occurred at an automobile service station in 1986. Oily phase residue in the subsurface has continued for the past 8 yr to release water soluble fuel hydrocarbons into the aquifer. The site was characterized for implementation of intrinsic remediation. The sub...

  8. 33 CFR 155.400 - Platform machinery space drainage on oceangoing fixed and floating drilling rigs and other...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Complies with the oily-water separating equipment requirements of a valid National Pollutant Discharge... Chapter I; (2) Complies with the oily-water separating equipment requirements for oceangoing ships of 400... installed bilge pumping system for discharge of oily mixtures from platform machinery spaces into the sea...

  9. 33 CFR 155.400 - Platform machinery space drainage on oceangoing fixed and floating drilling rigs and other...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Complies with the oily-water separating equipment requirements of a valid National Pollutant Discharge... Chapter I; (2) Complies with the oily-water separating equipment requirements for oceangoing ships of 400... installed bilge pumping system for discharge of oily mixtures from platform machinery spaces into the sea...

  10. 33 CFR 155.400 - Platform machinery space drainage on oceangoing fixed and floating drilling rigs and other...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Complies with the oily-water separating equipment requirements of a valid National Pollutant Discharge... Chapter I; (2) Complies with the oily-water separating equipment requirements for oceangoing ships of 400... installed bilge pumping system for discharge of oily mixtures from platform machinery spaces into the sea...

  11. 33 CFR 155.400 - Platform machinery space drainage on oceangoing fixed and floating drilling rigs and other...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Complies with the oily-water separating equipment requirements of a valid National Pollutant Discharge... Chapter I; (2) Complies with the oily-water separating equipment requirements for oceangoing ships of 400... installed bilge pumping system for discharge of oily mixtures from platform machinery spaces into the sea...

  12. FOULING-RESISTANT CERAMIC MEMBRANES FOR TREATMENT OF METASTABLE OIL/WATER EMULSIONS - PHASE II

    EPA Science Inventory

    Billions of gallons of oily wastewaters are generated daily by a variety of industrial sources. A large fraction of these are oil/water emulsions for which current treatment technologies are often costly and ineffective. Although such emulsions can be separated using crossf...

  13. Effect of membrane characteristics on the performance of membrane bioreactors for oily wastewater treatment.

    PubMed

    Mafirad, S; Mehrnia, M R; Sarrafzadeh, M H

    2011-01-01

    Influence of membrane material and pore size on the performance of a submerged membrane bioreactor (sMBR) for oily wastewater treatment was investigated. The sMBR had a working volume of about 19 L with flat sheet modules at the same hydrodynamic conditions. Five types of micro- and ultra-polymeric membranes containing cellulose acetate (CA), cellulose nitrate (CN), polyamide (PA), polyvinylidene difluoride (PVDF) and polyethersulfone (PES) were used and their filtration performance in terms of permeability, permeate quality and fouling intensity were evaluated. Characterization of the membranes was done by performing some analysis such as pore size distribution; contact angle and scanning electronic microscopy (SEM) microphotograph on all membranes. The quality of permeates from each membrane was identified by measuring chemical oxygen demand (COD). The results showed more irreversible fouling intensity for membranes with larger pore size which can be due to more permeation of bioparticles and colloids inside the pores. Membrane characteristics have a major role in the preliminary time of the filtration before cake layer formation so that the PA with the highest hydrophilicity had the lowest permeability decline by fouling in this period. Also, the PVDF and PES membranes had better performance according to better permeate quality in the preliminary time of the filtration related to smaller pore size and also their better fouling resistance and chemical stability properties. However, all membranes resulted in the same permeability and permeate quality after cake layer formation. An overall efficiency of about 95% in COD removal was obtained for oily wastewater treatment by the membranes used in this study.

  14. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    PubMed

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  15. Utilization of Waste Materials for the Treatment of Waste Water Contaminated with Sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2014-01-01

    The activities were carried out to develop potential adsorbents from waste material and employ them for the removal of hazardous antibacterial, Sulphamethoxazole from the wastewater by adsorption technique. The selection of this method was done because of its economic viability. The method has the potency of eradicating the perilous chemicals which make their appearance in water and directly or indirectly into the whole biological system, through the ejection of effluents by the industries in flowing water. The adsorption technique was used to impound the precarious antibiotics from wastewater using Deoiled Soya an agricultural waste and Water Hyacinth a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10% to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents i.e. Deoiled Soya, Alkali treated Deoiled Soya, Water Hyacinth and Alkali treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. Deoiled Soya (DOS) showed sorption capacity of 0.0007 mol g(-1) while Alkali treated Deoiled Soya (ADOS) exhibited 0.0011 mol g(-1) of sorption capacity which reveals that the adsorption is higher in case of alkali treated adsorbent. The mean sorption energy (E) was obtained between 9 to 12 kJ/mol which shows that the reaction proceeds by ion exchange reaction. Various kinetic studies like order of reaction, mass transfer studies, mechanism of diffusion were also performed for the ongoing processes. The mass transfer coefficient obtained for alkali treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90% to 98%. Moreover the

  16. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  17. Hazardous Waste Water Remediation by Ecoresin-Dry Cow Dung Powder

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    Water, the matter, matrix, medium and the mother of our life, is indeed one of the drivers of Nature. Through water cycle only the intra and inter equilibrium is maintained constantly between entire 'green' and 'blue'. Unfortunately, with each successive epoch of industrialization and urbanization, human societies have produced non-biodegradable waste hulk with far beyond handling capacities of mankind. At this juncture the very need is to appreciate and move towards the cost as well as time effective scientific alternatives for the removal of aqueous heavy metal pollutants. Green chemistry advocates the utilization of naturally available bio-resins which are environmentally benign alternative to current synthetic materials and technologies employed for waste water treatment. This explicit investigation aims to explore Dry Cow dung powder, DCP, a natural biosorbent as a green and clean alternative for the aqueous waste water treatment. It is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid'(HA). The HA has been successfully extracted by authors from DCP and this piece of work has been published in the International Journal [1]. We have developed simple, efficient and eco-friendly method for the removal of aqueous heavy metal pollutant such as Cr(VI) [2], Cd(II), Cr(III) [3] and Hg(II) as well radiotoxic 90Sr(II) [4], employing DCP. DCP is employed without any pre or post treatment. Being freely and easily available DCP has an edge over processed natural adsorbent considering their cost, time and energy efficiency. In nutshell we have to remember that prevention is better than the cure. If we fail to meet this, the situation will surely augment which will drain our water, our life, to slaughters knife..! Reference: 1. H.K.Bagla, N.S.Barot, Soil Amendement by Green Supplement: Dry Cowdung powder, EGUGA - 11

  18. Risk assessment of waste-water disinfection. Report for October 1979-January 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubly, D.; Chappell, W.; Lanning, J.

    A risk-assessment data base is presented for several waste-water disinfection alternatives, including chlorination, ozonation, chlorination/dechlorination, and ultraviolet radiation. The data base covers hazards and consequences related to onsite use and transportation of the disinfectants and ultimate disposal of disinfected effluents. A major segment of the data base deals with the effects of chlorination products in aquatic ecosystems. Energy consumption and cost analyses are also presented for chlorination and ozonation. Example risk calculations are presented for two hypothetical waste-water treatment plants. The usefulness of the data base for risk assessment is also discussed.

  19. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    PubMed

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    PubMed

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    PubMed

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm 3 ) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  2. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  3. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish.

    PubMed

    Browning, Lucy M; Walker, Celia G; Mander, Adrian P; West, Annette L; Madden, Jackie; Gambell, Joanna M; Young, Stephen; Wang, Laura; Jebb, Susan A; Calder, Philip C

    2012-10-01

    Estimation of the intake of oily fish at a population level is difficult. The measurement of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in biological samples may provide a useful biomarker of intake. We identified the most appropriate biomarkers for the assessment of habitual oily fish intake and changes in intake by elucidating the dose- and time-dependent response of EPA and DHA incorporation into various biological samples that represent roles in fatty acid transport, function, and storage. This was a double-blind, randomized, controlled intervention trial in 204 men and women that lasted 12 mo. EPA and DHA capsules were provided in a manner to reflect sporadic consumption of oily fish (ie, 1, 2, or 4 times/wk). EPA and DHA were assessed at 9 time points over 12 mo in 9 sample types (red blood cells, mononuclear cells, platelets, buccal cells, adipose tissue, plasma phosphatidylcholine, triglycerides, cholesteryl esters, and nonesterified fatty acids). A dose response (P < 0.05) was observed for EPA and DHA in all pools except for red blood cell EPA (P = 0.057). EPA and DHA measures in plasma phosphatidylcholine and platelets were best for the discrimination between different intakes (P < 0.0001). The rate of incorporation varied between sample types, with the time to maximal incorporation ranging from days (plasma phosphatidylcholine) to months (mononuclear cells) to >12 mo (adipose tissue). Plasma phosphatidylcholine EPA plus DHA was identified as the most suitable biomarker of acute changes in EPA and DHA intake, and platelet and mononuclear cell EPA plus DHA were the most suitable biomarkers of habitual intake.

  4. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  5. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  6. 33 CFR 158.220 - Ports and terminals loading more than 1,000 metric tons of oil other than crude oil or bunker oil.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... processing in the amount of 10 metric tons (11 short tons); (b) Bilge water containing oily mixtures in the... average, whichever quantity is greater; (c) Ballast water containing oily mixtures in the amount of 30% of... FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE Criteria for Reception Facilities: Oily Mixtures...

  7. 33 CFR 158.220 - Ports and terminals loading more than 1,000 metric tons of oil other than crude oil or bunker oil.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... processing in the amount of 10 metric tons (11 short tons); (b) Bilge water containing oily mixtures in the... average, whichever quantity is greater; (c) Ballast water containing oily mixtures in the amount of 30% of... FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE Criteria for Reception Facilities: Oily Mixtures...

  8. 33 CFR 158.220 - Ports and terminals loading more than 1,000 metric tons of oil other than crude oil or bunker oil.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing in the amount of 10 metric tons (11 short tons); (b) Bilge water containing oily mixtures in the... average, whichever quantity is greater; (c) Ballast water containing oily mixtures in the amount of 30% of... FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE Criteria for Reception Facilities: Oily Mixtures...

  9. 33 CFR 158.220 - Ports and terminals loading more than 1,000 metric tons of oil other than crude oil or bunker oil.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... processing in the amount of 10 metric tons (11 short tons); (b) Bilge water containing oily mixtures in the... average, whichever quantity is greater; (c) Ballast water containing oily mixtures in the amount of 30% of... FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE Criteria for Reception Facilities: Oily Mixtures...

  10. 33 CFR 158.220 - Ports and terminals loading more than 1,000 metric tons of oil other than crude oil or bunker oil.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing in the amount of 10 metric tons (11 short tons); (b) Bilge water containing oily mixtures in the... average, whichever quantity is greater; (c) Ballast water containing oily mixtures in the amount of 30% of... FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE Criteria for Reception Facilities: Oily Mixtures...

  11. Determination of total and available fractions of PAHs by SPME in oily wastewaters: overcoming interference from NAPL and NOM.

    PubMed

    Gomes, Rui B; Nogueira, Regina; Oliveira, José M; Peixoto, João; Brito, António G

    2009-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin. Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs-anthracene, fluorene, phenanthrene, and pyrene-were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated

  12. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  14. Individual treatment of hotel and restaurant waste water in rural areas.

    PubMed

    Van Hulle, S W H; Ghyselbrecht, N; Vermeiren, T J L; Depuydt, V; Boeckaert, C

    2012-01-01

    About 25 hotels, restaurants and pubs in the rural community Heuvelland are situated in the area designated for individual water treatment. In order to meet the legislation by the end of 2015, each business needs to install an individual waste water treatment system (IWTS). To study this situation, three catering businesses were selected for further research. The aim of the study was to quantify the effluent quality and to assess IWTS performance for these catering businesses. First of all, the influence of discharging untreated waste water on the receiving surface water was examined. The results showed a decrease in water quality after the discharge point at every business. With the collected data, simulations with the software WEST were performed. With this software two types of IWTSs with different (buffer) volumes were modelled and tested for each catering business. The first type is a completely mixed activated sludge reactor and the second type is a submerged aerobic fixed-bed reactor. The results of these simulations demonstrate that purification with an IWTS is possible if the capacity is large enough and if an adequate buffer volume is installed and if regular maintenance is performed.

  15. Consumptive water use associated with food waste: case study of fresh mango in Australia

    NASA Astrophysics Data System (ADS)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  16. Theoretical Insight into the Biodegradation of Solitary Oil Microdroplets Moving through a Water Column

    PubMed Central

    Paraskeva, Christakis A.; Kalogerakis, Nicolas; Doyle, Patrick S.

    2018-01-01

    In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil–water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate. PMID:29439555

  17. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.

  18. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  19. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    PubMed

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  20. 33 CFR 158.210 - Ports and terminals loading crude oil.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...); (b) Bilge water containing oily mixtures in the amount of 10 metric tons (11 short tons) or 2 metric...) Ballast water containing oily mixtures in the amount of 30% of the deadweight tonnage of the largest of... Criteria for Reception Facilities: Oily Mixtures § 158.210 Ports and terminals loading crude oil. The...

  1. 33 CFR 158.210 - Ports and terminals loading crude oil.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...); (b) Bilge water containing oily mixtures in the amount of 10 metric tons (11 short tons) or 2 metric...) Ballast water containing oily mixtures in the amount of 30% of the deadweight tonnage of the largest of... Criteria for Reception Facilities: Oily Mixtures § 158.210 Ports and terminals loading crude oil. The...

  2. 33 CFR 158.210 - Ports and terminals loading crude oil.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...); (b) Bilge water containing oily mixtures in the amount of 10 metric tons (11 short tons) or 2 metric...) Ballast water containing oily mixtures in the amount of 30% of the deadweight tonnage of the largest of... Criteria for Reception Facilities: Oily Mixtures § 158.210 Ports and terminals loading crude oil. The...

  3. 33 CFR 158.210 - Ports and terminals loading crude oil.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...); (b) Bilge water containing oily mixtures in the amount of 10 metric tons (11 short tons) or 2 metric...) Ballast water containing oily mixtures in the amount of 30% of the deadweight tonnage of the largest of... Criteria for Reception Facilities: Oily Mixtures § 158.210 Ports and terminals loading crude oil. The...

  4. 33 CFR 158.210 - Ports and terminals loading crude oil.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...); (b) Bilge water containing oily mixtures in the amount of 10 metric tons (11 short tons) or 2 metric...) Ballast water containing oily mixtures in the amount of 30% of the deadweight tonnage of the largest of... Criteria for Reception Facilities: Oily Mixtures § 158.210 Ports and terminals loading crude oil. The...

  5. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China.

    PubMed

    Song, Guobao; Li, Mingjing; Semakula, Henry Musoke; Zhang, Shushen

    2015-10-01

    Strategies for reducing food waste and developing sustainable diets require information about the impacts of consumption behavior and waste generation on climatic, water, and land resources. We quantified the carbon, water, and ecological footprints of 17,110 family members of Chinese households, covering 1935 types of foods, by combining survey data with available life-cycle assessment data sets. We also summarized the patterns of both food consumption and waste generation and analyzed the factors influencing the observed trends. The average person wasted (consumed) 16 (415) kg of food at home annually, equivalent to 40 (1080) kg CO2e, 18 (673) m(3), and 173 (4956) gm(2) for the carbon, water and ecological footprints, respectively. The generation of food waste was highly correlated with consumption for various food groups. For example, vegetables, rice, and wheat were consumed the most and accounted for the most waste. In addition to the three plant-derived food groups, pork and aquatic products also contributed greatly to embedded footprints. The data obtained in this study could be used for assessing national food security or the carrying capacity of resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Waste water biological purification plants of dairy products industry and energy management

    NASA Astrophysics Data System (ADS)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  7. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ruijie

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) tomore » recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.« less

  9. Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on physico-chemical properties and anesthetic activity.

    PubMed

    de Melo, Nathalie Ferreira Silva; Grillo, Renato; Guilherme, Viviane Aparecida; de Araujo, Daniele Ribeiro; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-08-01

    The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine. Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade. The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component. Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.

  10. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  11. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    NASA Technical Reports Server (NTRS)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  12. Lake Water Quality Improvement by Using Waste Mussel Shell Powder as an Adsorbent

    NASA Astrophysics Data System (ADS)

    Zukri, N. I.; Khamidun, M. H.; Sapiren, M. S.; Abdullah, S.; Rahman, M. A. A.

    2018-04-01

    Lake water in UTHM was slightly greenish in color indicating the eutrophication process. Eutrophication problem is due to excessive amount of nutrient in the lake water which causes nuisance growth of algae and other aquatic plant. The improvement of lake water quality should be conducted wisely in preventing from eutrophication problem by using a suitable water treatment method. Natural materials, agricultural wastes and industrial wastes are locally available sources can be utilized as low-cost adsorbents. The natural abundant source of waste mussel’s shells is advantages to use as basis material to produce the low cost adsorbent for water treatment. Batch experiments were carried out with the preparation 500 ml volume of lake water sample with the dosage of 2.5g, 7.5g and 12.5g. Then the solution shaking in an incubator with 200 rpm shaking speed. The various dosage of mussel shell greatly affected pollutants removal. Both of NH4+ and PO43- have a higher percentage removal with 31.28% and 21.74% at the 7.5g of sample dosage. Other parameters such as COD and TSS also shown good percentage of removal at 7.5g of dosage sample with 44.45% and 25% respectively. While, dosage at 2.5g was performed as a good adsorption capacity of NH4+, PO43-, COD and TSS as high as 0.142, 0.234, 7.6 and 20 mg/g, respectively. These experimental results suggested that the use of mussel shell powder as good basis material in removing pollutants from lake water.

  13. Rapid estimation of organic nitrogen in oil shale waste waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less

  14. Treatment of Refinery Waste Water Using Environmental Friendly Adsorbent

    NASA Astrophysics Data System (ADS)

    Devi, M. Geetha; Al-Moshrafi, Samira Mohammed Khamis; Al Hudaifi, Alaa; Al Aisari, Buthaina Hamood

    2017-12-01

    This research evaluates the effectiveness of activated carbon prepared from walnut shell in the removal of pollutants from refinery waste water by adsorption technique. A series of batch experiments were carried out by varying the effluent solution pH, stirring time, stirring speed and adsorbent dosage in the reduction of pollutants from refinery effluent. Characterization of the adsorbent was performed using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) isotherm and Fourier Transform Infrared (FTIR) Spectroscopy. The best quality activated carbon was obtained with a particle size of 0.75 µm, activation temperature of 800 °C and activation time 24 h. The maximum BET surface area obtained was 165.2653 m2/g. The experimental results demonstrates that the highest percentage reduction in COD was 79%, using 0.6 g walnut shell powder at an optimum stirring speed of 100 rpm, at pH 6 and 120 min of contact time. The outcome of the result shows that walnut shell carbon is a potentially useful adsorbent for the removal of pollutants from refinery waste water.

  15. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease.

    PubMed

    Gupta, Vikas; Mah, Xian-Jun; Garcia, Maria Carmela; Antonypillai, Christina; van der Poorten, David

    2015-10-07

    Rates of non-alcoholic fatty liver disease (NAFLD) are increasing worldwide in tandem with the metabolic syndrome, with the progressive form of disease, non-alcoholic steatohepatitis (NASH) likely to become the most common cause of end stage liver disease in the not too distant future. Lifestyle modification and weight loss remain the main focus of management in NAFLD and NASH, however, there has been growing interest in the benefit of specific foods and dietary components on disease progression, with some foods showing protective properties. This article provides an overview of the foods that show the most promise and their potential benefits in NAFLD/NASH, specifically; oily fish/ fish oil, coffee, nuts, tea, red wine, avocado and olive oil. Furthermore, it summarises results from animal and human trials and highlights potential areas for future research.

  16. Gaseous fuel production from nonrecyclable paper wastes by using supported metal catalysts in high-temperature liquid water.

    PubMed

    Yamaguchi, Aritomo; Hiyoshi, Norihito; Sato, Osamu; Bando, Kyoko K; Shirai, Masayuki

    2010-06-21

    Paper wastes are used for the production of gaseous fuels over supported metal catalysts. The gasification of the nonrecyclable paper wastes, such as shredded documents and paper sludge, is carried out in high-temperature liquid water. The order of the catalytic activity for the gasification is found to be ruthenium>rhodium>platinum>palladium. A charcoal-supported ruthenium catalyst (Ru/C) is the most effective for the gasification of paper and cellulose. Paper wastes are gasified to a limited degree (32.6 carbon %) for 30 min in water at 523 K to produce methane and carbon dioxide, with a small amount of hydrogen. At 573 K, more complete gasification with almost 100 carbon % is achieved within 10 min in water. At 523 K, the gas yield of paper gasification over Ru/C is higher than that of cellulose powder. The gas yields are increased by ball-milling treatment of the recycled paper and cellulose powder. Printed paper wastes are also gasified at 523 K in water.

  17. 33 CFR 155.410 - Pumping, piping and discharge requirements for non-oceangoing ships of 100 gross tons and above.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this section does not apply to a ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges or fuel oil tank ballast. (c) This section does not apply to a fixed... navigable waters of the United States unless: (1) The ship has at least one pump installed to discharge oily...

  18. 33 CFR 155.410 - Pumping, piping and discharge requirements for non-oceangoing ships of 100 gross tons and above.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section does not apply to a ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges or fuel oil tank ballast. (c) This section does not apply to a fixed... navigable waters of the United States unless: (1) The ship has at least one pump installed to discharge oily...

  19. 33 CFR 155.410 - Pumping, piping and discharge requirements for non-oceangoing ships of 100 gross tons and above.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section does not apply to a ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges or fuel oil tank ballast. (c) This section does not apply to a fixed... navigable waters of the United States unless: (1) The ship has at least one pump installed to discharge oily...

  20. 33 CFR 155.410 - Pumping, piping and discharge requirements for non-oceangoing ships of 100 gross tons and above.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this section does not apply to a ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges or fuel oil tank ballast. (c) This section does not apply to a fixed... navigable waters of the United States unless: (1) The ship has at least one pump installed to discharge oily...

  1. 33 CFR 155.420 - Pumping, piping and discharge requirements for oceangoing ships of 100 gross tons and above but...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges... least one pump installed to discharge oily mixtures through a fixed piping system to a reception... to stop each pump that is used to discharge oily mixtures; and (6) The ship has a stop valve...

  2. 33 CFR 155.420 - Pumping, piping and discharge requirements for oceangoing ships of 100 gross tons and above but...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges... least one pump installed to discharge oily mixtures through a fixed piping system to a reception... to stop each pump that is used to discharge oily mixtures; and (6) The ship has a stop valve...

  3. 33 CFR 155.420 - Pumping, piping and discharge requirements for oceangoing ships of 100 gross tons and above but...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges... least one pump installed to discharge oily mixtures through a fixed piping system to a reception... to stop each pump that is used to discharge oily mixtures; and (6) The ship has a stop valve...

  4. 33 CFR 155.420 - Pumping, piping and discharge requirements for oceangoing ships of 100 gross tons and above but...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ship that has approved oily-water separating equipment for the processing of oily mixtures from bilges... least one pump installed to discharge oily mixtures through a fixed piping system to a reception... to stop each pump that is used to discharge oily mixtures; and (6) The ship has a stop valve...

  5. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.

    PubMed

    Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François

    2018-03-01

    Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is

  6. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    NASA Astrophysics Data System (ADS)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  7. 52. NORTHEASTERN EXTERIOR VIEW OF DOOROLIVER WAST WATER TREATMENT THICKENER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. NORTHEASTERN EXTERIOR VIEW OF DOOR-OLIVER WAST WATER TREATMENT THICKENER No. 1. ELECTRIC POWERHOUSE No. 2 AND BLOW ENGINE HOUSE No. 3 IS IN THE BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    PubMed Central

    Pittmann, Timo; Steinmetz, Heidrun

    2017-01-01

    This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants. PMID:28952533

  9. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  10. Changes in soil aggregate stability under different irrigation doses of waste water

    NASA Astrophysics Data System (ADS)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  11. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  12. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture.

    PubMed

    Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd

    2017-09-06

    In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m -2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

  13. Tempe Waste Water Degradation Using TiO2-N/Bentonite alginate Granule Photocatalyst with Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Khoirun Nisaa', Aldila; Wardhani, Sri; Purwonugroho, Danar; Darjito

    2018-01-01

    Tempe waste water stew has high ammonia concentration which causes odor due to polluting by anaerobic decay. Free ammonia in the waste has exceeded the limit, thus endangering the aquatic environment. This research aims to determine the activity of photocatalyst granule TiO2-N/bentonite-alginate as decomposers of compounds in the photodegradation process. Photodegradation is the decomposition process of compounds by semiconductors with light. Results expected includes the photocatalyst activity of TiO2-N/bentonite-alginate granule produced by ultraviolet rays is known based on the effect of dopant N concentration on the catalyst and the effect of photocatalytic ratio toward tempe waste water. Methods proposed in this research are activation of bentonite using H2SO4 0.8 M, TiO2-N synthesize by sonication method with urea as the source of N, then TiO2-N impregnation into bentonite. Photocatalyst in granule form synthesized with alginate was then dripped with syringe pump into 3% (w/v) CaCl2. The photocatalyst characterization will be performed using XRD. The optimum tempe waste water degradation at the concentration of TiO2-N 0.4 (g/g) bentonite is 53.66%. The ratio of photocatalyst and tempe waste water, optimum at 150 mg of photocatalyst with 25 mL of waste equal to 53.66%.

  14. The Determination of Anionic Surfactants in Natural and Waste Waters.

    ERIC Educational Resources Information Center

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  15. CHEMICAL MARKERS OF HUMAN WASTE CONTAMINATION IN SOURCE WATERS: A SIMPLIFIED ANALYTICAL APPROACH

    EPA Science Inventory

    Giving public water authorities a tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. This methodology, using both urobilin and azithromycin (or any other human-use pharmaceutical) could be used to give pub...

  16. Study on Influence Factors and Governance Countermeasures of Movable Gel Prepared with Backfilling Waste Water

    NASA Astrophysics Data System (ADS)

    Gao, Shanshan; Zhang, Jianzhong; Zhang, Tiantian; Cui, Yanjie; Wang, Zhiqiang; Sun, Xinrui; Li, Jing; Zhang, Lianchao

    2018-05-01

    Movable gel as profile control and flooding is one of the main measures in tertiary oil recovery in Huabei Oilfield. Many blocks have tight fresh water supplies, but produced waste water can not be discharged. Therefore, preparing movable gel with backfilling waste water has become an inevitable development trend of profile control and flooding. Three different quality of sewage water named SW, YW and ZW were used to prepare gel and then compared with gel prepared clean water. The results showed that the gel viscosity prepared with clean water was 1.5-5.6 times of sewage water at the same formula concentration. For this reason, the effect of Na+, Ca2+, Fe2+ on the gel performance were analyzed. The above ions lead to a decrease in the gel viscosity and poor stability, which can not even be crosslinked. According to the sewage water characteristics, corresponding treatment measures were developed respectively. The best treatment of SW and ZW was increasing polymer concentration followed by the addition of thiourea. The best treatment of YW was also increasing polymer concentration followed by stirring and aeration. The gel viscosity reached to 1800-2500mPaṡs and maintained at 800-1200mPaṡs after 90 days at formation temperature. It showed that the treatment can effectively improve the gel viscosity and stability prepared with sewage water. The results provide valuable experiences for the preparation of movable gel with different quality waste water.

  17. Waste-water characterization/hazardous-waste survey, Beale Air Force Base, California. Final report, 12-26 September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attebery, C.W.; Zimmer, A.T.; Hedgecock, N.S.

    1989-01-01

    A waste-water characterization hazardous-waste survey was conducted at Beale AFB by USAFOEHL/ECQ personnel to provide the base with sufficient information to address a State of California Notice of Violation concerning excessive discharges of boron and cyanide from the base sewage-treatment plant (STP). The results of the survey showed that the 9th RTS Precision Photo Lab along with other film-processing organizations were major contributors to the boron and cyanide discharge problems being experienced by the base STP. Maintenance organizations that utilize soaps and detergents that contain boron and cyanide also contributed to the problem.

  18. Water state changes during the composting of kitchen waste.

    PubMed

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Water, vapour and heat transport in concrete cells for storing radioactive waste

    NASA Astrophysics Data System (ADS)

    Carme Chaparro, M.; W. Saaltink, Maarten

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  20. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  1. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  2. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.; Giumanca, R.

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to

  3. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  4. Energy recovery from waste glycerol by utilizing thermal water vapor plasma.

    PubMed

    Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas

    2017-04-01

    Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H 2  + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H 2 50.7%, CO 23.53%, CO 2 11.45%, and CH 4 3.82%, and traces of C 2 H 2 and C 2 H 6 , which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H 2 46.4%, CO 26.25%, CO 2 11.3%, and CH 4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.

  5. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation.

    PubMed

    Goindi, Shishu; Kaur, Ramanpreet; Kaur, Randeep

    2015-11-30

    In this paper, we report an ionic liquid-in-water (IL/w) microemulsion (ME) formulation which is able to solubilize etodolac (ETO), a poorly water soluble drug for topical delivery using BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) as IL, Tween 80 as surfactant and ethanol as co-surfactant. The prepared ME was characterized for physicochemical parameters, subjected to ex-vivo permeation studies as well as in-vivo pharmacodynamic evaluation. The ex-vivo drug permeation studies through rat skin was performed using Franz-diffusion cell and the IL/w based ME showed maximum mean cumulative percent permeation of 99.030±0.921% in comparison to oil-in-water (o/w) ME (61.548±1.875%) and oily solution (48.830±2.488%) of ETO. In-vivo anti-arthritic and anti-inflammatory activities of the prepared formulations were evaluated using different rodent models and the results revealed that ETO loaded IL/w based ME was found to be more effective in controlling inflammation than oily solution, o/w ME and marketed formulation of ETO. Histopathological studies also demonstrated that IL/w based ME caused no anatomical and pathological changes in the skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding themore » RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d

  7. Cadmium distribution in forest ecosystems irrigated with treated municipal waste water and sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidle, R.C.; Sopper, W.E.

    1976-01-01

    Treated municipal waste water was irrigated in an abandoned old field area from 1964 to 1974 and in a mixed hardwood area (old gamelands) from 1964 to 1974. Total applications of Cd in the old field and old gamelands areas were 0.47 and 0.61 kg/ha, respectively. White spruce (Picea glauca Moench Voss.) and wild strawberry (Fragaria virginiana Duchesne) foilage sampled from the old field showed no increase in Cd concentrations due to effluent irrigation, while goldenrod (Solidago sp. Ait.) had lower Cd levels in the treated area than in the unirrigated control area. Foilage sampled from red maple (Acer rubrummore » L.), white oak (Quercus alba L.), and wild sarsaparilla (Aralia nudicaulis L.), in the old gamelands, showed no increase in Cd as a result of waste water irrigation. Soil Cd levels were not significantly affected by waste water irrigation in either area, except for the increase in soil Cd in the 0 to 5 cm depth of the old gamelands. The Cd/Zn ratios of the vegetation foilage were not significantly different between the treated and control areas.« less

  8. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.

  9. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease

    PubMed Central

    Gupta, Vikas; Mah, Xian-Jun; Garcia, Maria Carmela; Antonypillai, Christina; van der Poorten, David

    2015-01-01

    Rates of non-alcoholic fatty liver disease (NAFLD) are increasing worldwide in tandem with the metabolic syndrome, with the progressive form of disease, non-alcoholic steatohepatitis (NASH) likely to become the most common cause of end stage liver disease in the not too distant future. Lifestyle modification and weight loss remain the main focus of management in NAFLD and NASH, however, there has been growing interest in the benefit of specific foods and dietary components on disease progression, with some foods showing protective properties. This article provides an overview of the foods that show the most promise and their potential benefits in NAFLD/NASH, specifically; oily fish/ fish oil, coffee, nuts, tea, red wine, avocado and olive oil. Furthermore, it summarises results from animal and human trials and highlights potential areas for future research. PMID:26457022

  10. Composting oily sludges: Characterizing microflora using randomly amplified polymorphic DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, A.; Quednau, M.; Ahrne, S.

    1995-12-31

    Laboratory-scale composts in which oily sludge was composted under mesophilic conditions with amendments such as peat, bark, and fresh or decomposed horse manure, were studied with respect to basic parameters such as oil degradation, respirometry, and bacterial numbers. Further, an attempt was made to characterize a part of the bacterial flora using randomly amplified polymorphic DNA (RAPD). The compost based on decomposed horse manure showed the greatest reduction of oil (85%). Comparison with a killed control indicated that microbial degradation actually had occurred. However, a substantial part of the oil was stabilized rather than totally broken down. Volatiles, on themore » contrary, accounted for a rather small percentage (5%) of the observed reduction. RAPD indicated that a selection had taken place and that the dominating microbial flora during the active degradation of oil were not the same as the ones dominating the different basic materials. The stabilized compost, on the other hand, had bacterial flora with similarities to the ones found in peat and bark.« less

  11. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less...

  12. Testing of the cytotoxic effects of sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Golis, E

    1994-01-01

    The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp.

  13. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  14. A Universal Trend among Proteomes Indicates an Oily Last Common Ancestor

    PubMed Central

    Mannige, Ranjan V.; Brooks, Charles L.; Shakhnovich, Eugene I.

    2012-01-01

    Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272 diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate for evolution (reinforcing Darwin's principle of Common Descent), and may prove important in matters such as (i) explaining the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based “global” molecular clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction. PMID:23300421

  15. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used tomore » assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.« less

  16. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This datamore » was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.« less

  17. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    EPA Science Inventory

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  18. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  19. Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water.

    PubMed

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h(-1) L(-1), using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management.

  20. Poly β-Hydroxybutyrate Production by Bacillus subtilis NG220 Using Sugar Industry Waste Water

    PubMed Central

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K.

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h−1 L−1, using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management. PMID:24027767

  1. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    EPA Pesticide Factsheets

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  2. Effect of Fruits Waste in Biopore Infiltration Hole Toward The Effectiveness of Water Infiltration Rate on Baraya Campus Land of Hasanuddin University

    NASA Astrophysics Data System (ADS)

    Santosa, Slamet

    2018-03-01

    The infiltration of water into the soil decreases due to the transfer of soill function or the lack of soil biopores. This study aims to determine the effectiveness of the use of fruits waste toward the water infiltration rate. Observation of the water level decrease is done every 5 minutes interval. Observation of biopore water infiltration rate was done after fruits waste decomposed for 15 and 30 days. Result of standard water infiltration rate at the first of 5 minutes is 2.18 mm/min, then decreases at interval of 5 minutes on next time as the soil begins to saturate the water. Baraya campus soil observed in soil depths of 100cm has a dusty texture character, grayish brown color and clumping structure. Soil character indicates low porosity. While biopore water infiltration rate at the first of 5 minute interval is 6.61and 6.95 mm/min on banana waste; 5.55 and 6.61mm/min on papaya waste and 4.26 and 5.39 mm/min on mango waste. The effectiveness of water infiltration rate is 44.45% and 41.93% on banana; 44.61% and 30.09% on papaya and 15.79% and 28.36% on mango. Study concluded that banana waste causes the water infiltration rate most effective in biopore infiltration hole.

  3. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  4. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  5. Chromium removal from water by activated carbon developed from waste rubber tires.

    PubMed

    Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi

    2013-03-01

    Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.

  6. “Sapsan”-carriages defrosting station of Nizhniy Novgorod railway service enterprise and its surface waste water purification

    NASA Astrophysics Data System (ADS)

    Strelkov, Alexander; Teplykh, Svetlana; Gorshkalev, Pavel; Bystranova, Anastasia

    2017-10-01

    Surface water disposal is one of the most relevant problems for Nizhniy Novgorod railway service enterprises. Waste water must be quickly removed with special drainage devices and water drainage facilities (culverts, slope drains, pipes, ditches, etc.). During “Sapsan”-carriages defrosting watse water is aggregated on railroad tracks. It leads to track bed structure sagging, roadbed washaway and damages to point switches. In this paper the authors describe a concrete system of waste water disposal from railway service enterprises. This system is realized through culverts readjusted at the foot of ballast section. Thereafter, the collected water is pumped into a water collector and to local sewage waste-disposal plants. For railway stations with three or more tracks surface runoff diversion scheme depends on topography, railway tracks types, flow discharge and is compiled individually for each object. This paper examines “Sapsan”-carriages defrosting station of Nizhniy Novgorod railway service enterprise. It presents a technology scheme and equipment consisting of Sand catcher LOS-P, Oil catcher LOS-N, pressure-tight flotation unit; drain feed pump; solution-consuming tank of the coagulant, the solution-consuming tank of flocculant. The proposed technology has been introduced into the project practice.

  7. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    PubMed

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  8. Main devices design of submarine oil-water separation system

    NASA Astrophysics Data System (ADS)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-11-01

    In the process of offshore oil production, in order to thoroughly separate oil from produced fluid, solve the environment problem caused by oily sewage, and improve the economic benefit of offshore drilling, from the perspective of new oil-water separation, a set of submarine oil-water separation devices were designed through adsorption and desorption mechanism of the polymer materials for crude oil in this paper. The paper introduces the basic structure of gas-solid separation device, periodic separation device and adsorption device, and proves the rationality and feasibility of this device.

  9. CHEMICAL MARKERS OF HUMAN WASTE CONTAMINATION: ANALYSIS OF UROBILIN AND PHARMACEUTICALS IN SOURCE WATERS

    EPA Science Inventory

    Giving public water authorities another tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. Most of the methods used today detect such contamination by quantifying microbes occurring in feces in high enough...

  10. Treatment of hospital waste water by ozone technology

    NASA Astrophysics Data System (ADS)

    Indah Dianawati, Rina; Endah Wahyuningsih, Nur; Nur, Muhammad

    2018-05-01

    Conventional treatment hospital wastewater need high cost, large area, long time and the final result leaves a new waste known as sludge. Alternative to more efficient and new technologies for treated hospital wastewaters was ozonation. Ozonation is able to oxidized pollutant materials in wastewater. This research is to know the decrease of COD and TDS levels with ozone. Waste water samples used by dr. Adhyatma, MPH Hospitals Semarang. Kruskal-Wallis test for COD and TDS with variation of concentration p-value = 0,029 and 0,001 (p≤0,05) or there is significantly difference between COD and TDS with level of concentration but there were no different between levels of COD, and TDS with reactions time variations p-value = 0,735, and 0,870 (p≥0.05). Ozone efficiently reduction of COD and TDS at a concentration of 100 mg/liter, the lowest mean value at COD 17.47 mg/liter and TDS 409.75 mg/liter.

  11. [A laboratory and field study on the disposal of domestic waste water based on soil permeation].

    PubMed

    Yamaura, G

    1989-02-01

    The present study was conducted to get information necessary for the disposal of domestic waste water by soil permeation. The clarifying ability of soil was examined by conducting laboratory experiments using soil columns and making inquiries about practical disposal facilities based on soil permeation using trenches. In the column experiment, soil columns were prepared by packing polyvinyl chloride pipes with volcanic-ash loam, river sand, or an equivolume mixture of both, and secondary effluent of domestic waste water was poured into each soil column at a daily rate of 100 l/m2. In this experiment, loam and sand loam, both containing fine silt and clay, gave BOD removals of over 95% when the influent BOD load per 1 m3 of soil was less than 10 g/d and gave the coliform group removals of 100% when the influent coliform group load per 1 m3 soil was less than 10(9)/d. Loam and sand loam gave T-P removals of over 90%. The P adsorption capacity of soil was limited to less than 12% of the absorption coefficient of phosphoric acid. All the soils gave low T-N removals, mostly less than 50%. The trench disposal gave high removals of 90-97% for BOD, 90-97% for T-P, and 94-99% for the coliform group but low removals of 11-49% for T-N, showing a trend similar to that of the column disposal. Thus, we can roughly estimate the effectiveness of actual soil permeation disposal from the results of the column experiments. In the waste water permeation region, the extent of waste water permeation exceeded 700 cm horizontally from the trench, but the waste water load within 100 cm laterally from the trench occupied 60.3% of the total. The concentrations of T-C and T-N at almost all observation spots in the permeation region were lower than in the control region, and were not caused to accumulate in soil by waste water loading. In contrast, T-P was accumulated concentratively in the depth range from 50-100 cm right below the trench. The conditions for effective disposal of domestic

  12. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations

    PubMed Central

    Heaney, Christopher D.; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R.

    2015-01-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI] = 1.03, 5.94) and 2.30 times (95% CI = 0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI = 1.21, 6.80) and 3.36 (95% CI = 1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. PMID:25600418

  13. Oily wastewater treatment by ultrafiltration using Taguchi experimental design.

    PubMed

    Salahi, A; Mohammadi, T

    2011-01-01

    In this research, results of an experimental investigation on separation of oil from a real oily wastewater using an ultrafiltration (UF) polymeric membrane are presented. In order to enhance the performance of UF in API separator effluent treatment and to get more permeation flux (PF), effects of operating factors on the yield of PF were studied. Five factors at four levels were investigated: trans-membrane pressure (TMP), temperature (T), cross flow velocity (CFV), pH and salt concentration (SC). Taguchi method (L(16) orthogonal array (OA)) was used. Analysis of variance (ANOVA) was applied to calculate sum of square, variance, error variance and contribution percentage of each factor on response. The optimal levels thus determined for the four influential factors were: TMP, 3 bar; T, 40˚C; CFV, 1.0 m/s; SC, 25 g/L and pH, 8. The results showed that CFV and SC are the most and the least effective factors on PF, respectively. Increasing CFV, TMP, T and pH caused the better performance of UF membrane process due to enhancement of driving force and fouling residence. Also, effects of oil concentration (OC) in the wastewater on PF and total organic carbon (TOC) rejection were investigated. Finally, the highest TOC rejection was found to be 85%.

  14. TREATMENT AND PRODUCT RECOVERY: SUPERCRITICAL WATER OXIDATION OF NYLON MONOMER MANUFACTURING WASTE

    EPA Science Inventory

    EPA GRANT NUMBER: R822721C569
    Title: Treatment and Product Recovery: Supercritical Water Oxidation of Nylon Monomer Manufacturing Waste
    Investigator: Earnest F. Gloyna
    Institution: University of Texas at Austin
    EPA Project Officer:<...

  15. Assessment of Cr and Ni phytotoxicity from cutlery-washing waste-waters using biomass and chlorophyll production tests on mustard Sinapis alba L. seedlings.

    PubMed

    Fargasová, Agáta; Molnárová, Marianna

    2010-01-01

    The aim of this work was to determine phytotoxicity of washing waste-waters from a cutlery production line with high content of Cr and Ni. These waters were previously classified, without verification, as dangerous and it is now necessary to question the justice of the present classification under the new legislation for waste management (Waste Law No. 223/2001) in the Slovak Republic. Young seedling of the dicotyledon terrestrial plant mustard Sinapis alba L. were used for determination of the dry and fresh root and shoot biomass and photosynthetic pigment production. Observed parameters were evaluated in laboratory experiments with three types of washing waste-waters from a cutlery production line. All contamination of tested washing waste-waters came from heavy metals (Ni, Cr), non-polar extractable compounds (NEC; residues of oils and waxes from polishing of stainless steel cutlery) and detergents (used for cutlery degreasing). Photosynthetic pigments (chlorophyll a, b, and total carotenoids) were extracted in 96% ethanol and measured spectrophotometrically at 665, 649, and 470 nm. All phytotoxicity tests were carried out in triplicate, and they included a control in tap water. All tested washing waters reduced root dry mass, whereas the shoot dry mass was either unaffected or it increased. The tested washing waters' effect was stronger on fresh mass production than on dry mass production. This indicated problems in water reception and translocation. The adverse effect on photosynthetic pigments production increased only slowly with remaining washing waste-water concentration. Almost all Chl a/b ratios were the same as for the control and this indicated no significant differences in the reduction of either a or b chlorophylls. As opposed to chlorophylls, carotenoids content increased in the presence of tested washing waste-waters and equaled or exceeded their content in the control. As the ratio of Chl(a + b)/Car was lower than that for the control for almost

  16. NITRATE CONTAMINATION OF GROUND WATER FROM LAND APPLICATION OF SWINE WASTE: CASE STUDY AND GENERAL CONSIDERATIONS

    EPA Science Inventory

    Guidelines for land application of CAFO waste may not be sufficient to prevent ground water contamination by nitrate. A case study is presented illustrating the problem for one field site disposing of swine waste. Data are discussed in context with documented land application ...

  17. Laboratory tests on heat treatment of ballast water using engine waste heat.

    PubMed

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2018-05-01

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  18. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  19. A Study of Ballast Water Treatment Using Engine Waste Heat

    NASA Astrophysics Data System (ADS)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  20. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  1. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium.

    PubMed

    Duan, Chenlong; Wen, Xuefeng; Shi, Changsheng; Zhao, Yuemin; Wen, Baofeng; He, Yaqun

    2009-07-15

    Research on the recycling of waste printed circuit boards (PCB) is at the forefront of environmental pollution prevention and resource recycling. To effectively crush waste PCB and to solve the problem of secondary pollution from fugitive odors and dust created during the crushing process, a wet impacting crusher was employed to achieve comminution liberation of the PCB in a water medium. The function of water in the crushing process was analyzed. When using slippery hammerheads, a rotation speed of 1470 rpm, a water flow of 6m(3)/h and a sieve plate aperture of 2.2mm, 95.87% of the crushed product was sized less than 1mm. 94.30% of the metal was in this grade of product. Using smashed material graded -1mm for further research, a Falcon concentrator was used to recover the metal from the waste PCB. Engineering considerations were the liberation degree, the distribution ratio of the metal and a way to simplify the technology. The separation mechanism for fine particles of different densities in a Falcon concentrator was analyzed in detail and the separation process in the segregation and separation zones was deduced. Also, the magnitude of centrifugal acceleration, the back flow water pressure and the feed slurry concentration, any of which might affect separation results, were studied. A recovery model was established using Design-Expert software. Separating waste PCB, crushed to -1mm, with the Falcon separator gave a concentrated product graded 92.36% metal with a recovery of 97.05%. To do this the reverse water pressure was 0.05 MPa, the speed transducer frequency was set at 30 Hz and the feed density was 20 g/l. A flow diagram illustrating the new technique of wet impact crushing followed by separation with a Falcon concentrator is provided. The technique will prevent environmental pollution from waste PCB and allow the effective recovery of resources. Water was used as the medium throughout the whole process.

  2. Water-level data from wells in the vicinity of the Waste Isolation Pilot Plant, southeastern New Mexico

    USGS Publications Warehouse

    Richey, S.F.

    1987-01-01

    The U.S. Geological Survey monitored water levels in wells in the vicinity of the Waste Isolation Pilot Plant, a storage facility constructed in bedded salts in which defense-associated transuranic wastes will be deposited, in southeastern New Mexico during 1977 to 1985. A variety of methods was used to measure water levels. The particular method utilized at a given time depended on several factors, including the amount of condensation in the well, well-head configuration, depth to water, rate of water level change, and availability of equipment. The five methods utilized were: air line, Lynes pressure sentry system, M-scope, steel tape, and winch. (Lantz-PTT)

  3. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    PubMed

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Lab-scale co-digestion of kitchen waste and brown water for a preliminary performance evaluation of a decentralized waste and wastewater management.

    PubMed

    Lavagnolo, Maria Cristina; Girotto, Francesca; Hirata, Osamu; Cossu, Raffaello

    2017-08-01

    An overall interaction is manifested between wastewater and solid waste management schemes. At the Laboratory of Environmental Engineering (LISA) of the University of Padova, Italy, the scientific and technical implications of putting into practice a decentralized waste and wastewater treatment based on the separation of grey water, brown water (BW - faecal matter) and yellow water (YW - urine) are currently undergoing investigation in the Aquanova Project. An additional aim of this concept is the source segregation of kitchen waste (KW) for subsequent anaerobic co-digestion with BW. To determine an optimal mixing ratio and temperature for use in the treatment of KW, BW, and eventually YW, by means of anaerobic digestion, a series of lab-scale batch tests were performed. Organic mixtures of KW and BW performed much better (max. 520mlCH 4 /gVS) in terms of methane yields than the individual substrates alone (max. 220mlCH 4 /gVS). A small concentration of urine proved to have a positive effect on anaerobic digestion performance, possibly due to the presence of micronutrients in YW. When considering high YW concentrations in the anaerobically digested mixtures, no ammonia inhibition was observed until a 30% and 10% YW content was added under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Pollution of water sources due to poor waste management--the case of Dar-es-Salaam.

    PubMed

    Makule, D E

    2000-01-01

    Pollution of water sources for the city of Dar-es-Salaam originates from haphazard disposal of solid wastes, discharge of untreated or inadequately treated wastewater to water sources, lack of standard sanitary facilities and poor hygienic practices. Contaminated water used for human consumption can lead to serious health problems e.g. cholera, typhoid, skin diseases, etc., which, in turn, leads to reduced working hours/manpower. This has a direct effect to production output which can lead to a deterioration of local community welfare. Having realised this as a problem, the Government of Tanzania stipulated, in its water policy of 1991, the need for protection of water sources. In achieving this goal, proper waste management was singled out to be of vital importance. Due to economic hardships, however, budget allocation by the central Government could not cover the costs needed for proper handling of waste. This left Tanzania with no alternative other than heavy reliance on donor and bilateral organisations for financial support of programmes. Nevertheless, these sources of funds proved to be unreliable for many different reasons. To deal with these problems, the Government currently emphasises involving local community and NGOs, the formation of stakeholder funds and organisations, and involvement of the private sector. Other efforts are intensification of education programmes to create more awareness to the local communities on the need for protection of water sources. Although at its infancy level, the system is showing some signs of improvement.

  6. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  7. Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability.

    PubMed

    Grant, Stanley B; Saphores, Jean-Daniel; Feldman, David L; Hamilton, Andrew J; Fletcher, Tim D; Cook, Perran L M; Stewardson, Michael; Sanders, Brett F; Levin, Lisa A; Ambrose, Richard F; Deletic, Ana; Brown, Rebekah; Jiang, Sunny C; Rosso, Diego; Cooper, William J; Marusic, Ivan

    2012-08-10

    Humans create vast quantities of wastewater through inefficiencies and poor management of water systems. The wasting of water poses sustainability challenges, depletes energy reserves, and undermines human water security and ecosystem health. Here we review emerging approaches for reusing wastewater and minimizing its generation. These complementary options make the most of scarce freshwater resources, serve the varying water needs of both developed and developing countries, and confer a variety of environmental benefits. Their widespread adoption will require changing how freshwater is sourced, used, managed, and priced.

  8. Oily wastewater treatment using a novel hybrid PBR-UASB system.

    PubMed

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-04-01

    In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.

  9. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    NASA Astrophysics Data System (ADS)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  10. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATTHEW,; KOZAK, W.

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  11. Disposal of high-level nuclear waste above the water table in arid regions

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1983-01-01

    Locating a repository in the unsaturated zone of arid regions eliminates or simplifies many of the technological problems involved in designing a repository for operation below the water table and predicting its performance. It also offers possible accessibility and ease of monitoring throughout the operational period and possible retrieval of waste long after. The risks inherent in such a repository appear to be no greater than in one located in the saturated zone; in fact, many aspects of such a repository's performance will be much easier to predict and the uncertainties will be reduced correspondingly. A major new concern would be whether future climatic changes could produce significant consequences due to possible rise of the water table or increased flux of water through the repository. If spent fuel were used as a waste form, a second new concern would be the rates of escape of gaseous iodine-129 and carbon-14 to the atmosphere.

  12. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The cost of hybrid waste water systems: A systematic framework for specifying minimum cost-connection rates.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-10-15

    To determine the optimal connection rate (CR) for regional waste water treatment is a challenge that has recently gained the attention of academia and professional circles throughout the world. We contribute to this debate by proposing a framework for a total cost assessment of sanitation infrastructures in a given region for the whole range of possible CRs. The total costs comprise the treatment and transportation costs of centralised and on-site waste water management systems relative to specific CRs. We can then identify optimal CRs that either deliver waste water services at the lowest overall regional cost, or alternatively, CRs that result from households freely choosing whether they want to connect or not. We apply the framework to a Swiss region, derive a typology for regional cost curves and discuss whether and by how much the empirically observed CRs differ from the two optimal ones. Both optimal CRs may be reached by introducing specific regulatory incentive structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...

  15. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of Long Chain Free Fatty Acid concentration in oily wastewater using the double wavenumber extrapolation technique.

    PubMed

    Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel

    2017-04-01

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm -1 ) and triglyceride bond (1745cm -1 ) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system. Published by Elsevier B.V.

  16. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora.

    PubMed

    Olivera, N L; Commendatore, M G; Delgado, O; Esteves, J L

    2003-09-01

    Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day(-1) with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.

  17. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  18. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric

    2015-04-01

    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature

  19. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and...

  20. Physicochemical parameters affecting the perception of borehole water quality in Ghana.

    PubMed

    Kulinkina, Alexandra V; Plummer, Jeanine D; Chui, Kenneth K H; Kosinski, Karen C; Adomako-Adjei, Theodora; Egorov, Andrey I; Naumova, Elena N

    2017-08-01

    Rural Ghanaian communities continue using microbiologically contaminated surface water sources due in part to undesirable organoleptic characteristics of groundwater from boreholes. Our objective was to identify thresholds of physical and chemical parameters associated with consumer complaints related to groundwater. Water samples from 94 boreholes in the dry season and 68 boreholes in the rainy season were analyzed for 18 parameters. Interviews of consumers were conducted at each borehole regarding five commonly expressed water quality problems (salty taste, presence of particles, unfavorable scent, oily sheen formation on the water surface, and staining of starchy foods during cooking). Threshold levels of water quality parameters predictive of complaints were determined using the Youden index maximizing the sum of sensitivity and specificity. The probability of complaints at various parameter concentrations was estimated using logistic regression. Exceedances of WHO guidelines were detected for pH, turbidity, chloride, iron, and manganese. Concentrations of total dissolved solids (TDS) above 172mg/L were associated with salty taste complaints. Although the WHO guideline is 1000mg/L, even at half the guideline, the likelihood of salty taste complaint was 75%. Iron concentrations above 0.11, 0.14 and 0.43mg/L (WHO guideline value 0.3mg/L) were associated with complaints of unfavorable scent, oily sheen, and food staining, respectively. Iron and TDS concentrations exhibited strong spatial clustering associated with specific geological formations. Improved groundwater sources in rural African communities that technically meet WHO water quality guidelines may be underutilized in preference of unimproved sources for drinking and domestic uses, compromising human health and sustainability of improved water infrastructure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    NASA Astrophysics Data System (ADS)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  2. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  3. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  4. The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane.

    PubMed

    Manning, D P; Jones, C

    2001-04-01

    Research over a period of about 18 years has shown that a microcellular polyurethane known as AP66033 is the most slip-resistant safety footwear soling material on oily and wet surfaces. In recent years it has been replaced in commercially available footwear by a dual density polyurethane (DDP) which has a dense outer layer and a soft microcellular backing. This research programme has compared the slip resistance of AP66033 with DDP and some rubber solings. In addition, data were obtained on the effects of soling and floor roughness, and floor polish on slip resistance. Some data were also obtained for walking on ice. The coefficient of friction (CoF) of the solings was measured on 19 water wet surfaces in three conditions: (I) when the solings were new, (II) following abrasion to create maximum roughness and (III) after polishing. The CoF was measured on four oily surfaces after each of 11 abrasion or polishing treatments. The profound effects of the roughening of all soles and of floor roughness on the CoF were demonstrated for both wet and oily surfaces. The superior slip resistance of AP66033 was confirmed for oily and wet conditions; however, some rubbers not suitable for safety footwear achieved higher CoF values on wet floors. All of the floor polishes reduced the CoF of all floors when contaminated with water. The mean CoF of DDP solings was lower than the mean for AP66033 on wet and oily surfaces. No safety footwear soling provided adequate grip on dry ice and the CoF was reduced by water on the ice. A rubber used for rock climbing footwear was one of the most slip-resistant solings on wet surfaces in the laboratory but recorded the lowest CoF on ice. It is concluded that the incidence of occupational injuries caused by slipping could be reduced by the following: (A) returning to safety footwear soled with the microcellular polyurethane AP66033; (B) abrading all new and smooth footwear solings with a belt sanding machine coated with P100 grit; (C) avoiding

  5. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.10 Waste...

  6. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.10 Waste...

  7. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  8. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Higueras, Pablo L.; Adatto, Isaac; Lasorsa, Brenda K.

    2004-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almade??n District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almade??n area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almade??n are among the highest found at Hg mines worldwide. Mine wastes from Almade??n contain highly elevated Hg concentrations, ranging from 160 to 34 000 ??g/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almade??n mine is also contaminated, containing Hg as high as 13 000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 ??g/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almade??n mine and significant conversion to methyl-Hg in the surface environment.

  9. [Concentrations, distribution characteristics and electron beam radiolysis degradation of PCDD/Fs in waste water from a paper mill].

    PubMed

    Qing, Xian; Huang, Jin-Qiong; Yu, Xiao-Wei; Zhang, Su-Kun; Yang, Yan-Yan; Ren, Ming-Zhong; Wen, Yu-Long

    2014-07-01

    Concentrations and distribution characteristics of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (2,3,7,8-PCDD/Fs) were analyzed in waste water from a paper mill. And concentrations of 2,3,7,8-PCDD/Fs in waste water before and after electron beam irradiation with different doses were compared. The feasibility, mechanism and rates of 2,3,7,8-PCDD/Fs degradation were discussed. The PCDD/Fs concentrations and corresponding I-TEQ (toxic equivalent quantity) values were 239 pg x L(-1) and 41.0 pg x L(-1), respectively, in the waste water. The concentrations of total 2,3,7,8-PCDD/Fs decreased after electron beam radiolysis at a dose of 30 kGy and 60 kGy with degradation rates of 5.27% and 23.6%, respectively.

  10. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations.

    PubMed

    Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R

    2015-04-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Environmental Analysis of The Impacts of Batik Waste Water Polution on The Quality of Dug Well Water in The Batik Industrial Center of Jenggot Pekalongan City

    NASA Astrophysics Data System (ADS)

    Budiyanto, Slamet; Anies; Purnaweni, Hartuti; Sunoko, Henna Rya

    2018-02-01

    The city of Pekalongan known as "Kota Batik" is one of Batik Industrial Centers in Indonesia with 917 batik industry. There are 203 batik industries located in Jenggot Village, which is the biggest batik industrial center in Pekalongan City. The process of making batik requires a dye derived from synthetic dyes containing heavy metals. Most of the waste is directly discharged into the environment without going through the processing first. This is due to the lack of optimal management of existing WWTP as well as lack of public awareness of environmental conservation. This condition has a negative impact on the surrounding community, especially in terms of environmental health. The result of measurement of 5 (five) batik industrial waste outlets and 5 point of batik waste water in residential sewer shows almost equal number for 3 (three) parameters of heavy metals Cd, Cr and Pb with average number: Cd 0.07 Mg / L, Cr 0.76 mg / L and Pb 0.78 mg / L. These three parameters exceed the maximum level of quality standard established by Government Regulation No.82 of 2001 on Water Quality Management and Water Pollution Control. The average result of the water quality measurement of the well digging population to the heavy metal content are: Cd 0,001 mg / L, Cr 0,002 mg / L and Pb 0.04 mg / L. Of the three parameters of heavy metals, heavy metals of Pb are on average higher than the maximum level of quality standards established by Decree of the Minister of Health Number. 492 / Menkes / Per / IV / 2010 regarding Water Quality Requirements. Potential occurrence of dug well water contamination due to infiltration of batik waste water is big enough. Survey results of 15 dug wells show that the construction of dug wells is not sufficient. There is a dug well with a damaged outer wall of 16.1%, damaged inner wall of 17.9% and a damaged well floor of 19.7%. Improper well construction impacts on the infiltration of batik waste water into the well. Survey results of physical well

  12. Iminodiacetic acid modified kenaf fiber for waste water treatment.

    PubMed

    Razak, Muhammad Raznisyafiq; Yusof, Nor Azah; Haron, Mohammad Jelas; Ibrahim, Norazowa; Mohammad, Faruq; Kamaruzaman, Sazlinda; Al-Lohedan, Hamad A

    2018-06-01

    In the present study, iminodiacetic acid (IDA)-modified kenaf fiber, K-IDA formed by the chemical modification of plant kenaf biomass was tested for its efficacy as a sorbent material towards the purification of waste water. The K-IDA fiber was first characterized by the instrumental techniques like Fourier transform infrared (FTIR) analysis, elemental analysis (CHNSO), and scanning electron microscopy (SEM). On testing for the biosorption, we found that the K-IDA has an increment in the adsorption of Cu 2+ ions as compared against the untreated fiber. The Cu 2+ ions adsorption onto K-IDA fits very well with the Langmuir model and the adsorption maximum achieved to be 91.74mg/g. Further, the adsorption kinetics observed to be pseudo second-order kinetics model and the Cu 2+ ions adsorption is a spontaneous endothermic process. The desorption study indicates a highest percentage of Cu 2+ of 97.59% from K-IDA under 1M HCl solution against H 2 SO 4 (72.59%) and HNO 3 (68.66%). The reusability study indicates that the efficiency did not change much until the 4th cycle and also providing enough evidence for the engagement of our biodegradable K-IDA fiber towards the removal of Cu 2+ ions in real-time waste water samples obtained from the electroplating and wood treatment industries. Copyright © 2018. Published by Elsevier B.V.

  13. Treatment of oily port wastewater effluents using the ultraviolet/hydrogen peroxide photodecomposition system.

    PubMed

    Siedlecka, Ewa Maria; Stepnowski, Piotr

    2006-08-01

    This paper presents the nonselective degradation of mechanically pretreated oily wastewater by hydrogen peroxide (H2O2) in the presence and absence of UV irradiation. The effect of chemical oxidation on wastewater biodegradability was also examined. The exclusive use of H2O2 photolyzed by daylight results in quite efficient degradation rates for the low peroxide concentrations used. Higher hydrogen peroxide concentrations inhibit degradation of organic contaminants in the wastewater. The degradation rates of all contaminants are relatively high with an advanced oxidation system (UV/H2O2), but degradation efficiencies are not distinguishably different when 20 or 45 minutes of UV irradiation is used. The excess of H2O2 used in the process can inhibit phenolic degradation and may lead to the formation of a new phenolic fraction. The biodegradability of port wastewater did not increase significantly following the application of the advanced oxidation process.

  14. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  15. Food losses and waste in China and their implication for water and land.

    PubMed

    Liu, Junguo; Lundqvist, Jan; Weinberg, Josh; Gustafsson, Josephine

    2013-09-17

    Conventional approaches to food security are questionable due to their emphasis on food production and corresponding neglect of the huge amount of food losses and waste. We provide a comprehensive review on available information concerning China's food losses and waste. The results show that the food loss rate (FLR) of grains in the entire supply chain is 19.0% ± 5.8% in China, with the consumer segment having the single largest portion of food waste of 7.3% ± 4.8%. The total water footprint (WF) related to food losses and waste in China in 2010 was estimated to be 135 ± 60 billion m(3), equivalent to the WF of Canada. Such losses also imply that 26 ± 11 million hectares of land were used in vain, equivalent to the total arable land of Mexico. There is an urgent need for dialogue between actors in the supply chain, from farmer to the consumer, on strategies to reduce the high rates of food losses and waste and thereby make a more worthwhile use of scarce natural resources.

  16. Scientific approach and practical experience for reconstruction of waste water treatment plants in Russia

    NASA Astrophysics Data System (ADS)

    Makisha, Nikolay; Gogina, Elena

    2017-11-01

    Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs) performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.

  17. Laboratory Methods for the Measurement of Pollutants in Water and Waste Effluents

    NASA Technical Reports Server (NTRS)

    Ballinger, Dwight G.

    1971-01-01

    The requirement for accurate, precise, and rapid analytical procedures for the examination of water and waste samples requires the use of a variety of instruments. The instrumentation in water laboratories includes atomic absorption, UV-visible. and infrared spectrophotometers, automatic colorimetric analyzers, gas chromatographs and mass spectrometers. Because of the emphasis on regulatory action, attention is being directed toward quality control of analytical results. Among the challenging problems are the differentiation of metallic species in water at nanogram concentrations, rapid measurement of free cyanide and free ammonia, more sensitive methods for arsenic and selenium and improved characterization of organic contaminants.

  18. Utilization of immobilized urease for waste water treatment

    NASA Technical Reports Server (NTRS)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  19. A Novel Water Delivery System for Administering Volatile Chemicals while Minimizing Chemical Waste in Rodent Toxicity Studies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drin...

  20. A novel water delivery system for administering volatile chemicals while minimizing chemical waste in rodent toxicity sutdies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drinki...

  1. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...

  2. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...

  3. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...

  4. Structure and functions of simple membrane-water interfaces. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1994-01-01

    The structure and functions of the earliest ancestors of contemporary cells are focal points in studies of the origin of life. Probably the first cell-like structures were vesicles - closed, spheroidal structures with aqueous medium trapped inside. The membranous walls of vesicles were most likely bilayers composed of simple amphiphilic material available on early earth. The membrane studied was composed of glycerol 1-monooleate (GMO). Glycerol forms the polar head group and the oily tail contains 18 carbon atoms. All head groups have been found to be located in two narrow regions at the interfaces with water. The membrane interior, formed by the hydrophobic tails, is quite fluid with chain disorder increasing towards the center of the bilayer. These results are in agreement with x-ray and neutron scattering data from related bilayers. The width of the membrane is not constant, but fluctuates in time and space. Occasional thinning defects in the membrane, observed during the course of the simulations, may have a significant influence on rates of passive transport of small molecules across membranes. It has been found that water penetrates the head group region but not the oily interior of the membrane. Water molecules near the interface are oriented by dipoles of the head groups. The resulting electrostatic potential across the interface, determined in our simulations, has been found to be markedly larger than across the water-oil interface. This quantity has been implicated as the source of selectivity, with respect to the sign of the charge, as an ion approaches the interface and during transport of hydrophobic ions across membranes.

  5. Water use, waste generation, and traffic counts at interstate rest areas in Louisiana.

    DOT National Transportation Integrated Search

    2003-06-30

    Surprisingly, little current information for design purposes exists regarding water use and waste generation at interstate rest areas. The Waterways Experiment Station of the U.S. Army Corps of Engineers carried out the last major study in 1974. This...

  6. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  7. CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...

  8. Mutagenicity and cytotoxicity of liquid waste, press water and pond water, produced in the cassava flour industry, and of antitoxic sodium thiosulfate.

    PubMed

    Viana, Lilian Ávila; Düsman, Elisângela; Vicentini, Veronica Elisa Pimenta

    2014-02-01

    Cassava (Manihot esculenta Crantz), a plant used as food and an ingredient in industry, contains cyanogenic glycosides. The cassava root contains wastewater, popularly known as manipueira, which is a toxic substance. Its ingestion by animals causes poisoning although they react positively to treatment with sodium thiosulfate. The present research evaluates the cytotoxicity and the mutagenicity of liquid waste produced in the process of industrialization of the bitter cassava, olho-junto variety. The liquid wastes are characterized as press water, which is obtained when the cassava roots are pressed; pond water, which is press water stored in impounded ponds; and a solution of sodium thiosulfate, pure and with other waste. The system tests comprised root meristematic cells of Allium cepa L. and bone marrow cells of Rattus norvegicus. Treatment with saline solution was cytotoxic for Allium cepa L. and significantly reduced cell division rate. Although no treatment was cytotoxic in any of the tests with rats, the thiosulfate solution was clastogenic for the chromosomal aberrations test. Since it is harmful to the genetic material submitted within the conditions of current research, sodium thiosulfate should only be used in emergency conditions in which the benefits exceed the risks. © 2013 Society of Chemical Industry.

  9. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia

    PubMed Central

    2014-01-01

    Background The importance of bacterial isolates from waste water environment as a reservoir of antibiotic resistance and a potential source of novel resistance genes to clinical pathogens is underestimated. This study is aimed at to isolate and characterize public health important bacteria from waste water in hospital and non- hospital environments and evaluate the distribution of multiple drug resistance bacteria in the study area. Methods A cross-sectional study was conducted at Gondar from January-June 2012. The hospital waste water was taken from different sections of the Gondar University Teaching Hospital. Non- hospital environment samples were taken at different sites of the university campuses, Gondar College of Teachers education, and soft drink factory in Gondar. Samples were aseptically collected, transported and processed with in two hours following standard procedure. Identified organisms were assessed for different antibiotics following Kirby-Bauer disk diffusion method. All data was registered and entered in to SPSS version 16 computer program. P-values less than 0.05 were taken as statistically significant. Result A total of 60 waste water samples were processed for the presence of drug resistance pathogens. Among the total samples 113 bacterial isolates were recovered and of these 65 (57.5%) were from hospital environment and 48 (42.5%) were from non-hospital environment. The most frequently identified bacterium was Klebsiella spp. 30 (26.6%) followed by Pseudomonas spp. 19(16.8%), E. coli (11.5%) and Citrobacter spp (11.5%), and Staphylococcus aureus (8.2%). The over all prevalence of multiple drug resistance (MDR) in this study was 79/113 (69.9%). MDR in hospital environment was found to be 53/68 (81.5%) while in non hospital environment was found to be 26/48 (54.2%). Conclusions Multiple drug resistance to the commonly used antibiotics is high in the study area. The contamination of waste water by antibiotics or other pollutants lead to the rise

  10. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia.

    PubMed

    Moges, Feleke; Endris, Mengistu; Belyhun, Yeshambel; Worku, Walelegn

    2014-04-05

    The importance of bacterial isolates from waste water environment as a reservoir of antibiotic resistance and a potential source of novel resistance genes to clinical pathogens is underestimated. This study is aimed at to isolate and characterize public health important bacteria from waste water in hospital and non- hospital environments and evaluate the distribution of multiple drug resistance bacteria in the study area. A cross-sectional study was conducted at Gondar from January-June 2012. The hospital waste water was taken from different sections of the Gondar University Teaching Hospital. Non- hospital environment samples were taken at different sites of the university campuses, Gondar College of Teachers education, and soft drink factory in Gondar. Samples were aseptically collected, transported and processed with in two hours following standard procedure. Identified organisms were assessed for different antibiotics following Kirby-Bauer disk diffusion method. All data was registered and entered in to SPSS version 16 computer program. P-values less than 0.05 were taken as statistically significant. A total of 60 waste water samples were processed for the presence of drug resistance pathogens. Among the total samples 113 bacterial isolates were recovered and of these 65 (57.5%) were from hospital environment and 48 (42.5%) were from non-hospital environment. The most frequently identified bacterium was Klebsiella spp. 30 (26.6%) followed by Pseudomonas spp. 19(16.8%), E. coli (11.5%) and Citrobacter spp (11.5%), and Staphylococcus aureus (8.2%). The over all prevalence of multiple drug resistance (MDR) in this study was 79/113 (69.9%). MDR in hospital environment was found to be 53/68 (81.5%) while in non hospital environment was found to be 26/48 (54.2%). Multiple drug resistance to the commonly used antibiotics is high in the study area. The contamination of waste water by antibiotics or other pollutants lead to the rise of resistance due to selection

  11. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    PubMed

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  12. A novel method to delaminate nitrate-intercalated MgAl layered double hydroxides in water and application in heavy metals removal from waste water.

    PubMed

    Rahman, Mir Tamzid; Kameda, Tomohito; Kumagai, Shogo; Yoshioka, Toshiaki

    2018-07-01

    Nitrate-intercalated MgAl layered double hydroxide (LDH) was successfully delaminated in water by a facile and effective method upon reflux at 120 °C for 24 h followed by sonication at 40 °C for 5 h. This process is environmentally friendly since water is the only solvent used. The delaminated nanosheets were characterized by microscopic, spectroscopic, and particle size analyses. The delamination process successfully produced octahedron-shaped single-layer nanosheets 50-150 nm in size. X-ray photoelectron spectroscopy (XPS) data confirmed that the surface elements and their chemical status are consistent with the basic layer of MgAl LDH. The delaminated nanosheets displayed higher adsorption capacity for removing heavy metals from waste water than the original powdered LDH. After treating the waste water, a sharp and intense peak in the X-ray powder diffraction (XRD) pattern of the precipitate confirms the restacking of the LDH nanosheets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol.

    PubMed

    Kim, Kyeong Soo; Yang, Eun Su; Kim, Dong Shik; Kim, Dong Wuk; Yoo, Hye Hyun; Yong, Chul Soon; Youn, Yu Seok; Oh, Kyung Taek; Jee, Jun-Pil; Kim, Jong Oh; Jin, Sung Giu; Choi, Han Gon

    2017-11-01

    To develop a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for a water-insoluble oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) with improved stability and oral bioavailability, numerous S-SNEDDS were prepared with surfactant, hydrophilic polymer, antioxidant, and calcium silicate (porous carrier) using the spray-drying method. Their physicochemical properties were evaluated using emulsion droplet size analysis, SEM and PXRD. Moreover, the solubility, dissolution, stability, and pharmacokinetics of the selected S-SNEDDS were assessed compared with the drug and a commercial soft capsule. Sodium lauryl sulfate (SLS) and hydroxypropyl methylcellulose (HPMC) with the highest drug solubility were selected as surfactant and hydrophilic polymer, respectively. Among the antioxidants tested, only butylated hydroxyanisole (BHA) could completely protect the drug from oxidative degradation. The S-SNEDDS composed of PLAG/SLS/HPMC/BHA/calcium silicate at a weight ratio of 1: 0.25: 0.1: 0.0002: 0.5 provided an emulsion droplet size of less than 300 nm. In this S-SNEDDS, the drug and other ingredients might exist in the pores of carrier and attach onto its surface. It considerably improved the drug stability (about 100 vs. 70%, 60 °C for 5 d) and dissolution (about 80 vs. 20% in 60 min) compared to the commercial soft capsule. Moreover, the S-SNEDDS gave higher AUC, C max , and T max values than the commercial soft capsule; in particular, the former improved the oral bioavailability of PLAG by about 3-fold. Our results suggested that this S-SNEDDS provided excellent stability and oral bioavailability of PLAG. Thus, this S-SNEDDS would be recommended as a powerful oral drug delivery system for an oily drug, PLAG.

  14. Water-quality and hydrogeologic data for three phosphate industry waste-disposal sites in central Florida, 1979-80

    USGS Publications Warehouse

    Miller, Ronald L.; Sutcliffe, Horace

    1982-01-01

    This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)

  15. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  16. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  17. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  18. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  19. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  20. Performance Evaluation and Adaptability Research of Flowing Gel System Prepared with Re-injected Waste Water

    NASA Astrophysics Data System (ADS)

    Shi, Lei; You, Jing; Liu, Na; Liu, Xinmin; Wang, Zhiqiang; Zhang, Tiantian; Gu, Yi; Guo, Suzhen; Gao, Shanshan

    2017-12-01

    The crosslinking intensity and stability of flowing gel system prepared with re-injected waste water are seriously affected as the high salinity waste water contains a high concentration of Na+, Fe2+, S2-, Ca2+, etc. The influence of various ions on the flowing gel system can be reduced by increasing polymer concentration, adding new ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW). The technique of profile controlling and oil-displacing is carried out in Chanan multi-purpose station, Chabei multi-purpose station and Chayi multi-purpose station of Huabei Oilfield. The flowing gel system is injected from 10 downflow wells and the 15 offsetting production wells have increased the yield by 1770 tons.

  1. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam.

    PubMed

    McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U

    2012-10-15

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.

  2. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    PubMed

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  3. A membrane-based subsystem for very high recoveries of spacecraft waste waters

    NASA Technical Reports Server (NTRS)

    Ray, Roderick J.; Retzlaff, Sandra E.; Radke-Mitchell, Lyn; Newbold, David D.; Price, Donald F.

    1986-01-01

    This paper describes the continued development of a membrane-based subsystem designed to recover up to 99.5 percent of the water from various spacecraft waste waters. Specifically discussed are: (1) the design and fabrication of an energy-efficient reverse-osmosis (RO) breadboard subsystem; (2) data showing the performance of this subsystem when operated on a synthetic wash-water solution - including the results of a 92-day test; and (3) the results of pasteurization studies, including the design and operation of an in-line pasteurizer. Also included in this paper is a discussion of the design and performance of a second RO stage. This second stage results in higher-purity product water at a minimal energy requirement and provides a substantial redundancy factor to this subsystem.

  4. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.

    PubMed

    Chatterjee, S K; Bhattacharjee, I; Chandra, G

    2010-03-15

    The metal binding capacity of the thermophilic bacteria Geobacillus thermodenitrificans isolated from Damodar river, India was assessed using synthetic metal solutions and industrial waste water. Biosorption preference of dead biomass of G. thermodenitrificans for the synthetic metal solutions was in the following order Fe(+3)>Cr(+3)>Co(+2)>Cu(+2)>Zn(+2)>Cd(+2)>Ag(+)>Pb(+2). It reduced the concentration of Fe(+3) (91.31%), Cr(+3) (80.80%), Co(+2) (79.71%), Cu(+2) (57.14%), Zn(+2) (55.14%), Cd(+2) (49.02%), Ag(+) (43.25%) and Pb(+2) (36.86%) at different optimum pH within 720 min. When this strain was applied in the industrial waste water biosorption preference was in the following order Fe(+3)>Cr(+3)>Cd(+2)>Pb(+2)>Cu(+2)>Co(+2)>Zn(+2)>Ag(+) and concentrations reduced up to 43.94% for Fe(+3), 39.2% for Cr(+3), 35.88% for Cd(+2), 18.22% for Pb(+2), 13.03% for Cu(+2), 11.43% for Co(+2), 9.02% for Zn(+2) and 7.65% for Ag(+) within 120 min. (c) 2009 Elsevier B.V. All rights reserved.

  5. Recovery of phosphorous from industrial waste water by oxidation and precipitation.

    PubMed

    Ylmén, Rikard; Gustafsson, Anna M K; Camerani-Pinzani, Caterina; Steenari, Britt-Marie

    2017-07-03

    This paper describes the development of a method for recovery of phosphorous from one of the waste waters at an Akzo Nobel chemical plant in Ale close to Göteborg. It was found that it is possible to transform the phosphorous in the waste water to a saleable product, i.e. a slowly dissolving fertilizer. The developed process includes oxidation of phosphite to phosphate with hydrogen peroxide and heat. The phosphate is then precipitated as crystalline struvite (ammonium magnesium phosphate) by the addition of magnesium chloride. The environmental impacts of the new method were compared with those of the current method using life cycle assessment. It was found that the methodology developed in this project was an improvement compared with the current practice regarding element resource depletion and eutrophication. However, the effect on global warming would be greater with the new method. There could however be several ways to decrease the global warming effect. Since most of the carbon dioxide emissions come from the production of magnesium chloride from carbonates, changing to utilization of a magnesium chloride from desalination of seawater or from recycling of PVC would decrease the carbon footprint significantly.

  6. [Cultivation of a permanent fish cell line in serum-free media special experiences with a cytotoxicity test for waste water samples

    PubMed

    Kohlpoth, Martin; Rusche, Brigitte

    1997-01-01

    The use of fetal calf serum (FCS) as standard medium additive for the cell cultivation must be regarded critically from the point of view of animal welfare as well as for scientific reasons and makes it necessary to look for alternatives. In the last years an in vitro cytotoxicity assay for the testing of industrial waste waters with the permanent fish cell line RTG-2 was established and pre-validated as an alternative to the fish test with the golden orfe. The application of FCS is also a special problem with regard to the testing of waste waters in a cytotoxicity test so that FCS-alternatives were tested. The RTG-2 cells were successfully adapted to the two solvents Basal Medium Supplement (BMS) and Ultroser-G (U-G) that are used to replace serum. The characterisation of these adapted cell lines showed no significant differences in growth rate, adhesion rate, viability and sensitivity to chemicals in comparison to the original RTG-2 cells. On the determination of the cytotoxicity of industrial waste waters the RTG-2 cells adapted to the BMS medium indicated a clearly higher toxicity of the waste water samples than the original RTG-2 cells. This result confirms the thesis that serum components react with waste water elements and thus change the bio-availability of toxic compounds.

  7. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  8. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    NASA Astrophysics Data System (ADS)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  9. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    PubMed

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    NASA Astrophysics Data System (ADS)

    Bouqbis, Laila; Werner Koyro, Hans; Kammann, Claudia; Zohra Ainlhout, Lalla Fatima; Boukhalef, Laila; Cherif Harrouni, Moulay

    2018-05-01

    Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC), high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L.) nor for barley (Hordeum vulgare) indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  11. Biosurfactant production by Mucor circinelloides on waste frying oil and possible uses in crude oil remediation.

    PubMed

    Hasanizadeh, Parvin; Moghimi, Hamid; Hamedi, Javad

    2017-10-01

    Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO 4 . M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.

  12. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water.

    PubMed

    Carmona, Eric; Andreu, Vicente; Picó, Yolanda

    2014-06-15

    The occurrence of 21 acidic pharmaceuticals, including illicit drugs, and personal care products (PPCPs) in waste, surface and drinking water and in sediments of the Turia River Basin (Valencia, Spain) was studied. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the determination of these PPCPs with electrospray (ESI) in negative ionization (NI) mode. Ammonium fluoride in the mobile phase improved ionization efficiency by an average increase in peak area of 5 compared to ammonium formate or formic acid. All studied compounds were detected and their concentration was waste water>surface water>drinking water. PPCPs were in waste water treatment plants (WWTPs) influents up to 7.26μgL(-1), dominated by ibuprofen, naproxen and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCOOH). WWTPs were highly effective in removing most of them, with an average removal rate of >90%. PPCPs were still detected in effluents in the 6.72-940ngL(-1) range, with the THCOOH, triclocarban, gemfibrozil and diclofenac as most prevalent. Similarly, diclofenac, gemfibrozil, ibuprofen, naproxen and propylparaben were detected quite frequently from the low ngL(-1) range to 7μgL(-1) in the surface waters of Turia River. Ibuprofen, methylparaben, salicylic acid and tetrahydrocannabinol (THC) were at concentrations up to 0.85ngg(-1) d.w. in sediments. The discharge of WWTP as well as of non-treated waters to this river is a likely explanation for the significant amount of PPCPs detected in surface waters and sediments. Mineral and tap waters also presented significant amounts (approx. 100ngL(-1)) of ibuprofen, naproxen, propylparaben and butylparaben. The occurrence at trace levels of several PPCPs in drinking water raises concerns about possible implications for human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  14. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.

    PubMed

    GilPavas, Edison; Molina-Tirado, Kevin; Gómez-García, Miguel Angel

    2009-01-01

    An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellín (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.

  15. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.

    PubMed

    Wang, Ben; Liang, Weixin; Guo, Zhiguang; Liu, Weimin

    2015-01-07

    Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

  16. Impact of Phosphogypsum waste on the Geochemistry of the coastal water of Ghannouche -Gabes (SE of Tunisia).

    NASA Astrophysics Data System (ADS)

    Ben Amor, R.; Fathallah, S.; Gueddari, M.

    2009-04-01

    Impact of Phosphogypsum waste on the Geochemistry of the coastal water of Ghannouche -Gabes (SE of Tunisia). R. Ben Amor, S. Fathallah, M. Gueddari (R.U. of Geochemistry and of Environmental Geology, Faculty of Sciences of Tunis, Department of Geology, 2092 Manar I) Corresponding author: R. Ben Amor; E-mail:magba_rim@yahoo.fr The littoral Ghannouche - Gabes (SE of Tunisia), has been known since the 1970's, an important industrialization especially after the installation of the chemical complex for the treatment of phosphates. These industries are at the origin of various waste materials, the most significant one is phosphogypsum (PG) which is released into the sea. The aim of this paper is to identify and to analyze the different entropic and natural factors, which govern the chemical composition in major elements, dissolved oxygen, pH and temperature of Ghannouche -Gabes coastal water, while studying, in particular, the impact of PG waste on the spatial distribution of these parameters. The result of the chemical analyses of the samples taken in June 2003, show that Na, K and Cl are conserved in solution and they evolve with constant Na/Cl and K/Cl ratio. The values of these ratios are similar to sea water average. The concentration of the other elements are controlled, first, by processes of precipitation or dissolution of the carbonated (Ca, Mg and HCO3) or sulphated (Ca and SO4) minerals, and second, by dilution or evaporation phenomena and by the phosphogypsum waste. The spatial distribution of these elements, of the pH, the dissolved oxygen and the temperature and the result of the saturation index with respect to calcite, gypsum and fluorite, by using of the PhreeqC program, show that the zone, located at north of the study area, between the commercial and the fishing port, is highly influenced by the PG waste. In this area, where the PG is released and which is relatively sheltered by the dams of the commercial and fishing port, waters are characterised by

  17. The speciation and subtyping of campylobacter isolates from sewage plants and waste water from a connected poultry abattoir using molecular techniques.

    PubMed Central

    Koenraad, P. M.; Ayling, R.; Hazeleger, W. C.; Rombouts, F. M.; Newell, D. G.

    1995-01-01

    In this study the distribution of phenotypes of campylobacter strains in sewage and surface waters was investigated by subtyping and by speciation of isolates from various aquatic environments. These environments included two municipal sewage plants (SPA and SPB) and waste water from a poultry abattoir (WWA). Both the sewage plants SPA and SPB collected domestic and industrial waste, and SPA received drain water from WWA. SPB received no waste water from any meat-processing plant. The isolates were speciated by PCR and subtyped by PCR/RFLP based on the flagellin PCR products. From all three reservoirs, no Campylobacter lari was isolated, and approximately 80% of the isolates could be identified as C. jejuni and the rest belonged to the C. coli species. The PCR/RFLP typing technique has a high discrimination level and was reproducible between two separate laboratories. The 182 isolates tested yielded 22 distinct Dde I profiles. The results indicate that strains with profiles found in poultry are also detectable in waste water presumed to be solely from domestic and human sources. In addition some strains were unique to the known poultry-related sources, suggesting that avian-specific strains, non-pathogenic to man, may exist in the environment. In contrast some strains were unique to human waste indicating the potential importance of non-poultry sources of infection. No seasonality was observed in the profile distribution. So, at least in the Netherlands, it is unlikely that infections caused by contaminated surface waters contribute to the seasonality of human campylobacteriosis. Images Fig. 1 PMID:8557080

  18. Efficiency Assessment of Using Flammable Compounds from Water Treatment and Methanol Production Waste for Plasma Synthesis of Iron-Containing Pigments

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, Anastasia P.; Karengin, Alexander G.

    2016-08-01

    This article describes the possibility of applying the low-temperature plasma for obtaining iron-containing pigments from water purification and flammable methanol production waste. In this paper were calculated combustion parameters of water-saltorganic compositions (WSOC) with different consists. Authors determined the modes of energy- efficient processing of the previously mentioned waste in an air plasma. Having considered the obtained results there were carried out experiments with flammable dispersed water-saltorganic compositions on laboratory plasma stand. All the experimental results are confirmed by calculations.

  19. The influence of brewing water characteristic on sensory perception of pour-over local coffee

    NASA Astrophysics Data System (ADS)

    Fibrianto, K.; Ardianti, A. D.; Pradipta, K.; Sunarharum, W. B.

    2018-01-01

    The coffee quality can be characterized by its multisensory perceptions. The content and mineral composition and other substances of brewing water can affect the result of brewed-coffee. The water may influence in extraction capabilities and flavor clarity. The ground Dampit coffee and two commercial instant coffee with pour-over method were used in this study. Various types of commercial drinking water were used to brew the coffee. The result suggests that the different brewing water affects the intensity of sweet and chocolate aroma, as well as oily mouth-feel. Surprisingly, taste and flavour attributes were not affected by the pH of brewing water within the range of 5.5 to 9.1.

  20. 46 CFR 162.050-3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-water mixture to provide a resulting mixture that has an oil concentration of 15 ppm or less. Bilge alarm means an instrument that is designed to measure the oil content of oily mixtures from machinery... and oily mixtures combined with these residues. PPM means parts per million by volume of oil in water...