Science.gov

Sample records for olea europaea evidence

  1. Flavonoids from leaves of Olea europaea L. cultivars.

    PubMed

    de Laurentis, N; Stefanizzi, L; Milillo, M A; Tantillo, G

    1998-01-01

    We isolated and identified the following flavonoid compounds from the dried leaves of some blooming cultivars of Olea europaea L.: hesperidin, rutin, luteolin-7-O-glucoside, apigenin, apigenin-7-O-glucoside, quercetin, kaempferol. The structure of the isolated flavonoids was determined by UV, 1H-NMR, 13C-NMR, HPLC. PMID:9872014

  2. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive)

    PubMed Central

    Hashmi, Muhammad Ali; Khan, Afsar; Hanif, Muhammad; Farooq, Umar; Perveen, Shagufta

    2015-01-01

    Aim of the Review. To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology of Olea europaea to explore its therapeutic potential and future research opportunities. Material and Methods. All the available information on O. europaea was collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science) and a library search. Results. Ethnomedical uses of O. europaea are recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites from O. europaea. The plant materials and isolated components have shown a wide spectrum of in vitro and in vivo pharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities. Conclusions. O. europaea emerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine. PMID:25802541

  3. Nonsterol Triterpenoids as Major Constituents of Olea europaea

    PubMed Central

    Stiti, Naïm; Hartmann, Marie-Andrée

    2012-01-01

    Plant triterpenoids represent a large and structurally diverse class of natural products. A growing interest has been focused on triterpenoids over the past decade due to their beneficial effects on human health. We show here that these bioactive compounds are major constituents of several aerial parts (floral bud, leaf bud, stem, and leaf) of olive tree, a crop exploited so far almost exclusively for its fruit and oil. O. europaea callus cultures were analyzed as well. Twenty sterols and twenty-nine nonsteroidal tetra- and pentacyclic triterpenoids belonging to seven types of carbon skeletons (oleanane, ursane, lupane, taraxerane, taraxastane, euphane, and lanostane) were identified and quantified by GC and GC-MS as free and esterified compounds. The oleanane-type compounds, oleanolic acid and maslinic acid, were largely predominant in all the organs tested, whereas they are practically absent in olive oil. In floral buds, they represented as much as 2.7% of dry matter. In callus cultures, lanostane-type compounds were the most abundant triterpenoids. In all the tissues analyzed, free and esterified triterpene alcohols exhibited different distribution patterns of their carbon skeletons. Taken together, these data provide new insights into largely unknown triterpene secondary metabolism of Olea europaea. PMID:22523691

  4. Vulnerability to cavitation in Olea europaea current-year shoots: further evidence of an open-vessel artifact associated with centrifuge and air-injection techniques.

    PubMed

    Torres-Ruiz, José M; Cochard, Hervé; Mayr, Stefan; Beikircher, Barbara; Diaz-Espejo, Antonio; Rodriguez-Dominguez, Celia M; Badel, Eric; Fernández, José Enrique

    2014-11-01

    Different methods have been devised to analyze vulnerability to cavitation of plants. Although a good agreement between them is usually found, some discrepancies have been reported when measuring samples from long-vesseled species. The aim of this study was to evaluate possible artifacts derived from different methods and sample sizes. Current-year shoot segments of mature olive trees (Olea europaea), a long-vesseled species, were used to generate vulnerability curves (VCs) by bench dehydration, pressure collar and both static- and flow-centrifuge methods. For the latter, two different rotors were used to test possible effects of the rotor design on the curves. Indeed, high-resolution computed tomography (HRCT) images were used to evaluate the functional status of xylem at different water potentials. Measurements of native embolism were used to validate the methods used. The pressure collar and the two centrifugal methods showed greater vulnerability to cavitation than the dehydration method. The shift in vulnerability thresholds in centrifuge methods was more pronounced in shorter samples, supporting the open-vessel artifact hypothesis as a higher proportion of vessels were open in short samples. The two different rotor designs used for the flow-centrifuge method revealed similar vulnerability to cavitation. Only the bench dehydration or HRCT methods produced VCs that agreed with native levels of embolism and water potential values measured in the field. PMID:24611594

  5. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    PubMed

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants. PMID:24494523

  6. Chloroformic and Methanolic Extracts of Olea europaea L. Leaves Present Anti-Inflammatory and Analgesic Activities

    PubMed Central

    Chebbi Mahjoub, R; Khemiss, M.; Dhidah, M.; Dellaï, A.; Bouraoui, A.; Khemiss, F.

    2011-01-01

    Olea europaea L. is used in traditional medicine in the Mediterranean areas. Its natural products are used in the treatment of different disorders, like fighting fever and some infectious diseases such as malaria, the treatment of arrhythmia, and relief of intestinal spasms. The aim of the current study is to investigate the possible anti-inflammatory and anatinociceptive effects of methanol and chloroformic extracts prepared from leaves of Olea europaea L. The anti-inflammatory and antinociceptive effects of the different extracts of Olea europaea leaves were assessed after intraperitoneal administration into rats and mice, using the carrageenan-induced paw edema model in rats to test the anti-inflammatory effect and the acetic acid-induced writhing in mice to test the analgesic effect. The chloroformic and methanolic leaves extracts, studied at the doses of 50, 100, and 200 mg/kg (Body Weight: BW), exhibited significant dose-dependent anti-inflammatory and analgesic activities. Based on the results obtained, it can be concluded that Olea europaea leaves extracts have anti-inflammatory and antinociceptive effects. PMID:22084717

  7. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile constituents of commercial black-ripe table olives (Olea europaea) from the United States, Spain, Egypt and Morocco were analyzed by gas chromatography and gas chromatography-mass spectrometry (GC-MS). Dynamic headspace sampling was used to isolate a variety of aldehydes, alcohols, esters, ...

  8. Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the united states department of agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen microsatellite loci were used to genotype 108 accessions of cultivated olive, Olea europaea L. ssp. europaea var. europaea, and eight of O. europaea L. ssp. cuspidata (Wall. ex G. Don) Ciferri from the germplasm collection of the United States Department of Agriculture in Davis, California. ...

  9. In vitro anti-complementary activity of flavonoids from olive (Olea europaea L.) leaves.

    PubMed

    Pieroni, A; Heimler, D; Pieters, L; van Poel, B; Vlietinck, A J

    1996-10-01

    From extracts of olive (Olea europaea L., Oleaceae) leaves showing anti-complementary activity, the flavonoids apigenin, apigenin-4'-O-rhamnosylglucoside, apigenin-7-O-glucoside, luteolin, luteolin-4'-O-glucoside, luteolin-7-O-glucoside, chrysoeriol, chrysoeriol-7-O-glucoside and quercetin-3-O-rhamnoside were isolated. Major isolated constituents strongly inhibited the classical pathway of the complement system. PMID:8941947

  10. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    PubMed

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  11. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  12. Reduction of oil bitterness by heating of olive (Olea europaea) fruits.

    PubMed

    García, J M; Yousfi, K; Mateos, R; Olmo, M; Cert, A

    2001-09-01

    Olives (Olea europaea) of the Manzanilla and Verdial varieties, harvested at the green mature stage of ripening, were heated at 30, 40, 45, and 50 degrees C during 24 h and at 40 degrees C during 24, 48, and 72 h, respectively. Just after treatments, oils were physically extracted from the olives. Olive heating promotes a reduction of oil bitterness in direct relationship to the time and temperature used. Fruit heating at < or =40 degrees C during 24 h did not produce significant changes of acidity, UV absorption, peroxide index, panel test score, or oxidative stability of the obtained oils. Both longer treatments at 40 degrees C and heating at >40 degrees C yielded oils with less oxidative stability. Oils obtained from olives heated at > or =40 degrees C showed higher concentrations of chlorophylls and carotenes. For each olive variety, a good correlation between oil bitterness and content of hydroxytyrosol secoiridoid derivatives was found. PMID:11559116

  13. Hot water dipping of olives (Olea europaea) for virgin oil debittering.

    PubMed

    García, José M; Yousfi, Khaled; Oliva, Jesús; García-Diaz, M Teresa; Pérez-Camino, M Carmen

    2005-10-19

    Olives (Olea europaea L.) of the Manzanilla, Picual, and Verdial varieties harvested at the green mature stage of ripening were dipped in hot water at a range of temperatures between 60 and 72 degrees C for 3 min. Immediately after treatment, oils were physically extracted from the olives. Olive heating promotes a reduction of oil bitterness in direct relationship to the temperature used. Fruit heating at > or =60 degrees C for 3 min did not cause significant changes in acidity, UV absorption, peroxide index, and panel test score of the oils obtained but decreased its oxidative stability. Oils extracted from heated fruit showed higher concentrations of chlorophylls and carotenes and lower total phenol content. PMID:16218671

  14. Antidiabetic effect of Olea europaea L. in normal and diabetic rats.

    PubMed

    Eidi, A; Eidi, M; Darzi, R

    2009-03-01

    The antidiabetic effect of an alcohol extract of olive (Olea europaea L.) leaves was investigated in normal and streptozotocin-induced diabetic rats. The oral administration of the olive leaves extract (0.1, 0.25 and 0.5 g/kg body wt) for 14 days significantly decreased the serum glucose, total cholesterol, triglycerides, urea, uric acid, creatinine, aspartate amino transferase (AST) and alanine amino transferase (ALT) while it increased the serum insulin in diabetic rats but not in normal rats (p < 0.05). A comparison was made between the action of olive leaves extract and glibenclamide (600 microg/kg), a known antidiabetic drug. The antidiabetic effect of the extract was more effective than that observed with glibenclamide. PMID:18844257

  15. Generation and Analysis of Expressed Sequence Tags from Olea europaea L.

    PubMed Central

    Ozdemir Ozgenturk, Nehir; Oruç, Fatma; Sezerman, Ugur; Kuçukural, Alper; Vural Korkut, Senay; Toksoz, Feriha; Un, Cemal

    2010-01-01

    Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no homology to the database, 2024 ESTs have homology (under 80%) with hypothetical proteins, putative proteins, expressed proteins, and unknown proteins in NCBI-GenBank. 635 EST's unique genes sequence have been identified by over 80% homology to known function in other species which were not previously described in Olea family. Only 3.1% of total EST's was shown similarity with olive database existing in NCBI. This generated EST's data and consensus sequences were submitted to NCBI as valuable source for functional genome studies of olive. PMID:21197085

  16. Efficient method for screening and identification of radical scavengers in the leaves of Olea europaea L.

    PubMed

    Wang, Xiaofei; Li, Chen; Liu, Yewei; Li, Hongbing; Di, Duolong

    2011-03-01

    In this article, an efficient method was developed to screen, isolate and identify the major radical scavengers in the leaves of Olea europaea L. by DPPH-HPLC-DAD, HSCCC and NMR. The method of DPPH-HPLC-DAD was used to screen the major radical scavengers. It was found that three major constituents (A, B, C) in the extract of the leaves of O. europaea L. possessed potential antioxidant activities. In order to identify the chemical structures of those compounds, the HSCCC method with a two-phase solvent system composed of petroleum ether-ethyl acetate-water at an optimized volume ratio of 6:600:700 (v/v/v) together with column chromatography was developed to isolate and purify the active compounds. Pure compounds A (225 mg), B (10 mg) and C (12 mg) with purities 92.6, 95.1 and 96.4%, respectively, were obtained from the crude sample (500 mg). Their structures were identified as oleuropein (A), luteolin-7-O-glucoside (B) and verbascoside (C) by (1) H-NMR and (13) C-NMR. PMID:21321972

  17. Forensic Botany: Potential Usefulness of Microsatellite-based Genotyping of Croatian Olive (Olea europaea L.) in Forensic Casework

    PubMed Central

    Štambuk, Snježana; Sutlović, Davorka; Bakarić, Pavle; Petričević, Sandra; Anđelinović, Šimun

    2007-01-01

    Aim To assess genotyping with microsatellite-based markers of the olive (Olea europaea L.) for potential application of olive as legal case evidence, with regard to the degree of variability within the Croatian olive genomic pool and to the effectiveness of the chosen set of microsatellite-based markers in revealing olive divergence. Methods The total of 44 autochthonous Croatian olive specimens were subjected to genotyping with 16 previously described and developed microsatellite-based markers. According to previous morphological analyses, 44 specimens were classified into 30 cultivars with the exception of an additional, previously unassigned specimen. Results Genotyping of 44 specimens distinguished a total of 44 different genotype profiles by 16 microsatellite-based loci. Average expected heterozigosity amounted to 0.758, which points to significant diversity of Croatian olives. Conclusion Croatian olive genotyping showed strong varietal discrimination up to the single tree and considerable potential application of olive as evidence in investigation of crime, accident, and suicide circumstances. PMID:17696311

  18. In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings

    PubMed Central

    Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  19. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    PubMed

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  20. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  1. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-a review.

    PubMed

    Ghanbari, Rahele; Anwar, Farooq; Alkharfy, Khalid M; Gilani, Anwarul-Hassan; Saari, Nazamid

    2012-01-01

    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed. PMID:22489153

  2. Characterisation of chlorophyll oxidation mediated by peroxidative activity in olives (Olea europaea L.) cv. Hojiblanca.

    PubMed

    Vergara-Domínguez, Honorio; Roca, María; Gandul-Rojas, Beatriz

    2013-08-15

    The oxidation of chlorophyll a (chl a) catalysed by peroxidase (POD) from mesocarp of the olive fruit (Olea europaea L., cv Hojiblanca) in the presence of H2O2 and 2,4-dichlorophenol (2,4-DCP), is characterised via the individualised quantification of the products of the enzymatic reaction using a new methodology of HPLC-UV spectrometry. This innovation has allowed the discovery that, in addition to 13(2) OH chl a and 15(1) OH lactone chl a, which are the first products of POD on chl a, the reaction process sequentially creates another series of oxidised chlorophyll derivatives which have not been previously described. Their origins have been linked to POD activity in the presence of 2,4-DCP. Likewise, a study of the effect of the concentration of the various cosubstrates on the POD reaction rate demonstrated that the correct establishment of the relative concentrations of the same ([H2O2]/[2,4-DCP]/[Chl]=1:3:0.02) is crucial to explaining inhibition effects by substrates and carrying out optimum measurements. Therefore, new essential parameters for the determination of POD activity on a chlorophyll substrate are established. PMID:23561174

  3. Epicuticular Wax in Developing Olives (Olea europaea) Is Highly Dependent upon Cultivar and Fruit Ripeness.

    PubMed

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep; Barrios, Gonçal; Mateu, Jordi; Ninot, Antonia; Romero, Agustí

    2016-08-01

    The epicuticular wax (EW) layer is located on the surface of most plant organs. It provides the cuticle with most of its properties and is the primary barrier against biotic and abiotic stress. Despite the importance of Olea europaea cultivation, few studies have characterized the EW covering leaves and olives, which could be involved in resistance to both infection and environmental conditions. In the present study, wide-ranging screening was carried out using direct-injection electrospray ionization coupled to high-resolution mass spectrometry to analyze EW in developing olives of nine varieties. The proportions of EW fractions [wax esters (WEs), diacylglycerols, triacylglycerols (TAGs), triterpenic acids, and aldehydes] strongly depended upon the olive cultivar and, in only a few cases, were influenced by the sampling date. The specific compositions of the major fractions, WEs and TAGs, were strictly related to the cultivar, while the degree of unsaturation and chain length of the WEs evolved throughout the 4 weeks prior to the olive turning color. PMID:27403567

  4. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding.

    PubMed

    Gismondi, Angelo; Rolfo, Mario Federico; Leonardi, Donatella; Rickards, Olga; Canini, Antonella

    2012-07-01

    The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L. PMID:22847014

  5. In vitro propagation of olive (Olea europaea L.) by nodal segmentation of elongated shoots.

    PubMed

    Lambardi, Maurizio; Ozudogru, Elif Aylin; Roncasaglia, Romano

    2013-01-01

    Olive (Olea europaea L.), long-living, ever-green fruit tree of the Old World, has been part of a traditional landscape in the Mediterranean area for centuries. Both the fruits consumed after processing and the oil extracted from the fruits are among the main components of the Mediterranean diet, widely used for salads and cooking, as well as for preserving other food. Documentations show that the ancient use of this beautiful tree also includes lamp fuel production, wool treatment, soap production, medicine, and cosmetics. However, unlike the majority of the fruit species, olive propagation is still a laborious practice. As regards traditional propagation, rooting of cuttings and grafting stem segments onto rootstocks are possible, former being achieved only when the cuttings are collected in specific periods (spring or beginning of autumn), and latter only when skilled grafters are available. In both the cases, performance of the cultivars varies considerably. The regeneration of whole plants from ovules, on the other hand, is used only occasionally. Micropropagation of olive is not easy mainly due to explant oxidation, difficulties in explant disinfection, and labor-oriented establishment of in vitro shoot cultures. However today, the progress in micropropagation technology has made available the complete protocols for several Mediterranean cultivars. This chapter describes a micropropagation protocol based on the segmentation of nodal segments obtained from elongated shoots. PMID:23179688

  6. Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods.

    PubMed

    Rugini, E; Cristofori, V; Silvestri, C

    2016-01-01

    In olive (Olea europaea L.) traditional methods of genetic improvement have up to now produced limited results. Intensification of olive growing requires appropriate new cultivars for fully mechanized groves, but among the large number of the traditional varieties very few are suitable. High-density and super high-density hedge row orchards require genotypes with reduced size, reduced apical dominance, a semi-erect growth habit, easy to propagate, resistant to abiotic and biotic stresses, with reliably high productivity and quality of both fruits and oil. Innovative strategies supported by molecular and biotechnological techniques are required to speed up novel hybridisation methods. Among traditional approaches the Gene Pool Method seems a reasonable option, but it requires availability of widely diverse germplasm from both cultivated and wild genotypes, supported by a detailed knowledge of their genetic relationships. The practice of "gene therapy" for the most important existing cultivars, combined with conventional methods, could accelerate achievement of the main goals, but efforts to overcome some technical and ideological obstacles are needed. The present review describes the benefits that olive and its products may obtain from genetic improvement using state of the art of conventional and unconventional methods, and includes progress made in the field of in vitro techniques. The uses of both traditional and modern technologies are discussed with recommendations. PMID:26972849

  7. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    PubMed

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  8. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

    PubMed Central

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  9. Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination

    PubMed Central

    Rejón, Juan D.; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J.

    2012-01-01

    Background and Aims A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. Methods The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Key Results Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. Conclusions In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of

  10. Thriving at the limit: Differential reproductive performance in range-edge populations of a Mediterranean sclerophyll (Olea europaea)

    NASA Astrophysics Data System (ADS)

    Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos

    2013-10-01

    Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.

  11. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells.

    PubMed

    Goldsmith, Chloe D; Vuong, Quan V; Sadeqzadeh, Elham; Stathopoulos, Costas E; Roach, Paul D; Scarlett, Christopher J

    2015-01-01

    Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits. PMID:26193251

  12. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    PubMed

    Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto

    2016-01-01

    The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. PMID:26603276

  13. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: a review.

    PubMed

    Ali, Nadine; Chapuis, Elodie; Tavoillot, Johannes; Mateille, Thierry

    2014-01-01

    The olive tree (Olea europaea ssp. europaea.) is one of the most ancient cultivated trees. It is an emblematic species owing to its ecological, economic and cultural importance, especially in the Mediterranean Basin. Plant-parasitic nematodes are major damaging pests on olive trees, mainly in nurseries. They significantly contribute to economic losses in the top-ten olive-producing countries in the world. However, the damages they induce in orchards and nurseries are specifically documented only in a few countries. This review aims to update knowledge about the olive-nematode pathosystem by: (1) updating the list of plant-parasitic nematodes associated with olive trees; (2) analysing their diversity (taxonomic level, trophic groups, dominance of taxa), which allowed us (i) to assess the richness observed in each country, and (ii) to exhibit and describe the most important taxa able to induce damages on olive trees such as: Meloidogyne, Pratylenchus, Helicotylenchus, Xiphinema, Tylenchulus, Rotylenchulus, Heterodera (distribution especially in the Mediterranean Basin, pathogenicity and reactions of olive trees); (3) describing some management strategies focusing on alternative control methods; (4) suggesting new approaches for controlling plant-parasitic nematodes based on the management of the diversity of their communities, which are structured by several environmental factors such as olive diversity (due to domestication of wild olive in the past, and to breeding now), cropping systems (from traditional to high-density orchards), irrigation, and terroirs. PMID:25103828

  14. Evaluation of Anti-Inflammatory and Anti-Nociceptive Effects of Defatted Fruit Extract of Olea europaea

    PubMed Central

    Sahranavard, Shamim; Kamalinejad, Mohammad; Faizi, Mehrdad

    2014-01-01

    Fruits of Olea europaea L. have been used for centuries in folk medicine to treat many inflammatory diseases. In order to evaluate the anti-nociceptive activities of the methanolic and aqueous extracts of defatted fruits of O. europaea, formalin test was used and for evaluation of anti-inflammatory effects of the extract, the volume of paw edema was measured. The results revealed that both extracts did not exhibit significant analgesic activity in the first phase of formalin test, whereas methanolic extract at the 600 mg/Kg dose and aqueous extract at the 450 and 600 mg/Kg doses could inhibit induced pain in the second phase of formalin test. Furthermore, the results of paw edema volume measurement indicated that the aqueous extract has anti-inflammatory effects at dose of 600 mg/Kg. Induced anti-nociception by aqueous olive extract was not reversed by naloxone, which indicates that the opioid receptors are not involved in the analgesic effects of the extracts. The present data pointed out that the extracts of olive defatted fruit have anti-nociceptive and anti-inflammatory effects in rats but further studies are needed to elucidate the mechanism(s) of action and active components which are involved in analgesic and anti-inflammatory effects. PMID:24711837

  15. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.

    PubMed

    Perez-Martin, A; Flexas, J; Ribas-Carbó, M; Bota, J; Tomás, M; Infante, J M; Diaz-Espejo, A

    2009-01-01

    The present work aims to study the interactive effect of drought stress and high vapour pressure deficit (VPD) on leaf gas exchange, and especially on mesophyll conductance to CO(2) (g(m)), in two woody species of great agronomical importance in the Mediterranean basin: Vitis vinifera L. cv. Tempranillo and Olea europaea L. cv. Manzanilla. Plants were grown in specially designed outdoor chambers with ambient and below ambient VPD, under both well-irrigated and drought conditions. g(m) was estimated by the variable J method from simultaneous measurements of gas exchange and fluorescence. In both species, the response to soil water deficit was larger in g(s) than in g(m), and more important than the response to VPD. Olea europaea was apparently more sensitive to VPD, so that plants growing in more humid chambers showed higher g(s) and g(m). In V. vinifera, in contrast, soil water deficit dominated the response of g(s) and g(m). Consequently, changes in g(m)/g(s) were more related to VPD in O. europaea and to soil water deficit in V. vinifera. Most of the limitations of photosynthesis were diffusional and especially due to stomatal closure. No biochemical limitation was detected. The results showed that structural parameters played an important role in determining g(m) during the acclimation process. Although the relationship between leaf mass per unit area (M(A)) with g(m) was scattered, it imposed a limitation to the maximum g(m) achievable, with higher values of M(A) in O. europaea at lower g(m) values. M(A) decreased under water stress in O. europaea but it increased in V. vinifera. This resulted in a negative relationship between M(A) and the CO(2) draw-down between substomatal cavities and chloroplasts in O. europaea, while being positive in V. vinifera. PMID:19457982

  16. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Galán, C.; García-Mozo, H.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E.

    Temperature is one of the main factors affecting the flowering of Mediterranean trees. In the case of Olea europaea L., a low-temperature period prior to bud development is essential to interrupt dormancy. After that, and once a base temperature is reached, the plant accumulates heat until flowering starts. Different methods of obtaining the best-forecast model for the onset date of the O. europaea pollen season, using temperature as the predictive parameter, are proposed in this paper. An 18-year pollen and climatic data series (1982-1999) from Cordoba (Spain) was used to perform the study. First a multiple-regression analysis using 15-day average temperatures from the period prior to flowering time was tested. Second, three heat-summation methods were used, determining the the quantities heat units (HU): accumulated daily mean temperature after deducting a threshold, growing degree-days (GDD): proposed by Snyder [J Agric Meteorol 35:353-358 (1985)] as a measure of physiological time, and accumulated maximum temperature. In the first two, the optimum base temperature selected for heat accumulation was 12.5°C. The multiple-regression equation for 1999 gives a 7-day delay from the observed date. The most accurate results were obtained with the GDD method, with a difference of only 4.7 days between predicted and observed dates. The average heat accumulation expressed as GDD was 209.9°C days. The HU method also gives good results, with no significant statistical differences between predictions and observations.

  17. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    PubMed

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-01

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used. PMID:17628073

  18. Air pollution effects on the leaf structure of two injury resistant species: Eucalyptus camaldulensis and Olea europaea L

    SciTech Connect

    Christodoulakis, N.S.; Koutsogeorgopoulou, L. )

    1991-09-01

    The release of toxic gases as well as of particulate pollutants into the atmosphere is a major side effect of the human industrial, agricultural and domestic activities. The impact of these compounds on the various life forms of our planet seems to be very serious. Investigations of plant species resistant to pollution-induced injuries do have a meaning. The introduction of these species will improve air quality and establish a moderate rate of primary productivity in the handicapped regions. That is why data concerning an evergreen sclerophyllous species which does not present structural modifications and organelle destruction although forced to be a dweller of a partition isle in a heavily polluted, traffic-loaded main street of the smog-suffering city of Athens, Greece, seemed very interesting. In this paper, further investigation is presented. Two common, species were studied. The first, Eucalyptus camaldulensis, a huge tree once imported to Europe from Australia as a marsh-drier in an effort to control malaria, is a drought enduring species mostly known for the essential oils accumulated in its leaves. The second, Olea europaea L. var oleaster Brot, is a sclerophyllous tree growing wild in chaparall formations in Greece.

  19. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats.

    PubMed

    El-Amin, Maha; Virk, Promy; Elobeid, Mai Abdel Rahman; Almarhoon, Zainab Mohammed; Hassan, Zeinab Korany; Omer, Sawsan Ali; Merghani, Nada Mohammed; Daghestani, Maha Hassan; Al-Olayan, Ebtisam Mohammed

    2013-03-01

    Phytotherapy has a promising future in the management of diabetes, considered to be less toxic and free from side effects as compared to the use of synthetic drugs. The aim of the present study was to assess the antidiabetic possible of orally administered aqueous extracts of Murraya koenigii (ML) and Olea europaea (OL) leaves (100 and 200 mg/kg doses), in streptozotocin (70 mg/kg) induced diabetic rats. Metformin was used as a standard drug. Blood glucose, cholesterol, triglycerides, creatinine levels and body weight were estimated. ML and OL administration showed significant decrease (p>0.05) in cholesterol, triglyceride, and serum glucose levels (range 55.6%-64.6%) compared to the metformin (62.7%); however, there was no significant effect on body weight and serum creatinine. Our results suggest that both the ML and OL possess a potent antihyperglycemic and hypolipidemic effect, which may be due to the presence of antioxidants such as carbazole alkaloids and polyphenols. PMID:23455208

  20. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    PubMed

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive. PMID:26998509

  1. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube

    PubMed Central

    Iaria, Domenico

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca2+ binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive. PMID:26998509

  2. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. PMID:25737264

  3. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review

    PubMed Central

    Ghanbari, Rahele; Anwar, Farooq; Alkharfy, Khalid M.; Gilani, Anwarul-Hassan; Saari, Nazamid

    2012-01-01

    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1–3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed. PMID:22489153

  4. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  5. High Genetic Diversity and Clonal Growth in Relict Populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria

    PubMed Central

    BAALI-CHERIF, DJAMEL; BESNARD, GUILLAUME

    2005-01-01

    • Background and Aims The Laperrine's olive (Olea europaea subsp. laperrinei) is an endemic tree from Saharan massifs. Its populations have substantially regressed since the Pleistocene and are presently distributed in a fragmented habitat. Long-term persistence of this taxon is uncertain and programmes of preservation have to be urgently implemented. To define a conservation strategy, the genetic diversity and breeding system of this tree have to be investigated. • Methods One hundred and eleven ramets were prospected in the laperrinei populations from the Tamanrasset region, southern Algeria. Genetic polymorphism was revealed at nuclear and chloroplast DNA (cpDNA) microsatellite loci allowing a comparative assessment of the genetic diversity of laperrinei and Mediterranean populations based on bi-parental and maternal markers. Additionally, nuclear microsatellite markers enabled the genotypes to be identified unambiguously. • Key Results Based on nuclear microsatellite data, the total diversity was high (Ht = 0·61) in laperrinei populations and similar to that observed in western Mediterranean populations. A substantial cpDNA diversity (Ht = 0·19) was also observed. Genetically identical ramets originated from the same stump (which can cover >80 m2) were identified in each population. Sixteen per cent of genets exhibited more than one ramet. In addition, several cases of somatic mutations were unambiguously revealed in distinct ramets stemming from the same stump. • Conclusions These data show that highly isolated and small laperrinei populations are able to maintain a high genetic diversity. This supports the existence of relict trees persisting for a very long time (probably since the last humid transition, 3000 years ago). It is proposed that the very long persistence associated with an asexual multiplication of highly adapted trees could be a strategy of survival in extreme conditions avoiding a mutational meltdown due to reproduction in reduced

  6. Pentacyclic triterpene in Olea europaea L: A simultaneous determination by high-performance liquid chromatography coupled to mass spectrometry.

    PubMed

    Giménez, Estela; Juan, M Emília; Calvo-Melià, Sara; Barbosa, José; Sanz-Nebot, Victoria; Planas, Joana M

    2015-09-01

    Pentacyclic triterpenes are gaining interest due to their beneficial health effects, as anti-inflammatory, anti-diabetic and anti-tumoral, among others. In this study, an analytical LC-MS method was developed for the simultaneous determination of maslinic, oleanolic and ursolic acids along with erythrodiol and uvaol, which are the main triterpenic compounds present in the fruits and leaves of Olea europaea L. A Zorbax Eclipse PAH column at 30°C with mobile phase of water (17%) and methanol (83%) at 0.8mL/min conformed the optimal chromatographic conditions that allowed the separation of the compounds of interest, two pairs of which are isomers differing only in the position of one methyl group (oleanolic-ursolic and erythrodiol-uvaol). The ionization was performed in an APCI source at 450°C programmed in negative mode for the triterpenic acids, and in positive for the alcohols. An ion trap (LC-IT-MS) and a triple quadrupole (LC-QqQ-MS) were assessed for maximal sensitivity that was achieved with LC-QqQ-MS. The LODs of triterpenic acids were lower than 1nM, whereas for erythrodiol and uvaol were 4.5 and 7.5nM, respectively. The method was linear for the five analytes in the range of concentrations from 0.005 to 15μM with correlation coefficients exceeding 0.99. The precision and accuracy were ≤9.90% and ≤9.57%, respectively. The applicability of the validated method was assessed in the analysis of the pentacyclic triterpenes in Marfil table olives, after the optimization of the extraction procedure. The developed method constitutes the first step for future studies of triterpenic compounds present in foods that would allow establishing their effects on human health. PMID:26210113

  7. Assessing ambient ozone injury in olive (Olea europaea L.) plants by using the antioxidant ethylenediurea (EDU) in Saudi Arabia.

    PubMed

    Basahi, J M; Ismail, I M; Haiba, N S; Hassan, I A; Lorenzini, G

    2016-06-01

    The antiozonant chemical, ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea, abbreviated as EDU), was applied as stem injections or soil drenches to 5-year-old containerized plants of olive (Olea europaea L. cultivar Kalamata) in growth chambers in order to assess its ameliorative effects against realistic ozone (O3) stress. Visible injury symptoms were reduced greatly in individuals treated with EDU, with injection applications having greater protection than soil drenches. EDU application caused increases in the measured ecophysiological parameters compared to untreated individuals. In particular, the stem injection protected plants against photosynthetic impairment (unchanged net photosynthetic rates and intercellular CO2 concentration, in comparison to plants grown in filtered air). EDU application increased the protection of PSII from ambient O3 oxidative stress, although it did not retain the proportion of redox state of QA, pigment composition of photosynthetic apparatus and size of light-harvesting complex of PSII. However, the stem injection of plants with EDU induced lower non-photochemical quenching (NPQ) values in comparison to ambient air (-2 %), indicating a better photoprotection of PSII in comparison to soil drench application. EDU application caused increases in the morphological and biometric parameters compared to individuals exposed to ambient air. To the best of our knowledge, this is the first study highlighting the protection of Kalamata olive trees due to EDU in terms of growth, yield, visible injury, and photosynthetic performance. Furthermore, this study proved that EDU could be a low-cost and a low-technology efficient tool for assessing O3 effects on plant performances in the field in Saudi Arabia. PMID:27230423

  8. Immunoproteomic tools are used to identify masked allergens: Ole e 12, an allergenic isoflavone reductase from olive (Olea europaea) pollen.

    PubMed

    Castro, Lourdes; Crespo, Jesús F; Rodríguez, Julia; Rodríguez, Rosalía; Villalba, Mayte

    2015-12-01

    Proteins performing important biochemical activities in the olive tree (Olea europaea) pollen have been identified as allergens. One novel 37-kDa protein seems to be associated to the IgE-binding profile of a group of patients suffering allergy to peach and olive pollen. Three previously described olive pollen allergens exhibit very similar molecular mass. Our objective was to identify this allergen by using immunoproteomic approaches. After 2D-electrophoresis and mass spectrometry, peptide sequences from several IgE-binding spots, allowed identifying this new allergen, as well as cloning and DNA sequencing of the corresponding gene. The allergen, named Ole e 12, is a polymorphic isoflavone reductase-like protein of 308 amino acids showing 80% and 74% identity with birch and pear allergens, Bet v 6 and Pyr c 5, respectively. A prevalence of 33% in the selected population is in contrast to 4%-10% in groups of subjects suffering from pollinosis. Recombinant allergen was produced in Escherichia coli, and deeply characterised. Immunoblotting and ELISA detection as well as inhibition experiments were performed with polyclonal antisera and allergic patients' sera. The recombinant allergen retains the IgE reactivity of its natural counterpart. Close structural and immunological relationships between members of this protein family were supported by their IgG recognition in vegetable species. In summary, Ole e 12 is a minor olive pollen allergen, which gains relevance in patients allergic to peach with olive pollinosis. Proteomic approaches used to analyse this allergen provide useful tools to identify hidden allergens, relevant for several allergic populations and thus complete allergenic panels. PMID:26391288

  9. Comparing the historic olive trees (Olea europaea L.) of Santa Cruz with contemporaneous trees in the Santa Barbara, CA area: a case study of diversity and structure in an introduced agricultural species conserved in situ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historic populations of crop species outside their centers of origin and diversity, like the domestic olive (Olea europaea L.) in North America, are genetic resources for contemporary agriculture, including genotypes that could be adapted to, local conditions. The primary goal of this study was to d...

  10. Detection of Olea europaea subsp. cuspidata and Juniperus procera in the dry Afromontane forest of northern Ethiopia using subpixel analysis of Landsat imagery

    NASA Astrophysics Data System (ADS)

    Hishe, Hadgu; Giday, Kidane; Neka, Mulugeta; Soromessa, Teshome; Van Orshoven, Jos; Muys, Bart

    2015-01-01

    Comprehensive and less costly forest inventory approaches are required to monitor the spatiotemporal dynamics of key species in forest ecosystems. Subpixel analysis using the earth resources data analysis system imagine subpixel classification procedure was tested to extract Olea europaea subsp. cuspidata and Juniperus procera canopies from Landsat 7 enhanced thematic mapper plus imagery. Control points with various canopy area fractions of the target species were collected to develop signatures for each of the species. With these signatures, the imagine subpixel classification procedure was run for each species independently. The subpixel process enabled the detection of O. europaea subsp. cuspidata and J. procera trees in pure and mixed pixels. Total of 100 pixels each were field verified for both species. An overall accuracy of 85% was achieved for O. europaea subsp. cuspidata and 89% for J. procera. A high overall accuracy level of detecting species at a natural forest was achieved, which encourages using the algorithm for future species monitoring activities. We recommend that the algorithm has to be validated in similar environment to enrich the knowledge on its capability to ensure its wider usage.

  11. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions.

    PubMed

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the

  12. Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings.

    PubMed

    Aganchich, Badia; Wahbi, Said; Loreto, Francesco; Centritto, Mauro

    2009-05-01

    The effect of partial root drying (PRD) irrigation on split-root olive (Olea europaea L. cv Picholine marocaine) saplings was investigated. An irrigated control and two PRD regimes were applied (control: irrigation applied on both sides of the root system to keep the soil water content close to field capacity; PRD(50): irrigation applied at 50% of the control amount on one side of the root system and irrigation withheld from the other side, with irrigation regimes switched between the sides of the root system every 2 weeks; and PRD(100): irrigation applied at 100% of the control amount on one side and irrigation withheld on the other side, with irrigation regimes switched between the sides of the root system every 2 weeks. Only saplings in the PRD(50) regime were subjected to water-deficit irrigation. The PRD treatments significantly affected water relations and vegetative growth throughout the growing season. Predawn leaf water potential and relative water content differed significantly between the PRD(50) and PRD(100) saplings, leading to reduced stomatal conductance, carbon assimilation, shoot length and leaf number in PRD(50) saplings. However, the PRD(50) water-deficit treatment did not affect the capacity of the saplings to assimilate CO(2). Activities of superoxide dismutase, soluble and insoluble peroxidase (POX) and polyphenol oxidase were up-regulated by the PRD(50) and PRD(100) treatments compared with control values. The higher activities of both soluble and insoluble POX observed in PRD(50) saplings may reflect the greater inhibitory effect of this treatment on vegetative growth. Up-regulation of the detoxifying systems in the PRD(100) and PRD(50) saplings may have provided protection mechanisms against irreversible damage to the photosynthetic machinery, thereby allowing the photosynthetic apparatus to function and preventing the development of severe water stress. We also measured CO(2) assimilation rate/internal leaf CO(2) concentration (A

  13. Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae

    PubMed Central

    2015-01-01

    Pseudomonas fluorescens strain PICF7 is a native endophyte of olive roots. Previous studies have shown this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against the soil-borne fungus Verticillium dahliae, the causal agent of one of the most devastating diseases for olive (Olea europaea L.) cultivation. Here, we announce and describe the complete genome sequence of Pseudomonas fluorescens strain PICF7 consisting of a circular chromosome of 6,136,735 bp that encodes 5,567 protein-coding genes and 88 RNA-only encoding genes. Genome analysis revealed genes predicting factors such as secretion systems, siderophores, detoxifying compounds or volatile components. Further analysis of the genome sequence of PICF7 will help in gaining insights into biocontrol and endophytism. PMID:25685259

  14. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation.

    PubMed

    Iaria, Domenico L; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2015-01-01

    Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in

  15. Effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids.

    PubMed

    Trebušak, Tina; Levart, Alenka; Salobir, Janez; Pirman, Tatjana

    2014-03-01

    The objective of the present study was to evaluate the effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive tree) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids. Forty-eight slovenska kunka (SIKA) rabbits were divided into four homogeneous groups. The control group (CONT-) received diet with 6% palm fat; other groups received diet with 6% linseed oil and were either unsupplemented (CONT+) or supplemented with 1% of G. lucidum (REISHI) or O. europaea leaves (OLIVE). Rabbits were slaughtered and fatty acid composition, concentration of vitamin E and malondialdehyde (MDA) in back muscle were analyzed. The results showed that linseed oil addition improved fatty acid composition by increasing polyunsaturated fatty acid (PUFA) proportion, decreasing proportion of saturated fatty acid (SFA) and reducing n-6/n-3 ratio in rabbit meat. Groups that were supplemented with linseed oil had lower content of α-tocopherol and higher content of γ-tocopherol, compared to the CONT- group. The addition of potential antioxidants did not effectively prevent oxidation of rabbit meat. PMID:24334050

  16. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions

    PubMed Central

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea ‘var. Chetoui’) in a Tunisian grove were exposed to four treatments from May to October for three-years: ‘control’ plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; ‘PRD100’ were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; ‘PRD50’ were given 50% of ETc to half of the root-system, and; ‘rain-fed’ plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during ‘off-years’ may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation

  17. Olea europaea leaf (Ph.Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase.

    PubMed

    Flemmig, J; Kuchta, K; Arnhold, J; Rauwald, H W

    2011-05-15

    In Mediterranean folk medicine Olea europaea L. leaf (Ph.Eur.) preparations are used as a common remedy for gout. In this in vitro study kinetic measurements were performed on both an 80% ethanolic (v/v) Olea europaea leaf dry extract (OLE) as well as on nine of its typical phenolic constituents in order to investigate its possible inhibitory effects on xanthine oxidase (XO), an enzyme well known to contribute significantly to this pathological process. Dixon and Lineweaver-Burk plot analysis were used to determine K(i) values and the inhibition mode for the isolated phenolics, which were analysed by RP-HPLC for standardisation of OLE. The standardised OLE as well as some of the tested phenolics significantly inhibited the activity of XO. Among these, the flavone aglycone apigenin exhibited by far the strongest effect on XO with a K(i) value of 0.52 μM. In comparison, the known synthetic XO inhibitor allopurinol, used as a reference standard, showed a K(i) of 7.3 μM. Although the phenolic secoiridoid oleuropein, the main ingredient of the extract (24.8%), had a considerable higher K(i) value of 53.0 μM, it still displayed a significant inhibition of XO. Furthermore, caffeic acid (K(i) of 11.5 μM; 1.89% of the extract), luteolin-7-O-β-D-glucoside (K(i) of 15.0 μM; 0.86%) and luteolin (K(i) of 2.9 μM; 0.086%) also contributed significantly to the XO inhibiting effect of OLE. For oleuropein, a competitive mode of inhibition was found, while all other active substances displayed a mixed mode of inhibition. Tyrosol, hydroxytyrosol, verbascoside, and apigenin-7-O-β-D-glucoside, which makes up for 0.3% of the extract, were inactive in all tested concentrations. Regarding the pharmacological in vitro effect of apigenin-7-O-β-D-glucoside, it has to be considered that it is transformed into the active apigenin aglycone in the mammalian body, thus also contributing substantially to the anti-gout activity of olive leaves. For the first time, this study provides a

  18. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation

    PubMed Central

    Iaria, Domenico L.; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown “spot” which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of “Leucocarpa” and “Cassanese” olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in “Leucocarpa” and “Cassanese” genotypes, respectively, during 100–130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3′-hydrogenase (F3′H), flavonol 3′5 ′-hydrogenase (F3′5′H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute

  19. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881

  20. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility.

    PubMed

    Maldonado-González, M Mercedes; Schilirò, Elisabetta; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-09-01

    Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild-type PICF7, discarding these traits as relevant for its endophytic lifestyle. PMID:25471384

  1. Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications

    PubMed Central

    Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos

    2014-01-01

    Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694

  2. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-04-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  3. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress.

    PubMed

    Zouari, Mohamed; Ben Ahmed, Chedlia; Elloumi, Nada; Bellassoued, Khaled; Delmail, David; Labrousse, Pascal; Ben Abdallah, Ferjani; Ben Rouina, Bechir

    2016-06-01

    Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20 mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30 mg CdCl2 kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress. PMID:26946284

  4. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit.

    PubMed

    Hernández, M Luisa; Sicardo, M Dolores; Martínez-Rivas, José M

    2016-01-01

    Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues. PMID:26514651

  5. On the Use of Leaf Spectral Indices to Assess Water Status and Photosynthetic Limitations in Olea europaea L. during Water-Stress and Recovery

    PubMed Central

    Sun, Pengsen; Wahbi, Said; Tsonev, Tsonko; Haworth, Matthew; Liu, Shirong; Centritto, Mauro

    2014-01-01

    Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), mesophyll conductance (gm), total conductance (gt), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress. PMID:25136798

  6. Olive (Olea europaea L.) Leaf Polyphenols Improve Insulin Sensitivity in Middle-Aged Overweight Men: A Randomized, Placebo-Controlled, Crossover Trial

    PubMed Central

    de Bock, Martin; Derraik, José G. B.; Brennan, Christine M.; Biggs, Janene B.; Morgan, Philip E.; Hodgkinson, Steven C.; Hofman, Paul L.; Cutfield, Wayne S.

    2013-01-01

    Background Olive plant leaves (Olea europaea L.) have been used for centuries in folk medicine to treat diabetes, but there are very limited data examining the effects of olive polyphenols on glucose homeostasis in humans. Objective To assess the effects of supplementation with olive leaf polyphenols (51.1 mg oleuropein, 9.7 mg hydroxytyrosol per day) on insulin action and cardiovascular risk factors in middle-aged overweight men. Design Randomized, double-blinded, placebo-controlled, crossover trial in New Zealand. 46 participants (aged 46.4±5.5 years and BMI 28.0±2.0 kg/m2) were randomized to receive capsules with olive leaf extract (OLE) or placebo for 12 weeks, crossing over to other treatment after a 6-week washout. Primary outcome was insulin sensitivity (Matsuda method). Secondary outcomes included glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness. Results Treatment evaluations were based on the intention-to-treat principle. All participants took >96% of prescribed capsules. OLE supplementation was associated with a 15% improvement in insulin sensitivity (p = 0.024) compared to placebo. There was also a 28% improvement in pancreatic β-cell responsiveness (p = 0.013). OLE supplementation also led to increased fasting interleukin-6 (p = 0.014), IGFBP-1 (p = 0.024), and IGFBP-2 (p = 0.015) concentrations. There were however, no effects on interleukin-8, TNF-α, ultra-sensitive CRP, lipid profile, ambulatory blood pressure, body composition, carotid intima-media thickness, or liver function. Conclusions Supplementation with olive leaf polyphenols for 12 weeks significantly improved insulin sensitivity and pancreatic β-cell secretory capacity in overweight middle-aged men at risk of developing the metabolic syndrome. Trial Registration Australian New Zealand Clinical Trials Registry #336317. PMID:23516412

  7. Identification of olive (Olea europaea) pulp proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-liquid chromatography tandem mass spectrometry.

    PubMed

    Esteve, Clara; Cañas, Benito; Moreno-Gordaliza, Estefanía; Del Río, Carmen; García, María Concepción; Marina, María Luisa

    2011-11-23

    Proteins in the pulp of olive ( Olea europaea ) constitute a minor fraction. They have been sparsely studied despite their suggested role in oil stability and olive allergenicity. The analysis of a pulp protein extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a major band at 24 kDa that was subjected to tryptic in-gel digestion. Peptide extracts were analyzed by MALDI-TOF MS and nanoLC-MS/MS. The use of different search engines enabled the assignment of a number of fragmentation spectra to peptide sequences, identifying a major band as a thaumatin-like protein and other low-abundant proteins such a drought-induced protein SDi-6-like, an acyl carrier protein, Cu/Zn and Mn superoxide dismutases, a small heat shock protein, and an ATP-dependent protease subunit. Many of the produced spectra did not give good matches in the database searches, due to the scarce presence of O. europaea entries in protein databases. Nevertheless, a huge number of spectra corresponded to peptides, which showed a high degree of homology with others from sequenced organisms. These results proved that database searching with MS/MS spectra constitutes a promising approach for the characterization of olive pulp proteins. PMID:21995844

  8. Radioprotective effects in vivo of phenolics extracted from Olea europaea L. leaves against X-ray-induced chromosomal damage: comparative study versus several flavonoids and sulfur-containing compounds.

    PubMed

    Benavente-García, O; Castillo, J; Lorente, J; Alcaraz, M

    2002-01-01

    The radioprotective effects of a polyphenolic extract of Olea europaea L. leaves (OL); the flavonoids diosmin and rutin, which are widely used as pharmaceuticals; and the sulfur-containing compounds dimethylsulfoxide (DMSO) and 6-n-propyl-2-thiouracil (PTU) were determined by using the micronucleus test for anticlastogenic activity, evaluating the reduction of the frequency of micronucleated polychromatic erythrocytes (MnPCEs) in bone marrow of mouse before and after X-ray irradiation. With treatment before X-irradiation, the most effective compounds were, in order, rutin > DMSO > OL > PTU > diosmin. These results showed, for the polyphenols studied, a linear correlation (r(2) = 0.965) between anticlastogenic activity and antioxidant capacity. The magnitude of protection with treatment after X-irradiation were lower, and the most effective compounds were, in order, OL > diosmin > rutin; DMSO and PTU lacked radioprotective activity. Therefore, OL is the only substance that showed a significant anticlastogenic activity both before and after X-ray irradiation treatments. Structurally, the free oxygen radicals and lipoperoxyradicals scavenging capacity and, consequently, the anticlastogenic activity of these polyphenolic compounds are based principally on the presence of specific functional groups, mainly catechol groups (rutin, oleuropein, hydroxytyrosol, verbascoside, luteolin), that also increase the stability of the aroxyl-polyphenol radical generated in the above processes. PMID:12495584

  9. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells.

    PubMed

    Cheng, Jin-Shiung; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Sun, Wei-Chih; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-01

    Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma. PMID:27016494

  10. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2

    PubMed Central

    Asl Najjari, Amir Hossein; Rajabi, Zolfaghar; Vasfi Marandi, Mehdi; Dehghan, Gholamreza

    2015-01-01

    Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At present, oils that are used as adjuvant in commercial vaccines are mineral oils, which not only lack immunizing effect, but also produce some detriments. The aim of this study is the evaluation the immunogenicity of vegetable oils, which are more metabolizable and safer than mineral oils. In this study the efficacy of hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and also nano-selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2 was evaluated in broiler chickens. The results indicated that the prepared emulsions could elicit a little degree of immunity, but they could not inhibit the anamnestic response and infection. With regard to the results, it seems that the intact mixture of fig and olive fruit hexanic extracts could not be administered as an immunoadjuvant in the vaccine, and about nano-selenium. In spite of positive effect on the immunogenicity of avian influenza virus subtype H9N2, it still needs more work. PMID:26893813

  11. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2.

    PubMed

    Asl Najjari, Amir Hossein; Rajabi, Zolfaghar; Vasfi Marandi, Mehdi; Dehghan, Gholamreza

    2015-01-01

    Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At present, oils that are used as adjuvant in commercial vaccines are mineral oils, which not only lack immunizing effect, but also produce some detriments. The aim of this study is the evaluation the immunogenicity of vegetable oils, which are more metabolizable and safer than mineral oils. In this study the efficacy of hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and also nano-selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2 was evaluated in broiler chickens. The results indicated that the prepared emulsions could elicit a little degree of immunity, but they could not inhibit the anamnestic response and infection. With regard to the results, it seems that the intact mixture of fig and olive fruit hexanic extracts could not be administered as an immunoadjuvant in the vaccine, and about nano-selenium. In spite of positive effect on the immunogenicity of avian influenza virus subtype H9N2, it still needs more work. PMID:26893813

  12. Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds

    PubMed Central

    Abaza, Leila; Taamalli, Amani; Nsir, Houda; Zarrouk, Mokhtar

    2015-01-01

    Phenolic compounds are becoming increasingly popular because of their potential role in contributing to human health. Experimental evidence obtained from human and animal studies demonstrate that phenolic compounds from Olea europaea leaves have biological activities which may be important in the reduction in risk and severity of certain chronic diseases. Therefore, an accurate profiling of phenolics is a crucial issue. In this article, we present a review work on current treatment and analytical methods used to extract, identify, and/or quantify phenolic compounds in olive leaves. PMID:26783953

  13. Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infes...

  14. Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infe...

  15. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism

    PubMed Central

    Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells. PMID:24803988

  16. Alcohol dehydrogenases from olive (Olea europaea) fruit.

    PubMed

    Salas, J J; Sánchez, J

    1998-05-01

    Alcohol dehydrogenase activity was detected in extracts from the pericarp tissues of developing olive fruits using hexanal as the substrate. Total activity in the crude extract was 20-fold higher with NADPH than with NADH. Three discrete enzymes were resolved by means of a purification protocol involving ammonium sulfate fractionation followed by ion-exchange and affinity chromatography. One of the enzymes was NAD-dependent and displayed a high K(m) for hexanal (K(m) = 2.1 mM). Two NADP-dependent alcohol dehydrogenases were resolved, one showing a high K(m) for hexanal (K(m) = 1.9 mM) and the second with a lower K(m) for the same substrate (K(m) = 0.04 mM). The three enzymes have been partially purified and their kinetic parameters and specificities for various aldehydes determined. The involvement of these enzymes in the biogenesis of six carbon alcohols constituent of the aroma of olive oil is discussed. PMID:9621451

  17. Agistemus aimogastaensis sp. n. (Acari, Actinedida, Stigmaeidae), a recently discovered predator of eriophyid mites Aceria oleae and Oxycenus maxwelli, in olive orchards in Argentina

    PubMed Central

    Leiva, Sergio; Fernandez, Nestor; Theron, Pieter; Rollard, Christine

    2013-01-01

    Abstract A new species, Agistemus aimogastaensis, is described with the aid of optical and Scanning Electron Microscopy. This mite is an important predator of two eriophyid mites (Aceria oleae and Oxycenus maxwelli) in olive orchards (Olea europaea, variety Arauco) in La Rioja Province. The problems related to eriophyids in olive orchards in Argentina are highlighted and photos of the damage on leaves and fruit are included. PMID:23825448

  18. Factors influencing phenolic compounds in table olives (Olea europaea).

    PubMed

    Charoenprasert, Suthawan; Mitchell, Alyson

    2012-07-25

    The Mediterranean diet appears to be associated with a reduced risk of several chronic diseases including cancer and cardiovascular and Alzheimer's diseases. Olive products (mainly olive oil and table olives) are important components of the Mediterranean diet. Olives contain a range of phenolic compounds; these natural antioxidants may contribute to the prevention of these chronic conditions. Consequently, the consumption of table olives and olive oil continues to increase worldwide by health-conscious consumers. There are numerous factors that can affect the phenolics in table olives including the cultivar, degree of ripening, and, importantly, the methods used for curing and processing table olives. The predominant phenolic compound found in fresh olive is the bitter secoiridoid oleuropein. Table olive processing decreases levels of oleuropein with concomitant increases in the hydrolysis products hydroxytyrosol and tyrosol. Many of the health benefits reported for olives are thought to be associated with the levels of hydroxytyrosol. Herein the pre- and post-harvest factors influencing the phenolics in olives, debittering methods, and health benefits of phenolics in table olives are reviewed. PMID:22720792

  19. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  20. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi).

    PubMed

    de Alfonso, Ignacio; Vacas, Sandra; Primo, Jaime

    2014-12-10

    The influence of α-copaene as a fruit volatile in the susceptibility of Olea europaea L. to the olive fruit fly Bactrocera oleae (Rossi) has been investigated. By studies on the relative area of volatile components from different cultivars, a positive correlation was found between the abundance of α-copaene in the samples and the corresponding degree of fruit infestation. SPME-GC-MS analysis of volatiles from uninfested fruits of O. europaea L. cv. Serrana were performed over two years to determine the variation of α-copaene throughout the different phenological stages. The results suggested that this sesquiterpene has a significant effect on cultivar susceptibility and may act as an oviposition promoter. Further analysis by chiral GC showed that olive fruits release both α-copaene enantiomers. Bioassays on each enantiomer revealed that fruits with increased amounts of (+)-α-copaene favor oviposition of B. oleae females, whereas the increase of (-)-α-copaene affords no statistically significant differences in host preference. PMID:25408316

  1. Fauna Europaea: Gastrotricha

    PubMed Central

    d`Hondt, Jean-Loup; Kisielewski, Jacek; Todaro, M. Antonio; Tongiorgi, Paolo; Guidi, Loretta; Grilli, Paolo

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Gastrotricha are a meiobenthic phylum composed of 813 species known so far (2 orders, 17 families) of free-living microinvertebrates commonly present and actively moving on and into sediments of aquatic ecosystems, 339 of which live in fresh and brackish waters. The Fauna Europaea database includes 214 species of Chaetonotida (4 families) plus a single species of Macrodasyida incertae sedis. This paper deals with the 224 European freshwater species known so far, 9 of which, all of Chaetonotida, have been described subsequently and will be included in the next database version. Basic information on their biology and ecology are summarized, and a list of selected, main references is given. As a general conclusion the gastrotrich fauna from Europe is the best known compared with that of other continents, but shows some important gaps of knowledge in Eastern and Southern regions. PMID:26379467

  2. Fauna Europaea: Gastrotricha.

    PubMed

    Balsamo, Maria; D Hondt, Jean-Loup; Kisielewski, Jacek; Todaro, M Antonio; Tongiorgi, Paolo; Guidi, Loretta; Grilli, Paolo; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Gastrotricha are a meiobenthic phylum composed of 813 species known so far (2 orders, 17 families) of free-living microinvertebrates commonly present and actively moving on and into sediments of aquatic ecosystems, 339 of which live in fresh and brackish waters. The Fauna Europaea database includes 214 species of Chaetonotida (4 families) plus a single species of Macrodasyida incertae sedis. This paper deals with the 224 European freshwater species known so far, 9 of which, all of Chaetonotida, have been described subsequently and will be included in the next database version. Basic information on their biology and ecology are summarized, and a list of selected, main references is given. As a general conclusion the gastrotrich fauna from Europe is the best known compared with that of other continents, but shows some important gaps of knowledge in Eastern and Southern regions. PMID:26379467

  3. ( Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: first evidence of a male-produced female attractant in olive fruit fly

    NASA Astrophysics Data System (ADS)

    Carpita, Adriano; Canale, Angelo; Raffaelli, Andrea; Saba, Alessandro; Benelli, Giovanni; Raspi, Alfio

    2012-01-01

    It is well-known that Bactrocera oleae (olive fruit fly) females attract conspecific males by using 1,7-dioxaspiro[5,5]undecane ( 1) as the main component of their sex pheromone, and that 1 is produced in the female rectal gland. Although some authors have claimed that B. oleae males also attract females, to date no male-produced female attractants have been found in this species. In this paper, we report the first identification of a substance unique to males and able to attract females. The findings of the study include the following: (1) females responded in a bioassay to hexane extracts obtained from rectal glands of 15-day-old B. oleae males, (2) the presence of ( Z)-9-tricosene ( 2) was consistently and unambiguously identified in these extracts using gas chromatography (GC) and GC-mass spectrometry methods, (3) in preliminary bioactivity tests, low doses (equivalent to a few males) of chemically and stereoisomerically pure synthetic ( Z)-9-tricosene ( 2) attracted olive fruit fly females. Interestingly, compound 2, commonly called muscalure, is also a well-known component of the house fly ( Musca domestica) sex pheromone.

  4. Fauna europaea: Diptera - brachycera.

    PubMed

    Pape, Thomas; Beuk, Paul; Pont, Adrian Charles; Shatalkin, Anatole I; Ozerov, Andrey L; Woźnica, Andrzej J; Merz, Bernhard; Bystrowski, Cezary; Raper, Chris; Bergström, Christer; Kehlmaier, Christian; Clements, David K; Greathead, David; Kameneva, Elena Petrovna; Nartshuk, Emilia; Petersen, Frederik T; Weber, Gisela; Bächli, Gerhard; Geller-Grimm, Fritz; Van de Weyer, Guy; Tschorsnig, Hans-Peter; de Jong, Herman; van Zuijlen, Jan-Willem; Vaňhara, Jaromír; Roháček, Jindřich; Ziegler, Joachim; Majer, József; Hůrka, Karel; Holston, Kevin; Rognes, Knut; Greve-Jensen, Lita; Munari, Lorenzo; de Meyer, Marc; Pollet, Marc; Speight, Martin C D; Ebejer, Martin John; Martinez, Michel; Carles-Tolrá, Miguel; Földvári, Mihály; Chvála, Milan; Barták, Miroslav; Evenhuis, Neal L; Chandler, Peter J; Cerretti, Pierfilippo; Meier, Rudolf; Rozkosny, Rudolf; Prescher, Sabine; Gaimari, Stephen D; Zatwarnicki, Tadeusz; Zeegers, Theo; Dikow, Torsten; Korneyev, Valery A; Richter, Vera Andreevna; Michelsen, Verner; Tanasijtshuk, Vitali N; Mathis, Wayne N; Hubenov, Zdravko; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding the Caucasus region). The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing taxonomic specialists throughout Europe and is a unique (standard) reference suitable for many user communities in science, government, industry, nature conservation and education. The Diptera-Brachycera is one of the 58 Fauna Europaea major taxonomic groups, and data have been compiled by a network of 55 specialists. Within the two-winged insects (Diptera), the Brachycera constitute a monophyletic group, which is generally given rank of suborder. The Brachycera may be classified into the probably paraphyletic 'lower brachyceran grade' and the monophyletic Eremoneura. The latter contains the Empidoidea, the Apystomyioidea with a single Nearctic species, and the Cyclorrhapha, which in turn is divided into the paraphyletic 'aschizan grade' and the monophyletic Schizophora. The latter is traditionally divided into the paraphyletic 'acalyptrate grade' and the monophyletic Calyptratae. Our knowledge of the European fauna of Diptera-Brachycera varies tremendously among families, from the reasonably well known hoverflies (Syrphidae) to the extremely poorly known scuttle flies (Phoridae). There has been a steady growth in our knowledge of European Diptera for the last two centuries, with no apparent slow down, but there is a shift towards a larger fraction of the new species being found among the families of the nematoceran grade (lower Diptera), which due to a larger number of small

  5. Bisphenol A and Dental Sealants: Olea's Response.

    PubMed Central

    Olea, N

    2000-01-01

    Comments on "Determination of bisphenol A and related aromatic compounds released from Bis-GMA-based composites and sealants by high performance liquid chromatography." by ulgar R, Olea-Serrano MF, Novillo-Fertrell A, Rivas A, Pazos P, Pedraza V, Navajas J-M, Olea N. Environ Health Perspect 108:21-27 (2000). PMID:11133410

  6. Seasonal pheromone trap catches of male Bactrocera oleae (Diptera: Tephritidae) in northern California: asynchrony with host (olive tree) phenology?

    PubMed

    Villamil, Soledad C; Lewis, Edwin E; Zalom, Frank G

    2013-12-01

    Bactrocera oleae (Rossi) (Diptera: Tephritidae, Dacinae) is an oligophagous species that feeds only on cultivated olives (Olea europaea L.) and its close relatives. Synchrony of seasonal activity patterns of B. oleae, the olive fruit fly with its host's phenology is therefore expected. The objective of this study was to monitor the male olive fruit fly response to female sex pheromone in the field. White sticky traps were deployed year round for 3 yr in an olive orchard in Oroville, CA. They were checked periodically, and flies captured were counted and sexed. Although males were captured regularly, the numbers of females captured on pheromone traps were negligible. Food-baited traps and water-baited traps were deployed to show the presence of flies in the field. Our hypothesis that males would respond to pheromone when females were available and olive fruits were susceptible for oviposition was partially supported. There were two peaks of high male captures in pheromone traps: spring and fall. In spring, females were available and mature but few acceptable olives were available for oviposition (no new crop olives yet). In fall, females were present but many of the new crop olives were already infested. The food baited traps confirmed the presence of flies in the field even when very few were being captured in the pheromone-baited traps. Traps containing only water caught only two flies showing that water alone or the trap type in itself was not attractive to flies. PMID:24468560

  7. Fauna Europaea: Diptera – Brachycera

    PubMed Central

    Beuk, Paul; Pont, Adrian Charles; Shatalkin, Anatole I.; Ozerov, Andrey L.; Woźnica, Andrzej J.; Merz, Bernhard; Bystrowski, Cezary; Raper, Chris; Bergström, Christer; Kehlmaier, Christian; Clements, David K.; Greathead, David; Kameneva, Elena Petrovna; Nartshuk, Emilia; Petersen, Frederik T.; Weber, Gisela; Bächli, Gerhard; Geller-Grimm, Fritz; Van de Weyer, Guy; Tschorsnig, Hans-Peter; de Jong, Herman; van Zuijlen, Jan-Willem; Vaňhara, Jaromír; Roháček, Jindřich; Ziegler, Joachim; Majer, József; Hůrka, Karel; Holston, Kevin; Rognes, Knut; Greve-Jensen, Lita; Munari, Lorenzo; de Meyer, Marc; Pollet, Marc; Speight, Martin C. D.; Ebejer, Martin John; Martinez, Michel; Carles-Tolrá, Miguel; Földvári, Mihály; Chvála, Milan; Barták, Miroslav; Evenhuis, Neal L.; Chandler, Peter J.; Cerretti, Pierfilippo; Meier, Rudolf; Rozkosny, Rudolf; Prescher, Sabine; Gaimari, Stephen D.; Zatwarnicki, Tadeusz; Zeegers, Theo; Dikow, Torsten; Korneyev, Valery A.; Richter, Vera Andreevna; Michelsen, Verner; Tanasijtshuk, Vitali N.; Mathis, Wayne N.; Hubenov, Zdravko

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding the Caucasus region). The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing taxonomic specialists throughout Europe and is a unique (standard) reference suitable for many user communities in science, government, industry, nature conservation and education. The Diptera–Brachycera is one of the 58 Fauna Europaea major taxonomic groups, and data have been compiled by a network of 55 specialists. Within the two-winged insects (Diptera), the Brachycera constitute a monophyletic group, which is generally given rank of suborder. The Brachycera may be classified into the probably paraphyletic 'lower brachyceran grade' and the monophyletic Eremoneura. The latter contains the Empidoidea, the Apystomyioidea with a single Nearctic species, and the Cyclorrhapha, which in turn is divided into the paraphyletic 'aschizan grade' and the monophyletic Schizophora. The latter is traditionally divided into the paraphyletic 'acalyptrate grade' and the monophyletic Calyptratae. Our knowledge of the European fauna of Diptera–Brachycera varies tremendously among families, from the reasonably well known hoverflies (Syrphidae) to the extremely poorly known scuttle flies (Phoridae). There has been a steady growth in our knowledge of European Diptera for the last two centuries, with no apparent slow down, but there is a shift towards a larger fraction of the new species being found among the families of the nematoceran grade (lower Diptera), which due to a larger

  8. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath.

    PubMed

    Sutka, R L; Ostrom, N E; Ostrom, P H; Gandhi, H; Breznak, J A

    2003-01-01

    The relative importance of individual microbial pathways in nitrous oxide (N(2)O) production is not well known. The intramolecular distribution of (15)N in N(2)O provides a basis for distinguishing biological pathways. Concentrated cell suspensions of Methylococcus capsulatus Bath and Nitrosomonas europaea were used to investigate the site preference of N(2)O by microbial processes during nitrification. The average site preference of N(2)O formed during hydroxylamine oxidation by M. capsulatus Bath (5.5 +/- 3.5 per thousand) and N. europaea (-2.3 +/- 1.9 per thousand) and nitrite reduction by N. europaea (-8.3 +/- 3.6 per thousand) differed significantly (ANOVA, f((2,35)) = 247.9, p = 0). These results demonstrate that the mechanisms for hydroxylamine oxidation are distinct in M. capsulatus Bath and N. europaea. The average delta(18)O-N(2)O values of N(2)O formed during hydroxylamine oxidation for M. capsulatus Bath (53.1 +/- 2.9 per thousand) and N. europaea (-23.4 +/- 7.2 per thousand) and nitrite reduction by N. europaea (4.6 +/- 1.4 per thousand) were significantly different (ANOVA, f((2,35)) = 279.98, p = 0). Although the nitrogen isotope value of the substrate, hydroxylamine, was similar in both cultures, the observed fractionation (delta(15)N) associated with N(2)O production via hydroxylamine oxidation by M. capsulatus Bath and N. europaea (-2.3 and 26.0 per thousand, respectively) provided evidence that differences in isotopic fractionation were associated with these two organisms. The site preferences in this study are the first measured values for isolated microbial processes. The differences in site preference are significant and indicate that isotopomers provide a basis for apportioning biological processes producing N(2)O. PMID:12661029

  9. Fauna europaea: helminths (animal parasitic).

    PubMed

    Gibson, David I; Bray, Rodney A; Hunt, David; Georgiev, Boyko B; Scholz, Tomaš; Harris, Philip D; Bakke, Tor A; Pojmanska, Teresa; Niewiadomska, Katarzyna; Kostadinova, Aneta; Tkach, Vasyl; Bain, Odile; Durette-Desset, Marie-Claude; Gibbons, Lynda; Moravec, František; Petter, Annie; Dimitrova, Zlatka M; Buchmann, Kurt; Valtonen, E Tellervo; de Jong, Yde

    2014-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Helminths parasitic in animals represent a large assemblage of worms, representing three phyla, with more than 200 families and almost 4,000 species of parasites from all major vertebrate and many invertebrate groups. A general introduction is given for each of the major groups of parasitic worms, i.e. the Acanthocephala, Monogenea, Trematoda (Aspidogastrea and Digenea), Cestoda and Nematoda. Basic information for each group includes its size, host-range, distribution, morphological features, life-cycle, classification, identification and recent key-works. Tabulations include a complete list of families dealt with, the number of species in each and the name of the specialist responsible for data acquisition, a list of additional specialists who helped with particular groups, and a list of higher taxa dealt with down to the family level. A compilation of useful references is appended. PMID:25349520

  10. Fauna Europaea: Helminths (Animal Parasitic)

    PubMed Central

    Bray, Rodney A.; Hunt, David; Georgiev, Boyko B.; Scholz, Tomaš; Harris, Philip D.; Bakke, Tor A.; Pojmanska, Teresa; Niewiadomska, Katarzyna; Kostadinova, Aneta; Tkach, Vasyl; Bain, Odile; Durette-Desset, Marie-Claude; Gibbons, Lynda; Moravec, František; Petter, Annie; Dimitrova, Zlatka M.; Buchmann, Kurt; Valtonen, E. Tellervo; de Jong, Yde

    2014-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Helminths parasitic in animals represent a large assemblage of worms, representing three phyla, with more than 200 families and almost 4,000 species of parasites from all major vertebrate and many invertebrate groups. A general introduction is given for each of the major groups of parasitic worms, i.e. the Acanthocephala, Monogenea, Trematoda (Aspidogastrea and Digenea), Cestoda and Nematoda. Basic information for each group includes its size, host-range, distribution, morphological features, life-cycle, classification, identification and recent key-works. Tabulations include a complete list of families dealt with, the number of species in each and the name of the specialist responsible for data acquisition, a list of additional specialists who helped with particular groups, and a list of higher taxa dealt with down to the family level. A compilation of useful references is appended. PMID:25349520

  11. Fauna Europaea: Mollusca – Bivalvia

    PubMed Central

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. For the Mollusca-Bivalvia, data from 5 families (Margaritiferidae, Unionidae, Sphaeriidae, Cyrenidae, Dreissenidae) containing 55 species are included in this paper. European freshwater bivalves belong to the Orders Unionoida and Cardiida. All the European unionoids are included in the superfamily Unionoidea, the freshwater mussels or naiads. The European cardiids belong to the following three superfamilies: Cardioidea, Cyrenoidea and Dreissenoidea. Among the Unionoidea there are the most imperilled animal groups on the planet while the Cardioidea includes the cosmopolitan genus Pisidium, the Cyrenoidea the Asiatic clam (Corbicula fluminea) and the Dreissenoidea the famous invasive zebra mussel (Dreissena polymorpha). Basic information is summarized on their taxonomy and biology. Tabulations include a complete list of the current estimated families, genera and species. PMID:26311403

  12. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves.

    PubMed

    Pereira, Ana Paula; Ferreira, Isabel C F R; Marcelino, Filipa; Valentão, Patricia; Andrade, Paula B; Seabra, Rosa; Estevinho, Leticia; Bento, Albino; Pereira, José Alberto

    2007-01-01

    We report the determination of phenolic compounds in olive leaves by reversed-phase HPLC/DAD, and the evaluation of their in vitro activity against several microorganisms that may be causal agents of human intestinal and respiratory tract infections, namely gram positive (Bacillus cereus, B. subtilis and Staphylococcus aureus), gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) and fungi (Candida albicans and Cryptococcus neoformans). Seven phenolic compounds were identified and quantified: caffeic acid, verbascoside, oleuropein, luteolin 7-O-glucoside, rutin, apigenin 7-O-glucoside and luteolin 4'-O-glucoside. At low concentrations olive leaves extracts showed an unusual combined antibacterial and antifungal action, which suggest their great potential as nutraceuticals, particularly as a source of phenolic compounds. PMID:17873849

  13. Olive (Olea europaea L.) tree nitrogen status is a key factor for olive oil quality.

    PubMed

    Erel, Ran; Kerem, Zohar; Ben-Gal, Alon; Dag, Arnon; Schwartz, Amnon; Zipori, Isaac; Basheer, Loai; Yermiyahu, Uri

    2013-11-27

    The influence of macronutrient status on olive oil properties was studied for three years. Data were analyzed by a multivariate model considering N, P, K, and fruiting year as explanatory factors. Oil quality parameters were primarily associated with N concentration in leaves and fruits which increased with N in irrigation solution. The effect of P on oil quality was mainly indirect since increased P availability increased N accumulation. The potassium level had negligible effects. The oil phenolic content decreased linearly as a function of increased leaf N, indicating protein-phenol competition in leaves. The overall saturation level of the fatty acids decreased with fruit N, resulting in increased polyunsaturated fatty acids. Free fatty acids increased with increased levels of fruit N. High fruit load tended to reduce fruit N and subsequently improve oil quality. The effect of N on oil properties depended solely on its concentration in leaves or fruits, regardless of the cause. PMID:24245487

  14. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)

    PubMed Central

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  15. Identification and localization of a caleosin in olive (Olea europaea L.) pollen during in vitro germination

    PubMed Central

    Zienkiewicz, Krzysztof; Castro, Antonio J.; de Dios Alché, Juan; Zienkiewicz, Agnieszka; Suárez, Cynthia; Rodríguez-García, María Isabel

    2010-01-01

    In plant organs and tissues, the neutral storage lipids are confined to discrete spherical organelles called oil bodies. Oil bodies from plant seeds contain 0.6–3% proteins, including oleosins, steroleosins, and caleosins. In this study, a caleosin isoform of ∼30 kDa was identified in the olive pollen grain. The protein was mainly located at the boundaries of the oil bodies in the cytoplasm of the pollen grain and the pollen tube. In addition, caleosins were also visualized in the cytoplasm at the subapical zone, as well as in the tonoplast of vacuoles present in the pollen tube cytoplasm. The cellular behaviour of lipid bodies in the olive pollen was also monitored during in vitro germination. The number of oil bodies decreased 20-fold in the pollen grain during germination, whereas the opposite tendency occurred in the pollen tube, suggesting that oil bodies moved from one to the other. The data suggest that this pollen caleosin might have a role in the mobilization of oil bodies as well as in the reorganization of membrane compartments during pollen in vitro germination. PMID:20164143

  16. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    PubMed

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use. PMID:25994087

  17. Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food.

    PubMed

    Ramos-Gómez, Sonia; Busto, María D; Albillos, Silvia M; Ortega, Natividad

    2016-03-01

    The traceability of olive oil is an unresolved issue that remains a challenge. In this field, DNA-based techniques are very powerful tools for discrimination that are less negatively influenced by environmental conditions than other techniques. More specifically, quantitative real time PCR (qPCR) achieves a high degree of sensitivity, although the DNA that it can directly isolate from these oils presents drawbacks. Our study reports the analysis of eight systems, in order to determine their suitability for olive detection in oil and oil-derived foodstuffs. The eight systems were analyzed on the basis of their sensitivity and specificity in the qPCR assay, their relative sensitivity to olive DNA detection and DNA mixtures, their sensitivity and specificity to olive in vegetable oils and the detection of olive in commercial products. The results show that the PetN-PsbM system, designed in this study, is a suitable and reliable technique in relation to olive oil and olive ingredients in both food authentication and food safety processes. PMID:26471578

  18. Genetic Relationships Among Olive (Olea europaea L.) Cultivars Native to Turkey.

    PubMed

    Sakar, Ebru; Unver, Hulya; Bakir, Melike; Ulas, Mehmet; Sakar, Zeynep Mujde

    2016-08-01

    Olive is a widely cultivated, mainly in the Mediterranean region, and economically important fruit species used as both olive oil and table olive consumption. In Turkey, more than 50 olive cultivars have been authorized for commercial plantations, representing the developmental base for the olive industry. The aim of the present study was to identify genetic relationships among the most widely grown 27 olive cultivars in Turkey, using microsatellite or simple sequence repeat markers. Nine well-known foreign olive cultivars from different countries are also included in the study to compare the Turkish cultivars. To determine genetic relationship and diversity, 10 SSR loci (DCA3, DCA9, DCA15, DCA18, UDO4, UDO9, UDO11, UDO12, UDO24, UDO28) were used. Jaccard's similarity coefficient and the UPGMA method for cluster analysis were performed using the software NTSYSpc. The results showed that the number of alleles per locus ranging from 4 (UDO4, UDO9, UDO11, UDO12, DCA15) to 12 (DCA9) presenting high polymorphism. There were no identical cultivars. High similarity was shown by cultivars Maviand Adana topağı (0.754). The most genetically divergent cultivars, Domat-Meski (0.240) and Domat-NizipYağlık (0.245), were also identified. PMID:26902471

  19. Genetic Biodiversity of Italian Olives (Olea europaea) Germplasm Analyzed by SSR Markers

    PubMed Central

    Vendramin, Giuseppe Giovanni; Chiappetta, Adriana

    2014-01-01

    The olive is an important fruit species cultivated for oil and table olives in Italy and the Mediterranean basin. The conservation of cultivated plants in ex situ collections is essential for the optimal management and use of their genetic resources. The largest ex situ olive germplasm collection consists of approximately 500 Italian olive varieties and corresponding to 85% of the total Italian olive germplasm is maintained at the Consiglio per la Ricerca e sperimentazione per l'Agricoltura, Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (CRA-OLI), in Italy. In this work, eleven preselected nuclear microsatellite markers were used to assess genetic diversity, population structure, and gene flows with the aim of assembling a core collection. The dendrogram obtained utilizing the unweighted pair group method highlights the presence of homonymy and synonymy in olive tree datasets analyzed in this study. 439 different unique genotype profiles were obtained with this combination of 11 loci nSSR, representing 89.8% of the varieties analyzed. The remaining 10.2% comprises different variety pairs in which both accessions are genetically indistinguishable. Clustering analysis performed using BAPS software detected seven groups in Italian olive germplasm and gene flows were determined among identified clusters. We proposed an Italian core collection of 23 olive varieties capturing all detected alleles at microsatellites. The information collected in this study regarding the CRA-OLI ex situ collection can be used for breeding programs, for germplasm conservation, and for optimizing a strategy for the management of olive gene pools. PMID:24723801

  20. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome

    PubMed Central

    Barghini, Elena; Natali, Lucia; Giordani, Tommaso; Cossu, Rosa Maria; Scalabrin, Simone; Cattonaro, Federica; Šimková, Hana; Vrána, Jan; Doležel, Jaroslav; Morgante, Michele; Cavallini, Andrea

    2015-01-01

    Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR’s divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms. PMID:25428895

  1. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum.

    PubMed

    Landum, Miguel C; Félix, Maria do Rosário; Alho, Joana; Garcia, Raquel; Cabrita, Maria João; Rei, Fernando; Varanda, Carla M R

    2016-02-01

    Fungi naturally present in olive trees were identified and tested for their antagonistic potential against Colletotrichum acutatum. A total of 14 isolates were identified, 12 belonged to genera Alternaria, Epicoccum, Fusarium, Aspergillus, Anthrinium, Chaetomium, Diaporthe, Nigrospora, one to family Xylariaceae and one was unclassified. All fungal isolates showed some inhibitory action over the growth of C. acutatum during dual culture growth, however, when agar-diffusible tests were performed only five fungal isolates caused C. acutatum growth inhibition: Alternaria sp. isolate 2 (26.8%), the fungus from Xylariaceae family (14.3%), Alternaria sp. isolate 1 (10.7%); Diaporthe sp. (10.7%), Nigrospora oryzae (3.5%). Volatile substances produced by these isolates were identified through gas-chromatography techniques, as phenylethyl alcohol, 4-methylquinazoline, benzothiazole, benzyl alcohol, lilial, galaxolide, among others. These inhibitory volatiles could play a significant role in reduction of C. acutatum expansion in olive and their study as potential biocontrol agents should be further explored. PMID:26805623

  2. Characterization of a caleosin expressed during olive (Olea europaea L.) pollen ontogeny

    PubMed Central

    2011-01-01

    Background The olive tree is an oil-storing species, with pollen being the second most active site in storage lipid biosynthesis. Caleosins are proteins involved in storage lipid mobilization during seed germination. Despite the existence of different lipidic structures in the anther, there are no data regarding the presence of caleosins in this organ to date. The purpose of the present work was to characterize a caleosin expressed in the olive anther over different key stages of pollen ontogeny, as a first approach to unravel its biological function in reproduction. Results A 30 kDa caleosin was identified in the anther tissues by Western blot analysis. Using fluorescence and transmission electron microscopic immunolocalization methods, the protein was first localized in the tapetal cells at the free microspore stage. Caleosins were released to the anther locule and further deposited onto the sculptures of the pollen exine. As anthers developed, tapetal cells showed the presence of structures constituted by caleosin-containing lipid droplets closely packed and enclosed by ER-derived cisternae and vesicles. After tapetal cells lost their integrity, the caleosin-containing remnants of the tapetum filled the cavities of the mature pollen exine, forming the pollen coat. In developing microspores, this caleosin was initially detected on the exine sculptures. During pollen maturation, caleosin levels progressively increased in the vegetative cell, concurrently with the number of oil bodies. The olive pollen caleosin was able to bind calcium in vitro. Moreover, PEGylation experiments supported the structural conformation model suggested for caleosins from seed oil bodies. Conclusions In the olive anther, a caleosin is expressed in both the tapetal and germ line cells, with its synthesis independently regulated. The pollen oil body-associated caleosin is synthesized by the vegetative cell, whereas the protein located on the pollen exine and its coating has a sporophytic origin. The biological significance of the caleosin in the reproductive process in species possessing lipid-storing pollen might depend on its subcellular emplacement. The pollen inner caleosin may be involved in OB biogenesis during pollen maturation. The protein located on the outside might rather play a function in pollen-stigma interaction during pollen hydration and germination. PMID:21884593

  3. De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome

    PubMed Central

    Muñoz-Mérida, Antonio; González-Plaza, Juan José; Cañada, Andrés; Blanco, Ana María; García-López, Maria del Carmen; Rodríguez, José Manuel; Pedrola, Laia; Sicardo, M. Dolores; Hernández, M. Luisa; De la Rosa, Raúl; Belaj, Angjelina; Gil-Borja, Mayte; Luque, Francisco; Martínez-Rivas, José Manuel; Pisano, David G.; Trelles, Oswaldo; Valpuesta, Victoriano; Beuzón, Carmen R.

    2013-01-01

    Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation. PMID:23297299

  4. Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers.

    PubMed

    Muzzalupo, Innocenzo; Vendramin, Giuseppe Giovanni; Chiappetta, Adriana

    2014-01-01

    The olive is an important fruit species cultivated for oil and table olives in Italy and the Mediterranean basin. The conservation of cultivated plants in ex situ collections is essential for the optimal management and use of their genetic resources. The largest ex situ olive germplasm collection consists of approximately 500 Italian olive varieties and corresponding to 85% of the total Italian olive germplasm is maintained at the Consiglio per la Ricerca e sperimentazione per l'Agricoltura, Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (CRA-OLI), in Italy. In this work, eleven preselected nuclear microsatellite markers were used to assess genetic diversity, population structure, and gene flows with the aim of assembling a core collection. The dendrogram obtained utilizing the unweighted pair group method highlights the presence of homonymy and synonymy in olive tree datasets analyzed in this study. 439 different unique genotype profiles were obtained with this combination of 11 loci nSSR, representing 89.8% of the varieties analyzed. The remaining 10.2% comprises different variety pairs in which both accessions are genetically indistinguishable. Clustering analysis performed using BAPS software detected seven groups in Italian olive germplasm and gene flows were determined among identified clusters. We proposed an Italian core collection of 23 olive varieties capturing all detected alleles at microsatellites. The information collected in this study regarding the CRA-OLI ex situ collection can be used for breeding programs, for germplasm conservation, and for optimizing a strategy for the management of olive gene pools. PMID:24723801

  5. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    PubMed

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  6. Methane oxidation by Nitrosomonas europaea.

    PubMed Central

    Hyman, M R; Wood, P M

    1983-01-01

    Methane inhibited NH4+ utilization by Nitrosomonas europaea with a Ki of 2mM. O2 consumption was not inhibited. In the absence of NH4+, or with hydrazine as reductant, methane caused nearly a doubling in the rate of O2 uptake. The stimulation was abolished by allylthiourea, a sensitive inhibitor of the oxidation of NH4+. Analysis revealed that methanol was being formed in these experiments, with yields approaching 1 mol of methanol per mol of O2 consumed under certain conditions. When cells were incubated with NH4+ under an atmosphere of 50% methane, 50 microM-methanol was generated in 1 h. It is concluded that methane is an alternative substrate for the NH3-oxidizing enzyme (ammonia mono-oxygenase),m albeit with a much lower affinity than for methane mono-oxygenase of methanotrophs. PMID:6870854

  7. Structure of the Nitrosomonas Europaea Rh Protein

    SciTech Connect

    Li, X.; Jayachandran, S.; Nguyen, H.-H.T.; Chan, M.K.

    2009-06-01

    Amt/MEP/Rh proteins are a family of integral membrane proteins implicated in the transport of NH3, CH(2)NH2, and CO2. Whereas Amt/MEP proteins are agreed to transport ammonia (NH3/NH4+), the primary substrate for Rh proteins has been controversial. Initial studies suggested that Rh proteins also transport ammonia, but more recent evidence suggests that they transport CO2. Here we report the first structure of an Rh family member, the Rh protein from the chemolithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea. This Rh protein exhibits a number of similarities to its Amt cousins, including a trimeric oligomeric state, a central pore with an unusual twin-His site in the middle, and a Phe residue that blocks the channel for small-molecule transport. However, there are some significant differences, the most notable being the presence of an additional cytoplasmic C-terminal alpha-helix, an increased number of internal proline residues along the transmembrane helices, and a specific set of residues that appear to link the C-terminal helix to Phe blockage. This latter linkage suggests a mechanism in which binding of a partner protein to the C terminus could regulate channel opening. Another difference is the absence of the extracellular pi-cation binding site conserved in Amt/Mep structures. Instead, CO2 pressurization experiments identify a CO2 binding site near the intracellular exit of the channel whose residues are highly conserved in all Rh proteins, except those belonging to the Rh30 subfamily. The implications of these findings on the functional role of the human Rh antigens are discussed.

  8. Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)

    PubMed Central

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. For Neuropterida, data from three Insect orders (Raphidioptera, Megaloptera, Neuroptera), comprising 15 families and 397 species, are included. PMID:25941450

  9. Fauna Europaea: Hymenoptera - Apocrita (excl. Ichneumonoidea).

    PubMed

    Mitroiu, Mircea-Dan; Noyes, John; Cetkovic, Aleksandar; Nonveiller, Guido; Radchenko, Alexander; Polaszek, Andrew; Ronquist, Fredrick; Forshage, Mattias; Pagliano, Guido; Gusenleitner, Josef; Bartalucci, Mario Boni; Olmi, Massimo; Fusu, Lucian; Madl, Michael; Johnson, Norman F; Jansta, Petr; Wahis, Raymond; Soon, Villu; Rosa, Paolo; Osten, Till; Barbier, Yvan; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Hymenoptera is one of the four largest orders of insects, with about 130,000 described species. In the Fauna Europaea database, 'Hymenoptera - Apocrita (excluding Ichneumonoidea)' comprises 13 superfamilies, 52 families, 91 subfamilies, 38 tribes and 13,211 species. The paper includes a complete list of taxa dealt with, the number of species in each and the name of the specialist responsible for data acquisition. As a general conclusion about the European fauna of Hymenoptera, the best known countries in terms of recorded species are those from northwestern Europe, with the least known fauna probably in the more eastern and southeastern parts of Europe. PMID:25859127

  10. AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea.

    PubMed

    Miyamoto, Tatsuki; Yokota, Akiko; Tsuneda, Satoshi; Noda, Naohiro

    2016-01-01

    Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions. PMID:27271670

  11. AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea

    PubMed Central

    Miyamoto, Tatsuki; Yokota, Akiko; Tsuneda, Satoshi; Noda, Naohiro

    2016-01-01

    Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions. PMID:27271670

  12. Energy coupling and respiration in Nitrosomonas europaea.

    PubMed

    Drozd, J W

    1976-11-01

    Intact cells of Nitrosomonas europaea grown in an ammonium salts medium will oxidise ammonium ions, hydroxylamine and ascorbate-TMPD; there is no oxidation of carbon monoxide, methane or methanol. The Km value for ammonia oxidation is highly pH dependent with a minimum value of 0.5 mM above pH 8.0. This suggests that free ammonia is the species crossing the cytoplasmic membrane(s). The measurement of respiration driven proton translocation indicates that there is probably only one proton translocating loop (loop 3) association with hydroxylamine oxidation. The oxidation of "endogenous" substrates is sometimes associated with more than one proton-translocating loop. These results indicate that during growth hydroxylamine oxidation is probably associated with a maximum P/O ratio of 1. PMID:13754

  13. Contribution of flavonoids to the overall radical scavenging activity of olive (Olea europaea L.) leaf polar extracts.

    PubMed

    Goulas, Vlassios; Papoti, Vassiliki T; Exarchou, Vassiliki; Tsimidou, Maria Z; Gerothanassis, Ioannis P

    2010-03-24

    The contribution of flavonoids to the overall radical scavenging activity of olive leaf polar extracts, known to be good sources of oleuropein related compounds, was examined. Off line and on line HPLC-DPPH(*) assays were employed, whereas flavonoid content was estimated colorimetrically. Individual flavonoid composition was first assessed by RP-HPLC coupled with diode array and fluorescence detectors and verified by LC-MS detection system. Olive leaf was found a robust source of flavonoids regardless sampling parameters (olive cultivar, leaf age or sampling date). Total flavonoids accounted for the 13-27% of the total radical scavenging activity assessed using the on line protocol. Luteolin 7-O-glucoside was one of the dominant scavengers (8-25%). Taking into consideration frequency of appearance the contribution of luteolin (3-13%) was considered important, too. Our findings support that olive leaf, except for oleuropein and related compounds, is also a stable source of bioactive flavonoids. PMID:20166722

  14. Pomology observations, morphometric analysis, ultrastructural study and allelic profiles of "olivastra Seggianese" endocarps from ancient olive trees (Olea europaea L.).

    PubMed

    Milanesi, Claudio; Sorbi, Andrea; Paolucci, Elisa; Antonucci, Francesca; Menesatti, Paolo; Costa, Corrado; Pallottino, Federico; Vignani, Rita; Cimato, Antonio; Ciacci, Andrea; Cresti, Mauro

    2011-01-01

    Preliminary studies of historical sources and remote sensing were used to identify ancient olive trees near archaeological sites and heritage buildings in the Orcia Valley (Siena, Italy). Distinctive characters were assessed by traditional pomological observation. Trees with similar characters were selected on the basis of the features of endocarps, the only structure that survives aerobic deterioration and conserves useful botanical information for centuries. Non-invasive morphometric analysis of endocarp size and shape established morphological variations in individuals of different populations. Plastid organization in the endocarp and location of DNA in the endocarp tegument were detected by morphological and ultrastructural observations using light and electron microscopy. Cytoplasmic markers with high polymorphism were used to test similarity of endocarp and leaf DNA within individuals and to confirm low variability and minimal divergence between individuals. The ancient trees studied showed the same allelic profiles and therefore belonged to a distinct cultivar. The traditional pomological descriptions of the trees, leaves and fruits, morphometric analysis of size, and shape elliptic Fourier analysis of endocarp outline, ultrastructural observations and allelic profiles of endocarp tegument delineated the general species-specific qualities of the cultivar "olivastra Seggianese" of the Orcia Valley. PMID:21262485

  15. Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2015-01-01

    Verticillium wilt of olive (VWO) is caused by the vascular pathogen Verticillium dahliae. One of the best VWO management measures is the use of tolerant cultivars; however, our knowledge on VWO tolerance/resistance genetics is very limited. A transcriptomic analysis was conducted to (i) identify systemic defense responses induced/repressed in aerial tissues of the tolerant cultivar Frantoio upon root colonization by V. dahliae, and (ii) determine the expression pattern of selected defense genes in olive cultivars showing differential susceptibility to VWO. Two suppression subtractive hybridization cDNA libraries, enriched in up-regulated (FU) and down-regulated (FD) genes respectively, were generated from “Frantoio” aerial tissues. Results showed that broad systemic transcriptomic changes are taking place during V. dahliae-“Frantoio” interaction. A total of 585 FU and 381 FD unigenes were identified, many of them involved in defense response to (a)biotic stresses. Selected genes were then used to validate libraries and evaluate their temporal expression pattern in “Frantoio.” Four defense genes were analyzed in cultivars Changlot Real (tolerant) and Picual (susceptible). An association between GRAS1 and DRR2 gene expression patterns and susceptibility to VWO was observed, suggesting that these transcripts could be further evaluated as markers of the tolerance level of olive cultivars to V. dahliae. PMID:26441865

  16. Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins.

    PubMed

    Perrinjaquet-Moccetti, Tania; Busjahn, Andreas; Schmidlin, Caesar; Schmidt, Annette; Bradl, Barbara; Aydogan, Cem

    2008-09-01

    Hypertension is a harmful disease factor that develops unnoticed over time. The treatment of hypertension is aimed at an early diagnosis followed by adequate lifestyle changes rather than pharmacological treatment. The olive leaf extract EFLA943, having antihypertensive actions in rats, was tested as a food supplement in an open study including 40 borderline hypertensive monozygotic twins. Twins of each pair were assigned to different groups receiving 500 or 1000 mg/day EFLA943 for 8 weeks, or advice on a favourable lifestyle. Body weight, heart rate, blood pressure, glucose and lipids were measured fortnightly. Blood pressure changed significantly within pairs, depending on the dose, with mean systolic differences of < or =6 mmHg (500 mg vs control) and < or =13 mmHg (1000 vs 500 mg), and diastolic differences of < or =5 mmHg. After 8 weeks, mean blood pressure remained unchanged from baseline in controls (systolic/diastolic: 133 +/- 5/77 +/- 6 vs 135 +/- 11/80 +/- 7 mmHg) and the low-dose group (136 +/- 7/77 +/- 7 vs 133 +/- 10/76 +/- 7), but had significantly decreased for the high dose group (137 +/- 10/80 +/- 10 vs 126 +/- 9/76 +/- 6). Cholesterol levels decreased for all treatments with significant dose-dependent within-pair differences for LDL-cholesterol. None of the other parameters showed significant changes or consistent trends. Concluding, the study confirmed the antihypertensive and cholesterol-lowering action of EFLA943 in humans. PMID:18729245

  17. Effect of tea (Camellia sinensis) and olive (Olea europaea L.) leaves extracts on male mice exposed to diazinon.

    PubMed

    Al-Attar, Atef M; Abu Zeid, Isam M

    2013-01-01

    The present study was aimed to evaluate the effects of tea and olive leaves extracts and their combination in male mice intoxicated with a sublethal concentration of diazinon. Exposure of mice to 6.5 mg/kg body weight of diazinon for seven weeks resulted in statistical increases of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatine kinase, creatinine, glucose, triglycerides, and cholesterol, while the value of serum total protein was declined. Treating diazinon-intoxicated mice with tea and olive leaves extracts or their combination significantly attenuated the severe alterations in these hematobiochemical parameters. Moreover, the results indicated that the supplementation with combination of tea and olive leaves extracts led to more attenuation effect against diazinon toxicity. Additionally, these new findings suggest that the effect of tea and olive leaves extracts and their combination against toxicity of diazinon may be due to antioxidant properties of their chemical constituents. Finally, the present study indicated that the extracts of tea and olive leaves and their combination can be considered as promising therapeutic agents against hepatotoxicity, cardiotoxicity, nephrotoxicity, and metabolic disorders induced by diazinon and maybe by other toxicants and pathogenic factors. PMID:23691503

  18. Antithrombotic effect of repeated doses of the ethanolic extract of local olive (Olea europaea L.) leaves in rabbits.

    PubMed

    Dub, Abdallah M; Dugani, Aisha M

    2013-01-01

    The incidence of thromboembolic diseases is increasing, and they are a major cause of mortality and morbidity worldwide. Mediterranean diet is known for its high content of olive products, especially olive oil, which has known cardiovascular health benefits, including those on blood pressure, cholesterol level, and thrombogenesis. All previous animal and clinical studies investigating the beneficial antithrombotic effects of olives have focused on olive oil and a few on olive leaves (OLEs). In this study, the ethanolic extract of OLE was evaluated for its antithrombotic activity in the rabbit model of thrombosis induced by ligature of the vena cava and intravenous administration of tissue thromboplastin. Pre-treatment with 100 or 200 mg/kg per day of the ethanolic extract for 8 weeks significantly prolonged the prothrombin time (PT) in comparison to the control group (12.10 ± 0.35 sec and 14.38 ± 0.29 sec vs. 10.8 ± 0.32 sec, p < 0.05 and 0.001, respectively). In comparison to the control group, the same doses had no statistically significant effect on thrombus weight (16.85 ± 0.67 mg, 16.32 ± 0.35 mg, and 17.81 ± 0.75 mg; p = 0.18 and 0.06) or on activated partial thromboplastin time (APTT) (19.17 ± 0.33 sec, 19.12 ± 0.73 sec, and 18.97 ± 0.41 sec; p = 0.36 and 0.43, respectively). One important finding in this study concerns thrombus morphology. In the extract treatment groups, the thrombus was filament-like and did not adhere to blood vessel walls, whereas in the control group the thrombus was thick and almost completely occluded the vein. Therefore, these results suggest that OLE ethanolic extract can modify the extrinsic coagulation pathway as evidenced by the prolongation of PT and changes in thrombus morphology, enough to justify further research to evaluate its possible antithrombotic effects. PMID:23702352

  19. Effect of Olive Leaf (Olea europaea) Powder on Laying Hens Performance, Egg Quality and Egg Yolk Cholesterol Levels.

    PubMed

    Cayan, H; Erener, G

    2015-04-01

    This experiment was conducted to measure the effects of olive leaf powder on performance, egg yield, egg quality and yolk cholesterol level of laying hens. A total of 120 Lohmann Brown laying hens of 22 weeks old were used in this experiment. The birds were fed on standard layer diets containing 0, 1%, 2%, or 3% olive leaf powder for 8 weeks. Egg weight and yield were recorded daily; feed intake weekly; egg quality and cholesterol content at the end of the trial. Olive leaf powder had no effect on feed intake, egg weight, egg yield and feed conversion ratio (p>0.05) while olive leaf powder increased final body weight of hens (p<0.05). Dietary olive leaf powder increased yellowness in yolk color (p<0.01) without affecting other quality parameters. Yolk cholesterol content was tended to decrease about 10% (p>0.05). To conclude, olive leaf powder can be used for reducing egg yolk cholesterol content and egg yolk coloring agent in layer diets. PMID:25656181

  20. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome.

    PubMed

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M; Aldana-Montes, José F; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  1. Identification and Assessment of the Potential Allergenicity of 7S Vicilins in Olive (Olea europaea L.) Seeds.

    PubMed

    Jimenez-Lopez, Jose C; Zafra, Adoración; Palanco, Lucía; Florido, José Fernando; Alché, Juan de Dios

    2016-01-01

    Olive seeds, which are a raw material of interest, have been reported to contain 11S seed storage proteins (SSPs). However, the presence of SSPs such as 7S vicilins has not been studied. In this study, following a search in the olive seed transcriptome, 58 sequences corresponding to 7S vicilins were retrieved. A partial sequence was amplified by PCR from olive seed cDNA and subjected to phylogenetic analysis with other sequences. Structural analysis showed that olive 7S vicilin contains 9 α-helixes and 22 β-sheets. Additionally, 3D structural analysis displayed good superimposition with vicilin models generated from Pistacia and Sesamum. In order to assess potential allergenicity, T and B epitopes present in these proteins were identified by bioinformatic approaches. Different motifs were observed among the species, as well as some species-specific motifs. Finally, expression analysis of vicilins was carried out in protein extracts obtained from seeds of different species, including the olive. Noticeable bands were observed for all species in the 15-75 kDa MW interval, which were compatible with vicilins. The reactivity of the extracts to sera from patients allergic to nuts was also analysed. The findings with regard to the potential use of olive seed as food are discussed. PMID:27034939

  2. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.).

    PubMed

    Rosati, Adolfo; Cafiero, Caterina; Paoletti, Andrea; Alfei, Barbara; Caporali, Silvia; Casciani, Lorena; Valentini, Massimiliano

    2014-09-15

    We examined whether some agronomical practices (i.e. organic vs. conventional) affect olive fruit and oil composition, and oil sensory properties. Fruit characteristics (i.e. fresh and dry weight of pulp and pit, oil content on a fresh and dry weight basis) did not differ. Oil chemical traits did not differ except for increased content of polyphenols in the organic treatments, and some changes in the acidic composition. Sensory analysis revealed increased bitterness (both cultivars) and pungency (Frantoio) and decreased sweetness (Frantoio) in the organic treatment. Fruit metabolomic analysis with HRMAS-NMR indicated significant changes in some compounds including glycocholate, fatty acids, NADPH, NADP+, some amino acids, thymidine, trigonelline, nicotinic acid, 5,6-dihydrouracil, hesanal, cis-olefin, β-D-glucose, propanal and some unassigned species. The results suggest that agronomical practices may have effects on fruit composition that may be difficult to detect unless a broad-spectrum analysis is used. PMID:24767050

  3. 3,4-DHPEA-EA from Olea Europaea L. is effective against standard and clinical isolates of Staphylococcus sp.

    PubMed Central

    2014-01-01

    Background The aim of the present work was to evaluate the antibacterial effect of 3,4-DHPEA-EA (methyl-4-(2-(3,4-dihydroxyphenethoxy)-2-oxoethyl)-3-formyl-2-methyl-3,4-dihydro-2H-pyran-5-carboxylate), a derivate of oleuropein, against a range of Gram-positive bacteria, including ATCC strains, food and clinical isolates. Methods The minimum inhibitory concentrations (MICs) of 3,4-DHPEA-EA were determined by the broth microdilution method and the Bioscreen C. Results 3,4-DHPEA-EA was effective against ATCC and clinical isolates of Staphylococcus aureus (MIC values between 125 and 250 μg/ml) and ATCC and clinical isolates of Staphylococcus epidermidis (MIC values between 7.81 and 62.5 μg/ml). No significant differences were observed between the two solvents (methanol and DMSO) used to dissolve 3,4-DHPEA-EA. Conclusions The results obtained could be used to develop novel therapies for the treatment of skin infections. Further studies need to be performed to elucidate the formation of 3,4-DHPEA-EA by acid hydrolysis of oleuropein in the human stomach. PMID:24986240

  4. Different flower-inducing conditions elicit different responses for free polyamine levels in olive (Olea europaea) leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In various plant species, polyamines have been implicated in regulating developmental phenomenon as well as responses to environmental stimuli. The role of polyamines in regulating developmental phenomenon, such as flowering, in olives is poorly understood, although seasonal changes and temperature...

  5. Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina).

    PubMed

    Squeo, G; Silletti, R; Summo, C; Paradiso, V M; Pasqualone, A; Caponio, F

    2016-10-15

    The aim of the research was to evaluate the effect of calcium carbonate (1%, 2%, and 4% of addition) at two different particle sizes (2.7μm and 5.7μm), added at the beginning of the malaxation phase, on both the extraction yield and the quality of oil obtained from Coratina olives at different ripening index. The results showed that calcium carbonate significantly increased the extraction yield of olive oil, more than affecting chemical indices. In particular, for less ripened olives, 1-2% of larger particle size calcium carbonate addiction determined a significant increase of the extraction effectiveness, ranging from 4.0 to 4.9%, while more ripened olives required higher amounts of coadjuvant (2-4% when using the larger particle size and 4% when using the smaller one), with a significant increase of the extraction yield up to 5%. Moreover, an increase of pungent perception was observed in some cases when adding calcium carbonate to more ripened olives. PMID:27173535

  6. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome

    PubMed Central

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J.; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M.; Aldana-Montes, José F.; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M. Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  7. Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

    PubMed Central

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  8. Effect of Olive Leaf (Olea europaea) Powder on Laying Hens Performance, Egg Quality and Egg Yolk Cholesterol Levels

    PubMed Central

    Cayan, H.; Erener, G.

    2015-01-01

    This experiment was conducted to measure the effects of olive leaf powder on performance, egg yield, egg quality and yolk cholesterol level of laying hens. A total of 120 Lohmann Brown laying hens of 22 weeks old were used in this experiment. The birds were fed on standard layer diets containing 0, 1%, 2%, or 3% olive leaf powder for 8 weeks. Egg weight and yield were recorded daily; feed intake weekly; egg quality and cholesterol content at the end of the trial. Olive leaf powder had no effect on feed intake, egg weight, egg yield and feed conversion ratio (p>0.05) while olive leaf powder increased final body weight of hens (p<0.05). Dietary olive leaf powder increased yellowness in yolk color (p<0.01) without affecting other quality parameters. Yolk cholesterol content was tended to decrease about 10% (p>0.05). To conclude, olive leaf powder can be used for reducing egg yolk cholesterol content and egg yolk coloring agent in layer diets. PMID:25656181

  9. Identification and Assessment of the Potential Allergenicity of 7S Vicilins in Olive (Olea europaea L.) Seeds

    PubMed Central

    Jimenez-Lopez, Jose C.; Zafra, Adoración; Palanco, Lucía; Florido, José Fernando

    2016-01-01

    Olive seeds, which are a raw material of interest, have been reported to contain 11S seed storage proteins (SSPs). However, the presence of SSPs such as 7S vicilins has not been studied. In this study, following a search in the olive seed transcriptome, 58 sequences corresponding to 7S vicilins were retrieved. A partial sequence was amplified by PCR from olive seed cDNA and subjected to phylogenetic analysis with other sequences. Structural analysis showed that olive 7S vicilin contains 9 α-helixes and 22 β-sheets. Additionally, 3D structural analysis displayed good superimposition with vicilin models generated from Pistacia and Sesamum. In order to assess potential allergenicity, T and B epitopes present in these proteins were identified by bioinformatic approaches. Different motifs were observed among the species, as well as some species-specific motifs. Finally, expression analysis of vicilins was carried out in protein extracts obtained from seeds of different species, including the olive. Noticeable bands were observed for all species in the 15–75 kDa MW interval, which were compatible with vicilins. The reactivity of the extracts to sera from patients allergic to nuts was also analysed. The findings with regard to the potential use of olive seed as food are discussed. PMID:27034939

  10. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    PubMed

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  11. Fauna Europaea – all European animal species on the web

    PubMed Central

    Verbeek, Melina; Michelsen, Verner; Bjørn, Per de Place; Los, Wouter; Steeman, Fedor; Bailly, Nicolas; Basire, Claire; Chylarecki, Przemek; Stloukal, Eduard; Hagedorn, Gregor; Wetzel, Florian Tobias; Glöckler, Falko; Kroupa, Alexander; Korb, Günther; Hoffmann, Anke; Häuser, Christoph; Kohlbecker, Andreas; Müller, Andreas; Güntsch, Anton; Stoev, Pavel; Penev, Lyubomir

    2014-01-01

    Abstract Fauna Europaea is Europe's main zoological taxonomic index, making the scientific names and distributions of all living, currently known, multicellular, European land and freshwater animals species integrally available in one authoritative database. Fauna Europaea covers about 260,000 taxon names, including 145,000 accepted (sub)species, assembled by a large network of (>400) leading specialists, using advanced electronic tools for data collations with data quality assured through sophisticated validation routines. Fauna Europaea started in 2000 as an EC funded FP5 project and provides a unique taxonomic reference for many user-groups such as scientists, governments, industries, nature conservation communities and educational programs. Fauna Europaea was formally accepted as an INSPIRE standard for Europe, as part of the European Taxonomic Backbone established in PESI. Fauna Europaea provides a public web portal at faunaeur.org with links to other key biodiversity services, is installed as a taxonomic backbone in wide range of biodiversity services and actively contributes to biodiversity informatics innovations in various initiatives and EC programs. PMID:25349527

  12. Fauna Europaea - all European animal species on the web.

    PubMed

    de Jong, Yde; Verbeek, Melina; Michelsen, Verner; Bjørn, Per de Place; Los, Wouter; Steeman, Fedor; Bailly, Nicolas; Basire, Claire; Chylarecki, Przemek; Stloukal, Eduard; Hagedorn, Gregor; Wetzel, Florian Tobias; Glöckler, Falko; Kroupa, Alexander; Korb, Günther; Hoffmann, Anke; Häuser, Christoph; Kohlbecker, Andreas; Müller, Andreas; Güntsch, Anton; Stoev, Pavel; Penev, Lyubomir

    2014-01-01

    Fauna Europaea is Europe's main zoological taxonomic index, making the scientific names and distributions of all living, currently known, multicellular, European land and freshwater animals species integrally available in one authoritative database. Fauna Europaea covers about 260,000 taxon names, including 145,000 accepted (sub)species, assembled by a large network of (>400) leading specialists, using advanced electronic tools for data collations with data quality assured through sophisticated validation routines. Fauna Europaea started in 2000 as an EC funded FP5 project and provides a unique taxonomic reference for many user-groups such as scientists, governments, industries, nature conservation communities and educational programs. Fauna Europaea was formally accepted as an INSPIRE standard for Europe, as part of the European Taxonomic Backbone established in PESI. Fauna Europaea provides a public web portal at faunaeur.org with links to other key biodiversity services, is installed as a taxonomic backbone in wide range of biodiversity services and actively contributes to biodiversity informatics innovations in various initiatives and EC programs. PMID:25349527

  13. Widespread Head-to-Head Hydrocarbon Biosynthesis in Bacteria and Role of OleA ▿ †

    PubMed Central

    Sukovich, David J.; Seffernick, Jennifer L.; Richman, Jack E.; Gralnick, Jeffrey A.; Wackett, Lawrence P.

    2010-01-01

    Previous studies identified the oleABCD genes involved in head-to-head olefinic hydrocarbon biosynthesis. The present study more fully defined the OleABCD protein families within the thiolase, α/β-hydrolase, AMP-dependent ligase/synthase, and short-chain dehydrogenase superfamilies, respectively. Only 0.1 to 1% of each superfamily represents likely Ole proteins. Sequence analysis based on structural alignments and gene context was used to identify highly likely ole genes. Selected microorganisms from the phyla Verucomicrobia, Planctomyces, Chloroflexi, Proteobacteria, and Actinobacteria were tested experimentally and shown to produce long-chain olefinic hydrocarbons. However, different species from the same genera sometimes lack the ole genes and fail to produce olefinic hydrocarbons. Overall, only 1.9% of 3,558 genomes analyzed showed clear evidence for containing ole genes. The type of olefins produced by different bacteria differed greatly with respect to the number of carbon-carbon double bonds. The greatest number of organisms surveyed biosynthesized a single long-chain olefin, 3,6,9,12,15,19,22,25,28-hentriacontanonaene, that contains nine double bonds. Xanthomonas campestris produced the greatest number of distinct olefin products, 15 compounds ranging in length from C28 to C31 and containing one to three double bonds. The type of long-chain product formed was shown to be dependent on the oleA gene in experiments with Shewanella oneidensis MR-1 ole gene deletion mutants containing native or heterologous oleA genes expressed in trans. A strain deleted in oleABCD and containing oleA in trans produced only ketones. Based on these observations, it was proposed that OleA catalyzes a nondecarboxylative thiolytic condensation of fatty acyl chains to generate a β-ketoacyl intermediate that can decarboxylate spontaneously to generate ketones. PMID:20418421

  14. Transformations of Aromatic Compounds by Nitrosomonas europaea

    PubMed Central

    Keener, William K.; Arp, Daniel J.

    1994-01-01

    Benzene and a variety of substituted benzenes inhibited ammonia oxidation by intact cells of Nitrosomonas europaea. In most cases, the inhibition was accompanied by transformation of the aromatic compound to a more oxidized product or products. All products detected were aromatic, and substituents were often oxidized but were not separated from the benzene ring. Most transformations were enhanced by (NH4)2SO4 (12.5 mM) and were prevented by C2H2, a mechanism-based inactivator of ammonia monooxygenase (AMO). AMO catalyzed alkyl substituent hydroxylations, styrene epoxidation, ethylbenzene desaturation to styrene, and aniline oxidation to nitrobenzene (and unidentified products). Alkyl substituents were preferred oxidation sites, but the ring was also oxidized to produce phenolic compounds from benzene, ethylbenzene, halobenzenes, phenol, and nitrobenzene. No carboxylic acids were identified. Ethylbenzene was oxidized via styrene to two products common also to oxidation of styrene; production of styrene is suggestive of an electron transfer mechanism for AMO. Iodobenzene and 1,2-dichlorobenzene were oxidized slowly to halophenols; 1,4-dichlorobenzene was not transformed. No 2-halophenols were detected as products. Several hydroxymethyl (-CH2OH)-substituted aromatics and p-cresol were oxidized by C2H2-treated cells to the corresponding aldehydes, benzaldehyde was reduced to benzyl alcohol, and o-cresol and 2,5-dimethylphenol were not depleted. PMID:16349282

  15. Biological control of olive fruit fly, Bactrocera oleae, in Israel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactrocera oleae, the olive fruit fly (OFF), is a key pest of olives in most olive-growing countries in the Mediterranean basin and elsewhere. It significantly reduces yields and degrades the quality of the oil extracted from infested fruit. Olive growers have traditionally used systemic organopho...

  16. Test Medium for the Growth of Nitrosomonas europaea

    PubMed Central

    Sato, Chikashi; Schnoor, Jerald L.; McDonald, Donald B.; Huey, Jon

    1985-01-01

    A mineral medium for studying the growth of Nitrosomonas europaea was developed and examined. The medium was defined in terms of chemical speciation by using chemical equilibrium computer models. The medium significantly increased the metabolic activity of the organisms compared with previously developed media, yielding a specific growth rate as high as 3.0 day−1 (generation time, 5.5 h). The specific growth rate was enhanced by increasing the inoculum and was linearly correlated with the inoculum-to-total-culture volume ratio on a semilog scale. A reproducible growth rate for N. europaea was obtained with this medium under controlled experimental conditions. PMID:16346783

  17. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  18. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  19. The Crystal Structure of Nitrosomonas europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into Sucrose Metabolism in Prokaryotes

    PubMed Central

    Wu, Rui; Asención Diez, Matías D.; Figueroa, Carlos M.; Machtey, Matías; Iglesias, Alberto A.; Ballicora, Miguel A.

    2015-01-01

    ABSTRACT In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a closed conformation. Comparative structural analysis revealed a “hinge-latch” combination, which is critical to transition between the open and closed forms of the enzyme. The N. europaea sucrose synthase shares the same fold as the GT-B family of the retaining glycosyltransferases. In addition, a triad of conserved homologous catalytic residues in the family was shown to be functionally critical in the N. europaea sucrose synthase (Arg567, Lys572, and Glu663). This implies that sucrose synthase shares not only a common origin with the GT-B family but also a similar catalytic mechanism. The enzyme preferred transferring glucose from ADP-glucose rather than UDP-glucose like the eukaryotic counterparts. This predicts that these prokaryotic organisms have a different sucrose metabolic scenario from plants. Nucleotide preference determines where the glucose moiety is targeted after sucrose is degraded. IMPORTANCE We obtained biochemical and structural evidence of sucrose metabolism in nonphotosynthetic bacteria. Until now, only sucrose synthases from photosynthetic organisms have been characterized. Here, we provide the crystal structure of the sucrose synthase from the chemolithoautotroph N. europaea. The structure supported that the enzyme functions with an open/close induced fit mechanism. The enzyme prefers as the substrate adenine-based nucleotides rather than uridine-based like the eukaryotic counterparts, implying a strong connection between sucrose and glycogen metabolism in these bacteria. Mutagenesis data showed that the catalytic mechanism must be conserved not only in sucrose synthases but also in all other retaining GT-B glycosyltransferases. PMID:26013491

  20. Cometabolism of Monochloramine by Nitrosomonas europaea under Distribution System Conditions

    EPA Science Inventory

    Batch kinetic experiments were carried out with a pure culture of N. europaea to characterize the kinetics of NH2Cl cometabolism. Nitrite, nitrate, NH2Cl, ammonia and pH were measured. The experiments were performed at a variety of conditions relevant to distribution system nitri...

  1. Hibiscus Sabdariffa L. Flowers and Olea Europea L. Leaves Extract-Based Formulation for Hypertension Care: In Vitro Efficacy and Toxicological Profile.

    PubMed

    Micucci, Matteo; Angeletti, Andrea; Cont, Massimiliano; Corazza, Ivan; Aldini, Rita; Donadio, Elisa; Chiarini, Alberto; Budriesi, Roberta

    2016-05-01

    Olea europaea L. leaves extract (Oe) and Hybiscus sabdariffa L. flowers extract (Hs) have calcium antagonistic properties. Aim of this work was to study the cardiovascular effects of Pres Phytum(®), a nutraceutical formulation containing a mixture of the two extracts and the excipients, and investigate its possible off-target effects, using in vitro biological assays on guinea pig isolated organs. Cardiovascular effects were assessed using guinea pig atria and aorta. The effects of Pres Phytum on spontaneous gastrointestinal, urinary, and respiratory tracts smooth muscle contractility were evaluated. Pres Phytum exerted a vasorelaxant effect (IC50 = 2.38 mg/mL) and a negative chronotropic effect (IC50 = 1.04 mg/mL) at concentrations lower than those producing smooth muscle spontaneous contractility alterations in the other organs. Compared to Pres Phytum, the mixture did not exert negative inotropic activity, while it maintained a negative chronotropic efficacy (IC50 = 1.04 mg/mL). These experimental data suggest a possible nutraceutical use of this food supplement for the management of preclinical hypertension. PMID:27152980

  2. Fauna Europaea: Annelida – Hirudinea, incl. Acanthobdellea and Branchiobdellea

    PubMed Central

    Sket, Boris

    2014-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Hirudinea is a fairly small group of Annelida, with about 680 described species, most of which live in freshwater habitats, but several species are (sub)terrestrial or marine. In the Fauna Europaea database the taxon is represented by 87 species in 6 families. Two closely related groups, currently treated as distinct lineages within the Annelida, are the Acanthobdellea (2 species worldwide, of which 1 in Europe) and the Branchiobdellea (about 140 species worldwide, of which 10 in Europe). This paper includes a complete list of European taxa belonging to the Hirudinea, Acanthobdellea and Branchiobdellea. Recent research on a limited number of taxa suggests that our current appreciation of species diversity of Hirudinea in Europe is still provisional: on the one hand, cryptic, unrecognised taxa are expected to emerge; on the other, the status of some taxa currently treated as distinct species deserves revisiting. PMID:25425934

  3. OXIDATION OF NITROPYRIN TO 6-CHOLORPICOLINIC ACID BY THE AMMONIA-OXIDIZING BACTERIUM NOSTROSOMAS EUROPAEA

    EPA Science Inventory

    Suspensions of Nitrosomonas europaea catalyzed the oxidation of the commercial nitrification inhibitor nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine]. apid oxidation of nitrapyrin (at a concentration of 10 uM) required the concomitant oxidation of ammonia, hydroxylamine, or h...

  4. Effect of Olea ointment and Acetate Mafenide on burn wounds – A randomized clinical trial

    PubMed Central

    Zahmatkesh, Mohsen; Manesh, Mohammad Jalili; Babashahabi, Ronak

    2015-01-01

    Background: The main goals in treating burns are to accelerate tissue renovation and prevent infection. Topical antibiotics are used in the treatment of burns, but they can cause side effects. Recently, a traditional ointment (Olea) has been used in Iran in the treatment of burns. This study examines the effect of topical honey ointment in healing of burn patients. Materials and Methods: In this randomized controlled trial (RCT), 30 hospitalized patients selected by conventional sampling (10 in Olea group and 20 in Acetate Mafenide ointment group) were evaluated. Inclusion criteria were: having second-degree burns and body surface area equal to or < 40%. One group was treated using topical Olea ointment and the other with Acetate Mafenide ointment (8.5%). Chi-square, Fisher exact test, and Kaplan–Meier were used. Significance level was considered as P < 0.05. Results: None of the patients in the Olea group needed surgery for debridement, while in the second group, 13 patients (65%) needed debridement (P = 0.001). In the Olea group, 1 patient (10%) and in the second group, 19 patients (95%) had positive cultures after 7 days (P < 0.001). The mean time of granulation tissue formation in the Olea group was 12 days (10.3–13.6) and in the other group, it was 17 days (13.3–20.6) (P < 0.001). Conclusions: Olea ointment is a useful treatment for burns, and it can prevent infections, accelerate tissue repair, and facilitate debridement. Therefore, using this ointment is recommended for the treatment of burns. PMID:26457099

  5. Inhibitory effect of Salicornia europaea on the marine alga Skeletonema costatum.

    PubMed

    Jiang, Dan; Huang, Lingfeng; Lin, Yongqing; Nie, Lingling; Lv, Sulian; Kuang, Tingyun; Li, Yinxin

    2012-06-01

    Exploiting the negative biochemical interference between plants and algal species has been suggested as a method to control harmful algal blooms. In this work, we investigated the inhibitory effect of the salt marsh halophyte Salicornia europaea against the marine alga Skeletonema costatum. S. europaea suppressed the growth of S. costatum in a nutrient-sufficient co-culture system, indicating that the inhibition of algal growth was because of the phytotoxic effect of S. europaea, rather than nutrient competition. We tested aqueous and organic extracts from S. europaea roots against S. costatum. The organic extracts inhibited growth and affected the cell size and chlorophyll a content of S. costatum in a dose-dependent manner. Among the three tested organic extracts, the methanol extract had the greatest effects on S. costatum, followed by butanol extract, and then the chloroform extract. Two flavonoids, rutin and quercetin-3-β-D-glucoside, were identified in the methanol extract by high performance liquid chromatography. The concentration of rutin was much higher than that of quercetin-3-β-D-glucoside. In an algal bioassay, rutin inhibited the growth of S. costatum and the inhibitory effect increased with increasing rutin concentration and with decreasing initial algal density. Therefore, we concluded that S. europaea negatively affects the growth of S. costatum, and that rutin, a metabolite of S. europaea, may play a role in this inhibitory effect. PMID:22744186

  6. A defence-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent

    PubMed Central

    Koudounas, Konstantinos; Banilas, Georgios; Michaelidis, Christos; Demoliou, Catherine; Rigas, Stamatis; Hatzopoulos, Polydefkis

    2015-01-01

    Oleuropein, the major secoiridoid compound in olive, is involved in a sophisticated two-component defence system comprising a β-glucosidase enzyme that activates oleuropein into a toxic glutaraldehyde-like structure. Although oleuropein deglycosylation studies have been monitored extensively, an oleuropein β-glucosidase gene has not been characterized as yet. Here, we report the isolation of OeGLU cDNA from olive encoding a β-glucosidase belonging to the defence-related group of terpenoid-specific glucosidases. In planta recombinant protein expression assays showed that OeGLU deglycosylated and activated oleuropein into a strong protein cross-linker. Homology and docking modelling predicted that OeGLU has a characteristic (β/α)8 TIM barrel conformation and a typical construction of a pocket-shaped substrate recognition domain composed of conserved amino acids supporting the β-glucosidase activity and non-conserved residues associated with aglycon specificity. Transcriptional analysis in various olive organs revealed that the gene was developmentally regulated, with its transcript levels coinciding well with the spatiotemporal patterns of oleuropein degradation and aglycon accumulation in drupes. OeGLU upregulation in young organs reflects its prominent role in oleuropein-mediated defence system. High gene expression during drupe maturation implies an additional role in olive secondary metabolism, through the degradation of oleuropein and reutilization of hydrolysis products. PMID:25697790

  7. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology.

    PubMed

    Mylonaki, Stefania; Kiassos, Elias; Makris, Dimitris P; Kefalas, Panagiotis

    2008-11-01

    An experimental setup based on a 2(3) full-factorial, central-composite design was implemented with the aim of optimising the recovery of polyphenols from olive leaves by employing reusable and nontoxic solutions composed of water/ethanol/citric acid as extracting media. The factors considered were (i) the pH of the medium, (ii) the extraction time and (iii) the ethanol concentration. The model obtained produced a satisfactory fit to the data with regard to total polyphenol extraction (R(2) = 0.91, p = 0.0139), but not for the antiradical activity of the extracts (R(2) = 0.67, p = 0.3734). The second-order polynomial equation obtained after analysing the experimental data indicated that ethanol concentration and time mostly affected the extraction yield, but that increased pH values were unfavourable in this regard. The maximum theoretical yield was calculated to be 250.2 +/- 76.8 mg gallic acid equivalent per g of dry, chlorophyll-free tissue under optimal conditions (60% EtOH, pH 2 and 5 h). Liquid chromatography-electrospray ionisation mass spectrometry of the optimally obtained extract revealed that the principal phytochemicals recovered were luteolin 7-O-glucoside, apigenin 7-O-rutinoside and oleuropein, accompanied by smaller amounts of luteolin 3',7-O-diglucoside, quercetin 3-O-rutinoside (rutin), luteolin 7-O-rutinoside and luteolin 3'-O-glucoside. Simple linear regression analysis between the total polyphenol and antiradical activity values gave a low and statistically insignificant correlation (R(2) = 0.273, p > 0.05), suggesting that it is not the sheer amount of polyphenols that provides high antioxidant potency; instead, this potency is probably achieved through interactions among the various phenolic constituents. PMID:18762919

  8. Effect of bruising on respiration, superficial color, and phenolic changes in fresh Manzanilla olives (Olea europaea pomiformis): development of treatments to mitigate browning.

    PubMed

    Segovia-Bravo, Kharla A; García-García, Pedro; López-López, Antonio; Garrido-Fernández, Antonio

    2011-05-25

    The aim of the work was to study the postharvest changes in Manzanilla olives and to find treatments to mitigate damages because of bruises. The phenolic content in bruised and unbruised fruits exposed to air always decreased, but the loss in phenols and the respiratory activity were greater in bruised olives; these changes were related to the appearance of brown spots. Immersion of the picked fruits in a cold (8 °C) acidic solution (pH 3), ascorbic acid solution (100 mM), or sodium metabisulfite solution (100 mM) significantly reduced the loss in phenols in olives and led to lighter brown bruised areas. This immersion did not affect the behavior of the fruits during the lye treatment and the subsequent fermentation. In the final product, no influence on the surface color of unbruised olives was observed and there was a significant color improvement in the bruised areas of damaged olives. PMID:21469652

  9. Absorption, Metabolism, and Excretion by Freely Moving Rats of 3,4-DHPEA-EDA and Related Polyphenols from Olive Fruits (Olea europaea).

    PubMed

    Kano, Shunsuke; Komada, Haruna; Yonekura, Lina; Sato, Akihiko; Nishiwaki, Hisashi; Tamura, Hirotoshi

    2016-01-01

    Absorption, metabolism, and excretion of 3,4-DHPEA-EDA, oleuropein, and hydroxytyrosol isolated from olive fruits were newly evaluated after oral and intravenous administration in freely moving rats cannulated in the portal vein, jugular vein, and bile duct. Orally administered 3,4-DHPEA-EDA, an important bioactive compound in olive pomace, was readily absorbed and metabolized to hydroxytyrosol, homovanillic acid, and homovanillyl alcohol, as shown by dose-normalized 4 h area under the curve (AUC0→4 h/Dose) values of 27.7, 4.5, and 4.2 μM·min·kg/μmol, respectively, in portal plasma after oral administration. The parent compound 3,4-DHPEA-EDA was not observed in the portal plasma, urine, and bile after oral and intravenous administration. Additionally, hydroxytyrosol, homovanillic acid, and homovanillyl alcohol in the portal plasma after oral administration of hydroxytyrosol showed 51.1, 22.8, and 7.1 μM·min·kg/μmol AUC0→4 h/Dose, respectively. When oleuropein, a polar glucoside, was injected orally, oleuropein in the portal plasma showed 0.9 μM·min·kg/μmol AUC0→4 h/Dose. However, homovanillic acid was detected from oleuropein in only a small amount in the portal plasma. Moreover, the bioavailability of hydroxytyrosol and oleuropein for 4 hours was 13.1% and 0.5%, respectively. Because the amount of 3,4-DHPEA-EDA in olive fruits is about 2-3 times greater than that of hydroxytyrosol, the metabolites of 3,4-DHPEA-EDA will influence biological activities. PMID:26904279

  10. Absorption, Metabolism, and Excretion by Freely Moving Rats of 3,4-DHPEA-EDA and Related Polyphenols from Olive Fruits (Olea europaea)

    PubMed Central

    Kano, Shunsuke; Komada, Haruna; Yonekura, Lina; Sato, Akihiko; Nishiwaki, Hisashi; Tamura, Hirotoshi

    2016-01-01

    Absorption, metabolism, and excretion of 3,4-DHPEA-EDA, oleuropein, and hydroxytyrosol isolated from olive fruits were newly evaluated after oral and intravenous administration in freely moving rats cannulated in the portal vein, jugular vein, and bile duct. Orally administered 3,4-DHPEA-EDA, an important bioactive compound in olive pomace, was readily absorbed and metabolized to hydroxytyrosol, homovanillic acid, and homovanillyl alcohol, as shown by dose-normalized 4 h area under the curve (AUC0→4 h/Dose) values of 27.7, 4.5, and 4.2 μM·min·kg/μmol, respectively, in portal plasma after oral administration. The parent compound 3,4-DHPEA-EDA was not observed in the portal plasma, urine, and bile after oral and intravenous administration. Additionally, hydroxytyrosol, homovanillic acid, and homovanillyl alcohol in the portal plasma after oral administration of hydroxytyrosol showed 51.1, 22.8, and 7.1 μM·min·kg/μmol AUC0→4 h/Dose, respectively. When oleuropein, a polar glucoside, was injected orally, oleuropein in the portal plasma showed 0.9 μM·min·kg/μmol AUC0→4 h/Dose. However, homovanillic acid was detected from oleuropein in only a small amount in the portal plasma. Moreover, the bioavailability of hydroxytyrosol and oleuropein for 4 hours was 13.1% and 0.5%, respectively. Because the amount of 3,4-DHPEA-EDA in olive fruits is about 2-3 times greater than that of hydroxytyrosol, the metabolites of 3,4-DHPEA-EDA will influence biological activities. PMID:26904279

  11. Transcript levels of CHL P gene, antioxidants and chlorophylls contents in olive (Olea europaea L.) pericarps: a comparative study on eleven olive cultivars harvested in two ripening stages.

    PubMed

    Muzzalupo, Innocenzo; Stefanizzi, Francesca; Perri, Enzo; Chiappetta, Adriana Ada

    2011-03-01

    The effects of ripening stage on the antioxidant content in olive pericarps were evaluated in eleven olive genotypes grown in the same bioagronomic conditions in Southern Italy. We examined the transcript levels of geranylgeranyl reductase (CHL P) gene and the content of tocopherols, phenolic compounds and chlorophylls in the pericarps. The examined genotypes showed an increase of CHL P transcripts during pericarps ripening. Significant differences were reported in the antioxidant proportions in the same cultivars at different pericarp ripening stage. We show an inverse correlation between phenols and tocopherols content. In particular, during the ripening phase, tocopherols increased rapidly in olive pericarps while phenolic compounds and chlorophyll levels declined significantly. The significant amounts of these antioxidants confirm the nutritional and medicinal value of olive drupes and its products (table olives and olive oil). We suggest, for the first time, a link between CHL P transcript levels and tocopherols content during the ripening of olive pericarps. Besides, we revealed that this trend of CHL P transcript levels during pericarps ripening is independent from the olive genotypes. PMID:21253861

  12. Phenological models to predict the main flowering phases of olive ( Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Aguilera, Fátima; Fornaciari, Marco; Ruiz-Valenzuela, Luis; Galán, Carmen; Msallem, Monji; Dhiab, Ali Ben; la Guardia, Consuelo Díaz-de; del Mar Trigo, María; Bonofiglio, Tommaso; Orlandi, Fabio

    2015-05-01

    The aim of the present study was to develop pheno-meteorological models to explain and forecast the main olive flowering phenological phases within the Mediterranean basin, across a latitudinal and longitudinal gradient that includes Tunisia, Spain, and Italy. To analyze the aerobiological sampling points, study periods from 13 years (1999-2011) to 19 years (1993-2011) were used. The forecasting models were constructed using partial least-squares regression, considering both the flowering start and full-flowering dates as dependent variables. The percentages of variance explained by the full-flowering models (mean 84 %) were greater than those explained by the flowering start models (mean 77 %). Moreover, given the time lag from the North African areas to the central Mediterranean areas in the main olive flowering dates, the regional full-flowering predictive models are proposed as the most useful to improve the knowledge of the influence of climate on the olive tree floral phenology. The meteorological parameters related to the previous autumn and both the winter and the spring seasons, and above all the temperatures, regulate the reproductive phenology of olive trees in the Mediterranean area. The mean anticipation of flowering start and full flowering for the future period from 2081 to 2100 was estimated at 10 and 12 days, respectively. One question can be raised: Will the olive trees located in the warmest areas be northward displaced or will they be able to adapt their physiology in response to the higher temperatures? The present study can be considered as an approach to design more detailed future bioclimate research.

  13. Evaluation of Two Lactic Acid Bacteria Starter Cultures for the Fermentation of Natural Black Table Olives (Olea europaea L cv Kalamon).

    PubMed

    Papadelli, Marina; Zoumpopoulou, Georgia; Georgalaki, Marina; Anastasiou, Rania; Manolopoulou, Eugenia; Lytra, Ioanna; Papadimitriou, Konstantinos; Tsakalidou, Effie

    2015-01-01

    The production of Greek-style natural black table olives remains an empirical process relying on spontaneous fermentation despite its economic significance. For this reason producers often resort to increased NaCl concentration of the brine to secure quality of the product. In this study we employ two lactic acid bacteria Leuconostoc mesenteroides subsp. mesenteroides Lm139 and Lactobacillus pentosus DSM 16366 as starters in separate laboratory low salinity fermentations of "Kalamon" cultivar olives, processed according to the Greek-style method. L. mesenteroides subsp. mesenteroides Lm139 was previously isolated from Kalamon olives laboratory spontaneous fermentations, while L. pentosus DSM 16366 was isolated from fermenting green olives prepared according to the Spanish-style method. Spontaneous olives fermentation was also performed as a control. Microbiological and physicochemical analyses of the brines revealed that the use of the starters had a significant effect on the olives fermentation, leading to a faster acidification due to the more efficient consumption of soluble sugars in the brines. The final pH value reached by each starter culture used indicates a successful lactic fermentation. The production of lactic acid by the starters and the concomitant drop of the pH value proved to inhibit enterobacteria in a shorter period of time compared to the spontaneous fermentation. Concluding, the use of either of the two lactic acid bacteria as starters in Greek-style Kalamon olives fermentation could lead to a more controllable fermentation at lower salinities. The resulting product could be of higher quality with extended shelf-life while being at the same time safer for the consumer. PMID:26638534

  14. The effect of high temperature interruptions during inductive period on the extent of flowering and on metabolic responses in olives (Olea europaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of the duration of high temperature interruption and the timing of it’s occurrence during inductive period on the extent of inhibition of inflorescence production in ‘Arbequina’ olive trees was investigated. Trees kept under inductive conditions in different growth chambers were subjected...

  15. Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source.

    PubMed

    Sia, Eliandra de Freitas; Marcon, Joelma; Luvizotto, Danice Mazzer; Quecine, Maria Carolina; Tsui, Sarina; Pereira, José Odair; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio

    2013-01-01

    Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium. PMID:25674409

  16. Influence of phenols mass fraction in olive (Olea europaea L.) paste on volatile compounds in Buža cultivar virgin olive oil.

    PubMed

    Germek, Valerija Majetić; Koprivnjak, Olivera; Butinar, Bojan; Pizzale, Lorena; Bučar-Miklavčič, Milena; Conte, Lanfranco S

    2013-06-26

    The influence of the phenolic content in olive paste of cv. Buža increased by the addition of an aqueous solution of phenolic extract of freeze-dried olive pulp (cv. Istarska bjelica) on the final products of the lipoxygenase pathway in oil was studied. Increases by 12, 38, and 56% for ripe fruits (maturity index = 4.0) and by 38% for unripe fruits (maturity index = 1.2) were examined. Phenols in the olive paste were determined according to the HPLC method, whereas volatiles in oil were determined according to SPME-GC-MS. A significant negative effect on Z-3-hexenal and E-2-hexen-1-ol (Tukey's test, p < 0.05) was found for ripe fruits (average decreases of 55 and 60%, respectively), but not for the unripe sample. Positive effects in both ripening levels were found for Z-3-hexenyl acetate (average increase of 68% for ripe and a double increase for unripe fruits) and total C5 compounds (average increase of 32% for ripe and an increase of 30% for unripe fruits). PMID:23718881

  17. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management.

    PubMed

    Gómez-Rico, Aurora; Salvador, M Desamparados; La Greca, Marta; Fregapane, Giuseppe

    2006-09-20

    This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard. PMID:16968073

  18. Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies.

    PubMed

    Romero, M Paz; Tovar, M Jesús; Girona, Joan; Motilva, M José

    2002-09-11

    The HPLC phenolic profile of virgin olive oils obtained from young olive trees (Arbequina cv.) grown under different deficit irrigation strategies was studied. Deficit irrigation (RDI) did not affect all the phenolic compounds in the same way. Lignans, vanillic acid, vanillin, and the unknown phenolic compound named P24 increased in the oils from the most irrigated treatments. The secoiridoid derivatives and the unknown phenolic compound named P19 increased in the oils from the most stressed irrigation treatments. The period of growth where a water stress significantly affects the phenolic profile of oils was between pit hardening and the first stages of fruit growth and oil accumulation, independently of the water applied during the previous period to harvest. The phenolic profile and those parameters related to phenol content, oxidative stability, and the bitter index were significantly affected only in the most severe RDI strategies. Other strategies produced important savings in irrigation requirements and an increase in the water use efficiency without noticeably affecting the phenolic profile. PMID:12207473

  19. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard.

    PubMed

    Maris, S C; Teira-Esmatges, M R; Arbonés, A; Rufat, J

    2015-12-15

    Drip irrigation combined with nitrogen (N) fertigation is applied in order to save water and improve nutrient efficiency. Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted to compare the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) associated with the application of N fertiliser through fertigation (0 and 50kgNha(-1)), and 50kgNha(-1)+nitrification inhibitor in a high tree density Arbequina olive orchard. Spanish Arbequina is the most suited variety for super intensive olive groves. This system allows reducing production costs and increases crop yield. Moreover its oil has excellent sensorial features. Subsurface drip irrigation markedly reduced N2O and N2O+N2 emissions compared with surface drip irrigation. Fertiliser application significantly increased N2O+N2, but not N2O emissions. Denitrification was the main source of N2O. The N2O losses (calculated as emission factor) ranging from -0.03 to 0.14% of the N applied, were lower than the IPCC (2007) values. The N2O+N2 losses were the largest, equivalent to 1.80% of the N applied, from the 50kgNha(-1)+drip irrigation treatment which resulted in water filled pore space >60% most of the time (high moisture). Nitrogen fertilisation significantly reduced CO2 emissions in 2011, but only for the subsurface drip irrigation strategies in 2012. The olive orchard acted as a net CH4 sink for all the treatments. Applying a nitrification inhibitor (DMPP), the cumulative N2O and N2O+N2 emissions were significantly reduced with respect to the control. The DMPP also inhibited CO2 emissions and significantly increased CH4 oxidation. Considering global warming potential, greenhouse gas intensity, cumulative N2O emissions and oil production, it can be concluded that applying DMPP with 50kgNha(-1)+drip irrigation treatment was the best option combining productivity with keeping greenhouse gas emissions under control. PMID:26367066

  20. Potential effect of Olea europea leaves, Sonchus oleraceus leaves and Mangifera indica peel extracts on aromatase activity in human placental microsomes and CYP19A1 expression in MCF-7 cell line: Comparative study.

    PubMed

    Shaban, N Z; Hegazy, W A; Abdel-Rahman, S M; Awed, O M; Khalil, S A

    2016-01-01

    Aromatase inhibitors (AIs) provide novel approaches to the adjuvant therapy for postmenopausal women with estrogen-receptor-positive (ER+) breast cancers. In this study, different plant extracts from Olea europaea leaves (OLE), Sonchus oleraceus L. (SOE) and Mangifera indica peels (MPE) were prepared to identify phytoconstituents and measure antioxidant capacities. The effects of these three extracts on aromatase activity in human placental microsomes were evaluated. Additionally, the effects of these extracts on tissue-specific promoter expression of CYP19A1 gene in cell culture model (MCF-7) were assessed using qRT-PCR. Results showed a concentration-dependent decrease in aromatase activity after treatment with OLE and MPE, whereas, SOE showed a biphasic effect. The differential effects of OLE, SOE and MPE on aromatase expression showed that OLE seems to be the most potent suppressor followed by SOE and then MPE. These findings indicate that OLE has effective inhibitory action on aromatase at both the enzymatic and expression levels, in addition to its cytotoxic effect against MCF-7 cells. Also, MPE may be has the potential to be used as a tissue-specific aromatase inhibitor (selective aromatase inhibitor) and it may be promising to develop a new therapeutic agent against ER+ breast cancer. PMID:27585256

  1. Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity

    SciTech Connect

    Rasche, M.E.; Hyman, M.R.; Arp, D.J. )

    1991-10-01

    The soil nitrifying bacterium Nitrosomonas europaea is capable of degrading trichloroethylene (TCE) and other halogenated hydrocarbons. TCE cometabolism by N. europaea resulted in an irreversible loss of TCE biodegradative capacity, ammonia-oxidizing activity, and ammonia-dependent O{sub 2} uptake by the cells. Inactivation was not observed in the presence of allylthiourea, a specific inhibitor of enzyme ammonia monooxygenase, or under anaerobic conditions, indicating that the TCE-mediated inactivation required ammonia monooxygenase activity. When N. europaea cells were incubated with ({sup 14}C)TCE under conditions which allowed turnover of ammonia monooxygenase, a number of cellular proteins were covalently labeled with {sup 14}C. Treatment of cells with allylthiourea or acetylene prior to incubation with ({sup 14}C)TCE prevented incorporation of {sup 14}C into proteins. The ammonia-oxidizing activity of cells inactivated in the presence of TCE could be recovered through a process requiring de novo protein synthesis. In addition to TCE, a series of chlorinated methanes, ethanes, and other ethylenes were screened as substrates for ammonia monooxygenase and for their ability to inactivate the ammonia-oxidizing system of N. europaea. The chlorocarbons would be divided into three classes depending on their biodegradability and inactivating potential: (1) compounds which were not biodegradable by N. europaea and which had no toxic effect on the cells (2) compounds which were cooxidized by N. europaea and had little or no toxic effect on the cells; and (3) compounds which were cooxidized and produced a turnover-dependent inactivation of ammonia oxidation by N. europaea.

  2. Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia A.; Ushakova, Sofya A.; Tikhomirov, Alexander A.; Kalacheva, Galina S.; Gros, Jean-Bernard

    One of the ways of solving the problem of the human liquid wastes utilization in bioregenerative life support systems (BLSS) can be the use of halophytic vegetable plant Salicornia europaea capable of accumulating sodium chloride in rather high concentrations. Since the most specific higher plant function in BLSS, which at present cannot be substituted by physicochemical processes, appears to be the biosynthesis of a wide spectrum of nutritive substances necessary for a human, the object of the given work was the investigation of the S. europaea productivity, biochemical and mineral composition when grown under close to optimal BLSS vegetative component conditions. As the use of human urine after its preliminary physicochemical processing is supposed to be the mineral solution basis for the S. europaea cultivation, it is necessary to clear up the effect of reduced nitrogen on plants growth. Ground research was carried out. Biochemical composition of the S. europaea edible part showed that crude protein was contained in the highest degree. At that the content of crude protein (24% per dry weight) and cellulose (4.7% per dry weight) was higher in the plants grown on solutions containing amide nitrogen in comparison with the plants grown on solutions with nitrate nitrogen (15.4%—3.1% correspondingly). The water-soluble sugar contents were not high in the S. europaea edible part and depending on the nitrogen nutrition form they amounted to 1.1% (amide nitrogen) and 1.5% (nitrate nitrogen). The polysaccharide number (except cellulose) was rather higher and varied from 7.7% to 8.2%. Although the lipid content in the S. europaea plants was relatively low (7% per dry weight), it was shown that the plant lipids are characterized by a high nonsaturation degree mainly due to alpha linolenic and linoleic acids. Nitrogen nutrition form did not significantly affect the S. europaea productivity, and dry edible biomass of one plant was 8.6 g. Sodium and its concentrations

  3. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of Nitrosomonas europaea.

    PubMed

    Jiang, Ruiyu; Wang, Mingqing; Xue, Jianliang; Xu, Ning; Hou, Guihua; Zhang, Wubing

    2015-01-01

    Nitrosomonas europaea, an ammonia oxidizing bacterium, was chosen as a research model to study the alteration of cell membrane in the presence of sulfurous acid and biodegradation of acetochlor. Significant changes of the outer cell membrane were observed in the presence of sulfurous acid using scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Lysozyme experiment show the cell becomes easily influenced by substance in medium. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) measurements show considerable amount of Ca(2+) and Mg(2+) in the supernatant from the sulfurous acid exposed cells. Sulfurous acid treatment enhanced the ability of N. europaea to degrade acetochlor. On this basis, it can be concluded that the increased cell permeability is favor for the absorbability of nutrition. As a result, N. europaea grows faster and the biodegradation efficiency was improved. PMID:25240954

  4. Investigating Nitrosomonas europaea stress biomarkers in batch, continuous culture, and biofilm reactors.

    PubMed

    Radniecki, Tyler S; Lauchnor, Ellen G

    2011-01-01

    The understanding of nitrification inhibition in ammonia oxidizing bacteria (AOB) by priority pollutants and emerging contaminants is critical in managing the nitrogen cycle to preserve current water supplies, one of the National Academy of Engineers Grand Challenges in Engineering for the twenty-first century. Nitrosomonas europaea is an excellent model AOB for nitrification inhibition experimentation due to its well-defined NH(3) metabolism and the availability of a wide range of physiological and transcriptional tools that can characterize the mechanism of nitrification inhibition and probe N. europaea's response to the inhibitor. This chapter is a compilation of the physiological and transcriptional methods that have been used to characterize nitrification inhibition of N. europaea under a wide variety of growth conditions including batch, continuously cultured, and in biofilms. The protocols presented here can be applied to other AOB, and may be readily adapted for other autotrophic bacteria (e.g., nitrite oxidizing bacteria). PMID:21514466

  5. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide.

    PubMed Central

    Hyman, M R; Kim, C Y; Arp, D J

    1990-01-01

    Carbon disulfide has long been recognized as a potent inhibitor of nitrification, and it is the likely active component in several nitrification inhibitors suitable for field use. The effects of this compound on Nitrosomonas europaea have been investigated, and the site of action has been determined. Low concentrations of CS2 (less than 400 microM) produced a time-dependent inhibition of ammonia-dependent O2 uptake but did not inhibit hydrazine-oxidizing activity. CS2 also produced distinct changes in difference spectra of whole cells. These results suggest that ammonia monooxygenase (AMO) is the site of action of CS2. Unlike the case for thiourea and acetylene, saturating concentrations of CS2 did not fully inhibit AMO, and the inhibition resulted in a low but significant rate of ammonia-dependent O2 uptake. The effects of CS2 were not competitive with respect to ammonia concentration, and the inhibition by CS2 did not require the turnover of AMO to take effect. The ability of CS2-treated cells to incorporate [14C]acetylene into the 28-kilodalton polypeptide of AMO was used to demonstrate that the effects of CS2 are compatible with a mode of action which involves a reduction of the rate of turnover of AMO without effects on the catalytic mechanism. It is proposed that CS2 may act on AMO by reversibly reacting with a suitable nucleophilic amino acid in close proximity to the active site copper. Images PMID:2118501

  6. Dictyophara europaea (Hemiptera: Fulgoromorpha: Dictyopharidae): description of immatures, biology and host plant associations.

    PubMed

    Krstić, O; Cvrković, T; Mitrović, M; Toševski, I; Jović, J

    2016-06-01

    The European lantern fly Dictyophara europaea (Linnaeus, 1767), is a polyphagous dictyopharid planthopper of Auchenorrhyncha commonly found throughout the Palaearctic. Despite abundant data on its distribution range and reports on its role in the epidemiology of plant-pathogenic phytoplasmas (Flavescence dorée, FD-C), literature regarding the biology and host plants of this species is scarce. Therefore, the aims of our study were to investigate the seasonal occurrence, host plant associations, oviposition behaviour and immature stages of this widespread planthopper of economic importance. We performed a 3-year field study to observe the spatio-temporal distribution and feeding sources of D. europaea. The insects's reproductive strategy, nymphal molting and behaviour were observed under semi-field cage conditions. Measurement of the nymphal vertex length was used to determine the number of instars, and the combination of these data with body length, number of pronotal rows of sensory pits and body colour pattern enabled the discrimination of each instar. We provide data showing that D. europaea has five instars with one generation per year and that it overwinters in the egg stage. Furthermore, our study confirmed highly polyphagous feeding nature of D. europaea, for all instars and adults, as well as adult horizontal movement during the vegetation growing season to the temporarily preferred feeding plants where they aggregate during dry season. We found D. europaea adult aggregation in late summer on Clematis vitalba L. (Ranunculaceae), a reservoir plant of FD-C phytoplasma strain; however, this appears to be a consequence of forced migration due to drying of herbaceous vegetation rather than to a high preference of C. vitalba as a feeding plant. Detailed oviposition behaviour and a summary of the key discriminatory characteristics of the five instars are provided. Emphasis is placed on the economic importance of D. europaea because of its involvement in

  7. Diversity and ecology of natural enemies of olive fly, Bactrocera oleae, in South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent establishment in North America of olive fruit fly, Bactrocera oleae (Gmel.) (Diptera: Tephritidae), has renewed interest in classical biological control of this pest. Previous surveys conducted in Africa and Asia during the 20th century demonstrated a greater natural enemy diversity in s...

  8. Biology, behavior, and olive orchard IPM of Bactrocera oleae (Rossi) fifteen years after invasion in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Olive fruit fly, Bactrocera oleae L., has become a key pest in California commercial olive orchards used for canned fruit and oil since it was first discovered in 1998. Elucidation of the biology and behavior of olive fruit fly in relation to its host has been a key factor in development...

  9. Distribution of Nitrosomonas europaea and Paracoccus denitrificans Immobilized in Tubular Polymeric Gel for Nitrogen Removal

    PubMed Central

    Uemoto, Hiroaki; Saiki, Hiroshi

    2000-01-01

    To improve the cooperative removal of nitrogen by Nitrosomonas europaea and Paracoccus denitrificans, we controlled their distribution in a tubular gel. When ethanol was supplied inside the tubular gel as an electron donor, their distributions overlapped in the external region of the gel. By changing the electron donor from ethanol to gaseous hydrogen, the distribution of P. denitrificans shifted to the inside of the tube and was separated from that of N. europaea. The separation resulted in an increase of the oxidation rate of ammonia by 25%. PMID:10653756

  10. Effect of NaCl Concentration on Productivity and Mineral Composition of Salicrnia europaea as a Plausible Representative of LSS Photosynthesizing Component

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Kovaleva, N.; Gribovskaya, I.; Dolgushev, V.; Tikhomirova, N.

    In man-made ecosystems the problem of deadlock wastes generated among other reasons by accumulation of NaCl-containing human liquid wastes has no efficient solution, yet. This retards development of man-made highly closed biological ecosystems where the deadlock wastes must be minimized. A possible solution of the problem is to select plant species capable of utilizing NaCl with sufficiently high concentrations, being edible by humans and featuring high productivity. So far the higher plants used in life support systems were either sensitive to salination (wheat, many bean species, carrots, potatoes, corn) or relatively salt-resistant (barley, beet roots, spinach). Salicornia europaea whose overground part is fully edible for humans is one of most acceptable for this purpose. By the literature evidence this plant is capable of accumulating up to 50% NaCl in terms of dry matter. In addition, excessive accumulation of sodium ions should bring forth increase of carry-out of potassium ions and other biogenous elements. The aim of this work is to study the feasibility of using S. europaea species in growth chambers to involve NaCl into matter turnover. Plants were grown in vegetation chambers under the irradiance of 100 W/m 2 PAR and the temperature of air 24?? by two methods. The first method was to cultivate on a substrate which was peat: without salination (1 version) and with addition of 3.5% (2 version) or 7% NaCl (3 version) in terms of dry peat mass. The second method was to cultivate on an aqueous solution with addition of a complete set of nutrients and, depending on the version, containing ? NaCl at the concentration of 0%, 1% or 2%. The study showed that addition of NaCl to the substrate or to the solution resulted in formation of more succulent plants which considerably increased their biomass. The amount of NaCl uptake was the highest in the plants grown in aqueous cultu e, its part in the dry matter was not less than 30%.r As the sodium uptake increased

  11. Inhibition, Inactivation, and Recovery of Ammonia-Oxidizing Activity in Cometabolism of Trichloroethylene by Nitrosomonas europaea

    PubMed Central

    Hyman, M. R.; Russell, S. A.; Ely, R. L.; Williamson, K. J.; Arp, D. J.

    1995-01-01

    The kinetics of the cometabolism of trichloroethylene (TCE) by the ammonia-oxidizing soil bacterium Nitrosomonas europaea in short-term (<10-min) incubations were investigated. Three individual effects of TCE cometabolism on this bacterium were characterized. First, we observed that TCE is a potent competitive inhibitor of ammonia oxidation by N. europaea. The K(infi) value for TCE (30 (mu)M) is similar to the K(infm) for ammonia (40 (mu)M). Second, we examined the toxicity associated with TCE cometabolism by N. europaea. Stationary-phase cells of N. europaea oxidized approximately 60 nmol of TCE per mg of protein before ammonia-oxidizing activity was completely inactivated by reactive intermediates generated during TCE oxidation. At the TCE concentrations used in these experiments, ammonia did not provide significant protection against inactivation. Third, we have determined the ability of cells to recover ammonia-oxidizing activity after exposure to TCE. Cells recovering from TCE inactivation were compared with cells recovering from the specific inactivation of ammonia-oxidizing activity by light. The recovery kinetics were indistinguishable when 40% or less of the activity was inactivated. However, at increased levels of inactivation, TCE-inactivated cells did not recover as rapidly as light-inactivated cells. The kinetics of recovery appear to be dependent on both the extent of inactivation of ammonia-oxidizing activity and the degree of specificity of the inactivating treatment. PMID:16534997

  12. Whole-Genome Sequence of a Novel Hantavirus Isolated from the European Mole (Talpa europaea).

    PubMed

    Gu, Se Hun; Hejduk, Janusz; Markowski, Janusz; Markowski, Marcin; Liberski, Paweł P; Yanagihara, Richard

    2015-01-01

    The complete genome sequence of Nova virus, a novel hantavirus isolated from a European mole (Talpa europaea) captured in central Poland, was determined. The availability of this sequence will facilitate the search for other mole-borne hantaviruses and will accelerate the acquisition of new knowledge about their phylogeography and evolutionary origin. PMID:26021917

  13. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  14. Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and superfamily Curculionoidea)

    PubMed Central

    Alonso Zarazaga, Miguel-Angel; Slipinski, Adam; Nilsson, Anders; Jelínek, Josef; Taglianti, Augusto Vigna; Turco, Federica; Otero, Carlos; Canepari, Claudio; Kral, David; Liberti, Gianfranco; Sama, Gianfranco; Nardi, Gianluca; Löbl, Ivan; Horak, Jan; Kolibac, Jiri; Háva, Jirí; Sapiejewski, Maciej; Jäch, Manfred; Bologna, Marco Alberto; Biondi, Maurizio; Nikitsky, Nikolai B.; Mazzoldi, Paolo; Zahradnik, Petr; Wegrzynowicz, Piotr; Constantin, Robert; Gerstmeier, Roland; Zhantiev, Rustem; Fattorini, Simone; Tomaszewska, Wioletta; Rücker, Wolfgang H.; Vazquez-Albalate, Xavier; Cassola, Fabio; Angelini, Fernando; Johnson, Colin; Schawaller, Wolfgang; Regalin, Renato; Baviera, Cosimo; Rocchi, Saverio; Cianferoni, Fabio; Beenen, Ron; Schmitt, Michael; Sassi, David; Kippenberg, Horst; Zampetti, Marcello Franco; Trizzino, Marco; Chiari, Stefano; Carpaneto, Giuseppe Maria; Sabatelli, Simone

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Coleoptera represent a huge assemblage of holometabolous insects, including as a whole more than 200 recognized families and some 400,000 described species worldwide. Basic information is summarized on their biology, ecology, economic relevance, and estimated number of undescribed species worldwide. Little less than 30,000 species are listed from Europe. The Coleoptera 2 section of the Fauna Europaea database (Archostemata, Myxophaga, Adephaga and Polyphaga excl. the series Elateriformia, Scarabaeiformia, Staphyliniformia and the superfamily Curculionoidea) encompasses 80 families (according to the previously accepted family-level systematic framework) and approximately 13,000 species. Tabulations included a complete list of the families dealt with, the number of species in each, the names of all involved specialists, and, when possible, an estimate of the gaps in terms of total number of species at an European level. A list of some recent useful references is appended. Most families included in the Coleoptera 2 Section have been updated in the most recent release of the Fauna Europaea index, or are ready to be updated as soon as the FaEu data management environment completes its migration from Zoological Museum Amsterdam to Berlin Museum für Naturkunde

  15. Inhibition and gene expression of Nitrosomonas europaea biofilms exposed to phenol and toluene.

    PubMed

    Lauchnor, Ellen G; Radniecki, Tyler S; Semprini, Lewis

    2011-04-01

    Pure culture biofilms of the ammonia-oxidizing bacterium Nitrosomonas europaea were grown in a Drip Flow Biofilm Reactor and exposed to the aromatic hydrocarbons phenol and toluene. Ammonia oxidation rates, as measured by nitrite production in the biofilms, were inhibited 50% when exposed to 56 µM phenol or 100 µM toluene, while 50% inhibition of suspended cells occurred at 8 µM phenol or 20 µM toluene. Biofilm-grown cells dispersed into liquid medium and immediately exposed to phenol or toluene experienced similar inhibition levels as batch grown cells, indicating that mass transfer may be a factor in N. europaea biofilm resistance. Whole genome microarray analysis of gene expression was used to detect genes up-regulated in biofilms during toluene and phenol exposure. Two genes, a putative pirin protein (NE1545) and a putative inner membrane protein (NE1546) were up-regulated during phenol exposure, but no genes were up-regulated during toluene exposure. Using qRT-PCR, up-regulation of NE1545 was detected in biofilms and suspended cells exposed to a range of phenol concentrations and levels of inhibition. In the biofilms, NE1545 expression was up-regulated an average of 13-fold over the range of phenol concentrations tested, and was essentially independent of phenol concentration. However, the expression of NE1545 in suspended cells increased from 20-fold at 7 µM phenol up to 80-fold at 30 µM phenol. This study demonstrates that biofilms of N. europaea are more resistant than suspended cells to inhibition of ammonia oxidation by phenol and toluene, even though the global transcriptional responses to the inhibitors do not differ in N. europaea between the suspended and attached growth states. PMID:21404249

  16. Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and superfamily Curculionoidea).

    PubMed

    Audisio, Paolo; Alonso Zarazaga, Miguel-Angel; Slipinski, Adam; Nilsson, Anders; Jelínek, Josef; Taglianti, Augusto Vigna; Turco, Federica; Otero, Carlos; Canepari, Claudio; Kral, David; Liberti, Gianfranco; Sama, Gianfranco; Nardi, Gianluca; Löbl, Ivan; Horak, Jan; Kolibac, Jiri; Háva, Jirí; Sapiejewski, Maciej; Jäch, Manfred; Bologna, Marco Alberto; Biondi, Maurizio; Nikitsky, Nikolai B; Mazzoldi, Paolo; Zahradnik, Petr; Wegrzynowicz, Piotr; Constantin, Robert; Gerstmeier, Roland; Zhantiev, Rustem; Fattorini, Simone; Tomaszewska, Wioletta; Rücker, Wolfgang H; Vazquez-Albalate, Xavier; Cassola, Fabio; Angelini, Fernando; Johnson, Colin; Schawaller, Wolfgang; Regalin, Renato; Baviera, Cosimo; Rocchi, Saverio; Cianferoni, Fabio; Beenen, Ron; Schmitt, Michael; Sassi, David; Kippenberg, Horst; Zampetti, Marcello Franco; Trizzino, Marco; Chiari, Stefano; Carpaneto, Giuseppe Maria; Sabatelli, Simone; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Coleoptera represent a huge assemblage of holometabolous insects, including as a whole more than 200 recognized families and some 400,000 described species worldwide. Basic information is summarized on their biology, ecology, economic relevance, and estimated number of undescribed species worldwide. Little less than 30,000 species are listed from Europe. The Coleoptera 2 section of the Fauna Europaea database (Archostemata, Myxophaga, Adephaga and Polyphaga excl. the series Elateriformia, Scarabaeiformia, Staphyliniformia and the superfamily Curculionoidea) encompasses 80 families (according to the previously accepted family-level systematic framework) and approximately 13,000 species. Tabulations included a complete list of the families dealt with, the number of species in each, the names of all involved specialists, and, when possible, an estimate of the gaps in terms of total number of species at an European level. A list of some recent useful references is appended. Most families included in the Coleoptera 2 Section have been updated in the most recent release of the Fauna Europaea index, or are ready to be updated as soon as the FaEu data management environment completes its migration from Zoological Museum Amsterdam to Berlin Museum für Naturkunde. PMID

  17. Influence of Water Hardness on Silver Ion and Silver Nanoparticle Fate and Toxicity Toward Nitrosomonas europaea

    PubMed Central

    Anderson, Joseph W.; Semprini, Lewis; Radniecki, Tyler S.

    2014-01-01

    Abstract This study investigated the influence of water hardness (Mg2+ and Ca2+) on the fate and toxicity of 20 nm citrate silver nanoparticles (AgNPs) and Ag+ toward Nitrosomonas europaea, a model ammonia-oxidizing bacterium. Nitrification inhibition of N. europaea by 1 ppm AgNPs and 0.5 ppm Ag+ was reduced from 80% and 83%, respectively, in the absence of Mg2+ to 2% and 33%, respectively, in the presence of 730 μM Mg2+. Introduction of Mg2+ resulted in the rapid aggregation of the AgNP suspensions and reduced the 3 h Ag+ dissolution rates from 30%, in the absence of Mg2+, to 9%, in the presence of 730 μM Mg2+. Reduced AgNP dissolution rates resulted in decreased concentrations of silver that were found adsorbed to N. europaea cells. Increasing AgNP concentrations in the presence of Mg2+ increased the observed inhibition of nitrification, but was always less than what was observed in the absence of Mg2+. The presence of Mg2+ also reduced the adsorption of Ag+ to cells, possibly due to multiple mechanisms, including a reduction in the negative surface charge of the N. europaea membrane and a competition between Mg2+ and Ag+ for membrane binding sites and transport into the cells. Ca2+ demonstrated similar protection mechanisms, as Ag+ toxicity was reduced and AgNP suspensions aggregated and decreased their dissolution rates. These results indicate that the toxicity of Ag+ and AgNPs to nitrifying bacteria in wastewater treatment would be less pronounced in systems with hard water. PMID:25053878

  18. High-Throughput Sequencing Analysis of the Endophytic Bacterial Diversity and Dynamics in Roots of the Halophyte Salicornia europaea.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Tian, Chang-Yan

    2016-05-01

    Endophytic bacterial communities of halophyte Salicornia europaea roots were analyzed by 16S rRNA gene pyrosequencing. A total of 20,151 partial 16S rRNA gene sequences were obtained. These sequences revealed huge amounts of operational taxonomic units (OTUs), that is, 747-1405 OTUs in a root sample, at 3 % cut-off level. Root endophytes mainly comprised four phyla, among which Proteobacteria was the most represented, followed by Bacteroidetes, Actinobacteria, and Firmicutes. Gammaproteobacteria was the most abundant class of Proteobacteria, followed by Betaproteobacteria and Alphaproteobacteria. Genera Pantoea, Halomonas, Azomonas, Serpens, and Pseudomonas were shared by all growth periods. A marked difference in endophytic bacterial communities was evident in roots from different host life-history stages. Gammaproteobacteria increased during the five periods, while Betaproteobacteria decreased. The richest endophytic bacteria diversity was detected in the seedling stage. Endophytic bacteria diversity was reduced during the flowering stage and fruiting stage. The five libraries contained 2321 different OTUs with 41 OTUs in common. As a whole, this study first surveys communities of endophytic bacteria by tracing crucial stages in the process of halophyte growth using high-throughput sequencing methods. PMID:26787546

  19. Fauna Europaea: Annelida - Terrestrial Oligochaeta (Enchytraeidae and Megadrili), Aphanoneura and Polychaeta

    PubMed Central

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. This paper provides updated information on the taxonomic composition and distribution of the Annelida - terrestrial Oligochaeta (Megadrili and Enchytraeidae), Aphanoneura and Polychaeta, recorded in Europe. Data on 18 families, 11 autochthonous and 7 allochthonous, represented in our continent by a total of 800 species, are reviewed, beginning from their distinctness, phylogenetic status, diversity and global distribution, and following with major recent developments in taxonomic and faunistic research in Europe. A rich list of relevant references is appended. The Fauna Europaea Annelida - terrestrial Oligochaeta data-set, as completed in 2004, will be updated accordingly. PMID:26379463

  20. Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica.

    PubMed

    Shi, Ying-wu; Lou, Kai; Li, Chun; Wang, Lei; Zhao, Zhen-yong; Zhao, Shuai; Tian, Chang-yan

    2015-10-01

    We used Illumina-based 16S rRNA V3 amplicon pyrosequencing to investigate the community structure of soil bacteria from the rhizosphere surrounding Salicornia europaea, and endophytic bacteria living in Salicornia europaea plants and Sueada aralocaspica seeds growing at the Fukang Desert Ecosystem Observation and Experimental Station (FDEOES) in Xinjiang Province, China, using an Illumina genome analyzer. A total of 89.23 M effective sequences of the 16S rRNA gene V3 region were obtained from the two halophyte species. These sequences revealed a number of operational taxonomic units (OTUs) in the halophytes. There were between 22-2,206 OTUs in the halophyte plant sample, at the 3% cutoff level, and a sequencing depth of 30,000 sequences. We identified 25 different phyla, 39 classes and 141 genera from the resulting 134,435 sequences. The most dominant phylum in all the samples was Proteobacteria (41.61%-99.26%; average, 43.30%). The other large phyla were Firmicutes (0%- 7.19%; average, 1.15%), Bacteroidetes (0%-1.64%; average, 0.44%) and Actinobacteria (0%-0.46%; average, 0.24%). This result suggested that the diversity of bacteria is abundant in the rhizosphere soil, while the diversity of bacteria was poor within Salicornia europaea plant samples. To the extent of our knowledge, this study is the first to characterize and compare the endophytic bacteria found within different halophytic plant species roots using PCR-based Illumina pyrosequencing method. PMID:26428918

  1. Molecular interactions between the olive and the fruit fly Bactrocera oleae

    PubMed Central

    2012-01-01

    Background The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. Results We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. Conclusions This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction. PMID:22694925

  2. Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae)

    NASA Astrophysics Data System (ADS)

    Goffredo, S.; Caroselli, E.; Mattioli, G.; Pignotti, E.; Zaccanti, F.

    2008-09-01

    The demographic characteristics of the solitary zooxanthellate scleractinian Balanophyllia europaea, endemic to the Mediterranean, were determined in six populations, on a latitudinal gradient along the Italian coast, and compared with the mean annual sea surface temperature (SST). Growth rate correlated negatively, and asymptotic length of the individuals positively with SST. With increasing SST, the distributions of age frequencies moved away from a typical steady state structure (i.e., exponential decrease in the frequency of individuals with age), indicating less stable populations and showed a deficiency of individuals in the younger-age classes. These observations suggest that high temperatures are an adverse factor to the B. europaea symbiosis. Using projected increases in seawater temperature, most of the B. europaea populations in the Mediterranean are expected to be close to their thermal limits by 2100 and the populations at that time may support few young individuals.

  3. Response of Bactrocera oleae (Diptera: Tephritidae) to an attract-and-kill trap in greenhouse cage tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel attract and kill trap for olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), was constructed with yellow corrugated plastic in a pan shape formed from a disk and collar. The pan trap components were tested under three different greenhouse temperatures and humidities, warm, hot...

  4. Prospects for biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) in California with introduced parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive fly is currently regarded as a serious threat to olive production in California. With the establishment of B. oleae in California there has been renewed interest in classical, or introduction, biological control of the pest. In this paper we discuss the prospects of finding new, non-indigenou...

  5. Germline transformation of the olive fruit fly, Bactrocera oleae (Rossi)(Diptera:Tephritidae) with a piggyBac transposon vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae, is a highly significant pest in olive growing countries whose control may be enhanced by the use of genetically-modified strains, especially for sterile insect technique programs. To improve and expand this technology, piggyBac-mediated germline transformation ...

  6. A survey of natural and introduced parasitoids of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) in Israel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive cultivation occupies eight million hectares worldwide, with over ten million tons of olives annually (90% in the Mediterranean Basin). The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) is a key pest of olive fruit, causing up to 50% in crop loss. Increasing biological control by n...

  7. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae).

    PubMed

    Kounatidis, Ilias; Crotti, Elena; Sapountzis, Panagiotis; Sacchi, Luciano; Rizzi, Aurora; Chouaia, Bessem; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele; Mavragani-Tsipidou, Penelope; Bourtzis, Kostas

    2009-05-01

    Following cultivation-dependent and -independent techniques, we investigated the microbiota associated with Bactrocera oleae, one of the major agricultural pests in olive-producing countries. Bacterial 16S rRNA gene libraries and ultrastructural analyses revealed the presence of several bacterial taxa associated with this insect, among which Acetobacter tropicalis was predominant. The recent increased detection of acetic acid bacteria as symbionts of other insect model organisms, such as Anopheles stephensi (G. Favia et al., Proc. Natl. Acad. Sci. USA 104:9047-9051, 2007) or Drosophila melanogaster (C. R. Cox and M. S. Gilmore, Infect. Immun. 75:1565-1576, 2007), prompted us to investigate the association established between A. tropicalis and B. oleae. Using an A. tropicalis-specific PCR assay, the symbiont was detected in all insects tested originating from laboratory stocks or field-collected from different locations in Greece. This acetic acid bacterium was successfully established in cell-free medium, and typing analyses, carried out on a collection of isolates, revealed that different A. tropicalis strains are present in fly populations. The capability to colonize and lodge in the digestive system of both larvae and adults and in Malpighian tubules of adults was demonstrated by using a strain labeled with a green fluorescent protein. PMID:19304818

  8. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Ambelas Skjøth, C.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Smith, M.

    2012-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (southwestern Spain) and Évora (southeastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  9. [Hypersensitivity to pollen of Olea europea in patients with pollen allergy in Zadar County, Croatia].

    PubMed

    Skitarelić, Natasa; Mazzi, Antun; Skitarelić, Neven; Misulić, Josko; Vuletić, Ana

    2010-06-01

    Olive pollen is one of the most common respiratory allergens in the Mediterranean countries. The aim of this study was to establish the frequency of hypersensitivity to the pollen of Olea europea in pollen allergic patients in the County of Zadar. The study included 671 patients with pollen allergy; 61 % were male and 39 % female. 53.5 % were children aged from 4 to 14 years and 46.5 % adolescents and adults from 15 to 59 years. We took their case history, clinically examined them, and tested using the skin prick test and enzymo-immunologic UniCAP test for specific IgE antibodies. For statistical analysis we used the chi-square test. Hypersensitivity to Olea europea pollen was confirmed in 8.8 % patients with pollen allergy. Among them, the most prevalent symptom was rhinitis (58 %). Most hypersensitive patients were urban residents. Only 3 % patients lived on an island. Judging by available data, our findings show the lowest hypersensitivity to olive pollen in the Mediterranean. A comparison with our two earlier studies did not show any fluctuation in this kind of hypersensitivity. PMID:20587396

  10. Evaluation of native plant flower characteristics for conservation biological control of Prays oleae.

    PubMed

    Nave, A; Gonçalves, F; Crespí, A L; Campos, M; Torres, L

    2016-04-01

    Several studies have shown that manipulating flowering weeds within an agroecosystem can have an important role in pest control by natural enemies, by providing them nectar and pollen, which are significant sources of nutrition for adults. The aim of this study was to assess if the olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae), and five of its main natural enemies, the parasitoid species Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae), Apanteles xanthostigma (Haliday) (Hymenoptera: Braconidae), Ageniaspis fuscicollis (Dalman) (Hymenoptera: Encyrtidae) and Elasmus flabellatus (Fonscolombe) (Hymenoptera: Eulophidae), as well as the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), can theoretically access the nectar from 21 flowering weeds that naturally occur in olive groves. Thus, the architecture of the flowers as well as the mouthpart structure and/or the head and thorax width of the pest and its enemies were analyzed. The results suggested that all beneficial insects were able to reach nectar of the plant species from Apiaceae family, i.e. Conopodium majus (Gouan) Loret, Daucus carota L. and Foeniculum vulgare Mill., as well as Asparagus acutifolius L., Echium plantagineum L., Capsella bursa-pastoris (L.) Medik., Raphanus raphanistrum L., Lonicera hispanica Boiss. et Reut., Silene gallica L., Spergula arvensis L., Hypericum perforatum L., Calamintha baetica Boiss. et Reut, Malva neglecta Wallr. and Linaria saxatilis (L.) Chaz. P. oleae was not able to access nectar from five plant species, namely: Andryala integrifolia L., Chondrilla juncea L., Dittrichia viscosa (L.) Greuter, Sonchus asper (L.) Hill and Lavandula stoechas L. PMID:26780918

  11. Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus.

    PubMed

    Skouras, Panagiotis J; Margaritopoulos, John T; Seraphides, Nicos A; Ioannides, Ioannis M; Kakani, Evi G; Mathiopoulos, Kostas D; Tsitsipis, John A

    2007-01-01

    The olive fruit fly Bactrocera oleae (Gmelin) (Diptera: Tephritidae) is the most important pest of olives in countries around the Mediterranean basin. Its control has been based mostly on bait sprays with organophosphate insecticides (usually dimethoate or fenthion) for about 40 years. In the present study, the resistance status of olive fruit fly populations to dimethoate was examined in Greece and Cyprus over 2 years. Thirty-one populations from various regions of Greece, nine from Cyprus and one laboratory susceptible strain, which served as a control, were assayed by topical application of dimethoate. Considerable variation in the resistance levels to dimethoate was recorded in the populations of B. oleae, with resistance ratios ranging from 6.3 to 64.4 (ED(50) values 12.5-128.7 ng dimethoate per insect). The highest resistance ratios were found in populations from Crete, and the lowest in those from Cyprus. This variation could be attributed to different selection pressures from insecticidal applications among populations from the various regions. Migration of resistant genotypes, either autonomous or via commerce, may also be involved. PMID:17103369

  12. Global Transcriptome Profiling of Salicornia europaea L. Shoots under NaCl Treatment

    PubMed Central

    Ma, Jinbiao; Zhang, Meiru; Xiao, Xinlong; You, Jinjin; Wang, Junru; Wang, Tao; Yao, Yinan; Tian, Changyan

    2013-01-01

    Background Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000. Principal Findings A total of 41 and 39 million clean reads from the salt-treated (Se200S) and salt-free (SeCKS) tissues of S. europaea shoots were obtained, and de novo assembly produced 97,865 and 101,751 unigenes, respectively. Upon further assembly with EST data from both Se200S and SeCKS, 109,712 high-quality non-redundant unigenes were generated with a mean unigene size of 639 bp. Additionally, a total of 3,979 differentially expressed genes (DEGs) were detected between the Se200S and SeCKS libraries, with 348 unigenes solely expressed in Se200S and 460 unigenes solely expressed in SeCKS. Furthermore, we identified a large number of genes that are involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular compounds. All unigenes were functionally annotated within the COG, GO and KEGG pathways, and 10 genes were validated by qRT-PCR. Conclusion Our data contains the extensive sequencing and gene-annotation analysis of S. europaea. This genetic knowledge will be very useful for future studies on the molecular adaptation to abiotic stress in euhalophytes and will facilitate the genetic manipulation of other economically important crops. PMID:23825526

  13. Extraction and Characterization of Lipids from Salicornia virginica and Salicornia europaea

    NASA Technical Reports Server (NTRS)

    Kulis,Michael J.; Hepp, Aloysius F.; Pham, Phong X.; Ribita, Daniela; Bomani, Bilal M. M.; Duraj, Stan A.

    2010-01-01

    The lipid content from Salicornia virginica and Salicornia europaea is investigated. The plants are leafless halophytes with seeds contained in terminal nodes. The lipids, in the form of cell membranes and oil bodies that come directly from the node cells, are observed using fluorescence microscopy. Two extraction methods as well as the results of extracting from the seeds and from the entire nodes are described. Characterization of the fatty acid components of the lipids using Gas Chromatography in tandem with Mass Spectroscopy is also described. Comparisons are made between the two methods and between the two plant materials as lipid sources.

  14. Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction

    SciTech Connect

    Frias, JA; Richman, JE; Erickson, JS; Wackett, LP

    2011-03-25

    OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.

  15. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  16. Selective neutrality of mitochondrial ND2 sequences, phylogeography and species limits in Sitta europaea.

    PubMed

    Zink, Robert M; Drovetski, Sergei V; Rohwer, Sievert

    2006-09-01

    Variation and geographic differentiation in mitochondrial DNA (mtDNA) was studied in the widespread and phenotypically variable Eurasian nuthatch (Sitta europaea). To assess whether sequences were evolving in a selectively neutral fashion, we used McDonald-Kreitman [Nature 351 (1991) 652] tests and a tree-based method, which suggested that although ND2 sequences are affected by natural selection against slightly deleterious alleles, the effects do not compromise phylogeographic inferences. Three phylogenetic species-level clades of nuthatches were discovered, corresponding to the Caucasus, southern Europe, and northern Europe plus Asia. Unimodal mismatch distributions within each clade suggest that populations have undergone recent growth. A westward range expansion was inferred from the geographic pattern in nucleotide diversity. Although samples were insufficient, it is possible that nuthatches in England and Japan are recently differentiated. Two specimens of the subspecies S. e. arctica formed a sister group to all other S. europaea, differing by ca. 10% uncorrected sequence divergence, pointing the need for additional study of this phenotypically distinct taxon. As with other species, mtDNA data support major phenotypic distinctions, but not subspecies. PMID:16716603

  17. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula.

    PubMed

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Angela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop. PMID:23334443

  18. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  19. MELiSSA third compartment: Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures in bioreactors

    NASA Astrophysics Data System (ADS)

    Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles

    Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the

  20. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families

    PubMed Central

    Rombauts, Stephane; Chrisargiris, Antonis; Van Leeuwen, Thomas; Vontas, John

    2013-01-01

    The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology. PMID:23824998

  1. Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series

    NASA Astrophysics Data System (ADS)

    Marchi, Susanna; Guidotti, Diego; Ricciolini, Massimo; Petacchi, Ruggero

    2016-04-01

    Insect dynamics depend on temperature patterns, and therefore, global warming may lead to increasing frequencies and intensities of insect outbreaks. The aim of this work was to analyze the dynamics of the olive fruit fly, Bactrocera oleae (Rossi), in Tuscany (Italy). We profited from long-term records of insect infestation and weather data available from the regional database and agrometeorological network. We tested whether the analysis of 13 years of monitoring campaigns can be used as basis for prediction models of B. oleae infestation. We related the percentage of infestation observed in the first part of the host-pest interaction and throughout the whole year to agrometeorological indices formulated for different time periods. A two-step approach was adopted to inspect the effect of weather on infestation: generalized linear model with a binomial error distribution and principal component regression to reduce the number of the agrometeorological factors and remove their collinearity. We found a consistent relationship between the degree of infestation and the temperature-based indices calculated for the previous period. The relationship was stronger with the minimum temperature of winter season. Higher infestation was observed in years following warmer winters. The temperature of the previous winter and spring explained 66 % of variance of early-season infestation. The temperature of previous winter and spring, and current summer, explained 72 % of variance of total annual infestation. These results highlight the importance of multiannual monitoring activity to fully understand the dynamics of B. oleae populations at a regional scale.

  2. Genetic Diversity of Talpa Europaea and Nova Hanta Virus (NVAV) in France

    PubMed Central

    Hugot, Jean-Pierre; Gu, Se Hun; Feliu, Carlos; Ventur, Jacint; Ribas, Alexis; Dormion, Jerôme; Yanagihara, Richard; Nicolas, Violaine

    2014-01-01

    Summary Nova hantavirus (NVAV) was first identified in a single European mole (Talpa europaea), captured in Hungary. Analysis of lung tissues from 94 moles captured in France revealed NVAV in 50%. Based on the genetic diversity of the cytochrome b mtDNA, moles collected in Poitiers and Bordeaux were more closely related to the Iberian mole (T. occidentalis), a species previously assumed to be restricted to the Iberian Peninsula. Several hypotheses are discussed to explain these observations: 1) presence of hitherto unnoticed T. occidentalis in southwestern France; 2) existence of an ancient mitochondrial introgression phenomenon between the two Talpa species, producing a particular phenotype in some hybrids; 3) existence of a hybrid zone between the two species; and 4) existence of a new Talpa species. NVAV was not detected in the southwestern moles, which begs the question of the potential presence of a particular Hantavirus sp. in this population and/or in the Iberian moles. PMID:25530620

  3. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea.

    PubMed

    Bennett, Kristen; Sadler, Natalie C; Wright, Aaron T; Yeager, Chris; Hyman, Michael R

    2016-04-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2 (-)) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4 (+)-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  4. Morphological cladistic analysis of eight popular Olive (Olea europaea L.) cultivars grown in Saudi Arabia using Numerical Taxonomic System for personal computer to detect phyletic relationship and their proximate fruit composition.

    PubMed

    Al-Ruqaie, I; Al-Khalifah, N S; Shanavaskhan, A E

    2016-01-01

    Varietal identification of olives is an intrinsic and empirical exercise owing to the large number of synonyms and homonyms, intensive exchange of genotypes, presence of varietal clones and lack of proper certification in nurseries. A comparative study of morphological characters of eight olive cultivars grown in Saudi Arabia was carried out and analyzed using NTSYSpc (Numerical Taxonomy System for personal computer) system segregated smaller fruits in one clade and the rest in two clades. Koroneiki, a Greek cultivar with a small sized fruit shared arm with Spanish variety Arbosana. Morphologic analysis using NTSYSpc revealed that biometrics of leaves, fruits and seeds are reliable morphologic characters to distinguish between varieties, except for a few morphologically very similar olive cultivars. The proximate analysis showed significant variations in the protein, fiber, crude fat, ash and moisture content of different cultivars. The study also showed that neither the size of fruit nor the fruit pulp thickness is a limiting factor determining crude fat content of olives. PMID:26858547

  5. Characterizing the metabolic trade-off in Nitrosomonas europaea in response to changes in inorganic carbon supply.

    PubMed

    Jiang, D; Khunjar, W O; Wett, B; Murthy, S N; Chandran, K

    2015-02-17

    The link between the nitrogen and one-carbon cycles forms the metabolic basis for energy and biomass synthesis in autotrophic nitrifying organisms, which in turn are crucial players in engineered nitrogen removal processes. To understand how autotrophic nitrifying organisms respond to inorganic carbon (IC) conditions that could be encountered in engineered partially nitrifying systems, we investigated the response of one of the most extensively studied model ammonia oxidizing bacteria, Nitrosomonas europaea (ATCC19718), to three IC availability conditions: excess gaseous and excess ionic IC supply (40× stoichiometric requirement), excess gaseous IC supply (4× stoichiometric requirement in gaseous form only), and limiting IC supply (0.25× stoichiometric requirement). We found that, when switching from excess gaseous and excess ionic IC supply to excess gaseous IC supply, N. europaea chemostat cultures demonstrated an acclimation period that was characterized by transient decreases in the ammonia removal efficiency and transient peaks in the specific oxygen uptake rate. Limiting IC supply led to permanent reactor failures (characterized by biomass washout and failure of ammonia removal) that were preceded by similar decreases in the ammonia removal efficiency and peaks in the specific oxygen uptake rate. Notably, both excess gaseous IC supply and limiting IC supply elicited a previously undocumented increase in nitric and nitrous oxide emissions. Further, gene expression patterns suggested that excess gaseous IC supply and limiting IC supply led to consistent up-regulation of ammonia respiration genes and carbon assimilation genes. Under these conditions, interrogation of the N. europaea proteome revealed increased levels of carbon fixation and transport proteins and decreased levels of ammonia oxidation proteins (active in energy synthesis pathways). Together, the results indicated that N. europaea mobilized enhanced IC scavenging pathways for biosynthesis and

  6. Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718.

    PubMed

    Kozlowski, Jessica A; Price, Jennifer; Stein, Lisa Y

    2014-08-01

    Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2 (-)) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2 (-) reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes. PMID:24907318

  7. Growth and nitrogen uptake by Salicornia europaea and Aster tripolium in nutrient conditions typical of aquaculture wastewater.

    PubMed

    Quintã, R; Santos, R; Thomas, D N; Le Vay, L

    2015-02-01

    The increasing need for environmentally sound aquaculture development can, in part, be addressed by using halophytic plants in integrated multitrophic aquaculture systems (IMTA) to remove waste dissolved nitrogen (N). However, knowledge of plant ability to take up nitrogen is of foremost importance to predict plants performance in such systems. Two species, Salicornia europaea and Aster tripolium, have been identified as potential candidates for IMTA due to their salt tolerance, potential N removal capabilities and their high commercial value as an additional crop. This study investigated the growth and N uptake rates of these two species under different N supply (NH4(+), NO3(-), NH4NO3). S. europaea plants produced a lower biomass when grown in NH4(+) compared to NO3(-) or NH4NO3, while A. tripolium biomass was not affected by the form in which N was supplied. N uptake in plants incubated at different concentrations of (15)N enriched solution (up to 2 mmol l(-1)) fitted the Michaelis-Menten model. While S. europaea NH4-N maximum uptake did not differ between starved and non-starved plants, A. tripolium NH4-N uptake was higher in starved plants when supplied alone. When NO3(-) was supplied alone, NO3-N maximum uptake was lower, for both species, when the plants were not starved. Comparison of starved and non-starved plants N uptake demonstrates the need for cautious interpretation of N uptake rates across different conditions. According to the observed results, both S. europaea and A. tripolium are capable of significantly high biomass production and N removal making them potential species for inclusion in efficient IMTA. PMID:25216470

  8. The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins

    PubMed Central

    Lupo, Domenico; Li, Xiao-Dan; Durand, Anne; Tomizaki, Takashi; Cherif-Zahar, Baya; Matassi, Giorgio; Merrick, Mike; Winkler, Fritz K.

    2007-01-01

    The Rhesus (Rh) proteins are a family of integral membrane proteins found throughout the animal kingdom that also occur in a number of lower eukaryotes. The significance of Rh proteins derives from their presence in the human red blood cell membrane, where they constitute the second most important group of antigens used in transfusion medicine after the ABO group. Rh proteins are related to the ammonium transport (Amt) protein family and there is considerable evidence that, like Amt proteins, they function as ammonia channels. We have now solved the structure of a rare bacterial homologue (from Nitrosomonas europaea) of human Rh50 proteins at a resolution of 1.3 Å. The protein is a trimer, and analysis of its subunit interface strongly argues that all Rh proteins are likely to be homotrimers and that the human erythrocyte proteins RhAG and RhCE/D are unlikely to form heterooligomers as previously proposed. When compared with structures of bacterial Amt proteins, NeRh50 shows several distinctive features of the substrate conduction pathway that support the concept that Rh proteins have much lower ammonium affinities than Amt proteins and might potentially function bidirectionally. PMID:18032606

  9. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea.

    PubMed

    Nie, Lingling; Feng, Juanjuan; Fan, Pengxiang; Chen, Xianyang; Guo, Jie; Lv, Sulian; Bao, Hexigeduleng; Jia, Weitao; Tai, Fang; Jiang, Ping; Wang, Jinhui; Li, Yinxin

    2015-08-01

    Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca(2+) channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca(2+) signalling was proposed. PMID:25956883

  10. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea

    PubMed Central

    Nie, Lingling; Feng, Juanjuan; Fan, Pengxiang; Chen, Xianyang; Guo, Jie; Lv, Sulian; Bao, Hexigeduleng; Jia, Weitao; Tai, Fang; Jiang, Ping; Wang, Jinhui; Li, Yinxin

    2015-01-01

    Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca2+ concentration ([Ca2+]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca2+ channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca2+ signalling was proposed. PMID:25956883

  11. Effects of Olea europea var. oleaster leaves in hypercholesterolemic insulin-resistant sand rats.

    PubMed

    Bennani-Kabchi, N; Fdhil, H; Cherrah, Y; Kehel, L; el Bouayadi, F; Amarti, A; Saïdi, M; Marquié, G

    1999-01-01

    Sand rats fed a hypercaloric diet manifest obesity and diabetes. We have used this model to develop hypercholesterolaemia and describe the beneficial action of Olea europea var. oleaster leaves. Twenty-eight sand rats submitted to a high cholesterol diet for four months were assigned to control and treated groups. Plant decoction at 10 per cent was given orally for two months. Results showed that the control group exhibited hyperglycaemia, glucose intolerance, hypercholesterolaemia and moderate hyperinsulinaemia. Light microscopic study showed thickening of capillary walls in skin, pancreas and kidney. The treatment produced hypoglycaemic (43 per cent, p < 0.001), antihyperglycaemic (48 per cent, p < 0.001) and hypoinsulinaemic (39 per cent, p < 0.01) activities. In addition, the plant presented a hypocholesterolaemic effect (47 per cent, p < 0.001) accompanied by lowering of oxidized LDL (30 per cent, p < 0.01). Accordingly, capillary wall thickening was reduced in skin and pancreas and completely prevented in kidney. The data demonstrate that oleaster leaves possess at least two active compounds to treat hypercholesterolaemia and diabetes. PMID:10709446

  12. Protective Effect of Salicornia europaea Extracts on High Salt Intake-Induced Vascular Dysfunction and Hypertension.

    PubMed

    Panth, Nisha; Park, Sin-Hee; Kim, Hyun Jung; Kim, Deuk-Hoi; Oak, Min-Ho

    2016-01-01

    High salt intake causes and aggravates arterial hypertension and vascular dysfunction. We investigated the effect of Salicornia europaea extracts (SE) on vascular function and blood pressure. SE constituents were analyzed using high performance liquid chromatography, and SE's effect on vascular function was evaluated in isolated porcine coronary arteries. SE's vascular protective effect was also evaluated in vivo using normotensive and spontaneous hypertensive rats (SHRs). SE mainly contained sodium chloride (55.6%), 5-(hydroxymethyl)furfural, p-coumaric acid, and trans-ferulic acid. High sodium (160 mmol/L) induced vascular dysfunction; however, SE containing the same quantity of sodium did not cause vascular dysfunction. Among the compounds in SE, trans-ferulic acid accounts for the vascular protective effect. Normotensive rats fed a high-salt diet showed significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which decreased significantly in the SE-treated groups. In SHRs, high edible salt intake significantly increased SBP, DBP, and MAP, but SE intake was associated with a significantly lower MAP. Thus, SE did not induce vascular dysfunction, and trans-ferulic acid might be at least partly responsible for the vasoprotective effect of SE. Taken together, SE could be used as an alternative to purified salt to prevent and ameliorate hypertension. PMID:27455235

  13. Making Mountains out of Molehills: Sediment Transport by the European Mole (Talpa europaea)

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Loveless, J. C.; Warburton, J.; Densmore, A. L.

    2013-12-01

    Despite its widespread occurrence (across Europe and Eastern North America) the significance of the burrowing activity of the European Mole for sediment transport in the Northern Hemisphere has not been well quantified. In many areas this may have been the dominant mechanism of hillslope sediment transport over the last one to two millenia. The European Mole (Talpa europaea) is prevalent across the UK, particularly in fertile soils. It is highly fossorial, living almost its entire 3-6 year life in a network of tunnels that it maintains to catch prey. Moles can rapidly excavate large amounts of soil (~6 kg in 20 minutes) with waste soil generally pushed to the surface to form molehills. In this study we quantify sediment flux due to mole burrowing based on measured molehill sizes and geometries and estimates of mole hill production rates from time lapse photography. We examine the evolution of the molehills after production through repeat survey of in-situ molehills in the field and rainfall simulation experiments to accelerate degradation in the laboratory. Our initial findings suggest that: 1) molehill masses are generally log-normally distributed with a geometric mean ~1.4 kg; 2) moles move approximately 1.5 times as much soil as earthworms; and 3) the sediment flux due to moles is a non-linear function of the local slope.

  14. Crystal structure of a novel red copper protein from Nitrosomonas europaea

    SciTech Connect

    Lieberman, R.L.; Arciero, D.M.; Hooper, A.B.; Rosenzweig, A.C.

    2010-03-08

    Nitrosocyanin (NC) is a mononuclear red copper protein isolated from the ammonia oxidizing bacterium Nitrosomonas europaea. Although NC exhibits some sequence homology to classic blue copper proteins, its spectroscopic and electrochemical properties are drastically different. The 1.65 {angstrom} resolution crystal structure of oxidized NC reveals an unprecedented trimer of single domain cupredoxins. Each copper center is partially covered by an unusual extended {beta}-hairpin structure from an adjacent monomer. The copper ion is coordinated by His 98, His 103, Cys 95, a single side chain oxygen of Glu 60, and a solvent molecule. In the 2.3 {angstrom} resolution structure of reduced NC, His 98 shifts away from the copper ion, and the solvent molecule is not observed. The arrangement of these ligands renders the coordination geometry of the NC red copper center distinct from that of blue copper centers. In particular, the red copper center has a higher coordination number and lacks the long Cu-S(Met) and short Cu-S(Cys) bond distances characteristic of blue copper. Moreover, the red copper center is square pyramidal whereas blue copper is typically distorted tetrahedral. Analysis of the NC structure provides insight into possible functions of this new type of biological copper center.

  15. Protective Effect of Salicornia europaea Extracts on High Salt Intake-Induced Vascular Dysfunction and Hypertension

    PubMed Central

    Panth, Nisha; Park, Sin-Hee; Kim, Hyun Jung; Kim, Deuk-Hoi; Oak, Min-Ho

    2016-01-01

    High salt intake causes and aggravates arterial hypertension and vascular dysfunction. We investigated the effect of Salicornia europaea extracts (SE) on vascular function and blood pressure. SE constituents were analyzed using high performance liquid chromatography, and SE’s effect on vascular function was evaluated in isolated porcine coronary arteries. SE’s vascular protective effect was also evaluated in vivo using normotensive and spontaneous hypertensive rats (SHRs). SE mainly contained sodium chloride (55.6%), 5-(hydroxymethyl)furfural, p-coumaric acid, and trans-ferulic acid. High sodium (160 mmol/L) induced vascular dysfunction; however, SE containing the same quantity of sodium did not cause vascular dysfunction. Among the compounds in SE, trans-ferulic acid accounts for the vascular protective effect. Normotensive rats fed a high-salt diet showed significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which decreased significantly in the SE-treated groups. In SHRs, high edible salt intake significantly increased SBP, DBP, and MAP, but SE intake was associated with a significantly lower MAP. Thus, SE did not induce vascular dysfunction, and trans-ferulic acid might be at least partly responsible for the vasoprotective effect of SE. Taken together, SE could be used as an alternative to purified salt to prevent and ameliorate hypertension. PMID:27455235

  16. Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Sumibcay, Laarni; Arai, Satoru; Hope, Andrew G.; Mocz, Gabor; Song, Jin-Won; Cook, Joseph A.; Yanagihara, Richard

    2009-01-01

    Background The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. Methodology/Principal Findings Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. Conclusions Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts. PMID:19582155

  17. Transcriptome Analysis of Salicornia europaea under Saline Conditions Revealed the Adaptive Primary Metabolic Pathways as Early Events to Facilitate Salt Adaptation

    PubMed Central

    Fan, Pengxiang; Nie, Lingling; Jiang, Ping; Feng, Juanjuan; Lv, Sulian; Chen, Xianyang; Bao, Hexigeduleng; Guo, Jie; Tai, Fang; Wang, Jinhui; Jia, Weitao; Li, Yinxin

    2013-01-01

    Background Halophytes such as Salicornia europaea have evolved to exhibit unique mechanisms controlled by complex networks and regulated by numerous genes and interactions to adapt to habitats with high salinity. However, these mechanisms remain unknown. Methods To investigate the mechanism by which halophytes tolerate salt based on changes in the whole transcriptome, we performed transcriptome sequencing and functional annotation by database search. Using the unigene database, we conducted digital gene expression analysis of S. europaea at various time points after these materials were treated with NaCl. We also quantified ion uptakes. Gene functional enrichment analysis was performed to determine the important pathways involved in this process. Results A total of 57,151 unigenes with lengths of >300 bp were assembled, in which 57.5% of these unigenes were functionally annotated. Differentially expressed genes indicated that cell wall metabolism and lignin biosynthetic pathways were significantly enriched in S. europaea to promote the development of the xylem under saline conditions. This result is consistent with the increase in sodium uptake as ions pass through the xylem. Given that PSII efficiency remained unaltered, salt treatment activated the expression of electron transfer-related genes encoded by the chloroplast chromosome. Chlorophyll biosynthesis was also inhibited, indicating the energy-efficient state of the electron transfer system of S. europaea. Conclusions The key function of adjusting important primary metabolic pathways in salt adaption was identified by analyzing the changes in the transcriptome of S. europaea. These pathways could involve unique salt tolerance mechanisms in halophytes. This study also provided information as the basis of future investigations on salt response genes in S. europaea. Ample gene resources were also provided to improve the genes responsible for the salt tolerance ability of crops. PMID:24265831

  18. Classical biological control of the olive fruit fly, Bactrocera olea (Diptera: Tephritidae), using the exotic parasitoie, Psyttalia lounsburyi (Hymenoptera: Braconidae) in France.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae) is an important pest of olives which is worldwide distributed and responsible for economic losses of approximately US$800 million per year. Since the 2000s both economical and environmental concerns have raised interested in clas...

  19. Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications.

    PubMed

    Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie

    2016-08-01

    Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements. PMID:27392643

  20. Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications

    NASA Astrophysics Data System (ADS)

    Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie

    2016-08-01

    Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements.

  1. The effect of the olive fruit fly (Bactrocera oleae) on quality parameters, and antioxidant and antibacterial activities of olive oil.

    PubMed

    Medjkouh, Lynda; Tamendjari, Abderezak; Keciri, Sonia; Santos, Joana; Nunes, M Antónia; Oliveira, M B P P

    2016-06-15

    The present study was performed on olives from two Algerian cultivars (Limli and Rougette de Metidja) with different rates of attack by the Bactrocera oleae fly (0%, not attacked; 100%, all attacked; and real attacked %) and the corresponding olive oils. The aim was to verify the attack effect on quality parameters (free fatty acid, peroxide value, K232 and K270, oxidation stability), bioactive compounds (fatty acids and tocopherols, and total phenols and flavonoids), and on the antioxidant (reducing power, FRAP, β-carotene bleaching inhibition, ABTS and DPPH) and antibacterial (against 8 referenced human enteropathogenic bacteria by the agar disc diffusion method) capacities. Oils from infested olives were downgraded to the virgin olive oil category. Rougette de Metidja, the cultivar with a higher drupe size, was more attacked than Limli. The B. oleae attack causes an important decrease in the total phenolic contents (>30%) but to a lesser degree in the case of tocopherols. Among them, α-tocopherol is the most affected. The antioxidant and antibacterial activities were highly correlated with phenolic levels. The results of this study show the importance of controlling the fly attack because it causes a decrease in the beneficial health effects of olive oils. PMID:27220688

  2. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR

    PubMed Central

    Xiao, Xinlong; Ma, Jinbiao; Wang, Junru; Wu, Xiaomeng; Li, Pengbo; Yao, Yinan

    2015-01-01

    Real-time quantitative polymerase chain reaction (RT-qPCR), a reliable technique for quantifying gene expression, requires stable reference genes to normalize its data. Salicornia europaea, a stem succulent halophyte with remarkable salt resistance and high capacity for ion accumulation, has not been investigated with regards to the selection of appropriate reference genes for RT-qPCR. In this study, the expression of 11 candidate reference genes, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), Actin, α-Tub (α-tubulin), β-Tub (β-tubulin), EF1-α (Elongation factor 1-α), UBC (Ubiquitin-conjugating enzyme), UBQ (Polyubiquitin), CYP (Cyclophilin), TIP41 (TIP41-like protein), CAC (Clathrin adaptor complexes), and DNAJ (DnaJ-like protein), was analyzed in S. europaea samples, which were classified into groups according to various abiotic stresses (NaCl, nitrogen, drought, cold and heat), tissues and ages. Three commonly used software programs (geNorm, NormFinder and BestKeeper) were applied to evaluate the stability of gene expression, and comprehensive ranks of stability were generated by aggregate analysis. The results show that the relatively stable genes for each group are the following: (1) CAC and UBC for whole samples; (2) CAC and UBC for NaCl stress; (3) Actin and α-Tub for nitrogen treatment; (4) Actin and GAPDH for drought stress; (5) α-Tub and UBC for cold stress; (6) TIP41 and DNAJ for heat stress; (7) UBC and UBQ for different tissues; and (8) UBC and Actin for various developmental stages. These genes were validated by comparing transcriptome profiles. Using two stable reference genes was recommended in the normalization of RT-qPCR data. This study identifies optimal reference genes for RT-qPCR in S. europaea, which will benefit gene expression analysis under these conditions. PMID:25653658

  3. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies.

    PubMed

    Farges, B; Poughon, L; Roriz, D; Creuly, C; Dussap, C-G; Lasseur, C

    2012-07-01

    As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS) such as Micro-Ecological Life Support System Alternative (MELiSSA) project, which is the LSS project of the European Space Agency. Nitrification in aerobic environments is carried out by two groups of bacteria in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite, and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi), the oxidation of nitrite to nitrate. In both cases, the bacteria achieve these oxidations to obtain an energy and reductant source for their growth and maintenance. Furthermore, both groups also use CO₂ predominantly as their carbon source. They are typically found together in ecosystems, and consequently, nitrite accumulation is rare. Due to the necessity of modeling accurately conversion yields and transformation rates to achieve a complete modeling of MELiSSA, the present study focuses on the experimental determination of nitrogen to biomass conversion yields. Kinetic and mass balance studies for axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions are performed. The follow-up of these cultures is done using flow cytometry for assessing biomass concentrations and ionic chromatography for ammonium, nitrite, and nitrate concentrations. A linear correlation is observed between cell count and optical density (OD) measurement (within a 10 % accuracy) validating OD measurements for an on-line estimation of biomass quantity even at very low biomass concentrations. The conversion between cell count and biomass concentration has been determined: 7.1 × 10¹² cells g dry matter (DM)⁻¹ for Nitrobacter and 6.3 × 10¹² cells g DM⁻¹ for Nitrosomonas. Nitrogen substrates and products are assessed redundantly showing excellent agreement for mass

  4. MeLiSSA third compartment: a kinetic and stoichiometric study for Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures

    NASA Astrophysics Data System (ADS)

    Creuly, Catherine; Poughon, Laurent; Dussap, Claude-Gilles; Farges, Berangere

    2012-07-01

    As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS). In MELiSSA loop, which is based on carbon and nitrogen recycling, the non-edible part of the higher plants and the waste produced by the crew are collected in the liquefying compartment that degrades the chemically complex wastes into simpler building blocks (organic acids and CO2). The organic acids are eliminated in the second photoheterotrophic compartment letting an organic free medium mostly containing minerals and N-NH+4 nitrogen. The third compartment is in charge to re-oxidize N-NH+4 in order to make nitrogen usable by the following compartments. In MELiSSA, the constraint is to perform axenic cultures in order to fully control the genetic status of the culture and a thorough modelling for developing a control strategy of the compartment and of the loop, knowing that the reliability of the production of oxidized forms of nitrogen NO3- directly impacts the behaviour of the following compartments. Nitrification in aerobic environments is carried out by two groups of bacteria in co-cultures in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi) the oxidation of nitrite to nitrate. In both cases, the bacteria achieve the oxidations to obtain an energy and reductant source for their growth and maintenance. Both groups use CO2 predominantly as their carbon source. They are typically found together in ecosystems and, consequently, nitrite accumulation is rare. This study concerns kinetic and mass balances studies of axenic cultures of Ns. europaea and Nb. winogradskyi in autotrophic conditions. The daily follow-up of these cultures is done using a new protocol involving flow cytometry and ionic chromatography. Nitrogen substrates and products are

  5. Characterization of the c-type cytochromes of Nitrosomonas europaea with the aid of fluorescent gels

    PubMed Central

    Miller, David J.; Wood, Paul M.

    1982-01-01

    When a total soluble extract of Nitrosomonas europaea was denatured with dodecyl sulphate, subjected to dodecyl sulphate/polyacrylamide-gel electrophoresis and illuminated with near-u.v. light, eight bands of protein fluorescence were observed. All but one of these bands were red in colour, a property characteristic of c-type cytochromes. Standard techniques were used to purify soluble c-type cytochromes from this organism, and it was then possible to assign all but two very minor bands to specific c-type cytochromes, namely hydroxylamine oxidase, cytochrome c-554, cytochrome c-552 and a cytochrome c-550 not previously described. The eight band had fluorescence peaking in the green region of the spectrum, probably caused by covalently bound flavin, and co-purified with hydroxylamine oxidase. The following physical properties were determined for these components: isoelectric point, molecular weights according to gel filtration and mobility on dodecyl sulphate/polyacrylamide gels, and α-band spectra at room temperature and 77K. Redox potentials were measured as follows: cytochrome c-554, Em,7 = +20mV; cytochrome c-552, Em,7 = +230mV; cytochrome c-550, Em,7 = +140mV. When washed membranes were applied to dodecyl sulphate/polyacrylamide gels in the same way, a number of fluorescent bands were observed that could be matched by soluble proteins. In addition, there was one band that could not be detected in supernatants, migrating with an apparent molecular weight of 24000. This species is probably coincident with a c-type cytochrome having Em,7 = +170mV found in redox titration of these membranes. In future studies, gel fluorescence should form a useful complement to spectroscopy for analysis of cytochrome composition in active cell-free preparations or semi-purified material. PMID:6299271

  6. The complete mitochondrial genome of the nudibranch Roboastra europaea (Mollusca: Gastropoda) supports the monophyly of opisthobranchs.

    PubMed

    Grande, Cristina; Templado, José; Cervera, J Lucas; Zardoya, Rafael

    2002-10-01

    The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly. PMID:12270894

  7. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.

    PubMed

    Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie

    2016-06-01

    Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. PMID:27016814

  8. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  9. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117

  10. Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin.

    PubMed

    Abdelkefi-Mesrati, Lobna; Rouis, Souad; Sellami, Sameh; Jaoua, Samir

    2009-09-01

    Vegetative insecticidal protein (Vip) is a class of insecticidal proteins produced by many Bacillus thuringiensis strains during their vegetative growth stage. The vip3LB gene of B. thuringiensis strain BUPM95, which encodes a protein active against the Lepidoptera olive tree pathogenic insect Prays oleae, was cloned into pET-14b vector and overexpressed in Escherichia coli. The expressed Vip3LB protein, found in the E. coli cytoplasmic fraction, was purified and used to produce anti-Vip3LB antibodies. Using the midgut extract of P. oleae, the purified Vip3LB bound to a 65-kDa protein, whereas Cry1Ac toxin bound to a 210-kDa midgut putative receptor. This result justifies the importance of the biological pest control agent Vip3LB that could be used as another alternative particularly in case of resistance to Cry toxins. PMID:19434523

  11. Transcription of All amoC Copies Is Associated with Recovery ofNitrosomonas europaea from Ammonia Starvation

    SciTech Connect

    Berube, Paul M.; Samudrala, Ram; Stahl, David A.

    2007-09-21

    The chemolithotrophic ammonia-oxidizing bacteriumNitrosomonas europaea is known to be highly resistant to starvationconditions. The transcriptional response of N. europaea to ammoniaaddition following short- and long-term starvation was examined by primerextension and S1 nuclease protection analyses of genes encoding enzymesfor ammonia oxidation (amoCAB operons) and CO2 fixation (cbbLS), a third,lone copy of amoC (amoC3), and two representative housekeeping genes(glyA and rpsJ). Primer extension analysis of RNA isolated from growing,starved, and recovering cells revealed two differentially regulatedpromoters upstream of the two amoCAB operons. The distal sigma 70 typeamoCAB promoter was constitutively active in the presence of ammonia, butthe proximal promoter was only active when cells were recovering fromammonia starvation. The lone, divergent copy of amoC (amoC3) wasexpressed only during recovery. Both the proximal amoC1,2 promoter andthe amoC3 promoter are similar to gram-negative sigma E promoters, thusimplicating sigma E in the regulation of the recovery response. Althoughmodeling of subunit interactions suggested that a nonconservative prolinesubstitution in AmoC3 may modify the activity of the holoenzyme,characterization of a Delta amoC3 strain showed no significant differencein starvation recovery under conditions evaluated. In contrast to the amotranscripts, a delayed appearance of transcripts for a gene required forCO2 fixation (cbbL) suggested that its transcription is retarded untilsufficient energy is available. Overall, these data revealed a programmedexit from starvation likely involving regulation by sigma E and thecoordinated regulation of catabolic and anabolic genes.

  12. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions. PMID:27447799

  13. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts

    PubMed Central

    Micucci, Matteo; Malaguti, Marco; Gallina Toschi, Tullia; Di Lecce, Giuseppe; Aldini, Rita; Angeletti, Andrea; Chiarini, Alberto; Budriesi, Roberta; Hrelia, Silvana

    2015-01-01

    This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals. PMID:26180582

  14. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts.

    PubMed

    Micucci, Matteo; Malaguti, Marco; Toschi, Tullia Gallina; Di Lecce, Giuseppe; Aldini, Rita; Angeletti, Andrea; Chiarini, Alberto; Budriesi, Roberta; Hrelia, Silvana

    2015-01-01

    This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals. PMID:26180582

  15. Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice

    PubMed Central

    Al-Attar, Atef M.; Alrobai, Ali A.; Almalki, Daklallah A.

    2015-01-01

    The effect of Olea oleaster and Juniperus procera leaves extracts and their combination on thioacetamide (TAA)-induced hepatic cirrhosis were investigated in male albino mice. One hundred sixty mice were used in this study and were randomly distributed into eight groups of 20 each. Mice of group 1 served as controls. Mice of group 2 were treated with TAA. Mice of group 3 were exposed to TAA and supplemented with O. oleaster leaves extracts. Mice of group 4 were treated with TAA and supplemented with J. procera leaves extracts. Mice of group 5 were subjected to TAA and supplemented with O. oleaster and J. procera leaves extracts. Mice of groups 6, 7 and 8 were supplemented with O. oleaster, J. procera, and O. oleaster and J. procera leaves extracts respectively. Administration of TAA for six and twelve weeks resulted in a decline in body weight gain and increased the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Histopathological evaluations of hepatic sections from mice treated with TAA showed severe alterations including increase of fibrogenesis processes with structural damage. Treatment of mice with these extracts showed a pronounced attenuation in TAA induced hepatic cirrhosis associated with physiological and histopathological alterations. Finally, this study suggests that the supplementation of these extracts may act as antioxidant agents and could be an excellent adjuvant support in the therapy of hepatic cirrhosis. PMID:27081362

  16. Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice.

    PubMed

    Al-Attar, Atef M; Alrobai, Ali A; Almalki, Daklallah A

    2016-05-01

    The effect of Olea oleaster and Juniperus procera leaves extracts and their combination on thioacetamide (TAA)-induced hepatic cirrhosis were investigated in male albino mice. One hundred sixty mice were used in this study and were randomly distributed into eight groups of 20 each. Mice of group 1 served as controls. Mice of group 2 were treated with TAA. Mice of group 3 were exposed to TAA and supplemented with O. oleaster leaves extracts. Mice of group 4 were treated with TAA and supplemented with J. procera leaves extracts. Mice of group 5 were subjected to TAA and supplemented with O. oleaster and J. procera leaves extracts. Mice of groups 6, 7 and 8 were supplemented with O. oleaster, J. procera, and O. oleaster and J. procera leaves extracts respectively. Administration of TAA for six and twelve weeks resulted in a decline in body weight gain and increased the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Histopathological evaluations of hepatic sections from mice treated with TAA showed severe alterations including increase of fibrogenesis processes with structural damage. Treatment of mice with these extracts showed a pronounced attenuation in TAA induced hepatic cirrhosis associated with physiological and histopathological alterations. Finally, this study suggests that the supplementation of these extracts may act as antioxidant agents and could be an excellent adjuvant support in the therapy of hepatic cirrhosis. PMID:27081362

  17. Maintenance Energy Demand and Starvation Recovery Dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi Cultivated in a Retentostat with Complete Biomass Retention

    PubMed Central

    Tappe, W.; Laverman, A.; Bohland, M.; Braster, M.; Rittershaus, S.; Groeneweg, J.; van Verseveld, H. W.

    1999-01-01

    Nitrosomonas europaea and Nitrobacter winogradskyi (strain “Engel”) were grown in ammonia-limited and nitrite-limited conditions, respectively, in a retentostat with complete biomass retention at 25°C and pH 8. Fitting the retentostat biomass and oxygen consumption data of N. europaea and N. winogradskyi to the linear equation for substrate utilization resulted in up to eight-times-lower maintenance requirements compared to the maintenance energy demand (m) calculated from chemostat experiments. Independent of the growth rate at different stages of such a retention culture, the maximum specific oxygen consumption rate measured by mass spectrometric analysis of inlet and outlet gas oxygen content always amounted to approximately 45 μmol of O2 mg−1 of biomass-C · h−1 for both N. europaea and N. winogradskyi. When bacteria were starved for different time periods (up to 3 months), the spontaneous respiratory activity after an ammonia or nitrite pulse decreased with increasing duration of the previous starvation time period, but the observed decrease was many times faster for N. winogradskyi than for N. europaea. Likewise, the velocity of resuscitation decreased with extended time periods of starvation. The increase in oxygen consumption rates during resuscitation referred to the reviving population only, since in parallel no significant increase in the cell concentrations was detectable. N. europaea more readily recovers from starvation than N. winogradskyi, explaining the occasionally observed nitrite accumulation in the environment after ammonia becomes available. From chloramphenicol (100 μg · ml−1) inhibition experiments with N. winogradskyi, it has been concluded that energy-starved cells must have a lower protein turnover rate than nonstarved cells. As pointed out by Stein and Arp (L. Y. Stein and D. J. Arp, Appl. Environ. Microbiol. 64:1514–1521, 1998), nitrifying bacteria in soil have to cope with extremely low nutrient concentrations

  18. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  19. Molecular Characterization and Chromosomal Distribution of a Species-Specific Transcribed Centromeric Satellite Repeat from the Olive Fruit Fly, Bactrocera oleae

    PubMed Central

    Tsoumani, Konstantina T.; Drosopoulou, Elena; Mavragani-Tsipidou, Penelope; Mathiopoulos, Kostas D.

    2013-01-01

    Satellite repetitive sequences that accumulate in the heterochromatin consist a large fraction of a genome and due to their properties are suggested to be implicated in centromere function. Current knowledge of heterochromatic regions of Bactrocera oleae genome, the major pest of the olive tree, is practically nonexistent. In our effort to explore the repetitive DNA portion of B. oleae genome, a novel satellite sequence designated BoR300 was isolated and cloned. The present study describes the genomic organization, abundance and chromosomal distribution of BoR300 which is organized in tandem, forming arrays of 298 bp-long monomers. Sequence analysis showed an AT content of 60.4%, a CENP-B like-motif and a high curvature value based on predictive models. Comparative analysis among randomly selected monomers demonstrated a high degree of sequence homogeneity (88% – 97%) of BoR300 repeats, which are present at approximately 3,000 copies per haploid genome accounting for about 0.28% of the total genomic DNA, based on two independent qPCR approaches. In addition, expression of the repeat was also confirmed through RT-PCR, by which BoR300 transcripts were detected in both sexes. Fluorescence in situ hybridization (FISH) of BoR300 on mitotic metaphases and polytene chromosomes revealed signals to the centromeres of two out of the six chromosomes which indicated a chromosome-specific centromeric localization. Moreover, BoR300 is not conserved in the closely related Bactrocera species tested and it is also absent in other dipterans, but it’s rather restricted to the B. oleae genome. This feature of species-specificity attributed to BoR300 satellite makes it a good candidate as an identification probe of the insect among its relatives at early development stages. PMID:24244494

  20. Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea).

    PubMed

    Gu, Se Hun; Kumar, Mukesh; Sikorska, Beata; Hejduk, Janusz; Markowski, Janusz; Markowski, Marcin; Liberski, Paweł P; Yanagihara, Richard

    2016-01-01

    Genetically distinct hantaviruses have been identified in five species of fossorial moles (order Eulipotyphla, family Talpidae) from Eurasia and North America. Here, we report the isolation and partial characterization of a highly divergent hantavirus, named Nova virus (NVAV), from lung tissue of a European mole (Talpa europaea), captured in central Poland in August 2013. Typical hantavirus-like particles, measuring 80-120 nm in diameter, were found in NVAV-infected Vero E6 cells by transmission electron microscopy. Whole-genome sequences of the isolate, designated NVAV strain Te34, were identical to that amplified from the original lung tissue, and phylogenetic analysis of the full-length L, M and S segments, using maximum-likelihood and Bayesian methods, showed that NVAV was most closely related to hantaviruses harbored by insectivorous bats, consistent with an ancient evolutionary origin. Infant Swiss Webster mice, inoculated with NVAV by the intraperitoneal route, developed weight loss and hyperactivity, beginning at 16 days, followed by hind-limb paralysis and death. High NVAV RNA copies were detected in lung, liver, kidney, spleen and brain by quantitative real-time RT-PCR. Neuropathological examination showed astrocytic and microglial activation and neuronal loss. The first mole-borne hantavirus isolate will facilitate long-overdue studies on its infectivity and pathogenic potential in humans. PMID:26892544

  1. Community structure variability of Uropodina mites (Acari: Mesostigmata) in nests of the common mole, Talpa europaea, in Central Europe.

    PubMed

    Napierała, Agnieszka; Mądra, Anna; Leszczyńska-Deja, Kornelia; Gwiazdowicz, Dariusz J; Gołdyn, Bartłomiej; Błoszyk, Jerzy

    2016-04-01

    Underground nests of Talpa europaea, known as the common mole, are very specific microhabitats, which are also quite often inhabited by various groups of arthropods. Mites from the suborder Uropodina (Acari: Mesostigmata) are only one of them. One could expect that mole nests that are closely located are inhabited by communities of arthropods with similar species composition and structure. However, results of empirical studies clearly show that even nests which are close to each other can be different both in terms of the species composition and abundance of Uropodina communities. So far, little is known about the factors that can cause these differences. The major aim of this study was to identify factors determining species composition, abundance, and community structure of Uropodina communities in mole nests. The study is based on material collected during a long-term investigation conducted in western parts of Poland. The results indicate that the two most important factors influencing species composition and abundance of Uropodina communities in mole nests are nest-building material and depth at which nests are located. Composition of Uropodina communities in nests of moles was also compared with that of other microhabitats (e.g. rotten wood, forest litter, soil) based on data from 4421 samples collected in Poland. Communities of this habitat prove most similar to these of open areas, especially meadows, as well as some forest types. PMID:26861069

  2. Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea)

    PubMed Central

    Gu, Se Hun; Kumar, Mukesh; Sikorska, Beata; Hejduk, Janusz; Markowski, Janusz; Markowski, Marcin; Liberski, Paweł P.; Yanagihara, Richard

    2016-01-01

    Genetically distinct hantaviruses have been identified in five species of fossorial moles (order Eulipotyphla, family Talpidae) from Eurasia and North America. Here, we report the isolation and partial characterization of a highly divergent hantavirus, named Nova virus (NVAV), from lung tissue of a European mole (Talpa europaea), captured in central Poland in August 2013. Typical hantavirus-like particles, measuring 80–120 nm in diameter, were found in NVAV-infected Vero E6 cells by transmission electron microscopy. Whole-genome sequences of the isolate, designated NVAV strain Te34, were identical to that amplified from the original lung tissue, and phylogenetic analysis of the full-length L, M and S segments, using maximum-likelihood and Bayesian methods, showed that NVAV was most closely related to hantaviruses harbored by insectivorous bats, consistent with an ancient evolutionary origin. Infant Swiss Webster mice, inoculated with NVAV by the intraperitoneal route, developed weight loss and hyperactivity, beginning at 16 days, followed by hind-limb paralysis and death. High NVAV RNA copies were detected in lung, liver, kidney, spleen and brain by quantitative real-time RT-PCR. Neuropathological examination showed astrocytic and microglial activation and neuronal loss. The first mole-borne hantavirus isolate will facilitate long-overdue studies on its infectivity and pathogenic potential in humans. PMID:26892544

  3. Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    PubMed Central

    Gabrieli, Paolo; Gomulski, Ludvik M.; Bonomi, Angelica; Siciliano, Paolo; Scolari, Francesca; Franz, Gerald; Jessup, Andrew; Malacrida, Anna R.; Gasperi, Giuliano

    2011-01-01

    Background Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. Methodology/Principal Findings A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. Conclusions/Significance The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the

  4. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect

    PubMed Central

    Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M.; Papadopoulos, Nikos T.; Nestel, David

    2015-01-01

    Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics. PMID:26010332

  5. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Tikhomirov, A. A.

    Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 °C, illumination was continuous. Light intensity was 690 μmol/m 2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground biomass

  6. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Tikhomirov, A. A.

    Use of halophytes, in particular vegetable Salicornia europaea plants which are capable to utilize NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of biological life support systems (BLSS). In preliminary experiments it was shown, that S.europaea plants, basically, can grow on urine subjected to physicochemical processing and urease-fermentative decomposing of urea with the subsequent ammonia distillation, but for all that oppression of plants growth process was observed. In this connection, the purpose of the given work was to find out the influence of excessive quantity of some mineral elements contained in products of physicochemical processing of urine on production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human's fluid excretions changed within certain limits two variants of modeling solutions were prepared. In the first variant concentration of mineral salts was equivalent to minimum salt content in the human's fluid excretions and compounded: K - 1,5 g/l, P - 0,5 g/l, S - 0,5 g/l, Mg - 0,07 g/l, Ca - 0,2 g/l. In the second variant the content of mineral salts corresponded to maximum salt content in the human's fluid excretions and was the following: K - 3,0 g/l, P - 0,7g/l, S - 1,2 g/l, Mg - 0,2 g/l, Ca - 0,97 g/l. As the control the modified solution under B.I.Tokarev's formulation containing nitrogen in the form of a urea, and Knop's solution with nitrogen in the nitrate form were used. N quantity in all 4 variants made up 177 mg/l. Air temperature was 24°, illumination was continuous. Light intensity was 150 W/m2 PAR. NaCl concentration in solutions compounded 1 %. The researches conducted showed that the dry above-ground biomass of an average plant of the first variant practically did not differ from the control and compounded 11,2 g. In the second variant S.europaea productivity decreased, and the dry above-ground biomass of an average plant

  7. Mass mortality events of the coral Balanophyllia europaea (Scleractinia, Dendrophylliidae) in the Mljet National Park (eastern Adriatic Sea) caused by sea temperature anomalies

    NASA Astrophysics Data System (ADS)

    Kružić, P.; Popijač, A.

    2015-03-01

    Recurrent climate-induced mass mortalities of marine animals have been recorded in the Mediterranean Sea over the past 15 years. These mortality outbreaks have been associated with positive thermal anomalies. In this study, we assessed long-term (from 2003 to 2013) responses of the temperate coral Balanophyllia europaea to increasing seawater temperatures in the Mljet National Park in the Adriatic Sea (Northern Mediterranean Sea) and described the relationship between recurrent mortality events and sea temperature regimes in the southern Adriatic Sea. Our results indicate that polyp bleaching and tissue necrosis caused the observed mortality. The first observations of B. europaea mortality within the study area in the Mljet NP were in early September 2003. The Mediterranean area experienced high temperatures and hydrographic stability over a period of several weeks throughout that summer, which resulted in a mass mortality event. In the Mljet National Park, the highest impact of mass mortality started during the exceptionally hot summer of 2012, representing one of the most severe mass mortality events ever observed in the Adriatic Sea. In 2012, sea temperatures at a 5 m depth during the summer period (from June to September) ranged from 24.44 to 30.16 °C in the Mljet NP. The northern sites in the Mljet NP were highly impacted, with up to 80 % of B. europaea specimens affected by necrosis, while the southern sites displayed the highest impact, with 90-100 % of affected individuals. Without any coral adaptation to warming and under the present climate-warming trend, new mass mortality events may occur in the near future, possibly causing a major coral biodiversity crisis in the Mediterranean Sea.

  8. A centralised remote data collection system using automated traps for managing and controlling the population of the Mediterranean (Ceratitis capitata) and olive (Dacus oleae) fruit flies

    NASA Astrophysics Data System (ADS)

    Philimis, Panayiotis; Psimolophitis, Elias; Hadjiyiannis, Stavros; Giusti, Alessandro; Perelló, Josep; Serrat, Albert; Avila, Pedro

    2013-08-01

    The present paper describes the development of a novel monitoring system (e-FlyWatch system) for managing and controlling the population of two of the world's most destructive fruit pests, namely the olive fruit fly (Bactrocera oleae, Rossi - formerly Dacus oleae) and the Mediterranean fruit fly (Ceratitis capitata, also called medfly). The novel monitoring system consists of a) novel automated traps with optical and motion detection modules for capturing the flies, b) local stations including a GSM/GPRS module, sensors, flash memory, battery, antenna etc. and c) a central station that collects, stores and publishes the results (i.e. insect population in each field, sensor data, possible error/alarm data) via a web-based management software.The centralised data collection system provides also analysis and prediction models, end-user warning modules and historical analysis of infested areas. The e-FlyWatch system enables the SMEs-producers in the Fruit, Vegetable and Olive sectors to improve their production reduce the amount of insecticides/pesticides used and consequently the labour cost for spraying activities, and the labour cost for traps inspection.

  9. Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures.

    PubMed

    Yu, Ran; Wu, Junkang; Liu, Meiting; Chen, Lianghui; Zhu, Guangcan; Lu, Huijie

    2016-07-01

    The short-term combined effects of two most extensively used nanoparticles (NPs) TiO2 NPs (n-TiO2) and ZnO NPs (n-ZnO) versus their individual cytotoxicities on a model ammonia-oxidizing bacterium, Nitrosomonas europaea, were investigated at both physiological and transcriptional levels. n-ZnO exerted more serious impairment effects on cell morphology, cell density, membrane integrity, and ammonia monooxygenase activity than n-TiO2. However, the co-existing n-TiO2 displayed a dose-dependent mitigation effect on n-ZnO cytotoxicity. Consistently, the n-TiO2 and n-ZnO mixture-impacted global transcriptional expression profile, obtained with the whole-genome microarray technique, was more comparable to the n-TiO2-impacted one than that impacted by n-ZnO. The expressions of numerous genes associated with heavy metal scavenging, DNA repair, and oxidative stress response were less up-regulated under the binary impacts of NP mixture than n-ZnO. Moreover, only n-ZnO alone stimulated the up-regulations of heavy metal resistance genes, which further implied the capacity of co-existing n-TiO2 to alleviate n-ZnO cytotoxicity. In addition, the damage of cell membrane structures and the suppression of cell membrane biogenesis-related gene expressions under the influence of either individual NPs or their combinations strongly suggested that the interruption of cell membranes and the associated metabolic activities would probably be one of NPs' critical cytotoxicity mechanisms. PMID:26996914

  10. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...