Science.gov

Sample records for olefin polymerization catalysts

  1. Deactivator for olefin polymerization catalyst

    SciTech Connect

    Rekers, L.J.; Speca, A.N.; Mayhew, H.W.

    1987-03-10

    A method is described comprising deactivating an olefin polymerization catalyst selected from the group consisting of Ziegler-Natta transition element catalysts and catalysts based on transition metal oxides by contacting the catalyst with a copolymer. The copolymer consists of an alpha-olefin having from 2 to about 12 carbon atoms and an unsaturated ester of a carboxylic acid. The deactivating copolymer is present in an amount such that the molar ratio of the unsaturated ester thereof to the sum of the transition element component of the polymerization catalyst and a cocatalyst for the transition element catalyst is in the range of between about 0.1 and about 6.

  2. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  3. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  4. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  5. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  6. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  7. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  8. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  9. New application for metallocene catalysts in olefin polymerization.

    PubMed

    Kaminsky, Walter; Funck, Andreas; Hähnsen, Heinrich

    2009-11-01

    Metallocenes and other transition metal complexes, activated by methylaluminoxane allow the synthesis of polyolefins with a highly defined microstructure, tacticity, and stereoregularity. New copolymers, long chain branched polymers, and polyolefin nanocomposites are produced by these highly active catalysts. A better understanding of the structure of active sites for the olefin polymerization will lead to findings of new and simpler co-catalysts. Ethene or propene can be copolymerized with 1-olefin macromers with chain lengths up to 12,000 g mol(-1) as well as with cyclic olefins. Polypropenes of high molecular weight and filled with multi-walled carbon nanotubes show exciting new physical and mechanical properties and are prepared by in situ polymerization. These, and other polyolefin specialities, will be new future materials in a wide range of applications. PMID:19826710

  10. Transition metal-free olefin polymerization catalyst

    DOEpatents

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  11. Discovery and Development of Pyridine-bis(imine) and Related Catalysts for Olefin Polymerization and Oligomerization.

    PubMed

    Small, Brooke L

    2015-09-15

    For over 40 years following the polyolefin catalyst discoveries of Hogan and Banks (Phillips) and Ziegler (Max Planck Institute), chemists traversed the periodic table searching for new transition metal and lanthanide-based olefin polymerization systems. Remarkably, none of these "hits" employed iron, that is, until three groups independently reported iron catalysts for olefin polymerization in the late 1990's. The history surrounding the discovery of these catalysts was only the beginning of their uniqueness, as the ensuing years have proven these systems remarkable in several regards. Of primary importance are the pyridine-bis(imine) ligands (herein referred to as PDI), which produced iron catalysts that are among the world's most active for ethylene polymerization, demonstrated "staying power" despite over 15 years of ligand improvement efforts, and generated highly active polymerization systems with cobalt, chromium, and vanadium. Although many ligands have been employed in iron-catalyzed polymerization, the PDI family has thus far provided the most information about iron's capabilities and tendencies. For example, iron systems tend to be highly selective for ethylene over higher olefins, making them strong candidates for producing highly crystalline polyethylene, or highly linear α-olefins. Iron PDI polymerizes propylene with 2,1-regiochemistry via a predominantly isotactic, chain end control mechanism. Because the first insertion proceeds via 1,2-regiochemistry, iron (and cobalt) PDI systems can be tailored to make highly linear dimers of α-olefins by "head-to-head" coupling, resulting from a switch in regiochemistry after the first insertion. Finally, PDI ligands, while not being surpassed in activity, have inspired the development of related ligand families and complexes, such as pendant donor diimines (PDD), which are also highly efficient at producing linear α-olefins. This Account will detail a variety of oligomerization and polymerization results

  12. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  13. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  14. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  15. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  16. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  17. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1987-05-12

    A process is described for polymerizing at least one alpha olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst system which comprises: a supported catalyst prepared under anhydrous conditions by the sequential steps of: preparing a slurry of inert particulate support material; adding to the slurry a solution of an organomagnesium compound; adding to the slurry and reacting a solution of a zirconium halide compound, hafnium compound or mixtures thereof; adding to the slurry and reacting a halogenator; adding to the slurry and reacting a tetravalent titanium halide compound; and recovering solid catalyst.

  18. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1986-10-21

    A process is described for polymerizing at least one alpha-olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst comprising: a supported catalyst prepared under anhydrous conditions by the steps of: (1) sequentially; (a) preparing a slurry of inert particulate support material; (b) adding to the slurry a solution of an organomagnesium compound; (c) adding to the slurry and reacting a solution of zirconium compound; and (2) thereafter; (d) adding to the slurry and reacting a halogenator; (e) adding to the slurry and reacting a tetravalent titanium compound; (f) recovering solid catalyst; and an organoaluminum compound.

  19. Polymerization of olefins in the presence of polymer supported Ziegler-Natta catalysts

    SciTech Connect

    Bedell, S.A.; Coleman, W.M. III; Howell, W.R. Jr.

    1986-11-18

    A process is described for polymerizing one or more ..cap alpha..-olefins or one or more ..cap alpha..-olefins and one or more polymerizable ethylenically unsaturated monomers. The process comprises conducting the polymerization under Ziegler polymerization conditions in the presence of an organoaluminum cocatalyst and a polymer supported Ziegler-Natta catalyst resulting from contacting for a time sufficient to form a compound or a complex, (A) (1) at least one organic polymeric material to which has been covalently bonded (2) one or more dihydric phenolic compounds; which has been prepared by reacting a halogenated organic polymeric material with the dihydric phenolic compound; with (B) at least one compound of an element from the transition metal, lanthanide or actinide series represented by the formula Tm(OR)/sub x/X/sub y-x/. Each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms; Tm is an element from the transition metal, lanthanide or actinide series; X is a halogen; x has a value from zero to a value equal to the valence of the element Tm and y has a value equal to the valence of the element Tm; and wherein components (A-1) and (A-2) are employed in amounts which provides a ratio of moles of (A-2) per halogen atom contained in a halogenated component (A-1) of from about 1:1 to about 30:1. Components (A) and (B) are employed in an amount which provides a ratio of moles of polyhydric aromatic compound per atom of Tm of from about 1:1 to about 10:1.

  20. Polymerization of olefins employing a catalyst containing a titanium component derived from hydroxyalkyl aromatic compounds

    SciTech Connect

    Coleman, W.M. III; Edmondson, M.S.

    1986-03-18

    A process is described for polymerizing at least one ..cap alpha..-olefin or a mixture of at least one ..cap alpha..-olefin and at least one polymerizable ethylenically unsaturated monomer in the presence of a supported Ziegler-Natta catalyst; the improvement which comprises employing as the transition metal component of such catalyst that which results from reacting (A) at least one titanium compound represented by the formula Ti(OR)/sub X/X/sub 4//sub -X/ wherein each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms; X is a halogen and x has a value from zero to 4; with (B) at least one compound containing at least one aliphatic hydroxyl group represented by the formula wherein each A is independently a divalent hydrocarbyl group having from 1 to about 10 carbon atoms; is independently hydrogen, a halogen atom, a hydrocarbyl group, a hydrocarbyloxy group or a halogen, nitro or hydrocarbyloxy substituted hydrocarbyl group or a halogen, nitro or hydrocarbyloxy substituted hydrocarbyloxy group, each such hydrocarbyl or hydrocarbyloxy groups having from 1 to about 20 carbon atoms; n' has a value of from 1 to 5, and each x independently has a value of from zero to 4; and wherein components (A) and (B) are employed in quantities which provide a molar ratio of (B):(A) of 0.1:1 to about 10:1.

  1. Transition-metal organometallic compounds as cocatalysts in olefin polymerization with MgCl{sub 2}-supported catalysts

    SciTech Connect

    Galimberti, M.; Piemontesi, F.; Giannini, U.; Albizzati, E.

    1993-12-06

    Zirconium tetrabenzyl was used as the cocatalyst in olefin polymerization together with MgCl{sub 2}-supported titanium catalysts. Its behavior was compared with those of aluminum and titanium organometallic compounds. In propylene polymerization performed with a MgCl{sub 2}/TiCl{sub 4} catalyst containing ethyl benzoate as the internal donor and with tetrabenzylzirconium as the cocatalyst, a polypropylene with 93 as its isostatic index was obtained, without the need of any external donor. They present a tentative explanation, based on the study of the interaction between the different components of the catalytic system.

  2. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  3. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  4. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  5. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  6. Metallocalixarene catalysts: α-olefin polymerization and ROP of cyclic esters.

    PubMed

    Redshaw, Carl

    2016-05-31

    This perspective review discusses metallocalix[n]arene complexes that have been employed in either α-olefin polymerization or in the ring opening polymerization (ROP) of cyclic esters over the last 5 years. Synthesis, molecular structure and catalytic potential are discussed. For α-olefin polymerization, systems based on early transition metals in combination with calix[n]arenes (n = 4, 6 or 8), depleted calix[4]arenes or thia/sulfinyl/sulfonyl calix[4]arenes have been reported, and in some cases, are highly active. For the ROP studies, a number of the systems, typically of the early transition metals, only exhibit activity under robust conditions, whereas other systems, for example those of magnesium, demonstrate exceptional activity, immortal behaviour and intriguing stereoselectivity. PMID:27206314

  7. Process for polymerizing olefins in the presence of a catalyst prepared from organomagenesium compound, epihalohydrin reducing halide source and transition metal compound

    SciTech Connect

    Lund, G.K.

    1986-08-12

    This patent describes a process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable ..cap alpha..-olefins under Ziegler polymerization conditions wherein the polymerization is conducted in the presence of a transition metal-containing catalyst. The improvement comprises employing as the transition metal-containing catalyst a catalytic product resulting from admixing in an inert hydrocarbon diluent and in an atmosphere which excludes moisture and oxygen.

  8. Single-Site Heterogeneous Catalysts for Olefin Polymerization Enabled by Cation Exchange in a Metal-Organic Framework.

    PubMed

    Comito, Robert J; Fritzsching, Keith J; Sundell, Benjamin J; Schmidt-Rohr, Klaus; Dincă, Mircea

    2016-08-17

    The manufacture of advanced polyolefins has been critically enabled by the development of single-site heterogeneous catalysts. Metal-organic frameworks (MOFs) show great potential as heterogeneous catalysts that may be designed and tuned on the molecular level. In this work, exchange of zinc ions in Zn5Cl4(BTDD)3, H2BTDD = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin) (MFU-4l) with reactive metals serves to establish a general platform for selective olefin polymerization in a high surface area solid promising for industrial catalysis. Characterization of polyethylene produced by these materials demonstrates both molecular and morphological control. Notably, reactivity approaches single-site catalysis, as evidenced by low polydispersity indices, and good molecular weight control. We further show that these new catalysts copolymerize ethylene and propylene. Uniform growth of the polymer around the catalyst particles provides a mechanism for controlling the polymer morphology, a relevant metric for continuous flow processes. PMID:27443860

  9. Iso-specific Ziegler-Natta polymerization of {alpha}-olefins with a single-component organoyttrium catalyst

    SciTech Connect

    Coughlin, E.B.; Bercaw, J.E.

    1992-09-09

    Three types of well-defined, homogeneous Ziegler-Natta {alpha}-olefin polymerization systems have been described recently: (1) two-component catalysts consisting of group 4 metallocene dihalides and a large excess of methylalumoxane cocatalyst; (2) simpler two-component systems based on group 4 metallocene dialkyls with a stoichiometric (or near stoichiometric) amount of an activator such as [C{sub 6}H{sub 5}(CH{sub 3}){sub 2}NH{sup +}][B(C{sub 6}F{sub 5}){sub 4}{sup -}], {sup 3}[(C{sub 6}H{sub 5}){sub 3}C{sup +}][B(C{sub 6}F{sub 5}){sub 4}{sup -}],{sup 4} or B(C{sub 6}F{sub 5}){sub 3},{sup .5} and (3) single-component catalysts such as Lewis base adducts of cationic group 4 metallocene alkyls{sup 6} or the isoelectronic neutral group 3 or lanthanide metallocene hydrides or alkyls. The group 4 metallocene/methylalumoxane and [Cp{sub 2}MCH{sub 3}{sup +}][B(R)(C{sub 6}F{sub 5}){sub 3}{sup -}] catalysts (M = Zr, Hf; R = C{sub 6}F{sub 5}, CH{sub 3}) exhibit higher activity in {alpha}-olefin polymerizations, and with the chiral, C{sub 2}-symmetric ansa-metallocene dihalide or dimethyl precursors (M = Ti, Zr, Hf) developed by Brintzinger, Ewen, Collins, and others, highly isotactic polypropylene is obtained. Unfortunately, the meso (C{sub s} symmetric) isomer is normally formed along with the preferred chiral isomer in the synthesis of the metallocene dihalide. Herein the authors report the synthesis of the first iso-specific, single component Ziegler-Natta polymerization catalyst, [rac-Me{sub 2}Si(2-SiMe{sub 3}-4-CMe{sub 3}C{sub 5}H{sub 2}){sub 2}YR]. Its simplicity makes it particularly well suited to in situ mechanistic studies. Moreover, the [Me{sub 2}Si(2-SiMe{sub 3}-4-CMe{sub 3}C{sub 5}H{sub 2}){sub 2}] ligand has been designed to coordinate to yttrium to produce only the desired racemic isomer in the synthesis of the chloride precursor. 16 refs., 2 figs.

  10. Theoretical investigation of the stereochemistry of the polymerization of. cap alpha. -olefins and dienes with the participation of Ziegler-Natta catalysts

    SciTech Connect

    Minsker, K.S.; Karpasas, M.M.

    1986-09-01

    The processes involved in the formation of the active polymerization sites in heterogeneous Ziegler-Natta catalysts have been investigated with consideration of the real structure of the components by the atom-atom potential method, the Monte-Carlo method, a modified diatomics-in-molecules method, and the CNDO/2 method with the aid of the available experimental facts. It has been shown that three types of bimetallic active sites (AS), which differ with respect to the spatial configuration of the coordination sphere, viz., AS-1, AS-2, and AS-3, form, depending on the electronic structure of the homogeneous component R /SUB n/ M, the ionic radius of M (M is a metal from groups I-III), and the unit-cell parameters of the heterogeneous component MeX /SUB m/ (Me is a transition metal from groups IV-VIII). Only the AS-1 sites are stereospecific in the polymerization of ..cap alpha..-olefins and 1,3-dienes (isotactic polyolefins and 1,4-trans-polydienes form); the AS-2 sites are nonstereospecific in the polymerization of ..cap alpha..-olefins, but they form stereoregular 1,4-cis-polydienes; the AS-3 sites are nonstereospecific in the polymerization of both ..cap alpha..-olefins and 1,3-dienes. The phenomenon of stereoregularization in the polymerization of ..cap alpha..-olefins and 1,3-dienes is determined by the steric and electrostatic factors.

  11. Polymerization catalyst system

    SciTech Connect

    Graves, V.

    1986-03-25

    This patent describes a catalyst system for polymerizing at least one alpha-olefin under conditions characteristic of Ziegler polymerization. This system consists of: 1. a supported polymerization catalyst or mixture of polymerization catalysts prepared under anhydrous conditions by the sequential steps of: (a) preparing a slurry of inert particulate porous support material; (b) adding to the slurry a solution of an organomagnesium compound; (c) adding to the slurry and reacting a solution of a zirconium halide compound, hafnium compound or mixtures thereof; (d) adding to the slurry and reacting a halogenator; (e) adding to the slurry and reacting a tetravalent titanium halide compound; and (f) recovering solid catalyst component; 2. an organoaluminum compound; and 3. a promotor of chlorinated hydrocarbons having one to 20 carbon atoms.

  12. Titanium(IV) catalysts with ancillary imino-spiroketonato ligands: synthesis, structure and olefin polymerization.

    PubMed

    Ma, Yuguo; Lobkovsky, Emil B; Coates, Geoffrey W

    2015-07-21

    New titanium(IV) complexes having two bidentate β-iminoethyl-spiro[4,5]decan-6-onato ligands with various N-aryl substituents have been synthesized. X-ray crystal structure analysis reveals that these titanium complexes all exhibit a C2-symmetric conformation with a distorted octahedral geometry, although the specific orientation of the ligands around the titanium center varies with the identity of the N-aryl moiety. Upon activation with methylaluminoxane (MAO), these complexes catalyze the polymerization of ethylene and propylene. In the case of ethylene, most complexes exhibit the characteristics of a living polymerization between 0 °C and 25 °C, producing polyethylenes with narrow molecular weight distributions and number average molecular weights up to 100,000 g/mol. Depending on the N-aryl substituents, polymerizations of propylene result in products with tacticity ranging from slightly syndiotactic to slightly isotactic. PMID:25984908

  13. Organo-Lewis acid as cocatalyst for cationic homogenous metallocene Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  14. Highly active water-soluble olefin metathesis catalyst.

    PubMed

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-03-22

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media. PMID:16536510

  15. Thermally Stable, Latent Olefin Metathesis Catalysts.

    PubMed

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  16. Organo-Lewis acid as cocatalyst for cationic homogeneous metallocene Ziegler-Natta olefin polymerizations

    SciTech Connect

    Marks, T.J.; Chen, Y.X.

    2000-07-11

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes are disclosed for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  17. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  18. Photochemical preparation of olefin addition catalysts

    NASA Technical Reports Server (NTRS)

    Gray, Harry B. (Inventor); Rembaum, Alan (Inventor); Gupta, Amitava (Inventor)

    1978-01-01

    Novel polymer supported catalysts are prepared by photo-irradiation of low valent transition metal compounds such as Co.sub.2 (CO).sub.8, Rh.sub.4 (CO).sub.12 or Ru.sub.3 (CO).sub.12 in the presence of solid polymers containing amine ligands such as polyvinyl pyridine. Hydroformylation of olefins to aldehydes at ambient conditions has been demonstrated.

  19. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  20. A Ruthenium Catalyst for Olefin Metathesis Featuring an Anti-Bredt N-Heterocyclic Carbene Ligand

    PubMed Central

    Martin, David; Marx, Vanessa M.

    2016-01-01

    A ruthenium complex bearing an “anti-Bredt” N-heterocyclic carbene was synthesized, characterized and evaluated as a catalyst for olefin metathesis. Good conversions were observed at room temperature for the formation of di- and tri-substituted olefins by ring-closing metathesis. It also allowed for the ring-opening metathesis polymerization of cyclooctadiene, as well as for the cross-metathesis of cis-1,4-diacetoxy-2-butene with allyl-benzene, with enhanced Z/E kinetic selectivity over classical NHC-based catalysts.

  1. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

    PubMed

    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J

    2014-08-19

    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, α-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear α-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the

  2. Polymerization catalysts containing electron-withdrawing amide ligands

    DOEpatents

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  3. Olefin Polymerization Catalyzed by Double-Decker Dipalladium Complexes: Low Branched Poly(α-Olefin)s by Selective Insertion of the Monomer Molecule.

    PubMed

    Takano, Shigenaga; Takeuchi, Daisuke; Osakada, Kohtaro

    2015-11-01

    Dipalladium complexes of a cyclic bis(diimine) ligand with a double-decker structure catalyze polymerization of ethylene and α-olefins and copolymerization of ethylene with 1-hexene. The polymerization of 1-hexene yields a polymer that is mainly composed of the hexamethylene unit formed by 2,1-insertion of the monomer into the palladium-carbon bond, followed by chain-walking (6,1-insertion). The polymerization of 4-methyl-1-pentene proceeds by 2,1-insertion with a selectivity of 92-97 %, and affords the polymer with methyl and 2-methylhexyl branches. 2,1-Insertion occurs selectively in all of the polymerization reactions of α-olefins catalyzed by the dipalladium complexes. Ethylene polymerization with the catalyst at 100 °C lasts over 24 h, whereas the monopalladium-diimine catalyst loses its activity within 8 h at 60 °C. Polyethylene obtained by the dipalladium catalyst is less-branched and has a higher molecular weight compared to that of the monopalladium catalyst under the same conditions. Copolymerization of ethylene with 1-hexene affords solid products with melting points and molecular weights that vary depending on the polymerization time, suggesting formation of a block and/or gradient copolymer. PMID:26396067

  4. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions.

    PubMed

    Klosin, Jerzy; Fontaine, Philip P; Figueroa, Ruth

    2015-07-21

    This Account describes our research related to the development of molecular catalysts for solution phase olefin polymerization. Specifically, a series of constrained geometry and nonmetallocene (imino-amido-type) complexes were developed for high temperature olefin polymerization reactions. We have discovered many highly active catalysts that are capable of operating at temperatures above 120 °C and producing copolymers with a useful range of molecular weights (from medium to ultrahigh depending on precatalyst identity and polymerization conditions) and α-olefin incorporation capability. Constrained geometry catalysts (CGCs) exhibit very high activities and are capable of producing a variety of copolymers including ethylene-propylene and ethylene-1-octene copolymers at high reactor temperatures. Importantly, CGCs have much higher reactivity toward α-olefins than classical Ziegler-Natta catalysts, thus allowing for the production of copolymers with any desired level of comonomer. In search of catalysts with improved performance, we discovered 3-amino-substituted indenyl-based CGCs that exhibit the highest activity and produce copolymers with the highest molecular weight within this family of catalysts. Phenanthrenyl-based CGCs were found to be outstanding catalysts for the effective production of high styrene content ethylene-styrene copolymers under industrially relevant conditions. In contrast to CGC ligands, imino-amido-type ligands are bidentate and monoionic, leading to the use of trialkyl group IV precatalysts. The thermal instability of imino-amido complexes was addressed by the development of imino-enamido and amidoquinoline complexes, which are not only thermally very robust, but also produce copolymers with higher molecular weights, and exhibit improved α-olefin incorporation. Imido-amido and imino-enamido catalysts undergo facile chain transfer reactions with metal alkyls, as evidenced by a sharp decrease in polymer molecular weight when the

  5. Ziegler-Natta polymerization of {alpha}-olefins with organoyttrium compounds

    SciTech Connect

    Coughlin, E.B.; Bercaw, J.E.

    1993-12-31

    The single component iso-specific olefin polymerization catalyst [rac-Me{sub 2}Si(2-SiMe{sub 3}-4-CMe{sub 3}-C{sub 5}H{sub 2})Y-H]{sub 2}, [rac-BpY-H]{sub 2}, has recently been described. {sup 13}C NMR spectra of the resulting polymers show a high degree of isotacticity for all polymer samples, >97% mmmm for polypropylene. A preliminary X-ray crystal structure determination of the bridging hydride dimer, [rac-BpY-H]{sup 2}, has shown it to be homochiral (RR and SS enantiomers) as expected based upon steric considerations. Improved polymerization rates can be acheived by the hydrogenolysis of rac-BpY-CH(SiMe{sub 3}){sub 2}, in the presence of an {alpha}-olefin, without adversely effecting the polymer isotactivity. The alkyl, rac-BpY-CH(SiMe{sub 3}){sub 2}, is also an excellent catalyst for the copolymerization of ethylene and 1-butene. The synthesis and polymerization activity of various rac-BpY-R catalysts will be presented, as well as efforts designed towards probing the factors responsible for the resulting high isotacticities.

  6. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  7. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  8. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    PubMed

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled. PMID:27219852

  9. New NMR spectroscopic probe of the absolute stereoselectivity for metal-hydride and metal-alkyl additions to the carbon-carbon double bond. Demonstration with a single-component, isospecific Ziegler-Natta {alpha}-olefin polymerization catalyst

    SciTech Connect

    Gilchrist, J.H.; Bercaw, J.E.

    1996-12-04

    Optically active (98% ee) (R)-1,1,3,4,4,5,5,5-octadeutero-1-pentene (1) was prepared and used to evaluate the stereoselectivity of Y-H and Y-n-pentyl additions for the optically pure C{sub 2}-symmetric (R,S)-(BnBp)Y-R/(S,R)-(BnBp)Y-R and racemic ({+-})-(BnBp)Y-R isospecific polypropylene catalysts (BnBp = [(OC{sub 10}H{sub 6}C{sub 10}H{sub 6}O)Si(C{sub 5}H{sub 2}-2-SiMe{sub 3}-4-CMe{sub 3}){sub 2}]). Deuteration and deuterodimerization of 1 mediated by (R,S)-, (S,R)-, and ({+-})-(BnBp)Y-D provide alkanes whose {sup 1}H NMR spectra indicate the sense and magnitude of olefin facial selectivity for insertions into metal-hydride and metal-n-pentyl bonds. It is shown that useful information concerning the stereochemistry of olefin insertion can be deduced from the {sup 2}H NMR spectra of 1-pentene deuterodimers without the requirement of a stereochemically labeled pentene or a resolved catalyst. 26 refs., 4 figs.

  10. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2004-02-17

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  11. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2002-01-01

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  12. Syngas to olefins via dimethyl ether over zeolite catalysts

    SciTech Connect

    Lee, B.G.; Sardesai, A.; Lee, S.

    1998-12-31

    Coal or natural gas-based syngas can be converted to dimethyl ether (DME) in a dual catalytic, single-stage liquid phase process. The process described here converts dimethyl ether to lower olefins, such as ethylene, propylene, and butenes. Thus, a novel process of producing olefins from syngas via dimethyl ether has been introduced. The process feasibility of dimethyl ether conversion has been evaluated and the range of products of this process has also been identified. The effect of operating parameters and catalyst characteristics on product selectivity has been studied. The superior process advantages as well as its competitive economics quite clearly identify this process to be quite promising when conducted on an industrial scale.

  13. A unique palladium catalyst for efficient and selective alkoxycarbonylation of olefins with formates.

    PubMed

    Fleischer, Ivana; Jennerjahn, Reiko; Cozzula, Daniela; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2013-03-01

    Forget about CO! Carbonylations are among the most important homogeneously catalyzed reactions in the chemical industry, but typically require carbon monoxide. Instead, straightforward and efficient alkoxycarbonylations of olefins can proceed with alkyl formates in the presence of a specific palladium catalyst. Aromatic, terminal aliphatic, and internal olefins are carbonylated to give industrially important linear esters at low catalyst loadings. PMID:23322709

  14. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    PubMed

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone. PMID:26608162

  15. Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts

    NASA Astrophysics Data System (ADS)

    Huang, Wei-wei; Gong, Fei-yan; Zhai, Qi; Li, Quan-xin

    2012-08-01

    Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5>SAPO-34>MCM-41> Y-zeolite. The highest olefins yield from bio-oil using HZSM-5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.

  16. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    -site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts. PMID:26214733

  17. Modification of olefin polymerization catalysts. III. A sup 13 C CP-MAS NMR study of adsorption of silyl ethers on MgCl sub 2 -supported Ziegler-Natta catalysts

    SciTech Connect

    Pakkanen, T.T.; Vaehaesarja, E.; Pakkanen, T.A. ); Iiskola, E.; Sormunen, P. )

    1990-02-01

    A {sup 13}C CP-MAS NMR and elemental analysis study of adsorption and interaction of silyl ethers, RSi(OMe){sub 3} (R = Et, Ph, OMe), as internal and external electron donors with MgCl{sub 2}-supported Ziegler-Natta catalyst has been carried out. A chemical activation of anhydrous MgCl{sub 2} with EtOH and AlEt{sub 3} produces a high-surface-area support stabilized by an organoaluminum compound, AlEt{sub 2}(OEt). In a treatment of the aluminum-modified MgCl{sub 2} support with silyl ether, the aluminum surface complex is retained and silyl ether is almost totally incorporated into the support. {sup 13}C CP-MAS NMR data of the methoxy region indicate that a mobile liquid-like silyl ether species dominates, except in the case of Si(OMe){sub 4}, where a more strongly bound species is also present on the support. TiCl{sub 4} treatment removes the weakly adsorbed silyl ether species, leaving a species which is attributed to an aluminum-bound silyl ether surface complex. No evidence of titanium-bound silyl ether species was found in the solid state or in solution where TiCl{sub 4} undergoes with silyl ethers an exchange reaction forming a yellow solid identified as (TiCl{sub 2}(OMe){sub 2}){sub x}. Activation of the catalyst with AlEt{sub 3} at a high Al:Ti ratio produces a material with a low silyl ether coverage showing a weak methoxy signal in {sup 13}C CP-MAS. The linewidths of the observed signals in {sup 13}C CP-MAS NMR are in the range 5-10 ppm at every stage of preparation of the catalyst, indicating heterogeneity of the coordination sites on the surface of chemically activated MgCl{sub 2}.

  18. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    1999-01-01

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar'R4(O)Ar"R'.sub.4 M(CH.sub.2 Ph).sub.2 where Ar' is a phenyl or naphthyl group; Ar" is a cyclopentadienyl or indenyl group, R and R' are H or alkyl substituents (C.ltoreq.10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a "one-pot" procedure. The catalyst, when combined with a cocatalyst such as Pb.sub.3 C.sup.+ B(Ar.sub.3.sup.F).sub.4 BAr.sub.3.sup.F or methyl alumoxane where Ar.sup.F is a fluoroaryl group, is an effective catalyst for the polymerization of .alpha.-olefins such as ethylene, propylene and styrene.

  19. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOEpatents

    Marks, T.J.; Chen, Y.X.

    1999-01-05

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar{prime}R4(O)Ar{double_prime}R{prime}{sub 4}M(CH{sub 2}Ph){sub 2} where Ar{prime} is a phenyl or naphthyl group; Ar{double_prime} is a cyclopentadienyl or indenyl group, R and R{prime} are H or alkyl substituents (C{<=}10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a ``one-pot`` procedure. The catalyst, when combined with a cocatalyst such as Pb{sub 3}C{sup +}B(Ar{sub 3}{sup F}){sub 4}BAr{sub 3}{sup F} or methyl alumoxane where Ar{sup F} is a fluoroaryl group, is an effective catalyst for the polymerization of {alpha}-olefins such as ethylene, propylene and styrene. 1 fig.

  20. Catalyst for converting synthesis gas to light olefins

    DOEpatents

    Rao, V. Udaya S.; Gormley, Robert J.

    1982-01-01

    A catalyst and process for making same useful in the catalytic hydrogenation of carbon monoxide in which a silicalite support substantially free of aluminum is soaked in an aqueous solution of iron and potassium salts wherein the iron and potassium are present in concentrations such that the dried silicalite has iron present in the range of from about 5 to about 25 percent by weight and has potassium present in an amount not less than about 0.2 percent by weight, and thereafter the silicalite is dried and combined with amorphous silica as a binder for pellets, the catalytic pellets are used to convert synthesis gas to C.sub.2 -C.sub.4 olefins.

  1. [Catalyst research]. Final Report

    SciTech Connect

    Ian P Rothwell; David R McMillin

    2005-03-14

    Research results are the areas of catalyst precursor synthesis, catalyst fluxionality, catalyst stability, polymerization of {alpha}-olefins as well as the chemistry of Group IV and Group V metal centers with aryloxide and arylsulfide ligands.

  2. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  3. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  4. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    SciTech Connect

    Bercaw, John E.

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  5. Self-healing polymers---The importance of choosing an adequate healing monomer, and the olefin metathesis polymerization of agricultural oils

    NASA Astrophysics Data System (ADS)

    Mauldin, Timothy C.

    Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution

  6. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability.

    PubMed

    Severn, John R; Chadwick, John C

    2013-07-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the transition metal. Catalyst productivity is dependent on the balance between activity and stability. Immobilisation can lead to a lower proportion of active species and therefore lower initial polymerisation activity, but nevertheless give higher polymer yields in cases where increased catalyst stability is obtained. Important physical factors are support porosity and the ability of a support to undergo progressive fragmentation during polymerisation, facilitating monomer diffusion through the growing catalyst/polymer particle. This article illustrates the importance of these factors in olefin polymerisation with both early- and late-transition metal catalysts, with particular reference to the use of silica and magnesium chloride supports as well as to effects of immobilisation on polymer structure and properties. PMID:23467461

  7. Homogeneous, single-phase hydroformylation of olefins using ionic phosphines and novel catalyst/product separation

    SciTech Connect

    Abatjoglou, A.G.; Peterson, R.R.; Bryant, D.R.

    1995-12-01

    A high efficiency low pressure hydroformylation process for higher molecular weight olefins has been developed using rhodium/ionic phosphine catalyst. Catalyst solubilization in the non-polar reactants and products is achieved using specialized solubilizing agents, such as N-methyl pyrrolidone (NMP), yielding single-phase systems. Separation of catalyst from product is induced by the addition of small amounts of water outside the hydroformylation reactor. Under the two-phase conditions, most of the catalyst components are found in the polar NMP/water phase, and the products (aldehydes, olefins, reaction byproducts) in a separate, non-polar, phase. The catalyst phase is recycled to the reactors after thorough drying to ensure a single homogeneous phase at reaction conditions. Traces of catalyst and solubilizing agent are effectively recovered from the product and recycled. A major advantage of this process, over water-based two-phase systems, is the high catalytic reactivities and concomitant high olefin efficiencies (>90%) which are achieved with olefins of low, water solubility.

  8. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOEpatents

    Marks, Tobin J.; Rodriguez, Brandon A.; Delferro, Massimiliano

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  9. Supported iron nanoparticles as catalysts for sustainable production of lower olefins.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Khare, Chaitanya B; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-02-17

    Lower olefins are key building blocks for the manufacture of plastics, cosmetics, and drugs. Traditionally, olefins with two to four carbons are produced by steam cracking of crude oil-derived naphtha, but there is a pressing need for alternative feedstocks and processes in view of supply limitations and of environmental issues. Although the Fischer-Tropsch synthesis has long offered a means to convert coal, biomass, and natural gas into hydrocarbon derivatives through the intermediacy of synthesis gas (a mixture of molecular hydrogen and carbon monoxide), selectivity toward lower olefins tends to be low. We report on the conversion of synthesis gas to C(2) through C(4) olefins with selectivity up to 60 weight percent, using catalysts that constitute iron nanoparticles (promoted by sulfur plus sodium) homogeneously dispersed on weakly interactive α-alumina or carbon nanofiber supports. PMID:22344440

  10. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  11. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  12. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst

    EPA Science Inventory

    The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or co-solvents, in a short period of time. We found that inhomogen...

  13. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    PubMed

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. PMID:26928740

  14. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  15. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Xiao, Guomin; Chen, Ran

    2013-07-01

    Zeolite catalysts with micropores present good catalytic characteristics in biomass catalytic pyrolysis process. However, large-molecule oxygenates produced from pyrolysis cannot enter their pores and would form coke on their surfaces, which decreases hydrocarbon yield and deactivates catalyst rapidly. This paper proposed adding some mesoporous and macroporous catalysts (Gamma-Al2O3, CaO and MCM-41) in the microporous catalyst (LOSA-1) for biomass catalytic pyrolysis. The added catalysts were used to crack the large-molecule oxygenates into small-molecule oxygenates, while LOSA-1 was used to convert these small-molecule oxygenates into olefins and aromatics. The results show that all the additives in LOSA-1 enhanced hydrocarbon yield obviously. The maximum aromatic+olefin yield of 25.3% obtained with 10% Gamma-Al2O3/90% LOSA-1, which was boosted by 39.8% compared to that obtained with pure LOSA-1. Besides, all the additives in LOSA-1 improved the selectivities of low-carbon components in olefins and aromatics significantly. PMID:23707913

  16. Siloxene-supported catalysts for ethylene polymerization

    SciTech Connect

    Badley, R.D.; Johnson, M.M. )

    1993-06-01

    A new type of Ziegler ethylene polymerization catalyst has been formed using as a support, siloxene, a layer compound with an empirical formula of Si[sub 2]H[sub 2]O. Siloxene is a reducing compound, and it reacts with excess TiCl[sub 4], giving an inactive brown solid with 5.2% Ti and 8.0% Cl. However, when additional TiCl[sub 4] is reduced by a metal alkyl and precipitated onto the brown solid, a catalyst with moderate activity is formed. Maximum activity for ethylene polymerization was obtained when the catalyst was pretreated with n-butylmagnesium, contained 0.06 g CaCl[sub 2]/g siloxene, and was run at 80[degrees]C with 40-50 ppm of TEA cocatalyst. These catalysts are very active in the initial portion of the reaction, but the activity decreases rapidly over the first 30 min. Their hydrogen response and hexene incorporation is similar to that observed with other Ziegler catalysts. 17 refs., 7 figs., 2 tabs.

  17. Catalytic deoxydehydration of diols to olefins by using a bulky cyclopentadiene-based trioxorhenium catalyst.

    PubMed

    Raju, Suresh; Jastrzebski, Johann T B H; Lutz, Martin; Klein Gebbink, Robertus J M

    2013-09-01

    A bulky cyclopentadienyl (Cp)-based trioxorhenium compound was developed for the catalytic deoxydehydration of vicinal diols to olefins. The 1,2,4-tri(tert-butyl)cyclopentadienyl trioxorhenium (2) catalyst was synthesised in a two-step synthesis procedure. Dirhenium decacarbonyl was converted into 1,2,4-tri(tert-butyl)cyclopentadienyl tricarbonyl rhenium, followed by a biphasic oxidation with H2 O2 . These two new three-legged compounds with a 'piano-stool' configuration were fully characterised, including their single crystal X-ray structures. Deoxydehydration reaction conditions were optimised by using 2 mol % loading of 2 for the conversion of 1,2-octanediol into 1-octene. Different phosphine-based and other, more conventional, reductants were tested in combination with 2. Under optimised conditions, a variety of vicinal diols (aromatic and aliphatic, internal and terminal) were converted into olefins in good to excellent yields, and with minimal olefin isomerisation. A high turnover number of 1400 per Re was achieved for the deoxydehydration of 1,2-octanediol. Furthermore, the biomass-derived polyols (glycerol and erythritol) were converted into their corresponding olefinic products by 2 as the catalyst. PMID:23843348

  18. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOEpatents

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  19. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  20. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  1. An unexpected Bromolactamization of Olefinic Amides Using a Three-Component Co-catalyst System.

    PubMed

    Cheng, Yi An; Yu, Wesley Zongrong; Yeung, Ying-Yeung

    2016-01-15

    Reaction between (N,N-dimethylamino)pyridine and isocyanate unexpectedly produced a three-component mixture. By using this mixture as an unprecedented three-component catalyst system, a facile and selective bromolactamization of olefinic amides has been developed. The protocol confers enhanced selectivity of N- over O-cyclization, leading to the formation of a structurally diverse range of lactams including both small and medium ring sizes. PMID:26679219

  2. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    SciTech Connect

    Goldberg, Karen; Smythe, Nicole A.; Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L.

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  3. Molecular weight control in organochromium olefin polymerization catalysis by hemilabile ligand–metal interactions

    PubMed Central

    Mark, Stefan; Wadepohl, Hubert

    2016-01-01

    Summary A series of Cr(III) complexes based on quinoline-cyclopentadienyl ligands with additional hemilabile side arms were prepared and used as single-site catalyst precursors for ethylene polymerization. The additional donor functions interact with the metal centers only after activation with the co-catalyst. Evidence for this comes from DFT-calculations and from the differing behavior of the complexes in ethylene polymerization. All complexes investigated show very high catalytic activity and the additional side arm minimizes chain-transfer reactions, leading to increase of molecular weights of the resulting polymers. PMID:27559387

  4. Molecular weight control in organochromium olefin polymerization catalysis by hemilabile ligand-metal interactions.

    PubMed

    Mark, Stefan; Wadepohl, Hubert; Enders, Markus

    2016-01-01

    A series of Cr(III) complexes based on quinoline-cyclopentadienyl ligands with additional hemilabile side arms were prepared and used as single-site catalyst precursors for ethylene polymerization. The additional donor functions interact with the metal centers only after activation with the co-catalyst. Evidence for this comes from DFT-calculations and from the differing behavior of the complexes in ethylene polymerization. All complexes investigated show very high catalytic activity and the additional side arm minimizes chain-transfer reactions, leading to increase of molecular weights of the resulting polymers. PMID:27559387

  5. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    PubMed Central

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  6. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  7. Profluorescent substrates for the screening of olefin metathesis catalysts

    PubMed Central

    Reuter, Raphael

    2015-01-01

    Summary Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach. PMID:26664607

  8. Model Ziegler-Natta [alpha]-olefin polymerization catalysts derived from [([eta][sup 5]-C[sub 5]Me[sub 4]) SiMe[sub 2] ([eta][sup 1]-NCMe[sub 3])(PMe[sub 3])Sc([mu][sub 2]-H)][sub 2] and [([eta][sup 5]-C[sub 5]Me[sub 4] SiMe[sub 2]([eta][sup 1]-NCMe[sub 3])) Sc([mu][sub 2]CH[sub 2]CH[sub 2]CH[sub 3])][sub 2]. Synthesis, structures, and kinetic and equilibrium investigations of the catalytically active species in solution

    SciTech Connect

    Shapiro, P.J.; Cotter, W.D.; Schaefer, W.P.; Labinger, J.A.; Bercaw, J.E. )

    1994-06-01

    The scandium hydride complex [(Cp*SiNR)(PMe[sub 3])Sc([mu]-H)][sub 2], (1) ((Cp*SiNR) = (([eta][sup 5]-C[sub 5]Me[sub 4])SiMe[sub 2]([eta][sup 1]-NCMe[sub 3]))) is prepared by hydrogenation of (Cp*SiNR)ScCH(SiMe[sub 3])[sub 2] in the presence of trimethylphosphine. The hydride complex is a catalyst precursor for the polymerization of [alpha]-olefins, yielding atactic products of low molecular weight (M[sub n] = 3000-7000). GC/MS analysis of volatile, oligomeric products revealed that all scandium centers are active during the polymerization. Selectivity for head-to-tail insertion is high (> 99%) and for the tetramer, pentamer, and hexamer formed during propene polymerization, the maximum theoretical numbers of head-to-tail stereoisomers are observed by capillary GC. The stoichiometric reaction between 1 and 2 equiv of ethylene produces the unusual ethylene-bridged dimer [(Cp*SiNR)(PMe[sub 3])Sc][sub 2]([mu], [eta][sup 2]-C[sub 2]H[sub 4]) (2) and an equivalent of ethane, whereas the same reaction with propene affords the phosphine-free, alkyl-bridged scandium dimer [(Cp*SiNR)Sc][sub 2]([mu]-CH[sub 2]CH[sub 2]CH[sub 3])[sub 2] (3). The absence of coordinating phosphine allows the latter complex to function as a more active olefin polymerization catalyst precursor. 1 reacts with styrene to form a unique double-insertion product arising from sequential 1,2- and 2,1-styrene insertion. 41 refs., 13 figs., 9 tabs.

  9. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  10. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  11. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  12. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  13. Development of a ruthenium/phosphite catalyst system for domino hydroformylation-reduction of olefins with carbon dioxide.

    PubMed

    Liu, Qiang; Wu, Lipeng; Fleischer, Ivana; Selent, Detlef; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2014-06-01

    An efficient domino ruthenium-catalyzed reverse water-gas-shift (RWGS)-hydroformylation-reduction reaction of olefins to alcohols is reported. Key to success is the use of specific bulky phosphite ligands and triruthenium dodecacarbonyl as the catalyst. Compared to the known ruthenium/chloride system, the new catalyst allows for a more efficient hydrohydroxymethylation of terminal and internal olefins with carbon dioxide at lower temperature. Unwanted hydrogenation of the substrate is prevented. Preliminary mechanism investigations uncovered the homogeneous nature of the active catalyst and the influence of the ligand and additive in individual steps of the reaction sequence. PMID:24811949

  14. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  15. The History of Current State of the Art of Propylene Polymerization Catalysts.

    ERIC Educational Resources Information Center

    Goodall, Brian L.

    1986-01-01

    Outlines the development of the modern catalysts for propylene polymerization, considering the historical background; structure of titanium chloride catalysts; first-generation catalysts; cocatalysts; second-generation catalysts; catalysts morphology; and third-generation (supported catalysts). (JN)

  16. Production of Light Olefins Through Catalytic Cracking of C5 Raffinate Over Surface-Modified ZSM-5 Catalyst.

    PubMed

    Lee, Joongwon; Park, Seungwon; Hong, Ung Gi; Jun, Jin Oh; Song, In Kyu

    2015-10-01

    Surface modification of phosphorous-containing porous ZSM-5 catalyst (P/C-ZSM5-Sil.(X)) was carried out by a chemical liquid deposition (CLD) method using tetraethyl orthosilicate (TEOS) as a silylation agent. Different amount of TEOS (X = 5, 10, 20, and 30 wt%) was introduced into P/C-ZSM5il.(X) catalysts for surface modification. The catalysts were used for the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. It was found that external surface acidity of P/C-ZSM5-Sil.(X) catalysts significantly decreased with increasing TEOS content. In the catalytic reaction, both conversion of C5 raffinate and yield for light olefins showed volcano-shaped curves with respect to TEOS content. Among the catalysts tested, P/C-ZSM5-Sil.(20) catalyst exhibited the best catalytic performance in terms of conversion of C5 raffinate and yield for light olefins. Thus, an optimal TEOS content was required for CLD treatment to maximize light olefin production in the catalytic cracking of C5 raffinate over P/C-ZSM5-Sil.(X) catalysts. PMID:26726509

  17. Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    PubMed Central

    Sinha, Amritanshu; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have found that Mo(NAr)(CHR′)(NPh2)2 (R′ = t-Bu or CMe2Ph) and Mo(NAr′)(CHCMe2Ph)(NPh2)2 (Ar = 2,6-i-Pr2C6H3; Ar′ = 2,6-Me2C6H3) can be prepared through addition of two equivalents of LiNPh2 to Mo(NR″)(CHR′)(OTf)2(dme) species (R″ = Ar or Ar′ dme = 1,2-dimethoxyethane), although yields are low. A high yield route consists of addition of LiNPh2 to bishexafluro-t-butoxide species. An X-ray structure of Mo(NAr)(CHCMe2Ph)(NPh2)2 reveals that the two diphenylamido groups are oriented in a manner that allows an 18 electron count to be achieved. The diphenylamido complexes react readily with t-BuOH and (CF3)2MeCOH, but not readily with the sterically demanding biphenol H2[Biphen] (Biphen2- = 3,3′-Di-t-butyl-5,5′,6,6′-tetramethyl-1,1′-Biphenyl-2,2′-diolate). The diphenylamido complexes do react with various 3,3′-disubstituted binaphthols to yield binaphtholate catalysts that can be prepared in situ and employed for a simple asymmetric ring-closing metathesis reaction. In several cases conversions and enantioselectivities were comparable to reactions in which isolated catalysts were employed. PMID:19030118

  18. Improvements in FCC catalysts and operations for maximum iso-olefins

    SciTech Connect

    Li, C.Y.; Li, Z.T.; Zhong, X.X.; Chen, Z.B. )

    1994-01-01

    To meet the increasing demand of isobutylene and isoamylenes in oxygenated gasoline era, RIPP has developed a new MIO series catalysts and a MIO process. The process is mainly a modification of conventional CC. The test results of pilot unit show: the total gaseous olefin content in MIO gas is around 80%; the total yield of isobutylene and isoamylenes can be up to 12 wt% (on feed); gasoline yield is about 40 wt% with RON over 95 and MON over 80. The MIO process will go on commercial trial in late 1954.

  19. Manganese(II)/Picolinic Acid Catalyst System for Epoxidation of Olefins.

    PubMed

    Moretti, Ross A; Du Bois, J; Stack, T Daniel P

    2016-06-01

    An in situ generated catalyst system based on Mn(CF3SO3)2, picolinic acid, and peracetic acid converts an extensive scope of olefins to their epoxides at 0 °C in <5 min, with remarkable oxidant efficiency and no evidence of radical behavior. Competition experiments indicate an electrophilic active oxidant, proposed to be a high-valent Mn = O species. Ligand exploration suggests a general ligand sphere motif contributes to effective oxidation. The method is underscored by its simplicity and use of inexpensive reagents to quickly access high value-added products. PMID:27191036

  20. Shell Higher Olefins Process.

    ERIC Educational Resources Information Center

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  1. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    SciTech Connect

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  2. Olefin polymerization at bis(pentamethylcyclopentadienyl) zirconium and -hafnium centers: Chain-transfer mechanisms

    SciTech Connect

    Resconi, L.; Piemontesi, F.; Franciscono, G.

    1992-01-29

    Chain transfer via {beta}-CH{sub 3} elimination by a homogeneous bimetallic Ziegler-Natta propylene polymerization catalyst is reported. Propylene is converted by Cp{sup {double_dagger}}{sub 2}MCl{sub 2}/MAO catalysts (Cp{sup {double_dagger}} = pentamethylcyclopentadienyl; M=Zr, Hf; MAO = methylalumoxane) to atactic propylene oligomers and low polymers. GC-MS and {sup 1}H and {sup 13}C NMR analyses of the oligomers obtained at {degrees}C (P{sub n} {approx} 4.5 for Zr, 3.4 for Hf) show these products to be mainly allyl- and isobutyl-terminated (1/1 ratio). The allyl/vinylidene ratio is 92/8 for Zr and 98/2 for Hf. No other unsaturated end groups could be detected. This end group structure is produced by first monomer insertion into the M-CH{sub 3} bond and then chain transfer by {beta}-CH{sub 3} elimination. On the contrary, Cp{sup {double_dagger}}{sub 2}MCl{sub 2}/MAO promotes 1-butene polymerization with the chain transfer being exclusively {beta}-H elimination and transfer to Al: no {beta}-ethyl elimination could be detected. The behavior of these catalysts toward propylene and 1-butene is compared with known Cp{sub 2}MCl{sub 2}/MAO catalysts. 37 refs., 11 figs., 5 tabs.

  3. 9-fluorenemethanol: an internal electron donor to fine tune olefin polymerization activity.

    PubMed

    Gnanakumar, Edwin S; Rao Chokkapu, Eswara; Kunjir, Shrikant; Ajithkumar, T G; Rajamohanan, P R; Chakraborty, Debashis; Gopinath, Chinnakonda S

    2014-06-28

    A new MgCl2 based molecular adduct has been synthesized with 9-fluorenemethanol (9FM) as a novel internal electron donor (IED), along with ethanol (EtOH) (MgCl2·n9FM·xEtOH). The above molecular adduct has been subjected to a variety of structural, spectroscopic and morphological characterization techniques. The results of the solid state (13)C CPMAS NMR technique suggests the coordination of 9FM to MgCl2. Observation of a low angle diffraction peak at 2θ = 5.7° (d = 15.5 Å) underscores the coordination of 9FM along the z-axis, and ethanol in the molecular adduct. Active Ziegler-Natta catalysts were prepared by two different synthesis methods; the conventional method to obtain a high surface area active catalyst, and other one with 9FM as an integral part of the active catalyst in order to study the influence of 9FM as an IED over the active sites. The active catalysts were also characterized thoroughly with different analytical tools. The XRD results show (003) facets of δ-MgCl2 (α-MgCl2) for the conventional (non-conventional) titanated catalyst. Results of the ethylene polymerization activity study reveals that the conventionally prepared highly porous active catalyst shows 1.7-2.5 times higher activity than the non-conventional prepared catalyst; however, the latter shows a low molecular weight distribution and confirms the role of the Lewis base as an IED. PMID:24810354

  4. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    PubMed

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity. PMID:12074666

  5. alpha. agostic' assistance in Ziegler-Natta polymerization of olefins. Deuterium isotopic perturbation of stereochemistry indicating coordination of an. alpha. C-H bond in chain propagation

    SciTech Connect

    Piers, W.E.; Bercaw, J.E. )

    1990-12-05

    The well-defined, homogeneous Ziegler-Natta olefin polymerization systems that have been reported recently provide an unprecedented opportunity to investigate the mechanism of this important process. While a consensus appears to be developing that in all these systems the active catalysts are the 14-electron, d{sup 0} (or d{sup 0}f{sup n}) metallocene alkyls, Cp{sub 2}MR (M = lanthanide or group 3 transition metal) or (Cp{sub 2}MR){sup +} (M = group 4 transition metal), the mechanism for chain propagation and the geometry of the transition state for olefin insertion into the metal-carbon bond have not yet been unequivocally established. In a cleverly conceived experiment, Grubbs et al. probed for an {alpha} agostic interaction in the transition state for olefin insertion. Racemic 1-d{sub 1}-5-hexenylchlorotitanocene was prepared and found to undergo AlCl{sub 2}(CH{sub 2}CH{sub 3})-induced cyclization to a mixture of cis- and trans-2-d{sub 1}-cyclopentylmethyl stereoisomers. Any {alpha} agostic assistance in the insertion step is expected to favor the trans product (vide infra). Hydrolysis and {sup 2}H NMR analysis of the resultant mixture of deuteriomethylcyclopentanes revealed a 1.00 {plus minus} 0.05 ratio of trans:cis products, arguing against an {alpha} agostic assisted insertion in their system, however. The scandium hydride, {l brace}({eta}{sup 5}-C{sub 5}Me{sub 4}){sub 2}SiMe{sub 2}{r brace}Sc(PMe{sub 3})H ( OpSc(PMe{sub 3})H'), cleanly catalyzes the hydrocyclization of 1,5-hexadiene to methylcyclopentane. The authors have adapted this catalytic hydrocyclization reaction along the lines of the Grubbs experiment to probe for {alpha} agostic assistance with the scandium system.

  6. Metal-Free Hydrosilylation Polymerization by Borane Catalyst.

    PubMed

    Kim, Dong Wook; Joung, Seewon; Kim, Jeung Gon; Chang, Sukbok

    2015-12-01

    The first example of metal-free hydrosilylation polymerization between dienes and disilanes is developed by using a borane catalyst, B(C6F5)3 to replace precious transition-metal-based systems. Under the easy-to-handle and mild conditions, a step-growth polymerization of two readily available diene and disilane units was achieved with high degrees of polymerization. Various combinations of dienes and disilanes produced polycarbosilanes with a broad range of structures and properties. PMID:26474096

  7. Development of a Method for the Preparation of Ruthenium Indenylidene-Ether Olefin Metathesis Catalysts

    PubMed Central

    Jimenez, Leonel R.; Tolentino, Daniel R.; Gallon, Benjamin J.; Schrodi, Yann

    2012-01-01

    The reactions between several derivatives of 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and different ruthenium starting materials [i.e., RuCl2(PPh3)3 and RuCl2(pcymene)(L), where L is tricyclohexylphosphine di-t-butylmethylphosphine, dicyclohexylphenylphosphine, triisobutylphosphine, triisopropylphosphine, or tri-npropylphosphine] are described. Several of these reactions allow for the easy, in-situ and atom-economic preparation of olefin metathesis catalysts. Organic precursor 1-(3,5-dimethoxyphenyl)-1-phenyl-prop-2-yn-1-ol led to the formation of active ruthenium indenylidene-ether complexes, while 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and 1-(3,5-dimethoxyphenyl)-1-methyl-prop-2-yn-1-ol did not. It was also found that a bulky and strong σ-donor phosphine ligand was required to impart good catalytic activity to the new ruthenium complexes. PMID:22580400

  8. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis.

    PubMed

    Yao, Qingwei; Zhang, Yiliang

    2004-01-14

    The synthesis of a fluorous olefin metathesis catalyst derived from the Grubbs second-generation ruthenium carbene complex is described. The air stable fluorous polymer-bound ruthenium carbene complex 1 shows high reactivity in effecting the ring-closing metathesis of a broad spectrum of diene and enyne substrates leading to the formation of di-, tri-, and tetrasubstituted cyclic olefins in minimally fluorous solvent systems (PhCF3/CH2Cl2, 1:9-1:49 v/v). The catalyst can be readily separated from the reaction mixture by fluorous extraction with FC-72 and repeatedly reused. The practical advantage offered by the fluorous catalyst is demonstrated by its sequential use in up to five different metathesis reactions. PMID:14709066

  9. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito

    1994-09-01

    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  10. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  11. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    PubMed

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. PMID:27059290

  12. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  13. Computational exploration of alternative catalysts for olefin purification: cobalt and copper analogues inspired by nickel bis(dithiolene) electrocatalysis.

    PubMed

    Li, Haixia; Brothers, Edward N; Hall, Michael B

    2014-09-15

    Olefin purification is an important process in petrochemistry. The behavior of the nickel bis(dithiolene) complex Ni(S2C2(CF3)2)2 (1(_Ni)) as an electrocatalyst for this process was thoroughly explored experimentally and computationally. Here, computational investigations with the ωB97X-D functional were conducted to explore alternative candidates [M(S2C2(CF3)2)2](n) (M = Co with n = 0, -1, -2, -3 and Cu with n = +1, 0, -1, -2) for olefin purification by using ethylene as a model. The reaction mechanism for these alternative catalysts was calculated to determine if any of these alternatives could block the decomposition route that exists for the Ni catalyst, bind ethylene efficiently to form the adducts, and release ethylene upon reduction. Calculations predict that the neutral cobalt complex 1(_Co) binds and releases olefin upon reduction with low activation barriers. Furthermore, 1(_Co), unlike 1(_Ni), catalyzes the desired reaction without the need of the anion as a cocatalyst. The Co atom directly coordinates with ethylene more favorably than Ni, facilitating the indirect pathway that is found to lead to the formation of the desired interligand adduct. The reduction and oxidation processes involved in the reaction are computed to occur under reasonable experiment conditions. Among the copper complexes, the calculations predict that the anionic copper complex 1(_Cu)(-) also may be an alternative catalyst, whose performance is somewhat worse than 1(_Ni). The reaction of 1(_Cu)(-) with ethylene is predicted to be thermodynamically neutral. New catalysts that need no electrochemical regenerations may be possible by designing appropriate dithiolene ligands for 1(_Cu)(-). PMID:25171059

  14. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  15. Frontiers in olefin polymerization: reinventing the world's most common synthetic polymers.

    PubMed

    Hustad, Phillip D

    2009-08-01

    Synthetic polymers are vital to our society, affecting practically every aspect of modern life. The ubiquitous nature of these materials is a result of years of collaboration between basic and applied researchers across many disciplines, resulting in economic routes to materials that meet customer needs. These considerations are exemplified by recent developments in the synthesis of block copolymers from simple olefins. The practical application of creative chemistry has produced materials with a favorable balance of desirable polymer properties and process economics. PMID:19661418

  16. Structure-property relationships in multilayered polymeric system and olefinic block copolymers

    NASA Astrophysics Data System (ADS)

    Khariwala, Devang

    diffusion. Subsequently, the oxygen permeability was directly related to the composition profile in each layer and changed as the interdiffusion proceeded. This methodology enabled the extraction of the mutual diffusion co-efficient, D, for the Nylon-6/EVOH system. The effect of comonomer content in EVOH on the mutual diffusion coefficient was also studied by comparing the kinetics of interdiffusion of Nylon-6 with two EVOHs containing 24 and 44 mole % ethylene. Chapter 3. Exciting new developments in polyolefin synthesis give rise to olefinic block copolymers with properties typical of thermoplastic elastomers. The block copolymers synthesized by chain shuttling technology consist of crystallizable ethylene-octene blocks with low comonomer content and high melting temperature (hard blocks), alternating with amorphous ethylene-octene blocks with high comonomer content and low glass transition temperature (soft blocks). This study describes the material science of these unique polymers as characterized by thermal analysis, X-ray diffraction, microscopy, and tensile deformation. The crystallizable blocks are long enough to form well-organized lamellar crystals with the orthorhombic unit cell and high melting temperature. The lamellae are organized into space-filling spherulites in all compositions even in copolymers with only 18 wt% hard block. The morphology is consistent with crystallization from a miscible melt. Crystallization of the hard blocks forces segregation of the noncrystallizable soft blocks into the interlamellar regions. Good separation of hard and soft blocks in the solid state is confirmed by distinct and separate beta- and alpha-relaxations in all the block copolymers. Compared to statistical ethylene-octene copolymers, the blocky architecture imparts a substantially higher crystallization temperature, a higher melting temperature and a better organized crystalline morphology, while maintaining a lower glass transition temperature. The differences between

  17. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Shen, Dekui; Chen, Ran; Xiao, Guomin

    2013-06-01

    A novel reactor, named internally interconnected fluidized bed (IIFB), was specially designed for catalytic fast pyrolysis (CFP) of straw biomass. Catalytic characteristics of four types of catalysts (ZSM-5, LOSA-1, Gamma-Al2O3 and spent FCC catalysts) for producing aromatics and olefins were investigated in this reactor. The results show that IIFB reactor can realize CFP process. The maximum carbon yields of aromatics (12.8%) and C2-C4 olefins (10.5%) were obtained with ZSM-5. ZSM-5 shows the highest selectivity of naphthalene (12.1%), whereas spent FCC catalyst presents the highest selectivity of benzene (45.5%). The selectivity of ethylene and propylene are equal in the present of ZSM-5 and LOSA-1. Gamma-Al2O3 and spent FCC catalysts show a higher selectivity of ethylene than that of propylene. This paper provides a new reactor for CFP process and some suggestions for choosing catalyst. PMID:23587812

  18. Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an efficient heterogeneous catalyst for aerobic epoxidation of olefins and oxidation of benzylic and allylic alcohols.

    PubMed

    Qi, Yue; Luan, Yi; Yu, Jie; Peng, Xiong; Wang, Ge

    2015-01-19

    Aerobic epoxidation of olefins at a mild reaction temperature has been carried out by using nanomorphology of [Cu3(BTC)2] (BTC = 1,3,5-benzenetricarboxylate) as a high-performance catalyst through a simple synthetic strategy. An aromatic carboxylate ligand was employed to furnish a heterogeneous copper catalyst and also serves as the ligand for enhanced catalytic activities in the catalytic reaction. The utilization of a copper metal-organic framework catalyst was further extended to the aerobic oxidation of aromatic alcohols. The shape and size selectivity of the catalyst in olefin epoxidation and alcohol oxidation was investigated. Furthermore, the as-synthesized copper catalyst can be easily recovered and reused several times without leaching of active species or significant loss of activity. PMID:25430789

  19. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling.

    PubMed

    Cheng, Kang; Gu, Bang; Liu, Xiaoliang; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-04-01

    The direct synthesis of lower (C2 to C4) olefins, key building-block chemicals, from syngas (H2/CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson-Schulz-Flory distribution. We report that the coupling of methanol-synthesis and methanol-to-olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr-Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO-34 with decreased acidity offers around 70% selectivity for C2-C4 olefins at about 10% CO conversion. The micro- to nanoscale proximity of the components favors the lower olefin selectivity. PMID:26961855

  20. Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins.

    PubMed

    Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi

    2016-07-11

    Efficient rhodium(III) catalysts were developed for asymmetric hydrogenation of simple olefins. A new series of chloride-bridged dinuclear rhodium(III) complexes 1 were synthesized from the rhodium(I) precursor [RhCl(cod)]2 , chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asymmetric hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asymmetric hydrogenation of allylic alcohols, alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes 1 over typical rhodium(I) catalytic systems. PMID:27088539

  1. Selectivity to olefins of Fe/SiO{sub 2}-MgO catalysts in the Fischer-Tropsch reaction

    SciTech Connect

    Gallegos, N.G.; Alvarez, A.M.; Cagnoli, M.V.; Bengoa, J.F.

    1996-06-01

    SiO{sub 2} covered with MgO has been used as support of iron catalysts in the Fischer-Tropsch reaction. Catalysts of 5% (w/w) iron concentration and 2, 4, and 8% (w/w) of MgO on SiO{sub 2} were prepared. Selective chemisorption of CO, volumetric oxidation, and Moessbauer spectroscopy were used to characterize the type of iron species and the metallic crystal sizes. MgO covers the SiO{sub 2} surface and modifies the metallic crystal size. The activity to total hydrocarbons increases with the amount of MgO added. An optimal concentration of about 4% (w/w) was found to have the highest selectivity to olefins. 45 refs., 13 figs., 3 tabs.

  2. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance

    SciTech Connect

    Aghamohammadi, Sogand; Haghighi, Mohammad; Charghand, Mojtaba

    2014-02-01

    Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion. - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive

  3. Dehydrogenative polymerization of silanes to polysilanes by zirconocene and hafnocene catalysts. A new polymerization mechanism

    SciTech Connect

    Woo, Heegweon; Tilley, T.D. )

    1989-11-27

    Polysilanes, (-SiRR{prime}-){sub n} represent a class of inorganic polymers that have unusual chemical properties and a number of potential applications. Prospects for development of a coordination polymerization route to these polymers have improved dramatically with the recent discovery by Harrod and co-workers that titanocene and zirconocene alkyl derivatives are active catalysts for the dehydrogenative coupling of primary silanes RSiH{sub 3} to linear polysilanes with ca. 10-20 Si atoms (eq 1, Cp = {eta}{sup 5}-C{sub 5}H{sub 5}, M = Ti, Zr){sup 2}. We have found that a number of zirconium and hafnium silyl complexes of the type Cp{prime}{sub 2}M(SiR{sub 3})R{prime} (Cp{prime} = Cp, Cp* ({eta}{sup 5}-C{sub 5}Me{sub 5}); M = Zr, Hf; R = Me, Ph, SiMe{sub 3}; R{prime} = Cl, alkyl, silyl) are catalyst precursors for this dehydrogenative coupling reaction and that polymer molecular weights can vary as a function of reaction conditions and catalyst. This report describes observations that suggest a mechanism for dehydrogenative silane polymerization by zirconocene and hafnocene catalysts.

  4. Pyridinium hydrobromide perbromide: a versatile catalyst for aziridination of olefins using Chloramine-T.

    PubMed

    Ali, S I; Nikalje, M D; Sudalai, A

    1999-09-01

    [reaction: see text] Pyridinium hydrobromide perbromide (Py x HBr3) catalyzes effectively the aziridination of electron-deficient as well as electron-rich olefins using Chloramine-T (N-chloro-N-sodio-p-toluenesulfonamide) as a nitrogen source to afford the corresponding aziridines in moderate to good yields. PMID:16118868

  5. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins.

    PubMed

    Zhou, Xiangping; Ji, Jian; Wang, Di; Duan, Xuezhi; Qian, Gang; Chen, De; Zhou, Xinggui

    2015-05-25

    Hierarchical structured α-Al2O3 is shown to be able to effectively disperse and immobilize iron species, in comparison with commercial α-Al2O3. After promotion using an appropriate amount of sulfur, iron catalysts exhibit not only enhanced Fischer-Tropsch synthesis activity and selectivity toward lower olefins, but also increased resistance against carbon deposits. PMID:25920480

  6. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  7. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    PubMed

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  8. Pulsed-addition ring-opening metathesis polymerization: catalyst-economical syntheses of homopolymers and block copolymers.

    PubMed

    Matson, John B; Virgil, Scott C; Grubbs, Robert H

    2009-03-11

    Poly(tert-butyl ester norbornene imide) homopolymers and poly(tert-butyl ester norbornene imide-b-N-methyloxanorbornene imide) copolymers were prepared by pulsed-addition ring-opening metathesis polymerization (PA-ROMP). PA-ROMP is a unique polymerization method that employs a symmetrical cis-olefin chain transfer agent (CTA) to simultaneously cap a living polymer chain and regenerate the ROMP initiator with high fidelity. Unlike traditional ROMP with chain transfer, the CTA reacts only with the living chain end, resulting in narrowly dispersed products. The regenerated initiator can then initiate polymerization of a subsequent batch of monomer, allowing for multiple polymer chains with controlled molecular weight and low polydispersity to be generated from one metal initiator. Using the fast-initiating ruthenium metathesis catalyst (H(2)IMes)(Cl)(2)(pyr)(2)RuCHPh and cis-4-octene as a CTA, the capabilities of PA-ROMP were investigated with a Symyx robotic system, which allowed for increased control and precision of injection volumes. The results from a detailed study of the time required to carry out the end-capping/initiator-regeneration step were used to design several experiments in which PA-ROMP was performed from one to ten cycles. After determination of the rate of catalyst death, a single, low polydispersity polymer was prepared by adjusting the amount of monomer injected in each cycle, maintaining a constant monomer/catalyst ratio. Additionally, PA-ROMP was used to prepare nearly perfect block copolymers by quickly injecting a second monomer at a specific time interval after the first monomer injection, such that chain transfer had not yet occurred. Polymers were characterized by gel permeation chromatography with multiangle laser light scattering. PMID:19215131

  9. Non-redox metal ion promoted oxidative coupling of indoles with olefins by the palladium(ii) acetate catalyst through dioxygen activation: experimental results with DFT calculations.

    PubMed

    Zhang, Sicheng; Chen, Zhuqi; Qin, Shuhao; Lou, Chenlin; Senan, Ahmed M; Liao, Rong-Zhen; Yin, Guochuan

    2016-04-26

    Developing new catalytic technologies through C-H bond activation to synthesize versatile pharmaceuticals has attracted much attention in recent decades. This work introduces a new strategy in catalyst design for Pd(ii)-catalyzed C-H bond activation in which non-redox metal ions serving as Lewis acids play significant roles. In the oxidative coupling of indoles with olefins using dioxygen, it was found that Pd(OAc)2 alone as the catalyst is very sluggish at ambient temperature which provided a low yield of the olefination product, whereas adding non-redox metal ions to Pd(OAc)2 substantially improves its catalytic efficiency. In particular, it provided bis(indolyl)methane derivatives as the dominant product, a category of pharmacological molecules which could not be synthesized by Pd(ii)-catalyzed oxidative coupling previously. Detailed investigations revealed that the reaction proceeds by heterobimetallic Pd(ii)/Sc(iii)-catalyzed oxidative coupling of an indole with an olefin followed by Sc(iii)-catalyzed addition with a second indole molecule. DFT calculations disclosed that the formation of heterobimetallic Pd(ii)/Sc(iii) species substantially decreases the C-H bond activation energy barrier, and shifts the rate determining step from C-H bond activation of indole to the olefination step. This non-redox metal ion promoted Pd(ii)-catalyzed C-H bond activation may offer a new opportunity for catalyst design in organic synthesis, which has not been fully recognized yet. PMID:27075840

  10. Olefin metathesis for chemical biology.

    PubMed

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  11. Low catalyst loadings in olefin metathesis: synthesis of nitrogen heterocycles by ring-closing metathesis.

    PubMed

    Kuhn, Kevin M; Champagne, Timothy M; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C; Grubbs, Robert H; Pederson, Richard L

    2010-03-01

    A series of ruthenium catalysts have been screened under ring-closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate series could be run neat, the six-membered carbamate series could be run at 1.0 M, and the seven-membered carbamate series worked best at 0.2-0.05 M. PMID:20141172

  12. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    PubMed Central

    Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi

    2015-01-01

    Summary Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  13. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    PubMed

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  14. Reaction of deuterium with olefins on nickel catalysts: evidence for adsorbed vinylic species

    SciTech Connect

    Mintsa-Eya, V.; Hilaire, L.; Choplin, A.; Touroude, R.; Gault, F.G.

    1983-08-01

    The interaction of deuterium with 1,2-dimethylcyclopentene, 2,3-dimethylcyclopentene, 1-methyl-2-methylenecyclopentane, 1,2-dimethylcyclobutene, 1-methyl-2-methylenecyclobutane, bicyclo(2,2,1)heptene, but-1-ene, and cis-but-2-ene was studied from -85 to 50/sup 0/C on nickel films in a static apparatus and on Ni/pumice in a flow system. Unexpected d/sub 3/ and d/sub 4/ molecules were obtained in the deuteration of bicyclo(2,2,1)heptene. The position of the double bond in the ring of the other cycloolefins was the main factor governing their behavior: in the deuteration of 1,2-dimethylcycloalkenes, the saturated products, especially the trans somers, were much more exchanged and the percentage of trans was lower than when the starting material consisted of the olefins with the double bond in 2,3 or exocyclic positions. The hyperfine distribution, obtained by microwave analysis, of the exchanged d/sub 1/ but-1-ene, revealed that the major part of the deuterium was introduced on C/sub 2/; the cis-trans isomerization was much faster than the double bond migration with the introduction of zero or one deuterium atom while the isomerized but-1-ene showed a multiple exchange up to d/sub 4/; in the isomerized d/sub 1/ but-1-ene, the deuterium atom was distributed on the three carbon atoms C/sub 1/, C/sub 2/, C/sub 3/. Most of these results clearly show that the classical Horiuti-Polanyi mechanism is not the only one taking part in the reactions. The introduction of other intermediaries, sigma-vinylic, sigma-vinylic ..pi..-olefinic, and sigma-vinylic ..pi..-allylic species, provides a coherent explanation for all our findings. It is shown that nickel and iron behave in a very similar way. 5 tables.

  15. Polymerization process for carboxyl containing polymers utilizing oil soluble ionic surface active agents

    SciTech Connect

    Uebele, C.E.; Ball, L.E.; Jorkasky, R.J. II; Wardlow, E. Jr.

    1987-09-08

    This patent describes a method for polymerizing olefinically unsaturated carboxylic acid monomers containing at least one activated carbon to carbon olefinic double bond and at least one carboxyl group. The monomers are polymerized in an organic media consisting essentially of organic liquids, in the presence of free radical forming catalysts and at least one oil soluble ionic surface active agent selected from the group consisting of: (a) anionic surface active agents; (b) cationic surface active agents; and (c) amphoteric surface active agents.

  16. New organo-Lewis acids. Tris({beta}-perfluoronaphthyl)borane (PNB) as a highly active cocatalyst for metallocene-mediated Ziegler-Natta {alpha}-olefin polymerization

    SciTech Connect

    Li, L.; Marks, T.J.

    1998-08-31

    Tris({beta}-perfluoronaphthyl)borane (B(C{sub 10}F{sub 7}){sub 3}, PNB) is synthesized from {beta}-perfluoronaphthyllithium and BCl{sub 3} to serve as a new strong organo-Lewis acid cocatalyst. PNB efficiently activates a variety of group 4 dimethyl complexes to form highly active homogeneous Ziegler-Natta olefin polymerization catalysts. Reaction of PNB with rac-Me{sub 2}Si(Ind){sub 2}ZrMe{sub 2} and CGCMMe{sub 2} (M = Zr, Ti; CGC = Me{sub 2}Si({eta}{sup 5}-Me{sub 4}C{sub 5})({sup t}BuN)) (1:1 molar ratio) rapidly produces the base-free cationic complexes rac-Me{sub 2}Si(Ind){sub 2}ZrMe{sup +}MePNB{sup {minus}} (1) and CGCMMe{sup +}MePNB{sup {minus}} (M = Zr, 2; Ti, 3), respectively. The {mu}-methyl dinuclear cationic complex [(CGCTiMe){sub 2}({mu}-Me)]{sup +}MePNB{sup {minus}} (4) is formed when 2:1 CGCTiMe{sub 2}:PNB stoichiometry is employed. In the case of group 4 dimethyl zirconocenes, L{sub 2}ZrMe{sub 2} (L = {eta}{sup 5}-C{sub 5}H{sub 5}, Cp; {eta}{sup 5}-1,2-Me{sub 2}C{sub 5}H{sub 3}, Cp{double_prime}), reaction in a 1:1 metallocene:PNB ratio affords cationic complexes L{sub 2}ZrMe{sup +}MePNB{sup {minus}} (L = Cp, 5; Cp{double_prime}, 6), while the reaction with a 1:2 molar ratio affords dinuclear {mu}-methyl cationic complexes [(L{sub 2}ZrMe){sub 2}({mu}-Me)]{sup +}MePNB{sup {minus}} (L = Cp, 7; Cp{double_prime}, 8). In both reactions, {mu}-F dinuclear cationic complexes [(L{sub 2}ZrMe){sub 2}({mu}F)]{sup +}MePNB{sup {minus}} (L = Cp, 9; Cp{double_prime}, 10) are formed as byproducts. (C{sub 6}F{sub 5}){sub 3}BNCCH{sub 3} and PNBNCCH{sub 3} were synthesized and characterized.

  17. Fourier transform infrared spectroscopic studies of the reactivity of vanadia-titania catalysts toward olefins. 2. Ethylene

    SciTech Connect

    Escribano, V.S.; Busca, G.; Lorenzelli, V. )

    1990-12-27

    The adsorption and transformation of ethylene and of some O-containing C{sub 2} molecules (namely ethanol, acetaldehyde and acetic acid) on vanadia-titania in the temperature range 150-673 K have been investigated by IR spectroscopy. Ethylene only adsorbs as such, without reaction, at low temperature. Reactive adsorption is found to start from 373 K. Chemisorbed acetaldehyde and, by further heating, acetate and formate ions are produced. Other species, identified tentatively as an enol-like species CH{sub 2}{double bond}CH-O as well as -O-CH{double bond}CH-O-, are responsible for typical absorptions. The surface reaction pathways are discussed in relation to literature data concerning ethylene oxidation on heterogeneous oxide catalysts. The active sites for olefin selective oxidation on vanadia-titania are proposed to be V{sup 5+}OH groups (for hydration/dehydrogenation reactions) and coordinatively unsaturated V{sup 4+}{double bond}O groups for allylic oxidation of propylene.

  18. Synthesis, structural elucidation, and application of a pyrazolylpyridine-molybdenum oxide composite as a heterogeneous catalyst for olefin epoxidation.

    PubMed

    Figueiredo, Sónia; Gomes, Ana C; Neves, Patrícia; Amarante, Tatiana R; Paz, Filipe A Almeida; Soares, Rosário; Lopes, André D; Valente, Anabela A; Pillinger, Martyn; Gonçalves, Isabel S

    2012-08-01

    The reaction of [MoO(2)Cl(2)(pypzEA)] (1) (pypzEA = ethyl[3-(pyridin-2-yl)-1H-pyrazol-1-yl]acetate) with water in a Teflon-lined stainless steel autoclave (100 °C) or in an open reflux system leads to the isolation of the molybdenum oxide/pyrazolylpyridine composite material [Mo(2)O(6)(HpypzA)] (2; HpypzA = [3-(pyridinium-2-yl)-1H-pyrazol-1-yl]acetate). The solid state structure of 2 was solved through single crystal and powder X-ray diffraction analyses in conjunction with information derived from FT-IR and (13)C CP MAS NMR spectroscopies and elemental analyses. In the asymmetric unit of 2, two crystallographically distinct Mo(6+) centers are bridged by a syn,syn-carboxylate group of HpypzA. The periodic repetition of these units along the a axis of the unit cell leads to the formation of a one-dimensional composite polymer, (∞)(1)[Mo(2)O(6)(HpypzA)]. The outstretched pyrazolylpyridine groups of adjacent polymers interdigitate to form a zipper-like motif, generating strong onset π-π contacts between adjacent rings of coordinated HpypzA molecules. The composite oxide 2 is a stable heterogeneous catalyst for liquid-phase olefin epoxidation. PMID:22830308

  19. Electronic effects in Ziegler-Natta polymerization of propylene and ethylene using soluble metallocene catalysts

    SciTech Connect

    Lee, Ik-Mo; Gauthier, W.J.; Ball, J.M.; Iyengar, B.; Collins, S.

    1992-06-01

    ({eta}{sup 5}-5,6-X{sub 2}C{sub 9}H{sub 5}){sub 2}ZrCl{sub 2} catalysts (4a, X = H; 4b, X = CH{sub 3}; 4d, X = OCH{sub 3}; 4e, X = Cl) were investigated as catalysts for the polymerization of ethylene. In addition, polymerization of propylene and ethylene was studied by using corresponding racemic, ethylene-bridged analogues (5a, X = H; 5b, X = CH{sub 3}; 5d, X = OCH{sub 3}). Both the bridged and non-bridged catalysts were effective as catalysts for both ethylene and propylene polymerization, but the molecular weights were generally lower with the ethylene-bridged catalyst. 19 refs., 3 tabs.

  20. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process.

    PubMed

    Martín, Nuria; Li, Zhibin; Martínez-Triguero, Joaquín; Yu, Jihong; Moliner, Manuel; Corma, Avelino

    2016-04-26

    The synthesis of nanosized SSZ-39 zeolite has been achieved using a high silica FAU zeolite as the Si and Al source and tetraethylphosphonium (TEP) cations as OSDAs. The obtained SSZ-39 material shows a remarkably high catalyst lifetime compared to conventional SSZ-13 and SSZ-39 materials. PMID:26947336

  1. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    PubMed

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O. PMID:27140286

  2. Hydrogenation of unsaturated, aromatic, and heterocyclic compounds with polymer-supported catalysts

    SciTech Connect

    Karakhanov, E.A.; Pshezhetskii, V.S.; Dedov, A.G.; Loktev, A.S.; Lebedeva, T.S.

    1984-04-01

    The authors synthesized and studied catalysts based upon complexes of platinum, palladium, rhodium, and nickel with the following polymeric microligands: copolymers of styrene with maleic acid (S-MA), copolymers of maleic acid with methyl methacrylate (MA-MMA), and polyacrylic acid (PAA). The catalysts showed high activity and selectivity in the hydrogenation of furan and its derivatives, benzofuran, benzodioxane, benzene, nitrobenzene, phenol, olefins and cyclic olefins, and cyclic dienes. 2 tables.

  3. Manganese-spinel catalysts in CO/H/sub 2/ olefin synthesis

    SciTech Connect

    Soled, S.L.; Fiato, R.A.

    1986-08-05

    A hydrocarbon synthesis catalyst composition is described comprising a bulk unsupported Group IA or IIA metal salt promoted iron-manganese single phase, the single phase comprising a spinel having the empirical formula: Fe/sub x/Mn/sub y/O/sub 4/ wherein x and y are integer or decimal values, other than zero, with the proviso that the sum of x+y is 3 and the ratio of x/y is 2:1 to 19:1 and the spinal exhibiting a powder X-ray diffraction pattern substantially isostructural with Fe/sub 3/O/sub 4/ and the metal salt being substantially deposited on the surface of the spinel.

  4. Grubbs–Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids

    PubMed Central

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang

    2015-01-01

    Summary The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH–2-(2-PrO)-C6H4))2+ (OTf−)2] (Ru-2, H2ITapMe2 = 1,3-bis(2’,6’-dimethyl-4’-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf− = CF3SO3 −) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM+][BF4 −]. The structure of Ru-2 was confirmed by single crystal X-ray analysis. PMID:26664582

  5. Rare-earth catalysts for carbon-carbon linkages of olefins: Cyclic oligomerization of ethylene

    SciTech Connect

    Keim, W.; Meltzow, W.; Chen, Z. ); Huang, Z. ); Shen, Z. )

    1992-10-01

    A novel cyclo-oligomerization of ethene to alkylcyclopropanes, alkylcyclopentanes, and alkylcyclohexanes using a Ziegler-Natta type catalyst consisting of rare earth salts such as YCl{sub 3}, LaCl{sub 3}, CeCl{sub 3}, PrCl{sub 3} NdCl{sub 3}, SmCl{sub 3}, GdCl{sub 3}, HoCl{sub 3} ErCl{sub 3}, YbCl{sub 3}, LuCl{sub 3} combined with EtAlCl{sub 2} is described. The addition of carbon monoxide or isonitriles is essential. The C{sub 6}-oligomers consist of n-propylcyclopropane and methylcyclopentane. The C{sub 8}-oligomers include n-pentylcyclopropane, n-propylcyclopentane, 1,1-methylethylcyclopentane, and ethylcyclohexane. The C{sub 10}-oligomers embrace n-heptylcyclopropane, n-pentylcyclopentane, 1-1-methylbutylcyclopentane, 1,1-ethylpropylcyclopentane, and n-butylcyclohexane. When the reaction is carried out with rare earth salts and Et{sub 2}-AlCl or Et{sub 3}Al, only open-chain oligomers are obtained. There is no significant influence observed on product selectivity using other rare earth salts. Only the activity is affected. To understand the products formed a metallacycloalkane mechanism is proposed.

  6. Effect of 1-olefin addition on supercritical phase Fischer-Tropsch synthesis over Co/SiO{sub 2} catalyst

    SciTech Connect

    Yan, S.R.; Zhang, Z.X.; Zhou, J.L.; Fan, L.; Fujimoto, Kaoru

    1997-12-31

    Hydrocarbon wax produced by Fischer-Tropsch Synthesis (FTS) has been used in many fields for its high quality, such as high melting point, high hardness value, low viscosity, being nitrogen sulfur and aromatics-free. Selective synthesis of FT wax has generated great interest, especially in the case of lower oil-prices. As a polymerization process, however, in conventional gas phase FTS, selectivity of wax is constrained by the Anderson-Schultz-Flory (ASF) kinetics. Supercritical phase Fischer-Tropsch synthesis co-fed with 1-tetradecene over Co/SiO{sub 2} catalysts has been carried out. It was found that added 1-tetradecene could reach the surface of the catalyst by the aid of a supercritical fluid, and participate in the chain growth process there, which was indistinguishable from the original chain propagation. Consequently, the yield of hydrocarbons larger than C{sub 14} increased significantly, while the selectivity of C{sub 1}-C{sub 13} decreased correspondingly, which made the carbon number distribution deviate from ASF kinetics drastically. In addition, the analytical results of wax showed that average molecular weight and degree of saturation of the wax increased, while the content of oxygenates in the wax decreased due to the addition of 1-tetradecene.

  7. Alkoxymagnesium halide supports for heterogeneous Ziegler-Natta polymerization catalysts

    SciTech Connect

    Smith, G.M.; Tirendi, C.F.; Amata, R.J.; Band, E.I. )

    1993-03-31

    Solid ClMg(OEt) (1) has been prepared and characterized for the first time as a pure, spectroscopically homogeneous material. The novel material, Cl[sub 3]Mg[sub 2]OEt (2), has also been prepared and characterized as a pure, spectroscopically homogeneous solid. These materials are made by stepwise alcoholysis and chlorination of butylethylmagnesium. CP/MAS [sup 13]C NMR (cross-polarization/magic angle spinning carbon-13 nuclear magnetic resonance) spectra of 1 and 2 show well-defined ethyl group environments in each material: 1 ([delta], ppm), 59.3 (OCH[sub 2]CH[sub 3]), 19.7 (OCH[sub 2]CH[sub 3]); 2, ([delta], ppm), 63.4 (OCH[sub 2]CH[sub 3]), 19.1 ppm (OCH[sub 2]CH[sub 3]). X-ray powder diffraction pattern measurements show that 1 (d[sub max] = 9.30 [Angstrom]) and 2 (d[sub max] = 9.93 [Angstrom]) are different from each other from MgCl[sub 2] (d[sub max] = 8.26 [Angstrom]) and Mg(OEt)[sub 2] (d[sub max] = 9.82 [Angstrom]). These compounds are high surface area, microporous materials (1, 233 m[sup 2]/g by BET (Brunauer-Emmett-Teller adsorption isotherm)) and pore volume 0.33 cm[sup 3]/g at P/P[sub 0] = 0.98; 2, 299 m[sup 2]/g by BET and pore volume 0.42 cm[sup 3]/g at P/P[sub 0] = 0.98). After reaction with TiCl[sub 4] and activation with Al(i-Bu)[sub 3], these materials are active Ziegler-Natta polymerization catalysts (30 psig H[sub 2], 100 psig total C[sub 2]H[sub 4] pressure, 85[degrees]C: 1 yields 30.4 kg of PE/(g of Ti h) (kg of polyethylene/(g of titanium hour)), M[sub w] = 144,000, M[sub n] = 9,020; 2 yields 56.9 kg of PE/(g of Ti h), M[sub w] = 110,000, M[sub n] = 13,800. 12 refs., 5 figs., 6 tabs.

  8. A Copper-Based Metal-Organic Framework Acts as a Bifunctional Catalyst for the Homocoupling of Arylboronic Acids and Epoxidation of Olefins.

    PubMed

    Parshamoni, Srinivasulu; Telangae, Jyothi; Sanda, Suresh; Konar, Sanjit

    2016-02-18

    A copper(I)-based metal-organic framework ({[Cu2 Br2 (pypz)]n ⋅nH2 O} (Cu-Br-MOF) [pypz=bis[3,5-dimethyl-4-(4'-pyridyl)pyrazol-1-yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2 Br2 dimeric units, forming a one-dimensional zig-zag chain, and these chains further connected by a Cu2 Br2 unit, give a two-dimensional framework on the bc-plane. In the Cu2 Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant-compared to other conventional (Cu, Pd, Fe, and Au) catalysts-for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity. PMID:26629650

  9. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    SciTech Connect

    Manna, Kuntal

    2012-12-17

    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C5H5)(OxR)2] [OxR = Ox4S-iPr,Me2, Ox4R-iPr,Me2, Ox4S-tBu]. These optically active proligands react with an equivalent of M(NMe2)4 (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C5H4)(OxR)2}M(NMe2)2 in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C-N/C-H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C5H4)(Ox4S-iPr,Me2)2}Zr(NMe2)2 ({S-2}Zr(NMe2)2) displays highest activity and enantioselectivity. Interestingly, S-2

  10. Chemoselective Oxidative Polymerization of m-Ethynylphenol by Peroxidase Catalyst to a New Reactive Polyphenol.

    PubMed

    Tonami, Hiroyuki; Uyama, Hiroshi; Kobayashi, Shiro; Fujita, Takayuki; Taguchi, Yoshihiro; Osada, Katsuhisa

    2000-06-13

    Enzymatic oxidative polymerization of m-ethynylphenol possessing two reactive groups, phenol and acetylene moieties, was carried out in aqueous methanol under air. Horseradish peroxidase and hydrogen peroxide were used as catalyst and oxidizing agent, respectively. (1)H NMR and IR analysis showed that only the phenolic moiety was polymerized to produce the polymer having the ethynyl group in the side chain. The reaction of the monomer using a copper/amine catalyst, a conventional catalyst for oxidative coupling, exclusively produced a diacetylene derivative. From these data, it was found that the peroxidase catalysis induced the chemoselective polymerization of the monomer. The resulting polymer was converted to carbonized polymer in a much higher yield than enzymatically synthesized poly(m-cresol) and is expected to have potential applications as a reactive starting polymer. PMID:11749146

  11. Chemoselective oxidative polymerization of m-ethynylphenol by peroxidase catalyst to a new reactive polyphenol.

    PubMed

    Tonami, H; Uyama, H; Kobayashi, S; Fujita, T; Taguchi, Y; Osada, K

    2000-01-01

    Enzymatic oxidative polymerization of m-ethynylphenol possessing two reactive groups, phenol and acetylene moieties, was carried out in aqueous methanol under air. Horseradish peroxidase and hydrogen peroxide were used as catalyst and oxidizing agent, respectively. 1H NMR and IR analysis showed that only the phenolic moiety was polymerized to produce the polymer having the ethynyl group in the side chain. The reaction of the monomer using a copper/amine catalyst, a conventional catalyst for oxidative coupling, exclusively produced a diacetylene derivative. From these data, it was found that the peroxidase catalysis induced the chemoselective polymerization of the monomer. The resulting polymer was converted to carbonized polymer in a much higher yield than enzymatically synthesized poly(m-cresol) and is expected to have potential applications as a reactive starting polymer. PMID:11710092

  12. Metallocene catalyst containing bulky organic group

    DOEpatents

    Marks, T.J.; Ja, L.; Yang, X.

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetrafluoro-aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  13. Metallocene catalyst containing bulky organic group

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetra fluoro, aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  14. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study.

    PubMed

    Ahmed, Syud M; Poater, Albert; Childers, M Ian; Widger, Peter C B; LaPointe, Anne M; Lobkovsky, Emil B; Coates, Geoffrey W; Cavallo, Luigi

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. PMID:24199614

  15. Surface Grafting via Photo-Induced Copper-Mediated Radical Polymerization at Extremely Low Catalyst Concentrations.

    PubMed

    Laun, Joachim; Vorobii, Mariia; de los Santos Pereira, Andres; Pop-Georgievski, Ognen; Trouillet, Vanessa; Welle, Alexander; Barner-Kowollik, Christopher; Rodriguez-Emmenegger, Cesar; Junkers, Thomas

    2015-09-01

    Surface-initiated photo-induced copper-mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re-initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h. PMID:26149622

  16. Surface-initiated Ring-opening Metathesis Polymerization in the Vapor Phase: An Efficient Method for Grafting Cyclic Olefins of Low Strain Energies

    PubMed Central

    Lerum, Maria Felisa Z.; Chen, Wei

    2011-01-01

    Surface grafting of cyclic olefins with low strain energies, including cyclopentene (CP), 1,4-cyclohexadiene (CHD), cycloheptene (CHP), cis-cyclooctene (CO), cis,cis-1,5-cyclooctadiene (COD), 1,3,5,7-cyclooctatetraene (COT), cyclododecene (CD), and trans,trans,cis-1,5,9-cyclododecatriene (CDT), were explored using ring-opening metathesis polymerization in the vapor phase. These monomers do not polymerize when SiROMP is carried out in solution due to pronounced chain transfer on surfaces where chains are in close proximities. In the vapor phase, however, chain transfer is suppressed at the solid-vapor interfaces, which permits the polymerization of most of these monomers. A minimal required strain energy of 2.2 kcal/mol was determined in this study, which is significantly lower than the estimated 13.3 kcal/mol for SiROMP carried out in solution, indicating that the enhancement in monomer polymerizability is significant using the vapor phase approach. A series of polyalkenamers with controlled fraction of unsaturation from 8% to 50% along the polymer backbone were grafted to solid substrates. It was observed that the logarithm of largest grafted layer thickness obtained before the removal of chain transfer products – which correlates with the extent of polymerization – scales with monomer strain energy. This confirms that the release of ring strain is the thermodynamic driving force for SiROMP. It was also found that although chain transfer is suppressed in the vapor phase, it is important in monomer/polymer systems where the fraction of unsaturated bonds is high. In these cases, grafted polymer thickness is dominated by chain transfer, rather than by monomer strain energy. A quantitative relationship is established for estimating graft thickness of a particular monomer using its strain energy and fraction of unsaturated bonds in the monomer. PMID:21469729

  17. Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts.

    PubMed

    Pearson, Ryan M; Lim, Chern-Hooi; McCarthy, Blaine G; Musgrave, Charles B; Miyake, Garret M

    2016-09-01

    N-Aryl phenoxazines have been synthesized and introduced as strongly reducing metal-free photoredox catalysts in organocatalyzed atom transfer radical polymerization for the synthesis of well-defined polymers. Experiments confirmed quantum chemical predictions that, like their dihydrophenazine analogs, the photoexcited states of phenoxazine photoredox catalysts are strongly reducing and achieve superior performance when they possess charge transfer character. We compare phenoxazines to previously reported dihydrophenazines and phenothiazines as photoredox catalysts to gain insight into the performance of these catalysts and establish principles for catalyst design. A key finding reveals that maintenance of a planar conformation of the phenoxazine catalyst during the catalytic cycle encourages the synthesis of well-defined macromolecules. Using these principles, we realized a core substituted phenoxazine as a visible light photoredox catalyst that performed superior to UV-absorbing phenoxazines as well as previously reported organic photocatalysts in organocatalyzed atom transfer radical polymerization. Using this catalyst and irradiating with white LEDs resulted in the production of polymers with targeted molecular weights through achieving quantitative initiator efficiencies, which possess dispersities ranging from 1.13 to 1.31. PMID:27554292

  18. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-01

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. PMID:25498641

  19. Cationic zinc enolates as highly active catalysts for acrylate polymerization.

    PubMed

    Garner, Logan E; Zhu, Hongping; Hlavinka, Mark L; Hagadorn, John R; Chen, Eugene Y-X

    2006-11-22

    Unprecedented cationic zinc enolates have been generated by a novel activation route involving the amido to imino ligand transformation with B(C6F5)3, structurally characterized, and utilized as highly active catalysts for the production of high molecular weight polyacrylates at ambient temperature. PMID:17105289

  20. Functionalized SBA-15 supported nickel (II)-oxime-imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    NASA Astrophysics Data System (ADS)

    Paul, Luna; Banerjee, Biplab; Bhaumik, Asim; Ali, Mahammad

    2016-05-01

    A new oxime-imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH2-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO4)2 to yield the functionalized nickel catalyst SBA-15-NH2-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH2-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant.

  1. Modification of supported titanium-magnesium catalysts of ethylene polymerization with metal chlorides

    SciTech Connect

    Ivanchev, S.S.; Kryzhanovskii, A.V.; Zakharov, P.S.; Bogdanov-Kat'kov, N.V.

    1988-11-10

    It has previously been shown that the use of chlorides of nickel, cobalt, iron, tin, aluminum, or other metals as components of the supports for titanium-magnesium ethylene polymerization catalysts makes it possible to vary their catalytic activity and specificity over a wide range. The authors investigated the features of ethylene polymerization on Ziegler-Natta catalysts supported on MgCl/sub 2/ which have been modified with chlorides of Co, Ni, Sn, or V, with the objective of studying the mechanism of the modifying action of metal chlorides. The catalysts were prepared by dispersing MgCl/sub 2/ and the Lewis acid in a ball mill in the presence of TiCl/sub 4/. Compositions and activities of the catalysts prepared are shown. The introduction of nickel chloride or cobalt chloride into MgCl/sub 2/ leads to an increase in TiCl/sub 4/ activity while preserving the mechanism of its attachment to the support surface, while modification of MgCl/sub 2/ with tin tetrachloride or vanadium oxychloride leads to a sharp change in the state of TiCl/sub 4/ on the support surface and to a decrease in catalyst activity.

  2. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  3. Modular "Click" Preparation of Bifunctional Polymeric Heterometallic Catalysts.

    PubMed

    Wang, Wenlong; Zhao, Liyuan; Lv, Hui; Zhang, Guodong; Xia, Chungu; Hahn, F Ekkehardt; Li, Fuwei

    2016-06-27

    Heterobimetallic molecular complexes or strictly alternating metallated polymers are obtained by a click reaction between mononuclear metal complexes (secondary building units, SBUs) bearing NHCs functionalized with either p-azidophenyl or p-ethynylphenyl wingtips. With a copper-NHC complex as SBU the formation of molecular or polymeric compounds did not require any additives as the copper complex catalyzes the click reaction. Transmetallation from heterobimetallic Cu/Ag derivatives to Cu/Pd derivatives was achieved. The linker between the SBUs (flexible or rigid) influences the catalytic activity of the heterobimetallic compounds. The polymer with alternating copper-NHC and silver-NHC units and a flexible methylene-triazole bridge between them shows the highest activity in the catalytic alkynylation of trifluoromethyl ketones to give fluorinated propargylic alcohols. PMID:27331787

  4. Olefin metathesis in air

    PubMed Central

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  5. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes

    NASA Astrophysics Data System (ADS)

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-01

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  6. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    PubMed Central

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna

    2015-01-01

    Summary Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  7. Organotitanium(IV) compounds as catalysts for the polymerization of isocyanates: The polymerization of isocyanates with functionalized side chains

    SciTech Connect

    Patten, T.E.; Novak, B.M. Lawrence Berkeley Lab., CA )

    1993-02-01

    Catalysts of the form CpTiCl[sub 2]X, where X = [minus]OCH[sub 2]CF[sub 3], [minus]N(CH[sub 3])[sub 2], or [minus]CH[sub 3] (2a, 2b, 2c; Cp = [eta][sup 5]-cyclopentadienyl), CP*TiCl[sub 2]OCH[sub 2]CF[sub 3](3; Cp* = [eta][sup 5]-pentamethylcyclopentadienyl), and Cp[sub 2]TiClOCH[sub 2]-CF[sub 3](4) were used to polymerize a variety of isocyanates. Titanium-alkoxide, -amide, and -alkyl bonds were all found to be active in initiating the insertion of isocyanate monomer. An advantageous consequence of the lesser Lewis acidity of 2a-c relative to TiCl[sub 3]OCH[sub 2]CF[sub 3](1) is that the polymerization of highly functionalized monomers is possible using 2a-c and not 1. 2-Isocyanotoethyl methacrylate (2IEM) was polymerized, using 2b, through the isocyanato group to a linear polymer; the resulting properties of this material were found to be quite different from what was reported by Graham et al. 2IEM trimer was synthesized and subsequently cross-linked using a free-radical initiator, and it was found that the properties of this material matched those of the earlier report. The Diels-Alder adduct of 2IEM with cyclopentadiene, 2-((2-isocyanatoethoxy)carbonyl)-2-methylbicyclo[2.2.1]hept-5-ene (2IECMBH) was prepared and also polymerized using 2b. The use of cyclopentadienyltitanium trichloride derivatives also provides a general route through which a wide variety of end groups may be incorporated onto the end of the polyisocyanate chain.

  8. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.

    PubMed

    Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P

    2015-08-28

    The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide. PMID:26192893

  9. Highly Tactic Cyclic Polynorbornene: Stereoselective Ring Expansion Metathesis Polymerization of Norbornene Catalyzed by a New Tethered Tungsten-Alkylidene Catalyst.

    PubMed

    Gonsales, Stella A; Kubo, Tomohiro; Flint, Madison K; Abboud, Khalil A; Sumerlin, Brent S; Veige, Adam S

    2016-04-20

    The tungsten alkylidyne [(t)BuOCO]W≡C((t)Bu) (THF)2 (1) reacts with CO2, leading to complete cleavage of one C═O bond, followed by migratory insertion to generate the tungsten-oxo alkylidene 2. Complex 2 is the first catalyst to polymerize norbornene via ring expansion metathesis polymerization to yield highly cis-syndiotactic cyclic polynorbornene. PMID:27043711

  10. Rheokinetic evaluation of self-healing agents polymerized by Grubbs catalyst embedded in various thermosetting systems

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Sheng, Xia; Lee, Jong Keun; Kessler, Michael R.

    2007-07-01

    In self-healing polymers and composites, the activity of the embedded chemical catalyst within the thermosetting matrix is critical to healing efficiency. Rheological behavior of ring-opening metathesis polymerization (ROMP)-based healing agents, triggered by 1st or 2nd generation Grubbs catalysts that have been suspended in various thermosetting resins, was investigated using an oscillatory parallel plate rheometer. Gel times for various healing agents were determined from the crossover of storage and loss moduli vs. time curves to indicate the activity of the ROMP reaction. Gelation of healing agents initiated by 1st generation Grubbs catalyst occurred faster than those triggered by 2nd generation catalyst. It is suggested that the dissolution rate of the catalyst by the healing agent is an important factor in determining the overall ROMP reaction rate in situ. Optical and scanning electron microscopic observations showed that the finer, rod-like solid particles of the 1st generation catalyst were distributed more homogeneously throughout the cured matrix, which contributed to the faster reaction. Also discussed were effects of different healing agents and thermosetting matrix systems on the ROMP reaction. These results indicate that the self-healing methodology can be expanded to other high performance polymer matrices.

  11. Extracellular Polymeric Substances as Catalysts for Dolomite Crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Xu, H.; Shelobolina, E. S.; Shen, Z.; Converse, B.; Konishi, H.; Roden, E. E.

    2012-12-01

    The "Dolomite problem" has been a subject of scientific debate for decades. It has been proposed that the involvement of microorganisms, especially anaerobic microorganisms, is necessary to overcome the kinetic barriers to dolomite crystallization. However, an unequivocal explanation of this catalytic effect of microorganisms has yet to be defined. Here we show that extracellular polymeric substances (EPS) can catalyze dolomite precipitation. In contrast to previous dolomite syntheses in live microbial cultures, we extracted EPS from cultures of a natural anaerobic microbial consortium isolated from sediments of a dolomite-precipitating lake, and conducted dolomite synthesis in vitro in EPS-bearing solutions. Our data showed that with as low as 0.1 g/L EPS, disordered dolomite precipitated from solutions containing similar concentrations of Ca2+ and Mg2+ as that of modern sea water, whereas aragonite and hydrous Mg-carbonates precipitated from solutions containing the dead cell residues without EPS. High throughput sequencing analyses indicated that the anaerobic consortium was dominated by fermenters. To our best knowledge, this is the first report of the catalytic effect of fermenters on dolomite crystallization. Based on previous studies on dolomite synthesis in polysaccharides-bearing solutions (Zhang et al., 2012), we propose that polysaccharides in EPS may contribute significantly to dolomite precipitation. We suggest that polysaccharides may be strongly adsorbed on the growing Ca-Mg carbonate surfaces to lower the energy barrier to the dehydration of surface Mg2+-water complexes, and therefore to enhance dolomite crystallization. In natural environments, polysaccharides can also be produced by organic matter decay in addition to microbial excretion. All these polysaccharides may be key factors in sedimentary dolomite formation. This study sheds new light on understanding the role of anaerobic microorganisms in dolomite formation and the formation mechanism

  12. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    SciTech Connect

    Albright, L.F.; Kranz, K.E.; Masters, K.R.

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  13. Intramolecular Aminoboration of Unfunctionalized Olefins.

    PubMed

    Yang, Chun-Hua; Zhang, Yu-Shi; Fan, Wen-Wen; Liu, Gong-Qing; Li, Yue-Ming

    2015-10-19

    A direct and catalyst-free method for the intramolecular aminoboration of unfunctionalized olefins is reported. In the presence of BCl3 (1 equiv) as the sole boron source, intramolecular aminoboration of sulfonamide derivatives of 4-penten-1-amines, 5-hexen-1-amines, and 2-allylanilines proceeded readily without the use of any catalyst. The boronic acids obtained after hydrolysis could be converted into the corresponding pinacol borates in a straightforward manner by treatment with pinacol under anhydrous conditions. PMID:26331979

  14. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    PubMed

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-01-01

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology. PMID:27340940

  15. Recent developments in atom transfer radical polymerization (ATRP): methods to reduce metal catalyst concentrations.

    PubMed

    Lou, Qin; Shipp, Devon A

    2012-10-01

    Atom transfer radical polymerization (ATRP) was initially developed in the mid-1990s, and with continued refinement and use has led to significant discoveries in new materials. However, metal contamination of the polymer product is an issue that has proven detrimental to widespread industrial application of ATRP. The laboratories of K. Matyjaszewski have made significant progress towards removing this impediment, leading the development of "activators regenerated by electron transfer" ATRP (ARGET ATRP) and electrochemically mediated ATRP (eATRP) technologies. These variants of ATRP allow polymers to be produced with great molecular weight and functionality control but at significantly reduced catalyst concentrations, typically at parts per million levels. This Concept examines these polymerizations in terms of their mechanism and outcomes, and is aimed at giving the reader an overview of recent developments in the field of ATRP. PMID:22539367

  16. Synthesis of Externally Initiated Poly(3-alkylthiophene)s via Kumada Catalyst Transfer Polymerization

    NASA Astrophysics Data System (ADS)

    D'Avanzo, Antonella

    The ability of chemists to design and synthesize pi conjugated organic polymers with precise control over their physical and electronic properties remains the key to technological breakthroughs using polymeric material in electronic and photonic devices. Kumada catalyst transfer polymerization (KCTP) technique and Grignard metathesis (GRIM) method have enabled the synthesis of highly regioregular polymers with controlled molecular weights, narrow polydispersity index and uniform end groups. Applying this technique toward external initiation of polymers would enable the preparation of sophisticated and beneficial polymer architectures such as surface grafted polymers. This work presents an investigation of various mechanistic parameters for external initiation of poly(3-alkylthiophene). The effects of binding ligand variation on the Nickel catalyst were investigated utilizing a novel methodology allowing facile screening of ligands. Poly(3-hexylthiophene) was synthesized with high percentage initiator headgroup incorporation with triphenylphosphine ligand while the use of bidentate ligands such as diphenylphosphinopropane only resulted in quantitative initiation when ligand exchange followed initiation with the more active species. A variety of functionally substituted aryl and thiophene halides were explored for their potential to act as external small molecule initiators and the reaction intermediates were characterized via spectroscopic techniques as well as theoretical calculations. Aryl halides were found to be more stable than thiophene halides and the type and position of the initiator functionality has played a deciding role in the polymerization mechanism. Ortho substitution stabilized the aryl-Ni intermediate complex via favorable orbital overlap and kinetic effects as a result of steric hindrance were demonstrated to affect the success of the external initiation. Surface-grafted poly(3-methylthiophene) thin films were synthesized from indium tin oxide

  17. The Oxidation of Sulfur-Containing Compounds Using Heterogeneous Catalysts of Transition Metal Oxides Deposited on the Polymeric Matrix

    NASA Astrophysics Data System (ADS)

    Dinh Vu, Ngo; Dinh Bui, Nhi; Thi Minh, Thao; Thi Thanh Dam, Huong; Thi Tran, Hang

    2016-05-01

    We investigate the activity of heterogeneous catalysts of transition metal oxides deposited on the polymeric matrix in the oxidation of sulfur-containing compounds. It is shown that MnO2-10/CuO-10 has the highest catalytic activity. The physicomechanical properties of polymeric heterogeneous catalysts of transition-metal oxides, including the specific surface area, elongation at break and breaking strength, specific electrical resistance, and volume resistivity were studied by using an Inspekt mini 3 kN universal tensile machine in accordance with TCVN 4509:2006 at a temperature of 20 ± 2°C. Results show that heterogeneous polymeric catalysts were stable under severe reaction conditions. Scanning electron microscopy, and energy-dispersive analysis are used to study the surfaces of the catalysts. Microstructural characterization of the catalysts is performed by using x-ray computed tomography. We demonstrate the potential application of polymeric heterogeneous catalysts of transition-metal oxides in industrial wastewater treatment.

  18. Formaldehyde Polymerization on (WO3)3/TiO2(110) Model Catalyst

    SciTech Connect

    Kim, Jooho; Kay, Bruce D.; Dohnalek, Zdenek

    2010-10-14

    Polymerization of formaldehyde, H2CO, was studied under ultrahigh vacuum conditions on a model catalyst consisting of monodispersed (WO3)3 clusters anchored on TiO2(110. Formaldehyde oligomers, (H2CO)n, desorbing from the polymer that formed on the catalyst surface are detected between 250 and 325 K in temperature programmed desorption experiments. At least two monolayers (ML) of H2CO are required on the surface to observe (H2CO)n desorption and the amount saturates for H2CO coverages in excess of ~30 ML. The presence of H2CO multilayers is required for the polymerization to take place indicating that it had to occur below 100 K. The saturation amount increases with increasing coverage of (WO3)3 clusters with the highest amount of ~13 ML observed on 1.2 (WO3)3/nm2 . No (H2CO)n desorption was observed on the bare TiO2(110) surface.

  19. Immobilized Bis-Indenyl Ligands for Stable and Cost-Effective Metallocene Catalysts of Hydrogenation and Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Simerly, Thomas Max

    Reactions of catalytic hydrogenations and polymerizations are widely used in industry for manufacture of fine chemicals, pharmaceuticals, and plastics. Homogeneous catalysts for the processes that have low stability and their separation is difficult. Therefore, the development of new highly active and stable catalysts for hydrogenations and polymerizations is a necessity. The objective of this research was the development of a strategy for immobilization of heterogeneous metallocene catalysts. First, a methodology of immobilization of bis-indenyl ligands on the surface of mesoporous silica gel was designed. Four bis-indenyl ligands containing functionalized tethers of various lengths with terminal alkene groups were synthesized. All bis-indenyl ligands were immobilized on the surface of mesoporous functionalized silica gel by two methods: hydrosilylation and thiol-ene coupling of the double bond. After comparing the results, the second strategy was chosen as more efficient. The materials can be used further as intermediates for synthesis of supported metallocene catalysts.

  20. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.

    PubMed

    Gong, Feiyan; Yang, Zhi; Hong, Chenggui; Huang, Weiwei; Ning, Shen; Zhang, Zhaoxia; Xu, Yong; Li, Quanxin

    2011-10-01

    Light olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.28±0.02 kg olefins/(kg bio-oil), which was close to that from methanol. Addition of La into zeolite efficiently changed the total acid amount of HZSM-5, especially the acid distribution among the strong, medium and weak acid sites. A moderate increase of the number of the medium acid sites effectively enhanced the olefins selectivity and improved the catalyst stability. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the conversion of bio-oil to light olefins was also discussed. PMID:21807503

  1. Olefin fractionation and catalytic conversion system

    SciTech Connect

    Owen, H.; Hsia, C.H.; Wright, B.S.

    1989-05-23

    A continuous catalytic system is described for converting a fraction of olefinic feedstock comprising ethylene and C/sub 3/+ olefins to heavier liquid hydrocarbon product comprising: (a) means for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C/sub 3/+ olefin; (b) means for vaporizing and contacting the liquid stream from the prefractionating step with hydrocarbon conversion oligomerization catalyst in a catalytic reactor system to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons; (c) means for fractionating the effluent stream to recover distillate, gasoline and lighter hydrocarbon separately; (d) means for recycling at least a portion of the recovered gasoline as a liquid sorption stream to prefractionating step (a); and (e) means for further reacting the recycled gasoline together with sorbed C/sub 3/+ olefin in the catalytic reactor system of step (b).

  2. Ring-opening metathesis polymerization of 18-e Cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Wilbon, Perry; Qiao, Yali; Tang, Chuanbing

    2014-11-01

    In the last decades, metallopolymers have received great attention due to their various applications in the fields of materials and chemistry. In this article, a neutral 18-electron exo-substituted η(4) -cyclopentadiene CpCo(I) unit-containing polymer is prepared in a controlled/"living" fashion by combining facile click chemistry and ring-opening meta-thesis polymerization (ROMP). This Co(I)-containing polymer is further used as a heterogeneous macromolecular catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate and styrene. PMID:25250694

  3. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOEpatents

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  4. A Practical and Catalytic Reductive Olefin Coupling

    PubMed Central

    2015-01-01

    A redox-economic method for the direct coupling of olefins that uses an inexpensive iron catalyst and a silane reducing agent is reported. Thus, unactivated olefins can be joined directly to electron-deficient olefins in both intra- and intermolecular settings to generate hindered bicyclic systems, vicinal quaternary centers, and even cyclopropanes in good yield. The reaction is not sensitive to oxygen or moisture and has been performed on gram-scale. Most importantly, it allows access to many compounds that would be difficult or perhaps impossible to access using other methods. PMID:24428607

  5. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins.

    PubMed

    Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim

    2011-12-14

    Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions. PMID:21989952

  6. Conversion of olefins to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  7. Designing Sequence Selectivity into a Ring-Opening Metathesis Polymerization Catalyst.

    PubMed

    Chen, Peter

    2016-05-17

    The development of a chemoselective catalyst for the sequence-selective copolymerization of two cycloolefins by ring-opening metathesis polymerization is described, starting with the mechanistic work that established the structure of the key metallacyclobutane intermediate. Experimental and computational investigations converged to a conclusion that the lowest energy metallacyclobutane intermediate in the ruthenium carbene-catalyzed metathesis reaction had the four-membered ring trans to the phosphine or NHC ligand. The trans-metallacyclobutane structure, for the case of a degenerate metathesis reaction catalyzed by a Grubbs first-generation complex, necessitated a rotation of the 3-fold symmetric tricyclohexylphosphine ligand, with respect to the 2-fold symmetric metallacyclobutane substructure. The degeneracy could be lifted by constraining the rotation. Lifting the degeneracy created the possibility of chemoselectivity. This mechanistic work led to a concept for the "tick-tock" catalyst for a chemoselective, alternating copolymerization of cyclooctene and norbornene from a mixture of the two monomers. The design concept could be post facto elaborated in terms of stereochemistry and topological theory, both viewpoints providing deeper insight into the design of selectivity into the catalytic reaction. The iterative interaction of theory and experiment provided the basis for the rational design and optimization of a new selectivity into an existing catalytic system with decidedly modest structural modifications of the original carbene complex. PMID:27105333

  8. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    PubMed

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-01

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation. PMID:27004928

  9. Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins.

    PubMed

    Pérez, Manuel; Mahdi, Tayseer; Hounjet, Lindsay J; Stephan, Douglas W

    2015-06-30

    Electrophilic phosphonium cations (EPCs) are efficient main group catalysts for the hydroarylation of olefins under mild conditions, providing a facile route to substituted aniline, bis-arylamine, phenol, furan, thiophene, pyrrole, and indole derivatives. Similarly, EPCs catalyze the hydrothiolation of aryl olefins with thiophenol affording a series of alkyl aryl thioethers. Experimental data support a mechanism for these reactions that involves initial activation of the olefin. PMID:26083901

  10. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  11. Photoinduced Atom Transfer Radical Polymerization with ppm-Level Cu Catalyst by Visible Light in Aqueous Media.

    PubMed

    Pan, Xiangcheng; Malhotra, Nikhil; Simakova, Antonina; Wang, Zongyu; Konkolewicz, Dominik; Matyjaszewski, Krzysztof

    2015-12-16

    Photoinduced ATRP was successfully performed in aqueous media. Polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA) in the presence of CuBr2 catalyst and tris(2-pyridylmethyl)amine ligand when irradiated with visible light of 392 nm wavelength at 0.9 mW/cm(2) intensity was well controlled. Linear semi-logarithmic kinetic plots and molecular weights increasing with conversion were observed. Polymers of OEOMA were synthesized with low dispersity (Mw/Mn = 1.12) using only 22 ppm of copper catalyst in the presence of excess bromide anions in highly diluted (90% v/v) aqueous media. The effects of copper concentration, salt, and targeted degrees of polymerization were investigated. The polymerization could be directly regulated by external stimulation, i.e., switching the irradiation on/off, with a good retention of chain-end functionality, as proved by clean chain extension of the OEOMA polymers. This new system could enable applications for controlled aqueous radical polymerization due to its low catalyst loading in the absence of any other chemicals. PMID:26634963

  12. Fabrication of nanofillers into a granular "nanosupport" for Ziegler-Natta catalysts: towards scalable in situ preparation of polyolefin nanocomposites.

    PubMed

    Qin, Yawei; Wang, Ning; Zhou, Yong; Huang, Yingjuan; Niu, Hui; Dong, Jin-Yong

    2011-07-15

    This communication reports a strategy for scale-up of an in situ polymerization technique for polyolefin-based nanocomposites preparation, taking layered silicate (clay) and multi-walled carbon nanotubes (MWCNTs) as examples of nanofillers. The strategy is realized by transforming the nanofillers into granular "nanosupports" for Ziegler-Natta catalysts. With a catalyst to polymer replication effect on particle morphology, the in situ prepared nanocomposites are of controlled granular particle morphology. With the polymer particle morphology controlled, the in situ polymerization technique becomes suitable for industrial olefin polymerization processes for mass production of polyolefin nanocomposites. PMID:21618321

  13. Gas-phase reactivity of novel Ziegler-Natta catalysts

    SciTech Connect

    Alameddin, N.G.; Eyler, J.R.; Richardson, D.E.

    1994-12-31

    The discovery of soluble group 4 metallocene-based catalysts for the Ziegler-Natta polymerization of olefins has generated considerable interest in the field. In particular, the versatility of the Cp (cyclopentadienyl) ligand has made practical the development of a host of novel catalysts which can produce extremely regiospecific and stereospecific polymers. With further improvements in activity and stability, these catalysts are expected to make a major impact on the polymerization industry. Presently, catalyst design is driven by using the steric and electronic properties of the ligands to guide the monomer addition. However, since these ligands have considerable steric bulk, the choice of solvent will significantly affect their catalytic properties. Therefore, an understanding of the intrinsic reactivity of these catalysts independent of a solvent is one of the first steps to building a better catalyst. The work in progress is a study of the reactivity of zircononene-based catalysts in the gas phase. The authors are in the process of studying the rates of reaction of a series of these compounds with H{sub 2} as well as with a number of olefins. In the gas phase, the intrinsic reactivity of these catalysts is revealed and their chemistry can be studied in detail.

  14. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    SciTech Connect

    Rathke, J.W.; Klingler, R.J.

    1992-12-31

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  17. Synthesis, structural elucidation, and catalytic properties in olefin epoxidation of the polymeric hybrid material [Mo3O9(2-[3(5)-pyrazolyl]pyridine)]n.

    PubMed

    Amarante, Tatiana R; Neves, Patrícia; Gomes, Ana C; Nolasco, Mariela M; Ribeiro-Claro, Paulo; Coelho, Ana C; Valente, Anabela A; Paz, Filipe A Almeida; Smeets, Stef; McCusker, Lynne B; Pillinger, Martyn; Gonçalves, Isabel S

    2014-03-01

    The reaction of [MoO2Cl2(pzpy)] (1) (pzpy = 2-[3(5)-pyrazolyl]pyridine) with water in an open reflux system (16 h), in a microwave synthesis system (120 °C, 2 h), or in a Teflon-lined stainless steel digestion bomb (100 °C, 19 h) gave the molybdenum oxide/pyrazolylpyridine polymeric hybrid material [Mo3O9(pzpy)]n (2) as a microcrystalline powder in yields of 72–79%. Compound 2 can also be obtained by the hydrothermal reaction of MoO3, pzpy, and H2O at 160 °C for 3 d. Secondary products isolated from the reaction solutions included the salt (pzpyH)2(MoCl4) (3) (pzpyH = 2-[3(5)-pyrazolyl]pyridinium), containing a very rare example of the tetrahedral MoCl4(2–) anion, and the tetranuclear compound [Mo4O12(pzpy)4] (4). Reaction of 2 with excess tert-butylhydroperoxide (TBHP) led to the isolation of the oxodiperoxo complex [MoO(O2)2(pzpy)] (5). Single-crystal X-ray structures of 3 and 5 are described. Fourier transform (FT)-IR and FT Raman spectra for 1, 4, and 5 were assigned based on density functional theory calculations. The structure of 2 was determined from synchrotron powder X-ray diffraction data in combination with other physicochemical information. In 2, a hybrid organic–inorganic one-dimensional (1D) polymer, ∞(1)[Mo3O9(pzpy)], is formed by the connection of two very distinct components: a double ladder-type inorganic core reminiscent of the crystal structure of MoO3 and 1D chains of corner-sharing distorted {MoO4N2} octahedra. Compound 2 exhibits moderate activity and high selectivity when used as a (pre)catalyst for the epoxidation of cis-cyclooctene with TBHP. Under the reaction conditions used, 2 is poorly soluble and is gradually converted into 5, which is at least partly responsible for the catalytic reaction. PMID:24520803

  18. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic group IV metallocenes

    SciTech Connect

    Kesti, M.R.; Coates, G.W.; Waymouth, R.M.

    1992-11-18

    Ziegler-Natta catalysts are remarkable in their ability to polymerize {alpha}-olefins to high molecular weight, stereoregular polyolefins. One of the major limitations of conventional Ziegler-Natta catalysts is their intolerance to Lewis bases; catalysts based on titanium halides and alkylaluminum cocatalysts are poisoned by most types of monomers containing ethers, esters, amines, and carboxylic acids. The absence of functionality in hydrocarbon polymers seriously affects their adhesive properties, affinity for dyes, permeability, and compatibility with more polar polymers. Previous attempts to polymerize sterically hindered amines, esters and amides, alkyl halides, and carboxylic acids using catalysts derived from TiCl{sub 3} and AlR{sub 3-n}Cl{sub n} have achieved limited success due to the severe loss of catalytic activity in the presence of these monomers. This work reports that cationic, group four metallocenes are active catalysts for the homo-polymerization of {alpha}-olefins containing silyl-protected alcohols and tertiary amines. Employing different monomers and conditions, a table shows the starting monomer, reaction time and temperature, and spectroscopic analysis of the end products. A major advanatage of these metallocene-based catalysts is that the ligand system can be modified to proved the optimal combination of catalystic activity, stereospecificity, and tolerance to functionality. 32 refs., 1 tab.

  19. Deep catalytic cracking, maximize olefin production

    SciTech Connect

    Chapin, L.; Letzsch, W. )

    1994-01-01

    Recent environmental regulations coupled with lead phase out have shifted the focus of the FCC from that of an octane barrel machine to that of a light olefins generator. The light olefins are the necessary feedstock for premium reformulated gasoline (RFG) blending components such as MTBE, TAME and alkylate. The demand for these light olefins will impact the operation of the FCC and Steam Cracker (SC). There will be a need for economical olefin generating processing alternatives to supplement SC's for C[sub 3]= and FCC's for C[sub 3]= through C[sub 5]= RFG component feedstocks. To this end, Stone Webster has recently entered into an agreement with the Research Institute of Petroleum Processing (RIPP) and Sinopec International, both located in the People's Republic of China, to exclusively license RIPP's Deep Catalytic Cracking (DCC) technology outside of China. DCC is a newly developed catalytic cracking process for producing light olefins (C[sub 3]--C[sub 5]) from heavy feedstocks. DCC is a fluidized bed process for selectively cracking a variety of hydrocarbon feedstocks to light olefins. Unlike s steam cracker, the predominate products are propylenes and butylenes, the direct result of catalytic cracking rather than free radical thermal reactions. There are two distinct modes of DCC operation: maximum propylene (Type 1) and maximum iso-olefin production (Type 2). Each mode of operation employs a unique catalyst as well as reaction conditions.

  20. Synthesis of interlocked molecules by olefin metathesis

    NASA Astrophysics Data System (ADS)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  1. Iron(II)-Catalyzed Intermolecular Aminofluorination of Unfunctionalized Olefins Using Fluoride Ion.

    PubMed

    Lu, Deng-Fu; Zhu, Cheng-Liang; Sears, Jeffrey D; Xu, Hao

    2016-09-01

    We herein report a new catalytic method for intermolecular olefin aminofluorination using earth-abundant iron catalysts and nucleophilic fluoride ion. This method tolerates a broad range of unfunctionalized olefins, especially nonstyrenyl olefins that are incompatible with existing olefin aminofluorination methods. This new iron-catalyzed process directly converts readily available olefins to internal vicinal fluoro carbamates with high regioselectivity (N vs F), many of which are difficult to prepare using known methods. Preliminary mechanistic studies demonstrate that it is possible to exert asymmetric induction using chiral iron catalysts and that both an iron-nitrenoid and carbocation species may be reactive intermediates. PMID:27529196

  2. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode.

    PubMed

    Wang, Lei; Fan, Ke; Daniel, Quentin; Duan, Lele; Li, Fusheng; Philippe, Bertrand; Rensmo, Håkan; Chen, Hong; Sun, Junliang; Sun, Licheng

    2015-05-01

    A simple strategy to immobilize highly efficient ruthenium based molecular water-oxidation catalysts on the basal-plane pyrolytic graphite electrode (BPG) by polymerization has been demonstrated. The electrode 1@BPG has obtained a high initial turnover frequency (TOF) of 10.47 s(-1) at ∼700 mV overpotential, and a high turnover number (TON) up to 31600 in 1 h electrolysis. PMID:25854858

  3. Characterization of a model Ziegler-Natta catalyst for ethylene polymerization

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Risse, T.; Hamann, H.; Freund, H.-J.

    2002-06-01

    Based on the work of the Somorjai group [Magni and Somorjai, Catal. Lett. 35, 205 (1995)] we have prepared a thin well ordered MgCl2(001) film by MgCl2 evaporation from a Knudsen cell. This film does not absorb TiCl4 at room temperature if it is not activated by increasing the defect density via electron or ion bombardment. The nature of some of the defects created is characterized by in situ ESR measurements and Auger spectroscopy. Paramagnetic surface defects are altered by the bonding of TiCl4 to the surface as observed by ESR spectroscopy. Ti3+ centers are detected if particularly severely defected MgCl2 layers are prepared. Reactivity studies show however, that these species are not correlated with polymerization activity. Interaction with aluminum alkyl leads to the formation of the active catalyst and we observe for the first time directly ethyl radicals formed from trimethyl-aluminum in an abstraction process which may be formulated as TiCl4/surface+AlMe3→Me-TiCl3/surface+AlMe2Cl, Me-TiCl3/surface→TiCl3/surface+Meṡ, and Meṡ+Me3Al→C2H5ṡ+AlH(Me)2. The presence of the aluminum alkyl is observed via in situ IRAS in the same apparatus.

  4. A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances

    NASA Astrophysics Data System (ADS)

    Zavarzina, A. G.

    2006-12-01

    The hypothesis was proposed that highly polymeric humic substances in the mineral horizons of soils in a temperate humid climate originate from polymerization of water-soluble structural precursors directly on mineral surfaces under the catalytic effect of immobilized phenoloxidases (heterophasic biocatalysis). This hypothesis was confirmed by a laboratory experiment using a mixture of monomeric phenols and nitrogenous compounds as structural precursors, fungal laccase as a biotic catalyst, and a hydroxyaluminum-kaolinite complex as a mineral support. Enzymic oxidation of phenolic precursors on the mineral surface was substantially more rapid than abiotic oxidation and led to synthesis of a highly polymeric fraction with a molecular weight over 75 kDa. These products were not produced on the mineral with an absence of laccase (abiotic catalysis) or in solution without the mineral matrix (homogeneous catalysis).

  5. Rh catalyzed olefination and vinylation of unactivated acetanilides.

    PubMed

    Patureau, Frederic W; Glorius, Frank

    2010-07-28

    In the catalyzed oxidative olefination of acetanilides (oxidative-Heck coupling), Rh offers great advantages over more common Pd catalysts. Lower catalyst loadings, large functional group tolerance (in particular to halides), and higher reactivity of electron-neutral olefins (styrenes) are some of the attractive features. Most interestingly, even ethylene reacts to yield the corresponding acetanilido-styrene. Moreover, the Cu(II) oxidant can also be utilized in catalytic amounts with air serving as the terminal oxidant. PMID:20593901

  6. Methods for suppressing isomerization of olefin metathesis products

    SciTech Connect

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  7. Methods for suppressing isomerization of olefin metathesis products

    SciTech Connect

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  8. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  9. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  10. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  11. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  12. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    SciTech Connect

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. ); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. )

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  13. Light olefin conversion to heavier hydrocarbons with sorption recovery of unreacted olefin vapor

    SciTech Connect

    Wright, B. S.; Hsia, Ch. H.; Owen, H.

    1985-04-16

    In the conversion of light olefins to heavier hydrocarbons, an improved recovery technique is provided for selectively removing unreacted light olefins from a catalytic reactor effluent. This system is useful in converting ethene-rich feedstocks to gasoline and/or distillate products, particularly in oligomerization processes employing shape selective siliceous catalysts such as ZSM-5 type zeolites. By recycling gasoline-range hydrocarbons as a sorbent liquid, unreacted C/sub 2/+ components may be absorbed from reactor effluent vapor and returned for further contact with the catalyst.

  14. Iron(III) complexes of 2-(1H-benzo[d]imidazol-2-yl)phenol and acetate or nitrate as catalysts for epoxidation of olefins with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Dutta, Amit Kumar; Samanta, Suvendu; Dutta, Supriya; Lucas, C. Robert; Dawe, Louise N.; Biswas, Papu; Adhikary, Bibhutosh

    2016-07-01

    Cheap and environmentally friendly Fe(III) catalysts [Fe(L)2(CH3COO)] (1) and [Fe(L)2(NO3)]·2CH3OH (2) where HL = 2-(1H-benzo[d]imidazol-2-yl)phenol for epoxidation of olefins have been developed. The catalysts have been characterized by elemental analyses, IR, UV-Vis spectroscopy and by X-ray crystallography. The X-ray structures reveal mononuclear compounds having a bidentate acetate or nitrate in 1 and 2, respectively. Catalytic epoxidations of styrene and cyclohexene have been carried out homogeneously by using 30% aqueous hydrogen peroxide in acetonitrile in the presence of catalytic amounts of 1 or 2. Yields of the respective epoxides were fair (1) to good (2) and selectivities were good in all cases although 2 produced two to three times the yield, depending on the substrate, than 1 and higher selectivity as well. A hypothesis for these differences in catalytic efficacy between 1 and 2 that is consistent with mechanistic details of related enzymatic and biomimetic model systems is proposed. Herein we report [Fe(L)2(NO3)]·2CH3OH (2) as the first structurally characterized non-heme iron epoxidation catalyst with a bidentate nitrate ligand.

  15. Synthesis and polymerization of renewable 1,3-cyclohexadiene using metathesis, isomerization, and cascade reactions with late-metal catalysts.

    PubMed

    Mathers, Robert T; Shreve, Michael J; Meyler, Etan; Damodaran, Krishnan; Iwig, David F; Kelley, Diana J

    2011-09-01

    Synthesis and subsequent polymerization of renewable 1,3-cyclohexadiene (1,3-CHD) from plant oils is reported via metathesis and isomerization reactions. The metathesis reaction required no plant oil purification, minimal catalyst loading, no organic solvents, and simple product recovery by distillation. After treating soybean oil with a ruthenium metathesis catalyst, the resulting 1,4-cyclohexadiene (1,4-CHD) was isomerized with RuHCl(CO)(PPh3)3. The isomerization reaction was conducted for 1 h in neat 1,4-CHD with [1,4-CHD]/[RuHCl(CO)(PPh3)3] ratios as high as 5000. The isomerization and subsequent polymerization of the renewable 1,3-CHD was examined as a two-step sequence and as a one-step cascade reaction. The polymerization was catalyzed with nickel(II)acetylacetonate/methaluminoxane in neat monomer, hydrogenated d-limonene, and toluene. The resulting polymers were characterized by FTIR, DSC, and TGA. PMID:21648003

  16. Synthesis of functionalized poly({alpha}-olefins) via Ziegler-Natta catalysis: Homo- and copolymers

    SciTech Connect

    Mogstad, A.L.; Kesti, M.R.; Coates, G.W.; Waymouth, R.M.

    1993-12-31

    Poly(methylene-1,3-cyclopentane-{beta}-caprolactone) (P(MCP-{beta}-CL) diblock copolymers are prepared by reacting hydroxy-terminated PMCP with triethylaluminum to produce a macroinitiator which is active for the ring-opening polymerization of {epsilon}-caprolactone (ECL). {sup 1}H NMR analysis of purified P(MCP)-{beta}-CL) shows a 1:1 ratio for the signals at 3.97 ppm due to the methylene at the PMCP-ester linkage and 3.63 due to the methylene at the PCL chain end; this is strong evidence for the formation of a diblock copolymer. In addition, {alpha}-olefins containing silylether, diisopropylamino, diphenylphosphino and carbazole functional groups have been polymerized in the presence of cationic, group 4 metallocene Ziegler-Natta catalysts. The resulting polymines, polyalcohols, polycarbazoles and polyphosphines serve as precursors to novel polyelectrolytes and organometallic polymers.

  17. Synthesis and Understanding of Novel Catalysts

    SciTech Connect

    Stair, Peter C.

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  18. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes

    PubMed Central

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-01-01

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite. PMID:26541636

  19. Control contaminants in olefin feedstocks and products

    SciTech Connect

    Reid, J.A.; McPhaul, D.R.

    1996-07-01

    To be competitive, olefin manufacturers must use low cost feedstocks, which frequently contain contaminants. Equally important, olefin customers, who are using newer technologies, are specifying more stringent limits on contaminants when purchasing products. These contaminants affect products and catalyst systems, hinder operating processes, and impair equipment for both the manufacturers and customers. An overview of current process designs and technologies shows several cost-effective options to reduce or remove feedstock contaminants such as CO, COS, CO{sub 2}, HF, NH{sub 3}, methanol and phosphine.

  20. Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis

    SciTech Connect

    Bukur, D.B.; Lang, X.; Akgerman, A.; Feng, Z.

    1997-07-01

    A precipitated iron catalyst (100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis) was tested in a fixed-bed reactor under a variety of process conditions during conventional Fischer-Tropsch synthesis (FTS) and supercritical Fischer-Tropsch synthesis (SFTS). In both modes of operation it was found that: total olefin content decreases whereas 2-olefin content increases with either increase in conversion or H{sub 2}/CO molar feed ratio. Total olefin and 2-olefin selectivities were essentially independent of reaction temperature. The effect of conversion was more pronounced during conventional FTS. Comparison of olefin selectivities in the two modes of operation reveals that total olefin content is greater while the 2-olefin content is smaller during SFTS. Also, both the decrease in total olefin content and the increase in 2-olefin content with increase in carbon number (i.e., molecular weight of hydrocarbon products) was significantly less pronounced during SFTS in comparison to the conventional FTS. The obtained results suggest that 1-olefins, and to a smaller extent n-paraffins, are the primary products of FTS. Secondary reactions (isomerization, hydrogenation, and readsorption) of high molecular weight {alpha}-olefins occur to a smaller extent during SFTS, due to higher diffusivities and desorption rates of {alpha}-olefins in the supercritical propane than in the liquid-filled catalyst pores (conventional FTS).

  1. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand.

    PubMed

    Gong, Dirong; Wang, Baolin; Jia, Xiaoyu; Zhang, Xuequan

    2014-03-14

    A family of cobalt complexes supported by a tridentate Schiff base ligand with a labile donor (O, S, N) as a pendant arm (Co1-Co12, formulated as CoL2) were synthesized by the treatment of the corresponding ligands with cobalt acetate tetrahydrate. The resultant complexes were well characterized by elemental analysis, FT-IR, magnetic moment as well as EI-MS. The solid-state structures of Co7 and Co12 were determined by X-ray diffraction and both established a distorted octahedron geometry around the cobalt center. The butadiene polymerization capabilities of the 12 complexes were evaluated and compared in representative cases. Diethylaluminum chloride (AlEt2Cl) was found to be the compatible activator resulting in highly active catalysts for producing polybutadiene of 93.8-98.2% cis-1,4 enchainment with negligible 1,2-structure and trans-1,4 units. It appears that a certain degree of lability of the donor is beneficial for high catalytic activity, generally following the order of O > S > N, and the high cis-1,4 selectivity. Moreover, the remarkable thermal stability of these systems has been achieved: the catalytic systems have the ability of conducting a high level of active and selective polymerization, reaching an upper limit of polymerization temperature of about 70 °C. The enhanced catalytic performances were further rationalized by the established diene polymerization mechanism, which could shed light on developing highly selective and reactive industrially applicable catalysts with an enhanced thermal stability. PMID:24468706

  2. Surface-Initiated Titanium-Mediated Coordination Polymerization from Catalyst-Functionalized Single and Multiwalled Carbon Nanotubes

    SciTech Connect

    Priftis, Dimitrios; Petzetakis, Nikolaos; Sakellariou, Georgios; Pitsikalis, Marinos; Baskaran, Durairaj; Mays, Jimmy; Hadjichristidis, Nikos

    2009-01-01

    Single (SWNTs) and multiwalled (MWNTs) carbon nanotubes were functionalized with a titanium alkoxide catalyst through a Diels-Alder cycloaddition reaction. The catalyst-functionalized carbon nanotubes (CNTs) were used for the surface initiated titanium-mediated coordination polymerizations of L-lactide (L-LA), -caprolactone (-CL) and n-hexyl isocyanate (HIC) employing the grafting from technique. 1H NMR, IR and Raman spectra showed that the precursor catalyst was successfully synthesized and covalently attached on the CNTs surface. Thermogravimetric analysis (TGA) revealed that the grafted poly(L-lactide) (PLLA) content could be controlled with time. The final polymer-grafted CNTs were readily dissolved in organic solvents as compared to the insoluble pristine and catalyst-functionalized CNTs. The presence of thick layers of polymers around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (Tg) and melting (Tm) temperatures of the PLLA are affected by the presence of the CNTs, while PLLA R-helix conformation remains intact, as revealed by the circular dichroism (CD) spectra.

  3. Copper-catalyzed trifluoromethylation of internal olefinic C-H bonds: efficient routes to trifluoromethylated tetrasubstituted olefins and N-heterocycles.

    PubMed

    Mao, Zhifeng; Huang, Fei; Yu, Haifeng; Chen, Jiping; Yu, Zhengkun; Xu, Zhaoqing

    2014-03-17

    The functionalization of internal olefins has been a challenging task in organic synthesis. Efficient CuII-catalyzed trifluoromethylation of internal olefins, that is, α-oxoketene dithioacetals, has been achieved by using Cu(OH)2 as a catalyst and TMSCF3 as a trifluoromethylating reagent. The push-pull effect from the polarized olefin substrates facilitates the internal olefinic C-H trifluoromethylation. Cyclic and acyclic dithioalkyl α-oxoketene acetals were used as the substrates and various substituents were tolerated. The internal olefinic C-H bond cleavage was not involved in the rate-determining step, and a mechanism that involves radicals is proposed based on a TEMPO-quenching experiment of the trifluoromethylation reaction. Further derivatization of the resultant CF3 olefins led to multifunctionalized tetrasubstituted CF3 olefins and trifluoromethylated N-heterocycles. PMID:24677229

  4. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol.

    PubMed

    Saito, Kei; Miyamoto, Koji; Nanayakkara, Sepa; Ihara, Hirotaka; Hearn, Milton T W

    2016-01-01

    A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) copper(I) complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene) solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl)-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide) was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst. PMID:26821005

  5. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

    PubMed

    Zhang, Aihua; Sun, Shouli; Komon, Zachary J A; Osterwalder, Neil; Gadewar, Sagar; Stoimenov, Peter; Auerbach, Daniel J; Stucky, Galen D; McFarland, Eric W

    2011-02-21

    As an alternative to the partial oxidation of methane to synthesis gas followed by methanol synthesis and the subsequent generation of olefins, we have studied the production of light olefins (ethylene and propylene) from the reaction of methyl bromide over various modified microporous silico-aluminophosphate molecular-sieve catalysts with an emphasis on SAPO-34. Some comparisons of methyl halides and methanol as reaction intermediates in their conversion to olefins are presented. Increasing the ratio of Si/Al and incorporation of Co into the catalyst framework improved the methyl bromide yield of light olefins over that obtained using standard SAPO-34. PMID:21203621

  6. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    PubMed

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  7. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    PubMed Central

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J

    2015-01-01

    Summary Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  8. Well-Defined Cobalt(I) Dihydrogen Catalyst: Experimental Evidence for a Co(I)/Co(III) Redox Process in Olefin Hydrogenation.

    PubMed

    Tokmic, Kenan; Markus, Charles R; Zhu, Lingyang; Fout, Alison R

    2016-09-14

    The synthesis of a cobalt dihydrogen Co(I)-(H2) complex prepared from a Co(I)-(N2) precursor supported by a monoanionic pincer bis(carbene) ligand, (Mes)CCC ((Mes)CCC = bis(mesityl-benzimidazol-2-ylidene)phenyl), is described. This species is capable of H2/D2 scrambling and hydrogenating alkenes at room temperature. Stoichiometric addition of HCl to the Co(I)-(N2) cleanly affords the Co(III) hydridochloride complex, which, upon the addition of Cp2ZrHCl, evolves hydrogen gas and regenerates the Co(I)-(N2) complex. Furthermore, the catalytic olefin hydrogenation activity of the Co(I) species was studied by using multinuclear and parahydrogen (p-H2) induced polarization (PHIP) transfer NMR studies to elucidate catalytically relevant intermediates, as well as to establish the role of the Co(I)-(H2) in the Co(I)/Co(III) redox cycle. PMID:27569420

  9. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  10. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  11. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect

    Anderson, R.B.

    1980-01-01

    A survey covers the preparation and structure of nitrided iron catalysts and their activity, selectivity, and stability for the reaction of synthesis gas in comparison with iron catalysts pretreated by various other methods, as measured in laboratory reactors; a comparison of product distributions obtained in fluidized-bed, slurry, and oil-circulation fixed bed pilot plants with nitrided catalysts and by the Kellogg entrained catalyst process SASOL, which uses a reduced iron catalyst; and possible methods for refining the Fischer-Tropsch products from nitrided iron catalysts for producing gasoline, including bauxite treatment, the Mobil process for converting oxygenates to high-octane gasoline and C/sub 3/-C/sub 4/ olefins, and an alkylation-polymerization process for converting the C/sub 3/-C/sub 4/ fraction to high-octane blending stocks.

  12. Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Siddiqi, Georges; Lapadula, Giuseppe; Norsic, Sébastien; Monteil, Vincent; Safonova, Olga V; Copéret, Christophe

    2014-02-10

    The insertion of an olefin into a preformed metal-carbon bond is a common mechanism for transition-metal-catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal-carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first CrC bond is formed remain unknown. We synthesized well-defined dinuclear Cr(II) and Cr(III) sites on silica. Whereas the Cr(II) material was a poor polymerization catalyst, the Cr(III) material was active. Poisoning studies showed that about 65 % of the Cr(III) sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si-(μ-OH)-Cr(III) species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at Cr(III) O bonds. PMID:24505006

  13. Cu(I)-catalyzed sequential diamination and dehydrogenation of terminal olefins: a facile approach to imidazolinones.

    PubMed

    Zhu, Yingguang; Shi, Yian

    2014-10-20

    Diamination of olefins presents a powerful strategy to access vicinal diamines. During the last decade, metal-catalyzed diamination of olefins has received considerable attention. This study describes an efficient sequential diamination and dehydrogenation process of terminal olefins with CuBr as catalyst and di-tert-butyldiaziridinone as nitrogen source, providing a facile and viable approach to a variety of imidazolin-2-ones, which are important structural motifs present in various biologically active molecules. PMID:25213994

  14. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  15. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    PubMed

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. PMID:25268813

  16. Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.

    PubMed

    Lim, Hee Nam; Dong, Guangbin

    2015-12-01

    Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia-ene-type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom-economical as stoichiometric oxidants or reductants are not required. Assisted by Kool's aniline catalyst, the reaction conditions can be both pH- and redox-neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five-membered rings, a ruthenium-based system that affords the six-membered ring products was also developed. PMID:26486569

  17. A difference in the stereospecificity of titanium and vanadium Ziegler-Natta catalysts in butadiene polymerization

    SciTech Connect

    Monakov, Yu.B.; Sabirov, Z.M.; Urazbaev, V.N.

    1995-03-01

    This work deals with the elucidation of the reasons for the change in the stereochemical result of polymerization when titanium active sites are replaced by vanadium sites. In this work, the authors studied the electron structure of C{sub 4}H{sub 7}MCl{sub 2}Al(CH{sub 3}){sub 3} and C{sub 4}H{sub 7}MCl{sub 2}Al(CH{sub 3}){sub 3} + C{sub 4}H{sub 6} (where M = Ti or V), which are models of the complexes of active sites with monomers in butadiene polymerization that are promoted by Ziegler-Natta catalytic systems based on titanium and vanadium trichlorides.

  18. Iron(III)-catalysed carbonyl-olefin metathesis.

    PubMed

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  19. Iron(III)-catalysed carbonyl–olefin metathesis

    NASA Astrophysics Data System (ADS)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon–carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl–olefin metathesis reaction can also be used to construct carbon–carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl–olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl–olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  20. Single-Pass Catalytic Conversion of Syngas into Olefins via Methanol.

    PubMed

    Olsbye, Unni

    2016-06-20

    All together now: Combination in a single reactor of the catalysts for converting syngas into methanol and methanol into olefins was recently reported by Cheng et al. This approach considerably simplifies the catalytic conversion of natural gas. PMID:27213983

  1. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  2. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, R.

    1985-04-09

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  3. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    PubMed Central

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-01-01

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597

  4. Hydrogenation of the exocyclic olefinic bond at C-16/C-17 position of ent-kaurane diterpene glycosides of Stevia rebaudiana using various catalysts.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-01-01

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597

  5. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix.

    PubMed

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J; Virji, Mohammed; Pasculle, William A; Wells, Alan

    2006-08-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  6. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix

    PubMed Central

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J.; Virji, Mohammed; Pasculle, William A.; Wells, Alan

    2007-01-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  7. [Cu(H2btec)(bipy)]infinity: a novel metal organic framework (MOF) as heterogeneous catalyst for the oxidation of olefins.

    PubMed

    Brown, Kareen; Zolezzi, Santiago; Aguirre, Pedro; Venegas-Yazigi, Diego; Paredes-García, Verónica; Baggio, Ricardo; Novak, Miguel A; Spodine, Evgenia

    2009-02-28

    A new extended metal-organic framework [Cu(H2btec)(bipy)]infinity. (1) (H4btec= 1,2,4,5-benzenetetracarboxylic acid; bipy = 2,2'-bipyridine) has been hydrothermally synthesized. Violet crystals are formed in a monoclinic system with a space group C2/c; a = 10.1810(18) A, b = 14.4360(18) A, c = 12.894(3) A, beta = 112.94(3) degrees. In the title compound 1 each Cu(II) centre has a distorted square planar environment, completed by two N atoms from one bipy ligand and two O atoms belonging to two dihydrogen benzene-1,2,4,5-tetracarboxylate anions (H2btec2-). The {Cu(bipy)}2+ moieties are bridged by H2btec2- anions to form an infinite one-dimensional coordination polymer with a zig-zag chain structure along the c axis. A double-chain structure is formed by hydrogen bonds between adjacent zig-zag chains. There are also pi-pi stacking interactions between the bipy ligands, with an average distance of 3.62 A resulting in a two-dimensional network structure. Compound 1 was tested as a catalyst for the oxidation of cyclohexene and styrene, with tert-butyl hydroperoxide (TBHP) as oxidant. The catalytic activity (24 h and 75 degrees C) found for [Cu(H2btec)(bipy)]infinity shows a high value for the conversion of cyclohexene (64.5%), and a lower one for styrene (23.7%). High turnover frequency (TOF) values for the epoxide products were observed, indicating that the catalyst synthesized in this work, not only has a high activity and selectivity for epoxidation reactions but is also very efficient. PMID:19462664

  8. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  9. Preparation and structural characterization of an enatiomerically pure, C{sub 2}-symmetric, single component Ziegler-Natta {Alpha}-olefin polymerization catalyst

    SciTech Connect

    Mitchell, J.P.; Hajela, S.; Brookhart, S.K.; Hardcastle, K.I.; Henling, L.M.; Bercaw, J.E.

    1996-02-07

    A new linked bis(cyclopentadienyl) ligand [(C{sub 5}H{sub 3}-2-SiMe{sub 3}-4-CMe{sub 3}){sub 2}Si(OC{sub 10}H{sub 6}C{sub 10}H{sub 6}O)] (BnBpH{sub 2}), has been designed to coordinate to transition metals to afford a single enantiomeric C{sub 2}-symmetric ansa-metallocene. The syntheses of its dipotassium salt and (BnBp)YCl(THF) are described. Steric interactions between the 3- and 3`-methine positions of the 1,1`-binaphth-2,2`-diolate rings of the chiral linker with the $alpha@-trimethylsilyl substituents on the cyclopentadienyl rings force enantioselective metalation of this ligand. Thus, coordination to yttrium occurs in an entirely diastereoselective manner: the ligand prepared from (R)-(+)-1,1`-bi-2-naphthol directs formation of the (S)-yttrocene, (R,S)-(BnBp)YCL(THF), while that from (S)-(-)-1`1-bi-2-naphthol directs formation of the (R)-yttrocene, (S,R)-(BnBp)YCl(THF). Removal of coordinated tetrahydrofuran allows the preparation of (BnBp)YCH(SiMe{sub 3}){sub 2}. Treatment of rac-(BnBp)YCH(SiMe{sub 3}){sub 2} with H{sub 2} yields a kinetic mixture of both heterochiral and homochiral dimers e.g. (R,S)-(BnBp)Y({mu}{sub 2}-H){sub 2}-(S,R)-(BnBp) and (R,S)-(BnBp)Y({mu}{sub 2}-H){sub 2}-(R,S)-Y(BnBp), respectively. Over several hours this mixture undergoes conversion to the pure homochiral dimers. As anticipated, hydrogenolysis of enantiopure (BnBp)YCH(SiMe{sub 3}){sub 2} (e.g. R,S-(BnBp)YCH(SiMe{sub 3}){sub 2}) affords directly only enantiopure homochiral dimer. 38 refs., 4 figs., 1 tab.

  10. Recovery of olefin monomers

    DOEpatents

    Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry

    2004-03-16

    In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.

  11. Selective olefin recovery

    SciTech Connect

    1996-07-01

    This report presents the results of the outstanding studies on olefin product purities, pyridine recovery, and absorber offgas utilization. Other reports issued since the May 2 technical review meeting in Grangemouth evaluated the impact of the new VLE data on the solution stripping operation and the olefin loadings in the lean and rich solutions. This report completes the bulk of Stone & Webster`s engineering development of the absorber/stripper process for Phase I. The final feasibility study report (to be issued in August) will present an updated design and economics.

  12. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  13. Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst**

    PubMed Central

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-01-01

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)−1 and approximately 155 mol H2 (mol NiP)−1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:25205168

  14. Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst**

    PubMed Central

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-01-01

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)−1 and approximately 155 mol H2 (mol NiP)−1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:26300567

  15. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst.

    PubMed

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-10-20

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CN(x)), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50,000 mol H2(mol H2ase)(-1) and approximately 155 mol H2 (mol NiP)(-1) in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:25205168

  16. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  17. The influence of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization with silica-supported Ziegler-Natta catalyst.

    PubMed

    Senso, Nichapat; Khaubunsongserm, Supaporn; Jongsomjit, Bunjerd; Praserthdam, Piyasan

    2010-01-01

    This article reveals the effects of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization over MgCl₂/SiO₂-supported Ziegler-Natta (ZN) catalysts. First, the conventional ZN catalyst was prepared with SiO₂ addition. Then, the catalyst was tested for ethylene polymerization and ethylene/1-hexene (E/H) co-polymerization using different activators. Triethylaluminum (TEA), tri-n-hexyl aluminum (TnHA) and diethyl aluminum chloride (DEAC), TEA+DEAC, TEA+TnHA, TnHA+ DEAC, TEA+DEAC+TnHA mixtures, were used as activators in this study. It was found that in the case of ethylene polymerization with a sole activator, TnHA exhibited the highest activity among other activators due to increased size of the alkyl group. Further investigation was focused on the use of mixed activators. The activity can be enhanced by a factor of three when the mixed activators were employed and the activity of ethylene polymerization apparently increased in the order of TEA+ DEAC+TnHA > TEA+DEAC > TEA+TnHA. Both the copolymerization activity and crystallinity of the synthesized copolymers were strongly changed when the activators were changed from TEA to TEA+DEAC+TnHA mixtures or pure TnHA and pure DEAC. As for ethylene/1-hexene copolymerization the activity apparently increased in the order of TEA+DEAC+TnHA > TEA+TnHA > TEA+DEAC > TnHA+DEAC > TEA > TnHA > DEAC. Considering the properties of the copolymer obtained with the mixed TEA+DEAC+TnHA, its crystallinity decreased due to the presence of TnHA in the mixed activator. The activators thus exerted a strong influence on copolymer structure. An increased molecular weight distribution (MWD) was observed, without significant change in polymer morphology. PMID:21169883

  18. Further work on sodium montmorillonite as catalyst for the polymerization of activated amino acids

    NASA Technical Reports Server (NTRS)

    Eirich, F. R.; Paecht-Horowitz, M.

    1986-01-01

    When the polycondensation of amino acid acylates was catalyzed with Na-montmorillonite, the polypeptides were consistently found to exhibit a distribution of discrete molecular weights, for as yet undiscovered reasons. One possible explanation was connected to the stepwise mode of monomer addition. New experiments have eliminated this possibility, so that there is the general assumption that this discreteness is the result of a preference of shorter oligomers to add to others of the same length, a feature that could be attributed to some structure of the platelet aggregates of the montmorillonite. The production of optical stereoisomers is anticipated when D,L-amino acids are polymerized on montmorillonite. Having used an optically active surface, the essence of the results lies not only in the occurrence of optically active oligomers and polymers, but also in the fact that the latter exhibit the same molecular weight characteristics as the D,L-polymers. Preparatory to work contemplated on a parallel synthesis of amino acid and nucleotide oligomers, studies were continued on the co-adsorption of amino acids, nucleotides, and amino acid-nucleotides on montmorillonite.

  19. Toward stereoselective lactide polymerization catalysts: cationic zinc complexes supported by a chiral phosphinimine scaffold.

    PubMed

    Sun, Hongsui; Ritch, Jamie S; Hayes, Paul G

    2011-09-01

    The P-stereogenic phosphinimine ligands (dbf)MePhP═NAr (7: Ar = Dipp; 8: Ar = Mes; dbf = dibenzofuran, Dipp = 2,6-diisopropylphenyl, Mes = 2,4,6-trimethylphenyl) were synthesized as racemates via reactions of the parent phosphines (rac)-(dbf)MePhP (6) with organoazides. The ligands 7 and 8 were protonated by Brønsted acids to afford the aminophosphonium borate salts [(7)-H][BAr(4)] (9: Ar = C(6)F(5); 11: Ar = Ph) and [(8)-H][BAr(4)] (10: Ar = C(6)F(5); 12: Ar = Ph). The protonated ligands 9 and 10 were active toward alkane elimination reactions with diethylzinc and ethyl-[methyl-(S)-lactate]zinc to give the heteroleptic complexes [{(dbf)MePhP═NAr}ZnR][B(C(6)F(5))(4)] (Ar = Dipp, 13: R = Et; 15: R = methyl-(S)-lactate; Ar = Mes, 14: R = Et; 16: R = methyl-(S)-lactate). By contrast, reaction of the tetraphenylborate derivative 11 with diethylzinc yielded a phenyl transfer product, [(dbf)MePhP═NDipp]ZnPh(2) (17). Complex 15 was found to catalyze the ring-opening polymerization of rac-lactide. PMID:21790171

  20. Olefin fractionation and catalytic conversion system with heat exchange means

    SciTech Connect

    Wright, B.S.; Owen, H.; Hsia, C.H

    1989-05-23

    This patent describes a continuous catalytic system for converting an olefinic feedstock comprising ethylene and C/sub 3/+ olefins to heavier liquid hydrocarbon product comprising: means for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C/sub 3/+ olefin; means for vaporizing and contacting the liquid stream from the prefractionating means with hydrocarbon conversion oligomerization catalyst in at least one exothermic catalytic reaction zone to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons; means for cooling and fractionating the effluent stream to recover distillate, gasoline and lighter hydrocarbons separately; means for recycling at least a portion of the recovered gasoline as a liquid sorbent stream to the prefractionating means thereby reacting the recycled gasoline together with sorbed C/sub 3/+ olefin in the catalytic reactor system; and means for exchanging heat between hot effluent from the exothermic reaction zone and fractionator liquid rich in C/sub 3/+ olefin in the prefractionator reboiler loop.

  1. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    PubMed

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  2. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation

    PubMed Central

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon–carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  3. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  4. Can Contemporary Density Functional Theory Predict Energy Spans in Molecular Catalysis Accurately Enough To Be Applicable for in Silico Catalyst Design? A Computational/Experimental Case Study for the Ruthenium-Catalyzed Hydrogenation of Olefins.

    PubMed

    Rohmann, Kai; Hölscher, Markus; Leitner, Walter

    2016-01-13

    The catalytic hydrogenation of cyclohexene and 1-methylcyclohexene is investigated experimentally and by means of density functional theory (DFT) computations using novel ruthenium Xantphos(Ph) (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) and Xantphos(Cy) (4,5-bis(dicyclohexylphosphino)-9,9-dimethylxanthene) precatalysts [Ru(Xantphos(Ph))(PhCO2)(Cl)] (1) and [Ru(Xantphos(Cy))(PhCO2)(Cl)] (2), the synthesis, characterization, and crystal structures of which are reported. The intention of this work is to (i) understand the reaction mechanisms on the microscopic level and (ii) compare experimentally observed activation barriers with computed barriers. The Gibbs free activation energy ΔG(⧧) was obtained experimentally with precatalyst 1 from Eyring plots for the hydrogenation of cyclohexene (ΔG(⧧) = 17.2 ± 1.0 kcal/mol) and 1-methylcyclohexene (ΔG(⧧) = 18.8 ± 2.4 kcal/mol), while the Gibbs free activation energy ΔG(⧧) for the hydrogenation of cyclohexene with precatalyst 2 was determined to be 21.1 ± 2.3 kcal/mol. Plausible activation pathways and catalytic cycles were computed in the gas phase (M06-L/def2-SVP). A variety of popular density functionals (ωB97X-D, LC-ωPBE, CAM-B3LYP, B3LYP, B97-D3BJ, B3LYP-D3, BP86-D3, PBE0-D3, M06-L, MN12-L) were used to reoptimize the turnover determining states in the solvent phase (DF/def2-TZVP; IEF-PCM and/or SMD) to investigate how well the experimentally obtained activation barriers can be reproduced by the calculations. The density functionals B97-D3BJ, MN12-L, M06-L, B3LYP-D3, and CAM-B3LYP reproduce the experimentally observed activation barriers for both olefins very well with very small (0.1 kcal/mol) to moderate (3.0 kcal/mol) mean deviations from the experimental values indicating for the field of hydrogenation catalysis most of these functionals to be useful for in silico catalyst design prior to experimental work. PMID:26713773

  5. Continuous polymerization reactor

    SciTech Connect

    Wilt, M.S.

    1986-05-06

    A method is described for contacting olefinic monomer and initiator in a continuous polymerization process comprising of the steps of: creating three turbulent zones in a vessel; introducing the olefinic monomer into a first part of the periphery of each one of the three turbulent zones; introducing the initiator into a second part of the periphery of each one of the three turbulent zones, wherein the first part of the periphery of each one of the three turbulent zones is substantially diametrically opposed to the second part of the periphery of each one of the three turbulent zones respectively.

  6. Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural.

    PubMed

    Li, Hu; Zhang, Qiuyun; Liu, Xiaofang; Chang, Fei; Zhang, Yuping; Xue, Wei; Yang, Song

    2013-09-01

    A series of functional polymeric ionic liquids (FPILs) were prepared by coupling of SO3H-functionalized polymeric ionic liquids with different counterpart anions containing or excluding CrCl3·6H2O, and characterized by SEM, FT-IR, XRD, NH3-TPD, TG, melting point, ICP-AES, and TEM. The catalytic activity of the prepared solid FPILs was investigated for the conversion of biomass including fructose, glucose and cellulose into 5-hydroxymethylfurfural (HMF) with the presence of DMSO-mediated solvents, successively producing moderate to excellent yields of HMF under atmospheric pressure. The FPILs catalysts developed in this study present improved performance on fructose-to-HMF conversion over other solid catalysts, such as functional ionic liquids supported by silica, metal oxides and strong acid ion exchange resin catalysts, and can be very easily recycled at least five times without significant loss of activity. In addition, a kinetic analysis was carried out to illustrate the formation of HMF. PMID:23850822

  7. Development of optically transparent cyclic olefin photoresist binder resins

    NASA Astrophysics Data System (ADS)

    Rhodes, Larry F.; Chang, Chun; Burns, Cheryl; Barnes, Dennis A.; Bennett, Brian; Seger, Larry; Wu, Xiaoming; Sobek, Andy; Mishak, Mike; Peterson, Craig; Langsdorf, Leah; Hada, Hideo; Shimizu, Hiroaki; Sasaki, Kazuhito

    2005-05-01

    Of all candidate 193 nm photoresist binder resins, transition metal catalyzed vinyl addition cyclic olefin (i.e., norbornene) polymers (PCO) hold the promise of high transparency and excellent etch resistance. In order to access lower molecular weight polymers, which are typically used in photoresists, α-olefin chain transfer agents (CTAs) are used in synthesizing vinyl addition poly(norbornenes). For example, HFANB (α,α-bis(trifluoromethyl)bicyclo [2.2.1]hept-5-ene-2-ethanol) homopolymers (p(HFANB)) with molecular weights (Mn) less than 5000 have been synthesized using such chain transfer agents. However, the optical density (OD) at 193 nm of these materials was found to rise as their molecular weights decreased consistent with a polymer end group effect. Extensive NMR and MS analysis of these polymers revealed that olefinic end groups derived from the chain transfer agent were responsible for the deleterious rise in OD. Chemical modification of these end groups by epoxidation, hydrogenation, hydrosilation, etc. lowers the OD of the polymer by removing the olefinic chromophore, however, it does require a second synthetic step. Thus a new class of non-olefinic chain transfer agents has been developed at Promerus that allow for excellent control of vinyl addition cyclic olefin polymer molecular weight and low optical density without the need of a post-polymerization chemical modification. Low molecular weight homopolymers of HFANB have been synthesized using these chain transfer agents that exhibit ODs <= 0.07 absorbance units per micron. This molecular weight control technology has been applied to both positive tone and negative tone vinyl addition cyclic olefin binder resins. Lithographic and etch performance of positive tone photoresists based on these binder resins will be presented.

  8. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    PubMed Central

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  9. Selective conversion of syngas to light olefins.

    PubMed

    Jiao, Feng; Li, Jinjing; Pan, Xiulian; Xiao, Jianping; Li, Haobo; Ma, Hao; Wei, Mingming; Pan, Yang; Zhou, Zhongyue; Li, Mingrun; Miao, Shu; Li, Jian; Zhu, Yifeng; Xiao, Dong; He, Ting; Yang, Junhao; Qi, Fei; Fu, Qiang; Bao, Xinhe

    2016-03-01

    Although considerable progress has been made in direct synthesis gas (syngas) conversion to light olefins (C2(=)-C4(=)) via Fischer-Tropsch synthesis (FTS), the wide product distribution remains a challenge, with a theoretical limit of only 58% for C2-C4 hydrocarbons. We present a process that reaches C2(=)-C4(=) selectivity as high as 80% and C2-C4 94% at carbon monoxide (CO) conversion of 17%. This is enabled by a bifunctional catalyst affording two types of active sites with complementary properties. The partially reduced oxide surface (ZnCrO(x)) activates CO and H2, and C-C coupling is subsequently manipulated within the confined acidic pores of zeolites. No obvious deactivation is observed within 110 hours. Furthermore, this composite catalyst and the process may allow use of coal- and biomass-derived syngas with a low H2/CO ratio. PMID:26941314

  10. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  11. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study.

    PubMed

    Rosebrugh, L E; Ahmed, T S; Marx, V M; Hartung, J; Liu, P; López, J G; Houk, K N; Grubbs, R H

    2016-02-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental and computational data support a reaction mechanism in which cis,syndio-selectivity is a result of stereogenic metal control, while microstructural errors are predominantly due to alkylidene isomerization via rotation about the Ru═C double bond. PMID:26726835

  12. Effect of the conditions of activation of magnesium chloride on the substructure and composition of applied titanium-magnesium catalysts of polymerization of ethylene

    SciTech Connect

    Zakharov, V.A.; Perkovets, D.V.; Bukatov, G.D.; Sergeev, S.A.; Moroz, E.M.; Makhtarulin, S.I.

    1989-02-01

    The effect of the conditions of activation of magnesium chloride on the substructure and composition of applied titanium-magnesium catalysts of polymerization of ethylene was studied; the catalysts were prepared by different methods: (1) by adsorption of TiCl/sub 4/ on highly disperse magnesium chloride prepared from unsolvated butylmagnesium chloride; (2) by adsorption of TiCl/sub 4/ on magnesium chloride activated by grinding; (3) by combined grinding of magnesium chloride with titanium tetrachloride. It was shown that TiCl/sub 4/ reacts with defects in the structure of the magnesium chloride, whose concentration is correlated with the size of the regions of coherent scattering determined from x-ray data.

  13. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  14. Electrochemical performance and durability of carbon supported Pt catalyst in contact with aqueous and polymeric proton conductors.

    PubMed

    Andersen, Shuang Ma; Skou, Eivind

    2014-10-01

    Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g., sulfuric acid), and a solid polymer electrolyte (e.g., Nafion). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon supported platinum catalyst in four different electrode structures: catalyst powder (CP), catalyst ionomer electrode (CIE), half membrane electrode assembly (HMEA), and full membrane electrode assembly (FMEA) in both ex situ and in situ experiments under a simulated start/stop cycle. We found that the catalyst performance and stability are very much influenced by the presence of the Nafion ionomers. The proton conducting phase provided by the ionomer and the self-assembled electrode structure render the catalysts a higher utilization and better stability. This is probably due to an enhanced dispersion, an improved proton-catalyst interface, the restriction of catalyst particle aggregation, and the improved stability of the ionomer phase especially after the lamination. Therefore, an innovative electrode HMEA design for ex-situ catalyst characterization is proposed. The electrode structure is identical to the one used in a real fuel cell, where the protons transport takes place solely through solid state proton conducting phase. PMID:25216270

  15. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters.

    PubMed

    Hong, Miao; Tang, Xiaoyan; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-02-17

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition-proton transfer-NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability. Four MeO- and Cl-substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, (Rx)TPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), (OMe2)TPT and (OMe3)TPT, have been synthesized, while (OMe2)TPT(MeO/H) and (OMe2)TPT have also been structurally characterized. The structure/reactivity relationship study revealed that (OMe2)TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl-substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out, and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species. PMID:26779897

  16. Final Report: Experimental and Theoretical Studies of Surface Oxametallacycles - Connections to Heterogeneous Olefin Epoxidation

    SciTech Connect

    Mark A. Barteau

    2009-09-15

    This project has aimed at the rational design of catalysts for direct epoxidation of olefins. This chemistry remains one of the most challenging problems in heterogeneous catalysis. Although the epoxidation of ethylene by silver catalysts to form ethylene oxide (EO) has been practiced for decades, little progress has been made in expanding this technology to other products and processes. We have made significant advances through the combination of surface science experiments, Density Functional Theory (DFT) calculations, and catalytic reactor experiments, toward understanding the mechanism of this reaction on silver catalysts, and to the rational improvement of selectivity. The key has been our demonstration of surface oxametallacycle intermediates as the species that control reaction selectivity. This discovery permits the influence of catalyst promoters on selectivity to be probed, and new catalyst formulations to be developed. It also guides the development of new chemistry with potential for direct epoxidation of more complex olefins. During the award period we have focused on 1. the formation and reaction selectivity of complex olefin epoxides on silver surfaces, and 2. the influence of co-adsorbed oxygen atoms on the reactions of surface oxametallacycles on silver, and 3. the computational prediction, synthesis, characterization and experimental evaluation of bimetallic catalysts for ethylene epoxidation. The significance of these research thrusts is as follows. Selective epoxidation of olefins more complex than ethylene requires suppression of not only side reactions available to the olefin such as C-H bond breaking, but it requires formation and selective ring closure of the corresponding oxametallacycle intermediates. The work carried out under this grant has significantly advanced the field of catalyst design from first principles. The combination of computational tools, surface science, and catalytic reactor experiments in a single laboratory has few

  17. Catalytic diamination of olefins via N-N bond activation.

    PubMed

    Zhu, Yingguang; Cornwall, Richard G; Du, Haifeng; Zhao, Baoguo; Shi, Yian

    2014-12-16

    CONSPECTUS: Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N-N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N-N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N-N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C-H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source

  18. Catalytic Diamination of Olefins via N–N Bond Activation

    PubMed Central

    2015-01-01

    Conspectus Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N–N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N–N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N–N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C–H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source

  19. An Efficient Approach to Surface-Initiated Ring-Opening Metathesis Polymerization of Cyclooctadiene

    PubMed Central

    Feng, Jianxin; Stoddart, Stephanie S.; Weerakoon, Kanchana A.; Chen, Wei

    2008-01-01

    Surface-initiated ring-opening metathesis polymerization of cyclooctadiene (COD), a low ring-strain olefin, is reported for the first time. Polymerization was carried out in the vapor phase, which is advantageous compared to conventional solution methods in terms of minimizing chain transfer by reducing polymer chain mobility at the vapor/solid interface. Attachments of a norbornenyl-containing silane and a Grubbs catalyst to silicon substrates were carried out before samples were exposed to COD vapor. The thickness of grafted 1,4-polybutadiene films was controlled by reaction time and reached ~40 nm after 7 h. The polymer films were further chemically modified to afford a new polymer, head-to-head poly(vinyl alcohol). PMID:17241005

  20. Group IV complexes containing the benzotriazole phenoxide ligand as catalysts for the ring-opening polymerization of lactides, epoxides and as precatalysts for the polymerization of ethylene.

    PubMed

    Pappuru, Sreenath; Chokkapu, Eswara Rao; Chakraborty, Debashis; Ramkumar, Venkatachalam

    2013-12-14

    A series of Ti(IV), Zr(IV) and Hf(IV) benzotriazole phenoxide (BTP) complexes were synthesized and characterized by various spectroscopic techniques, elemental analysis and X-ray crystallography. The monosubstituted Zr(IV) BTP complexes [(μ-L)Zr(O(i)Pr)3]2 1-3 [L = (C1)BTP-H (1), (TCl)BTP-H (2), (pent)BTP-H (3)] and tetrasubstituted Zr(IV), Hf(IV) complexes ZrL4 4-6 [L = (C1)BTP-H (4), (TCl)BTP-H (5), (pent)BTP-H (6)] and HfL4 7-9 [L = (C1)BTP-H (7), (TCl)BTP-H (8), (pent)BTP-H (9)] were prepared by the reaction of Zr(O(i)Pr)4·((i)PrOH) and Hf(O(t)Bu)4 in toluene with the respective ligands in different stoichiometric proportions. The reaction between BTP and TiCl4 and ZrCl4 and HfCl4 in a 2 : 1 stoichiometric reaction resulted in the formation of disubstituted group IV chloride complexes L2MCl2 10-12 [L = (C1)BTP-H, M = Ti, Zr and Hf]. The molecular structures of complexes 1, 4, 7, 10, 11, and 12 were determined by single-crystal X-ray studies. The X-ray structure of 1 reveals a dimeric Zr(IV) complex containing a Zr2O2 core bridged through the oxygen atoms of the phenoxide groups. Each Zr atom is distorted from an octahedral symmetry. These complexes were found to be active towards the ring-opening polymerization (ROP) of L-lactide (L-LA) and rac-lactide (rac-LA). Complex 1 produced highly heterotactic poly(lactic acid) (PLA) from rac-LA under melt conditions with narrow molecular weight distributions (MWDs) and well controlled number average molecular weights (M(n)). Additionally, epoxide polymerizations using rac-cyclohexene oxide (CHO), rac-propylene oxide (PO), and rac-styrene oxide (SO) were also carried out with these complexes. The yield and molecular weight of the polymer was found to increase with the extension of reaction time. Compounds 1-12 were activated by methylaluminoxane (MAO) and show good activity for ethylene polymerization and produced high molecular weight polyethylene. PMID:24071827

  1. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation.

    PubMed

    Herzberger, Jana; Niederer, Kerstin; Pohlit, Hannah; Seiwert, Jan; Worm, Matthias; Wurm, Frederik R; Frey, Holger

    2016-02-24

    The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone. PMID:26713458

  2. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    PubMed Central

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  3. Magnesium oxide-supported ziegler catalyst modified with acid and higher alkanol, and process for preparing narrow MWD HDPE

    SciTech Connect

    Hsieh, J.T.T.

    1989-09-05

    This patent describes a coordination-catalyst suitable for the polymerization of olefins. It comprises a titanium component and an organoaluminum compound reducing agent on a magnesium oxide support which has been pre-treated with a molar deficiency of a carboxylic acid with respect to the magnesium oxide support. The titanium component is the reaction product of an alkanol having 5 to 12 carbon atoms and TiCl/sub 4/ with the molar ratio of the alkanol to the TiCl/sub 4/ being about 0.5 to about 1.5.

  4. Reactions of selected 1-olefins and ethanol added during the Fischer-Tropsch synthesis: Topical report

    SciTech Connect

    Hanlon, R.T.; Satterfield, C.N.

    1987-10-30

    The effects of addition during synthesis of C/sub 2/, C/sub 4/, C/sub 6/, C/sub 10/ or C/sub 20/, normal 1-olefins, was studied in a continuous well-stirred liquid phase reactor. Studies were at 248/sup 0/C and 0.78 to 1.48 MPa, using a reduced fused magnetite catalyst containing potassium. Incorporation of these olefins into growing chains could be detected, but was relatively minor. Instead the olefin was hydrogenated to the corresponding paraffin or isomerized to the 2-olefin. Excluding ethylene, which is unusually reactive, the reactivity of the olefins increased with molecular weight. Disappearance of all added species was much less at low synthesis conversions than at high, attributed to competitive adsorption with CO. The reactions of added ethanol were also studied. Ethanol or ethylene decreased the hydrogenation capabilities of the catalyst as reflected in decreased formation of CH/sub 4/ and increased olefin/paraffin ratio of the products. Neither addition affected the chain growth probability, ..cap alpha... 21 refs., 11 figs., 5 tabs.

  5. The Ziegler—Natta olefin insertion reaction for cationic metals

    NASA Astrophysics Data System (ADS)

    Jensen, Vidar R.; Siegban, Per E. M.

    1993-09-01

    The catalytic Ziegler—Natta polymerization reaction has been studied for a set of metal cations, in order to identify the role of the positive charge on this process. Geometry optimizations have been performed for the reactant metal—methyl systems, the π-coordinated olefin systems, the transition states for the olefin insertion and finally for the product metal—propyl systems. All valence electrons are correlated. The cations selected for this study are the transition metals Zr + and Ti +, the non-transition metals Be +, Mg +, Al + and finally also Si +. The transition metal cations are found to have very low barriers for the insertion, but the lowest barrier is actually found for Be +. The results are discussed in terms of the ionization energies and the accessibility to valence p and d orbitals. Comparisons are made to previous theoretical work on cationic model systems.

  6. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  7. Competitive chain transfer by [beta]-hydrogen and [beta]-methyl elimination for the model Ziegler-Natta olefin polymerization system [Me[sub 2]Si([eta][sup 5]-C[sub 5]Me[sub 4])[sub 2

    SciTech Connect

    Hajela, S.; Bercaw, J.E. )

    1994-04-01

    The reaction of OpSc(H)(PMe[sub 3]) (Op = (([eta][sup 5]-C[sub 6]Me[sub 4])[sub 2]SiMe[sub 2])) with isobutene produces OpSc(CH[sub 3])(PMe[sub 3]) along with isobutene, 2-methylpentane, isobutene, 2-methyl-1-pentene, propane, and n-pentane. These products arise from a series of reactions involving olefin insertion, [beta]-CH[sub 3] and (faster) [beta]-H elimination which proceed until only the 2-methyl-1-alkenes (C[sub 4]H[sub 8], C[sub 6]H[sub 12], etc.) and the predominant organoscandium product OpSc(CH[sub 3])(PMe[sub 3]) remain. A transient observed in the reaction sequence has been unambiguously characterized as OpSc(CH[sub 2]CH[sub 2]CH[sub 3])(PMe[sub a]). Slower [sigma] bond metathesis involving the methyl C-H bonds of PMe[sub 3] and the Sc-C bonds of the scandium alkyls accounts for the observation of saturated alkanes 2-methylalkanes (C[sub 4]H[sub 10], C[sub 6]H[sub 14], etc.), normal alkanes (C[sub 3]H[sub 8],C[sub 5]H[sub 12], etc.), and a minor organoscandium product OpScCh[sub 2]Pme[sub 2] in the product mixture. [beta]-Ethylmigration is not observed for the closely related 2-ethylbutyl derivative, OpSc(CH[sub 2]CH(C[sub 2]H[sub 5])CH[sub 2]CH[sub 3])(PMe[sub 3]), obtained from reaction of 2-ethyl-1-butene with OpSc(H)(PMe[sub 3]). 28 refs., 2 figs., 1 tab.

  8. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    PubMed Central

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  9. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-05-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity.

  10. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst.

    PubMed

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M A; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid-formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  11. Density functional theory investigation of the alkylating strength of organoaluminum co-catalysts for Ziegler-Natta polymerization

    NASA Astrophysics Data System (ADS)

    Champagne, Benoît; Cavillot, Valérie; André, Jean-Marie; François, Philippe; Momtaz, Ardéchir

    The ability of the Et2Al-R co-catalyst series [with R = Et, Cl, O-Me, O-iPr, NH-Me, S-Me, and S-iPr] to alkylate titanum chloride has been evaluated at the B3LYP/6-31G* level of approximation. The impact of dimerization and complexation by Lewis bases on their alkylating strength has been tackled. It turns out that both the dimerization and the complexation reactions increase the exothermicity of the global alkylation process. Nevertheless, these reactions can also annihilate the alkylating strength of these co-catalysts due to the formation of highly stable species. In particular, we have found that (i) the alkylating strength of Et2Al-R co-catalysts with R = O-R' and NH-R' is weak due to the formation of very stable dimers; (ii) the alkylating strength of Et2Al-S-R' increases upon adding Lewis bases, whereas Lewis bases make Et3Al less alkylating; and (iii) Et2Al-Cl is less affected by the presence of Lewis bases.

  12. Light-induced olefin metathesis

    PubMed Central

    Vidavsky, Yuval

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions. PMID:21160912

  13. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.

    PubMed

    Huang, Weiwei; Gong, Feiyan; Fan, Minghui; Zhai, Qi; Hong, Chenggui; Li, Quanxin

    2012-10-01

    Catalytic conversion of rice husk, sawdust, sugarcane bagasse, cellulose, hemicellulose and lignin into olefins was performed with HZSM-5 containing 6 wt.% lanthanum. The olefins yields for different feedstocks decreased in the order: cellulose>hemicellulose>sugarcane bagasse>rice husk>sawdust>lignin. Biomass containing higher content of cellulose or hemicellulose produced more olefins than feedstocks with higher content of lignin. Among the biomass types, sugarcane bagasse provided the highest olefin yield of 0.12 kg olefins/(kg dry biomass) and carbon yield of 21.2C-mol%. Temperature, residence time and the catalyst/feed ratio influenced olefin yield and selectivity. While the HZSM-5 zeolite was catalytically active, the incorporation of lanthanum at 2.9, and 6.0 wt.% increased the production of olefins from rice husk by 15.6% and 26.5%, respectively. The conversion of biomass to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals. PMID:22858493

  14. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  15. Mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid

    SciTech Connect

    Baiburskii, V.L.; Khadzhiev, S.N.; Ovsyannikov, V.P.

    1992-05-10

    The authors attempted here to examine the mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid in terms of an initial stage of activation of isoparaffin. The version of formation of tert-alkyl cations and the role of the catalyst in this stage were analyzed. 10 refs., 1 fig., 1 tab.

  16. The Production and Recovery of C2-C4 Olefins from Syngas.

    ERIC Educational Resources Information Center

    Murchison, C. B.; And Others

    1986-01-01

    Discusses reacting coal-derived hydrogen and carbon monoxide (syngas) at relatively high selectivity to ethylene, propylene, and butenes over novel catalysts. In addition, data are given which illustrate a unique ethylene removal step which is compatible with operating the olefin synthesis at low conversion. (JN)

  17. Light olefin production, skeletal olefin isomerization and etherification for oxygenated fuel production

    SciTech Connect

    Gaffney, A.M.

    1994-12-31

    ARCO`s newly developed SUPERFLEX{sup SM} process offers opportunities to product high yields of light olefins, from a variety of readily available refinery and petrochemical feedstocks. The process is unique in that it employs a catalytic reactor system which is lower in capital and operating costs than conventional steam cracking reactors. The SUPERFLEX process is also more selective for production of propylene and butylenes (including isobutylene) than conventional steam cracking operations. The C{sub 4} product stream from the SUPERFLEX process contains about 20 to 30 percent isobutylene. The SUPERFLEX C{sub 4} product is, therefore, an excellent feedstock for producing MTBE via reaction of the contained isobutylene with methanol. After MTBE production, the isobutylene depleted C{sub 4} stream may be recycled to the SUPERFLEX process to produce additional isobutylene and propylene. This paper will focus on the chemistry and mechanism of catalytic cracking and skeletal olefin isomerization. In addition, there will be some discussion on catalyst activation, life and characterization.

  18. P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions.

    PubMed

    Renata, Hans; Wang, Z Jane; Kitto, Rebekah Z; Arnold, Frances H

    2014-10-01

    A variant of P450 from Bacillus megaterium five mutations away from wild type is a highly active catalyst for cyclopropanation of a variety of acrylamide and acrylate olefins with ethyl diazoacetate (EDA). The very high rate of reaction enabled by histidine ligation allowed the reaction to be conducted under aerobic conditions. The promiscuity of this catalyst for a variety of substrates containing amides has enabled synthesis of a small library of precursors to levomilnacipran derivatives. PMID:25221671

  19. P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions

    PubMed Central

    Renata, Hans; Wang, Z. Jane; Kitto, Rebekah Z.

    2014-01-01

    A variant of P450 from Bacillus megaterium five mutations away from wild type is a highly active catalyst for cyclopropanation of a variety of acrylamide and acrylate olefins with ethyl diazoacetate (EDA). The very high rate of reaction enabled by histidine ligation allowed the reaction to be conducted under aerobic conditions. The promiscuity of this catalyst for a variety of substrates containing amides has enabled synthesis of a small library of precursors to levomilnacipran derivatives. PMID:25221671

  20. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    PubMed

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-01

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex. PMID:27186790

  1. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.

    PubMed

    Rangheard, Claudine; de Julián Fernández, César; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; de Vries, Johannes G

    2010-09-28

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst. PMID:20714614

  2. Polymerized complex synthesis of a pure 93 K Y2Ba4Cu7O(15-d) superconductor without the need of high oxygen pressure and additive catalysts

    NASA Astrophysics Data System (ADS)

    Berastegui, Pedro; Kakihana, Masato; Yoshimura, Masahiro; Mazaki, Hiromasa; Yasuoka, Hiroshi; Johansson, Lars-Gunnar; Eriksson, Sten; Borjesson, Lars; Kall, Mikael

    1993-03-01

    High-purity ceramic material of the superconducting phase Y2Ba4Cu7O(14.82) (247) has been synthesized at 870 C by the polymerized complex method using neither high oxygen pressure nor additive catalysts. The method is based on the formation of a polymer-metal complex precursor which is prepared through polyesterification between metal citrate complexes and ethylene glycol. Apart from obviating high oxygen pressure, the present preparation technique offers easier fabrication of highly pure 247 material compared with other 'wet' chemical routes, since it eliminates many steps (centrifugation, filtration, aging, and pH control). XRD and Raman scattering analyses show that the material is single-phase without any indication of secondary phases. Zero-resistance has been achieved at 88.0 K with a transition width narrower than 4 K. Complex ac magnetic susceptibility measurements confirm the presence of a single bulk superconducting 247 phase with Tc (onset) = 93.0 K and Delta-Tc (10-90 percent) = 4.5 K.

  3. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOEpatents

    Sen, A.; Jiang, Z.

    1996-05-28

    The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

  4. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOEpatents

    Sen, Ayusman; Jiang, Zhaozhong

    1996-01-01

    The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

  5. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  6. Functionalization of olefins by alkoximidoylnitrenes

    SciTech Connect

    Subbaraj, A.; Rao, O.S.; Lwowski, W. )

    1989-08-04

    (N-Cyano- and N-(methylsulfonyl)alkoxycarbimidoyl)nitrenes, generated in situ from the corresponding azides by 300-nm UV light, convert a variety of olefins cleanly and stereospecifically to the corresponding aziridines. These can readily be hydrolyzed to N-unsubstituted aziridines or ring-opened to allylic isoureas. The nitrenes can also be generated by thermolysis at 80{degree}C. The azides add to norbornene to give triazolines, which lose nitrogen to give the exo-aziridines.

  7. A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP)

    PubMed Central

    2015-01-01

    Strained bicyclic carbomethoxy olefins were utilized as substrates in alternating ring-opening metathesis polymerization and found to provide low-dispersity polymers with novel backbones. The polymerization of methyl bicyclo[4.2.0]oct-7-ene-7-carboxylate with cyclohexene in the presence of the fast-initiating Grubbs catalyst (H2IMes)(3-Br-Pyr)2Cl2Ru=CHPh leads to a completely linear as well as alternating copolymer, as demonstrated by NMR spectroscopy, isotopic labeling, and gel permeation chromatography. In contrast, intramolecular chain-transfer reactions were observed with [5.2.0] and [3.2.0] bicyclic carbomethoxy olefins, although to a lesser extent than with the previously reported monocyclic cyclobutenecarboxylic ester monomers [SongA.; ParkerK. A.; SampsonN. S.J. Am. Chem. Soc.2009, 131, 344419275253]. Inclusion of cyclohexyl rings fused to the copolymer backbone minimizes intramolecular chain-transfer reactions and provides a framework for creating alternating functionality in a one-step polymerization. PMID:25328246

  8. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  9. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  10. Efficient pseudo-enantiomeric carbohydrate olefin ligands.

    PubMed

    Grugel, Holger; Albrecht, Fabian; Minuth, Tobias; Boysen, Mike M K

    2012-07-20

    Highly efficient pseudo-enantiomeric olefin ligands were designed from D-glucose and D-galactose. These ligands yield consistently excellent levels of enantioselectivity in Rh(I)-catalyzed 1,4-additions of aryl- and alkenylboronic acids to achiral enones and high diastereoselectivity with chiral substrates. Contrary to established olefin ligands, they are obtained enantiomerically pure via short syntheses without racemic resolution steps, making them a valuable addition to the arsenal of chiral ligands with olefinic donor sites. PMID:22780685

  11. Ziegler-Natta catalyzed polymerization kinetics: origin of the molecular weight distribution

    SciTech Connect

    McLaughlin, K.W.

    1986-01-01

    The molecular weight distributions generated by Ziegler-Natta catalyzed polymerizations are examined. Only those catalysts with one type of catalytic species are considered. From the rate laws for propagation and elimination, a series of coupled differential equations result which define the rate of formation of polymer chains composed of i monomer units. Solving these differential equations yields a time-dependent molecular weight distribution function with the observed rate constants for propagation function with the observed rate constants for propagation and elimination as parameters. Careful analysis of this distribution function shows that it predicts a transition from a Poisson to schulz-Flory distribution with time. This transition is known for both the Ziegler-Natta catalyzed polymerization of olefins and the Fischer-Tropsch catalyzed hydrogenation of carbon monoxide. Hence, this time-dependent distribution function may apply to coordination catalyzed polymerizations in general. Analysis of this distribution function shows that the weight fraction distribution becomes bimodal just before the limiting Schulz-Flory form of the distribution is reached. This bimodal behavior provides an insight into the effect of propagation and elimination rates on the molecular weight distribution. In addition, functions describing the time-dependence of the number-average and weight-average degrees of polymerization are derived from the rate laws. These functions are in excellent agreement with the available experimental data.

  12. Process for production of iso-olefin and ether

    SciTech Connect

    Le, Q.N.; Owen, H.; Schipper, P.H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C7+ alkanes and naphthenes with medium pore acid cracking catalyst having the structure of MCM-22 under low pressure selective cracking conditions effective to produce at least 10 wt% total C4-C5 isoalkene and at lease 10 wt% total C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain a light olefinic fraction rich in C4-C5 isoalkene and a C6+ liquid fraction of enhanced octane value; and etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower akanol to produce tertiary-alkyl either product.

  13. Liquefaction with microencapsulated catalysts

    DOEpatents

    Weller, Sol W.

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  14. Z-Selective Olefin Metathesis on Peptides: Investigation of Side-Chain Influence, Preorganization, and Guidelines in Substrate Selection

    PubMed Central

    2015-01-01

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors. PMID:25102124

  15. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    PubMed

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  16. Technology development for iron Fischer-Tropsch catalysts. Quarterly technical progress report for period ending December 1993

    SciTech Connect

    O`Brien, R.J.; Xu, Liguang; Bi, Xiangxin; Eklund, P.; Davis, B.H.

    1993-12-31

    Conversion data as a function of time of synthesis for the two catalysts are shown in Figures 2 and 3. In general the precipitated catalyst is more active than the iron carbide catalyst with syn-gas conversions starting at 80% as compared to 50% for the latter; however, both catalysts deactivated with increasing reaction time. A comparison of the C{sub 2}, C{sub 3} and C{sub 4} olefin selectivities at 26% CO conversion (precipitated catalyst-336 hr of synthesis, iron carbide catalyst-122 hr of synthesis) are shown in Figure 4. Surprisingly the precipitated catalyst had a higher olefin content than the iron carbide catalyst. It has been reported that a similar iron carbide catalyst has higher selectivity for the production of olefins than a ``conventionally prepared`` Fe/Co catalyst. The discrepancy may be due in part to comparing the olefin selectivity of the two catalysts at different conversions. Their ``conventional catalyst`` had a C{sub 2}{minus}C{sub 4} olefin content of 37% at 72% conversion compared to 86% olefin at 55% conversion for the iron carbide catalyst. In general the olefin selectivity of a catalyst is highest at low conversions. The iron carbide catalyst of this study produces more hydrocarbons than the precipitated catalyst; furthermore, it produces a higher fraction of C{sub 3} + (86% vs. 84%) and C{sub 5}+ (67% vs. 61%) hydrocarbons (Figure 5). Correspondingly, the iron carbide catalyst produces less methane and ethane than the precipitated catalyst (Figure 6). These hydrocarbon and C{sub 5}+ selectivities are similar to those reported earlier.

  17. Iron particle size effects for direct production of lower olefins from synthesis gas.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Davidian, Thomas; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-10-01

    The Fischer-Tropsch synthesis of lower olefins (FTO) is an alternative process for the production of key chemical building blocks from non-petroleum-based sources such as natural gas, coal, or biomass. The influence of the iron carbide particle size of promoted and unpromoted carbon nanofiber supported catalysts on the conversion of synthesis gas has been investigated at 340-350 °C, H(2)/CO = 1, and pressures of 1 and 20 bar. The surface-specific activity (apparent TOF) based on the initial activity of unpromoted catalysts at 1 bar increased 6-8-fold when the average iron carbide size decreased from 7 to 2 nm, while methane and lower olefins selectivity were not affected. The same decrease in particle size for catalysts promoted by Na plus S resulted at 20 bar in a 2-fold increase of the apparent TOF based on initial activity which was mainly caused by a higher yield of methane for the smallest particles. Presumably, methane formation takes place at highly active low coordination sites residing at corners and edges, which are more abundant on small iron carbide particles. Lower olefins are produced at promoted (stepped) terrace sites that are available and active, quite independent of size. These results demonstrate that the iron carbide particle size plays a crucial role in the design of active and selective FTO catalysts. PMID:22953753

  18. Direct catalytic olefination of alcohols with sulfones.

    PubMed

    Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2014-10-01

    The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. PMID:25163718

  19. Separate olefin processing in sulfuric acid alkylation

    SciTech Connect

    Imhoff, S.A.; Graves, D.C.

    1995-09-01

    This paper will discuss the effects of alkylating propylene, butylenes and amylenes together and suggest alternative processing schemes which will minimize the negative synergies, improve octane and/or minimize acid consumption. The first option will show the impact of segregating the propylene and amylenes. In the second option, the benefit of alkylating the individual olefins at their optimal acid strengths will be presented. Additionally, each olefin`s optimal reaction conditions will be examined. Unfortunately, many refiners may not have the existing flexibility to take advantage of separate olefin processing. First, the majority of the propylene, butylenes and amylenes must be separate upon entry to the alkylation unit. If the olefins cannot be segregated upstream, separate olefin processing will not be as beneficial. If this is the case, then the benefits of separate olefin processing will have to be weighed versus the capital and energy costs required to separate them. In addition, small units may not have sufficient numbers of Contactors and settlers to achieve adequate segregation. Later in this paper, the modifications required in the alkylation unit for separate olefin processing will be discussed.

  20. Towards the preparation of realistic model Ziegler-Natta catalysts: XPS study of the MgCl 2/TiCl 4 interaction with flat SiO 2/Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Siokou, Angeliki; Ntais, Spyridon

    2003-08-01

    Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO 2 supported MgCl 2/TiCl 4 and TiCl 4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO 2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl 2 is not present while a significant amount of the Ti atoms is reduced to the Ti 3+ state.

  1. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-01

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. PMID:26256383

  2. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products

    PubMed Central

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-01-01

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. PMID:26556779

  3. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation

    PubMed Central

    Srivastava, Poonam; Yang, Hao; Ellis-Guardiola, Ken; Lewis, Jared C.

    2015-01-01

    Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor–acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium–carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis. PMID:26206238

  4. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    PubMed Central

    Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Summary Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda–Grubbs type catalyst and zeolitic support occurred in the case of Cl− counter anion; in contrast, PF6 − counter anion underwent partial decomposition. PMID:26664629

  5. Probing the coordinative unsaturation and local environment of Ti³⁺ sites in an activated high-yield Ziegler-Natta catalyst.

    PubMed

    Morra, Elena; Giamello, Elio; Van Doorslaer, Sabine; Antinucci, Giuseppe; D'Amore, Maddalena; Busico, Vincenzo; Chiesa, Mario

    2015-04-13

    The typical activation of a fourth generation Ziegler-Natta catalyst TiCl4/MgCl2/phthalate with triethyl aluminum generates Ti(3+) centers that are investigated by multi-frequency continuous wave and pulse EPR methods. Two families of isolated, molecule-like Ti(3+) species have been identified. A comparison of the experimentally derived g tensors and (35,37)Cl hyperfine and nuclear-quadrupole tensors with DFT-computed values suggests that the dominant EPR-active Ti(3+)  species is located on MgCl2(110) surfaces (or equivalent MgCl2 terminations with tetra-coordinated Mg). O2 reactivity tests show that a fraction of these Ti sites is chemically accessible, an important result in view of the search for the true catalyst active site in olefin polymerization. PMID:25706346

  6. Morphology of Novel Semicrystalline Ethylene-α-Olefin Block Copolymers

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Register, Richard; Landes, Brian

    2009-03-01

    In semicrystalline block copolymers, the solid-state structure can be set either by block incompatibility or by crystallization of one or more blocks. Depending on the block interaction strength, a wide array of solid-state morphologies may be observed, ranging from spherulitic to confined crystallization within preexisting microphase-separated domains. Dow Chemical has recently developed a novel chain shuttling polymerization process to produce olefin block copolymers with alternating amorphous and semicrystalline chain segments, where each block exhibits the most-probable distribution. We examined the melt and solid-state morphologies of these novel olefin block copolymers, having a high octene content in the amorphous block, using two- dimensional synchrotron small-angle and wide-angle x-ray scattering on specimens oriented by channel die compression. Multiblock and diblock copolymers with near-symmetric compositions showed well-ordered lamellar structures at room temperature with long periods exceeding 100 nm, with little dependence on thermal history, indicating the presence of a mesophase-separated melt which templates crystallization.

  7. Rheology and Structure of Molten, Olefin Multiblock Copolymers

    SciTech Connect

    Park, Heon E.; Dealy, John M.; Marchand, Gary R.; Wang, Jian; Li, Sheng; Register, Richard A.

    2010-12-07

    Several samples of a recently developed olefin multiblock copolymer were studied by means of rheology, differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The synthesis involves a chain shuttling agent (CSA) that switches the growing chain between two catalysts, one that favors the incorporation of an {alpha}-olefin comonomer and one that suppresses incorporation. The data were used to determine the effect of octene comonomer content and CSA level on rheological behavior and the occurrence of mesophase separation transition (MST) in the melt. To distinguish between crystallization and MST, we made calorimetry scans and measured the density and rheological properties over a range of temperatures. Small angle X-ray scattering analysis of a sample that had undergone planar extensional flow revealed strong alignment of lamellar mesodomains, which maintained their alignment after annealing. This result confirmed the hypothesis based on rheological evidence that a lamellar mesophase is present in the melt at temperatures well above the melting point.

  8. The Discovery of Quinoxaline-Based Metathesis Catalysts from Synthesis of Grazoprevir (MK-5172).

    PubMed

    Williams, Michael J; Kong, Jongrock; Chung, Cheol K; Brunskill, Andrew; Campeau, Louis-Charles; McLaughlin, Mark

    2016-05-01

    Olefin metathesis (OM) is a reliable and practical synthetic methodology for challenging carbon-carbon bond formations. While existing catalysts can effect many of these transformations, the synthesis and development of new catalysts is essential to increase the application breadth of OM and to achieve improved catalyst activity. The unexpected initial discovery of a novel olefin metathesis catalyst derived from synthetic efforts toward the HCV therapeutic agent grazoprevir (MK-5172) is described. This initial finding has evolved into a class of tunable, shelf-stable ruthenium OM catalysts that are easily prepared and exhibit unique catalytic activity. PMID:27123552

  9. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-01-01

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions. PMID:26506329

  10. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    SciTech Connect

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar P.; Xiao, Rui; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  11. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  12. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I.

    1993-07-01

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  13. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

    PubMed Central

    2015-01-01

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups. PMID:26439818

  14. Kinetically controlled E-selective catalytic olefin metathesis.

    PubMed

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. PMID:27126041

  15. Sustainable polymerizations in recoverable microemulsions.

    PubMed

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions. PMID:20170175

  16. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  17. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  18. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  19. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  20. Effects of NHC-backbone substitution on efficiency in ruthenium-based olefin metathesis.

    PubMed

    Kuhn, Kevin M; Bourg, Jean-Baptiste; Chung, Cheol K; Virgil, Scott C; Grubbs, Robert H

    2009-04-15

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C-H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  1. Epoxidation of olefins catalysed by vanadium-salan complexes: a theoretical mechanistic study.

    PubMed

    Kuznetsov, Maxim L; Pessoa, João Costa

    2009-07-28

    Plausible mechanisms of olefin epoxidation catalysed by a V-salan model complex [VIV(=O)(L)(H2O)] (1, L=(CH2NHCH2CH=CHO-)2) in the presence of H2O2 are investigated and compared by theoretical methods using density functional theory. Three main routes, i.e. the Mimoun, Sharpless and biradical mechanisms, were examined in detail, and the Sharpless pathway was found to be the most favourable one. The reaction starts from the formation of an active catalytic species [VV(=O)(OO)(LH)] (3c) upon interaction of 1 with H2O2, then concerted, highly synchronous attack of the olefin to 3c occurs yielding the epoxide and catalyst [VV(=O)2(LH)], the latter being oxidized by H2O2 to 3c. The activation barrier strongly depends on the proton location in the catalyst molecule and is the lowest when one of the oxygen atoms of the salan ligand is protonated and the vanadium atom is penta-coordinated with one vacant coordination position (complex 3c). The olefin in this reaction acts as an electron donor (nucleophile) rather than as an electron acceptor (electrophile). PMID:19587988

  2. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June 1992

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  3. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    PubMed

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  4. Synthesis of Fluoroolefins via Julia-Kocienski Olefination

    PubMed Central

    Kumar, Rakesh

    2011-01-01

    The Julia-Kocienski olefination provides a versatile platform for the synthesis of fluorovinyl compounds. This review describes our efforts as well as those of others in the synthesis of various fluorinated aryl and heteroaryl sulfones and their utility as olefination reagents for the modular assembly of fluoroalkenes. Where data is available, the influence of the fluorine atom on the reactivity of the olefination reagents and the stereochemical outcome of the olefination are described. PMID:22544979

  5. Catalytic cracking of C5 raffinate to light olefins over phosphorous-modified microporous and mesoporous ZSM-5.

    PubMed

    Lee, Joongwon; Hong, Ung Gi; Hwang, Sunhwan; Youn, Min Hye; Song, In Kyu

    2013-11-01

    Phosphorous-modified microporous and mesoporous ZSM-5 catalysts (XP/C-ZSM5) were prepared with a variation of phosphorous content (X = 0.17, 0.3, 0.7, 1.4, and 2.7 wt%), and they were applied to the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. The effect of phosphorous content on the physicochemical properties and catalytic activities of XP/C-ZSM5 catalysts was investigated. It was revealed that physicochemical properties of XP/C-ZSM5 catalysts were strongly influenced by phosphorous content. Strong acidity of XP/C-ZSM5 catalysts decreased with increasing phosphorous content. In the catalytic cracking of C5 raffinate, both conversion of C5 raffinate and yield for light olefins (ethylene and propylene) showed volcano-shaped curves with respect to strong acidity. This result indicates that strong acidity of XP/C-ZSM5 catalysts played an important role in determining the catalytic performance in the catalytic cracking of C5 raffinate. Among the catalysts tested, 0.3P/C-ZSM5 catalyst with moderate strong acidity showed the best catalytic performance. PMID:24245282

  6. Functionalized olefin cross-coupling to construct carbon–carbon bonds

    PubMed Central

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-01-01

    Carbon–carbon (C–C) bonds form the backbone of many important molecules, including polymers, dyes, and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavor heavily relies on the ability to form C–C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a fundamentally new chemical transformation that allows for the facile construction of highly substituted and uniquely functionalized C–C bonds. Using a simple iron catalyst, an inexpensive silane, and a benign solvent under an ambient atmosphere, heteroatom-substituted olefins are easily merged with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than sixty examples are presented with a wide array of substrates, demonstrating the unique chemoselectivity and mildness of this simple reaction. PMID:25519131

  7. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    NASA Astrophysics Data System (ADS)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  8. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  9. Catalysts and process for liquid hydrocarbon fuel production

    DOEpatents

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  10. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    SciTech Connect

    Carlson, Torren R.; Cheng, Yu-Ting; Jae, Jungho; Huber, George W.

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  11. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  12. Organocatalyzed Group Transfer Polymerization.

    PubMed

    Chen, Yougen; Kakuchi, Toyoji

    2016-08-01

    In contrast to the conventional group transfer polymerization (GTP) using a catalyst of either an anionic nucleophile or a transition-metal compound, the organocatalyzed GTP has to a great extent improved the living characteristics of the polymerization from the viewpoints of synthesizing structurally well-defined acrylic polymers and constructing defect-free polymer architectures. In this article, we describe the organocatalyzed GTP from a relatively personal perspective to provide our colleagues with a perspicuous and systematic overview on its recent progress as well as a reply to the curiosity of how excellently the organocatalysts have performed in this field. The stated perspectives of this review mainly cover five aspects, in terms of the assessment of the livingness of the polymerization, limit and scope of applicable monomers, mechanistic studies, control of the polymer structure, and a new GTP methodology involving the use of tris(pentafluorophenyl)borane and hydrosilane. PMID:27427399

  13. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  14. Synthesis of pterostilbene by Julie Olefination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  15. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  16. Development and Applications of Transesterification Reactions Catalyzed by N-Heterocyclic Olefins.

    PubMed

    Blümel, Marcus; Noy, Janina-Miriam; Enders, Dieter; Stenzel, Martina H; Nguyen, Thanh V

    2016-05-01

    A novel method to utilize N-heterocyclic olefins (NHOs), the alkylidene derivatives of N-heterocycic carbenes, as organocatalysts to promote transesterification reactions has been developed. Because of their strong Brønsted/Lewis basicity, NHOs can enhance the nucleophilicity of alcohols for their acylation reactions with carboxylic esters. This transformation can be employed in industrially relevant processes such as the production of biodiesel, the depolymerization of polyethylene terephthalate (PET) from plastic bottles for recycling purposes, and the ring-opening polymerization of cyclic esters to form biodegradable polymers such as polylactide (PLA) and polycaprolactone (PCL). PMID:27115463

  17. Insertion and isomerisation of internal olefins at alkylaluminium hydride: catalysis with zirconocene dichloride.

    PubMed

    Weliange, Nandita M; McGuinness, David S; Gardiner, Michael G; Patel, Jim

    2015-12-14

    The insertion of internal olefins (hydroalumination) and chain walking isomerisation at di-n-octylaluminium hydride [Al(Oct)2H], promoted by zirconocene dichloride [Cp2ZrCl2] has been studied. The reaction between [Cp2ZrCl2] and [Al(Oct)2H] in non-polar solvents leads to clusters containing bridging hydride ligands between Zr and Al. This system promotes hydroalumination of 1-octene but is largely ineffective for internal octenes (2-, 3-, 4-octene). In tetrahydrofuran the Zr-Al hydride clusters formed are more reactive and catalyse insertion and isomerisation of internal olefins to primary metal-alkyls, although this is accompanied by catalyst deactivation. Elimination and removal of 1-octene from the system post insertion/isomerisation was attempted, but it was found that the presence of the Zr catalyst leads to back-isomerisation to internal octenes, along with further decomposition with n-octane formation. Some possible pathways of catalyst decomposition, involving reduction of Zr and alkane elimination, have been studied theoretically. PMID:26530377

  18. End-Group-Functionalized Poly(α-olefinates) as Non-Polar Building Blocks: Self-Assembly of Sugar-Polyolefin Hybrid Conjugates.

    PubMed

    Thomas, Tessy S; Hwang, Wonseok; Sita, Lawrence R

    2016-04-01

    Living coordinative chain-transfer polymerization of α-olefins, followed by chemical functionalization of a Zn(polymeryl)2 intermediate, provides entry to end-group functionalized poly(α-olefinates) (x-PAOs) that can serve as a new class of non-polar building block with tailorable occupied volumes. Application of these x-PAOs for the synthesis and self-assembly of sugar-polyolefin hybrid conjugates demonstrate the ability to manipulate the morphology of the ultra-thin film nanostructure through variation in occupied volume of the x-PAO domain. PMID:26961338

  19. Olefin cross-metathesis as a tool in natural product degradation. The stereochemistry of (+)-falcarindiol.

    PubMed

    Ratnayake, Anokha S; Hemscheidt, Thomas

    2002-12-26

    [reaction: see text] There are conflicting reports in the literature concerning the absolute sterochemistry at C-3 of the common plant polyacetylene oxylipin (+)-falcarindiol. We have employed olefin cross-metathesis using Grubbs' second generation catalyst and ethylene gas to degrade falcarindiol to the symmetrical 1,9-decadiene-4,6-diyne-3,8-diol. The reaction is completely selective for net removal of the aliphatic side chain. Degradation of (+)-falcarindiol from Tetraplasandra hawaiiensis yields a meso product as shown by chiral HPLC. Hence, (+)-falcarindiol from this source has a (3R,8S)-configuration. PMID:12489956

  20. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    PubMed

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. PMID:23079410

  1. Synthesis and characterization of group 4 metal alkoxide complexes containing imine based bis-bidentate ligands: effective catalysts for the ring opening polymerization of lactides, epoxides and polymerization of ethylene.

    PubMed

    Roymuhury, Sagnik K; Chakraborty, Debashis; Ramkumar, Venkatachalam

    2015-06-14

    A series of Ti(iv), Zr(iv) and Hf(iv) complexes containing imine based bis-bidentate ligands were synthesized and characterized by various spectroscopic techniques, elemental analysis and X-ray crystallography. The ligands m-xysal-((t)Bu)4 (L(1)((t)Bu)4), m-xysal-(Me)2((t)Bu)2 (L(2)Me2((t)Bu)2) and m-xysal-(Cl)4 (L(3)Cl4) were reacted with Ti(O(i)Pr)4, Zr(O(i)Pr)4·(i)PrOH and Hf(O(t)Bu)4 in a 1 : 1 stoichiometric ratio to form complexes (L2M2(OR)4, where L = m-xysal-((t)Bu)4, m-xysal-(Me)2((t)Bu)2 and m-xysal-(Cl)4, M = Ti and R = (i)Pr, (L2M2(OR)4, where L = m-xysal-((t)Bu)4, m-xysal-(Me)2((t)Bu)2 and m-xysal-(Cl)4, M = Zr and R = (i)Pr and (L3M3(OR)6, where L = m-xysal-((t)Bu)4, m-xysal-(Me)2((t)Bu)2 and m-xysal-(Cl)4, M = Hf and R = (t)Bu respectively. Complex was crystallized from a 1 : 1 : 1 mixture of chloroform, ethanol and toluene to yield an ethoxy substituted complex (L2M2(OR)4, L = m-xysal-(Me)2((t)Bu)2, M = Zr and R = Et. The X-ray structures of , and illustrate that and are binuclear helical complexes, whereas is trinuclear. These complexes were found to be active for the ring opening polymerization (ROP) of lactides (rac-LA, l-LA) and epoxides. All the complexes produced atactic poly(lactic acid) (PLA) with good number average molecular weight (Mn) and narrow molecular weight distributions (MWDs). The magnetic isotropic shielding constants were calculated using the GIAO/B3LYP/LANL2DZ approach and correlated with the experimental values. The HOMO-LUMO energy band gaps and Mulliken charges were calculated using the DFT method to explain the reactivity of these complexes according to the relationship between chemical hardness and reactivity established by Pearson. In addition, complexes , activated by methylaluminoxane (MAO), were used and found to be moderately active for ethylene polymerization. PMID:25970486

  2. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  3. In Situ Determination of Tacticity, Deactivation, and Kinetics in [rac-(C2H4(1-Indenyl)2)ZrMe][B(C6F5)4] and [Cp2ZrMe][B(C6F5)4]-Catalyzed Polymerization of 1-Hexene Using (13)C Hyperpolarized NMR.

    PubMed

    Chen, Chia-Hsiu; Shih, Wei-Chun; Hilty, Christian

    2015-06-01

    The stereochemistry, kinetics, and mechanism of olefin polymerization catalyzed by a set of zirconium-based metallocenes was studied by NMR using dissolution dynamic nuclear polarization (DNP). Hyperpolarized 1-hexene was polymerized in situ with a C2 symmetric catalyst, [(EBI)ZrMe][B(C6F5)4] (EBI = rac-(C2H4(1-indenyl)2)), and a C2v symmetric catalyst, [(Cp)2ZrMe][B(C6F5)4] (Cp = cyclopentadienyl). Hyperpolarized (13)C NMR spectra were used to characterize product tacticity following initiation of the reaction. At the same time, a signal gain of 3 orders of magnitude from (13)C hyperpolarization enabled the real time observation of catalyst-polymeryl species and deactivation products, such as vinylidene and a Zr-allyl complex. The compounds appearing in the reaction provide evidence for the existence of β-hydride elimination and formation of a dormant site via a methane-generating mechanism. The presence of a deactivating mechanism was incorporated in a model used to determine kinetic parameters of the reaction. On this basis, rate constants were measured between 0.8 and 6.7 mol % of catalyst. The concentration dependence of the rate constants obtained indicates a second-order process for polymerization concomitant with a first-order process for deactivation. The simultaneous observation of both processes in the time evolution of (13)C NMR signals over the course of several seconds underlines the utility of hyperpolarized NMR for quantifying early events in polymerization reactions. PMID:25961793

  4. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis.

    PubMed

    Marx, Vanessa M; Sullivan, Alexandra H; Melaimi, Mohand; Virgil, Scott C; Keitz, Benjamin K; Weinberger, David S; Bertrand, Guy; Grubbs, Robert H

    2015-02-01

    An expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340,000, at a catalyst loading of only 1 ppm. This is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products. PMID:25522160

  5. Application of the entropy theory of glass formation to poly(α-olefins)

    NASA Astrophysics Data System (ADS)

    Stukalin, Evgeny B.; Douglas, Jack F.; Freed, Karl F.

    2009-09-01

    The entropy theory of glass formation, which has previously been developed to describe general classes of polymeric glass-forming liquids, is extended here to model the thermodynamic and dynamic properties of poly(α-olefins). By combining this thermodynamic theory with the Adam-Gibbs model (which relates the configurational entropy to the rate of structural relaxation), we provide systematic computations for all four characteristic temperatures (TA, Tc, Tg, T0), governing the position and breadth of the glass transition, and the fragility parameters (D,m) describing the strength of the temperature dependence of the structural relaxation time, where TA is the temperature below which the relaxation is non-Arrhenius, Tc is the crossover or empirical mode-coupling temperature, Tg is the glass transition temperature, and T0 is the temperature at which the extrapolated relaxation time diverges. These temperatures and fragility parameters are evaluated as a function of molar mass, pressure, and the length n of the α-olefin side chains. The nearest neighbor interaction energy and local chain rigidities are found to strongly influence the four characteristic temperatures and the low temperature fragility. We also observe an "internal plasticization" of the poly(α-olefins) wherein the fragility decreases as the number n of "flexible" side group units increases. Our computations provide solid support for a pressure counterpart of the Vogel-Fulcher-Tammann relation. The entropy theory of glass formation predicts systematic changes in fragility with chain stiffness, cohesive energy, polymerization index, and side chain length, and qualitative trends in these parameters are discussed.

  6. Economically recover olefins from FCC offgases

    SciTech Connect

    Netzer, D.

    1997-04-01

    The concept of ethylene and propylene recovery from fluid catalytic cracking (FCC) offgases is not new; however, its application has been infrequent. For typical catalytic cracking of atmospheric and vacuum gas oils, ethylene yields range from 2.0 to 3.5 lb/bbl of FCC feed. The ethylene typically amounts to 8 to 18 vol% of FCC offgas and is normally routed to the fuel gas system. Variations in ethylene concentrations are affected by the FCC feed composition and cracking severity. This ethylene yield is anywhere from 0.7% to 1.1% of the FCC feed, as opposed to 26% to 36% for naphtha or gas oil cracking in conventional olefin plants. Due to high FCC unit feedrates (typically 25,000 to 85,000 bpsd for most North American refineries) even with a low ethylene yield, the olefins production can be significant. Here, two approaches to olefins recovery are addressed. In the first, ethylene is recovered as a dilute gas at a concentration of about 15 vol% and serves as raw material for ethylbenzene and, subsequently, styrene. In the second approach, ethylene is recovered as a pure polymer-grade liquid. Propylene recovery is identical for both approaches. The concept for producing polymer-grade liquid ethylene is described in detail in terms of process technology, cost estimates and economic parameters.

  7. Synthesis gas and olefins from the catalytic autothermal reforming of volatile and non-volatile liquids

    NASA Astrophysics Data System (ADS)

    Dreyer, Bradon Justin

    2007-12-01

    The research presented in this thesis develops an understanding of a clean energy process technology, catalytic partial oxidation (CPO). CPO is a process in which a carbon containing fuel, such as a hydrocarbon, is passed over a noble metal catalyst (e.g. rhodium and platinum) to efficiently generate synthesis gas (H2 and CO) and olefins (e.g. ethylene and propylene) in millisecond contact times. Chapter 1 introduces CPO and compares this technology with conventional methods for synthesis gas and olefin production. CPO has several advantages over the traditional synthesis gas and olefin production methods. One advantage includes autothermal operation, requiring no external heat input from furnaces or heat exchangers. Autothermal operation allows these reactors to be built compactly. The short contact-times associated with CPO further enable for high throughput in relatively small reactor systems, and more compact reactors typically translate to faster response times if transient operation is required. Nobel metal based CPO catalysts are also resistant to deactivation, resulting in less catalyst replacement, regeneration, and maintenance, and an increase in operating efficiency. An overview of the many applications of the chemicals produced from CPO is also presented in Chapter 1. The chemicals produced are crucial in generating valuable chemical intermediates that are eventually incorporated in consumer products, medical devices, building structures, and fertilizers. Additionally, H2 can be used as a source of energy in mobile fuel applications. Fuel cells convert H2 and O2 into electricity and water at higher efficiencies than thermal engine generators. Due to the difficulties in H2 storage, these more efficient energy generators are dependent on hydrogen obtained from synthesis gas production in compact, portable fuel reformers, such as CPO reactors. Furthermore, H2 and CO can be used in reducing environmentally harmful emissions. Particularly, the implementation

  8. Novel catalyst widens octane opportunities

    SciTech Connect

    Pritchard, G.

    1987-01-01

    Of the octane upgrading options available, refiners are focusing on those which offer a low upgrading cost, a low capital cost and a short implementation time. The BP ETHEROL Process with the novel trifunctional catalyst satisfies all of these requirements and, with the added ability to produce heavier ethers than just MTBE, provides a new opportunity for octane enhancement. The trifunctional catalyst combines the benefits of etherification, diolefin hydrogenation and olefin isomerisation in one single catalyst and for essentially no incremental investment relative to a conventional MTBE unit. The economics demonstrate that at an upgrading cost of 15 cents per octane barrel, the BP ETHEROL Process is highly competitive with other octane upgrading options.

  9. Catalysts and process for liquid hydrocarbon fuel production

    SciTech Connect

    White, Mark G; Liu, Shetian

    2014-12-09

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  10. Application of a silver-olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    NASA Astrophysics Data System (ADS)

    Everitt, D. T.; Coope, T. S.; Trask, R. S.; Wass, D. F.; Bond, I. P.

    2015-05-01

    A silver-olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver-olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h.

  11. Titania-silica mixed oxides. II. Catalytic behaviour in olefin epoxidation

    SciTech Connect

    Hutter, R.; Mallat, T.; Baiker, A.

    1995-04-15

    Various titania-silica aerogels prepared by an alkoxide-sol-gel route have been tested in the epoxidation of bulky olefins using cumene hydroperoxide as oxidant. The drying method, the titanium content between 2 and 20 wt%, and the calcination temperature between 473 and 1073 K were the most important preparation parameters, influencing the catalytic behaviour of the aerogels. The aerogels dried by semicontinuous extraction with supercritical CO{sub 2} at low temperature (LT aerogel) were found to be much more efficient epoxidation catalysts than aerogels prepared by high-temperature supercritical drying and conventionally dried xerogels. The reaction rate of cyclohexene epoxidation over LT aerogels increased monotonically with increasing Ti content. In the range of 333-363 K the catalysts containing 20 wt% TiO{sub 2} (20LT) showed high activity and selectivity (79-93% to peroxide and 87-100% to epoxide) in the oxidation of various cyclic olefins, including cyclododecene, norbornene, cyclohexene, and limonene. Catalytic experiments, FTIR, and UV-vis spectroscopy indicated that the LT aerogels consist of two different types of active species: titanium well-dispersed in the silica matrix and titania nanodomains. The key factors determining the activity and selectivity of sol-gel titania-silica catalysts are the morphology (surface area and pore size) and the relative proportions of Ti-O-Si and Ti-O-Ti structural parts. A comparative study of the epoxidation of cyclohexene, cyclododecene, and norbornene over structurally different titania-silica catalysts, indicates that 20LT shows better catalytic behaviour in these reactions than Ti zeolites and silica-supported titania. 46 refs., 12 figs., 3 tabs.

  12. Nonproductive Events in Ring-Closing Metathesis using Ruthenium Catalysts

    PubMed Central

    Stewart, Ian C.; Keitz, Benjamin K.; Kuhn, Kevin M.; Thomas, Renee M.

    2010-01-01

    The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is proposed to explain the observed trends. PMID:20518557

  13. The design of a bipodal bis(pentafluorophenoxy)aluminate supported on silica as an activator for ethylene polymerization using surface organometallic chemistry.

    PubMed

    Sauter, Dominique W; Popoff, Nicolas; Bashir, Muhammad Ahsan; Szeto, Kai C; Gauvin, Régis M; Delevoye, Laurent; Taoufik, Mostafa; Boisson, Christophe

    2016-04-01

    A new class of well-defined activating supports for olefin polymerization was obtained via the surface organometallic chemistry approach. High activities in slurry polymerization of ethylene along with industrial-grade physical properties of the resulting polyethylene were obtained when these activators were combined with metallocene complexes in the presence of triisobutylaluminium. PMID:26899986

  14. Process for reacting alcohols and olefins

    SciTech Connect

    Miller, J.T.; Nevitt, T.D.

    1985-01-29

    A method for producing branched aliphatic hydrocarbons by reacting H/sub 2/ with a C/sub 1/-C/sub 6/ alcohol and/or a C/sub 2/-C/sub 6/ olefin in the presence of a cadmium component and a support which comprises an amorphous refractory inorganic oxide, a pillared smectite or vermiculite clay, a molecular sieve consisting essentially of unexchanged or cation-exchanged chabazite, clinoptilite, zeolite A, zeolite L, zeolite X, zeolite Y, ultrastable zeolite Y, or crystalline borosilicate molecular sieve, or a combination thereof.

  15. Production of epoxy compounds from olefinic compounds

    SciTech Connect

    Gelbein, A.P.; Kwon, J.T.

    1985-01-29

    Chlorine and tertiary alkanol dissolved in an inert organic solvent are reacted with aqueous alkali to produce tertiary alkyl hypochlorite which is recovered in the organic solvent and reacted with water and olefinically unsaturated compound to produce chlorohydrin and tertiary alkanol. Chlorohydrin and tertiary alkanol recovered in the organic solvent are contacted with aqueous alkali to produce the epoxy compound, and tertiary alkanol recovered in the organic solvent is recycled to hypochlorite production. The process may be integrated with the electrolytic production of chlorine, with an appropriate treatment of the recycle aqueous stream when required.

  16. Group transfer polymerization. Mechanism revisted

    SciTech Connect

    Sogah, D.Y.

    1993-12-31

    Group Transfer Polymerization (GTP) is a living polymerization technique that allows control of characteristics of vinyl polymers, especially those derived from methacrylate monomers. Several mechanistic pathways have been proposed by different research groups. This presentation will examine the most plausible mechanisms and the evidence supporting each one. The dependence of the reaction on the type, nature and concentrations of catalysts, other additives, initiators and monomers will be discussed. The crucial role that chiral organosilicon reagents may play will be examined using a novel cyclic initiator containing 2,2`-dialkylsilyl-1,1`-binaphthyl.

  17. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  18. Synthetic chemistry with fullerenes. Photooxygenation of olefins

    SciTech Connect

    Tokuyama, Hidetoshi; Nakamura, Eiichi

    1994-03-11

    Under irradiation with visible or UV (>290 nm) light in the presence of molecular oxygen and a minute amount of fullerenes, olefins and dienes undergo ene and Diels-Alder reactions with singlet oxygen to give photooxygenation products. The regio-and stereoselectives of the photooxygenation of {beta}-myrcene, (+)-pulegone, 4-methylpent-3-en-2-ol, and (+)-limonene were very similiar to those observed in known singlet oxygen reactions, indicating that the fullerene-sensitized reaction generates free singlet oxygen. The efficiency of fullerenes and conventional sensitizers was qualitively examined by using the Diels-Alder reaction between {sup 1}O{sub 2} and furan-2-carboxylic acid as a probe. Among those examined, C{sub 70} was found to be the most effective. The reaction was the fastest and completed with as little as 0.0001 equiv of C{sub 70}. C{sub 60} and hematoporphyrin were found to be of similiar efficiency. The methanofullerene 13, which lacks one olefinic conjunction in the C{sub 60} core, was as good as C{sub 60} itself, but the aminofullerene 14, lacking six double bonds, was quite inferior. The fullerene carboxylic acid 15, which was previously shown to show considerable biochemical activity, was found to be capable of generating singlet oxygen in aqueous DMSO. 25 refs., 1 tab.

  19. Selective hydrodesulfurization of FCC naphtha with supported MoS{sub 2} catalysts : the role of cobalt.

    SciTech Connect

    Marshall, C. L.; Kropf, A. J.; Miler, J. T.; Reagan, W. J.; Kaduk, J. A.; Chemical Engineering; BP Amoco Research Center

    2000-07-01

    The catalytic activity and selectivity for hydrodesulfurization (HDS) and olefin hydrogenation of FCC naphtha have been determined for MoS2 (no Co) catalysts on different supports and for a commercial CoMo/alumina HDS catalyst both with and without the addition of alkali. For MoS2 catalysts, the specific HDS activity is higher on silica than alumina, while addition of Cs resulted in no change in the activity. The differences in activity, however, are relatively small, a factor of less than two. EXAFS and XRD structural analysis indicate that small MoS2 particles are present on all catalysts. The differences in rate are not due to differences in particle size, dispersion, or support physical properties, but are likely due to the modification of catalytic properties by an interaction with the support. While there is a small influence on the rate, the composition of the support, or modification by Cs, has no effect on the HDSlolefin hydrogenation selectivity. The olefin hydrogenation conversion increases linearly with HDS conversion, and at high HDS conversion, few olefins remain in the FCC naphtha. Similar to the effect for Cs promotion of MoS2 on alumina, the addition of K to sulfided CoMo/alumina had little affect on the activity or selectivity for HDS and olefin hydrogenation. Unlike MoS2 catalysts, however, with sulfided CoMo at less than about 85% HDS conversion, the rate of olefin hydrogenation is low, but it increases rapidly as the sulfur in the naphtha drops below about 300 ppm. Selective HDS of FCC naphtha appears to correlate primarily to the formation of the CoMoS phase, rather than to the basic nature of the support. It is proposed that the enhanced olefin hydrogenation selectivity of CoMo catalysts is due to the competitive adsorption of sulfur compounds, which inhibit adsorption and saturation of olefins in the naphtha.

  20. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  1. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    PubMed

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO. PMID:25610923

  2. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    PubMed Central

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methylidene species, and provide good yields and turnover numbers (TONs) at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability, and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady-state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products. PMID:21510645

  3. Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Hamieh, S.; Canaff, C.; Tayeb, K. Ben; Tarighi, M.; Maury, S.; Vezin, H.; Pouilloux, Y.; Pinard, L.

    2015-07-01

    Ethanol and methanol are converted using H-ZSM-5 zeolite at 623 K and 3.0 MPa into identical hydrocarbons (paraffins, olefins and aromatics) and moreover with identical selectivities. The distribution of olefins as paraffins follows the Flory distribution with a growth probability of 0.53. Regardless of the alcohol, the catalyst lifetime and selectivity into hydrocarbons C3+ are high in spite of an important coke content. The coke that poisons the Brønsted acid sites without blocking their access is composed in part of radical polyalkylaromatics. The addition of hydroquinone, an inhibitor of radicals, to the feed, provokes an immediate catalyst deactivation.

  4. Optimization of composition of bizeolitic cracking catalyst in order to increase naphtha yield and quality

    SciTech Connect

    Volkov, V.Y.; Kaliko, M.A.; Maslova, A.A.

    1983-11-01

    It is necessary to develop high-selectivity zeolite-containing catalysts that will increase the yield of olefinic hydrocarbons in cracked gas. This paper reports on work aimed at selecting the optimal composition of a bizeolitc zatalyst system to minimize the yield of naphtha cut and improve its octane characteristics. Several series of catalysts samples were prepared. It is found that the optimal composition of the bizeolitic catalyst can be best regulated by gradual introduction of the catalyst containing the SHS zeolite into zeolite-containing catalyst circulating in an operating cracker.

  5. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  6. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry.

    PubMed

    Dang, Yanfeng; Qu, Shuanglin; Tao, Yuan; Deng, Xi; Wang, Zhi-Xiang

    2015-05-20

    Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems. PMID:25915086

  7. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  8. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  9. Olefins and chemical regulation in Europe: REACH.

    PubMed

    Penman, Mike; Banton, Marcy; Erler, Steffen; Moore, Nigel; Semmler, Klaus

    2015-11-01

    REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the European Union's chemical regulation for the management of risk to human health and the environment (European Chemicals Agency, 2006). This regulation entered into force in June 2007 and required manufacturers and importers to register substances produced in annual quantities of 1000 tonnes or more by December 2010, with further deadlines for lower tonnages in 2013 and 2018. Depending on the type of registration, required information included the substance's identification, the hazards of the substance, the potential exposure arising from the manufacture or import, the identified uses of the substance, and the operational conditions and risk management measures applied or recommended to downstream users. Among the content developed to support this information were Derived No-Effect Levels or Derived Minimal Effect Levels (DNELs/DMELs) for human health hazard assessment, Predicted No Effect Concentrations (PNECs) for environmental hazard assessment, and exposure scenarios for exposure and risk assessment. Once registered, substances may undergo evaluation by the European Chemicals Agency (ECHA) or Member State authorities and be subject to requests for additional information or testing as well as additional risk reduction measures. To manage the REACH registration and related activities for the European olefins and aromatics industry, the Lower Olefins and Aromatics REACH Consortium was formed in 2008 with administrative and technical support provided by Penman Consulting. A total of 135 substances are managed by this group including 26 individual chemical registrations (e.g. benzene, 1,3-butadiene) and 13 categories consisting of 5-26 substances. This presentation will describe the content of selected registrations prepared for 2010 in addition to the significant post-2010 activities. Beyond REACH, content of the registrations may also be relevant to other European activities, for

  10. Manufacturing of embedded multimode waveguides by reactive lamination of cyclic olefin polymer and polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.

  11. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers

    NASA Astrophysics Data System (ADS)

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  12. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    PubMed

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility. PMID:24328072

  13. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  14. Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds

    NASA Astrophysics Data System (ADS)

    Koledina, K. F.; Gubaidullin, I. M.

    2016-05-01

    The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.

  15. Deactivation mechanisms for Pd/Al{sub 2}O{sub 3} acetylene hydrogenation catalysts

    SciTech Connect

    Hall, J.B.; Huggins, B.J.; Meyers, B.L.; Kaminsky, M.P.

    1994-12-31

    The selective hydrogenation of acetylenic impurities to ethylene is a crucial purification step in the production of olefins by steam cracking. This hydrogenation is done catalytically using a Pd/Al{sub 2}O{sub 3} catalyst in a fixed bed reactor. The designed lifetime of the catalyst in a front end acetylene converter is about 4 years. Accelerated catalyst deactivation and thermal runaways caused by loss in catalyst selectivity are common problems which plague acetylene converters. Such problems result in unscheduled shutdowns and increased costs to replace deactivated catalyst. This presentation outlines several deactivation mechanisms of the catalyst and discusses how they affect catalyst lifetime and performance. Catalyst characterization using electron microscopy and CO chemisorption provides information on how poisons deteriorate the catalyst and Pd particle size changes produced by use and regeneration. Thermal gravimetric analysis was also used to determine the extent of coke burn-off using less severe regeneration procedures.

  16. Catalytic conversion of olefinic fischer tropsch light oil to heavier hydrocarbons

    SciTech Connect

    Owen, H.; Tabak, S. A.; Wright, B. S.

    1985-05-28

    A process for converting synthol light oil product of Fischer-Tropsch synthesis to heavy distillate comprising the steps of contacting the light oil at elevated temperature and pressure with acid zeolite conversion catalyst to oligomerize olefins and convert oxygenated hydrocarbons contained in the light oil thereby providing an effluent containing light heavy distillate range hydrocarbon, hydrocarbon vapor and byproduct water; flashing and separating the effluent to recover a heavy distillate-rich liquid phase and a light hydrocarbon-rich vapor phase containing byproduct water; condensing the vapor phase to provide a liquid hydrocarbon recycle stream; removing byproduct water from the recycle stream; combining the light oil with the pressurized recycle stream as heat sink to prevent excessive reaction temperature during catalytic conversion.

  17. Polymerization of Plant Oils in Carbon Dioxide Medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lewis acid catalyst, boron trifluoride diethyl etherate (BF3•OEt2), catalyzed polymerization of epoxidized soybean oil (ESO) in liquid carbon dioxide was conducted in an effort to develop useful biodegradable polymers. The ring-opening polymerization was employed at mild conditions, such as at room...

  18. Organocatalyzed atom transfer radical polymerization driven by visible light.

    PubMed

    Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M

    2016-05-27

    Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. PMID:27033549

  19. A Mechanochemically Triggered "Click" Catalyst.

    PubMed

    Michael, Philipp; Binder, Wolfgang H

    2015-11-16

    "Click" chemistry represents one of the most powerful approaches for linking molecules in chemistry and materials science. Triggering this reaction by mechanical force would enable site- and stress-specific "click" reactions--a hitherto unreported observation. We introduce the design and realization of a homogeneous Cu catalyst able to activate through mechanical force when attached to suitable polymer chains, acting as a lever to transmit the force to the central catalytic system. Activation of the subsequent copper-catalyzed "click" reaction (CuAAC) is achieved either by ultrasonication or mechanical pressing of a polymeric material, using a fluorogenic dye to detect the activation of the catalyst. Based on an N-heterocyclic copper(I) carbene with attached polymeric chains of different flexibility, the force is transmitted to the central catalyst, thereby activating a CuAAC in solution and in the solid state. PMID:26420664

  20. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  1. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  2. Mechanism of Efficient Anti-Markovnikov Olefin Hydroarylation Catalyzed by Homogeneous Ir(III) Complexes

    SciTech Connect

    Bhalla, Gaurav; Bischof, Steven M; Ganesh, Somesh K; Liu, Xiang Y; Jones, C J; Borzenko, Andrey; Tenn, William J; Ess, Daniel H; Hashiguchi, Brian G; Lokare, Kapil S; Leung, Chin Hin; Oxgaard, Jonas; Goddard, William A; Periana, Roy A

    2011-01-01

    The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir(μ-acac-O,O,C{sup 3})-(acac-O,O){sub 2}]{sub 2} and [R-Ir(acac-O,O){sub 2}(L)] (R = acetylacetonato, CH{sub 3}, CH{sub 2}CH{sub 3}, Ph, or CH{sub 2}CH{sub 2}Ph, and L = H{sub 2}O or pyridine) Ir(III) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61:39 for benzene + propylene and 98:2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. {sup 13}C-labelling studies with CH{sub 3}{sup 13}CH{sub 2}-Ir-Py showed that reversible β-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the {sup 13}C-label from the α to β-positions was found to be slower than the C–H activation of benzene (and thus formation of ethane and Ph-d{sub 5}-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and β-hydride elimination (k{sub CH}: k{sub β}) of ~0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O){sub 2}-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cisisomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C–H bond of an incoming benzene to generate the

  3. A Double Asymmetric Hydrogenation Strategy for the Reduction of 1,1-Diaryl Olefins Applied to an Improved Synthesis of CuIPhEt, a C2-Symmetric N-Heterocyclic Carbenoid

    PubMed Central

    Spahn, Elizabeth; Albright, Abigail; Shevlin, Michael; Pauli, Larissa; Pfaltz, Andreas; Gawley, Robert E.

    2013-01-01

    A library of iridium and rhodium phosphine catalysts have been screened for the double asymmetric hydrogenation of 2,6-di-(1-phenylethenyl)-4-methyl aniline to produce the C2-symmetric aniline precursor of the N-heterocyclic carbenoid CuIPhEt. The best catalyst produced the desired enantiomer in 98.6% selectivity. This rare example of a highly selective hydrogenation of a 1,1-diaryl olefin enables a 4 step asymmetric synthesis of the C2-symmetric phenylethyl imidazolium ion (IPhEt) from p-toluidine and phenylacetylene, and its conversion to the hydrosilylation catalyst CuIPhEt. PMID:23383707

  4. Hot embossing of cyclic olefin copolymers

    NASA Astrophysics Data System (ADS)

    Leech, P. W.

    2009-05-01

    The hot embossing properties of cyclic olefin copolymer (COC) have been examined as a function of comonomer content. Six standard grades of COC with varying norbornene content (61-82 wt%) were used in these experiments in order to provide a range of glass transition temperatures, Tg. All grades of COC exhibited sharp increases in embossed depth over a critical range of temperature. The transition temperature in embossed depth increased linearly with norbornene content for both 35 and 70 µm deep structures. At temperatures above this transition, the dimensions of the embossed patterns were essentially independent of the COC grade, the applied pressure and duration of loading. Channels formed above the transition in a regime of viscous liquid flow were extremely smooth in morphology for all grades. The average surface roughness, Ra, measured at the base of the channels decreased sharply at the transition temperature, with a levelling off at higher temperatures. Grades of COC with a higher norbornene content exhibited extensive micro-cracking during embossing at temperatures close to the transition temperature.

  5. Expert systems in the olefins industry

    SciTech Connect

    Borsje, H.J.; Bowen, C.P.

    1994-12-31

    On-line Expert Systems have been used successfully in the process and manufacturing industry since the late eighties. This paper describes one of these successful applications, the Recovery Boiler Advisor{trademark}, developed for a black liquor recovery boiler in a Kraft pulp mill. The ultimate goal of this advisory system is to correctly analyze an unusual situation and help the operators make a better informed decision, and help do this quicker. The effect of the ever increasing complexity and stringency of environmental and occupational regulations in the process industry puts an additional burden on the operator that can be alleviated by smart computer systems. Advanced control algorithms process simulation, neural networks, data reconciliation and rule-based system, combined with a well designed and intuitive user interface, all contribute to the alleviation of this problem. Expert systems have found few applications in the olefins industry, despite the fact that the requirement for computer assisted plant operation has increased significantly. A number of operational issues in the ethylene plant which can benefit from on-line advisory systems are identified. It is important to recognize which necessary steps must be taken to ensure that the project results in a successful product which is accepted, understood, and properly used by the operator and by the supervisory staff. Successful projects will address an existing problem with new technology.

  6. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  7. Acrylate metathesis via the second-generation Grubbs catalyst: unexpected pathways enabled by a PCy3-generated enolate.

    PubMed

    Bailey, Gwendolyn A; Fogg, Deryn E

    2015-06-17

    The diverse applications of acrylate metathesis range from synthesis of high-value α,β-unsaturated esters to depolymerization of unsaturated polymers. Examined here are unexpected side reactions promoted by the important Grubbs catalyst GII. Evidence is presented for attack of PCy3 on the acrylate olefin to generate a reactive carbanion, which participates in multiple pathways, including further Michael addition, proton abstraction, and catalyst deactivation. Related chemistry may be anticipated whenever labile metal-phosphine complexes are used to catalyze reactions of substrates bearing an electron-deficient olefin. PMID:26030596

  8. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  9. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  10. Reformulated gasoline will change FCC operations and catalysts

    SciTech Connect

    Stokes, G.M.; Wear, C.C.; Suarez, W.; Young, G.W. )

    1990-07-02

    Operation of fluid catalytic cracking units (FCCUs) will be significantly affected by new regulations that will in all probability require gasoline to be produced with lower aromatics and olefins contents, lower vapor pressure, and a minimum oxygen content. This paper reports on a study conducted to better define the basic relationship between operating variables, including catalyst and naphtha quality, in the context of reformulated gasoline. The study helped to define specific operating strategies, potential problem areas, and opportunities for improved FCC unit and catalyst technologies. FCC feedstock quality can have a significant influence on the composition of FCC naphtha. However, even extremely paraffinic or aromatic feeds can yield substantial levels of both olefins and aromatics in FCC naphtha, particularly when compared to the levels proposed in a reformulated gasoline pool.

  11. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  12. Imidazolinium salts as catalysts for the ring-opening alkylation of meso epoxides by alkylaluminum complexes.

    PubMed

    Zhou, H; Campbell, E J; Nguyen, S T

    2001-07-12

    [reaction: see text] Imidazolinium salts and their N-heterocyclic carbene (NHC) derivatives catalyze the alkylation of a variety of meso epoxides in the presence of triethylaluminum (yield = 70-90%), under mild conditions. Imidazolinium salts are better catalysts than their NHC derivatives but can lead to dimerization side reactions under extended reaction time. Preformed NHC.AlEt(3) complexes and Wanzlick-type olefins, which are dimers of free NHCs, are also catalysts for this reaction. PMID:11440586

  13. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment.

    PubMed

    Hemelsoet, Karen; Van der Mynsbrugge, Jeroen; De Wispelaere, Kristof; Waroquier, Michel; Van Speybroeck, Veronique

    2013-06-01

    The conversion of methanol to olefins (MTO) over a heterogeneous nanoporous catalyst material is a highly complex process involving a cascade of elementary reactions. The elucidation of the reaction mechanisms leading to either the desired production of ethene and/or propene or undesired deactivation has challenged researchers for many decades. Clearly, catalyst choice, in particular topology and acidity, as well as the specific process conditions determine the overall MTO activity and selectivity; however, the subtle balances between these factors remain not fully understood. In this review, an overview of proposed reaction mechanisms for the MTO process is given, focusing on the archetypal MTO catalysts, H-ZSM-5 and H-SAPO-34. The presence of organic species, that is, the so-called hydrocarbon pool, in the inorganic framework forms the starting point for the majority of the mechanistic routes. The combination of theory and experiment enables a detailed description of reaction mechanisms and corresponding reaction intermediates. The identification of such intermediates occurs by different spectroscopic techniques, for which theory and experiment also complement each other. Depending on the catalyst topology, reaction mechanisms proposed thus far involve aromatic or aliphatic intermediates. Ab initio simulations taking into account the zeolitic environment can nowadays be used to obtain reliable reaction barriers and chemical kinetics of individual reactions. As a result, computational chemistry and by extension computational spectroscopy have matured to the level at which reliable theoretical data can be obtained, supplying information that is very hard to acquire experimentally. Special emphasis is given to theoretical developments that open new perspectives and possibilities that aid to unravel a process as complex as methanol conversion over an acidic porous material. PMID:23595911

  14. Methods for synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2016-06-14

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  15. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.

    PubMed

    Pelletier, Jérémie D A; Basset, Jean-Marie

    2016-04-19

    as a X, L ligands in the Green formalism, the catalyst can be designed and generated by grafting the organometallic precursor containing the functional group(s) suitable to target a given transformation (surface organometallic fragments (SOMF)). The choice of these SOMF is based on the elementary steps known in molecular chemistry applied to the desired reaction. The coordination sphere necessary for any catalytic reaction involving paraffins, olefins, and alkynes also can thus be predicted. Only their most complete understanding can allow development of catalytic reactions with the highest possible selectivity, activity, and lifetime. This Account will examine the results of SOMC for hydrocarbon transformations on oxide surfaces bearing metals of group 4-6. The silica-supported catalysts are exhibiting remarkable performances for Ziegler-Natta polymerization and depolymerization, low temperature hydrogenolysis of alkanes and waxes, metathesis of alkanes and cycloalkanes, olefins metathesis, and related reactions. In the case of reactions involving molecules that do not contain carbon (water-gas shift, NH3 synthesis, etc.) this single site approach is also valid but will be considered in a later review. PMID:26959689

  16. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    SciTech Connect

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  17. Metal-free transfer hydrogenation of olefins via dehydrocoupling catalysis

    PubMed Central

    Pérez, Manuel; Caputo, Christopher B.; Dobrovetsky, Roman; Stephan, Douglas W.

    2014-01-01

    A major advance in main-group chemistry in recent years has been the emergence of the reactivity of main-group species that mimics that of transition metal complexes. In this report, the Lewis acidic phosphonium salt [(C6F5)3PF][B(C6F5)4] 1 is shown to catalyze the dehydrocoupling of silanes with amines, thiols, phenols, and carboxylic acids to form the Si-E bond (E = N, S, O) with the liberation of H2 (21 examples). This catalysis, when performed in the presence of a series of olefins, yields the concurrent formation of the products of dehydrocoupling and transfer hydrogenation of the olefin (30 examples). This reactivity provides a strategy for metal-free catalysis of olefin hydrogenations. The mechanisms for both catalytic reactions are proposed and supported by experiment and density functional theory calculations. PMID:25002489

  18. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  19. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  20. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  1. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  2. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  3. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  4. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  5. 40 CFR 721.10242 - Olefinic carbocycle, reaction products with alkoxysilane, polysulfurized (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10242 Olefinic carbocycle, reaction... subject to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  6. 40 CFR 721.10241 - Olefinic carbocycle, reaction products with alkoxysilane, sulfurized (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10241 Olefinic carbocycle, reaction... to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  7. 40 CFR 721.10241 - Olefinic carbocycle, reaction products with alkoxysilane, sulfurized (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10241 Olefinic carbocycle, reaction... to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  8. 40 CFR 721.10242 - Olefinic carbocycle, reaction products with alkoxysilane, polysulfurized (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10242 Olefinic carbocycle, reaction... subject to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  9. 40 CFR 721.10241 - Olefinic carbocycle, reaction products with alkoxysilane, sulfurized (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10241 Olefinic carbocycle, reaction... to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  10. 40 CFR 721.10242 - Olefinic carbocycle, reaction products with alkoxysilane, polysulfurized (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10242 Olefinic carbocycle, reaction... subject to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  11. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  12. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  13. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  14. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  15. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  16. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  17. Dichloromethane photodegradation using titanium catalysts

    SciTech Connect

    Tanguay, J.F.; Suib, S.L.; Coughlin, R.W. )

    1989-06-01

    The use of titanium dioxide and titanium aluminosilicates in the photocatalytic destruction of chlorinated hydrocarbons is investigated. Titanium-exchanged clays, titanium-pillared clays, and titanium dioxide in the amorphous, anatase, and rutile forms are used to photocatalytically degrade dichloromethane to hydrochloric acid and carbon dioxide. Bentonite clays pillared by titanium dioxide are observed to be more catalytically active than titanium-exchanged clays. Clays pillared by titanium aluminum polymeric cations display about the same catalytic activity as that of titanium-exchanged clays. The rutile form of titanium dioxide is the most active catalyst studied for the dichloromethane degradation reaction. The anatase form of titanium dioxide supported on carbon felt was also used as a catalyst. This material is about five times more active than titanium dioxide-pillared clays. Degradation of dichloromethane using any of these catalysts can be enhanced by oxygen enrichment of the reaction solution or by preirradiating the catalyst with light.

  18. Cardanol-based materials as natural precursors for olefin metathesis.

    PubMed

    Vasapollo, Giuseppe; Mele, Giuseppe; Del Sole, Roberta

    2011-01-01

    Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enyl)phenol, 3-(pentadeca-8,11-dienyl)phenol and 3-(pentadeca-8,11,14-trienyl)phenol. Olefin metathesis (OM) reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed. PMID:25134775

  19. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    PubMed

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions. PMID:19115310

  20. Evolution of Catalytic Stereoselective Olefin Metathesis: From Ancillary Transformation to Purveyor of Stereochemical Identity

    PubMed Central

    2015-01-01

    There have been numerous significant advances in catalytic olefin metathesis (OM) during the past two decades. Such progress has transformed this important set of reactions to strategically pivotal processes that generate stereochemical identity while delivering molecules that cannot be easily prepared by alternative routes. In this Perspective, an analysis of the origin of the inception of bidentate benzylidene ligands for Ru-based OM catalysts is first presented. This is followed by an overview of the intellectual basis that culminated in the development of Mo-based diolates and stereogenic-at-Ru complexes for enantioselective OM. The principles accrued from the study of the latter Ru carbenes and Mo alkylidenes and utilized in the design of stereogenic-at-Mo, -W, and -Ru species applicable to enantioselective and Z-selective OM are then discussed. The influence of the recently introduced catalytic OM protocols on the design of synthesis routes leading to complex organic molecules is probed. The impact of a better understanding of the mechanistic nuances of OM toward the discovery of stereoselective catalysts is reviewed as well. PMID:24720633

  1. Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction

    PubMed Central

    2015-01-01

    A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly

  2. The direct polymerization of vinyl alcohol and vinyl alcohol derivatives

    SciTech Connect

    Novak, B.M.; Cederstav, A.K.

    1995-12-01

    The copolymerization of vinyl alcohol with a number of electron deficient olefins is reported. Vinyl alcohol was formed through the acid catalyzed hydrolysis of ketene methyl vinyl acetal. Under water starved conditions, the kinetics of tautomerization have a zero order dependence upon the concentration of vinyl alcohol (k{sub obs} = 3.5 x 10{sup -6} M/s). Hence, under these conditions, the half life of vinyl alcohol can be several hours at room temperature. We found that this meta-stable species could be quantitatively polymerized in a copolymerization (AIBN, h{upsilon}, -10 to 25{degrees}C) with maleic anhydride, maleimide or acrylonitrile.

  3. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    SciTech Connect

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2005-03-31

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. In this reporting period, a series of crossflow filtration experiments were initiated to study the effect of olefins and oxygenates on the filtration flux and membrane performance. Iron-based FTS reactor waxes contain a significant amount of oxygenates, depending on the catalyst formulation and operating conditions. Mono-olefins and aliphatic alcohols were doped into an activated iron catalyst slurry (with Polywax) to test their influence on filtration properties. The olefins were varied from 5 to 25 wt% and oxygenates from 6 to 17 wt% to simulate a range of reactor slurries reported in the literature. The addition of an alcohol (1-dodecanol) was found to decrease the permeation rate while the olefin added (1-hexadecene) had no effect on the permeation rate. A passive flux maintenance technique was tested that can temporarily increase the permeate rate for 24 hours.

  4. Iron catalyzed asymmetric oxyamination of olefins.

    PubMed

    Williamson, Kevin S; Yoon, Tehshik P

    2012-08-01

    The regioselective and enantioselective oxyamination of alkenes with N-sulfonyl oxaziridines is catalyzed by a novel iron(II) bis(oxazoline) complex. This process affords oxazolidine products that can be easily manipulated to yield highly enantioenriched free amino alcohols. The regioselectivity of this process is complementary to that obtained from the analogous copper(II)-catalyzed reaction. Thus, both regioisomers of enantioenriched 1,2-aminoalcohols can be obtained using oxaziridine-mediated oxyamination reactions, and the overall sense of regiochemistry can be controlled using the appropriate choice of inexpensive first-row transition metal catalyst. PMID:22793789

  5. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    EPA Science Inventory

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin Epoxidation

    Unnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis Enriquez
    U.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268
    Phone: 513-569-773...

  6. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins.

    PubMed

    Crossley, Steven W M; Obradors, Carla; Martinez, Ruben M; Shenvi, Ryan A

    2016-08-10

    Cofactor-mimetic aerobic oxidation has conceptually merged with catalysis of syngas reactions to form a wide range of Markovnikov-selective olefin radical hydrofunctionalizations. We cover the development of the field and review contributions to reaction invention, mechanism, and application to complex molecule synthesis. We also provide a mechanistic framework for understanding this compendium of radical reactions. PMID:27461578

  7. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein

    2000-01-01

    Using a reactor in which the coal is physically separated from the solid catalyst by a porous wall permeable to the hydrogen donor solvent, it was shown that direct contact between the catalyst and the coal is not required for catalyzed coal liquefaction. This occurs however only when there is a hydrogen atmosphere, as liquefaction with catalyst participation does not occur in a nitrogen atmosphere. Liquefaction by hydrogen transfer from the donor solvent itself does occur. This suggests that there is transfer of hydrogen from the catalyst to the coal via the solvent. The character of the solvent makes a significant difference, the better solvents being good hydrogen donors. These results indicate that the role of the catalyst may be to regenerate the spent hydrogen donor solvent during the liquefaction process. The peak temperature for volatiles evolution has been shown to be a reproducible measure of the coal rank. This was shown by an excellent correlation (R2 = 0.998) between peak volatiles temperatures (by TGA) and vitrinite reflectance. Using TG/MS, the volatiles contents of coals of a wide range of ranks was determined. The low rank coals emit largely phenols and some other oxygen compounds and olefins. The higher rank coals emit largely aromatic hydrocarbons and some olefins.

  8. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOEpatents

    Wang, Yong , Liu; Wei

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  9. New coal-derived catalyst for transfer hydrocracking of vacuum residue

    SciTech Connect

    Nakamura, Ikusei; Fujimoto, Kaoru

    1995-12-31

    Liquid phase hydrocracking of Arabian Heavy vacuum residue conducted in the presence of metal supported active carbon catalyst gave large amount of distillates (70%) with small hydrogen consumption. Especially the Yallourn coal derived active carbon catalyst showed high activity for the cracking of Arabian Heavy vacuum residue. The yield of asphaltene in the product oil was very low, whereas the coke yield was relatively high (about 4 wt%). In the metal-free active carbon system, the coke yield and the content of olefins, sulfur compounds, and asphaltene in the product oil were higher than those of the metal-supported active carbon system. These results suggest that asphaltene in feed oil was adsorbed on the metal supported active carbon catalyst and was decomposed or dehydrogenated on it to form coke and hydrogen atoms. The hydrogen atoms formed migrated on the carbon surface to reach the metal site and transferred to free radicals, olefins, or organo sulfur compounds.

  10. Comments on the ring-opening polymerization of morpholine-2,5-dione derivatives by various metal catalysts and characterization of the products formed in the reactions involving R2SnX2, where X = OPr(i) and NMe2 and R = Bu(n), Ph and p-Me2NC6H4.

    PubMed

    Chisholm, M H; Galucci, J; Krempner, C; Wiggenhorn, C

    2006-02-14

    (3S,6S)-3-Isopropyl-6-methyl-morpholine-2,5-dione (1), and (3S,6S)-3,6-dimethyl-morpholine-2,5-dione (2), do not enter into ring-opening polymerization reactions with metal catalyst precursors commonly employed for lactides, and with Sn(II) octanoate, only low molecular weight oligomers are obtained. Reactions with R2SnX2 compounds, where R = Ph, Bu(n) and p-Me2NC6H4 and X = OPr(i) or NMe2, reveal that ring-opening of the morpholine-2,5-diones does occur, but that polymerization is terminated by the formation of kinetically-inert products such as {Ph2Sn[mu,eta(3)-OCH(Me)CONCH(Pr(i))COOPr(i)]}2 (3), and {[Bu(n))2Sn[mu,eta(3)-OCH(Me)CONCH(Me)CONMe2]}2 (4), with elimination of HX. Ph3SnOPr(i) is seen to react reversibly with morpholine-2,5-diones in toluene-d8 by 1H NMR spectroscopy while (Bu(n))3SnNMe2 reacts by ring opening to give (Bu(n))3SnOCH(Me)C(O)NHCHMeC(O)NMe2. The new organotin compounds have been characterized by 1H, 13C{1H} and 118Sn NMR spectroscopy and compounds 1, 2, 3 and 4 by single crystal X-ray crystallography. PMID:16437180

  11. Improved Fischer-Tropsch Synthesis catalysts for indirect coal liquefaction

    SciTech Connect

    Tong, G.T.; Wilson, R.B.; McCarty, J.G.

    1987-01-01

    The monoruthenium cluster catalyst with a molecular sieve support and the tetraruthenium cluster catalyst with a sodium-Y zeolite support have been examined for Fischer-Tropsch Synthesis (FTS) performance at high pressure (6.9 MPa) in a slurry reactor and compared with conventional ruthenium with an alumina support and clean fused iron catalysts. Of the four catalysts tested, only the conventional ruthenium catalyst exhibited a chain growth factor of 0.88 and a methane selectivity of 6.6%, which are typical of slurry reactor results reported for iron catalysts under similar conditions. The other three catalysts tested showed low chain growth factors (ranging from 0.44 to 0.57) and high methane selectivity (ranging from 20 to 32%). A cobalt catalyst with approximately 50% sulfur coverage was prepared and tested for FTS activity and selectivity at ambient pressure and compared with the FTS performance of the clean and fully sulfided cobalt catalysts. The introduction of sulfur caused a decrease in methane selectivity and an increase in olefin selectivity with only a moderate decline in activity. 1 ref., 2 tabs.

  12. Carbon deposition in the Bosch process with ruthenium and ruthenium-iron alloy catalysts. M.S. Thesis. Final Report, Jan. 1981 - Jul. 1982

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.; Sophonpanich, C.

    1982-01-01

    The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor.

  13. L-Lactide Ring-Opening Polymerization with Tris(acetylacetonate)Titanium(IV) for Renewable Material.

    PubMed

    Kim, Da Hee; Yoo, Ji Yun; Ko, Young Soo

    2016-05-01

    A new Ti-type of catalyst for L-lactide polymerization was synthesized by reaction of titanium(IV) isopropoxide (TTIP) with acetylacetone (AA). Moreover, PLA was prepared by the bulk ring-opening polymerization using synthesized Ti catalyst. Polymerization behaviors were examined depending on monomer/catalyst molar ratio, polymerization temperature and time. The structure of synthesized catalysts was verified with FT-IR and 1H NMR and the properties of poly(L-lactide) (PLLA) were examined by GPC, DSC and FT-IR. There existed about 30 minutes of induction time at the monomer/catalyst molar ratio of 300. The molecular weight (MW) increased as monomer/catalyst molar ratio increased. The MW increased almost linearly as polymerization progressed. Increasing polymerization temperature increased the molecular weight of PLLA as well as monomer/catalyst molar ratio. The melting point (T(m)) of polymers was in the range of 142 to 167 degrees C. Lower T(m) was expected to be resulted from relatively lower molecular weight. PMID:27483787

  14. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Goldberg, Robert I.

    1987-04-07

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: and for olefinic hydrocarbons: where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  15. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas

    SciTech Connect

    Guohui Yang; Jingjiang He; Yi Zhang; Yoshiharu Yoneyama; Yisheng Tan; Yizhuo Han; Tharapong Vitidsant; Noritatsu Tsubaki

    2008-05-15

    Four kinds of zeolite capsule catalyst with different crystallization conditions were prepared and utilized for the middle isoparaffin direct synthesis via Fischer-Tropsch synthesis (FTS) reaction. Characterization results exhibited that these capsule catalysts had a compact, integral H-ZSM-5 shell. In FTS reactions on these zeolite capsule catalysts, hydrocarbons of C11+ were totally suppressed, accompanied by a sharp anti-Anderson-Schultz-Flory (ASF) law product distribution. The selectivity of light isoparaffin was improved obviously, but with the increase of the olefin's selectivity. Two-stage isoparaffin synthesis reaction, using the combination of zeolite capsule catalyst with hydrogenation catalyst of Pd/SiO{sub 2} in a single reactor as dual-bed catalyst, was also conducted for converting the residual olefins produced by the single zeolite capsule catalyst. Dependent on the palladium role of hydrogenation and hydrogen spillover, almost all the olefins effused from the first stage of zeolite capsule catalyst were hydrogenated, mostly converted to isoparaffin. The selectivity of isoparaffin in the final products was increased markedly as expected. 10 refs., 7 figs., 2 tabs.

  16. Pilot studies on novel catalyst for sulfur removal from cracked naphthas with minimal octane loss

    SciTech Connect

    Sherwood, D.E. Jr.; Gripka, P.J.; Clausen, M.F.; Nelson, R.G.

    1996-12-31

    Oil companies are expecting wider mandated use of reformulated gasolines and further environmental mandates to lower sulfur contents of reformulated gasolines in the near future. Environmental agencies currently believe that lower sulfur contents will significantly upgrade the quality of automotive exhaust gases. Most of the sulfur in a typical refinery gasoline pool comes from {open_quotes}cracked naphthas,{close_quotes} e.g. from Fluid Catalyst Cracking Units (FCCU`s). Cracked naphthas also have high olefin contents, and thus, high octane numbers. Although it is relatively easy to remove sulfur from a cracked naphtha in a low severity hydrotreating operation, at the same time, significant olefin saturation and octane reduction occur. Clearly, a selective hydrodesulfurization (HDS) process with minimal olefin reduction is required to produce low sulfur, high octane cracked naphthas. 2 refs., 5 tabs.

  17. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  18. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  19. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water.

    PubMed

    Ng, Yeap-Hung; di Lena, Fabio; Chai, Christina L L

    2011-06-14

    The preparation of acrylic polymers with predetermined molecular weights using metalloenzymes as catalysts, ascorbic acid as reducing agent and alkyl halides as initiators is reported. The mechanism of polymerization resembles an ARGET ATRP process. PMID:21552589

  20. Formation Mechanism of the First Carbon-Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons.

    PubMed

    Liu, Yue; Müller, Sebastian; Berger, Daniel; Jelic, Jelena; Reuter, Karsten; Tonigold, Markus; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2016-05-01

    The elementary reactions leading to the formation of the first carbon-carbon bond during early stages of the zeolite-catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C-C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid-catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol(-1) for the formation of the first C-C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms. PMID:27037603

  1. Acid-catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties

    SciTech Connect

    Kim, Taejin; Assary, Rajeev A.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2011-07-22

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  2. Acid-catalyzed furfurly alcohol polymerization : characterizations of molecular structure and thermodynamic properties.

    SciTech Connect

    Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C.

    2011-01-01

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  3. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.

    PubMed

    Gustafsson, Omar; Mogensen, Klaus B; Kutter, Jörg P

    2008-08-01

    We report, for the first time, the use of underivatized cyclic olefin copolymer (COC, more specifically: Topas) as the substrate material and the stationary phase for capillary and microchip electrochromatography (CEC), and demonstrate chromatographic separations without the need of coating procedures. Electroosmotic mobility measurements in a 25 microm id Topas capillary showed a significant cathodic EOF that is pH-dependent. The magnitude of the electroosmotic mobility is comparable to that found in glass substrates and other polymeric materials. Open-tubular CEC was employed to baseline-separate three neutral compounds in an underivatized Topas capillary with plate heights ranging from 5.3 to 12.7 microm. The analytes were detected using UV absorbance at 254 nm, thus taking advantage of the optical transparency of Topas at short wavelengths. The fabrication of a Topas-based electrochromatography microchip by nanoimprint lithography is also presented. The microchip has an array of pillars in the separation column to increase the surface area. The smallest features that were successfully imprinted were around 2 microm wide and 5 microm high. No plasma treatment was used during the bonding, thus keeping the surface properties of the native material. An RP microchip electrochromatography separation of three fluorescently labeled amines is demonstrated on the underivatized microchip with plate heights ranging from 3.4 to 22 microm. PMID:18618461

  4. Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants.

    PubMed

    Messina, Marco S; Axtell, Jonathan C; Wang, Yiqun; Chong, Paul; Wixtrom, Alex I; Kirlikovali, Kent O; Upton, Brianna M; Hunter, Bryan M; Shafaat, Oliver S; Khan, Saeed I; Winkler, Jay R; Gray, Harry B; Alexandrova, Anastassia N; Maynard, Heather D; Spokoyny, Alexander M

    2016-06-01

    We report a discovery that perfunctionalized icosahedral dodecaborate clusters of the type B12(OCH2Ar)12 (Ar = Ph or C6F5) can undergo photo-excitation with visible light, leading to a new class of metal-free photooxidants. Excitation in these species occurs as a result of the charge transfer between low-lying orbitals located on the benzyl substituents and an unoccupied orbital delocalized throughout the boron cluster core. Here we show how these species, photo-excited with a benchtop blue LED source, can exhibit excited-state reduction potentials as high as 3 V and can participate in electron-transfer processes with a broad range of styrene monomers, initiating their polymerization. Initiation is observed in cases of both electron-rich and electron-deficient styrene monomers at cluster loadings as low as 0.005 mol%. Furthermore, photo-excitation of B12(OCH2C6F5)12 in the presence of a less activated olefin such as isobutylene results in the production of highly branched poly(isobutylene). This work introduces a new class of air-stable, metal-free photo-redox reagents capable of mediating chemical transformations. PMID:27186856

  5. N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions.

    PubMed

    Iturmendi, Amaia; García, Nestor; Jaseer, E A; Munárriz, Julen; Sanz Miguel, Pablo J; Polo, Victor; Iglesias, Manuel; Oro, Luis A

    2016-08-01

    The Ir(i) complexes [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 and [IrCl(cod)(κC-NHO(OMe))] (cod = 1,5-cyclooctadiene, NHO(PPh2) = 1,3-bis(2-(diphenylphosphanyl)ethyl)-2-methyleneimidazoline) and NHO(OMe) = 1,3-bis(2-(methoxyethyl)-2-methyleneimidazoline), both featuring an N-heterocyclic olefin ligand (NHO), have been tested in the transfer hydrogenation reaction; this representing the first example of the use of NHOs as ancillary ligands in catalysis. The pre-catalyst [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 has shown excellent activities in the transfer hydrogenation of aldehydes, ketones and imines using (i)PrOH as a hydrogen source, while [IrCl(cod)(κC-NHO(OMe))] decomposes throughout the reaction to give low yields of the hydrogenated product. Addition of one or two equivalents of a phosphine ligand to the latter avoids catalyst decomposition and significantly improves the reaction yields. The reaction mechanism has been investigated by means of stoichiometric studies and theoretical calculations. The formation of the active species ([Ir(κP,C,P'-NHO(PPh2))((i)PrO)]) has been proposed to occur via isopropoxide coordination and concomitant COD dissociation. Moreover, throughout the catalytic cycle the NHO moiety behaves as a hemilabile ligand, thus allowing the catalyst to adopt stable square planar geometries in the transition states, which reduces the energetic barrier of the process. PMID:27472896

  6. Copper-catalyzed olefinic C-H difluoroacetylation of enamides.

    PubMed

    Caillot, Gilles; Dufour, Jérémy; Belhomme, Marie-Charlotte; Poisson, Thomas; Grimaud, Laurence; Pannecoucke, Xavier; Gillaizeau, Isabelle

    2014-06-01

    Copper-catalyzed olefinic difluoroacetylation of enamides via direct C-H bond functionalization using BrCF2CO2Et is reported for the first time. It constitutes an efficient radical-free method for the regioselective synthesis of β-difluoroester substituted enamides which exhibits broad substrate scope, and thus demonstrates its potent application in a late stage fluorination strategy. PMID:24760345

  7. Novel Cyclo Olefin Copolymer Used as Waveguide Film

    NASA Astrophysics Data System (ADS)

    Hwang, Shug-June; Yu, Hsin Her

    2005-04-01

    A novel cyclo olefin copolymer (COC) waveguide film was fabricated and characterized. The optical properties as well as the absorption spectrum of this polymer film were observed using a prism coupler and by Fourier transformation infra-red (FTIR) spectroscopy. Atomic force microscopy (AFM) was also used to monitor the morphology of the waveguide film to probe the influence of an external electric field. In addition, the moisture resistance of this waveguide film was explored by water permeation measurements.

  8. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    PubMed Central

    Hemric, Brett N

    2016-01-01

    Summary This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates. PMID:26877805

  9. Methanol and methyl fuel catalysts. Final technical report, September 1980-August 1983

    SciTech Connect

    Klier, K.; Herman, R.G.; Simmons, G.W.

    1983-12-01

    Copper-based catalysts for alcohol synthesis were prepared, tested for catalytic activity and selectivity, and characterized. These catalysts include Cu/ZnO, Cu/Co/ZnO, Cu/Co/Cr/sub 2/O/sub 3/, Cu/Co/Cr/sub 2/O/sub 3//K/sub 2/O, and Cu/ZnO/KOH. The chromia-containing catalysts exhibited a low activity and selectivity, while the Cu/ZnO catalyst was verified to be a very active and selective methanol synthesis catalyst. Cobalt imparted a methanation function to the catalysts, while potassium suppressed the activity and the selectivity. Over the quaternary catalyst, higher pressure and lower GHSV enhanced the selectivity to higher alcohols. Low concentrations of carbon dioxide in H/sub 2//CO synthesis gas over Cu/ZnO catalysts promote methanol synthesis, while at high concentrations it behaves as a retardant of the synthesis. The water gas shift reaction readily proceeds over the Cu/ZnO catalyst. Analogous to the CO/sub 2/ effect, the presence of water in the synthesis gas has a profound effect on the synthesis of methanol. The Cu/ZnO catalyst is a good hydrogenation catalyst. Olefins, aldehydes, and acids are hydrogenated at a faster rate than CO is hydrogenated to methanol, but aromatics are hydrogenated at slower rates. Chemical trapping of the intermediates on these surface sites with amines demonstrates that a kinetically significant intermediate in methanol synthesis is a surface formyl or hydroxycarbene species. These species can be formed from synthesis gas or by alcohols in the reactant stream, and they readily alkylate amines in the reactant gas stream. Over an Fe/Cu/ZnO catalyst, amines inhibit the production of alcohols by trapping the precursor intermediates, while changing the hydrocarbon selectivity from paraffins to predominantly olefins. 68 references, 9 figures, 25 tables.

  10. Cyclopropenimine Superbases: Competitive Initiation Processes in Lactide Polymerization

    PubMed Central

    Stukenbroeker, Tyler S.; Bandar, Jeff S.; Zhang, Xiangyi; Lambert, Tristan H.; Waymouth, Robert M.

    2015-01-01

    Cyclopropenimine superbases were employed to catalyze the ring-opening polymerization of lactide. Polymerization occurred readily in the presence and absence of alcohol initiators. Polymerizations in the absence of alcohol initiators revealed a competitive initiation mechanism involving deprotonation of lactide by the cyclopropenimine to generate an enolate. NMR and MALDI-TOF analysis of the poly(lactides) generated from cyclopropenimines in the absence of alcohol initiators showed acylated lactide and hydroxyl endgroups. Model studies and comparative experiments with guanidine and phosphazene catalysts revealed the subtle influence of the nature of the superbase on competitive initiation processes. PMID:26913218

  11. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  12. Rare-earth metal bis(silylamide) complexes supported by mono-dentate arylamido ligand: synthesis, reactivity, and catalyst precursors in living cis-1,4-selective polymerization of isoprene.

    PubMed

    Shi, Liqin; Su, Qi; Chen, Jue; Li, Xiaonian; Luo, Yunjie

    2016-01-28

    The salt metathesis reaction of LnCl3 with 1 equivalent of arylamido lithium [2,6-(i)Pr2C6H3N(SiMe3)]Li followed by addition of 2 equivalents of LiN(SiHMe2)2 in THF at room temperature obtained neutral mono-arylamido-ligated rare-earth metal bis(silylamide) complexes [2,6-(i)Pr2C6H3N(SiMe3)]Ln[N(SiHMe2)2]2(THF) (Ln = Y (), Lu (), La ()) in good isolated yields. Treatment of with excess AlMe3 produced the mono(arylamido) Ln/Al heterotrinuclear methyl complexes [2,6-(i)Pr2C6H3N(SiMe3)]Ln[(μ-Me)2AlMe2]2 (Ln = Y (), Lu (), La ()) via amide-alkyl exchange. All these complexes were well-characterized by elemental analysis, NMR spectroscopy and FT-IR spectroscopy. , and were further structurally authenticated by X-ray crystallography. In the presence of [Ph3C][B(C6F5)4] and Al(i)Bu3, were highly active for cis-1,4-selective polymerization of isoprene, whereas /[Ph3C][B(C6F5)4]/Al(i)Bu3 promoted the polymerization in a living fashion. PMID:26674733

  13. Controlled polymerization by incarceration of monomers in nanochannels.

    PubMed

    Uemura, Takashi; Kitagawa, Susumu

    2010-01-01

    Porous Coordination Polymers (PCPs) composed of transition metal ions and bridging organic ligands have been extensively studied. The characteristic features of PCPs are highly regular channel structures, controllable channel sizes approximating molecular dimensions, designable surface potentials and functionality, and flexible frameworks responsive to guest molecules. Owing to these advantages, successful applications of PCPs range from molecular storage and separation to heterogeneous catalysts. In particular, use of their regulated and tunable nanochannels in the field of polymerization has allowed multi-level control of polymerization via control of stereoregularlity, molecular weight, etc. In this chapter, we focus on recent progress in polymerization utilizing the nanochannels of PCPs, and demonstrate why this polymerization system is attractive and promising from the viewpoint of precision control of polymeric structures. PMID:21618745

  14. Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant.

    PubMed

    Kumar, Subodh; Singhal, Nikita; Singh, Raj K; Gupta, Piyush; Singh, Raghuvir; Jain, Suman L

    2015-07-14

    Chitosan coated magnetic nanoparticles were synthesized and used as a support for the immobilization of the cobalt(II) acetylacetonate complex [Co(acac)2] and quaternary triphenylphosphonium bromide [P(+)Ph3Br(-)] targeting -NH2 and -OH moieties located on the surface of chitosan. The synthesized material was used as a catalyst for one pot direct synthesis of cyclic carbonates from olefins via an oxidative carboxylation approach with carbon dioxide using isobutyraldehyde as the sacrificial reductant and molecular oxygen as the oxidant. After the reaction, the catalyst was recovered by applying an external magnet and reused for several runs without significant loss in catalytic activity and no leaching was observed during this course. PMID:26055991

  15. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  16. Design strategies for the molecular level synthesis of supported catalysts.

    PubMed

    Wegener, Staci L; Marks, Tobin J; Stair, Peter C

    2012-02-21

    Supported catalysts, metal or oxide catalytic centers constructed on an underlying solid phase, are making an increasingly important contribution to heterogeneous catalysis. For example, in industry, supported catalysts are employed in selective oxidation, selective reduction, and polymerization reactions. Supported structures increase the thermal stability, dispersion, and surface area of the catalyst relative to the neat catalytic material. However, structural and mechanistic characterization of these catalysts presents a formidable challenge because traditional preparations typically afford complex mixtures of structures whose individual components cannot be isolated. As a result, the characterization of supported catalysts requires a combination of advanced spectroscopies for their characterization, unlike homogeneous catalysts, which have relatively uniform structures and can often be characterized using standard methods. Moreover, these advanced spectroscopic techniques only provide ensemble averages and therefore do not isolate the catalytic function of individual components within the mixture. New synthetic approaches are required to more controllably tailor supported catalyst structures. In this Account, we review advances in supported catalyst synthesis and characterization developed in our laboratories at Northwestern University. We first present an overview of traditional synthetic methods with a focus on supported vanadium oxide catalysts. We next describe approaches for the design and synthesis of supported polymerization and hydrogenation catalysts, using anchoring techniques which provide molecular catalyst structures with exceptional activity and high percentages of catalytically significant sites. We then highlight similar approaches for preparing supported metal oxide catalysts using atomic layer deposition and organometallic grafting. Throughout this Account, we describe the use of incisive spectroscopic techniques, including high

  17. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and

  18. Polymerization of perfluorobutadiene at near-ambient conditions

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1971-01-01

    Peroxide catalyst under mild conditions initiates homopolymerization of perfluoro butadiene to new linear perfluoro polyenes and vulcanizable fluoro elastomers. Resulting polyperfluoro butadiene serves as hard elastomer for good chemical resistance, as intermediate in graft polymerizations, and as crosslink for high molecular weight materials.

  19. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    PubMed

    Shoda, Shin-Ichiro; Uyama, Hiroshi; Kadokawa, Jun-Ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society. PMID:26791937

  20. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  1. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  2. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  3. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    PubMed

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins. PMID:26898532

  4. A chaperonin as protein nanoreactor for atom-transfer radical polymerization.

    PubMed

    Renggli, Kasper; Nussbaumer, Martin G; Urbani, Raphael; Pfohl, Thomas; Bruns, Nico

    2014-01-27

    The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom-transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N-isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein-catalyst conjugate only yielded polymers with PDIs above 1.84. PMID:24459061

  5. INVESTIGATION OF THE SURFACE PROPERTIES OF POLYMERIC SOAPS OBTAINED BY RING-OPENING POLYMERIZATION OF EPOXIDIZED SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  6. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin...

  7. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin...

  8. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin...

  9. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL... Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling fluid used...

  10. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  11. Olefins by catalytic oxidation of alkanes in fluidized bed reactors

    SciTech Connect

    Bharadwaj, S.S.; Schmidt, L.D.

    1995-09-01

    The production of ethylene or syngas from ethane and olefins from propane, n-butane, and isobutane in the presence of air or O{sub 2} at atmospheric pressure has been examined over 100 {mu}m {alpha}-Al{sub 2}O{sub 3} beads coated with noble metals in a static fluidized bed reactor at contact times from 0.05 to 0.2 s. Variations in feed composition, preheating temperature, and flow rate were examined. 21 refs., 5 figs., 1 tab.

  12. Thermoplastic Adhesives based on polyolefin and olefinic copolymers

    NASA Astrophysics Data System (ADS)

    Paul, Rituparna

    2014-03-01

    H.B. Fuller has been a leading global industrial adhesive manufacturer for over 125 years. It is a company with a rich history of consistently delivering adhesive innovations for enhancing product performance in the market place. H.B. Fuller technologies/products find application in several markets including packaging, personal hygiene and nonwovens, durable assembly and electronics. In this presentation, H. B. Fuller's technology innovation journey will be shared with emphasis on groundbreaking technologies/products based on polyolefin and olefin copolymers.

  13. Hydroformylation of Olefinic Derivatives of Isosorbide and Isomannide.

    PubMed

    Villo, Piret; Matt, Livia; Toom, Lauri; Liblikas, Ilme; Pehk, Tõnis; Vares, Lauri

    2016-09-01

    The first time application of hydroformylation on olefinic derivatives of isosorbide and isomannide is shown by which a new carbon-carbon bond is formed. Depending on the ligand and reaction conditions used, the C6 regioisomer a can be obtained in 4:1 ratio and excellent yield, whereas C5 isomer b is achieved in almost complete regioselectivity (46:1) and good yield. In the majority of cases only the exo orientation is observed for the obtained aldehydes, and the method is easily applicable also on a 1 g scale. PMID:27472019

  14. Chiral Phosphorus-Olefin Ligands for the Rh(I) -Catalyzed Asymmetric Addition of Aryl Boronic Acids to Electron-Deficient Olefins.

    PubMed

    Chen, Qian; Li, Liang; Zhou, Guangli; Ma, Xiaoli; Zhang, Lu; Guo, Fang; Luo, Yi; Xia, Wujiong

    2016-05-20

    New chiral phosphorus-olefin hybrid ligands derived from the rigid "privileged" l-proline have been conveniently prepared and applied in the rhodium-catalyzed asymmetric arylation of electron-deficient olefins with arylboronic acids at room temperature; this reaction provides the desired products in excellent yields and high enantioselectivities. The origin of observed stereoselectivity has been investigated by density functional theory (DFT) calculations. PMID:27017447

  15. Tunable-Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles.

    PubMed

    Jiang, Bo; Li, Cuiling; Tang, Jing; Takei, Toshiaki; Kim, Jung Ho; Ide, Yusuke; Henzie, Joel; Tominaka, Satoshi; Yamauchi, Yusuke

    2016-08-16

    Platinum nanoparticles with continuously tunable mesoporous structures were prepared by a simple, one-step polymeric approach. By virtue of their large pore size, these structures have a high surface area that is accessible to reagents. In the synthetic method, variation of the solvent composition plays an essential role in the systematic control of pore size and particle shape. The mesoporous Pt catalyst exhibited superior electrocatalytic activity for the methanol oxidation reaction compared to commercially available Pt catalysts. This polymeric-micelle approach provides an additional design concept for the creation of next generation of metallic catalysts. PMID:27439561

  16. Soluble B-N polymers: poly(alpha-olefin) analogs via metal complex-catalyzed amine borane dehydrogenation

    SciTech Connect

    Pons, Vincent; Baker, R Tom

    2008-01-01

    Over the last few decades, catalytic dehydrocoupling has evolved from a mechanistically interesting chemical transformation to a practical route to inorganic polymers that have shown utility as new materials and processable ceramic precursors. In attempting to make new B-P and B-N inorganic polymers, Manners et al studied the heteronuclear dehydrocoupling of phosphine boranes and amine boranes. While the former gave high polymers such as (PhHP-BH2), evaluation of a variety of catalysts with primary and secondary amine boranes or even ammonia borane lead only to B-N cyclic oligomers. However, using an iridium phosphinito pincer complex originally employed by Goldberg and Heinekey6 for dehydrogenation of ammonia borane (AB, H3N-BH3), M3.nners now reports formation of soluble aminoborane polymers and copolymers derived from primary amine boranes (Scheme 1) With this report, an analogy is made between primary amine boranes and {alpha}-olefins. The prospects of tuning metal complex catalysts for control of B-N polymer microstructure are exciting for synthesis of new B-N materials. In addition, variation of the N substituent offers promise for processable precllISors to carbon-free B-N ceramics.

  17. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    PubMed

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-01

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. PMID:25081298

  18. Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts: physical and catalytic characterization

    SciTech Connect

    Kreitman, K.M.; Baerns, M.; Butt, J.B.

    1987-06-01

    It has been claimed that catalysts containing iron and manganese are especially selective for production of low molecular weight olefins in the Fischer-Tropsch (FT) synthesis. In this study a new system, manganese-oxide-supported iron, Fe/MnO, was prepared, subjected to various calcination and reduction treatments, and then employed as a FT catalyst. Reaction studies were run with approximately 1/1: CO/H/sub 2/ feed at 515 and 540 K and 7.8 and 14.8 bar pressure. Although low conversions were employed, the synthesis rate decreased strongly with increasing conversion. Compared to conventional Fe catalysts, the Fe/MnO was more active for water-gas shift and less selective for methane and alcohols, especially at higher conversions, lower temperature, and higher pressure. Olefin selectivity was high, hydrogen chemisorption was depressed, and secondary hydrogenation was not apparent. In general it is concluded that the manganese-supported iron does promote FT selectivity for low molecular weight olefins, but at the expense of high CO/sub 2/ formation.

  19. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    SciTech Connect

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M.; Greene, M.

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  20. Non-redox metal ions can promote Wacker-type oxidations even better than copper(II): a new opportunity in catalyst design.

    PubMed

    Qin, Shuhao; Dong, Lei; Chen, Zhuqi; Zhang, Sicheng; Yin, Guochuan

    2015-10-28

    In Wacker oxidation and inspired Pd(ii)/Cu(ii)-catalyzed C-H activations, copper(ii) is believed to serve in re-oxidizing of Pd(0) in the catalytic cycle. Herein we report that non-redox metal ions like Sc(iii) can promote Wacker-type oxidations even better than Cu(ii); both Sc(iii) and Cu(ii) can greatly promote Pd(ii)-catalyzed olefin isomerization in which the redox properties of Cu(ii) are not essential, indicating that the Lewis acid properties of Cu(ii) can play a significant role in Pd(ii)-catalyzed C-H activations in addition to its redox properties. Characterization of catalysts using UV-Vis and NMR indicated that adding Sc(OTf)3 to the acetonitrile solution of Pd(OAc)2 generates a new Pd(ii)/Sc(iii) bimetallic complex having a diacetate bridge which serves as the key active species for Wacker-type oxidation and olefin isomerization. Linkage of trivalent Sc(iii) to the Pd(ii) species makes it more electron-deficient, thus facilitating the coordination of olefin to the Pd(ii) cation. Due to the improved electron transfer from olefin to the Pd(ii) cation, it benefits the nucleophilic attack of water on the olefinic double bond, leading to efficient olefin oxidation. The presence of excess Sc(iii) prevents the palladium(0) black formation, which has been rationalized by the formation of the Sc(iii)H-Pd(ii) intermediate. This intermediate inhibits the reductive elimination of the H-Pd(ii) bond, and facilitates the oxygen insertion to form the HOO-Pd(ii) intermediate, and thus avoids the formation of the inactive palladium(0) black. The Lewis acid promoted Wacker-type oxidation and olefin isomerization demonstrated here may open up a new opportunity in catalyst design for versatile C-H activations. PMID:26390300