Science.gov

Sample records for oklahoma ground water

  1. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  2. Ground-water levels in observation wells in Oklahoma, 1975

    USGS Publications Warehouse

    Goemaat, Robert L.

    1977-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  3. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron

  4. Ground-water levels in observation wells in Oklahoma, 1980-82

    USGS Publications Warehouse

    Goemaat, Robert L.; Mize, Lionel D.; Spiser, Dannie E.

    1983-01-01

    In the 1980-82 Climatic Years, the U. S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, collected ground-water level data in Oklahoma from 1,122 sites in 77 counties. This report presents this data.

  5. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  6. Ground-water levels in observation wells in Oklahoma, period of record to March 1985

    USGS Publications Warehouse

    Goemaat, Robert L.; Mize, Lionel D.; Madaj, Ambrose J.; Spiser, Dannie E.

    1986-01-01

    During the 1984-85 climatic years, the U.S. Geological Survey, in cooperation with the Oklahoma Water Resources, collected ground-water level data in Oklahoma from 1,018 sites in 76 of the State's 77 counties. This report is a compilation of all available data through March 1985 for each well currently in the network. Some of the data were collected as early as 1937.

  7. Ground water in the Blanchard area, McClain County, Oklahoma

    USGS Publications Warehouse

    Davis, Leon Virgil; Schoff, Stuart L.

    1948-01-01

    A letter from Lloyd L. Bowser, City Clerk, dated January 8, 1948, in behalf of the town council and Mayor Walter Casey, indicates that a serious shortage of water is faced by the town of Blanchard, McClain County, Oklahoma. The town is near the eastern boundary of Grady County, where an investigation of the ground-water resources is being made by the Oklahoma Geological Survey in cooperation with the U.S. Geological Survey as part of a State-wide investigation. Information obtained thus far may aid the town by showing where additional ground water for municipal supply may be sought.

  8. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  9. Ground-water records for eastern Oklahoma, Part 2; water-quality records for wells, test-holes, and springs

    USGS Publications Warehouse

    Havens, John S.

    1978-01-01

    The U. S. Geological Survey has collected data on Oklahoma's ground-water resources since 1934. Most of these data were collected as part of specific ground-water studies conducted in cooperation with various Federal, State, and local agencies. Data on construction, yield, water levels, and other physical well parameters are given in 'Ground-Water Records for Northeastern Oklahoma, Part 1 - Records of Wells, Test Holes, and Springs' and in 'Ground-Water Records for Southeastern Oklahoma, Part 1 - Records of Wells, Test Holes, and Springs.' These reports are available from the U.S. Department of the Interior, Geological Survey, Rm. 621, 201 N.W. Third, Oklahoma City, OK 73102. Although some water-quality data for wells, test-holes, and springs have been published, they are scattered through a variety of reports and are not readily available on a regional basis. Furthermore, a considerable amount of data have never been published and can be obtained only from the files of the Geological Survey. The purpose of this report is to make available both published and unpublished water-quality records for approximately 1,740 wells, test-holes, and springs in 23 counties in northeastern Oklahoma and 16 counties in southeastern Oklahoma. Acknowledgment is extended to the many hundreds of individuals who have provided the data compiled in this report.

  10. Water resources data, Oklahoma, water year 2003; Volume 2. Red River basin and ground-water wells

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2003 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 139 gaging stations; stage and contents for 17 lakes or reservoirs and 2 gage height stations; water quality for 46 gaging stations; 32 partial-record or miscellaneous streamflow stations and 5 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  11. Ground-water levels in observation wells in Oklahoma, 1963-64

    USGS Publications Warehouse

    Wood, P.R.

    1965-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1963-64), is the third of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). The second report, published in 1964, contains water-level records for the 2-year period (1961-62.) (available as photostat copy only)

  12. Ground-water levels in observation wells in Oklahoma, 1961-62

    USGS Publications Warehouse

    Wood, P.R.; Moeller, M.D.

    1964-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; and (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1960-62), is the second of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). (available as photostat copy only)

  13. Naturally Occurring Arsenic in Ground Water, Norman, Oklahoma, 2004, and Remediation Options for Produced Water

    USGS Publications Warehouse

    Smith, S. Jerrod; Christenson, Scott

    2005-01-01

    can be used to bring some of Norman?s high-arsenic wells into compliance with the new arsenic standard, the EPA Office of Research and Development (ORD) initiated a three-year research project in 2003 with participation from the U.S. Geological Survey (USGS), Oklahoma State University, and the City of Norman. The primary objectives of the project are to: (1) determine where naturally occurring arsenic is entering wells by collecting water samples at different depths, (2) investigate the utility of new methods for collecting water-quality data in a pumping well, (3) better understand the stratigraphy and composition of aquifer rocks, (4) assess 10 wells for the possibility of arsenic remediation by well modification, and (5) evaluate the effectiveness of well modification in bringing marginal wells into compliance with the new arsenic MCL. The purpose of this report is to describe the occurrence of arsenic in ground water near Norman, Oklahoma, and available options for reducing arsenic concentrations in produced ground water.

  14. Ground-water levels in observation wells in Oklahoma, 1971-74

    USGS Publications Warehouse

    Goemaat, Robert L.

    1976-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  15. Ground-water levels in observation wells in Oklahoma, 1967-68

    USGS Publications Warehouse

    Bingham, R.H.

    1969-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1967-68), is the fifth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); the third report, published in 1965, contains water-level records for the 2-year period (1963-64); and the fourth report contains water-level records for

  16. Ground-water levels in observation wells in Oklahoma, 1965-66

    USGS Publications Warehouse

    Hart, D.L., Jr.

    1967-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1965-66), is the fourth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); and the third report, published in 1965, contains water-level records for the 2-year period (1963-64). (available as photostat copy only)

  17. Ground Water Atlas of the United States: Segment 4, Oklahoma, Texas

    USGS Publications Warehouse

    Ryder, Paul D.

    1996-01-01

    The two States, Oklahoma and Texas, that compose Segment 4 of this Atlas are located in the south-central part of the Nation. These States are drained by numerous rivers and streams, the largest being the Arkansas, the Canadian, the Red, the Sabine, the Trinity, the Brazos, the Colorado, and the Pecos Rivers and the Rio Grande. Many of these rivers and their tributaries supply large amounts of water for human use, mostly in the eastern parts of the two States. The large perennial streams in the east with their many associated impoundments coincide with areas that have dense populations. Large metropolitan areas such as Oklahoma City and Tulsa, Okla., and Dallas, Fort Worth, Houston, and Austin, Tex., are supplied largely or entirely by surface water. However, in 1985 more than 7.5 million people, or about 42 percent of the population of the two States, depended on ground water as a source of water supply. The metropolitan areas of San Antonio and El Paso, Tex., and numerous smaller communities depend largely or entirely on ground water for their source of supply. The ground water is contained in aquifers that consist of unconsolidated deposits and consolidated sedimentary rocks. This chapter describes the geology and hydrology of each of the principal aquifers throughout the two-State area. Precipitation is the source of all the water in Oklahoma and Texas. Average annual precipitation ranges from about 8 inches per year in southwestern Texas to about 56 inches per year in southeastern Texas (fig. 1). In general, precipitation increases rather uniformly from west to east in the two States. Much of the precipitation either flows directly into rivers and streams as overland runoff or indirectly as base flow that discharges from aquifers where the water has been stored for some time. Accordingly, the areal distribution of average annual runoff from 1951 to 1980 (fig. 2) reflects that of average annual precipitation. Average annual runoff in the two-State area ranges

  18. Land-use and ground-water data, Cheyenne-Arapaho Tribes, Concho Reserve, Canadian County, Oklahoma

    USGS Publications Warehouse

    Bergman, DeRoy L.; Savoca, Mark E.

    1993-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Cheyenne and Arapaho Tribes, conducted the present study to determine the vulnerability to contamination of ground water beneath tribal lands within the 3,991-acre Concho Reserve in Canadian County, Oklahoma (map A).

  19. Ground water in the alluvial deposits of Cottonwood Creek Basin, Oklahoma

    USGS Publications Warehouse

    Stacy, B.L.

    1960-01-01

    Cottonwood Creek basin is a 377 square mile area in central Oklahoma. The rim of the basin has altitudes as high as 1,300 feet, and the mouth is at an altitude of 910. Deposits of Quaternary age consist of alluvium along the stream courses and high terrace deposits along the southern rim of the basin. The alluvium contains a high percentage of clay and silt, ranges in thickness from a few inches to 40 feet, and underlies about 36 square miles of the basin. Sandstone, siltstone, and shale of Permian age, which form the bedrock, consist of the Garber sandstone along the eastern edge, the Hennessey shale through the central part, and Flowerpot shale along the western edge. Replenishment of water in the alluvium is from precipitation, lateral seepage and runoff from adjoining areas, and infiltration from the stream channels during high flows. The major use of ground water in the alluvium is transpiration by cottonwood and willow trees. Virtually no water is withdrawn from the alluvium by wells. (available as photostat copy only)

  20. Steady-state simulation of ground-water flow in the Rush Springs Aquifer, western Oklahoma

    USGS Publications Warehouse

    Becker, M.F.

    1998-01-01

    A simplified steady-state ground-water flow model was prepared for the Rush Springs aquifer in western Oklahoma. A 3-kilometer square grid was established over the area containing two layers with 674 active nodes simulated in the model. The steady-state model simulation used a mean recharge rate of 3.05 x 10-4 feet per day and a hydraulic conductivity range from 0.8 to 10 feet per day. The error at each node in the model is defined as the difference between the measured and simulated water levels.The arithmetic mean error for 170 of the 674 active nodes was -0.11 feet, the absolute value mean error was 7.55 feet, and the standard deviation of the error was 10.21 feet. A net simulated recharge of 231 cubic feet per second is balanced by a discharge to drains and seeps of 190.6 cubic feet per second about 82 percent of the total recharge. Discharge to the main stem of the Washita River is about 41 cubic feet per second about 18 percent of the recharge.

  1. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  2. Hydrology and Ground-Water Quality in the Mine Workings within the Picher Mining District, Northeastern Oklahoma, 2002-03

    USGS Publications Warehouse

    DeHay, Kelli L.; Andrews, William J.; Sughru, Michael P.

    2004-01-01

    The Picher mining district of northeastern Ottawa County, Oklahoma, was a major site of mining for lead and zinc ores in the first half of the 20th century. The primary source of lead and zinc were sulfide minerals disseminated in the cherty limestones and dolomites of the Boone Formation of Mississippian age, which comprises the Boone aquifer. Ground water in the aquifer and seeping to surface water in the district has been contaminated by sulfate, iron, lead, zinc, and several other metals. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, investigated hydrology and ground-water quality in the mine workings in the mining district, as part of the process to aid water managers and planners in designing remediation measures that may restore the environmental quality of the district to pre-mining conditions. Most ground-water levels underlying the mining district had similar altitudes, indicating a large degree of hydraulic connection in the mine workings and overlying aquifer materials. Recharge-age dates derived from concentrations of chlorofluorocarbons and other dissolved gases indicated that water in the Boone aquifer may flow slowly from the northeast and southeast portions of the mining district. However, recharge-age dates may have been affected by the types of sites sampled, with more recent recharge-age dates being associated with mine-shafts, which are more prone to atmospheric interactions and surface runoff than the sampled airshafts. Water levels in streams upstream from the confluence of Tar and Lytle Creeks were several feet higher than those in adjacent portions of the Boone aquifer, perhaps due to low-permeability streambed sediments and indicating the streams may be losing water to the aquifer in this area. From just upstream to downstream from the confluence of Tar and Lytle Creeks, surface-water elevations in these streams were less than those in the surrounding Boone aquifer, indicating that

  3. Listings of model values for the simulation of ground-water flow in the Cimarron River alluvium and terrace deposits from Freedom to Guthrie, Oklahoma

    USGS Publications Warehouse

    Adams, G.P.

    1995-01-01

    This report contains MODFLOW input and output listings for the simulation of ground-water flow in alluvium and terrace deposits associated with the Cimarron River from Freedom to Guthrie, Oklahoma. These values are to be used in conjuction with the report, 'Geohydrology of alluvium and terrace deposits of the Cimarron River from Freedom to Guthrie, Oklahoma,' by G.P. Adams and D.L. Bergman, published as U.S. Geological Survey Water-Resources Investigatons Report 95-4066. The simulation used a digital ground-water flow model and was evaluated by a management and statistical program.

  4. A Compilation of Spatial Datasets and Surface-Water and Ground-Water Data from the U.S. Geological Survey and Other Federal and Oklahoma State Agencies for the Kickapoo Tribe of Oklahoma

    USGS Publications Warehouse

    Mashburn, Shana Lichelle

    2010-01-01

    This report contains spatial datasets of natural and anthropogenic features and spatial datasets detailing surface-water, ground-water, and other types of environmental information collected in and surrounding Kickapoo Tribal Lands. Spatial datasets were compiled from Federal and Oklahoma State agencies. Surface-water, ground-water, and other types of environmental information of natural and anthropogenic features were compiled from USGS National Water Information System database, Oklahoma Department of Environmental Quality online Geographic Information System data viewer, Oklahoma Water Resources Board online Water Information Mapping System, and U.S. Environmental Protection Agency online Modernized STORET database. These spatial datasets were compiled from many different sources with varying quality. Because of the different sources, features common to multiple layers may not overlay exactly. Users should check the metadata to determine proper use of these data. These data were not checked for accuracy or completeness. Should a question of accuracy or completeness arise, the user should contact the originator cited in the metadata.

  5. Records of ground-water levels and effects of pumping in the Ardmore well-field area, Carter County, Oklahoma

    USGS Publications Warehouse

    Wood, P.R.

    1965-01-01

    The purpose of this report is to outline the results of work done by the U.S. Geological Survey in the Ardmore well-field area, near Newport, Carter County. The work, completed in two periods between April 1964 and June 1965, was done as part of the ground-water program carried out by the Geological Survey in cooperation with the Oklahoma Water Resources Board. The study in the report area included: (1) a physical inventory of wells in the vicinity of the Ardmore well field (fig. 1); (2) information on depths, perforated intervals, ground-water levels, and water use (table 1); (3) records of water-level fluctuations in deep and shallow wells (table 2) to determine if there is a hydraulic connection between the deep zones tapped by Ardmore's wells and the shallow and intermediate zones tapped by domestic and stock wells in the surrounding area; and (4) general information on the geologic and hydrologic features that may be of use in evaluating the ground-water potential of the Wichita Formation, the principal aquifer in the area. (available as photostat copy only)

  6. Possible sources of nitrate in ground water at swine licensed-managed feeding operations in Oklahoma, 2001

    USGS Publications Warehouse

    Becker, Mark F.; Peter, Kathy D.; Masoner, Jason

    2002-01-01

    Samples collected and analyzed by the Oklahoma Department of Agriculture, Food, and Forestry from 1999 to 2001 determined that nitrate exceeded the U.S. Environmental Protection Agency maximum contaminant level for public drinking-water supplies of 10 milligrams per liter as nitrogen in 79 monitoring wells at 35 swine licensed-managed feeding operations (LMFO) in Oklahoma. The LMFOs are located in rural agricultural settings where long-term agriculture has potentially affected the ground-water quality in some areas. Land use prior to the construction of the LMFOs was assessed to evaluate the types of agricultural land use within a 500-meter radius of the sampled wells. Chemical and microbiological techniques were used to determine the possible sources of nitrate in water sampled from 10 wastewater lagoons and 79 wells. Samples were analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, nitrogen isotope ratios of nitrate and ammonia, wastewater organic compounds, and fecal coliform bacteria. Bacteria ribotyping analysis was done on selected samples to identify possible specific animal sources. A decision process was developed to identify the possible sources of nitrate. First, nitrogen isotope ratios were used to define sources as animal, mixed animal and fertilizer, or fertilizer. Second, wastewater organic compound detections, nitrogen-isotope ratios, fecal coliform bacteria detections, and ribotyping were used to refine the identification of possible sources as LFMO waste, fertilizer, or unidentified animal or mixtures of these sources. Additional evidence provided by ribotyping and wastewater organic compound data can, in some cases, specifically indicate the animal source. Detections of three or more wastewater organic compounds that are indicators of animal sources and detections of fecal coliform bacteria provided additional evidence of an animal source. LMFO waste was designated as a possible source of nitrate in water from 10

  7. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  8. Municipal Water Demand Study, Oklahoma City and Tulsa, Oklahoma

    NASA Astrophysics Data System (ADS)

    Cochran, Richard; Cotton, Arthur W.

    1985-07-01

    By using a multiple regression model, this longitudinal study analyzes the methods and results of the factors which influence water consumption in Oklahoma City and Tulsa, Oklahoma during the 20-year period of 1961 through 1980. The explanatory variables utilized in the model include the average price of water per thousand liters (X1); constant per capita income (X2); average monthly precipitation measured in millimeters (X3); average monthly temperatures in °C(X4); and number of households per thousand population (X5). The results indicate that average price and per capita income were predictive variables for Oklahoma City's water demand, while only per capita income was found to be a predictor for consumption in Tulsa.

  9. Ground-water flow model of the Boone formation at the Tar Creek superfund site, Oklahoma and Kansas

    USGS Publications Warehouse

    Reed, T.B.; Czarnecki, John B.

    2006-01-01

    Extensive mining activities conducted at the Tar Creek Superfund site, one of the largest Superfund sites in the United States, pose substantial health and safety risks. Mining activities removed a total of about 6,000,000 tons of lead and zinc by 1949. To evaluate the effect of this mining on the ground-water flow, a MODFLOW 2000 digital model has been developed to simulate ground-water flow in the carbonate formations of Mississippian age underlying the Tar Creek Superfund site. The model consists of three layers of variable thickness and a grid of 580 rows by 680 columns of cells 164 feet (50 meters) on a side. Model flux boundary conditions are specified for rivers and general head boundaries along the northern boundary of the Boone Formation. Selected cells in layer 1 are simulated as drain cells. Model calibration has been performed to minimize the difference between simulated and observed water levels in the Boone Formation. Hydraulic conductivity values specified during calibration range from 1.3 to 35 feet per day for the Boone Formation with the larger values occurring along the axis of the Miami Syncline where horizontal anisotropy is specified as 10 to 1. Hydraulic conductivity associated with the mine void is set at 50,000 feet per day and a specific yield of 1.0 is specified to represent that the mine void is filled completely with water. Residuals (the difference between measured and simulated ground-water altitudes) has a root-mean-squared value of 8.53 feet and an absolute mean value of 7.29 feet for 17 observed values of water levels in the Boone Formation. The utility of the model for simulating and evaluating the possible consequences of remediation activities has been demonstrated. The model was used to simulate the emplacement of chat (mine waste consisting of fines and fragments of chert) back into the mine. Scenarios using 1,800,000 and 6,500,000 tons of chat were run. Hydraulic conductivity was reduced from 50,000 feet per day to 35 feet

  10. Steady-state simulation of ground-water flow in the Blaine Aquifer, southwestern Oklahoma and northwestern Texas

    USGS Publications Warehouse

    Runkle, Donna L.; McLean, J.S.

    1995-01-01

    A generalized finite-difference model was prepared for the Blaine aquifer in southwestern Oklahoma and northwestern Texas. This report releases the model for use and modification. A grid of 1-square-mile nodes was established over the area, with 1,030 of the nodes actively simulated in the model. The steady-state model simulation used a uniform recharge rate of 2.2 inches per year and three values of hydraulic conductivity: 80, 19, and 4.7 feet per day. About 44 percent of the recharge is discharged as pumpage from wells, and the remainder is discharged to rivers and creeks within and adjacent to the study area.

  11. Water Use in Oklahoma 1950-2005

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2009-01-01

    Comprehensive planning for water resources development and use in Oklahoma requires a historical perspective on water resources. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, summarized the 1950-2005 water-use information for Oklahoma. This report presents 1950-2005 estimates of freshwater withdrawal for water use in Oklahoma by source and category in 5-year intervals. Withdrawal source was either surface water or groundwater. Withdrawal categories include: public supply, irrigation, livestock and aquaculture, thermoelectric-power generation (cooling water), domestic and commercial, and industrial and mining. Withdrawal data were aggregated and tabulated by county, major river basin, and principal aquifer. The purpose of this report is to summarize water-use data in Oklahoma through: (1) presentation of detailed information on freshwater withdrawals by source, county, major river basin, and principal aquifer for 2005; (2) comparison of water use by source, category, major river basin, and principal aquifer at 5-year intervals from 1990-2005; and (3) comparison of water use on a statewide basis by source and category at 5-year intervals from 1950-2005. Total withdrawals from surface-water and groundwater sources during 2005 were 1,559 million gallons per day-989 million gallons a day or 63 percent from surface-water sources and 570 million gallons per day or 37 percent from groundwater sources. The three largest water use categories were: public supply, 646 million gallons per day or 41 percent of total withdrawals; irrigation, 495 million gallons per day or 32 percent of total withdrawals; and livestock and aquaculture, 181 million gallons per day or 12 percent of total withdrawals. All other categories were 237 million gallons per day or 15 percent of total withdrawals. The influence of public supply on the total withdrawals can be seen in the eastern two-thirds of Oklahoma; whereas, the influence of irrigation on total

  12. Water resources data, Oklahoma, water year 2004; Volume 2. Red River basin

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2004 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 138 gaging stations; stage and contents for 18 lakes or reservoirs and 2 gage height stations; water quality for 55 gaging stations; 38 partial-record or miscellaneous streamflow stations and 4 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  13. Water resources data, Oklahoma, water year 2004;Volume 1. Arkansas River basin

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2004 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 138 gaging stations; stage and contents for 18 lakes or reservoirs and 2 gage height stations; water quality for 55 gaging stations; 38 partial-record or miscellaneous streamflow stations and 4 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  14. Water resources data, Oklahoma, water year 2003; Volume 1. Arkansas River basin

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2003 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 139 gaging stations; stage and contents for 17 lakes or reservoirs and 2 gage height stations; water quality for 46 gaging stations; 32 partial-record or miscellaneous streamflow stations and 5 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  15. Fiscal Year 1990 program report: Oklahoma Water Resources Research Institute

    SciTech Connect

    Collins, T.C.

    1991-09-01

    The FY 1990 Oklahoma Water Resources Research Institute research program addressed the issues of surface and ground water quality and management of water resources. It emphasized the determination of water quality and remediation of water resources determined to be contaminated. Research projects funded by the OWRRI to address these issues included: an investigation of the rate and quality of groundwater recharge to shallow aquifers; the development of a field application to determine microbial populations in soil; the improvement of parameter estimation for multipurpose hydrologic models; an investigation of the effect of inorganic cations and water-soluble polymers on the mobility and persistence of sulfonylurea herbicides; an analysis of the impacts on local economies of large, water-based natural resource projects using a Social Accounting Matrix (SAM); an investigation of methods for assessing nutrient limitation in streams; an evaluation of the use of microorganisms with elevated enzyme activity as a potential in-situ aquifer restoration technique.

  16. Estimating 1980 ground-water pumpage for irrigation on the High Plains in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.

    1983-01-01

    Current ground-water use is required for the High Plains Regional Aquifer-System Analysis. In response to this need, a sampling approach was developed to estimate water pumped for irrigation on the High Plains during 1980. Pumpage was computed by combining application estimates with mapped irrigated-acreage information. Irrigation application (inches of water applied) was measured at 480 sites in 15 counties in the High Plains during the 1980 growing season. The relationship between calculated Blaney-Criddle irrigation demand and measured application was used to estimate application for unsampled areas of the High Plains. Application estimates multiplied by irrigated-acreate estimates, compiled from Landsat-satellite imagery, yielded the volume of ground water pumped for irrigation. The estimate of ground water pumped for irrigation in the High Plains during 1980 and 18,902,000 acre-feet for 13 ,715,000 irrigated areas. The sampled application data were evaluated for significant trends. The application was greater for crops requiring more water such as corn and hay and less for crops such as sorghum, grain, and cotton. The data showed greater application for flood-irrigated systems than for sprinkler-irrigation systems. Areas of the High Plains with thin saturated thickness tended to have a smaller average discharge per well, fewer irrigated acres per well, and a predominance of crops requiring less water crops. (USGS).

  17. Ground water contamination

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Ground water contamination and basic concepts of water law; Federal law governing water contamination and remediation; Ground water flow and contaminant migration; Ground water cleanup under CERCLA; Technical methods of remediation and prevention of contamination; Liability for ground water contamination; State constraints on contamination of ground water; Water quantity versus water quality; Prevention of use of contaminated ground water as an alternative to remediation; Economic considerations in liability for ground water contamination; and Contamination, extraction, and injection issues.

  18. Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report on the research activities at the USDA-ARS, Plant Science Research Laboratory in Stillwater, Oklahoma, were compiled for WERA-066 Meeting that was held in Ft. Collins, Colorado, February 13, 2008. Research presentations included barley breeding research, sorghum breeding research, wheat br...

  19. Private Water Well Education for Adult Residents of Oklahoma

    ERIC Educational Resources Information Center

    Robbins, Sharon M.

    2012-01-01

    The scope of this study involved an investigation into the education of the adult residents of Oklahoma regarding private water wells. The groundwater supply for the private resident is directly connected to a shared water source. This source of water can become contaminated by simple lack of education and proper maintenance of the well. Without…

  20. 78 FR 73858 - Public Water System Supervision Program Revision for the State of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... AGENCY Public Water System Supervision Program Revision for the State of Oklahoma AGENCY: United States... that the State of Oklahoma is revising its approved Public Water System Supervision Program. Oklahoma has adopted three EPA drinking water rules, namely the: (1) Long Term 2 Enhanced Surface...

  1. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  2. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  3. Altitude and configuration of the 1980 water table in the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The altitude and configuration of the water table are shown for the eastern area, consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties (sheet 1), and for the Panhandle area, consisting of Cimarron, Texas, and Beaver Counties (sheet 2). Water levels were measured in January, February, and March 1980 by the Oklahoma Water Resources Board.

  4. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  5. Ground water: a review.

    USGS Publications Warehouse

    Bredehoeft, J.D.

    1983-01-01

    There is growing documentation that a significant portion of the Nation's fresh ground water in the densely populated areas of the USA is contaminated. Because of the slow rates of ground-water movement, ground water once contaminated will remain so for decades, often longer. Cleanup of contaminated ground water is almost always expensive and often technically unfeasible; the expense is often prohibitive. -from Author

  6. Historical water-quality data for the High Plains Regional Ground-Water Study Area in Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1930-98

    USGS Publications Warehouse

    Litke, David W.

    2001-01-01

    The High Plains aquifer underlies 174,000 square miles in parts of eight States and includes eight primary hydrogeologic units, including the well-known Ogallala Formation. The High Plains aquifer is an important resource, providing water for 27 percent of the Nation?s irrigated agricultural lands in an otherwise dry landscape. Since the 1980?s there has been concern over the sustainability of the aquifer due to water-level declines caused by substantial pumping. Water quality of the aquifer is a more recent concern. As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, historical water-quality data have been gathered for the High Plains Regional Ground-Water Study Area into a retrospective data base, which can be used to evaluate the occurrence and distribution of water-quality constituents of concern.Data from the retrospective data base verify that nitrate, pesticides, and dissolved solids (salinity) are important water-quality concerns in the High Plains study area. Sixteen percent of all measured nitrate concentrations were larger than the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter. In about 70 percent of the counties within the High Plains study area, nitrate concentrations for 1980-98 were significantly larger than for 1930-69. While nitrate concentrations are largest where depth to water is shallow, concentrations also have increased in the Ogallala Formation where depth to water is large. Pesticide data primarily are available only in the northern half of the study area. About 50 pesticides were detected in the High Plains study area, but only four pesticides (atrazine, alachlor, cyanazine, and simazine) had concentrations exceeding a drinking-water standard. The occasional detection of pesticides in deeper parts of the Ogallala Formation indicates that contamination pathways exist. Dissolved solids, which are a direct measure of salinity, had 29 percent of measured concentrations in

  7. Ground Water in Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Oki, Delwyn S.

    2000-01-01

    Ground water is one of Hawaii's most important natural resources. It is used for drinking water, irrigation, and domestic, commercial, and industrial needs. Ground water provides about 99 percent of Hawaii's domestic water and about 50 percent of all freshwater used in the State. Total ground water pumped in Hawaii was about 500 million gallons per day during 1995, which is less than 3 percent of the average total rainfall (about 21 billion gallons per day) in Hawaii. From this perspective, the ground-water resource appears ample; however, much of the rainfall runs off to the ocean in streams or returns to the atmosphere by evapotranspiration. Furthermore, ground-water resources can be limited because of water-quality, environmental, or economic concerns. Water beneath the ground surface occurs in two principal zones: the unsaturated zone and the saturated zone. In the unsaturated zone, the pore spaces in rocks contain both air and water, whereas in the saturated zone, the pore spaces are filled with water. The upper surface of the saturated zone is referred to as the water table. Water below the water table is referred to as ground water. Ground-water salinity can range from freshwater to that of seawater. Freshwater is commonly considered to be water with a chloride concentration less than 250 mg/L, and this concentration represents about 1.3 percent of the chloride concentration of seawater (19,500 mg/L). Brackish water has a chloride concentration between that of freshwater (250 mg/L) and saltwater (19,500 mg/L).

  8. Chemical analyses of surface waters in Oklahoma, September - December, 1944

    USGS Publications Warehouse

    U.S. Geological Survey

    1945-01-01

    Red River at Denison Dam, Texas Sport samples were collected at the remainder of the stations. The analyses of the spot samples were made largely in a laboratory provided by the Oklahoma A. & M. College, under the supervision of Dr. O.M. Smith, Head, Department of Chemistry; Dr. S.R. Wood, Associate Professor of Chemistry; and W.W. Hastings, U.S. Geological Survey. The daily samples were analyzed in the water resources laboratory of the Geological Survey at Austin, Texas. These data have been summarized in a report to the Oklahoma Planning and Resources Board prepared by the U.S. Geological Survey, March 1, 1945. The streams of Oklahoma are classified into two major drainage basins: the Arkansas River and the Red River and their tributaries. The attached analyses are arranged in geographical order for their respective drainage basins, with records listed in downstream order for stations on the main stem first, followed by the analyses for the tributaries. When available, the mean daily discharge is given for the analyses.

  9. TITLE MICROBIOLOGICAL IMPACT OF CONCENTRATED ANIMAL FEED OPERATIONS (CAFOS) ON SURFACE AND GROUND WATER QUALITY

    EPA Science Inventory

    Abstract: This research will focus on the microbiological impact of concentrated animal feed operations (CAFOs) on surface and ground water quality. The specific sites of study will be Turkey Creek Watershed and Canton River in Northwestern Oklahoma. The microbiological source...

  10. Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010-2059

    USGS Publications Warehouse

    Mashburn, Shana L.; Ryter, Derek; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

    2014-01-01

    The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

  11. Monitoring eastern Oklahoma lake water quality using Landsat

    NASA Astrophysics Data System (ADS)

    Barrett, Clay

    The monitoring of public waters for recreational, industrial, agricultural, and drinking purposes is a difficult task assigned to many state water agencies. The Oklahoma Water Resources Board (OWRB) is only physically monitoring a quarter of the lakes it is charged with monitoring in any given year. The minimal sample scheme adopted by the OWRB is utilized to determine long-term trends and basic impairment but is insufficient to monitor the water quality shifts that occur following influx from rains or to detect algal blooms, which may be highly localized and temporally brief. Recent work in remote sensing calibrates reflectance coefficients between extant water quality data and Landsat imagery reflectance to estimate water quality parameters on a regional basis. Remotely-sensed water quality monitoring benefits include reduced cost, more frequent sampling, inclusion of all lakes visible each satellite pass, and better spatial resolution results. The study area for this research is the Ozark foothills region in eastern Oklahoma including the many lakes impacted by phosphorus flowing in from the Arkansas border region. The result of this research was a moderate r2 regression value for turbidity during winter (0.52) and summer (0.65), which indicates that there is a seasonal bias to turbidity estimation using this methodology and the potential to further develop an estimation equation for this water quality parameter. Refinements that improve this methodology could provide state-wide estimations of turbidity allowing more frequent observation of water quality and allow better response times by the OWRB to developing water impairments.

  12. 76 FR 25322 - Oklahoma Rose Water LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Oklahoma Rose Water LLC; Notice of Preliminary Permit Application... 30, 2010, Oklahoma Rose Water LLC filed an application, pursuant to section 4(f) of the Federal...

  13. Hydrogeology and water quality of the North Canadian River alluvium, Concho Reserve, Canadian County, Oklahoma

    USGS Publications Warehouse

    Becker, C.J.

    1998-01-01

    A growing user population within the Concho Reserve in Canadian County, Oklahoma, has increased the need for drinking water. The North Canadian River alluvium is a reliable source of ground water for agriculture, industry, and cities in Canadian County and is the only ground-water source capable of meeting large demands. This study was undertaken to collect and analyze data to describe the hydrogeology and ground-water quality of the North Canadian River alluvium within the Concho Reserve. The alluvium forms a band about 2 miles long and 0.5 mile wide along the southern edge of the Concho Reserve. Thickness of the alluvium ranges from 19 to 75 feet thick and averages about 45 feet in the study area. Well cuttings and natural gamma-ray logs indicate the alluvium consists of interfingering lenses of clay, silt, and sand. The increase of coarse-grained sand and the decrease of clay and silt with depth suggests that the water-bearing properties of the aquifer within the study area improve with depth. A clay layer in the upper part of the aquifer may be partially responsible for surface water ponding in low areas after above normal precipitation and may delay the infiltration of potentially contaminated water from land surface. Specific conductance measurements indicate the ground-water quality improves in a northern direction towards the terrace. Water-quality properties, bacteria counts, major ion and nutrient concentrations, trace-element and radionuclide concentrations, and organic compound concentrations were measured in one ground-water sample at the southern edge of the Concho Reserve and comply with the primary drinking-water standards. Measured concentrations of iron, manganese, sulfate, and total dissolved solids exceed the secondary maximum contaminant levels set for drinking water. The ground water is a calcium sulfate bicarbonate type and is considered very hard, with a hardness of 570 milligrams per liter as calcium carbonate.

  14. Ground water. [Water pollution control

    SciTech Connect

    Costle, D.M.

    1980-09-01

    There is growing evidence that the Nation's ground water is contaminated by a variety of sources. These include unprotected industrial, municipal, and radioactive disposal sites, petroleum exploration and mining activities, agricultural operations such as insecticide spraying, high de-icing salts and others. As of March 1980, more than 8000 chemical tests have been performed on well water, with chlorinated organic solvents found most frequently. Because 100 million Americans may be threatened by unfit drinking water, EPA has developed a new ground water strategy. It will enlist the help of State and local governments who already have programs under way and it will involve broad public debate and participation.

  15. Groundwater quality and water-well characteristics in the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 1948--2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    In 2012, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, compiled historical groundwater-quality data collected from 1948 to 2011 and water-well completion information in parts of Lincoln, Oklahoma, and Pottawatomie Counties in central Oklahoma to support the development of a comprehensive water-management plan for the Tribe’s jurisdictional area. In this study, water-quality data from 155 water wells, collected from 1948 to 2011, were retrieved from the U.S. Geological Survey National Water Information System database; these data include measurements of pH, specific conductance, and hardness and concentrations of the major ions, trace elements, and radionuclides that have Maximum Contaminant Levels or Secondary Maximum Contaminant Levels in public drinking-water supplies. Information about well characteristics includes ranges of well yield and well depth of private water wells in the study area and was compiled from the Oklahoma Water Resources Board Multi-Purpose Well Completion Report database. This report also shows depth to water from land surface by using shaded 30-foot contours that were created by using a geographic information system and spatial layers of a 2009 potentiometric surface (groundwater elevation) and land-surface elevation. Wells in the study area produce water from the North Canadian River alluvial and terrace aquifers, the underlying Garber Sandstone and Wellington Formation that compose the Garber–Wellington aquifer, and the Chase, Council Grove, and Admire Groups. Water quality varies substantially between the alluvial and terrace aquifers and bedrock aquifers in the study area. Water from the alluvial aquifer has relatively high concentrations of dissolved solids and generally is used for livestock only, whereas water from the terrace aquifer has low concentrations of dissolved solids and is used extensively by households in the study area. Water from the bedrock aquifer also is used extensively by

  16. A study of the Oklahoma City urban heat island using ground measurements and remote sensing

    SciTech Connect

    Brown, M. J.; Ivey, A.; McPherson, T. N.; Boswell, D.; Pardyjak, E. R.

    2004-01-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Oklahoma City and the rural outskirts. The measurements were taken as part of the Joint URBAN 2003 Tracer Field Experiment conducted in Oklahoma City from June 29, 2003 to July 30, 2003 (Allwine et al., 2004). The instrumented van was driven over four primary routes that included legs from the downtown core to four different 'rural' areas. Each route went through residential areas and most often went by a line of permanently fixed temperature probes (Allwine et al., 2004) for cross-checking purposes. Each route took from 20 to 40 minutes to complete. Based on seven nights of data, initial analyses indicate that there was a temperature difference of 0.5-6.5 C between the urban core and nearby 'rural' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the Joint URBAN 2003 Field Experiment, to assess the importance of the urban heat island phenomenon in Oklahoma City, and to test new urban canopy parameterizations that have been developed for regional scale meteorological codes (e.g., Chin et al., 2000; Holt and Shi, 2004). In addition to the ground measurements, skin temperature measurements were also analyzed from remotely sensed images taken from the Earth Observing System's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A surface kinetic temperature thermal infrared image captured by the ASTER of the Oklahoma City area on July 21, 2001 was analyzed within ESRI's ArcGIS 8.3 to correlate variations in temperature with land use type. Analysis of this imagery suggests distinct variations in temperature across different land use categories. Through the use of remotely sensed imagery we hope to

  17. Report on water supply for the proposed Southwestern Reformatory at El Reno, Oklahoma

    USGS Publications Warehouse

    Turner, S.F.

    1931-01-01

    The investigation on which this report is based was made in response to a request from the Bureau of Prisons, United States Department of Justice, for advice in regard to the development of a water supply for the proposed Southwestern Reformatory on the Fort Reno Military Reservation, 2 miles west of El Reno, Oklahoma. The tract set aside for the reformatory includes sec. 12 and the eastern half of sec. 11, T. 12 N, R. 8 W., and is about 1,000 acres in area. The proposed building site is in the north-central part of sec. 12, on a flat-topped hill just north of well No. 69. (See Plate 1.) It is understood that a maximum of 1,200 inmates is contemplated for this reformatory and that a water supply of about 120,000 gallons a day, or 85 gallons a minute, will be required in the summer. However, the potential capacity of the wells should be somewhat greater than 85 gallons a minute to allow for decline in yield. The author, who was assigned to this work by the United States Geological Survey, arrived in Oklahoma City April 21, 1931, and spent one week in field work in the area. After a conference with Dr. C.N. Gould, State Geologist of Oklahoma, it was decided that the possible sources of ground water to be investigated were the 'Red Beds' underlying the whole area, the Tertiary sands capping the hills north of the North Canadian River, and the river alluvium in the North Canadian River Valley. The area in which field work was done is shown on Plate 1 and includes approximately 105 square miles, lying chiefly north and west of El Reno, the county seat of Canadian County. (available as photostat copy only)

  18. An Assessment of Water Resource Education in the K-16 Curricula: Conclusions and Recommendations. The Proceedings of the Oklahoma Water Education Planning Conference, Moore, Oklahoma, October 21, 1977.

    ERIC Educational Resources Information Center

    Oklahoma State Univ., Stillwater.

    Reported are conclusions and recommendations from the Water Education Planning Conference held in October, 1977 in Oklahoma. The 51 participants, science educators, scientists, representatives from state and federal water agencies, and legislators, were given tasks and questionnaires concerning the national guidelines for water resource education…

  19. Ground Water Technical Support Center (GWTSC) Annual Report FY 2012: October 2011 – September 2012

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  20. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  1. Oil extraction linked to Oklahoma earthquakes

    NASA Astrophysics Data System (ADS)

    Woo, Marcus

    2014-08-01

    Pumping waste water into the ground - a by-product of new oil and gas extraction processes - was the likely cause of a recent surge of earthquakes in the US state of Oklahoma, according to researchers in the US.

  2. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances. Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc). Radionuclide activities and stable isotope d values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample. Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance

  3. Geological report on water conditions at Platt National Park, Oklahoma

    USGS Publications Warehouse

    Gould, Charles Newton; Schoff, Stuart Leeson

    1939-01-01

    Platt National Park, located in southern Oklahoma, containing 842 acres, was established by Acts of Congress in 1902, 1904, and 1906. The reason for the setting aside of this area was the presence in the area of some 30 'mineral' springs, the water from which contains sulphur, bromide, salt, and other minerals, which are believed to possess medicinal qualities. For many generations the sulphur springs of the Chickasaw Nation had been known for their reputed healing qualities. It had long been the custom for families to come from considerable distances on horseback and in wagons and camp near the springs, in order to drink the water. In course of time a primitive town, known as Sulphur Springs, grew up near a group of springs known since as Pavilion Springs at the mouth of Sulphur Creek, now known as Travertine Creek. This town was still in existence at the time of my first visit to the locality in July, 1901. At this time, in company with Joseph A. Taff, of the United States Geological Survey, I spent a week riding over the country making a preliminary survey looking toward the setting aside of the area for a National Park. After the establishment of the National Park, the old town of Sulphur Springs was abandoned, and when the present boundaries of the park had been established the present town of Sulphur, now county seat of Murray County, grew up. In July 1906, on request of Superintendent Joseph F. Swords, I visited the park and made an examination of the various springs and submitted a report, dated August 15, 1906, to Secretary of the Interior E.A. Hitchcock. Copies of this report are on file in the Regional Office and at Platt National Park. In this report I set forth the approximate amount of flow of the various springs, the character of the water in each, and the conditions of the springs as of that date. I also made certain recommendations regarding proposed improvements of each spring. In this report I say: 'In the town of Sulphur, four wells have been

  4. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  5. Ground water and energy

    SciTech Connect

    Not Available

    1980-05-01

    In view of complex environmental/energy decisions, the Environmental Impacts Division of the Office of Technology Impacts develops analytical methods for conducting policy analyses supporting decision making. The methods development process often begins with a workshop of leading experts and specialists in the relevant disciplines and issue areas; workshop findings are subsequently utilized by OTI to form a more solid foundation for viable policies. The National Workshop on Ground Water and Energy Production was envisioned as a tool through which OTI could obtain insights, information, and methods (on environmental, economical, physical, political, legal, and social issues) to use in its analyses, models, and assessments. To accomplish this, the Workshop comprised both plenary sessions and individual working groups. The former provided opportunities for all participants to explore issues from a broad perspective, whereas the latter enabled participants to focus on the three following areas: ground water supply; conflicts and barriers to its use; and alternatives or solutions to the various issues. This report summarizes information and insights gained by the Office of Technology Impacts during the course of the Workshop. The Key Findings section summarizes the most important facts discovered during the Workshop. The three general topics that follow (Supply, Conflicts and Barriers, and Alternatives) are those described in the Core Issues statements. The statements are reflective of the recommendations and analyses prepared by the several working groups.

  6. Overview of water resources in and near Wichita and Affiliated Tribes treaty lands in western Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.; Tortorelli, R.L.; Becker, M.F.; Trombley, T.J.

    2003-01-01

    This report is an overview of water resources in and near the Wichita and Affiliated Tribes treaty lands in western Oklahoma. The tribal treaty lands are about 1,140 square miles and are bordered by the Canadian River on the north, the Washita River on the south, 98? west longitude on the east, and 98? 40' west longitude on the west. Seventy percent of the study area lies within the Washita River drainage basin and 30 percent of the area lies within the Canadian River drainage basin. March through June are months of greatest average streamflow, with 49 to 57 percent of the annual streamflow occurring in these four months. November through February, July, and August have the least average streamflow with only 26 to 36 percent of the annual streamflow occurring in these six months. Two streamflow-gaging stations, Canadian River at Bridgeport and Cobb Creek near Fort Cobb, indicated peak streamflows generally decrease with regulation. Two other streamflow-gaging stations, Washita River at Carnegie and Washita River at Anadarko, indicated a decrease in peak streamflows after regulation at less than the 100-year recurrence and an increase in peak streamflows greater than the 100-year recurrence. Canadian River at Bridgeport and Washita River at Carnegie had estimated annual low flows that generally increased with regulation. Cobb Creek near Fort Cobb had a decrease of estimated annual low flows after regulation. There are greater than 900 ground-water wells in the tribal treaty lands. Eighty percent of the wells are in Caddo County.The major aquifers in the study area are the Rush Springs Aquifer and portions of the Canadian River and Washita River valley alluvial aquifers. The Rush Springs Aquifer is used extensively for irrigation as well as industrial and municipal purposes, especially near population centers.The Canadian River and Washita River valley alluvial aquifers are not used extensively in the study area. Well yields from the Rush Springs Aquifer ranged from

  7. Estimate of self-supplied domestic water use in Oklahoma during 1980

    USGS Publications Warehouse

    Stoner, J.D.

    1984-01-01

    Reported or measured water-use data for the domestic self-supplied user were not available for Oklahoma; therefore estimates of water use within this classification were derived. The total self-supplied population in Oklahoma during 1980 was estimated to be 343,615, which was 11.4 percent of the total 1980 State population. The rate of water use by this group was estimated to be 56 gallons per capita per day. The estimated annual domestic self-supplied water use by county ranged from 10 to 1,180 acre-feet, with a total statewide use of 21,610 acre-feet.

  8. Ground water and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  9. Distribution and Availability of State and Areawide Water Quality Reports in Oklahoma Libraries.

    ERIC Educational Resources Information Center

    McClure, Charles R.; Million, Anne

    This report examines the distribution and availability of water quality reports in the state of Oklahoma. Based on legislation from the Clean Water Act and regulations from the Environmental Protection Agency's "Public Participation Handbook for Water Quality Management," depository libraries must be established to provide citizen access to…

  10. Preventing ground water contamination

    SciTech Connect

    Thompson, R.

    1985-07-12

    A recent Office of Technology Assessment report to Congress indicates that the associated health risks from ground water contamination are likely to increase because federal and state laws provide inadequate protection. Road de-icing salts, pesticide runoff, septic tanks, and seepage from livestock manure and fertilizers are all major causes that are difficult to control. A primary source that can be corrected is improper or unsafe disposal of hazardous wastes that are dumped into landfills or surface ponds or injected into deep wells. Congress has tried to deal with the problem by strengthening existing and introducing new legislation. Because getting rid of hazardous waste is increasingly expensive and difficult, companies are beginning to look for ways to prevent pollution at the source by using new technologies that are economically sound. 17 references, 4 figures.

  11. Estimated Freshwater Withdrawals in Oklahoma, 1990

    USGS Publications Warehouse

    Lurry, Dee L.; Tortorelli, Robert L.

    1996-01-01

    This report presents 1990 freshwater withdrawal estimates for Oklahoma by source and category. Withdrawal source is either ground water or surface water. Withdrawal categories include: irrigation, water supply, livestock, thermoelectric-power generation, domestic and commercial, and industrial and mining. Withdrawal data are aggregated by county, major aquifer, and principal river basin. Only the four major categories of irrigation, water supply, livestock, and thermoelectric-power generation are illustrated in this report, although data for all categories are tabulated. The U.S. Geological Survey (USGS) established the National Water-Use Information Program in 1977 to collect uniform, current, and reliable information on water use. The Oklahoma District of the USGS and the Oklahoma Water Resources Board participate in a cooperative program to collect and publish water-use information for Oklahoma. Data contained in this report were made available through the cooperative program.

  12. Altitude and configuration of the predevelopment water table in the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The altitude and configuration of the water table are shown for the eastern area (sheet 1) and for the Panhandle area (sheet 2). In the eastern area, consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, water levels measured from the 1950's to the 1970's represent predevelopment conditions and were obtained from published and unpublished data in the files of the U.S. Geological Survey. In the Panhandle, predevelopment contours were based on measurements made from 1937 to 1940. Some water levels in Beaver County were measured as late as 1959 in areas where significant development had not occurred previously.

  13. Soil water signature of the 2005-2006 drought under tallgrass prairie at Fort Reno, Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined changes in the seasonal pattern of soil water content under a tall grass prairie in central Oklahoma as a result of the 2005-2006 drought. The seasonal pattern of soil water content in the top 50 cm of the soil profile was minimally impacted by the drought, as this portion of the...

  14. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  15. HANDBOOK: GROUND WATER VOLUME I: GROUND WATER AND CONTAMINATION

    EPA Science Inventory

    This handbook is an extensively revised version of the Ground Water Handbook, originally published in 1987 as EPA/625/6-87/016. It has been published in two volumes: Volume I: Ground Water and Contamination, EPA/625/6-90/016a, and Volume II: Methodology, EPA/625/6-90/016b. Volume...

  16. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  17. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  18. Digital data sets that describe aquifer characteristics of the Central Oklahoma Aquifer in central Oklahoma

    USGS Publications Warehouse

    Runkle, D.L.; Christenson, S.C.; Rea, Alan

    1997-01-01

    ARC/INFO export files The data sets in this report include digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Central Oklahoma aquifer in central Oklahoma. This area encompasses all or part of Cleveland, Lincoln, Logan, Oklahoma, Payne, and Pottawatomie Counties. The Central Oklahoma aquifer includes the alluvial and terrace deposits along major streams, the Garber Sandstone and Wellington Formations, and the Chase, Council Grove, and Admire Groups. The Quaternary-age alluvial and terrace deposits consist of unconsolidated clay, silt, sand, and gravel. The Permian-age Garber Sandstone and Wellington Formations consist of sandstone with interbedded siltstone and mudstone. The Permian-age Chase, Council Grove, and Admire Groups consist of sandstone, shale, and thin limestone. The Central Oklahoma aquifer underlies about 3,000 square miles of central Oklahoma where the aquifer is used extensively for municipal, industrial, commercial, and domestic water supplies. Most of the usable ground water within the aquifer is from the Garber Sandstone and Wellington Formations. Substantial quantities of usable ground water also are present in the Chase, Council Grove, and Admire Groups, and in alluvial and terrace deposits associated with the major streams. The aquifer boundaries, hydraulic conductivity and recharge values, and ground-water level elevation contours are from previously published reports.

  19. EFFECTS OF CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFOS) ON GROUND WATER QUALITY (GWERD TASK 5823)

    EPA Science Inventory

    This research focuses on the potential for ground water contamination from swine CAFOs in Oklahoma. Three CAFOs have been selected for study, including a new farrowing sow operation, an existing nursery operation, and a closed combined facility. For the sow and combined facilitie...

  20. MICROBIOLOGICAL IMPACT OF CONCENTRATED ANIMAL FEED OPERATIONS (CAFOS) ON SURFACE AND GROUND WATER QUALITY

    EPA Science Inventory

    This investigation seeks to determine the microbiological impact of agricultural activities and confined animal feed operations (CAFOs) on surface and ground water in the Northwest Central Oklahoma. The first phase of the investigation will be carried on in collaboration with U...

  1. Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas

    USGS Publications Warehouse

    Playton, Stephen J.; Davis, Robert E.; McClaflin, Roger G.

    1980-01-01

    Onsite measurements of pH, specific conductance, and water temperature show that water in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.

  2. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  3. Results of chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.

    2005-01-01

    Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.

  4. Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States

    SciTech Connect

    Musgrove, M.; Banner, J.L. )

    1993-03-26

    Ground waters in three adjacent regional flow systems in the midcontinent exhibit extreme chemical and isotopic variations that delineate large-scale fluid flow and mixing processes and two distinct mechanisms for the generation of saline fluids. Systematic spatial variations of major ion concentrations, H, O, and Sr isotopic compositions, and ground-water migration pathways indicate that each flow system contains water of markedly different origin. Mixing of the three separate ground waters exerts a fundamental control on ground-water composition. The three ground waters are: (i) dilute meteoric water recharged in southern Missouri; (ii) saline Na-Ca-Cl water in southeastern Kansas of far-traveled meteoric origin that acquired its salinity by halite dissolution; and (iii) Na-Ca-Cl brines in north-central Oklahoma that may have originated as Paleozoic seawater. 45 refs., 4 figs., 1 tab.

  5. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  6. GROUND WATER SAMPLING FOR VOCS

    EPA Science Inventory

    Sampling protocol should be dictated by the sampling objective(s). It is important to obtain representative ground water samples, regardless of the sampling objective(s). Low-flow (minimum draw-down) purging and sampling techniques are best in most instances, particularly for VOC...

  7. Integrating Remotely Sensed and Hydrologically Modeled ET for Better Water Resources Management in Oklahoma

    NASA Astrophysics Data System (ADS)

    Khan, S.; Hong, Y.; Vieux, B.; Crawford, K.

    2008-12-01

    Evapotranspiration (ET) is a major component of the hydrologic cycle and links diverse disciplines such as those involved in water resource planning with agriculture, ecology and climate science. Oklahoma typically hosts irrigated agriculture, rainfed wetlands, and riparian vegetation. As demand for water increases, water managers need to know how much water is actually consumed. For the past decades, the primary method for estimating ET relies on site-based weather station measurements, which are inadequate to monitor the spatial variability of ET over large regions and focus on potential rather than actual ET. With the advent of new satellite technology and comprehensive water balance and runoff models, opportunities exist to develop algorithms and apply remote sensing information to estimate actual ET. The main objective of this presentation is to evaluate the ability and usefulness of the remote sensing ET estimation algorithms in Oklahoma that does not require placement of in-situ monitoring/metering devices. First, a surface-energy-balance ET estimation algorithm is implemented with modification for two counties with differing climate, soil, and land surface types. Accuracy of the estimated ET is evaluated at the site scale using available Mesonet stations and an Ameriflux tower. Second, modeled actual ET from a distributed hydrologic model is compared with the remotely sensed actual ET at catchment scales on the order of several hundreds of square kilometers. Results demonstrate the feasibility of implementing real-time monitoring of actual ET estimation system for more accurate water use monitoring and, therefore, provide for better water resources management in Oklahoma.

  8. Soil Water Trends During the 2005 - 2006 Drought in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water depletion is an early consequence of a meteorological drought, with the latter defined as a precipitation deficit lasting a few months to several years. Soil water in the upper soil profile (approximately first meter) is limited and highly variable because of its rapid response to precipi...

  9. Vertical gradients in water chemistry in the central High Plains aquifer, southwestern Kansas and Oklahoma panhandle, 1999

    USGS Publications Warehouse

    McMahon, Peter B.

    2001-01-01

    The central High Plains aquifer is the primary source of water for domestic, industrial, and irrigation uses in parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas. Water-level declines of more than 100 feet in some areas of the aquifer have increased the demand for water deeper in the aquifer. The maximum saturated thickness of the aquifer ranged from 500 to 600 feet in 1999. As the demand for deeper water increases, it becomes increasingly important for resource managers to understand how the quality of water in the aquifer changes with depth. In 1998?99, 18 monitoring wells at nine sites in southwestern Kansas and the Oklahoma Panhandle were completed at various depths in the central High Plains aquifer, and one monitoring well was completed in sediments of Permian age underlying the aquifer. Water samples were collected once from each well in 1999 to measure vertical gradients in water chemistry in the aquifer. Tritium concentrations measured in ground water indicate that water samples collected in the upper 30 feet of the aquifer were generally recharged within the last 50 years, whereas all of the water samples collected at depths more than 30 feet below the water table were recharged more than 50 years ago. Dissolved oxygen was present throughout the aquifer, with concentrations ranging from 1.7 to 8.4 mg/L. Water in the central High Plains aquifer was predominantly a calcium-bicarbonate type that exhibited little variability in concentrations of dissolved solids with depth (290 to 642 mg/L). Exceptions occurred in some areas where there had been upward movement of mineralized water from underlying sediments of Permian age and areas where there had been downward movement of mineralized Arkansas River water to the aquifer. Calcium-sulfate and sodium-chloride waters dominated and concentrations of dissolved solids were elevated (862 to 4,030 mg/L) near the base of the aquifer in the areas of upward leakage. Dissolution of gypsum or anhydrite and halite

  10. Comparison of Ground-Based 3-Dimensional Lightning Mapping Observation with Satellite-Based LIS Observations in Oklahoma

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.

    1999-01-01

    3-dimensional lightning mapping observations were obtained in central Oklahoma during June 1998, using New Mexico Tech's Lightning Mapping Array (LMA). The results have been compared with observations of the discharges from space obtained by NASA's Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Excellent spatial and temporal correlations were obtained between the two sets of observations. All discharges seen by LIS were mapped by the LMA. Most of the detected optical events were associated with lightning channels that extended into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended to be detected by LIS at the time of late-stage return strokes. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud discharges and appeared to be produced by energetic K-changes that typically occur at these times.

  11. Chemical analyses of water samples from the Picher mining area, northeast Oklahoma and southeast Kansas

    USGS Publications Warehouse

    Parkhurst, David L.

    1987-01-01

    Chemical analyses are presented for 169 water samples from Tar Creek drainage and the Picher lead-zinc mining area of northeast Oklahoma and southeast Kansas. Water samples were taken from November 1983 through February 1986 from the abandoned mines, from points of mine-water discharge, and from surface-water locations upstream and downstream from mine discharge area. The pH, temperature, alkalinity, dissolved oxygen, and specific conductance were measured in the field. Laboratory analyses routinely included the major ions plus aluminum, cadmium, copper, iron, lead, manganese, nickel, and zinc. Non-routine analyses of dissolved gases and tritium are presented. Stable carbon-isotope ratios for 11 mine-water samples and three carbonate-rock samples are reported. Miscellaneous stream-discharge measurements made at the time of sampling or taken from gaging-station records are included in the report.

  12. EVALUATION OF REACTIVE BARRIER TECHNOLOGY FOR REMEDIATION OF NUTRIENT-CONTAMINATED GROUND WATER FROM A SWINE CAFO

    EPA Science Inventory

    This work will be conducted at the now-closed Cimarron Pork site in north-central Oklahoma. This facility had originally been a swine CAFO, and led to extensive on-site ground water contamination by both nitrate and ammonium through approximately seven years of operation. The sel...

  13. Hydrologic Drought of Water Year 2006 Compared with Four Major Drought Periods of the 20th Century in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    Water Year 2006 (October 1, 2005, to September 30, 2006) was a year of extreme hydrologic drought and the driest year in the recent 2002-2006 drought in Oklahoma. The severity of this recent drought can be evaluated by comparing it with four previous major hydrologic droughts, water years 1929-41, 1952-56, 1961-72, and 1976-81. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, completed an investigation to summarize the Water Year 2006 hydrologic drought and compare it to the four previous major hydrologic droughts in the 20th century. The period of water years 1925-2006 was selected as the period of record because before 1925 few continuous record streamflow-gaging sites existed and gaps existed where no streamflow-gaging sites were operated. Statewide annual precipitation in Water Year 2006 was second driest and statewide annual runoff in Water Year 2006 was sixth driest in the 82 years of record. Annual area-averaged precipitation totals by the nine National Weather Service Climate Divisions from Water Year 2006 are compared to those during four previous major hydrologic droughts to show how rainfall deficits in Oklahoma varied by region. Only two of the nine climate divisions, Climate Division 1 Panhandle and Climate Division 4 West Central, had minor rainfall deficits, while the rest of the climate divisions had severe rainfall deficits in Water Year 2006 ranging from only 65 to 73 percent of normal annual precipitation. Regional streamflow patterns for Water Year 2006 indicate that Oklahoma was part of the regionwide below-normal streamflow conditions for Arkansas-White-Red River Basin, the sixth driest since 1930. The percentage of long-term stations in Oklahoma (with at least 30 years of record) having below-normal streamflow reached 80 to 85 percent for some days in August and November 2006. Twelve long-term streamflow-gaging sites with periods of record ranging from 62 to 78 years were selected to show how streamflow

  14. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  15. High Plains Regional Ground-water Study web site

    USGS Publications Warehouse

    Qi, Sharon L.

    2000-01-01

    Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program- High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.

  16. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included. (Woodard-USGS)

  17. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  18. Impact of the 2005-2006 drought on soil water content under a tall grass prairie at Fort Reno, Oklahoma.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined changes in the seasonal pattern of soil water content under a tall grass prairie in central Oklahoma as a result of the 2005-2006 drought. The seasonal pattern of soil water content in the top 50 cm of the soil profile was minimally impacted by the drought, as this portion of the...

  19. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  20. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  1. Oklahoma Tribes: A History

    ERIC Educational Resources Information Center

    Gover, Kevin

    1977-01-01

    Oklahoma is a microcosm of American Indian country. Water rights, tribal government impotence, jurisdiction, tribal membership, treaty rights, taxation, sovereignty, racism, and poor housing, education, and health are all vital issues facing the Indian tribes of Oklahoma. In order to understand the complexity of these issues, a review of the…

  2. Hydrologic drought of water year 2011 compared to four major drought periods of the 20th century in Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Andrews, William J.

    2013-01-01

    Water year 2011 (October 1, 2010, through September 30, 2011) was a year of hydrologic drought (based on streamflow) in Oklahoma and the second-driest year to date (based on precipitation) since 1925. Drought conditions worsened substantially in the summer, with the highest monthly average temperature record for all States being broken by Oklahoma in July (89.1 degrees Fahrenheit), June being the second hottest and August being the hottest on record for those months for the State since 1895. Drought conditions continued into the fall, with all of the State continuing to be in severe to exceptional drought through the end of September. In addition to effects on streamflow and reservoirs, the 2011 drought increased damage from wildfires, led to declarations of states of emergency, water-use restrictions, and outdoor burning bans; caused at least $2 billion of losses in the agricultural sector and higher prices for food and other agricultural products; caused losses of tourism and wildlife; reduced hydropower generation; and lowered groundwater levels in State aquifers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to compare the severity of the 2011 drought with four previous major hydrologic drought periods during the 20th century – water years 1929–41, 1952–56, 1961–72, and 1976–81. The period of water years 1925–2011 was selected as the period of record because few continuous record streamflow-gaging stations existed before 1925, and gaps in time existed where no streamflow-gaging stations were operated before 1925. In water year 2011, statewide annual precipitation was the 2d lowest, statewide annual streamflow was 16th lowest, and statewide annual runoff was 42d lowest of those 87 years of record. Annual area-averaged precipitation totals by the nine National Weather Service climate divisions from water year 2011 were compared to those during four previous major hydrologic drought

  3. Freshwater resources and saline water near the Sac and Fox Nation tribal lands, eastern Lincoln County, Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.

    1998-01-01

    The purpose of this project was to evaluate the freshwater resources and possible sources of high-chloride and high-sulfate concentrations in parts of the aquifer near the Sac and Fox Nation tribal land in eastern Lincoln County, Oklahoma. Water-quality sampling and borehole geophysical data indicate the potential for fresh ground water on tribal land generally is greatest in the Vanoss Formation, in the SE1/4 sec. 21, T. 14 N., R. 06 E. and in the NE1/4 sec. 22, T. 14 N., R. 06 E. These locations avoid the flood-prone areas and borehole geophysical resistivity logs indicate the altitude of the base of fresh ground water is below 650 ft. The altitude of the base of fresh ground water is indicated to be generally near the surface under the W1/2 sec. 22, T. 14 N., R. 06 E., the SE1/4 sec. 22, SE1/4 SE1/4 NE1/4 sec. 21, and NE1/4 NW1/4 NW1/4 sec. 27. Conditions are more favorable for placement of fresh ground-water wells in sec. 34, T. 14 N., R. 06 E., where the tribe has leased water rights, than on tribal land in secs. 15, 16, 21, and 22, T. 14 N., R. 06 E. Sandstones overlain by or enclosed in thick clay and shale sequences are likely to be somewhat isolated from the flow system and retain some of the residual brine. Borehole geophysical logs suggest that sandstones near CH1, CM1, and WT1 have more clay and shale content than the sandstones near L2. Greater amounts of clay in the sandstones will retard the flushing of residual brines from the sandstones and could result in a shallow base of fresh water near CH1, CM1, and WT1. For these reasons and because circulation of fresh ground water is limited by discharge to the Deep Fork, general water quality under tribal land would probably be poorer than in the area where the tribe has leased water rights. Samples have chloride or sulfate concentrations greater than 250 milligrams per liter in the W1/2 sec. 22, T. 14 N., R. 06 E. Six cluster well samples from tribal land have chloride or sulfate concentrations above the

  4. Nitrates in Wisconsin ground water.

    PubMed

    Schuknecht, B; Lawton, G W; Steinka, P; Delfino, J J

    1975-01-01

    Nitrate analyses were performed on ground water well samples originating from sources throughout Wisconsin. The data ranged from below the analytical detection limit up to 140 mg NO3-N/1. Over nine percent of all wells sampled has nitrate concentrations in excess of 10 mg NO3-N/1. Six individual counties had more than 10 mg NO3-N/1 in at least twenty percent of the wells covered in this survey. However, data reported for over eight thousand new wells driven in 1971-1972 showed only slightly more than two percent with nitrate levels above 10 mg NO3-N/1. This reflected the trend toward drilling deeper wells which are influenced less by nitrate seepage as well as adherence to new and stricter well construction codes. PMID:1183417

  5. History of the USDA-ARS Watershed, Water Resources and Climate Research at Chickasha, Durant, and El Reno, Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The watershed, water resources and climate research conducted at the Great Plains Agroclimate and Natural Resources Research Unit at the USDA, ARS Grazinglands Research Laboratory in El Reno, Oklahoma, is rooted in events reaching as far back as the Dust Bowl and the Great Depression. In this narrat...

  6. Hydrogeology, water use, and simulation of flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas

    USGS Publications Warehouse

    Luckey, Richard L.; Becker, Mark F.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, began a three-year study of the High Plains aquifer in northwestern Oklahoma in 1996. The primary purpose of this study was to develop a ground-water flow model to provide the Water Board with the information it needs to manage the quantity of water withdrawn from the aquifer. The study area consists of about 7,100 square miles in Oklahoma and about 20,800 square miles in adjacent states to provide appropriate hydrologic boundaries for the flow model. The High Plains aquifer includes all sediments from the base of the Ogallala Formation to the potentiometric surface. The saturated thickness in Oklahoma ranges from more than 400 feet to less than 50 feet. Natural recharge to the aquifer from precipitation occurs throughout the area but is extremely variable. Dryland agricultural practices appear to enhance recharge from precipitation, and part of the water pumped for irrigation also recharges the aquifer. Natural discharge occurs as discharge to streams, evapotranspiration where the depth to water is shallow, and diffuse ground-water flow across the eastern boundary. Artificial discharge occurs as discharge to wells. Irrigation accounted for 96 percent of all use of water from the High Plains aquifer in the Oklahoma portion of the study area in 1992 and 93 percent in 1997. Total estimated water use in 1992 for the Oklahoma portion of the study area was 396,000 acre-feet and was about 3.2 million acre-feet for the entire study area. Since development of the aquifer, water levels have declined more than 100 feet in small areas of Texas County, Oklahoma, and more than 50 feet in areas of Cimarron County. Only a small area of Beaver County had declines of more than 10 feet, and Ellis County had rises of more than 10 feet. A flow model constructed using the MODFLOW computer code had 21,073 active cells in one layer and had a 6,000- foot grid in both the north-south and east

  7. Annual yield and selected hydrologic data for the Arkansas River basin compact Arkansas-Oklahoma, 1995 water year

    USGS Publications Warehouse

    Porter, J.E.

    1996-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Basin Compact, Arkansas-Oklahoma, are given in tables for the 1995 water year. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area also are given in tabular form. Monthly mean discharges are shown for the 17 streamflow stations used in computing annual yield. Water-quality data are shown for 20 water-quality stations sampled in the Arkansas River Basin.

  8. Ground water near Newton, Jasper County, Iowa

    USGS Publications Warehouse

    Buchmiller, Robert C.

    2001-01-01

    The water quality in the South Skunk River and the alluvial aquifer was similar, except most ground-water samples contained low dissolved oxygen concentrations. The low dissolved-oxygen concentrations in ground water resulted in high concentrations of iron and manganese in some locations and reduced forms of nitrogen.

  9. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  10. INTRODUCTION TO ARTIFICIAL GROUND-WATER RECHARGE

    EPA Science Inventory

    Artificial ground-water recharge has been practiced for scores of years throughout the world. The purpose of artificial recharge is to increase the rate at which water infiltrates the land surface in order to supplement the quantity of ground water in storage. A variety of rechar...

  11. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  12. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  13. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  14. Ground-water levels in Wyoming, 1976

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1977-01-01

    Ground-water levels are measured periodically in a network of about 280 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1976 to 1977. Well history, highest and lowest water levels , and hydrographs for most wells also are included. The program of groundwater observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne. (Woodard-USGS)

  15. Water chemistry near the closed Norman Landfill, Cleveland County, Oklahoma 1995

    USGS Publications Warehouse

    Schlottmann, Jamie L.

    2001-01-01

    The Norman Landfill was selected for study as part of the U.S. Geological Survey Toxic Substances Hydrology Program in 1994. The landfill is located south of the City of Norman on alluvial deposits of the Canadian River. Type of waste deposited in the landfill from 1922 to 1973 was largely unrestricted and may include substances now recognized as hazardous. Dissolved and suspended substances leached from wastes in the closed and capped landfill are now in ground water extending toward the Canadian River as a plume of leachate. Water samples were collected from two stock wells, one domestic well, temporary drive-point wells, the Canadian River, and a small intermittent stream hydraulically downgradient of the capped landfill known as the slough. Most constituent concentrations were greater in ground water downgradient from the capped landfill than in background ground water and were greater in the slough than in the Canadian River. Concentrations of most constituents in the Canadian River, other than sulfate, manganese, and iron, were similar to concentrations in background ground water. Some constituents measured in ground-water for this investigation are potential indicators of leachate contamination. Potential indicators that could be used to differentiate leachate contaminated water from uncontaminated ground water of the alluvial aquifer include specific conductance, chloride, alkalinity, dissolved organic carbon, boron, and dD. Specific conductance and chloride were greater in water from wells downgradient of the landfill than water from background wells. Dissolved organic carbon and boron also were greater in the leachate contaminated ground water than in background ground water.

  16. Alternatives for Ground Water Cleanup

    NASA Astrophysics Data System (ADS)

    Hudak, P. F.

    Aquifer remediation is one of our most difficult environmental challenges; technological limitations and problems arising from the physical and chemical complexities of contaminated subsurface environments thwart our best efforts. A 19-member committee of leaders in environmental engineering, hydrogeology, epidemiology, environmental economics, and environmental policy has written an ambitious book that broadly addresses the groundwater remediation problem. Topics include site characterization, capabilities and limitations of pump-and-treat and alternative technologies, alternative goals for ground water cleanup, and policy implications.One of the book's strengths is its information base, which includes various public and private groups, data from 80 pump-and-treat sites, and an extensive literature review. The text is clearly written and well organized. Specific conclusions are stated at the end of each major chapter, and sound policy recommendations are offered at the end of the final chapter. An appendix summarizes pump-andtreat systems reviewed during the study. Several case studies, diagrams, and photographs effectively illustrate concepts and ideas conveyed in the text.

  17. 75 FR 2860 - Clean Water Act Section 303(d): Call for Data for the Illinois River Watershed in Oklahoma and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ...EPA Region 6 is developing a watershed model for the Illinois River watershed in Oklahoma and Arkansas to address nutrient water quality impairments. The results of this watershed model may be used to develop one or more total maximum daily loads (TMDLs) for the Illinois River Watershed. EPA requests that the public provide any water quality related data and information that may be relevant to......

  18. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  19. Preliminary report on the quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas

    USGS Publications Warehouse

    Playton, Stephen J.; Davis, Robert Ellis

    1977-01-01

    On-site measurements of pH, specific conductance, and water temperature show that water in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified, with pH decreasing and specific conductance and water temperature increasing as sampling depth increases. Concentrations of chemical constituents in mine-shaft water, such as dissolved solids, total and dissolved metals, and dissolved sulfate also increase as sampling depth increases. The water in the mine shafts was unsuited for most uses without treatment. The relative inability of current treatment practices to effectively remove high concentrations of toxic metals, such as Bcadmium and lead, precludes use of the water for public supply.

  20. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  1. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  2. HANDBOOK: GROUND WATER VOLUME II: METHODOLOGY

    EPA Science Inventory

    This handbook is an extensively revised version of the Ground Water Handbook, originally published in 1987 as EPA/625/6-87/016. It has been published in two volumes: Volume I: Ground Water and Contamination, EPA/625/6-90/016a, and Volume II: Methodology, EPA/625/6-90/016b. Volume...

  3. Hanford site ground water protection management plan

    SciTech Connect

    Not Available

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  4. International borders, ground water flow, and hydroschizophrenia.

    PubMed

    Jarvis, Todd; Giordano, Mark; Puri, Shammy; Matsumoto, Kyoko; Wolf, Aaron

    2005-01-01

    A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users? PMID:16149973

  5. Index of published surface-water quality data for Oklahoma 1946-1975

    USGS Publications Warehouse

    Stoner, J.D.

    1977-01-01

    Surface-water-quality data for Oklahoma have been published by the U.S. Geological Survey in cooperation with various State agencies on an annual basis since 1949. The published data represents 2,733 station-years of data from 527 stations, ranging from one sample from a station once during the thirty--year period to a continuously operating daily station were more than one hundred samples were collected in a year. The last comprehensive index was published in 1963; since that time various unpublished indexes have been in use, none of which were complete. Most of the water-quality data collected and published prior to 1970 was for the common inorganic constituents such as, calcium, magnesium, sodium, alkalinity, chloride and sulfate. Since 1970 other types of data such as the minor or trace metals, organic compounds including pesticides, nutrients, oxygen resources, and biologic information have been collected and published with ever increasing frequency. This index was designed to provide the data user a means of rapid search for stations by downstream order (Table 2), county (Table 4), and alphabetically by stream or station name (Table 1). Table 1 also provides a breakdown of the data into 10 broad water-quality categories.

  6. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  7. Pollution of ground water in Europe

    PubMed Central

    Buchan, S.; Key, A.

    1956-01-01

    This paper discusses pollution of ground water in 20 countries of the European region, giving for each an account of the geology and hydrogeology, water supplies, the extent and nature of ground water pollution, and the legal, administrative, and technical means of controlling that pollution. For the countries not considered in the preceding article on surface water pollution, an account is also given of the superficial physical features, rainfall, population, and industries. A general discussion follows of such questions as the ways in which ground water pollution may occur, the factors mitigating or aggravating pollution, and ways of protection against pollution. The authors consider that the problem of ground water pollution in Europe may well be more serious than it would appear to be on the evidence so far obtained. PMID:13374533

  8. A primer on ground water

    USGS Publications Warehouse

    Baldwin, Helene L.; McGuinness, C.L.

    1963-01-01

    Most of us don't have to look for water. We grew up either in big cities where there was a public water supply, or in small towns or on farms where the water came from wells. But there are some people to whom finding a new supply of water is vitally important.

  9. Arsenic-related water quality with depth and water quality of well-head samples from production wells, Oklahoma, 2008

    USGS Publications Warehouse

    Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.

    2010-01-01

    The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline

  10. Ground-based Hyperspectral Remote Sensing for Mapping Rock Alterations and Lithologies: Case Studies from Semail Ophiolite, Oman and Rush Springs Sandstone, Oklahoma

    NASA Astrophysics Data System (ADS)

    Sun, L.; Khan, S.; Hauser, D. L.; Glennie, C. L.; Snyder, C.; Okyay, U.

    2014-12-01

    This study used ground-based hyperspectral remote sensing data to map rock alterations and lithologies at Semail Ophiolite, Oman, as well as hydrocarbon-induced rock alterations at Cement, Oklahoma. The Samail Ophiolite exposed the largest, least-deformed, and the most-studied ophiolite in the world. Hydrocarbon seepages at Cement, Oklahoma brought hydrocarbons to the Rush Springs sandstones at surface, and generated rock alterations including bleaching of red beds, and carbonate cementation. Surficial expressions of rock alterations and different lithofacies are distinct from adjacent rocks, and can be detected by remote sensing techniques. Hyperspectral remote sensing acquires light intensity for hundreds of bands in a continuous electromagnetic spectrum from visible light to short-wave infrared radiation, and holds potential to characterize rocks with great precision. Ground-based hyperspectral study could scan the objects at close ranges thus provide very fine spatial resolutions (millimeters to centimeters). This study mapped all the major iconic outcrops of Semail ophiolite including pillow lava, sheeted dykes, layered gabbros, and peridotites. This study also identified surficial rock alterations induced by hydrocarbons at Cement, Oklahoma. Reddish-brown Rush Spring sandstones are bleached to pink, yellow, and gray colors; pore spaces in the sandstones have been filled with carbonate cementation. Laboratory spectroscopy was used to assist with mineral identification and classification in hyperspectral data. Terrestrial laser scanning (TLS) was used to provide high-accuracy spatial references. Principal component analysis, minimum noise fraction, spectral angle mapper, and band ratios are used in image processing. Combining lithological, remote sensing and geochemical data, this study built a model for petroleum seepage and related rock alterations, and provided a workflow for employing ground-based hyperspectral remote sensing techniques in petrological

  11. Annual yield and selected hydrologic data for the Arkansas River Basin Compact, Arkansas-Oklahoma, 1986 water year

    USGS Publications Warehouse

    Moore, M.A.; Lamb, T.E.; Blumer, S.P.

    1987-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. Water quality data are shown for four sites in the compact area. (USGS)

  12. Annual yield and selected hydrologic data for the Arkansas River Basin Compact, Arkansas-Oklahoma, 1988 water year

    USGS Publications Warehouse

    Moore, Martha A.; Lamb, T.E.; Hauth, Leland D.

    1989-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharge are shown for the 14 streamflow stations used in computing annual yield. Water quality data are shown for two sites in the compact area. (USGS)

  13. Annual yield and selected hydrologic data for the Arkansas River Basin compact, Arkansas-Oklahoma, 1985 water year

    USGS Publications Warehouse

    Moore, M.A.; Lamb, T.E.

    1986-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. Water-quality data are shown for four sites in the compact area. (USGS)

  14. Annual yield and selected hydrologic data for the Arkansas River Basin compact, Arkansas-Oklahoma, 1987 water year

    USGS Publications Warehouse

    Moore, M.A.; Lamb, T.E.; Hauth, L.D.

    1988-01-01

    The computed annual yield and deficiency of the subbasins are defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. Water quality data are shown for two sites in the compact area. (USGS)

  15. Risk across disciplines: An interdisciplinary examination of water and drought risk in South-Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Lazrus, H.; Paimazumder, D.; Towler, E.; McPherson, R. A.

    2013-12-01

    Drought is a challenge faced by communities across the United States, exacerbated by growing demands on water resources and climate variability and change. The Arbuckle-Simpson Aquifer (ASA) in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only free-flowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To examine this question, we are conducting an investigation of drought risk from multiple disciplines. Anthropological data comes from stakeholder interviews that were designed to investigate conflict over water management by understanding how people perceive risk differently based on different opinions about the structure of the resource, varying levels of trust in authorities, and unequal access to resources. . The Cultural Theory of Risk is used to explain how people view risks as part of their worldviews and why people who hold different worldviews disagree about risks associated with water availability. Meteorological analyses of longitudinal data indicate periods of drought that are noted in stakeholder interviews. Analysis of stream gauge data investigates the influence of climate variability on local hydrologic impacts, such as changing groundwater levels and streamflows, that are relevant to planning and management decisions in the ASA. Quantitative assessment of future drought risk and associated uncertainty and their effect on type and scale of future economic and social impacts are achieved by combining elements of statistical and dynamical downscaling to improve predictions of

  16. Geochemical and petrographic analyses of travertine-precipitating waters and travertine deposits, Arbuckle Mountains, Oklahoma

    SciTech Connect

    Utech, N.M.; Chafetz, H.S.

    1989-03-01

    Waters in Honey and Falls Creeks, Arbuckel Mountains region of Oklahoma, are supersaturated in CO/sub 2/ with respect to the overlying atmosphere and are up to 10 times saturated with respect to calcite (I/sub sat/ = 10). Loss of CO/sub 2/ from the system results in a downstream increase in saturation levels, with the highest I/sub sat/ at sites of maximum travertine deposition. High supersaturation is the result of natural kinetic processes (rapid CO/sub 2/ outgassing vs. slow precipitation) rather than the effects of foreign ion inhibitors. Temporal variations in the composition of the waters indicate that, contrary to expectations, prolonged periods of heavy rainfall cause a significant increase in I/sub sat/ levels. At any sample site, no consistent chemical variation occurred between organically mediated and inorganic precipitates. However, all deposits show a significant increase in magnesium concentration in a down-stream direction; this may be a result of higher I/sub sat/ values and corresponding higher rates of precipitation. Carbon isotopes for creek waters are highly variable, from /minus/0.6 to /minus/12.2 /per thousand/, reflecting a variety of sinks and sources for C/sup 12/. Oxygen isotopes are relatively constant, from /minus/3.7 to /minus/6.0 /per thousand/, average = /minus/5.2 /per thousand/, indicating an open-water system. Based on calculations from water data, travertine should exhibit a 2 /per thousand/ difference in /delta//sup 18/O values for precipitates formed in the summer vs. those formed in the winter. Algally laminated crusts, which have been postulated to be of seasonal origin, exhibit variation in /delta//sup 18/O values between laminae, confirming the seasonal origin of the laminae.

  17. Ground-Water Protection and Monitoring Program

    SciTech Connect

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  18. 75 FR 9895 - Public Water System Supervision Program Revision for the State of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... regulations for the Lead and Copper Rule (LCR) Short-Term Regulatory Revisions and Clarifications, promulgated and published in the Federal Register at 72 FR 57782 on October 10, 2007. Oklahoma has adopted the...

  19. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent

  20. Composition of pore water in lake sediments, research site "B", Osage County, Oklahoma: Implications for lake water quality and benthic organisms

    USGS Publications Warehouse

    Zielinski, R.A.; Herkelrath, W.N.; Otton, J.K.

    2007-01-01

    Shallow ground water at US Geological Survey research site B in northeastern Oklahoma is contaminated with NaCl-rich brine from past and present oil production operations. Contaminated ground water provides a potential source of salts, metals, and hydrocarbons to sediment and water of adjacent Skiatook Lake. A former brine storage pit 10 m in diameter that is now submerged just offshore from site B provides an additional source of contamination. Cores of the upper 16-40 cm of lake sediment were taken at the submerged brine pit, near an offshore saline seep, and at a location containing relatively uncontaminated lake sediment. Pore waters from each 2-cm interval were separated by centrifugation and analyzed for dissolved anions, cations, and trace elements. High concentrations of dissolved Cl- in pore waters (200-5000 mg/L) provide the most direct evidence of contamination, and contrast sharply with an average value of only about 37 mg/L in Skiatook Lake. Chloride/Br- mass ratios of 220-240 in contaminated pore waters are comparable to values in contaminated well waters collected onshore. Dissolved concentrations of Se, Pb, Cu and Ni in Cl--rich pore waters exceed current US Environmental Protection Agency criteria for probable toxicity to aquatic life. At the submerged brine storage pit, the increase of Cl- concentration with depth is consistent with diffusion-dominant transport from deeper contaminated sediments. Near the offshore saline seep, pore water Cl- concentrations are consistently high and vary irregularly with depth, indicating probable Cl- transport by layer-directed advective flow. Estimated annual contributions of Cl- to the lake from the brine storage pit (???20 kg) and the offshore seep (???9 kg) can be applied to any number of similar sources. Generous estimates of the number of such sources at site B indicate minimal impact on water quality in the local inlet of Skiatook Lake. Similar methodologies can be applied at other sites of Na

  1. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  2. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  3. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  4. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  5. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  6. Natural radionuclides in ground waters and cores

    SciTech Connect

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  7. Ground water protection management program plan

    SciTech Connect

    Not Available

    1994-02-01

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  8. Annual yield and selected hydrologic data for the Arkansas River Basin Compact, Arkansas-Oklahoma, 1994 water year

    USGS Publications Warehouse

    Porter, J.E.

    1995-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Basin Compact, Arkansas-Oklahoma, are given in tables for the 1994 water year. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area also are given in tabular form. Monthly maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. Water-quality data are shown for 11 water-quality stations sampled in the Arkansas River Basin.

  9. Annual yield and selected hydrologic data for the Arkansas River Basin Compact, Arkansas-Oklahoma, 1996 water year

    USGS Publications Warehouse

    Porter, J. Elton

    1997-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Basin Compact, Arkansas-Oklahoma, are given in tables for the 1996 water year. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area also are given in tabular form. Computed monthly mean discharges are shown for the 21 streamflow stations in the Arkansas River Basin. Water-quality data are shown for 16 water-quality stations sampled in the Arkansas River Basin.

  10. Annual yield and selected hydrologic data for the Arkansas River Basin Compact Arkansas-Oklahoma 1993 water year

    USGS Publications Warehouse

    Porter, J.E.; Barks, C. Shane

    1994-01-01

    The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Basin Compact, Arkansas-Oklahoma, are given in tables for the 1993 water year. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area also are given in tabular form. Monthly maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. Water-quality data are shown for 12 water-quality stations sampled in the Arkansas River Basin.

  11. Effects of produced waters at oilfield production sites on the Osage Indian Reservation, northeastern Oklahoma

    USGS Publications Warehouse

    Otton, James K.; Asher-Bolinder, Sigrid; Owen, Douglass E.; Hall, Laurel

    1997-01-01

    The authors conducted limited site surveys in the Wildhorse and Burbank oilfields on the Osage Indian Reservation, northeastern Oklahoma. The purpose was to document salt scarring, erosion, and soil and water salinization, to survey for radioactivity in oilfield equipment, and to determine if trace elements and naturally occurring radioactive materials (NORM) were present in soils affected by oilfield solid waste and produced waters. These surveys were also designed to see if field gamma spectrometry and field soil conductivity measurements were useful in screening for NORM contamination and soil salinity at these sites. Visits to oilfield production sites in the Wildhorse field in June of 1995 and 1996 confirmed the presence of substantial salt scarring, soil salinization, and slight to locally severe erosion. Levels of radioactivity on some oil field equipment, soils, and road surfaces exceed proposed state standards. Radium activities in soils affected by tank sludge and produced waters also locally exceed proposed state standards. Laboratory analyses of samples from two sites show moderate levels of copper, lead, and zinc in brine-affected soils and pipe scale. Several sites showed detectable levels of bromine and iodine, suggesting that these trace elements may be present in sufficient quantity to inhibit plant growth. Surface waters in streams at two sampled sites exceed total dissolved solid limits for drinking waters. At one site in the Wildhorse field, an EM survey showed that saline soils in the upper 6m extend from a surface salt scar downvalley about 150 m. (Photo [95k]: Dead oak trees and partly revegetated salt scar at Site OS95-2 in the Wildhorse field, Osage County, Oklahoma.) In the Burbank field, limited salt scarring and slight erosion occurs in soils at some sites and low to moderate levels of radioactivity were observed in oil field equipment at some sites. The levels of radioactivity and radium observed in some soils and equipment at these

  12. Water type and suitability of Oklahoma surface waters for public supply and irrigation, Part 5: Washita river basin through 1979

    USGS Publications Warehouse

    Stoner, J.D.

    1982-01-01

    Water-quality data through 1979 in the Washita River basin within Oklahoma were examined for water type and suitability for public water supply and for irrigation use. Of 82 stations with available data, 32 stations or 39 percent were considered to have sufficient data for analysis. The classification of water type was based on the relation of the major ions: calcium, magnesium, sodium, carbonate, bicarbonate, sulfate, and chloride to each other within the range of measured specific conductance. The suitability for use as a public supply was based on the concentration distribution of selected constituents. The constituents selected were those with maximum contaminant levels established by regulation, or constituents for which recommended maximum limits have been established and for which historic data are available. The irrigation classification method of Wilcox was used to relate sodium, calcium, and magnesium concentrations and the salinity distribution to the suitability for use of the water for irrigation. Where data were available, the chance of phytotoxic effects by boron was discussed.

  13. Estimating ground water discharge by hydrograph separation.

    PubMed

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives. PMID:12772830

  14. Statistical analysis of stream water-quality data and sampling network design near Oklahoma City, central Oklahoma, 1977-1999

    USGS Publications Warehouse

    Brigham, Mark E.; Payne, Gregory A.; Andrews, William J.; Abbott, Marvin M.

    2002-01-01

    The sampling network was evaluated with respect to areal coverage, sampling frequency, and analytical schedules. Areal coverage could be expanded to include one additional watershed that is not part of the current network. A new sampling site on the North Canadian River might be useful because of expanding urbanization west of the city, but sampling at some other sites could be discontinued or reduced based on comparisons of data between the sites. Additional real-time or periodic monitoring for dissolved oxygen may be useful to prevent anoxic conditions in pools behind new low-water dams. The sampling schedules, both monthly and quarterly, are adequate to evaluate trends, but additional sampling during flow extremes may be needed to quantify loads and evaluate water-quality during flow extremes. Emerging water-quality issues may require sampling for volatile organic compounds, sulfide, total phosphorus, chlorophyll-a, Esherichia coli, and enterococci, as well as use of more sensitive laboratory analytical methods for determination of cadmium, mercury, lead, and silver.

  15. Ground-water data for Georgia, 1983

    USGS Publications Warehouse

    Clarke, J.S.; Peck, M.F.; Longsworth, S.A.; McFadden, K.W.

    1984-01-01

    Continuous water-level records from 134 wells and more than 700 water-level measurements made in Georgia during 1983 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1983. Monthly means are shown for the 10-year period 1974-83. Mean annual water levels ranged from 9 feet higher to 6 feet lower in 1983 than in 1982. Water-quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional ground-water studies. Along the coast, chloride concentrations in the upper and lower water-bearing zones of the Floridan aquifer system generally remained steady in the Brunswick and Hilton Head Island areas. (USGS)

  16. Ground water recharge from Lake Chad

    SciTech Connect

    Isiorho, S.; Matisoff, G.; McCall, P.L.

    1985-01-01

    Lake Chad is a shallow, closed basin lake located in Sub-Sharan Africa. It has the largest drainage basin of any lake in the world, and is also very old, being formed by tectonic processes during the Cretaceous. These features should combine to form a saline lake, but the open waters of Lake Chad are reasonably fresh, having a total dissolved solids concentration of about 320 mg/1. This apparent discrepancy can be explained by noting that recharge of the unconfined aquifer to the SW in Nigeria by ground water infiltration through the lakebed can remove significant quantities of water and dissolved solutes from the lake. The authors have measured and calculated ground water infiltration and velocities by several techniques. Direct, volumetric measurements of ground water recharge seepage give velocities on the order of .28-8.8 x 10/sup -3/ m/day. Tracer monitoring in a borehole dilution test yielded ground water velocities of 3.6 m/day to the SW (away from the lake). Hydraulic conductivities approx. .004-.6 m/day were determined by falling head measurements. Finally, using static water levels, the potentiometric surface within approx. 80 km of the southwest portion of Lake Chad yields water table gradients of 1.0-1.7 x 10/sup -4/ away from the lake. These results confirm that surface water and solute inflow to Lake Chad is removed by recharge to the unconfined aquifer in Nigeria.

  17. Ground-water data for Georgia, 1984

    USGS Publications Warehouse

    Clarke, J.S.; Longsworth, S.A.; McFadden, K.W.; Peck, M.F.

    1985-01-01

    Continuous water-level records from 155 wells and more than 800 water-level measurements made in Georgia during 1984 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1984. Monthly means are shown for the 10-year period 1975-84. Mean annual water levels ranged from 7 feet lower to 7 feet higher in 1984 than in 1983. Water-quality samples are collected periodically throughout Georgia and analyzed as part of a real and regional ground-water studies. Along the coast, chloride concentrations in the Floridan aquifer system generally remained steady. (USGS)

  18. State-scale perspective on water use and production associated with oil and gas operations, Oklahoma, U.S.

    PubMed

    Murray, Kyle E

    2013-05-01

    A common goal of water and energy management is to maximize the supply of one while minimizing the use of the other, so it is important to understand the relationship between water use and energy production. A larger proportion of horizontal wells and an increasing number of hydraulically fractured well bores are being completed in the United States, and consequently increasing water demand by oil and gas operations. Management, planning, and regulatory decisions for water, oil, and gas are largely made at the state-level; therefore, it is necessary to aggregate water use and energy production data at the state-scale. The purpose of this paper is to quantify annual volumes of water used for completion of oil and gas wells, coproduced during oil and gas production, injected via underground injection program wells, and used in water flooding operations. Data from well completion reports, and tax commission records were synthesized to arrive at these estimates for Oklahoma. Hydraulic fracturing required a median fluid volume of 11,350 m(3) per horizontal well in Oklahoma. Median fluid volume (~15,774 m(3)) and volume per perforated interval (15.73 m(3) m(-1)) were highest for Woodford Shale horizontal wells. State-scale annual water use for oil and gas well completions was estimated to be up to 16.3 Mm(3) in 2011 or less than 1% of statewide freshwater use. Statewide annual produced water volumes ranged from 128.5 to 146.6 Mm(3), with gas wells yielding an estimated 72.4% of the total coproduced water. Volumes of water injected into underground injection control program wells ranged from 206.8 to 305.4 Mm(3), which indicates that water flooding operations may use up to 167.0 Mm(3) per year. State-scale water use estimates for Oklahoma could be improved by requiring oil and gas operators to supplement well completion reports with water use and water production data. Reporting of oil and gas production data by well using a unique identifier (i.e., API number) would also

  19. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  20. Ground-water applications of remote sensing

    USGS Publications Warehouse

    Moore, Gerald K.

    1982-01-01

    Remote sensing can be used as a tool to inventory springs and seeps and to interpret lithology, structure, and ground-water occurrence and quality. Thermograms are the best images for inventory of seeps and springs. The steps in aquifer mapping are image analysis and interpretation and ground-water interpretation. A ground-water interpretation is derived from a conceptual geologic model by inferring aquifer characteristics and water salinity. The image selection process is very important for obtaining maximum geologic and hydrologic information from remotely sensed data. Remote sensing can contribute an image base map or geologic and hydrologic parameters, derived from the image, to the multiple data sets in a hydrologic information system. Various merging and integration techniques may then be used to obtain information from these data sets.

  1. Arsenic in ground water of the United States: occurrence and geochemistry

    USGS Publications Warehouse

    Welch, Alan H.; Westjohn, D.B.; Helsel, Dennis R.; Wanty, Richard B.

    2000-01-01

    Concentrations of naturally occurring arsenic in ground water vary regionally due to a combination of climate and geology. Although slightly less than half of 30,000 arsenic analyses of ground water in the United States were ≤ 1 µg/L, about 10% exceeded 0 µg/L. At a broad regional scale, arsenic concentrations exceeding 10 µg/L appear to be more frequently observed in the western United States than in the eastern half. Arsenic concentrations in ground water of the Appalachian Highlands and the Atlantic plain generally are very low (≤ 1 µg/L). Concentrations are somewhat greater in the Interior Plains and the Rocky Mountain System, investigations of ground water in New England, Michigan, Minnesota, South Dakota, Oklahoma, and Wisconsin within the last decade suggest that arsenic concentrations exceeding 10 µg/L are more widespread and common than previously recognized. Arsenic release from iron oxide appears to be the most common cause of widespread arsenic concentrations exceeding 10 µg/L a ground water. This can occur in response to different geochemical conditions, including release of arsenic to ground water through reaction of iron oxide with either natural or anthropogenic (i.e., petroleum products) organic carbon. Iron oxide also can release arsenic to alkaline ground water, such as that found in some felsic volcanic rocks and alkaline aquifers of the Western United States. Sulfide minerals are both a source and sink for arsenic. Geothermal water and high evaporation rates also are associated with arsenic concentrations ≥ 10g/L in ground and surface water, particularly in the west.

  2. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  3. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median

  4. Geochemical Data from Produced Water Contamination Investigations: Osage-Skiatook Petroleum Environmental Research (OSPER) Sites, Osage County, Oklahoma

    USGS Publications Warehouse

    Thordsen, James J.; Kharaka, Yousif K.; Ambats, Gil; Kakouros, Evangelos; Abbott, Marvin M.

    2007-01-01

    We report chemical and isotopic analyses of 345 water samples collected from the Osage-Skiatook Petroleum Environmental Research (OSPER) project. Water samples were collected as part of an ongoing multi-year USGS investigation to study the transport, fate, natural attenuation, and ecosystem impacts of inorganic salts and organic compounds present in produced water releases at two oil and gas production sites from an aging petroleum field located in Osage County, in northeast Oklahoma. The water samples were collected primarily from monitoring wells and surface waters at the two research sites, OSPER A (legacy site) and OSPER B (active site), during the period March, 2001 to February, 2005. The data include produced water samples taken from seven active oil wells, one coal-bed methane well and two domestic groundwater wells in the vicinity of the OSPER sites.

  5. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  6. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  7. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  8. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  9. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  10. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  11. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  12. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  14. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 257.22... Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  15. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  16. MODELING TOOLS FOR GROUND WATER-SURFACE WATER INTERACTIONS

    EPA Science Inventory

    This project develops algorithms for simulating the dynamic interactions between surface water and ground water in rivers and riparian streams. The algorithms rely on physically based linear response functions which describe the exchange rates and volumes of water between the str...

  17. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  18. GROUND-WATER DATA MANAGEMENT WITH STORET

    EPA Science Inventory

    The manual has been designed to address both ground-water quality data and the related well site characteristics. For non-USGS wells, appropriate fields have been added to include the information on site characteristics. Much of the information has been adopted from the site char...

  19. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  20. Ground water work breakdown structure dictionary

    SciTech Connect

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  1. IN-SITU BIOREMEDIATION OF GROUND WATER

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. n an attemp...

  2. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  3. Comparison of Ground-Based 3-Dimensional Lightning Mapping Observations with Satellite-Based LIS Observations in Oklahoma: Comparison of LMS and LIS Lightning Mapping

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.

    1999-01-01

    3-dimensional lightning mapping observations obtained during the MEaPRS program in central Oklahoma during June, 1998 have been compared with observations of the discharges from space, obtained by NASA's Lightning Imaging Sensor (LIS) on the TRMM satellite. Excellent spatial and temporal correlations were observed between the two sets of observations. Most of the detected optical events were associated with intracloud discharges that developed into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended not to be detected by LIS. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud flashes and appeared to be produced by energetic K-changes that typically occur at these times.

  4. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  5. Reconnaissance of Surface-Water Quality and Possible Sources of Nutrients and Bacteria in the Turkey Creek Watershed, Northwest Oklahoma, 2002-2003

    USGS Publications Warehouse

    Becker, Carol J.

    2004-01-01

    The U.S. Geological Survey in cooperation with the Oklahoma Department of Environmental Quality and the U.S. Environmental Protection Agency investigated the distribution of surface-water quality and possible sources of nutrients and Escherichia coli bacteria to surface water in Turkey Creek, which flows about 70 miles through mostly rural agricultural areas in northwest Oklahoma. Results show that discharge on the main stem of Turkey Creek increased during low-flow conditions from an average of 5.4 cubic feet per second at the upper most site to 39 cubic feet per second at the lower most site in the watershed, indicating that Turkey Creek gains water from ground-water discharge. A portion of the increase in stream discharge may be from discharges of treated effluent from city sewage lagoons. However, the volume and frequency of discharges are unknown. Surface-water-quality samples show that specific conductance ranged from 1,180 to 1,740 microsiemens per centimeter at 25 degrees Celsius during low-flow conditions and in general, decreased downstream with site 1 or site 2 having the largest measurement and site 5 having the lowest. The pH values were slightly alkaline and ranged from 6.8 to 8.5 with a median of 8.2. Dissolved oxygen ranged from 9.3 to 15.9 milligrams per liter in samples collected in the months of November, February, and March and ranged from 5.3 to 13.9 milligrams per liter in samples collected in the months of June, July, and August. Surface-water-quality samples show that the median concentrations of nitrite plus nitrate as nitrogen (1.16 milligrams per liter) and total phosphorus (0.275 milligram per liter) are larger than the average median concentrations of 0.35 and 0.083 milligram per liter, respectively, calculated from water-quality sites in Oklahoma and part of Arkansas (excluding sites in the Ozark Highland and the Ouachita Mountains ecoregions) having similar stream orders and stream slopes. Concentrations of nitrite plus nitrate as

  6. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  7. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  8. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  9. Ground water maps of the Hanford Site

    SciTech Connect

    Kasza, G.L.; Harris, S.F.; Hartman, M.J.

    1990-12-01

    This report presents the results of the June 1990, ground water level measurement program at the 100 Areas and 200 Areas of the Hanford Site (Figure 1). The water levels beneath these areas are measured regularly on a semiannual basis and the data received are used to produce the following set of maps for public release. For clarity, the locating prefixes have been omitted from all well numbers shown on the maps. Wells in the 100 Areas have the prefix 199; wells in the 200 Areas have the prefix 299, and the wells outside these areas have the prefix 699. Ground Water Maps of the Hanford Site is prepared by the Geosciences Group, Environmental Division, Westinghouse Hanford Company, for the US Department of Energy, Richland Operations Office. 1 ref., 6 figs., 2 tabs.

  10. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  11. Simulation of ground-water flow and areas contributing ground water to production wells, Cadillac, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2005-01-01

    Ground water is the primary source of water for domestic, municipal, and industrial use within the northwest section of Michigan's Lower Peninsula. Because of the importance of this resource, numerous communities including the city of Cadillac in Wexford County, Michigan, have begun local wellhead protection programs. In these programs, communities protect their ground-water resources by identifying the areas that contribute water to production wells, identifying potential sources of contamination, and developing methods to cooperatively manage and minimize threats to the water supply. The U.S. Geological Survey, in cooperation with the city of Cadillac, simulated regional ground-water flow and estimated areas contributing recharge and zones of transport to the production well field. Ground-water flow models for the Clam River watershed, in Wexford and Missaukee Counties, were developed using the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (MODFLOW 2000). Ground-water flow models were calibrated using the observation, sensitivity, and parameter estimation packages of MODFLOW 2000. Ground-water-head solutions from calibrated flow models were used in conjunction with MODPATH, a particle-tracking program, to simulate regional ground-water flow and estimate areas contributing recharge and zones of transport to the Cadillac production-well field for a 10-year period. Model simulations match the conceptual model in that regional ground-water flow in the deep ground-water system is from southeast to northwest across the watershed. Areas contributing water were determined for the optimized parameter set and an alternate parameter set that included increased recharge and hydraulic conductivity values. Although substantially different hydrologic parameters (assumed to represent end-member ranges of realistic hydrologic parameters) were used in alternate numerical simulations, simulation results differ little in predictions of

  12. Ground water exfiltration in a river oxbow

    NASA Astrophysics Data System (ADS)

    Suck, M.; Nützmann, G.; Lewandowski, J.

    2009-04-01

    This paper deals with the quantification of the exchange between ground water and surface water in a river oxbow. Implementation and evaluation of the study site are based upon a conceptual model, in which exfiltration into the oxbow and mainly into the adjacent river Spree are supposed as major transport processes. A clogging mud layer in the oxbow with its low hydraulic conductivity controls exfiltration and is the highest hydraulic resistance in the considered aquatic system. The measurement of temperature depth profiles within that layer was one of the methods applied to measure groundwater exfiltration. Because of the different groundwater and surface water temperatures there are temperature differences between the upper and lower boundary of the mud layer. Depending on the extent of ground water exfiltration that depth profile is more or less curved. By adaptation of an analytical solution to the plotted temperature depth profiles the flux rates were calculated. A supplementary method to measure exfiltration, the seepage meter, is used for direct measurements of the flux rates. With that method the ground water flux which passes a defined cross section of the sediment-water boundary is collected. The evaluation of the results yields higher exfiltration rates for the temperature depth profiles than for the seepage meters. For the seepage meters the results show only a part of the actual flux rates because of several error sources. Despite those errors the comparison of the results from both methods shows a similar flux pattern with strong small-scale heterogeneities. At scales of few meters the measured flux rates fluctuate more than an order of magnitude. The flux rates near the bank are frequently higher than in the middle of the oxbow. However, the flux rates are controlled by the thickness of the clogging mud layer, its hydraulic conductivity, its heterogeneity and the water table differences between surface water and adjacent aquifer.

  13. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  14. Texas-Oklahoma

    Atmospheric Science Data Center

    2014-05-15

    article title:  Texas-Oklahoma Border     ... important resources for farming, ranching, public drinking water, hydroelectric power, and recreation. Both originate in New Mexico and ... NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science ...

  15. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  16. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... identification of ground water protection areas and other sensitive ground water areas affect me? (a) You...

  17. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... identification of ground water protection areas and other sensitive ground water areas affect me? (a) You...

  18. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... identification of ground water protection areas and other sensitive ground water areas affect me? (a) You...

  19. Streamflow, Water Quality, and Metal Loads from Chat Leachate and Mine Outflow into Tar Creek, Ottawa County, Oklahoma, 2005

    USGS Publications Warehouse

    Cope, Caleb C.; Becker, Mark F.; Andrews, William J.; DeHay, Kelli

    2008-01-01

    Picher mining district is an abandoned lead and zinc mining area located in Ottawa County, northeastern Oklahoma. During the first half of the 20th century, the area was a primary producer of lead and zinc in the United States. Large accumulations of mine tailings, locally referred to as chat, produce leachate containing cadmium, iron, lead, and zinc that enter drainages within the mining area. Metals also seep to local ground water and streams from unplugged shafts, vent holes, seeps, and abandoned mine dewatering wells. Streamflow measurements were made and water-quality samples were collected and analyzed from two locations in Picher mining district from August 16 to August 29 following a rain event beginning on August 14, 2005, to determine likely concentrations and loads of metals from tailings and mine outflows in the part of Picher mining district near Tar Creek. Locations selected for sampling included a tailings pile with an adjacent mill pond, referred to as the Western location, and a segment of Tar Creek from above the confluence with Lytle Creek to below Douthat bridge, referred to as Tar Creek Study Segment. Measured streamflow was less than 0.01 cubic foot per second at the Western location, with streamflow only being measurable at that site on August 16, 2005. Measured streamflows ranged from <0.01 to 2.62 cubic feet per second at Tar Creek Study Segment. One water-quality sample was collected from runoff at the Western location. Total metals concentrations in that sample were 95.3 micrograms per liter cadmium, 182 micrograms per liter iron, 170 micrograms per liter lead, 1,760 micrograms per liter zinc. Total mean metals concentrations in 29 water-quality samples collected from Tar Creek Study Segment from August 16-29, 2005, were 21.8 micrograms per liter cadmium, 7,924 micrograms per liter iron, 7.68 micrograms per liter lead, and 14,548 micrograms per liter zinc. No metals loading values were calculated for the Western location. Metals loading

  20. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  1. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  2. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  3. Regional Analysis of Ground-Water Recharge

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge. The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  4. Coupled surface-water and ground-water model

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  5. Ground water in Myrtle Creek - Glendale area, Douglas County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1979-01-01

    The purpose of this report is to describe briefly the occurence of ground water and to present ground-water information that will help water users, public officials, and planners to determine the probability of obtaining adequate quanitities of good-quality ground water in the Myrtle Creek-Glendale area.

  6. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  7. Hydrogeology, water quality, and ground-water-development alternatives in the Upper Wood River Ground-Water Reservoir, Rhode Island. Water resources investigations

    SciTech Connect

    Dickerman, D.C.; Bell, R.W.

    1993-12-31

    This report describes the hydrogeology, water quality, and ground-water-development alternatives in the upper Wood River ground-water reservoir, Rhode Island. The report includes discussion of (1) recharge to and hydraulic properties of the stratified-drift aquifer, (2) stream-aquifer interconnection, (3) assessment of the quality of ground water and surface water, (4) input to and calibration of a two-dimensional ground-water-flow model, and (5) results of simulations of the effect of alternative ground-water-development schemes on ground-water levels and streamflow.

  8. Effects of brine on the chemical quality of water in parts of Creek, Lincoln, Okfuskee, Payne, Pottawatomie, and Seminole Counties, Oklahoma

    USGS Publications Warehouse

    Morton, Robert B.

    1986-01-01

    A study of water-quality degradation due to brine contamination was made in an area of ~1,700 mi2 in east-central Oklahoma. The study area coincides in part with the outcrop of the Vamoosa-Ada aquifer of Pennsylvanian age.

  9. Surface-water characteristics and quality on the Osage Reservation, Osage County, Oklahoma, 1999

    USGS Publications Warehouse

    Abbott, Marvin M.; Tortorelli, Robert L.

    2002-01-01

    quality monitoring had been conducted previously at two sites included in this study. Dissolved chloride concentrations for the two samples collected during 1999 were equaled or exceeded at both sites by the historical data. There is no statistically significant difference between the distribution of the dissolved chloride concentrations from the surface water and nearby ground-water samples. The surface-water quality samples had significantly lesser concentrations of dissolved solids, sulfate, and nitrite plus nitrate as nitrogen than the ground-water samples. Chloride yield, reported in tons per day per square mile, is the chloride load divided by the basin area upstream of the sample site. The mean of the chloride yields for all the samples was 0.07 ton per day per square mile. Many sample locations where yields were greater than 0.07 ton per day per square mile were areas where dissolved chloride concentrations from surface-water samples were greater than 250 milligrams per liter in an earlier water-quality investigation. An investigation of possible relations between the surface-water quality data and the oil-well construction data for the incremental basins and for 1-mile radial distance upstream in the incremental basins was conducted. The oil-well data also were grouped by the time periods of activity into pre-1930, 1930 to 1970, and post-1970. These groups attempt to account for differences in industry drilling and producing practices associated with various periods. No statistically significant correlations were found between the surface-water quality data and the oil-well construction data.

  10. EVALUATING THE EFFECTIVENESS OF GROUND WATER EXTRACTION SYSTEMS (JOURNAL)

    EPA Science Inventory

    The most common process for remediating contaminated ground water is extraction and treatment. Data from 19 ongoing and completed ground water extraction systems were collected and analyzed to evaluate the effectiveness of this process in achieving cleanup concentration goals for...

  11. Remediation of dichloromethane (DCM)-contaminated ground water

    SciTech Connect

    Flathman, P.E.; Jerger, D.E.; Woodhull, P.M. )

    1992-08-01

    This case history describes the physical and biological treatment of dichloromethane (DCM)-contaminated ground water following the rupture of an underground pipeline which contaminated an estimated 11,000 m[sup 3] (14,000 yd[sup 3]) of soil and ground water in the early fall of 1983. Air stripping DCM from recovered ground water was initiated and provided an estimated 97% reduction in the ground water concentration of DCM. When it became evident that physical treatment alone would no longer be effective in removing residual DCM from the ground water environment, the practice of air stripping DCM from recovered ground water was terminated. Biological treatment was initiated and provided greater than a 500,000-fold reduction in the ground water concentration of DCM. Biological treatment had far exceeded the ability of physical treatment along to remediate a ground water environment contaminated with a biodegradable contaminant. 14 refs., 12 figs., 4 tabs.

  12. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  13. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  14. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  15. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  16. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  17. Estimated flood peak discharges on Twin, Brock, and Lightning creeks, Southwest Oklahoma City, Oklahoma, May 8, 1993

    USGS Publications Warehouse

    Tortorelli, R.L.

    1996-01-01

    The flash flood in southwestern Oklahoma City, Oklahoma, May 8, 1993, was the result of an intense 3-hour rainfall on saturated ground or impervious surfaces. The total precipitation of 5.28 inches was close to the 3-hour, 100-year frequency and produced extensive flooding. The most serious flooding was on Twin, Brock, and Lightning Creeks. Four people died in this flood. Over 1,900 structures were damaged along the 3 creeks. There were about $3 million in damages to Oklahoma City public facilities, the majority of which were in the three basins. A study was conducted to determine the magnitude of the May 8, 1993, flood peak discharge in these three creeks in southwestern Oklahoma City and compare these peaks with published flood estimates. Flood peak-discharge estimates for these creeks were determined at 11 study sites using a step-backwater analysis to match the flood water-surface profiles defined by high-water marks. The unit discharges during peak runoff ranged from 881 cubic feet per second per square mile for Lightning Creek at SW 44th Street to 3,570 cubic feet per second per square mile for Brock Creek at SW 59th Street. The ratios of the 1993 flood peak discharges to the Federal Emergency Management Agency 100-year flood peak discharges ranged from 1.25 to 3.29. The water-surface elevations ranged from 0.2 foot to 5.9 feet above the Federal Emergency Management Agency 500-year flood water-surface elevations. The very large flood peaks in these 3 small urban basins were the result of very intense rainfall in a short period of time, close to 100 percent runoff due to ground surfaces being essentially impervious, and the city streets acting as efficient conveyances to the main channels. The unit discharges compare in magnitude to other extraordinary Oklahoma urban floods.

  18. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  19. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  20. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (ESTSC)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  1. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  2. THE OKLAHOMA MESONET

    EPA Science Inventory

    The Oklahoma Mesonet, operated and maintained by the Oklahoma Climatological Survey, is Oklahoma's premier climatological data collection system. For the area covered, which includes the entire state, no other system within the United States or internationally has the degree of ...

  3. Guidelines for Evaluating Ground-Water Flow Models

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    2004-01-01

    Ground-water flow modeling is an important tool frequently used in studies of ground-water systems. Reviewers and users of these studies have a need to evaluate the accuracy or reasonableness of the ground-water flow model. This report provides some guidelines and discussion on how to evaluate complex ground-water flow models used in the investigation of ground-water systems. A consistent thread throughout these guidelines is that the objectives of the study must be specified to allow the adequacy of the model to be evaluated.

  4. Monitoring for pesticides in ground water in Nevada

    USGS Publications Warehouse

    Adams, Patricia A.; Moses, Charles W.; Bevans, Hugh E.

    1997-01-01

    Many pesticides designed to control weed encroachment, plant disease, and insect predation are used in agricultural and urban areas in the United States. Contamination of ground water by pesticides has increased over the last 20 years (U.S. Environmental Protection Agency, 1992). In 1985, the U.S. Environmental Protection Agency (USEPA) estimated the detection of at least 17 agricultural pesticides in the ground water of 23 states. By 1988, pesticides identified in ground water had increased to 46 in 26 states. To protect ground water from pesticide contamination, USEPA, through the Federal Fungicide Insecticide and Rodenticide Act (FIFRA), requires all states to institute a ground-water protection program.

  5. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  6. Water resources data, Florida, water year 2005. Volume 3B: Southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 108 wells; periodic ground-water elevations at 24 wells; miscellaneous ground-water elevations at 354 wells; and water quality at 2 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  7. Water resources data Florida, water year 2004: Volume 3B: southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 98 wells; periodic ground-water elevations at 56 wells; miscellaneous ground-water elevations at 374 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  8. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  9. Quality of Ozark streams and ground water, 1992-95

    USGS Publications Warehouse

    Petersen, James C.; Adamski, James C.; Bell, Richard W.; Davis, Jerri V.; Femmer, Suzanne R.; Freiwald, David A.; Joseph, Robert L.

    1999-01-01

    This fact sheet summarizes a previous USGS publication, 'Water Quality in the Ozark Plateaus, Arkansas, Kansas, Missouri, and Oklahoma, 1992' (Circular 1158). The fact sheet describes the effects of some of the major land uses and human activities upon water quality in the Ozarks. Nutrients, bacteria, pesticides, and other organic compounds generally are found in high concentrations or more frequently in agricultural or urban areas than in forested areas. Several metals are found in higher concentrations in water, bed sediment, or biological tissue downstream from mining areas. Nutrient concentrations generally do not make water unsafe for drinking. Bacteria concentrations may be high enough to cause concern in some areas at some times. Pesticides and other organic compounds generally are not of concern. Metal concentrations in some mining areas are of concern to humans and wildlife. Biological communities are being altered by habitat and water-quality changes.

  10. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  11. Ground water hydrology report: Revision 1, Attachment 3. Final

    SciTech Connect

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  12. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  13. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  14. Percentage of Probability of Nonpoint-Source Nitrate Contamination of Recently Recharged Ground Water in the High Plains Aquifer

    USGS Publications Warehouse

    Qi, Sharon L.; Gurdak, Jason J.

    2006-01-01

    This raster data set represents the percentage of probability of nonpoint-source nitrate contamination (greater than the proposed background concentration of 4 milligrams per liter (mg/L) as N) of recently (defined as less than 50 years) recharged ground water in the High Plains aquifer of the United States. The High Plains aquifer covers approximately 175,000 square miles in eight States; Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Elevated nitrate concentrations above the background concentration have been detected in recently recharged (less than 50 years) ground water in the High Plains aquifer. This data set is derived from empirical models developed using multivariate logistic regression to evaluate the vulnerability of the High Plains aquifer to nitrate contamination from nonpoint sources. This data set was generated in a geographic information system from these models and represents the spatial extent of vulnerability of nitrate contamination greater than 4 mg/L across the aquifer.

  15. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  16. Digital map of water levels in 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for contours for 1980 water-level elevations for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the 1980 water-level elevation contours from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer Systems-Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  17. Ground water quality assessment using multi-rectangular diagrams.

    PubMed

    Ahmad, Niaz; Sen, Zekai; Ahmad, Manzoor

    2003-01-01

    A new graphical technique is proposed here for classifying chemical analyses of ground water. In this technique, a diagram is constructed using rectangular coordinates. The new diagram, called a multi-rectangular diagram (MRD), uses adjacent multi-rectangles in which each rectangle represents a specific ground water type. This new diagram has the capability to accommodate a large number of data sets. MRDs have been used to classify chemical analyses of ground water in the Chaj Doab area of Pakistan to illustrate this new approach. Using this graphical method, the differentiated ground water types are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate, and sodium sulfate. Sodium bicarbonate emerges as the most abundant ground water type. MRDs also offer a visual display of the Chebotarev sequence of ground water quality evolution. PMID:14649865

  18. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E., Jr.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  19. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  20. Water type and concentration of dissolved solids, chloride, and sulfate in water from the Ozark aquifer in Missouri, Arkansas, Kansas, and Oklahoma

    USGS Publications Warehouse

    Imes, Jeffrey L.; Davis, J.V.

    1991-01-01

    The Ozark aquifer is a thick sequence of water-bearing dolostone, limestone, and sandstone of latest Cambrian through Middle Devonian age that is widely used as a source of water throughout the Ozark Plateaus province (index map). The Ozark aquifer is the largest of three aquifers that form part of the Ozark Plateaus aquifer system. The aquifer was studied as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA; Jorgensen and Signor, 1981), a study of regional aquifer systems in the midcontinent United States that includes parts of 10States. Because of its significance as a source of freshwater in parts of Missouri, Arkansas, Kansas, and Oklahoma, a subregional project was established to investigate the Ozark Plateaus aquifer system in more detail than the regional study could provide.The geologic and hydrologic relation between the Ozark Plateaus aquifer system and other regional aquifer systems of the Midwest is presented in Jorgensen and others (in press). The relation of the Ozark aquifer to the Ozark Plateaus aquifer system is explained in Imes [in press (a)]. A companion publication, Imes [1990 (b)], contains contour maps of the altitude of the top, thickness, and potentiometric surface of the Ozark aquifer. This report contains maps that show water type and concentrations of dissolved solids, chloride, and sulfate in water from the Ozark aquifer. Most of the data from which these maps are compiled is stored in the CMRASA hydrochemical data base (R.B. Leonard, U.S. Geological Survey, written commun., 1986). Data for Oklahoma were also taken from data published by Havens (1978). The maps in this report on the Ozark subregion may contain small differences from maps in other CMRASA publications because the criteria for data selection may be different and the subregional maps may contain additional data. However, regional trends in these maps are consistent with other maps published as part of the regional project.

  1. Hanford Site environmental data for calendar year 1990 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data for calendar year 1990 by the Ground-Water Surveillance Project, reported Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1990 (Evans et al. 1992) and mental Report for Calendar Year 1990 (Woodruff and Hanf 1991). The data listings provided here were generated from the Hanford Environmental Information System database.

  2. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  3. Stability of salt in the Permian salt basin of Kansas, Oklahoma, Texas and New Mexico, with a section on dissolved salts in surface water

    USGS Publications Warehouse

    Bachman, George Odell; Johnson, Ross Byron

    1973-01-01

    bedded salt from subsurface dissolution depends chiefly on the isolation of the salt from moving ground water that is not completely saturated with salt. Karst topography is a major criterion for recognizing areas where subsurface dissolution has been active in the past; therefore, the age of the karst development is needed to provide the most accurate estimate of the dissolution rate. The Ogallala Formation-of Pliocene age is probably the most widespread deposit in the Permian salt basin that can be used as a point of reference for dating the development of recent topography. It is estimated that salt has been dissolved laterally in the vicinity of Carlsbad, New Mexico, at an average rate of about 6-8 miles per million years. Estimates of future rates of salt dissolution and the resulting lateral retreat of the underground dissolution front can be projected with reasonable confidence for southeastern New Mexico on the assumption that the climatic changes there in the past 4 million years are representative of climatic changes that may be expected in the near future of geologic time. Large amounts of salt are carried by present-day rivers in the Permian salt basin; some of the salt is derived from subsurface salt beds, but dissolution is relatively slow. Ground-water movement through the Permian salt basin is also relatively slow.

  4. Karst in Permian evaporite rocks of western Oklahoma

    SciTech Connect

    Johnson, K.S. )

    1993-02-01

    Bedded evaporites (gypsum and salt) of Permian age have been dissolved naturally by ground water to form a major evaporite-karst region in western Oklahoma. The Blaine Formation and associated evaporites comprise 100--800 ft of strata that dip gently into broad, structural basins. Outcropping gypsum, dolomite, and red-bed shales of the Blaine display typical karstic features, such as sinkholes, caves, disappearing streams, and springs. Large caves are developed in gypsum beds 10--30 ft thick at several places, and a major gypsum/dolomite karst aquifer provides irrigation water to a large region in southwestern Oklahoma, where salt layers above and below the Blaine Formation have been partly dissolved at depths of 30--800 ft below the land surface. Salt dissolution causes development of brine-filled cavities, into which overlying strata collapse, and the brine eventually is emitted at the land surface in large salt plains.

  5. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements...

  6. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements...

  7. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  8. Review of ground water modeling needs for the US Army

    SciTech Connect

    Not Available

    1992-09-01

    The report was prepared to assist the U.S. Army in remediation of ground water contamination from hazardous, toxic, and radioactive wastes at Army installations. The Waterways Experiment Station of the Army Corps of Engineers requested that the Water Science and Technology Board evaluate the state of the art in mathematical models of ground water flow and contaminant transport, and then advise the Corps of Engineers on how it might support and use such models to meet Army's ground water remediation needs over the next ten years. The study recommends that the Army develop in-house expertise in ground water modeling, expand partnership programs between the Army and academic researchers, and develop a ground water modeling support center to help focus research, technology transfer and training activities.

  9. Model-estimated ground-water recharge and hydrograph of ground-water discharge to a stream

    USGS Publications Warehouse

    Rutledge, A.T.

    1997-01-01

    The computer model PULSE, described in this report, can be used to construct a hydrograph of ground-water discharge to a stream. The model is applicable to a ground-water flow system that is driven by areally uniform recharge to the water table, and in which ground water discharges to a gaining stream. One of the two formulations used by the model allows for an instantaneous recharge pulse and subsequent ground-water discharge to the stream. The other formulation, which allows for a gradual hydrologic gain or loss term in addition to the instantaneous pulse, can be used to simulate the effects of gradual recharge to the water table, ground-water evapotranspiration, or downward leakage to a deeper aquifer.

  10. REMEDIATION AND PROTECTION OF GROUND WATER FROM CONTAMINATION BY ARSENIC

    EPA Science Inventory

    Successful prevention of public exposure to arsenic in ground-water resources impacted by natural sources or contaminated sites is dependent on scientifically-based strategies for site remediation and water resource management. Research within the National Risk Management Resear...